

1 **New Phytologist**

2

3

4 ***OsSWEET11b*, a sixth leaf blight susceptibility gene involved in sugar transport-dependent**
5 **male fertility**

6

7

8 Lin-Bo Wu^{1,2,*}, Joon-Seob Eom^{1,3,*}, Reika Isoda⁴, Chenhao Li⁵, Si Nian Char⁵, Dangping Luo⁵,
9 Van Thi Luu¹, Masayoshi Nakamura⁴, Bing Yang^{5,6}, and Wolf B. Frommer^{1,4,#}

10

11 * authors contributed equally

12

13 ¹ Institute for Molecular Physiology, Heinrich Heine University Düsseldorf

14 ² new address: Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant
15 Breeding I, Justus-Liebig University Giessen, Giessen, Germany

16 ³ new address: Seegene, Inc., Taewon Bldg., 91 Ogeum-ro, Songpa-Gu, Seoul 05542, South
17 Korea

18 ⁴ Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya
19 464-8601, Japan

20 ⁵ Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO
21 65211, USA

22 ⁶ Donald Danforth Plant Science Center, St. Louis, MO 63132, USA

23

24

25 [#] For correspondence: Wolf B. Frommer; email: frommew@hhu.de

26

27

28

29 **Summary**

30 SWEETs play important roles in intercellular sugar transport. Induction of SWEET sugar
31 transporters by transcription activator-like effectors (TALe) of *Xanthomonas* ssp. is a key factor
32 for bacterial leaf blight (BLB) infection of rice, cassava and cotton. Here, we identified the so far
33 unknown OsSWEET11b with roles in male fertility and BLB susceptibility in rice. While single
34 *ossweet11a* or *b* mutants were fertile, double mutants were sterile. Since clade III SWEETs can
35 transport gibberellin (GA), a key hormone for rice spikelet fertility, sterility and BLB susceptibility
36 might be explained by GA transport deficiencies. However, in contrast to the *Arabidopsis*
37 homologs, OsSWEET11b did not mediate detectable GA transport. Fertility and susceptibility
38 must therefore depend on SWEET11b-mediated sucrose transport. Ectopic induction of
39 *OsSWEET11b* by designer TALe enables TALe-free *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) to
40 cause disease, identifying *OsSWEET11b* as a BLB susceptibility gene and demonstrating that the
41 induction of host sucrose uniporter activity is key to virulence of *Xoo*. Notably, only three of now
42 six clade III SWEETs are targeted by known *Xoo* strains from Asia and Africa. The identification
43 of OsSWEET11b has relevance in the context of fertility and for protecting rice against emerging
44 *Xoo* strains that evolve TAles to exploit *OsSWEET11b*.

45

46

47 **Key words:** sucrose transporter, TAL effector, *Xanthomonas*, disease susceptibility, gene editing,
48 rice

49 Introduction

50 Sucrose, produced by photosynthesis, is translocated to other organs such as roots and flowers that
51 depend on carbohydrates supply from leaves. Adequate supply of sucrose to reproductive organs
52 is critical for fertility and therefore yield. The phloem is responsible for sucrose allocation; the rice
53 phloem sap contains ~600 mM sucrose (Hayashi & Chino, 1990). While phloem loading in rice
54 does not seem to make use of apoplastic transport steps involving SWEET and SUT plasma
55 membrane sucrose transporters, seed filling depends on SWEET and SUT sucrose transporters.
56 Pollen are symplasmically isolated from parental tissues, do not perform photosynthesis, and thus
57 microspores have to be supplied with sugars via the tapetum on an apoplastic route using plasma
58 membrane sugar transporters. Temporally controlled sugar transport and metabolism likely play
59 roles at multiple locations in the anthers, and dual routes, involving sucrose and hexose
60 transporters, as well as apoplastic invertases, are required for efficient delivery of sugars to the
61 developing pollen grains. In rice, a cell wall invertase, *OSINV4*, was found to be transiently
62 expressed in the tapetum, and at later developmental stages also in the microspores (Oliver *et al.*,
63 2005). In *Arabidopsis*, the hexose uniporter AtSWEET8 (originally named Rpg1, Ruptured Pollen
64 grain 1) appears to be involved in the secretion of sugars from the tapetum and together with the
65 hexose/H⁺ symporter AtSTP2 in subsequent uptake into the developing pollen (Truernit *et al.*,
66 1999; Guan *et al.*, 2008; Chen *et al.*, 2010). Defects in *atsweet8/rpg1* mutants include male sterility
67 and defects in primexine, a transient sporophytic carbohydrate layer deposited on the microspore
68 plasma membrane. In addition, the sucrose uniporter AtSWEET14 (also named RPG2, Ruptured
69 Pollen Grain2) also plays a role in pollen nutrition. Later it was found that AtSWEET13 and 14
70 are expressed in stamens; the exact cellular localization is however not known (Kanno *et al.*, 2016);
71 anther dehiscence was delayed in *sweet13; sweet14* mutants (Kanno *et al.*, 2016). Anther levels of
72 the gibberellins (GA) GA₄ were ~10x lower in *sweet13; sweet14* double mutants relative to wild
73 type Col-0. Notably, GA₃ was able to supplement the fertility defects. GA is well known to play a
74 role in fertility in both rice and *Arabidopsis*, in particular, exogenous application of GA can rescue
75 low temperature-triggered sterility (Sakata *et al.*, 2014; Kwon & Paek, 2016; Kanno *et al.*, 2016).
76 Surprisingly, a yeast three-hybrid (Y3H) screen had identified clade III SWEETs including
77 AtSWEET13 and 14 as GA transporters, raising the possibility that the male sterility in double
78 mutants was caused by either a defect in GA transport, or an indirect effect of a defect in sucrose
79 transport on GA levels (Kanno *et al.*, 2016). More recently, the clade I SWEET3a glucose

80 transporter has been shown to be involved in GA transport (Morii *et al.*, 2020). In rice, RNA
81 interference of *SWEET11* (Os8N3) also caused male sterility in rice (Yang *et al.*, 2006).
82 Surprisingly, however, *sweet11a knock out* mutants generated by CRISPR-Cas9 had no obvious
83 effect on fertility (Yang *et al.*, 2018).

84 SWEETs are well known to mediate cell-to-cell transport of sugars at several key locations in the
85 plant. SWEETs can be grouped into four separate phylogenetic clades, with clade III SWEETs
86 capable of transporting sucrose. Phenotypes of *Arabidopsis* and maize mutants are consistent with
87 key roles in sucrose transport in many important places, including nectaries, phloem loading and
88 seed filling (Chen *et al.*, 2010, 2012; Lin *et al.*, 2014; Kanno *et al.*, 2016; Bezrutczyk *et al.*, 2018,
89 2021). In rice, OsSWEET11 (from here onwards named OsSWEET11a) is involved in seed filling,
90 particularly in field conditions (Ma *et al.*, 2017; Yang *et al.*, 2018). OsSWEET14 and
91 OsSWEET15 has overlapping roles with OsSWEET11a (Yang *et al.*, 2018; Fei *et al.*, 2021). These
92 findings are consistent with roles in sucrose, but it can not be excluded that GA transport plays an
93 important role. Only a dissection of sucrose and GA transport activities using SWEET mutants
94 will enable to determine the relative role of the two activities.

95 Clade III SWEETs are susceptibility factors for bacterial leaf blight in rice (BLB) (Chen *et al.*,
96 2010, 2012; Eom *et al.*, 2019; Oliva *et al.*, 2019). Transcription of *OsSWEET11a*, 13 and 14 is
97 directly induced by a suite of TAL effectors (TALES), eukaryotic transcription factors made by the
98 causative bacteria *Xanthomonas oryzae* pv. *oryzae* (*Xoo*). In contrast to five Clade III SWEETs,
99 other hexose transporting members of this family (clade I, II and IV) cannot cause susceptibility
100 when induced by artificial TALES (Streubel *et al.*, 2013). It has been hypothesized that the xylem
101 vessel-dwelling bacteria require sucrose as a nutrient, which is not present at sufficient levels in
102 the xylem sap (Bezrutczyk *et al.*, 2018). In summary, all five known members of clade III SWEETs
103 can serve as susceptibility factors.

104 Here we identified a sixth member of the clade III SWEET family in newer rice genome
105 annotations that is closely related to OsSWEET11. OsSWEET11 was herein renamed to
106 OsSWEET11a. The new member is the closest homolog of OsSWEET11a and was named
107 OsSWEET11b. OsSWEET11b mediates transport of sucrose, while transport of GA₃ and GA₄ was
108 undetectable. OsSWEET11b levels were highest in anthers, but in contrast to *OsSWEET11a*, not
109 in developing seeds. Patterns of OsSWEET11a and 11b protein accumulation in stamina were

110 complementary. Double *knock out* *ossweet11a;11b* mutants were male sterile. In contrast to the
111 *Arabidopsis atsweet13;14* double mutants, GA₃ did not restore fertility of the double mutant. This
112 work thus identified a new potential BLB susceptibility gene that contributes to male fertility in
113 rice by supporting sucrose transport towards the developing pollen.

114

115 **Materials and Methods**

116 Bioinformatic analyses

117 Protein sequences of the SWEET genes in *Arabidopsis*, rice and maize were obtained from
118 Aramemnon (<http://aramemnon.uni-koeln.de/>), Uniport (<https://www.uniprot.org/>), and MaizeDB
119 (<https://www.maizegdb.org/>). The transmembrane domains of SWEETs were predicted using
120 Consensus TM alpha helix prediction (AramTmCon) and TMHMM v2.0
121 (<http://www.cbs.dtu.dk/services/TMHMM/>). Alignment of the conserved protein sequences was
122 conducted with MAFFT (Katoh *et al.*, 2019) with a gap extension penalty of 0.123 and gap opening
123 penalty of 1.53. Phylogeny tree inference was performed using FastME 2.0 (Lefort *et al.*, 2015).
124 The maximum-likelihood method with JTT protein substitution matrix was used to generate
125 phylogeny trees. Clade supporting scores were calculated by 1000 bootstrapping replicates.

126 Plant materials and growth conditions

127 Most experiments were performed using *Oryza sativa* L., ssp. *japonica* cv. Kitaake (Kitaake);
128 infection experiments were in addition performed with *Oryza sativa* L., ssp. *indica* cv. Guanglu'ai
129 4 (GLA). *Knock out* mutants and translational GUS-fusion lines were in Kitaake background.
130 Dehusked rice seeds were surface-sterilized with 70% ethanol and Klorix®bleach solution
131 followed by thorough rinses with autoclaved deionized water. Seeds were placed onto ½
132 Murashige Skoog media supplemented with 1% sucrose and 0.4% agarose in darkness at 30 °C
133 for 3 days. Emerging seedlings were grown in constant light (200 µmol m⁻² s⁻¹) for one week in a
134 growth chamber. Ten-day-old seedlings were transplanted into 2 L round pots (16.7 cm diameter,
135 13.2 cm high) filled with soil (Luu *et al.*, 2020). Plants were grown in glasshouses at Düsseldorf
136 University (Germany) until maturity; light was supplemented with BL120 LED lamps (Valoya,
137 Finland) to >400 µmol m⁻² s⁻¹, at 30 °C (day) and 25 °C (night), rel. humidity 50-70%. Plants were

138 grown under comparable conditions at Giessen University (Germany). Sterility of the double
139 mutants was also observed at University of Missouri (Columbia, Missouri, USA).

