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Abstract 
Recent advances in high-throughput microscopy imaging have made it easier to acquire 

large volumes of cell images. Thanks to electron microscopy (EM) imaging, they provide a 
high-resolution and sufficient field of view that suits imaging large cell types, including 
cardiomyocytes. A significant bottleneck with these large datasets is the time taken to collect, 
extract and statistically analyse 3D changes in cardiac ultrastructures. We address this 
bottleneck with CardioVinci. 

Recent deep learning (DL) findings have paved the way for much accessible data 
quantification and analysis tools. These methods have shown unprecedented performance in a 
wide range of data analysis tasks, including image analysis. In biology, DL has improved the 
accuracy of segmenting EM data and the efficiency by minimising the time required for 
quantifying such datasets. Despite their successful applications in EM image analysis, these 
methods still represent some limitations, as reported in our previous works [1, 2]. Finding the 
exemplary DL architecture, optimising, and fine-tuning to segment various ultrastructures 
sometimes need sophisticated techniques, including ensemble learning. This makes it 
challenging to collect a large sample of cardiomyocytes, obtain optimal images from the 
samples, develop and fine-tune deep neural networks for segmenting organelles, and finally 
report statistical measures. 

Generative adversarial networks (GANs) have been proposed to learn complex latent 
features from a dataset in an unsupervised manner. Simplistically speaking, GANs enable us 
to learn the original distributions of the data. For example, the EM images collected from 
dissected cardiac tissues only represent a sampled version from a complex data distribution 
representing the cardiomyocytes’ organisation within the tissue population. Many previous 
studies have utilised generative modelling to extract unsupervised feature representations 
across different cell types [3-8]. These studies are mainly carried out in 2D or are limited in 
resolution as one of the barriers to applications of GANs in biology used to be a low and poor 
resolution of projections of latent space. 
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Moreover, training high-resolution GANs in 3D are computationally exhaustive. 
However, the correlation among consecutive image slices in 3D microscopy image data can be 
utilised for passing 3D information during training 2D GANs. StyleGAN [9] addresses these 
challenges by adopting style transfer and stochastic variation in the generated images and 
demonstrably high-resolution, realistic images from latent space projections.  

In this study, we propose CardioVinci, a designated workflow to statistically quantify 3D 
structures of mitochondria, myofibrils, and Z-disks without the sophisticated need for 
collecting large image samples of cardiomyocytes. Figure 1 represents the workflow of the 
proposed framework. CardioVinci is scalable and can be applied across other tissue types and 
image modalities. The proposed method enables the community to statistically quantify the 
properties of key organelles in cardiomyocytes, including spatial distributions, shape, and 
geometrical statistics. Moreover, we have proposed a novel training workflow that enables the 
users to generate realistic 3D reconstructions of cardiomyocyte architecture from 2D GANs. 
To the best of our knowledge, this is the first study that addresses 3D cell organisation using 
only 2D serial sections from focused ion-beam scanning electron microscopy (FIB-SEM) and 
using 2D segmentation and GAN setting. Moreover, this is the first study that reports high-
resolution 3D virtual cardiac cell structure ranging from 10μm×10μm×2.5μm to 
10μm×10μm×10μm. 

We used Style-GAN [9] in this study to extract key statistics of cardiomyocytes using 
generative modelling. Style-GAN is a 2D generative adversarial network that provides 
demonstrably distribution quality metrics. Despite its 2D architecture, we could translate the 
correlation across image stack slices into latent space by slightly adapting the training 
workflow. After we generated the random images using the optimised generator, we ordered 
the generated images using the Jaccard similarity score. Finally, we reconstructed the resulting 
image slices in 3D to visualise the statistical representation of cardiomyocytes using generative 
modelling. The reconstructed volumes are limited to 10μm×10μm×10μm and 
10μm×10μm×2.5μm representing four sarcomeres as shown in Figure 2. 

