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Abstract 23 

Transmembrane (TM) proteins are major drug targets, indicated by the high percentage of prescription 24 

drugs acting on them. For a rational drug design and an understanding of mutational effects on protein 25 

function, structural data at atomic resolution are required. However, hydrophobic TM proteins often resist 26 

experimental structure determination and in spite of the increasing number of cryo-EM structures, the 27 

available TM folds are still limited in the Protein Data Bank. Recently, the DeepMind’s AlphaFold2 28 

machine learning method greatly expanded the structural coverage of sequences, with high accuracy. 29 

Since the employed algorithm did not take specific properties of TM proteins into account, the validity 30 

of the generated TM structures should be assessed. Therefore, we investigated the quality of structures 31 

at genome scales, at the level of ABC protein superfamily folds, and also in specific individual cases. We 32 

tested template-free structure prediction also with a new TM fold, dimer modeling, and stability in 33 

molecular dynamics simulations. Our results strongly suggest that AlphaFold2 performs astoundingly 34 

well in the case of TM proteins and that its neural network is not overfitted. We conclude that a careful 35 

application of its structural models will advance TM protein associated studies at an unexpected level. 36 
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Introduction 37 

 38 

Although enormous resources were devoted to predict proteins’ structure for many decades, predicting a 39 

protein structure from its sequence remained a challenging task1. There was a change in the last Critical 40 

Assessment of Protein Structure Prediction (CASP) competition2 when two neural network based 41 

approaches, RoseTTAFold3 and AlphaFold24 (AF2), were excelled. Importantly, DeepMind generated 42 

AF2-predicted structures for the human5 and 20 other proteomes and they were deposited to EBI 43 

(https://alphafold.ebi.ac.uk). Moreover, to ease the running of predictions for researchers, DeepMind6 44 

and community Google Collaboration notebooks7 have been generated, albeit applying some 45 

simplifications. AlphaFold2 was trained using multiple sequence alignments (MSA) and experimental 46 

protein structures deposited before April 2018. Five different models were trained (e.g. with different 47 

random seeds, with or without structural templates) to promote an increased diversity in structure 48 

predictions6. The input for prediction is the sequence of a single protein chain, used for MSA generation 49 

and structural template search. The quality of the resulted structural models is characterized by the mean 50 

of per residue pLDDT (predicted Local Distance Difference Test) score (which takes values between 0 51 

and 100, the higher value is better) and the structures are ranked accordingly4. The pLDDT confidence 52 

measure predicts the accuracy of the Cα Local Distance Difference Test (lDDT-Cα) for the corresponding 53 

prediction. Although this means that the high accuracy and reliability of AF2 observed in CASP14 can 54 

be transferred to predicting the structure of any protein sequences (or whole proteomes)4,5, this has not 55 

been validated yet and scientists do not have a clear indication how well AF2-predicted structures can be 56 

trusted. Even more, there is a special skepticism in the field of transmembrane proteins, which are 57 

challenging to investigate using either experimental or computational methods, especially because 58 

AlphaFold2 was not tuned for TM proteins. It is also not known, whether the structural model with the 59 

highest pLDDT score always corresponds to the native structure. In order to tackle these issues, we 60 

investigated whether AF2-predicted human α-helical TM protein structures exhibit correctly located TM 61 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457196
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

regions. To demonstrate at a higher resolution that the predicted TM folds are native, we compared 62 

predicted structures of the ATP Binding Cassette (ABC) superfamily from the AF2-predicted 21 63 

proteomes to existing experimental ABC folds. ABC proteins play a role in important cellular processes 64 

in all types of organisms and most of them transport substrates through the cell membrane in an ATP 65 

dependent manner8–10. ABCC7/CFTR is a special member, which is an ATP-gated chloride channel and 66 

includes a long intrinsically disordered regulatory R domain11,12. The functional form of ABC proteins is 67 

built from two highly conservative nucleotide binding domains (NBDs) and two transmembrane domains 68 