140 CRISPR-Cas9 and translational GUS constructs

141 The single mutant lines *ossweet11a-1*, *ossweet11a-2* and *OsSWEET11a* translational GUS-fusion
142 lines had previously been described (Yang *et al.*, 2018). The rice CRISPR system used for creation
143 of *ossweet11b*, and *ossweet11a;11b* lines was used as previously described (Zhou *et al.*, 2014).
144 Briefly, guide RNAs were designed to target the third exon of *OsSWEET11b* (corresponding to
145 the second transmembrane helix), or both *OsSWEET11a* (targeting the first exon near start codon)
146 and *11b*. Oligonucleotide-derived double strand fragments for the spacer sequences of guide RNAs
147 were cloned into pENTR-gRNA1, followed by Gateway recombination into the Cas9-expressing
148 vector pCas9-GW (Supporting Information Fig. S1, S2). Cas9/gRNA constructs were introduced
149 into *Agrobacterium* strain EHA105; *O. sativa* cv. Kitaake was transformed as described (Hiei *et*
150 *al.*, 1994). Two guide RNAs were designed to target both *OsSWEET11a* and *OsSWEET11b*
151 simultaneously in Kitaake. Independent mutant lines were designated *ossweet11b-1*, *11b-2* and
152 *11b-3*, and the new *osweet11a* alleles in the double mutants *osweet11a-3* and *osweet11a-4* Table
153 S2). The *OsSWEET11b*-GUS translational fusion construct was generated by inserting the
154 genomic region of *OsSWEET11b* into the pc3000intC derived promoterless GUSplus vector
155 (Yang *et al.*, 2018). The genomic fragment of *OsSWEET11b* including a 2155 bp upstream region
156 (calculated upstream of ATG), the complete coding sequence (with introns but without stop codon)
157 was PCR-amplified (primers: Table S1) from genomic DNA of Nipponbare. PCR products were
158 purified and cloned into the GUSplus vector digested with *Xba*I/*Bam*HI restriction enzymes.
159 Fusion constructs were sequenced for validation and introduced into the wild type Kitaake (Fig.
160 S3). Thirty-one transformants were obtained while seven showed comparable GUS activity in
161 stamen. Two lines, 2-7-2 and 9-2-2 of T₃ generation were used for in detail characterization.

162 Genotyping of CRISPR plants

163 Leaf genomic DNA was isolated using a peqGOLD Plant DNA Mini Kit (PeqGold, VWR
164 International GmbH, Darmstadt, Germany) following the manufacturer's instructions. To identify
165 CRISPR/Cas9-mediated mutations, PCR was performed using High-Fidelity Phusion PCR Master
166 Mix (NEB, Frankfurt am Main, Germany) (initial denaturation (98 °C, 30 s), 30 cycles of reaction
167 (98 °C, 10 s; 66/60 °C for *OsSWEET11a/11b*, 15 s; 72 °C, 30 s) and final extension (72°C, 2 mins)

168 (primers: Table S1)). PCR amplicons were purified using NucleoSpin Gel and PCR Clean-up kits
169 (Macherey-Nagel, Düren, Germany) and subjected to Sanger sequencing for identifying
170 mutations. Chromatograms were analyzed with SnapGene Viewer (CSL Biotech LLC, San Diego,
171 USA). DNA sequences were aligned using MEGA-X software (Kumar *et al.*, 2018). Genotyping
172 results were summarized in Fig. S4 and Table S2. The new *ossweet11a* mutant alleles were
173 designated as *ossweet11a-3* and *ossweet11a-4* (Fig. S4, Table S2).

174 Phenotypic analyses of mutant plants

175 Wild type Kitaake, two independent lines of *ossweet11a* and *ossweet11b* single and
176 *ossweet11a;11b* double mutants were grown until maturity. To examine sterility, rice spikelets
177 were collected 1 d prior to anthesis and fixed in 70% ethanol at room temperature. After removing
178 lemma and palea with dissecting forceps, whole florets and carpels were observed and documented
179 under a Axiozoom V.16 (Carl Zeiss, Jena, Germany) stereo zoom microscope. For analyses of
180 pollen grains, anthers were removed from the florets and dissected on glass slides for Lugol's KI-
181 I₂ staining (Sigma). Grain development at different stages was recorded using a stereo microscope
182 camera (Nikon DS-Fi3) after dissection in two-day intervals (2-10 days after flowering) by careful
183 dehusking of immature seeds. Mature panicles were photographed using a digital camera (Fujifilm
184 X-T3).

185 Reciprocal crosses for sterility investigation

186 Reciprocal crosses were made to test whether sterility was caused by defects in male or female
187 gametogenesis in *ossweet11a;11b* double *knock out* lines. Crosses were performed as follows:
188 *ossweet11a-3;11b-3* (♀, progenies of line 1-5-6, Table S2) × wild type (♂); wild type (♀) ×
189 *ossweet11a-3;11b-3* (♂), *ossweet11a-3;11b-3* (♀) × *ossweet11a-2* (♂, (Yang *et al.*, 2018)),
190 *ossweet11a-2* (♀) × *ossweet11a-3;11b-3* (♂), *ossweet11a-3;11b-3* (♀) × *ossweet11b-1* (♂, line 9-
191 1-4, Table S2); and *ossweet11b-1* (♀) × *ossweet11a-3;11b-3* (♂). Anthers of recipient parent
192 spikelets were carefully removed with sharp scissors 2-3 d before anthesis. Emasculated spikelets
193 were covered with paper bags until artificial pollination performed between 11 am and 1 pm.
194 Panicles from donor plants at heading stage were cut for artificial pollination. Pollinated spikelets
195 were kept in paper bags until maturity. F₁ seeds from crosses were photographed using a stereo
196 microscope camera (Nikon DS-Fi3).

197 Sugar transport assays using FRET sucrose sensors

198 ORFs of rice clade III SWEETs (*OsSWEET11a*, *11b*, *12*, *13*, *14*, and *15*) were cloned by PCR into
199 the GatewayTM entry vector pDONR221f1 (Chen *et al.*, 2012; Yang *et al.*, 2018). LR reactions
200 were performed to transfer ORFs into the mammalian expression vector pcDNA3.2V5. Sanger
201 sequencing was employed to verify all constructs. Transport assays were performed in 96-well
202 plates (Chen *et al.*, 2010). HEK293T cells were co-transfected with a plasmid carrying the sucrose
203 sensor FLIPsuc90μ-sCsA (Sadoine *et al.*, 2021) and a plasmid carrying a candidate transporter
204 gene (100 ng) using Lipofectamine2000 (Invitrogen). For FRET imaging, culture media in each
205 well were replaced with 100 μl Hanks Balanced Saline Salt (HBSS) buffer followed by addition
206 of 100 μL HBSS buffer containing 25 mM sucrose. A Leica inverted fluorescence microscope DM
207 IRE2 with Quant EM camera was used for imaging with SlideBook 4.2 (Intelligent Imaging
208 Innovations) with exposure time 200 msec, gain 3, binning 2, and time interval 10 sec (Hou *et al.*,
209 2011).

210 GA transport assays in mammalian cells

211 For gibberellic acid (GA) transport assays, the ORF of *OsSWEET11b* was amplified (Table S1)
212 and assembled with a mammalian expression vector pcDNA3.1 Hyg(+) digested with *Bam*HI and
213 *Xho*I using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs). HEK293T cells
214 were co-transfected with constructs carrying the GA sensor GPS1 (Rizza *et al.*, 2017) and
215 *OsSWEET11b* by Lipofectamine LTX (Invitrogen) in 8-well glass bottom chambers (Iwaki Cat#;
216 5232-008) and incubated for 48 h. Culture medium was replaced with 300 μL Dulbecco's Modified
217 Eagle Medium (D-MEM) without phenol red containing either 0.001% (v/v) DMSO or 1.0 μM
218 GA₃ dissolved in 0.001% DMSO and cells were incubated for 3 h. Fluorescence was acquired by
219 a Nikon Ti2-E microscope equipped with 40x lens under excitation at 440 nm with two emission
220 channels for CFP and YFP. Images were taken for 3 min with 5-sec intervals. Image quantification
221 was performed with Fiji/ImageJ software (NIH).

222 GA transport assays in a Yeast-3-Hybrid system

223 The ORF of *OsSWEET11b* was cloned into the yeast expression vector pDRf1-GW which contains
224 a strong *PMA1* promoter fragment to drive high levels of expression in yeast cells (Loqué *et al.*,
225 2007) by LR Gateway recombination. GA transport assays were performed using a previously
226 described Y3H system (generous gift of Mitsunori Seo, RIKEN, Yokohama)(Kanno *et al.*, 2016).
227 The yeast strain PJ69-4a [MATa *trp1-901 leu2-3,112 ura3-52 his3-200 Δgal4 Δgal80*

228 LYS2::GAL1-HIS3 GAL2-ADE2 *met2::GAL7-lacZ*] was co-transformed with the GA receptor
229 components pDEST22-GAI and pDEST32-GID1a and either pDRf1-GW (empty vector control),
230 pDRf1-AtSWEET13, or pDRf1-OsSWEET11b by conventional lithium acetate/PEG
231 transformation. Three independent colonies were used as technical replicates for each assay.
232 Colonies were inoculated in synthetic defined (SD -Leu, -Trp, -Ura) liquid media and incubated
233 overnight at 30°C. the culture was diluted sequentially to 10, 10², 10³, and 10⁴ cells/µL. 10 µL cell
234 suspension was spotted on SD (-Leu, -Trp, -Ura) or selective (-Leu, -Trp, -Ura, -His) media
235 containing 3 mM 3-amino-1,2,4-triazole (3-AT) and 0.001% (v/v) DMSO, and 0.1 µM GA₃ or 1
236 nM GA₄ in 0.001% (v/v) DMSO, and incubated for 3 days at 30°C. Plates were photographed.

237 Exogenous application of GA on rice plants

238 Plants of *ossweet11a;11b* double mutants in R₂ stage (collar formation on flag leaf) were sprayed
239 with 10 µM GA₃ dissolved in 0.1% (v/v) DMSO as a foliar application. Foliar spray of 20 ml 10
240 µM GA₃ solution was applied repeatedly for three days between 10:00 and 11:00 each day (mock:
241 0.1% DMSO). Impact of GA₃ application on shoots was documented 7 d after last foliar spray using
242 a digital camera (Fujifilm XT-3). Florets of *ossweet11a;11b* double mutants in both mock and GA₃
243 treatment were dissected and observed under a stereo zoom microscope Axiozoom V.16 (Zeiss,
244 Germany). Mature pollen was stained with Lugol's KI/I₂ solution and documented on an
245 Axiozoom V.16 stereo zoom microscope.