The overarching goal of systems biology is to decode the complex ultrastructural 
dynamics within the cell to enable spatial simulation of such functional subcellular networks 
[10]. Generative models allow the creation of a spatial organisation of the cells directly from 
the microscopy images. These models encode the statistical variation across the cell 
architecture and capture the shape, size and spatial distribution of subcellular ultrastructures. 
CardioVinci captures the spatial organisation of the cardiomyocytes directly from the FIB-
SEM and SBF-SEM images. The outputs of the CardioVinci can be used for developing 
biochemical models of the cardiomyocytes as it provides statistically accurate spatial 
organisation. In this study, we extracted relative spatial distributions for mitochondria, 
myofibrils, and Z-disks using 3D point statistics based on the results of GAN (supplementary). 
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Figure 1. proposed pipeline for CardioVinci. First, semantic segmentation is used to segment 
target ultrastructures. Then StyleGAN is utilised to optimise the error between generator and 
discriminator. After the images are generated using the trained StyleGAN,  3D statistical 
representation of cardiomyocytes are reconstructed. And finally, 3D shape and geometric 
statistics are retrieved using the generated volume.  
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In addition to the above, we extracted surface area to volume ratio (SA:V) along with 
other 3D shape and geometrical statistics, including elongation, compactness, flatness, 
spareness and sphericity. These statistics are drawn based on the results of GAN and segmented 
images from the original dataset. The results suggest that GAN and segmented images share 
similar mean and median across these statistics; however, we observe relatively higher variance 
across extracted distributions using GAN. Our analysis suggests that Z-disks represent higher 
mean, median, and variance for SA:V, whereas mitochondria demonstrate a lower mean and 
variance range for SA:V. The latter applies to elongation, too, as Z-disks show a higher mean, 
median, and variance range for elongation, whereas mitochondria demonstrate lower values. 
Thus, compactness is minimal for Z-disks and maximal for mitochondria. Moreover, 
mitochondria and Z-disks show relatively the same statistics for flatness, whereas myofibrils 
show a lower mean, median, and variance range for flatness. In addition to the above, 
mitochondria and myofibrils represent relatively similar statistics for spareness and sphericity. 
However, Z-disks possess minimal sphericity properties. 

We used CardioVinci to analyse mitochondria and myofibrils shape and geometric 
statistics in type 1 diabetic cardiomyocytes. In both experiments, we have used generative 
modelling to obtain the statistics as highlighted above. Our results show that SA:V has been 
reduced in the diabetic sample compared to the control sample (mitochondrial SA:V has been 
altered drastically in the diabetic sample). In addition, mitochondria and myofibrils show 
increased compactness and sphericity in the diabetic condition compared to the control. These 
findings align with the previous results on mitochondrial properties on diabetic induced 
cardiomyocytes using 2D analysis on 2D data [11]. We found a considerable difference 
between control and diabetic samples shape and geometric statistics, especially in 
mitochondria.  

CardioVinci is a framework to reconstruct the statistical representation of 
cardiomyocytes in 3D. Although many studies have addressed biological questions using 
generative adversarial networks [3-5, 7, 12-16], most of these studies report their findings in 
2D or are limited in resolution due to the image modalities. Moreover, 3D generative modelling 
has not been conducted for quantifying scanning electron microscopy data to date. In this paper, 
we have proposed to segment crucial ultrastructures in cardiomyocytes semantically. Then the 
segmentation results are used to train the Style-GAN to learn the corresponding statistical 
distributions in a generative manner. We have also extended our study to analyse the changes 
in the mitochondrial and myofibrillar statistics in the presence of diseases such as diabetes. We 
have modified the Style-GAN in a way that is able to learn the data correlations between 
consecutive image slices. Hence, this will be the first study that reports 3D cardiomyocyte 
geometric statistics using a 2D GAN setting. 
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To summarise, CardioVinci is a scalable framework that can generate the statistical 
representations of electron microscopy data. CardioVinci exhibits phenomenal performance in 
the presence of limited data due to its scalability and would represent optimal performance 
when a large dataset is available. Our future aim is to utilise the style mixing capability of the 
StyleGAN to generate synthesized variations across different tissue blocks or even tissue types. 
We hope CardioVinci be utilised across other tissue types, and of course, other image 
modalities. We suggest the readers refer to the supplementary text and figures for detailed 
methods and analysis. 