(TMDs) which can be encoded in one or separate peptide chains. The low conservation of their TMDs 69 

are related to diverse functions and their currently known TM folds are also structurally divergent and 70 

can be classified into eight groups (Pgp-, ABCG2-, MalFG-, BtuC-, EcfT-, LptFG-, MacB-, and MlaE-71 

like folds)13,14. Our results demonstrate that AlphaFold2 provides reliable protein structures also for 72 

transmembrane proteins and can solve many issues associated with transmembrane protein structures. 73 

 74 

Results 75 

 76 

TM helices membrane topology assignments in AlphaFold2 structures  77 

First, we split the human AF2 structures to soluble and transmembrane sets using the HTP (Human 78 

Transmembrane Proteome) database15, calculated the mean pLDDT score for each protein, and plotted 79 

their distribution (Fig. 1A and Fig. S1). Mean pLDDT values were also calculated separately for the TM 80 

and non-TM regions of transmembrane proteins. Intriguingly, soluble proteins exhibited a broader 81 

distribution and a significant area at lower pLDDT values compared to TM proteins. This was 82 

unexpected, since the majority of the AlphaFold2 learning set inherently included more soluble protein 83 

templates and the algorithm was not tuned for transmembrane proteins. However, correlation between 84 

low pLDDT values and disordered segments was observed5, thus our observation strongly suggested that 85 

more soluble proteins possess disordered regions than TM proteins. Interestingly, a very large portion of 86 
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TM regions (53%) were predicted with high pLDDT scores (>90) (Fig. 1A) suggesting that AF2 captured 87 

the rules governing protein structures within the hydrophobic region. 88 

Next, we compared the spatial localization of TM helices in AF structures corresponds with rational 89 

and physiological helix orientation in a lipid bilayer slab by using the Constrained Consensus Topology 90 

prediction (CCTOP) software16, which includes information from both experimental and computational 91 

sources. We separated the start and end positions of predicted TM helices to two residue sets according 92 

to their localization relative to the opposite sides of the bilayer. The distance between the center of 93 

geometry of the two sets were calculated and its distribution is plotted (Fig. 1B). The majority of the 94 

membrane thickness values were in the range between 20 and 30 Å that is in the range of the hydrophobic 95 

region thickness. In order to support this finding with experimental data, the hydrophobic thickness of 96 

experimentally determined human transmembrane protein structures was retrieved from the PDBTM 97 

database17. The AF2 and experimental distribution largely overlapped (Fig. 1B). These observations 98 

suggested that hydrophobic thickness values below 15Å and above 35Å may indicate an erroneous AF2 99 

structure (12%, 725 out of 5952, Table S1). We also investigated the distribution of pLDDT scores versus 100 

hydrophobic thickness (Fig. 1C). This plot indicated that AF2 structures with non-physiological thickness 101 

values can process very high pLDDT scores, consequently, these scores alone may be insufficient to 102 

select correct TM structures in blind predictions. 103 

An inaccurate TM topology prediction of CCTOP may provide an outlier hydrophobic thickness in 104 

the case of a correct AF2-predicted structure. The CCTOP reliability versus thickness plot (Fig. 1D) 105 

indicated that the topology of most proteins, whose AF2-predicted structure exhibited hydrophobic 106 

thickness within the 15-30Å regime, was predicted with high reliability. Structures with lower 107 

hydrophobic thickness values and high CCTOP reliability were likely inaccurately predicted by 108 

AlphaFold2, while structure predictions with lower thickness and lower CCTOP scores were located in 109 

the twilight zone. Intriguingly, we observed that some of these entries may have low topology reliability 110 

because of their existence in complexes, but AF2 predicted the monomeric form correctly (Fig. S2). This 111 
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suggests that AF2 may also be used to identify and aid the correction of improper membrane topology 112 

predictions. 113 

 114 

The experimental TM helix packing of ABC transporters overlaps with AF2-predictions 115 