246 Subcellular localization in *Nicotiana benthamiana* leaves

247 To amplify the coding region of *OsSWEET11b*, total RNA was isolated from young spikelets of
248 Kitaake (RNeasy Plant Mini Kit, Qiagen) and cDNA was synthetized (Maxima™ H Minus cDNA
249 Synthesis Master Mix, Thermo Fisher Scientific). The coding sequence of *OsSWEET11b* was PCR
250 amplified without STOP codon (primers: Table S1) using Phusion High-Fidelity PCR polymerase
251 (Thermo Fisher Scientific) and cloned into the Gateway donor vector pDONR221 (Thermo Fisher
252 Scientific). The entry vector harboring *OsSWEET11b* was then included in an LR reaction
253 (Thermo Fisher Scientific) with pAB117 (provided by Prof. Dr. Rüdiger Simon, HHU Düsseldorf)
254 that contains the β-Estradiol-inducible CaMV 35S promoter and eGFP coding sequence. The final
255 expression plasmid pAB117:SWEET11b:eGFP carrying *OsSWEET11b* fused at the C-terminus
256 with the enhanced green fluorescent protein (eGFP) and driven by the β-estradiol-inducible CaMV
257 35S promoter was generated and validated by Sanger sequencing. *Agrobacterium tumefaciens*

258 GV3101 was transformed with pAB117:SWEET11b:eGFP. *Agrobacterium* culture preparation
259 and tobacco leaf infiltration were performed as described (Sosso *et al.*, 2015). As a control,
260 pAB118:AtMAZZA:mCherry carrying the coding sequence of *Arabidopsis* MAZZA gene fused
261 at the C-terminus with mCherry driven by the β -estradiol inducible CaMV 35S promoter was used
262 (Blümke *et al.*, 2021). Fluorescence was detected on an Olympus SpinSR with excitation/emission
263 488/522–572 nm (eGFP) and 5 and 561/667-773 nm (chlorophyll). Epidermal leaf chloroplast
264 fluorescence was used to differentiate vacuolar or cytosolic localization (lining chloroplasts on the
265 vacuolar side) or plasma membrane localization (peripheral to chloroplasts). Image analysis was
266 performed using Fiji (<https://fiji.sc/>). Experiments were repeated twice using 2-5 different
267 *Agrobacterium* colonies and 4-10 *N. benthamiana* plants per construct.

268 Histochemical GUS activity analysis and paraffin sectioning

269 Lines harboring pOsSWEET11a:OsSWEET11a-GUS and pOsSWEET11b:OsSWEET11b-GUS
270 translational fusions were analyzed as described (Yang *et al.*, 2018). In brief, rice seedlings and
271 spikelets at the mature pollen stage were harvested and pre-fixed in 90% ice-cold acetone by 10
272 min vacuum infiltration. After 30 min incubation at room temperature, spikelets were transferred
273 to GUS washing buffer (50 mM sodium phosphate buffer pH 7.0, 1 mM potassium ferrocyanide,
274 1 mM potassium ferricyanide, 10 mM EDTA, 0.1% (v/v) Triton X-100 and 20% (v/v) methanol)
275 with vacuum infiltration for 10 min on ice. After removal of washing buffer, samples were vacuum
276 infiltrated in GUS staining solution (GUS washing buffer containing 2 mM 5-bromo-4-chloro-3-
277 indolyl-beta-D-glucuronide, X-gluc) for 10 min in the dark. Specimen were incubated for 2 hours
278 at 37°C in darkness followed by an ethanol series (20%, 30%, 50% and 70%), 30 minutes each, at
279 room temperature. Observation and documentation of GUS activity were performed under a stereo
280 microscope Axiozoom V.16. For paraffin sections, X-gluc-stained specimen were fixed in FAA
281 solution containing 50% (v/v) ethanol, 3.7% (v/v) formaldehyde and 5% (v/v) acetic acid for 30
282 min at room temperature. After removing the fixative, samples were dehydrated with an ethanol
283 series (30 min each; 80%, 90%, 95% and 100%) and 100% tert-butanol. Histoplast paraffin (Leica
284 Biosystems, Nussloch, Germany) was melted at 60 °C for sample embedding. Sections (10 μ m)
285 were cut with a rotary microtome and mounted on SuperFrost Plus slides (Fisher Scientific,
286 Schwerte, Germany). Sectioned samples were observed with a light microscope (CKX53,
287 Olympus, Hamburg, Germany) and documented with an EP50 camera (Olympus).

288 Synthesis of designer TALE gene and disease assays

289 Designer dTALE for *OsSWEET11b* was assembled from a library of 51 individual repeats as
290 described (Li *et al.*, 2013). Briefly, the modular repeats with the repeat variable di-residues (RVDs)
291 at positions 12 and 13 (i.e., NI, HD, NG and NN that recognize A, C, T, and G, respectively) were
292 ligated into an array of octamer repeats in the pTLN vector using Golden Gate assembly. Three
293 arrays of octamers were digested using *Sph*I and *Pst*I for the first octamer, *Pst*I and *Bsr*GI for the
294 second octamer, and *Bsr*GI and *Aat*II for the third octamer. Recovered fragments were ligated into
295 pZW-ccdB-dTALE predigested with *Sph*I and *Aat*II, resulting in a designer TALE gene
296 corresponding to 24 nucleotides of the target site. The dTALE gene was mobilized into a pHM1-
297 based vector pHM1-Gib compatible with *Xoo* and *E. coli* (Li *et al.*, 2019). The resulting pHM1-
298 dTALE was introduced via electroporation into ME2, a *pthXo1*-inactivated mutant of PXO99^A
299 (Yang & White, 2004). Bacteria (OD₆₀₀ 0.25) were used for infection by leaf tip clipping; lesion
300 lengths as indicators of virulence were measured as described (Yang & White, 2004). Bacterial
301 infiltration with inoculum (OD₆₀₀ 0.5) was performed for gene expression analyses by qRT-PCR
302 using 3-week-old Kitaake plants. Data were analyzed using one-way ANOVA and Tukey honest
303 significant difference for post-ANOVA pair-wise tests for significance, set at 5% (*p*<0.05).

304

305 **Results**

306 ***SWEET11b*, a sixth clade III SWEET gene in the rice genome**

307 A BLASTp search for SWEET homologs in the updated rice genome annotation (Phytozome,
308 *Oryza sativa Kitaake v3.1*; *Oryza sativa Japonica Group Annotation Release 102*) led to the
309 identification of a new member of the SWEET gene family on chromosome 9 (*Gramene*:
310 *Os09g0508250*; NCBI Reference Sequence: XP_015611383.1). The closest paralog of this gene
311 is *OsSWEET11a* (LOC_Os08g42350; Os8N3; Alphafold AF-Q6YZF3-F1) with 64% identity to
312 *SWEET11b* (Fig. S5). The exon-intron structure of the two genes is conserved (Fig. S6a). The
313 genes are located on different chromosomes and thus are not the result of a recent tandem
314 duplication. Phylogenetically *SWEET11b* falls into clade III (Fig. 1). Notably, a new annotation
315 of the maize genome (B73 RefGen_V3) also contains a new SWEET11 homolog, which is most
316 closely related to *OsSWEET11b*, and was thus named *ZmSWEET11b* (Fig. 1).

317 **Complementary roles of OsSWEET11a and b in anthers**

318 *OsSWEET11a* has a key role in seed filling (Ma *et al.*, 2017; Yang *et al.*, 2018; Fei *et al.*, 2021).
319 Based on public RNAseq data (NCBI BioProject: PRJNA243371), *OsSWEET11a* and *11b* are both
320 expressed in florets as well, and *OsSWEET11b* transcripts accumulate in developing seeds,
321 however only to low levels (Wang *et al.*, 2015)(Fig. S7). To assess whether the two paralogs are
322 redundant and have overlapping cell-type specificity, the localization of *OsSWEET11a* and *11b*
323 was investigated using translational GUS fusions driven by their own promoters (2155 bp for
324 *OsSWEET11b*, Fig. S3; 2106 bp for *OsSWEET11a* (Yang *et al.*, 2018)). GUS activity from both
325 *OsSWEET11a* and *b* translational fusions was detected in stamina and the veins of lemma and
326 palea (Fig. 2a, b). However, in the stamina, the patterns were non-overlapping and GUS activity
327 was neither detected in the tapetum nor in microspores. *OsSWEET11a*-derived GUS activity was
328 detected in the tip of the filament, i.e., the anther peduncle (Fig. 2c, e). *OsSWEET11b* expression
329 was detected in the veins of the anther starting in the region where *OsSWEET11a* activity
330 terminated (Fig. 2c, d). After dehiscence, *OsSWEET11b* was also found in the vascular bundle of
331 anthers (Fig. 2d, e). *OsSWEET11a* thus appears to play a role in release of substrates from the
332 vasculature in the basal zone of the anther, while *OsSWEET11b* likely functions in anther veins
333 directed towards the developing microspore. In addition to SWEET11b protein accumulation in
334 florets, SWEET11b-derived GUS activity was also detected in the stele of the primary roots,
335 emerging lateral roots, leaf veins and spikelet branches (Fig. S8).

336 **OsSWEET11b functions as a plasma membrane sucrose transporter**

337 Due to the high similarity of *OsSWEET11b* to the sucrose transporting *OsSWEET11a*, one may
338 expect that *OsSWEET11b* has similar properties, i.e., plasma membrane localization and sucrose
339 transport activity. Confocal imaging of a translational *OsSWEET11b*-GFP fusion in *N. benthamiana* confirmed plasma membrane localization (Fig. S9, S10). Coexpression of
340 *OsSWEET11b* with the Förster Resonance Energy sucrose sensor FLIPsuc-90 μ Δ1V in
341 mammalian HEK293T cells demonstrated that similar to its paralogs, *OsSWEET11b* mediates
342 sucrose transport (Fig. 3, Fig. S11).

