

1 **Transcriptomic and proteomic retinal pigment epithelium signatures of age-
2 related macular degeneration.**

3 Anne Senabouth^{1*}, Maciej Daniszewski^{2,3*}, Grace E. Lidgerwood^{2,3*}, Helena H.
4 Liang³, Damián Hernández^{2,3}, Mehdi Mirzaei^{4,5}, Ran Zhang¹, Xikun Han⁶, Drew
5 Neavin¹, Louise Rooney², Isabel Lopez Sanchez³, Lerna Gulluyan², Joao A Paulo⁵,
6 Linda Clarke³, Lisa S Kearns³, Vikkitharan Gnanasambandapillai¹, Chia-Ling Chan¹,
7 Uyen Nguyen¹, Angela M Steinmann¹, Rachael Zekanovic¹, Nona Farbeh¹, Vivek K.
8 Gupta⁷, David A Mackey^{8,9}, Guy Bylsma⁸, Nitin Verma⁹, Stuart MacGregor⁶, Robyn H
9 Guymer^{3,10}, Joseph E. Powell^{1,11 #}, Alex W. Hewitt^{3,9 #}, Alice Pébay^{2,3,12 #}

10 *¹Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical
11 Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia*

12 *²Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC
13 3010, Australia*

14 *³Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East
15 Melbourne, VIC 3002, Australia*

16 *⁴ProGene Technologies Pty Ltd., Sydney, NSW 2073, Australia*

17 *⁵Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA*

18 *⁶QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia*

19 *⁷Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences,
20 Macquarie university, NSW 2109, Australia*

21 *⁸Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Perth,
22 WA 6009, Australia*

23 *⁹School of Medicine, Menzies Institute for Medical Research, University of Tasmania,
24 Hobart, TAS 7005, Australia*

25 ¹⁰ *Department of Surgery, Ophthalmology, Royal Victorian Eye and Ear Hospital, The
26 University of Melbourne, East Melbourne, VIC 3002, Australia*

27 ¹¹ *UNSW Cellular Genomics Futures Institute, University of New South Wales,
28 Sydney, NSW 2052, Australia*

29 ¹² *Department of Surgery, Royal Melbourne Hospital, The University of Melbourne,
30 Parkville, VIC 3010, Australia*

31 *Correspondence: j.powell@garvan.org.au; hewitt.alex@gmail.com;
32 apebay@unimelb.edu.au;

33 * Equal first authors

34 # Equal senior authors

35

36 **Abstract**

37 Induced pluripotent stem cells generated from patients with geographic atrophy as well
38 as healthy individuals were differentiated to retinal pigment epithelium (RPE) cells. By
39 integrating transcriptional profiles of 127,659 RPE cells generated from 43 individuals
40 with geographic atrophy and 36 controls with genotype data, we identified 439
41 expression Quantitative Trait (eQTL) loci in cis that were associated with disease
42 status and specific to subpopulations of RPE cells. We identified loci linked to two
43 genes with known associations with geographic atrophy - PILRB and PRPH2, in
44 addition to 43 genes with significant genotype x disease interactions that are
45 candidates for novel genetic associations for geographic atrophy. On a transcriptome-
46 only level, we identified molecular pathways significantly upregulated in geographic
47 atrophy-RPE including in extracellular cellular matrix reorganisation,
48 neurodegeneration, and mitochondrial functions. We subsequently implemented a
49 large-scale proteomics analysis, confirming modification in proteins associated with

50 these pathways. We also identified six significant protein (p) QTL that regulate protein
51 expression in the RPE cells and in geographic atrophy - two of which share variants
52 with cis-eQTL. Transcriptome-wide association analysis identified genes at loci
53 previously associated with age-related macular degeneration. Further analysis
54 conditional on disease status, implicated statistically significant RPE-specific eQTL.
55 This study uncovers important differences in RPE homeostasis associated with
56 geographic atrophy.

57

58 **Keywords:** Human Induced Pluripotent Stem Cells; Retinal Pigment Epithelium;
59 Single cell RNA sequencing; eQTL, pQTL; Geographic Atrophy; Age-related Macular
60 Degeneration; Transcriptomic; Proteomic;

61

62 Age-related macular degeneration (AMD) is a progressive, degenerative disease
63 caused by dysfunction and death of the retinal pigment epithelium (RPE), and
64 photoreceptors, leading to irreversible vision loss. AMD is the leading cause of vision
65 loss and legal blindness in higher resourced countries ¹. There are two forms of the
66 vision threatening late stage of AMD; neovascular and geographic atrophy ², the latter
67 affecting more than 5 million people globally ³. Whilst management of neovascular
68 AMD has improved significantly since the introduction of intravitreal anti-vascular
69 endothelial growth factor (VEGF) injections ⁴⁻⁷, there are currently no approved or
70 effective treatments for geographic atrophy, despite multiple clinical trials to evaluate
71 potential drug candidates and interventions ⁸⁻¹³. This presents a significant unmet
72 medical need and as such, greater effort in disease modelling and drug discovery
73 should be aimed at preventing and delaying disease progression.