Structures of ABC superfamily members are an excellent choice to investigate AlphaFold2 performance 116 

on TM proteins, since the currently available 51 PDB entries including ABC transmembrane domains 117 

are diverse and can be classified into eight different folds represented by PDB structures (Fig. S3)13,14. 118 

For assessing AF2 TM protein predictions at a higher resolution, we aimed to compare AF2-built ABC 119 

TM folds with experimentally determined folds.  120 

In order to select ABC structures from the 21 proteomes with AF2 predictions, a stringent PFAM 121 

search was performed with 29 PFAM Hidden Markov Models (Table S2) that resulted in 1,126 hits. For 122 

assessing the similarity of structures to the eight selected reference folds (Fig. S3), we employed 123 

Template Modeling score (TM-score)18,19. TM-scores below 0.5 indicate unrelated structures, while and 124 

above 0.5 roughly the same fold19. We calculated TM-scores between the 1,126 AF2-predicted 125 

transmembrane ABC structures and the eight reference structures. The best out of eight scores were saved 126 

for each structure. We found that 99.5% of the TM-score values were above 0.5 (Fig. 2A). Five out of 127 

the remaining six structures with lower TM-scores (O69723, P33359, Q2FVH1, Q2FVE9, Q2FVG9) 128 

included MalFG-like folds, but the scores were low because of their variable number of TM helices and 129 

possible disordered regions. One protein (Q2G2E2, Fig. 2B), which matched the YitT_transmembrane 130 

PFAM entry, was somewhat similar to the aquaporin/GlpF fold (e.g. PDBID: 1FX8) and suggested that 131 

the YitT_transporter PFAM entry is wrongly classified. Indeed, this fold belongs to the non-ABC, 132 

Novobiocin Exporter (NbcE) Family in the Transport Classification Database20. In addition to 133 

discovering potentially new folds, AlphaFold2 can aid predicting the structural class of PFAM families, 134 

such as five families out of the ABC transmembrane HMMs (Table S2). 135 
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Some of the predicted ABC structures included two additional N-terminal TM-like helices, which 136 

were somewhat distant from the core TM domain and likely are membrane associated regions, such as 137 

the L0/Lasso motif of ABCC proteins21–23. In many cases, membrane interacting regions, loops, and 138 

mobile regions not resolved in experimental structures have been rationally modeled by AF2, based on 139 

visual inspection (see below and Fig. S2). Thus the AF2 machine learning method clearly grasped some 140 

knowledge on a lipid bilayer around TM proteins. 141 

 142 

AF2 provides dimers, MD-stable structures, and hints for flaws in experimental structures 143 

Since AlphaFold2 also used templates for structural modeling and some of the resulted structures may 144 

be considered as advanced homology models, we also performed AF2 modeling of highly studied human 145 

ABC proteins with disabled template usage. 146 

Our targets included half transporter ABCG proteins, which consist of an NBD and a TMD in a 147 

polypeptide chain and function in homodimeric or heterodimeric complexes14. The first experimentally 148 

determined ABCG2-like fold was the X-ray structure of the ABCG5/ABCG8 heterodimer (PDBID: 149 

5DO7) published in 201624. Our first observation with the AF generated ABCG8 structure was regarding 150 

its soluble NBD. After the publication of the first ABCG2 structure25, structural alignment and sequence 151 

analysis indicated a registry shift in the first β-strand of ABCG8 NBD (Fig. 3A) that happened because 152 

of the low resolution of this region. Although AlphaFold2 exploited the 5DO7 structure as a template, 153 

the AF2-predicted ABCG8 structure did not have this error (Fig. 3A). An ABCG5/ABCG8 structure with 154 

a correct registry was also released on 07/04/2021 (PDBID: 7JR726), but AF2 template search5 used 155 

PDB70 downloaded on 10/02/2021. 156 

To assess ABCG5/ABCG8 TMD predictions, we ran AF2 without any application of templates. 157 