344 **Male sterility of *sweet11a,b* double knock out mutants**

345 To determine the physiological role of *OsSWEET11b*, *knock out* mutants were generated using
346 CRISPR/Cas9 with a guide RNA targeting the second transmembrane domain (Table S2, Fig. S4,

347 S5c). Panicles of single *knock out* mutant lines *ossweet11b-1* and -2, both carrying frameshift
348 mutations (1-bp insertion; 1-bp deletion and one SNP) resulting in a predicted new polypeptide
349 that contained only the first 31 amino acids (aa) of OsSWEET11b (293 aa), showed no obvious
350 phenotypic differences to the Kitaake controls, and florets were fertile when grown in three
351 different locations and several seasons (greenhouses in University of Missouri, Düsseldorf or
352 Giessen) (Fig. 4, Fig. S12a). In addition, seed filling appeared normal (Fig. 4b, Fig. S12b). As
353 described before, *ossweet11a-1*, and -2 *knock out* mutants (Yang *et al.*, 2018), grown in parallel,
354 did not show fertility defects. The *stay green* phenotype of the panicles of *ossweet11a* mutants
355 previously observed was not observed here in greenhouses at Düsseldorf and Giessen (Fig. 4a, Fig
356 S12). In contrast, two independent alleles of the double mutant *ossweet11a;11b* showed a *stay*
357 *green* phenotype at Giessen and Düsseldorf, and were sterile (Fig. 4a, b, Fig. S12). Alleles with
358 in-frame mutations causing single amino acid deletions did not lead to sterility (Table S2).
359 Analysis of seed development indicated that defects were likely due to male or female infertility
360 (Fig. 4c). Under Düsseldorf greenhouse conditions, the seed filling defect of *ossweet11a-1* and -2
361 was not detectable (Fig. S12b). The phenotypes for the same genotypes are likely conditional; the
362 severity of the seed filling phenotype of *ossweet11a* mutants was previously shown to be more
363 severe under field conditions (Ma *et al.*, 2017). Based on the presence of both OsSWEET11a and
364 b proteins in stamina, one may hypothesize that the sterility is due to defects in male
365 gametogenesis. Consistent with this hypothesis, female organs appeared normal (Fig. S13). To test
366 for the source of fertility defects more directly, reciprocal crosses were performed. Results
367 demonstrate that under the same growth conditions, double mutants were male sterile and that
368 double mutant pollen was defective and unable to produce a single fertile seed (Fig. 5a, Fig. S14).
369 Notably, defects were also visible as a waxy appearance of anthers (Fig. 5b, Fig. S15d). Pollen of
370 double mutants frequently had abnormal shapes, and starch staining indicated that the pollen was
371 inadequately supplied with carbohydrates since starch content was substantially lower compared
372 to wild type pollen (Fig. 5c). Thus, based on accumulation in the anther peduncle (OsSWEET11a)
373 and anther veins (OsSWEET11b), a combined defect in the transfer of SWEET substrates from
374 these two locations causes insufficient translocation to the pollen, resulting in a reduction in starch
375 content and thus male sterility. The phenotype could either be a direct effect of a sucrose transport
376 deficiency in anther veins, or a reduced supply with the key hormone GA or its precursors.

377 **GA supplementation did not suppress male sterility**

378 GA is required for male fertility in rice. Since the close homologs of *Arabidopsis* AtSWEET13
379 and 14 can transport sucrose and GA, and since GA application supplemented male sterility of
380 *atsweet13;14* double mutants (Kanno *et al.*, 2016), one might speculate that GA could also
381 supplement *ossweet11a;11b* fertility defects (Kanno *et al.*, 2016). Double mutant plants repeatedly
382 sprayed with a solution containing 10 μ M GA₃ at stage R₂ (collar formation on flag leaf) showed
383 a substantial increase in height and internode length, demonstrating that GA entered the plant and
384 had the expected growth promoting effects (Fig. 6a). GA₃ supplementation had however no
385 positive effect on the fertility of *ossweet11a;11b* mutants (Fig. 6b-d). Therefore, it was
386 hypothesized that OsSWEET11b might be able to transport sucrose, but in contrast to the
387 *Arabidopsis* homologs unable to transport GA. To test this hypothesis, the transport capacity of
388 OsSWEET11b was tested using two independent assays systems – using GPS1, a FRET-based GA
389 sensor in mammalian cells, and a GA-dependent Y3H assay (Kanno *et al.*, 2016; Rizza *et al.*,
390 2017). As a control, AtSWEET13 was co-transfected with the GA sensor GPS1 into human
391 HEK293T cells. GPS1 showed significantly higher YFP/CFP fluorescence ratios in the presence
392 of AtSWEET13 supplied with 1 μ M GA₃ relative to controls (Fig. 7, Fig. S16), indicating that
393 GA₃ was transported by AtSWEET13 into the HEK293T cells. In contrast, OsSWEET11b did not
394 show significant changes in YFP/CFP fluorescence ratio upon GA₃ treatment, indicating that while
395 sucrose transport is detectable at levels comparable to other SWEETs, OsSWEET11b is unable to
396 mediate measurable GA uptake. As an independent approach, GA uptake assays were performed
397 using a GA-uptake dependent Y3H (Kanno *et al.*, 2016). While AtSWEET13 rescued growth on -
398 His media in the presence of GA₃ or GA₄, OsSWEET11b, driven by the strong PMA1 promoter
399 fragment, did not enable detectable growth, indicating that OsSWEET11b is not able to provide
400 substantial GA transport activity (Fig. 7, Fig. S17). This result is similar as described in a parallel
401 study for LOC_Os09g32992 (defined here as OsSWEET11b), a gene not characterized further by
402 the authors (Morii *et al.*, 2020). Notably, substantial GA transport was also not detected for
403 OsSWEET11a (Morii *et al.*, 2020). Thus, in contrast to the *Arabidopsis* clade III SWEETs,
404 OsSWEET11b is unable of ineffective in mediating GA transport, implying that the sterility
405 observed in *ossweet11a;11b* mutants was due to defects in sucrose transport, and not GA supply.

406 **OsSWEET11b functions as a potential susceptibility gene for BLB**

407 Up until now, naturally occurring TALEs that target *OsSWEET11b* have not been described. An
408 alignment of the promoter region showed that the binding site (EBE) for the TALE PthXo1 was

409 only present in *OsSWEET11a*, indicating that *OsSWEET11b* is not targeted by *PthXo1* from
410 *PXO99^A* (Fig. S5b). The promoter of *OsSWEET11b* did not contain binding sites for other known
411 TALES either. Designer TALES can be expressed in disarmed *Xoo* to test whether SWEET genes
412 can function as susceptibility genes. Three of the five previously known clade III SWEET family
413 members are currently targeted by the known *Xoo* strains from Asia and Africa, however all five
414 can function as susceptibility factors when artificially induced by *Xoo* strains producing designer
415 TALES (Streubel *et al.*, 2013; Oliva *et al.*, 2019). To test whether *OsSWEET11b* can also serve as
416 a potential susceptibility gene for *Xoo*, a designer dTALE that can bind to the TATA box region
417 of the *OsSWEET11b* promoter in the *japonica* rice cultivar Kitaake was synthesized (Fig. S18).
418 The synthetic dTALE gene, which encodes twenty-three 34-amino acid repeats was introduced into
419 a disarmed *Xoo* strain ME2, a *PXO99^A* mutant in which the TALE *pthXo1* was inactivated and
420 which lacks other TALE for SWEET gene induction. Infection of Kitaake with ME2(dTALE)
421 strongly induced *OsSWEET11b* as shown by RT-PCR (Fig. 8a, Fig. S19) and analysis of GUS
422 activity in *OsSWEET11b*-Gus lines (#1 and #13) (Fig. 8b). Successful infection occurred with
423 ME2(dTALE) in two *japonica* and *indica* rice cultivars Kitaake and Guanglu'ai 4, as dTALE
424 provided ME2 full virulence (Fig. 8c, d). In summary, *OsSWEET11b* could be activated by dTALE
425 and thus represents a potential BLB susceptibility that is likely related to sucrose transport activity
426 of *OsSWEET11b*.

427

428 **Discussion**

429 Here, a new member of the SWEET gene family was identified and named *OsSWEET11b*, based
430 on its close phylogenetic relation to *OsSWEET11a* (formerly named *OsSWEET11* or *Os8N3*). This
431 gene had not been detected in earlier genome annotations; interestingly in new annotations of the
432 maize genome the close homolog *ZmSWEET11b* was also newly found. *OsSWEET11b* protein
433 accumulated in anther veins, while *OsSWEET11a* was present in veins of stamina that enter the
434 anthers (anther peduncle). Single mutants had no apparent sterility defects, however, when
435 combined, double mutants became fully male sterility. The sterility is likely due to a defect in
436 sucrose supply to the megasporangia during their development, resulting in insufficient reserves for
437 germination. While the *Arabidopsis* homologs *AtSWEET13* and *14* may play roles in supplying
438 GA to support fertility, *OsSWEET11b* showed sucrose transport activity, but no detectable GA

439 transport activity, and GA did not supplement the infertility. The ability of SWEETs to recognize
440 and transport substrates as diverse as sucrose and GA remains enigmatic. At present, it cannot be
441 excluded that the observed GA transport activity is physiologically not relevant, and GA
442 supplementation of sterility in *Arabidopsis* is due to indirect effects. Surprisingly, the evolution of
443 GA transport capacity by SWEETs appears to emerge or gets lost during evolution independently
444 (Morii *et al.*, 2020). Dissection of the two activities by combination of structural and mutagenesis
445 studies and further characterization of SWEETs may help to resolve this conundrum.

446 The use of designer TALE in disarmed *Xoo* strains shows that *OsSWEET11b*, similar to its paralog
447 *OsSWEET11a*, can serve as a susceptibility locus. However, at the current point of time, there are
448 no known *Xoo* strains that target *OsSWEET11b* to cause BLB. Originally, hairpin RNAi with a
449 598 bp fragment corresponding to the 3'-end of *Os8N3* (renamed *OsSWEET11a* herein) caused
450 reduced male fertility (Yang *et al.*, 2006). Notably, the starch content of pollen grains was reduced
451 as seen here. However, surprisingly, *ossweet11a* knock out lines did not show obvious male
452 fertility defects in greenhouse conditions (Yang *et al.*, 2018). The defects in the RNAi lines were
453 thus likely due to RNA interference impacting both *OsSWEET11a* and *11b*.

454 **Interplay of SWEET11a and b with other sugar transporters and cell wall invertases**

455 We initially hypothesized that OsSWEET11a and 11b would be responsible for the release of
456 sucrose from the tapetum and uptake into the developing megasporangia. Unexpectedly, both proteins
457 were found in veins of the anther, with perfectly complementary localization in the peduncle of
458 anther (OsSWEET11a) and the adjacent veins along the axis of the anther (OsSWEET11a). This
459 clear separation may indicate that there are multiple apoplastic steps, one at the interface between
460 peduncle and anther, and another between the phloem and the connective. To our knowledge, there
461 are at present no data regarding symplasmic domains in rice that are based on dye coupling studies
462 or GFP movement as for *Arabidopsis*. However, while in *Arabidopsis* GFP can enter the anther
463 tissues, there appears to be a step gradient, possibly implying a constriction that limits GFP entry
464 leading to much higher fluorescence at the anther peduncle of *Arabidopsis* (Imlau *et al.*, 1999).
465 Dye coupling and GFP movement studies may help to unravel the exact pathways. SWEETs are
466 uniporters that can either enable efflux of sucrose or function in cellular uptake, dependent on the
467 sucrose concentration gradients. Apoplastic sucrose released from cells can either be taken up
468 into adjacent cells by SWEET- or SUT-mediated uniport or hydrolyzed by cell wall invertases

469 followed by uptake via MST hexose transporters (Goetz *et al.*, 2017). Sucrose released by the
470 SWEETs may subsequently in part be taken up by a SUT sucrose transporter; in *Arabidopsis*
471 *AtSUC1* produced in a cell layer of the connective adjacent to the vasculature is a candidate
472 (Stadler *et al.*, 1999). Genes for cell wall invertases *INV1* and *INV4* are both expressed in maturing
473 rice anthers, however, *INV4* is transiently present in the tapetum and later in microspores and may
474 play a role in cold sensitivity (Oliver *et al.*, 2005). Consistent with extracellular hydrolysis, two
475 hexose/H⁺ symporters *MST7* and *8* seem to be coexpressed with the invertases. These findings
476 implied the presence of sucrose efflux transporters that supply the invertase with sucrose. Clade
477 III SWEETs are prime candidates for such functions. The presence of cell wall invertases in
478 multiple locations in the anther, tapetum and developing microspores matches the patterns of
479 SWEET11a and b accumulation.