Figure 2. Results of the volume reconstructions from the GAN outputs. Red, blue and green 
represent the myofibrils, z-disks and mitochondria, respectively. All the volumes represent 
approximately four sarcomeres of the cardiomyocytes that have been generated using our 
trained GAN. The reconstructed volumes are limited to 10μm×10μm×10μm (top left) and 
10μm×10μm×2.5μm. 
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Supplementary text 

Data 

We used one publicly available FIB-SEM cardiac dataset in this study, as highlighted in 
[1]. The second dataset includes left ventricular myocyte serial block-face scanning electron 
microscopy (SBF-SEM) image datasets collected from type 1 diabetic induced mice, as 
described previously [11]. We extracted 30 random patches from each dataset, each having 
512 × 512 pixels for training, testing and validation. After we manually annotated 
mitochondria, myofibrils and Z-disks on the first sample and mitochondria, myofibrils on the 
second sample. We split data randomly into training, validation and testing by 20

30� , 5
30� , 

and 5
30� , respectively. All the random data splits were performed using K-fold cross-

validation, and the inference performance is reported based on the best fold model.  

Training and testing 

All the experiments in this study were implemented using Deep Learning AMI (Amazon 
Linux 2) Version 46.0 using Amazon Web Services (AWS). These experiments were 
performed on GPU instances. We used “g4dn.12xlarge” (4 GPUs of a total of 64 GiB memory) 
and “g4dn.metal” (8 GPUs of a total of 128 GiB memory) for segmentation and training the 
GAN, respectively.  

Semantic segmentation improves feasibility and accuracy 

Machine learning (ML) and DL methods offer a fast and accurate segmentation of 
various organelles. However, segmenting some of the ultrastructures such as Z-disks has its 
own challenges using ML or DL methods as shown in [17, 18]. This is mainly due to a relatively 
large label imbalance. For example, when the aim is to segment Z-disks only (binary 
segmentation), a relatively large label imbalance leads to poor optimisation performance. 
However, in this work, we show that segmenting Z-disks along with mitochondria and 
myofibrils not only boosts the feasibility of Z-disks segmentation using DL methods but also 
leads to higher test data performance across various metrics, including  𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and 
𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). We modified U-net [19] architecture using a fully connected bottleneck and 
added a softmax layer as the output node for segmenting three ultrastructures of our interest. 
More details can be found in [2]. Figure 1 represents evaluation metrics for mitochondria, 
myofibrils, and Z-disks on the test sample. 
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Spatial distributions reveal the dominance of clustered patterns in cardiomyocytes 

We used GAN results to extract relative spatial distributions for mitochondria, 
myofibrils, and Z-disks using 3D point statistic. Our results show that mitochondria are 
distributed in a clustered pattern relative to myofibrils up to between 60 nm to 70 nm. As we 
move further away, the mitochondria distributions become uniform. The results also show that 
mitochondria are distributed in a clustered pattern relative to Z-disks up to 70 nm. In addition 
to the above, the results also show that myofibrils are distributed in a clustered pattern relative 
to mitochondria and Z-disks up to 70 nm; however, they represent a relatively uniform pattern 
beyond 70 nm. And finally, our results show that Z-disks demonstrate dominantly clustered 
patterns up to 80 nm relative to mitochondria and myofibrils, whereas they show uniform 
patterns beyond that point. Figure 2 shows the spatial distributions. 

StyleGAN can be used to learn correlations across 3D microscopy image slices 

Thanks to the TFRecord formatting, we can store a set of features along with the image 
itself in the TFRecord data. We used one hot-encoded formatting to assign a label to two 
consecutive image slices as part of building our TFRecord data for training the StyleGAN using 
segmented image slices. Then we added another input node to the StyleGAN as an embedding 
layer to embed the correlation across different slices. We used fully connected layers to capture 
the nonlinearity across image slices. We followed exactly the same strategy to optimise 
StyleGAN as highlighted in [9], except that we did employ shuffling during the training. After 
the network had been converged based on Fréchet inception distance (FID), we generated the 
images using the generator. We then ordered the resulted images according to the minimised 
Jaccard distance between the generated slices to obtain 3D virtual volume of cardiomyocytes. 