First, the ABCG5 TMD predictions were of exceptionally good quality regarding the RMSD (root mean 158 

square deviation) and TM-score values of 0.78Å and 0.94, respectively, when compared to the ABCG5 159 

chain in the 5DO7 structure. Second, we investigated ABCG5/ABCG8 heterodimer predictions. Since 160 
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only single chains can be submitted to AlphaFold2, we concatenated the two sequences with a part of the 161 

CFTR R domain sequence (a.a. 675-800). This disordered sequence was sufficiently long not to constrain 162 

the conformational space of the dimer and did not exhibit strong intramolecular interactions even in its 163 

native, AF2-predicted structural environment (Fig. S4). The predicted TMD dimer exhibited 0.001Å 164 

RMSD and 1.00 TM-score value when compared with the 5DO7 structure (Fig. 3B). 165 

To investigate if AlphaFold2 can distinguish between intra- and intermolecular interactions in the 166 

case of homomeric complexes, we performed a prediction with ABCG2, which forms homodimers27. 167 

The complex of the two identical TMDs was also predicted exceptionally well (2.42Å RMSD and 0.9 168 

TM-score when compared to PDBID: 6VXF). Interestingly, cysteine residues forming intra- and 169 

intermolecular disulfide bonds were close to each other (Fig. S5). 170 

We also examined how AF2 structural models can supplement or replace homology models in 171 

molecular dynamics (MD) simulations. The TM regions of distant ABC proteins exhibit low sequence 172 

conservation with good accordance of their dissimilar functions and substrates. However, their folds in a 173 

family are highly conserved, thus homology modeling can provide high quality homology models28–31. 174 

We chose AtABCG36/PEN3/PDR832 from the model plant Arabidopsis thaliana, which is a well- 175 

investigated full transporter of the ABCG subclass for that no structures yet exist. When the homology 176 

model exhibiting two ABCG2-like TMDs (Fig. 3C) was inserted into a membrane bilayer and subjected 177 

to MD, one portion of an α-helix, which is part of the central drug binding pocket, exhibited fast unfolding 178 

in an equilibrium MD simulation. Then the AF2-predicted AtABCG36 structure under the same 179 

conditions remained stable in an MD simulation (Fig. S6). 180 

The CFTR/ABCC7 chloride channel is also a member of the ABC superfamily with a Pgp-like fold. 181 

The functional mechanism of this protein is of interest, since some mutations effect channel gating and 182 

cause cystic fibrosis33. One of its structures was determined using cryo-EM under activating condition, 183 

in the presence of ATP and phosphorylation, but the extracellular pore of the channel remained in a closed 184 

state, most likely due to a kink in TM8, corresponding to an unwound segment in the transmembrane 185 
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region34 (Fig. 3F). This kink is present in most CFTR structures (PDBIDs: 5UAK, 6O2P, 6MSM, 6O1V, 186 

5UAR, 5W81)34–37. However, the kink is absent from the chicken CFTR structure (PDBIDs: 6D3S and 187 

6D3R)38 and such a conformation has not been detected in other ABC structures. We performed 188 

equilibrium simulations with the 5W81 structure12 to detect channel opening, but appearance of tunnels 189 

with sufficient diameter to pass chloride ions were rare events and was observed only once out of 22 190 

simulations (6x100ns + 16x35ns, 427/116,000 frames, 0.004%). Intriguingly, many of the conformations 191 

provided a tunnel opened towards lipid molecules of the extracellular membrane leaflet (Fig. 3G). After 192 

correcting the kink by homology modelling based on the MRP1 structure (PDBID: 5UJ9) (Fig. 3F), 193 

opening of the extracellular pore could be observed in 5 out of 6 simulations at a higher probability 194 

(6x100nx, 2,245/60,000 frames, 3.74%). Remarkably, modeling CFTR TMDs using AlphaFold2 without 195 

CFTR or any templates resulted in a conformation similar to that of MRP1 with a straight TM8 helix 196 