480 Several regulatory proteins have been identified that are involved in regulation of MSTs, invertases
481 and several other transporters of the SUT and TMT family, indicating parallel pathways for
482 apoplastic flux of hexoses and sucrose. Notably, the MYB domain protein Carbon Starved Anther
483 CSA, required for carbon supply and male fertility in rice, shows similar expression patterns as
484 *OsSWEET11b*. *csa* mutants were characterized by reduced *MST8*, *SUT3* and *INV4* mRNA levels
485 (Zhang *et al.*, 2010). The bZIP transcription factor 73, which is required for cold tolerance in
486 anthers, also plays a role in regulating *MST7*, *8* and *INV4* genes (Liu *et al.*, 2019). Several sugar
487 transporters have been shown to be regulated posttranscriptionally by the RNA binding protein
488 OsRRM. OsRRM is produced in anthers and has been shown to positively affect steady state
489 transcript levels of a suite of transporter genes including *MST6* and *8*, *TMT1* and *2*, as well as four
490 sucrose transporters *SUT1,2,3* and *4*, likely by stabilizing the respective mRNAs (Liu *et al.*, 2020).
491 SWEET mRNA and protein levels have not been tested in these mutants, yet based on the findings
492 summarized above, it is tempting to speculate that *SWEET11a* and *b* may be coregulated by the
493 same mechanisms and may also be involved in temperature tolerance of male reproductive organs
494 in rice.

495 While *OsSWEET11b* is a close homolog of *OsSWEET11a*, it has diverged sufficiently to not
496 contain an effector binding site for PthXo1. Thus, *OsSWEET11b* cannot be targeted by PXO99^A.
497 A systematic analysis of the ability of SWEET gene family members to serve as BLB susceptibility
498 factors using designer TALEs had shown that induction of any of the five previously known clade
499 III SWEETs supported virulence (Streubel *et al.*, 2013). It is conceivable that *OsSWEET11b*

500 cannot serve as a susceptibility gene because it is guarded (Jones & Dangl, 2006). However, here
501 we show that *OsSWEET11b* can serve as a susceptibility gene to *Xoo* as long as a strain lacking
502 suitable TALE for SWEETs is equipped with a designer TALE that bind to the *OsSWEET11b*
503 promoter. Thus, while all six clade III SWEETs are potential susceptibility genes, only three out
504 are used by the extant Asian and African *Xoo* strains. The finding that only half of the now six
505 clade III SWEET susceptibility factors are actually used by the known *Xoo* strains indicates a
506 limited ability of *Xoo* to evolve new TALEs that target these promoters. This observation is in line
507 with the strict continental isolation, where *Xanthomonas oryzae* strains from the Americas do not
508 target any of the SWEETs and are weak pathogens causing limited damage (Triplett *et al.*, 2011).
509 African strains, target two regions in a single SWEET, namely *OsSWEET14*. Asian strains appear
510 more ‘advanced’ in that they target three SWEETs (*OsSWEET11a*, *13* and *14*) with a diversified
511 TALE portfolio and a series of adaptations to the allelic promoters in different rice varieties (Oliva
512 *et al.*, 2019). This ‘advanced’ state is likely due to Asia being by far the largest cultivation area for
513 rice, and the origin of resistance breeding. Based on the analysis of *Xoo* strain collections from
514 Asia and Africa it has been possible to develop elite rice varieties resistant to all strains in a
515 representative collection (Oliva *et al.*, 2019). Since it is conceivable that new strains evolve to
516 target the still unused clade III SWEETs including *OsSWEET11b*, diagnostic tools will help to
517 accelerate the discovery of emergent disease mechanisms and enable rapid discovery of SWEET
518 promoter sequences targeted by TALEs (Eom *et al.*, 2019; Li *et al.*, 2019). Based on the findings
519 here it planned to expand the diagnostic kit and to accelerate the genome editing based generation
520 of promoter variants for emerging EBEs in *OsSWEET11b*.

521 **Acknowledgements**

522 We thank Bi Huei Hou for excellent technical assistance and sensor-based transport studies, and
523 Bo Liu for rice transformation of CRISPR and GUS-reporter lines. We thank Mitsunori Seo
524 (RIKEN, Yokohama, Japan) for advice and plasmids for the Y3H system components. We thank
525 Michael Frei (Justus-Liebig University Giessen, Germany) for the support on experiments
526 conducted at University Giessen. This work was supported by grants from the Bill & Melinda
527 Gates Foundation to HHU (OPP1155704; WF), with a subcontract to MU (BY), the Alexander
528 von Humboldt Professorship (WF), Deutsche Forschungsgemeinschaft (DFG, German Research
529 Foundation) under Germany's Excellence Strategy – EXC-2048/1 – project ID 390686111, a Japan
530 Society for the Promotion of Science (JSPS) grant–19H000932 (WF, MN) and the World Premier
531 Institute Center Initiative, Japan. Work in BYs lab was also supported by the National Science
532 Foundation (IOS-1936492).

533

534 **Author contributions**

535 WBF, BY and MN conceived of the study, designed experiments, and supervised the work. WBF,
536 BY and LBW wrote the manuscript. JSE generated GUS constructs. VTL performed GFP fusion
537 localization assays, LBW performed GUS assays, genotyping and phenotyping plants and in planta
538 GA assays, LC carried out gene induction and disease assays, SNC designed and constructed
539 dTAle, generated DL mutants and carried out fertility analyses; RI performed all GA transport
540 assays.

541

542 **Data Availability**

543 The data that support the findings of this study are available from the corresponding author upon
544 reasonable request.

545 **References**

546 **Bezrutczyk M, Yang J, Eom J-S, Prior M, Sosso D, Hartwig T, Szurek B, Oliva R, Vera-**
547 **Cruz C, White FF, et al. 2018.** Sugar flux and signaling in plant-microbe interactions. *The Plant*
548 *Journal* **93**: 675–685.

549 **Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T, Köhrer K, Frommer WB,**
550 **Kim J-Y. 2021.** Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves.
551 *The Plant Cell* **33**: 531–547.

552 **Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto KG, Monaghan J, Simon R.**
553 **2021.** Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with
554 CLAVATA1 family receptors in *Arabidopsis*. *Journal of Experimental Botany* **72**: 4853–4870.

555 **Chen LQ, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G,**
556 **Underwood W, Chaudhuri B, et al. 2010.** Sugar transporters for intercellular exchange and
557 nutrition of pathogens. *Nature* **468**: 527–532.

558 **Chen LQ, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB. 2012.** Sucrose
559 efflux mediated by SWEET proteins as a key step for phloem transport. *Science* **335**: 207.

560 **Eom J-S, Luo D, Atienza-Grande G, Yang J, Ji C, Luu VT, Huguet-Tapia JC, Liu B,**
561 **Nguyen H, Schmidt SM, et al. 2019.** Diagnostic kit for rice blight resistance. *Nature*
562 *Biotechnology* **37**: 1372–1379.

563 **Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. 2021.** OsSWEET14 cooperates with
564 OsSWEET11 to contribute to grain filling in rice. *Plant Science* **306**: 110851.

565 **Goetz M, Guivaréch A, Hirsche J, Bauerfeind MA, González M-C, Hyun TK, Eom SH,**
566 **Chriqui D, Engelke T, Großkinsky DK, et al. 2017.** Metabolic control of tobacco pollination
567 by sugars and invertases. *Plant Physiology* **173**: 984–997.

568 **Guan Y-F, Huang X-Y, Zhu J, Gao J-F, Zhang H-X, Yang Z-N. 2008.** *RUPTURED POLLEN*
569 *GRAIN1*, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and
570 cell integrity of microspores in *Arabidopsis*. *Plant Physiology* **147**: 852.

571 **Hayashi H, Chino M. 1990.** Chemical composition of phloem sap from the uppermost internode
572 of the rice plant. *Plant and Cell Physiology* **31**: 247–251.

573 **Hiei Y, Ohta S, Komari T, Kumashiro T. 1994.** Efficient transformation of rice (*Oryza sativa*
574 L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. *The*
575 *Plant Journal* **6**: 271–282.

576 **Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S,**
577 **Schweissgut O, Wiechert W, Frommer WB. 2011.** Optical sensors for monitoring dynamic
578 changes of intracellular metabolite levels in mammalian cells. *Nature Protocols* **6**: 1818–1833.

579 **Imlau A, Truernit E, Sauer N. 1999.** Cell-to-cell and long-distance trafficking of the green
580 fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. *The*
581 *Plant Cell* **11**: 309–22.

582 **Jones JDG, Dangl JL. 2006.** The plant immune system. *Nature* **444**: 323–329.

583 **Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y,**
584 **Ueda M, Seo M. 2016.** AtSWEET13 and AtSWEET14 regulate gibberellin-mediated
585 physiological processes. *Nature Communications* **7**: 13245.

586 **Katoh K, Rozewicki J, Yamada KD. 2019.** MAFFT online service: multiple sequence
587 alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* **20**: 1160–
588 1166.

589 **Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018.** MEGA X: Molecular Evolutionary
590 Genetics Analysis across Computing Platforms. *Molecular Biology and Evolution* **35**: 1547–
591 1549.

592 **Kwon C-T, Paek N-C. 2016.** Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in
593 Rice Grain Production. *International Journal of Molecular Sciences* **17**: E794.

594 **Lefort V, Desper R, Gascuel O. 2015.** FastME 2.0: A comprehensive, accurate, and fast
595 distance-based phylogeny inference Program. *Molecular Biology and Evolution* **32**: 2798–2800.

596 **Li T, Huang S, Zhou J, Yang B. 2013.** Designer TAL effectors induce disease susceptibility
597 and resistance to *Xanthomonas oryzae* pv. *oryzae* in rice. *Molecular Plant* **6**: 781–9.

598 **Li C, Ji C, Huguet-Tapia JC, White FF, Dong H, Yang B. 2019.** An efficient method to clone
599 TAL effector genes from *Xanthomonas oryzae* using Gibson assembly. *Molecular Plant*
600 *Pathology* **20**: 1453–1462.

601 **Lin IW, Sosso D, Chen L-Q, Gase K, Kim S-G, Kessler D, Klinkenberg PM, Gorder MK,**
602 **Hou B-H, Qu X-Q, et al. 2014.** Nectar secretion requires sucrose phosphate synthases and the
603 sugar transporter SWEET9. *Nature* **508**: 546–549.

604 **Liu C, Schläppi MR, Mao B, Wang W, Wang A, Chu C. 2019.** The bZIP73 transcription
605 factor controls rice cold tolerance at the reproductive stage. *Plant Biotechnology Journal* **17**:
606 1834–1849.

607 **Liu D, Xu L, Wang W, Jia S, Jin S, Gao J. 2020.** OsRRM, an RNA-binding protein, modulates
608 sugar transport in rice (*Oryza sativa* L.). *Frontiers in Plant Science* **online**.