3D statistics reveal increased SA:V for the cardiomyocytes in the presence of 
diabetes 

In the previous study [11], the authors have suggested increased SA:V for mitochondrial 
clusters. The authors have utilised cluster perimeters to estimate SA:V in 2D for the 
mitochondrial clusters. However, based on 3D statistics, we found that cardiomyocytes exhibit 
decreased SA:V in the presence of diabetes. Our understanding is that mitochondrial fusion 
and fission represent sophisticated dynamics from the morphological perspective; hence, the 
2D analysis should not be conclusive. We found that despite transversal mitochondrial fission 
in the diabetic cardiomyocytes, they represent longitudinal fusion with other mitochondria 
clusters, which leads to increased mitochondrial volume. Figure 4 represents the statistical 
measurements based on 3D shape and geometric statistics for control and diabetic 
cardiomyocytes. 
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Supplementary figures and tables 
 

  

 

 

 

  

 

 

 

 

 

 

 

Figure 1. Evaluation metrics for the segmentation results based on test data. Z-disks have 
achieved the maximum 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), accuracy, specificity and NPV scores 
compared to mitochondria and myofibrils. PPV and NPV represent positive predicitve and 
negative predictive values, respectively. 
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Figure 2. Cumulative F-function distributions for 3D point statistics. Mito and Myo represent 
mitochondria and myofibrils, respectively. Each of the individual subplots represent the F-
function for the left organelle relative to the right one. For example, the top left subplot 
“Mito_Myo” represents the F-function for mitochondria relative to the myofibrils. Shaded area 
(cyan) represent the envelopes, black and red lines represent theoretical and observed values, 
respectively. Distance is in nm. 
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Figure 3. Surface area to volume ratio (SA:V) along with other 3D shape and geometrical 
statistics including elongation, compactness, flatness, spareness and sphericity. These statistics 
are drawn based on the GAN results and segmented original dataset (SEG).  
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Figure 4. Surface area to volume ratio (SA:V) and other 3D shape and geometrical statistics, 
including elongation, compactness, flatness, spareness, and sphericity. These statistics are 
drawn based on the GAN results for both control and diabetic samples. 
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Figure 5. Hypothesis testing using one way ANOVA for mitochondria compactness 
significance between GAN outputs and segmentation results using control dataset. 
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Figure 6. Hypothesis testing using one way ANOVA for mitochondria elongation significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 7. Hypothesis testing using one way ANOVA for mitochondria flatness significance 
between GAN outputs and segmentation results using control dataset. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.22.457257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Hypothesis testing using one way ANOVA for mitochondria spareness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 9. Hypothesis testing using one way ANOVA for mitochondria sphericity significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 10. Hypothesis testing using one way ANOVA for myofibrils compactness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 11. Hypothesis testing using one way ANOVA for myofibrils elongation significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 12. Hypothesis testing using one way ANOVA for myofibrils flatness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 13. Hypothesis testing using one way ANOVA for myofibrils spareness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 14. Hypothesis testing using one way ANOVA for myofibrils sphericity significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 15. Hypothesis testing using one way ANOVA for z-disks compactness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 16. Hypothesis testing using one way ANOVA for z-disks elongation significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 17. Hypothesis testing using one way ANOVA for z-disks flatness significance between 
GAN outputs and segmentation results using control dataset. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.22.457257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 18. Hypothesis testing using one way ANOVA for z-disks spareness significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 19. Hypothesis testing using one way ANOVA for z-disks sphericity significance 
between GAN outputs and segmentation results using control dataset. 
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Figure 20. Hypothesis testing using one way ANOVA for mitochondria compactness 
significance between GAN outputs using control and diabetic dataset. 
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Figure 21. Hypothesis testing using one way ANOVA for mitochondria elongation 
significance between GAN outputs using control and diabetic dataset. 
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Figure 22. Hypothesis testing using one way ANOVA for mitochondria flatness significance 
between GAN outputs using control and diabetic dataset. 
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Figure 23. Hypothesis testing using one way ANOVA for mitochondria spareness significance 
between GAN outputs using control and diabetic dataset. 
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Figure 24. Hypothesis testing using one way ANOVA for mitochondria sphericity significance 
between GAN outputs using control and diabetic dataset. 
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Figure 25. Hypothesis testing using one way ANOVA for myofibrils compactness significance 
between GAN outputs using control and diabetic dataset. 
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Figure 26. Hypothesis testing using one way ANOVA for myofibrils elongation significance 
between GAN outputs using control and diabetic dataset. 
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Figure 27. Hypothesis testing using one way ANOVA for myofibrils flatness significance 
between GAN outputs using control and diabetic dataset. 
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Figure 28. Hypothesis testing using one way ANOVA for myofibrils spareness significance 
between GAN outputs using control and diabetic dataset. 
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 Figure 29. Hypothesis testing using one way ANOVA for myofibrils sphericity significance 
between GAN outputs using control and diabetic dataset. 
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