(Fig. 3F,H). Since TM8 has been suggested to be flexible regarding to its membrane embedment39, it is 197 

likely sensitive to its environment and based on the functional assays and the structure determination 198 

protocol35, the detergent added in the last step (3 mM fluorinated Fos-Choline-8) likely biased the 199 

structure. 200 

 201 

Prediction of a new TM fold, never seen by AlphaFold2 202 

The most obvious test for assessing AlphaFold2’s ability to predict membrane protein structures, was 203 

running a blind prediction. For this objective we used the multiple peptide resistance factor (MprF) 204 

transmembrane domain sequence, whose structures was published this year by Song et al.40  (PDBIDs: 205 

6LVF and 7DUW) Thus their novel TM fold (Fig. 4A) was not present in the AlphaFold2’s training set. 206 

We disabled template usage in AlphaFold2 run, since the 6LVF structure is already in the pdb70 dataset 207 

used by AF2. Since the top ranked AF2 structure was not a matching AF2-prediction (Fig. 4B), we 208 

performed the prediction several times (n=6) and compared the predicted structures to the transmembrane 209 

domain of 7DUW using TM-score. Plotting the pLDDT scores versus TM-scores (Fig. 4C) indicated that 210 
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among the 25 predicted structures the one with the best pLDDT score was the most similar to the target 211 

structure (highest TM-score in the set) (Fig. 4D). In addition, this plot also included two important hints 212 

regarding evaluating predicted structures. First, AF2 structures with high pLDDT values can be highly 213 

distinct from the native fold. Second, AF2 neural network model 5 did not perform well on this membrane 214 

protein, while model 2 and model 4 even in the middle pLDDT range provided the same fold as the 215 

native. We were unsuccessful in predicting the dimeric form of MprF that was likely due to the very 216 

small protein-protein interaction interface and the fact that lipid molecules are also play a role in dimer 217 

stabilization40. 218 

 219 

Discussion 220 

 221 

We demonstrated that at least ~90% of the AF2-predicted TM structures of the human proteome 222 

represented membrane-protein like structures, using the most available and reliable measure, the location 223 

of TM helices from consensus predictions and experimental structures, for assessing TM protein structure 224 

quality at a large scale. While the pLDDT score distribution did not shift much to lower values compared 225 

to soluble proteins (Fig. S1) it is likely valid to state that AF2 predict TM proteins as good as soluble 226 

proteins. However, predicted TM structures with low hydrophobic thickness and high pLDDT score (Fig. 227 

1C) and our predictions with the novel MprF fold (Fig. 4C) suggest that evaluation depending solely on 228 

pLDDT score may not be sufficient to select the best AF2-predicted model, at least in the case of TM 229 

proteins. A similar conclusion was drawn comparing the AF2-predicted and cryo-EM structures of a 230 

pump-like channelrhodopsin with structural features never seen before41. Based on our results, the quality 231 

of AF2 models can also be investigated by MD simulations in low-throughput studies, since low-quality 232 

AF2 models should be as instable as incorrect homology models (Fig. S6) or experimental structures42. 233 

Our results demonstrate that AlphaFold2 is a highly valuable tool in many areas of TM protein 234 

research. It can highlight proteins with potentially new folds (Fig. 2B) and select them for experimental 235 
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structure determination, resulting an increase in the experimental fold space. AlphaFold2 can also 236 

associate PFAM families with structural folds that will aid functional annotation of yet uncharacterized 237 

proteins (Table S2). Importantly, the AF2-predicted AtABCG36 structure revealed that AF2 in 238 

combination with a structure alignment method (e.g. TMalign) can support any methods using sequence 239 

alignments. The stability of TM2 of AF2 AtABCG36 model in MD simulations strongly suggests that 240 

the AlphaFold2s model building and relaxation protocols provide valid inputs also for drug/protein 241 

interactions studies. 242 

AlphaFold2 is being suggested to be exploited in molecular replacement protocol aiding 243 

experimental structure determination43. One of our results, that the register shift in ABCG8 NBD is 244 

corrected by AF2 (Fig. 3A), supports this type of applications, and also suggests that comparison of PDB 245 