609 **Loqué D, Lalonde S, Looger LL, von Wirén N, Frommer WB. 2007.** A cytosolic trans-
610 activation domain essential for ammonium uptake. *Nature* **446**: 195–8.

611 **Luu VT, Stiebner M, Maldonado PE, Valdés S, Marín D, Delgado G, Laluz V, Wu L-B,**
612 **Chavarriaga P, Tohme J, et al. 2020.** Efficient Agrobacterium-mediated transformation of the
613 elite-indica rice variety Komboka. *Bio-protocol* **10**: e3739–e3739.

614 **Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y.** 2017. Essential role of sugar transporter
615 OsSWEET11 during the early stage of rice grain filling. *Plant & Cell Physiology* **58**: 863–873.

616 **Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, Hobo T, Hattori M, Yoshimura H,**
617 **Seo M, Ueguchi-Tanaka M.** 2020. The dual function of OsSWEET3a as a gibberellin and
618 glucose transporter Is important for young shoot development in rice. *Plant and Cell Physiology*
619 **61: 1935–1945.**

620 **Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Pérez-Quintéro A, Li T, Eom J-S, Li**
621 **C, Nguyen H, Liu B, et al.** 2019. Broad-spectrum resistance to bacterial blight in rice using
622 genome-editing. *Nature Biotechnology* **37**: 1344–1350.

623 **Oliver SN, Dongen JTV, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF,**
624 **Blanchard CL, Sutton BG, Geigenberger P, et al.** 2005. Cold-induced repression of the rice
625 anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and
626 pollen sterility. *Plant, Cell & Environment* **28**: 1534–1551.

627 **Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM.** 2017. In vivo gibberellin gradients
628 visualized in rapidly elongating tissues. *Nature Plants* **3**: 803–813.

629 **Sadoine M, Reger M, Wong KM, Frommer WB.** 2021. Affinity series of genetically encoded
630 Förster Resonance Energy-Transfer sensors for sucrose. *ACS Sensors* **6**: 1779–1784.

631 **Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo**
632 **T, Nagano K, Kojima M, et al.** 2014. Reduction of gibberellin by low temperature disrupts
633 pollen development in rice. *Plant Physiology* **164**: 2011–2019.

634 **Sosso D, Luo D, Li Q-B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR,**
635 **Chourey PS, et al.** 2015. Seed filling in domesticated maize and rice depends on SWEET-
636 mediated hexose transport. *Nature Genetics* **47**: 1489–1493.

637 **Stadler R, Truernit E, Gahrtz M, Sauer N.** 1999. The AtSUC1 sucrose carrier may represent
638 the osmotic driving force for anther dehiscence and pollen tube growth in *Arabidopsis*. *The Plant*
639 *Journal* **19**: 269–78.

640 **Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B.** 2013. Five phylogenetically
641 close rice SWEET genes confer TAL effector-mediated susceptibility to *Xanthomonas oryzae*
642 pv. *oryzae*. *New Phytologist* **200**: 808–19.

643 **Triplett LR, Hamilton JP, Buell CR, Tisserat NA, Verdier V, Zink F, Leach JE.** 2011.
644 Genomic analysis of *Xanthomonas oryzae* isolates from rice grown in the United States reveals
645 substantial divergence from known *X. oryzae* pathovars. *Applied and Environmental*
646 *Microbiology* **77**: 3930–3937.

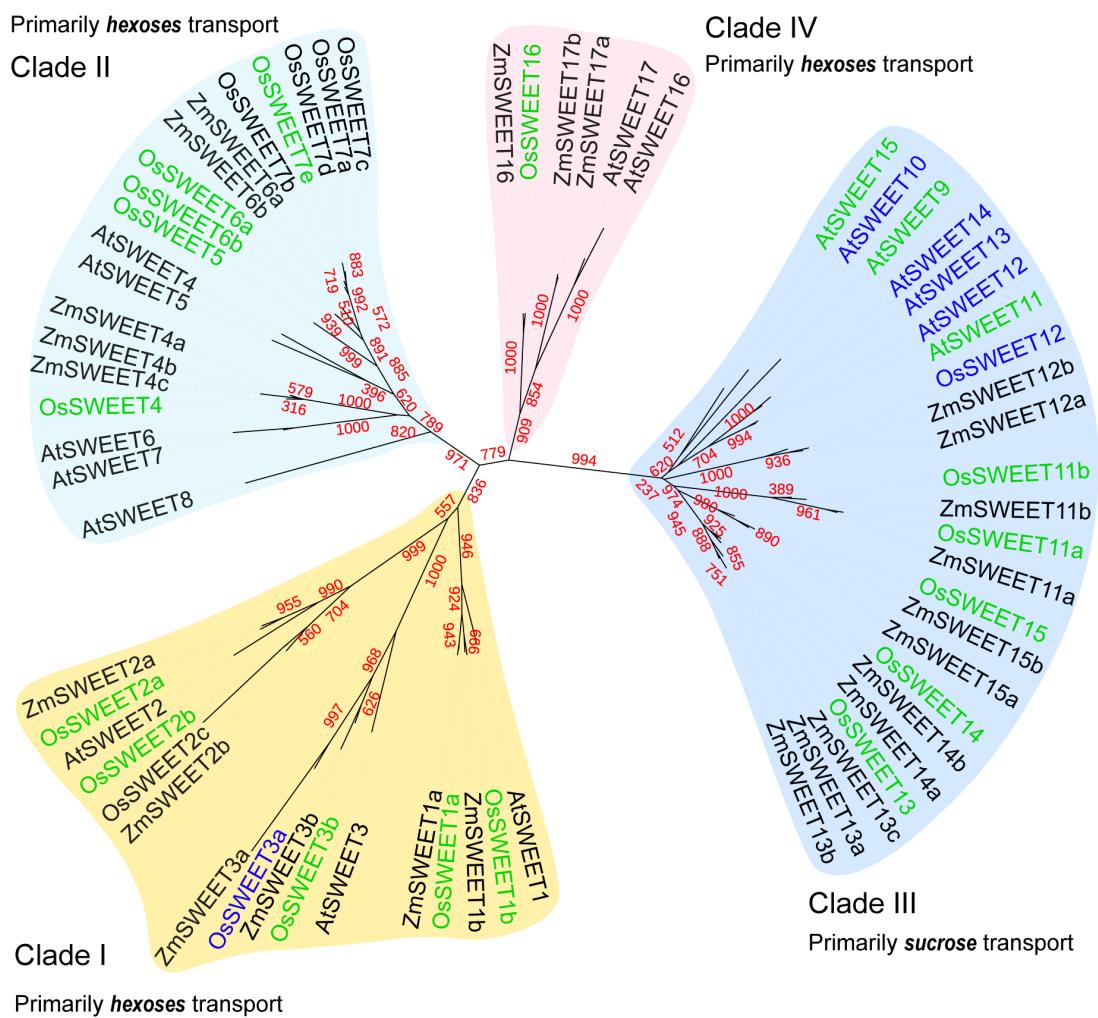
647 **Truernit E, Stadler R, Baier K, Sauer N.** 1999. A male gametophyte-specific monosaccharide
648 transporter in *Arabidopsis*. *The Plant Journal* **17**: 191–201.

649 **Wang H, Niu Q-W, Wu H-W, Liu J, Ye J, Yu N, Chua N-H. 2015.** Analysis of non-coding
650 transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture
651 traits. *The Plant Journal* **84**: 404–416.

652 **Yang J, Luo D, Yang B, Frommer WB, Eom J-S. 2018.** SWEET11 and 15 as key players in
653 seed filling in rice. *The New Phytologist* **218**: 604–615.

654 **Yang B, Sugio A, White FF. 2006.** *Os8N3* is a host disease-susceptibility gene for bacterial
655 blight of rice. *Proceedings of the National Academy of Sciences of the USA* **103**: 10503–8.

656 **Yang B, White FF. 2004.** Diverse members of the AvrBs3/PthA family of type III effectors are
657 major virulence determinants in bacterial blight disease of rice. *Molecular Plant Microbe
658 Interactions* **17**: 1192–200.

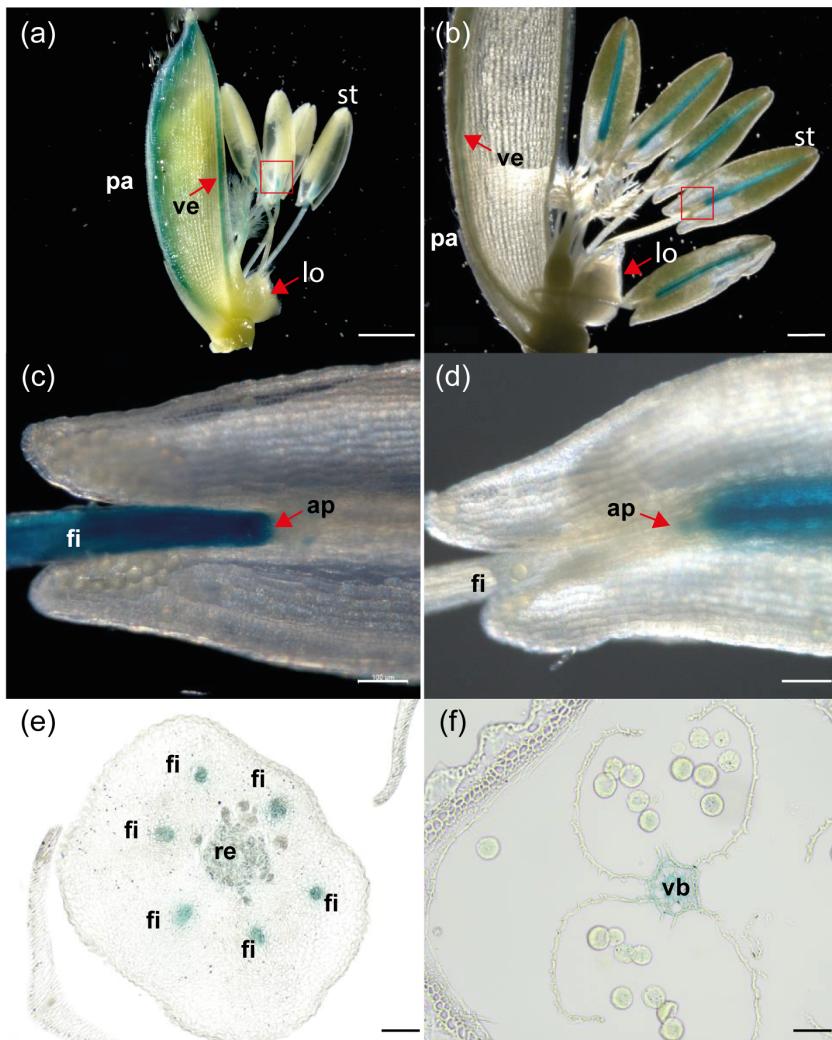

659 **Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D. 2010.** Carbon Starved Anther
660 encodes a MYB domain protein that Regulates sugar partitioning required for rice pollen
661 development. *The Plant Cell* **22**: 672–689.

662 **Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. 2014.** Large chromosomal deletions and
663 heritable small genetic changes induced by CRISPR/Cas9 in rice. *Nucleic Acids Research* **42**:
664 10903–10914.

665

666 **Legends to Figures**

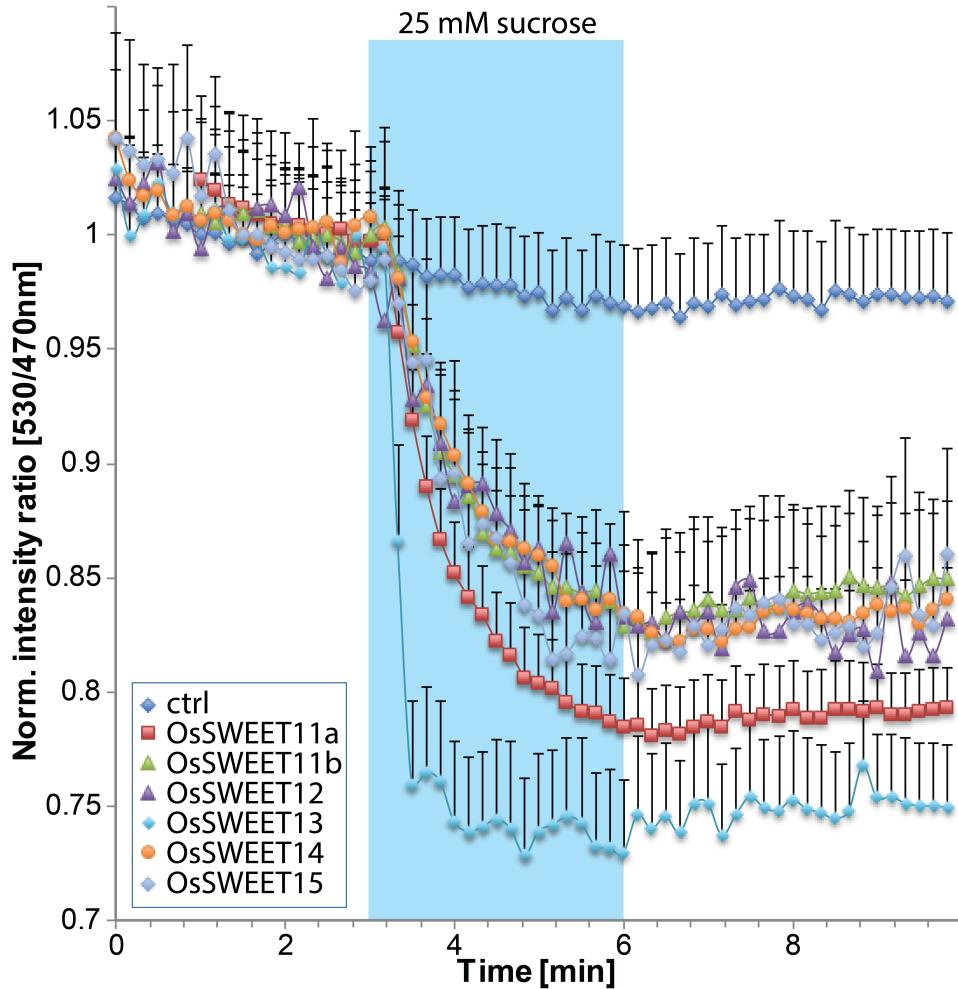
667


668 Sugar & GA transport Sugar transport Sugar transport (GA n.d.)

669

670 **Figure 1. Phylogeny of SWEET gene family members in *Arabidopsis* (At), rice (Os) and maize (Zm).** Unrooted phylogenetic tree was generated based on the conserved transmembrane regions of the protein sequences with the help of NGphylogeny (<https://ngphylogeny.fr/>) and visualized with iTOL program (<https://itol.embl.de/>). Clade clustering scores (in red) shown as the bootstrap replicates were calculated based on bootstrapping (n=1000). The SWEETs were highlighted based on the sucrose/GA transport capability. Blue color indicates the SWEETs capable of both sucrose/hexoses and GA transport while green and purple colors show the SWEETs only capable of sucrose/hexoses transport or GA transport activity has not been determined (Kanno *et al.*, 2016; Morii *et al.*, 2020). GA, gibberellic acid; n.d., not determined.

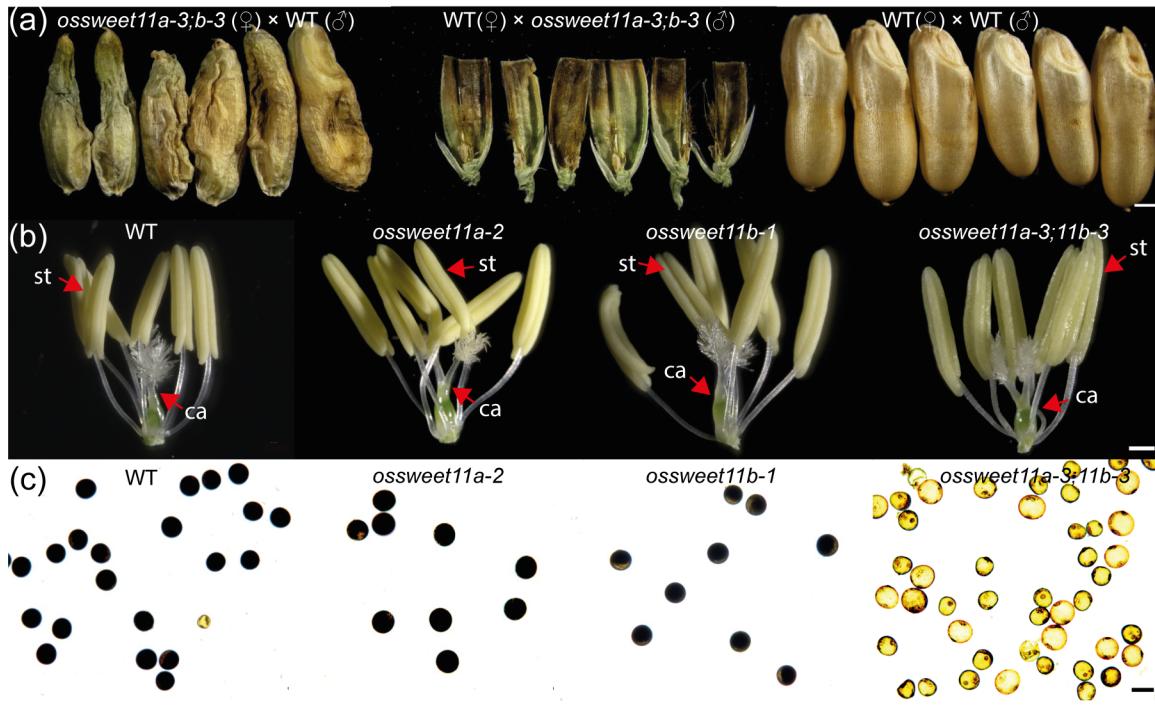
679


gOsSWEET11a:OsSWEET11a-GUS *gOsSWEET11b:OsSWEET11b-GUS*

680

681 **Figure 2: Cell type specific accumulation patterns for OsSWEET11a and OsSWEET11b**
682 **using GUS histochemistry in florets.**

683 (a) Floret at mature pollen stage of *gOsSWEET11a:OsSWEET11a-GUS* line #10 with lemma
684 removed. GUS activity was detected in veins (ve) and filament (fl). (b) Dissected floret at mature
685 pollen stage of *gOsSWEET11b:OsSWEET11b-GUS* line #2. GUS activity was detected in veins
686 and vascular bundle (vb) of anthers. (c) Area in (a) indicated by red square, showing
687 OsSWEET11a-derived GUS activity in the filament that ends in the anther peduncle (ap). (d) Part
688 of stamen (st) is indicated by red square in (b). GUS activity from OsSWEET11b-GUS starts above
689 the anther peduncle and is limited to the vascular bundle of anthers. (e) Transverse section of lower
690 floret in *gOsSWEET11a:OsSWEET11a-GUS* line, showing GUS activity in filament and
691 receptacle (re). (f) Transverse section of upper floret in *gOsSWEET11b:OsSWEET11b-GUS* line,
692 showing GUS activity in vascular bundle of anthers. Scale bars: (a) 1000 μ m; (b) 500 μ m; (c, d, e,
693 f) 100 μ m. Comparable results with eighteen and seven independent transgenic lines for
694 OsSWEET11a and 11b, respectively.


695

696 **Figure 3. Sucrose transport activity of OsSWEET11b in HEK293T cells.** All six *OsSWEETs*
697 in clade III were coexpressed with the sucrose sensor FLIPsuc90 μ . Perfusion with a square pulse
698 of 25 mM sucrose led to a negative ratio change, consistent with the accumulation of sucrose in
699 HEK293T cells. In the absence of SWEETs (ctrl, vector only), no significant change in ratio was
700 observed (mean + S.E.M; n= 8 cells for OsSWEET11b; others between n=5 and n=13).
701 Experiment was repeated at least three times independently.