structures with the corresponding AF2 structures may detect structural errors and contribute to 246 

improvement of PDB quality. This observation of corrected registry shift in the presence of an incorrect 247 

template and the absence of the kink in CFTR TM8 upon disabling template usage, are strong indications 248 

that the neural network behind AlphaFold2 is not overfitted and it can overcome memory footprints 249 

originating from training. 250 

We also demonstrated that AF was capable to predict transmembrane dimer structures independently 251 

of their homo- or heteromeric nature (Fig. 3B and Fig. S5). Though, this success may be at least partially 252 

resulted by the footprint of these complexes themselves in the AF2 neural network. Interestingly, AF2 253 

was not trained for multimer predictions and it was also reported being successful for protein-peptide 254 

docking44, in which peptides were not involved in alignments. These observations suggest that AF2 255 

“learned something more” than protein structure and something deeper on the mechanism of protein 256 

folding. Since knowledge on the folding steps and intermediate structures is important to understand and 257 

cure folding diseases45,46, deciphering hidden information on folding directly or indirectly from AF2 258 

neural network is an important future objective. 259 
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In summary, our study underscores that AlphaFold2 provides reliable protein structures also for 260 

transmembrane proteins and we demonstrated its unexpected performance in many areas associated with 261 

transmembrane protein structures. The artificial intelligence inside AlphaFold2 can predict various 262 

structural information and correct structure related flaws (e.g. registry shift, alignments, TM topology 263 

prediction, etc.) same as or better than humans. 264 

 265 

Methods 266 

 267 

Databases and associated software. AlphaFold2 structures predicted for 21 proteomes were 268 

downloaded from https://alphafold.ebi.ac.uk in July, 2021. Proteins and their structures are identified in 269 

the manuscript with their UniProt accession number. Human Transmembrane Protein database15 270 

(02.06.2021) was received as an XML file from http://htp.enzim.hu. The data also contained CCTOP16 271 

(http://cctop.enzim.ttk.mta.hu) predictions and their reliability values. The hydrophobic thickness of 272 

experimentally determined human TM protein structures was retrieved from the PDBTM database 273 

(http://pdbtm.enzim.hu, 2021-07-23)17. Python was used to parse their XML files. 274 

ABC PFAM entries were identified at https://pfam.xfam.org (n=29) and extracted from the Pfam-275 

A.hmm file. The selected entries and their accession numbers are listed in Table S2. The sequence of 276 

every AF2 structure was searched using HMMER hmmsearch (http://hmmer.org)47. The E parameter was 277 

set to 0.001 and the match length was restricted to a minimum of 90% of the HMM profile length. The 278 

hmmsearch output was parsed using BioPython48. 279 

 280 

Data analysis and visualization. MDAnalysis49 and NumPy50 Python packages were used for 281 

calculation of mean pLDDT values and hydrophobic membrane thickness. The pLDDT value of each 282 

residue were extracted from the B-factor column of AF2 structure files. For TM thickness calculation 283 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457196
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

end positions of TM helices were retrieved from HTP/CCTOP and divided into two groups representing 284 

the two sides of the membrane. Plotting was done with Matplotlib (https://matplotlib.org)51.  285 

TM-score was calculated with TMalign52. Reference ABC structures are listed and shown in Fig. S3. 286 

Their TM domains were selected manually. 287 

Molecular visualization and RMSD calculation were performed using PyMOL (The PyMOL 288 

Molecular Graphics System, Version 2.4.0 Schrödinger, LLC). RMSD of MD trajectories was calculated 289 

with the GROMACS rms tool. 290 

 291 

Running AlphaFold2. AlphaFold2 was downloaded from github and installed as described 292 

(https://github.com/deepmind/alphafold) on a Debian 10 box with an AMD Ryzen Threadripper 2950X 293 

16-Core Processor. 96GB RAM was installed and ~75GB peak usage was observed during jackhmmer 294 

run. The calculation was accelerated by an NVidia Quadro P6000 GPU with 24GB RAM, which was 295 

almost fully utilized when the predicted sequence length was 1,571. The required databases were located 296 

on two 2TB HDD in a RAID0 setup. Typical run timings were: “features”: 25-60 min, 297 