702
703

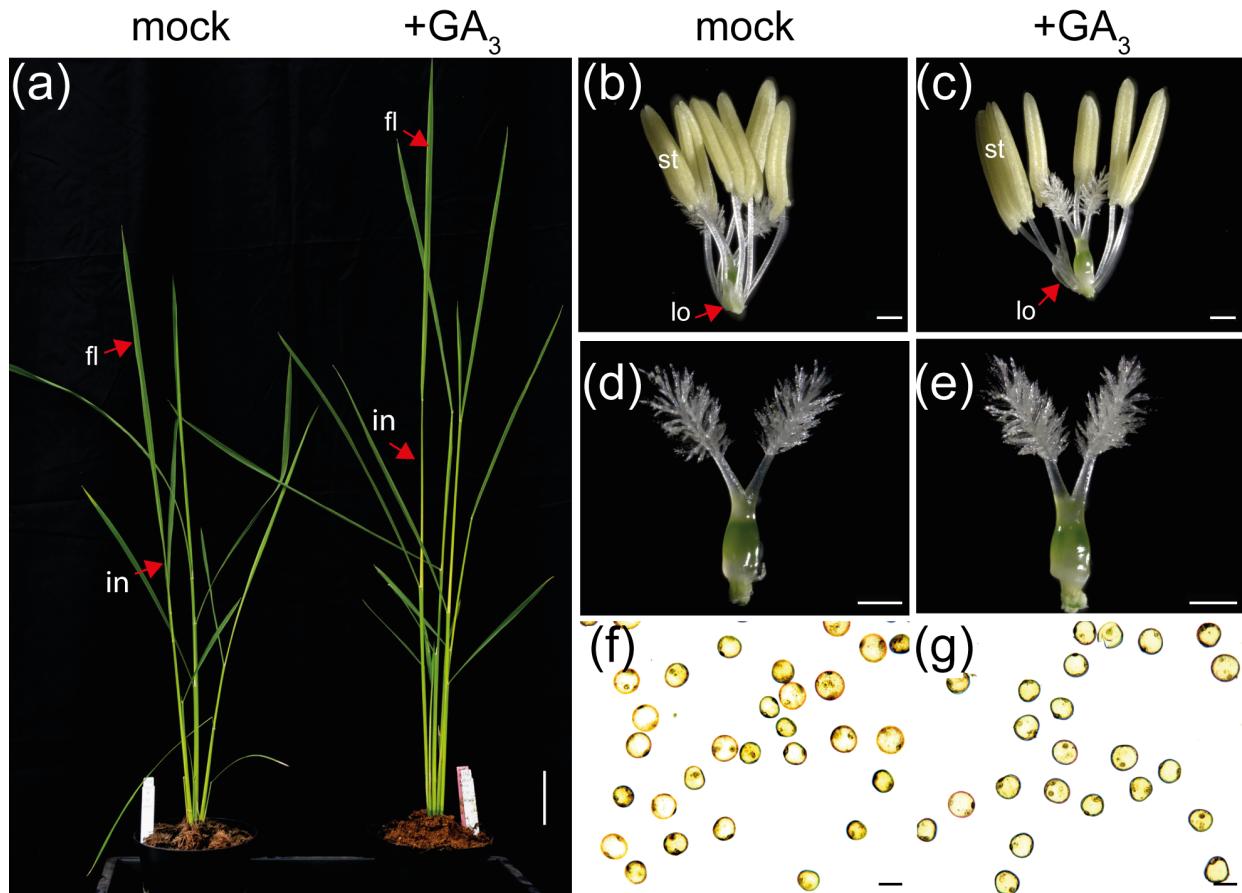
705 **Figure 4. Phenotypes of mature panicles and seed development of wild type Kitaake,**
706 **ossweet11a, ossweet11b and ossweet11a;11b double mutants.** (a) Mature panicles from wild type
707 Kitaake (WT), *ossweet11a-1*, *ossweet11a-2*, *ossweet11b-1*, *ossweet11b-2* and two independent
708 combinations of *ossweet11a;11b* double mutant alleles 40 days after flowering (DAF). (b) Rice
709 grains with (upper) and without (lower) husks in WT, *ossweet11a-2*, *ossweet11b-1*, and
710 *ossweet11a-3;11b-3* double mutants. *ossweet11a-2* single mutants showed incomplete seed-
711 filling. *ossweet11a-3;11b-3* double mutant plants did not develop seeds. (c) Grain development at 2,
712 4, 6, 8 and 10 days after flowering. *ossweet11a-3;11b-3* double mutant plants did not develop
713 seeds. Scale bars: (a) 1 cm; (b) 2 mm and (c) 1 mm.

714

715 **Figure 5. Investigation of the cause of sterility in *ossweet11a;11b* double mutant by reciprocal**
716 **crosses, flowers observation and pollen starch staining.** (a) Reciprocal crosses between

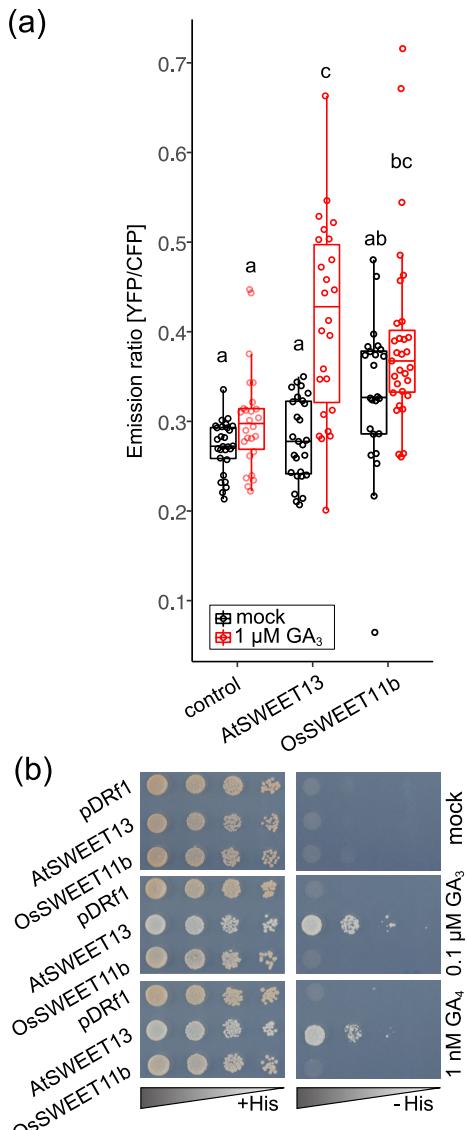
717 *ossweet11a-3;11b-3* and wild type Kitaake. Wild type Kitaake (WT) as donor parent (♂) restored

718 the fertility in double mutants. F₁ seeds of double mutant and WT showed incomplete seed filling


719 phenotype. (b) Florets without palea and lemma of *ossweet11a-2*, *ossweet11b-1* and *ossweet11a-*

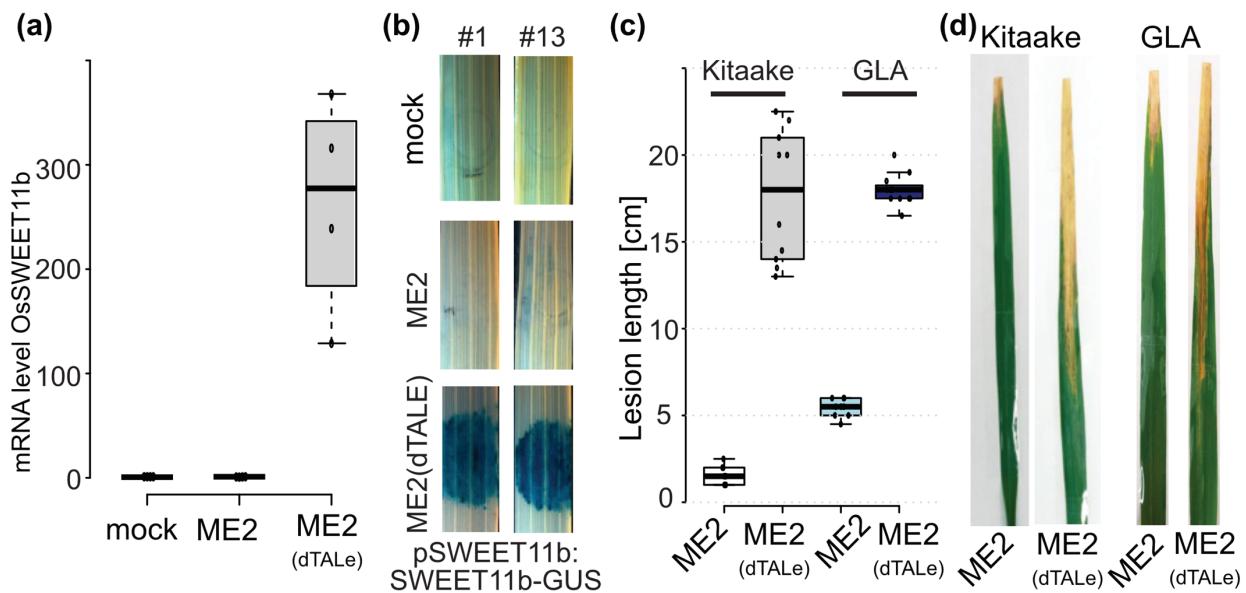
720 *3;11b-3*. *ossweet11a-3;11b-3* had waxy anthers, other genotypes showed normal anther

721 development. (c) Pollen stained with Lugol's KI/I₂ solution in WT, *ossweet11a-2*, *ossweet11b-1*


722 and *ossweet11a-3;11b-3*. Pollen of double mutant lines was irregular and lacked starch. St: stamen,

723 ca, carpel. Scale bars: (a) 1 mm; (b) 200 μ m; (c) 50 μ m.

724
725


726 **Figure 6. External application of GA did not rescue male fertility defects in *osweet11a, b***
727 **double mutants.** (a) Effect of GA₃ application on the growth of *sweet11a-3;11b-3* double
728 mutants(left: mock; right: 10 μ M GA₃). Floral organs (b, d) and Lugol's KI/I₂ stained pollen (f) of
729 *sweet11a-3;11b-3* double mutants without GA₃ application. Floral organs (c, e) and pollen (g) of
730 *sweet11a-3;11b-3* double mutants treated with 10 μ M GA₃. in, internode; fl, flag leaf; lo, lodicule;
731 st, stamen. Scale bars: (a) 10 cm; (b - e) 500 μ m; (f, g) 50 μ m.

732 **Figure 7. Gibberellin transport activity of OsSWEET11b.** (a) 1 μ M GA₃ was added for 3 h to
733 HEK293T cells expressing the GA sensor GPS1. Empty vector and AtSWEET13 served as
734 negative and positive controls, respectively. Box plots show first and third quartiles, split by the
735 median with whiskers extending 1.5x interquartile range beyond the box. Each data point
736 represents mean fluorescence ratio during 3 min recordings ($n = 28$; empty vector, mock), 26
737 (empty vector, 1 μ M GA₃), 27 (AtSWEET13, mock), 26 (AtSWEET13, 1 μ M GA₃), 31
738 (OsSWEET11b, mock), 24 (OsSWEET11b, 1 μ M GA₃) cells. Two independent replicates were
739 conducted (Fig. S16). Different letters on each boxplot represents significant difference
740 determined by One-way ANOVA with Tukey's post-hoc test ($p < 0.05$). (b) GA₃ and GA₄ transport
741 activity of OsSWEET11b assessed using a GA-dependent Y3H system. Yeast strain PJ69-4a
742 carrying both pDEST22-GID1a and pDEST32-GAI and either pDRf1-OsSWEET11b, pDRf1-
743 AtSWEET13 (positive control), or empty vector (negative control) were grown on SD (-Leu, -Trp,
744 -Ura) or selective SD(-Leu, -Trp, -Ura, -His) medium, containing 3 mM 3-AT and 0.001% (v/v)
745 DMSO and either 0.1 μ M GA₃, or 1 nM GA₄, respectively, for 3 days at 30°C. Comparable results
746 were obtained in three independent replicates (Fig. S17).

747

748

749

750 **Figure 8. *OsSWEET11b* is a susceptibility gene for rice bacterial blight.** (a) dTAle induces
751 *OsSWEET11b*. mRNA level of *OsSWEET11b* ($2^{-\Delta\Delta Ct}$) determined by qRT-PCR in Kitaake leaves
752 treated with water (mock inoculation), ME2 and ME2 containing designer TALE. The rice actin
753 gene was used as an internal control. (b) GUS histochemistry of rice leaves expressing translational
754 *OsSWEET11b*-GUS fusions after inoculation with ME2 and ME2(dTAle). Results from two
755 independent transgenic lines (#1; #13). (c) Designer TALE (dTALe) in ME2 causes virulence in
756 rice. Lesion length measurements caused by *Xoo* strains ME2 and the designer TALE strain
757 ME2/dTAle in two rice cultivars Kitaake (*japonica* rice variety) and Guanglu'ai 4 (GLA, *indica*
758 rice variety) 14 days post inoculation. (d) Images of leaves showing lesions of blight with leaf tip
759 clipping inoculation method. Experiments were repeated at least three times independently.