“predict_and_compile_model_*”: 3-50 min, “relax_model_*”: 1 min - 6 h based on input sequences 298 

between 290 and 1,571 a.a. length. 299 

In order to exclude CFTR structures as templates from predictions, we modified run_alphafold.py, 300 

docker/run_docker.py, and alphafold/data/templates.py scripts to implement a -skip function. The 301 

modified scripts can be downloaded from http://alphafold.hegelab.org. Template usage was disabled by 302 

setting --max_template_date option to 1900-01-01. Dimer predictions were run by concatenating 303 

sequences with a part of the intrinsically disordered CFTR R domain, a.a. 675-800. pLDDT scores and 304 

ranking of predicted structures were extracted from the ranking_debug.json file. 305 

 306 

Homology modelling. AtABCG36 (UniProt ACC: Q9XIE2) was homology modeled based on an 307 

ABCG2 homodimer structure (PDBID: 6HZM) using Modeller53. Sequence alignment was generated 308 
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using ClustalW54 and adjusted manually. One hundred structures were generated and the one with the 309 

best DOPE score was selected for MD simulations. 310 

zfCFTR TM7 and TM8 was homology modeled similarly. The two helices were set for modelling 311 

based on the corresponding regions of MRP1 (PDBID: 5UJ923) and the rest was kept static and based on 312 

the 5W81 zfCFTR structure. 313 

 314 

Molecular dynamics simulations. MD simulations with AtABCG36 were performed using GROMACS 315 

2019 with the CHARMM36m force field55,56. Simulation systems were prepared using CHARMM-316 

GUI57,58. Structural models were oriented according to the OPM (Orientations of Proteins in Membranes) 317 

database59 and all N- and C-termini were patched with ACE (acetyl) and CT3 (N-Methylamide) groups, 318 

respectively. The proteins were inserted in a bilayer with 1:1 POPC:PLPC (1-palmitoyl-2-oleoyl-sn-319 

glycero-3-phosphocholine: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine) in the extracellular 320 

leaflet and 45:40:10:5 POPC:PLPC:POPS:PIP2 (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-321 

serine, PIP2: phosphatidylinositol 4,5-bisphosphate) in the intracellular leaflet. Both systems with the 322 

homology model or the AF2 structure were energy minimized using the steepest descent integrator 323 

(values for max. steps 50,000 and max. force 500 kJ/mol/nm were set). Six equilibration steps, according 324 

to the standard CHARMM-GUI protocol, were applied with decreasing position restraints. In the 325 

production run, Nosé-Hoover thermostat and Parrinello-Rahman barostat with semiisotropic coupling 326 

were employed. Time constants for the thermostat and the barostat were set to 1 picosecond and 327 

5 picosecond, respectively. The fast smooth PME algorithm60 and LINCS algorithm61 were used to 328 

calculate electrostatic interactions and to constrain bonds, respectively. GROMACS rmsf tools were used 329 

to calculate RMSF (root mean square fluctuation). 330 

Simulations with the zfCFTR structure containing the kinked TM8 have been published and the 331 

protocol and parameters were described there12. The structure with the straightened, MRP1-based TM8 332 
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was subjected to MD simulations using the same protocol, including the same version of GROMACS, 333 

force field, and lipid composition. Channel pathways were determined using CAVER62 as described12. 334 

 335 

Data Availability. All input data are available from public resources and their accession numbers are 336 

listed. 337 

 338 

Code availability. Modified AlphaFold2 scripts can be downloaded from http://alphafold.hegelab.org. 339 

 340 
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 489 

Fig. 1: Quantitative analysis of human AF TM structures. (A) Mean pLDDT scores were calculated 490 

for human transmembrane (TMEM), soluble (SOLU), TM regions of TM proteins, and non-TM regions 491 

of the same proteins. The fraction of structures in reliability ranges, used in the human proteome 492 

AlphaFold2 paper5, are shown. (B) The hydrophobic thickness was calculated for human TM proteins as 493 

the distance between the center of geometry of Cα atoms of side1 and side2 of transmembrane helices. 494 

TM helices of AF2-structures were selected based on CCTOP predictions. The hydrophobic thickness of 495 

experimental structures was collected from PDBTM. (C) The hydrophobic thickness of each protein and 496 

the corresponding pLDDT scores were plotted. (D) The hydrophobic thickness of each protein and the 497 

corresponding CCTOP reliability scores are shown. 498 

  499 
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 500 

Fig. 2: All AF2-predicted ABC structures exhibit valid ABC TM folds. (A) The best TM-score for 501 

every ABC TM structure from the 21 organisms calculated against every 8 ABC reference folds were 502 

selected and plotted. (B) The AF-Q2G2E2 fold with a TM-score lower than 0.5. This YitT fold is 503 

annotated incorrectly in PFAM and is not an ABC fold. (C) The Aquaporin/GlpF fold, which is somewhat 504 

similar to YitT fold and is represented by PDBID: 1FX8, possesses six TM helices and two reentrant 505 

helices forming a full TM helix-like structure.  506 
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Fig. 3: AF2 seems to handle ABC structure associated issues correctly. (A) ABCG2 and ABCG8 508 

NBD β1 strand sequence alignments generated by structural alignment of 6HCO (ABCG2) and 5DO7 509 

(ABCG5/ABCG8), by ClustalW with manual adjustment of ABCG2 and ABCG8 sequences based on 510 

ABCG2 structures, and by structural alignment of ABCG2 and AF2-predicted ABCG8 NBDs. Structure: 511 

AF2 ABCG8 NBD, blue: β1 strand, red: the segment corresponding to the β1 strand in the registry shifted 512 

5DO7 NBD, cyan: gating loop or regulatory insertion. (B) Structural alignment of 5DO7 (gray) and AF2-513 

predicted (blue) ABCG5/ABCG8 TM domains (top view). Non-conserved loops with low-quality 514 

predictions are red. (C) Aligned homology (orange: TMD1, red: TMD2) and AF2 (blue: TMD1, cyan: 515 

TMD2) models of AtABCG36. Blue and orange spheres label F589 and F592 in TM2 facing the substrate 516 

binding pocket. (D) The magnified view of AtABCG36 TM1 and TM2 indicates that the alignments are 517 

not shifted but that spatial localization and side chain packing differ. (E) TM2 in the homology model 518 

unwinds in MD simulations. (F) zfCFTR TM8 is kinked in PDBID:5W81 (red) along with other 519 

structures and it is straight in both MRP1-based model (orange) and AF2-predicted structure (blue). The 520 

helices are extracted for visualization from a full TM domain alignment. (G) Surface representation of 521 

zfCFTR (PDBID:5W81). Red: TM8, green: TMD1, cyan: TMD2, pale green: NBD1, pale cyan: NBD2, 522 

black spheres: CAVER spheres indicating channel opening towards the extracellular space and the 523 

extracellular boundary of the lipid bilayer. (H) Surface representation of zfCFTR with MRP1-modelled, 524 

straight TM8. No lateral opening to the extracellular membrane leaflet can be observed. 525 

  526 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457196
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 527 

Fig. 4: Predicting new TM folds. (A) The novel TM fold of MprF (PDBID: 7DUW). Blue to red: N- to 528 

C-termini. (B) An AF2-predicted fold that significantly differs from the experimentally determined fold 529 

(e.g. N-terminus starts on the opposite side of the membrane). (C) pLDDT and TM-score values, 530 

calculated for every structural model from six runs, were plotted. Numbers (1-5) indicate the 531 

corresponding AF2 models. Red points were the top ranked hits from a given run. (D) Structural 532 

alignment of the experimental structure (rainbow colors) and the prediction with the best pLDDT score 533 

(gray). 534 
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