74 It is now well established that both environmental and genetic risk factors
75 contribute to AMD¹⁴. A common variant in the *CFH* gene (*CFH* Y402H) is estimated
76 to account for nearly half of all AMD risk^{15–18}. Furthermore, variants at the
77 *LOC387715/ARMS2/HTRA1* locus have been identified as major contributors to AMD
78 development^{19,20}. To date, genome-wide association studies (GWAS) have identified
79 over 30 independent loci where a common risk allele is associated with an increased
80 risk of AMD^{21–23}. These loci influence distinct biological pathways, including the
81 complement system, lipid transport, extracellular matrix remodelling, angiogenesis
82 and cell survival²⁴.

83 Unlike rare and highly penetrant variants that largely contribute to disease by
84 altering protein sequences, common variants predominantly act via changes in gene
85 regulation²⁵. Mapping expression quantitative trait loci (eQTL) is a powerful approach
86 to elucidate functional mechanisms of common genetic variants, allowing the allelic
87 effect of a variant on disease risk to be linked to changes in gene expression. Three
88 recent studies applied eQTL mapping in post-mortem retina to investigate the
89 regulation of gene expression and identified eQTL variants regulating gene expression
90 with a subset of these eQTL associated with AMD in GWAS^{26–28}. Molecular and
91 genetic profiling of RPE in healthy and diseased tissue would likely improve our
92 understanding of the mechanisms that confer disease risk or contribute to geographic
93 atrophy progression. However, the invasive nature of retina harvest highly restricts
94 tissue availability to post-mortem donors. This limitation can be overcome by
95 reprogramming somatic cells from affected patients into patient-specific induced
96 pluripotent stem cells (iPSCs)^{29,30} and subsequently differentiate them into
97 homogenous RPE cultures for downstream disease modelling. Here, we used scRNA-
98 seq and mass spectrometry to characterize the transcriptomic and proteomic profiles

99 of RPE cells generated from a large cohort of iPSCs derived from healthy and
100 geographic atrophy patients.

101

102 **Results**

103 ***Generation of patient iPSCs, differentiation to RPE cells and genomic profiling***

104 We reprogrammed fibroblasts into iPSCs from 63 individuals with geographic atrophy
105 (all of Northern European descent of whom 37 were female; mean \pm SD age at
106 recruitment: 83.8 ± 8.2 years) using episomal vectors as we described ³¹, with lines
107 from 47 individuals successfully reprogrammed (**Figures S1, S2**). We matched these
108 iPSCs with control iPSC lines from ethnically- matched healthy individuals that were
109 generated and characterised in a previous study³² (**Figures S1, S2, Supplementary**
110 **Data 1**). Lines were genotyped for 787,443 single nucleotide polymorphisms (SNPs)
111 and imputed with the Haplotype Reference Consortium panel ³³. After quality control,
112 this yielded 4,309,001 autosomal SNPs with minor allele frequency (MAF) $>10\%$. The
113 differentiation of all iPSC lines to RPE was performed in two large independent
114 differentiation batches, and lines that did not differentiate sufficiently to RPE were
115 discarded from analysis (**Figures 1a, S1, S2**). Differentiated cell lines were divided
116 into 12 pools that each consisted of up to 8 cell lines from both control and AMD
117 groups. scRNA-seq was performed on all pools, with the targeted capture of 20,000
118 cells per pool and sequencing depth of 30,000 reads per cell (**Table S1**). Resulting
119 single cell transcriptome profiles then underwent quality control and donor assignment.
120 18,820 cells were designated doublets and removed from the dataset, in addition to
121 cells from individuals that were removed from the study due to low number of assigned
122 cells (4), failed virtual karyotype (1) and failed genotype (4) (**Figure S2, Table S2**). A
123 total of 127,659 cells from 79 individual lines remained following quality control. These

124 include 43 geographic atrophy lines (73,161 cells, 15 males, 28 females, 83.4 ± 8.6
125 years) and 36 control lines (54,498 cells, 19 males, 17 females, mean \pm SD age of
126 samples 67.6 ± 9.5 years) (**Figure S2, Supplementary Data 1**).

127

128 ***Identification of seven RPE subpopulations using supervised classification***

129 We previously used scRNA-seq to analyze the transcriptomic signature of human
130 embryonic stem cell-derived RPE cells over 12 months in culture and identified 17
131 RPE subpopulations of varying levels of maturity³⁴. We used this resource to build a
132 prediction model for scPred, a supervised classification method³⁵. We calculated the
133 probabilities of each cell belonging to a reference subpopulation, and cells were
134 assigned to the reference subpopulation with the greatest probability. While all 17
135 reference subpopulations were detected in this dataset, five subpopulations had fewer
136 than 20 cells (**Table S3**). Cells from these subpopulations were excluded from further
137 analysis, in addition to cells from donors with fewer than 20 cells in a subpopulation.
138 This left 127,659 cells (54,498 control, 73,161 geographic atrophy cells) distributed
139 among the remaining 7 subpopulations, with cells being classified as “RPE
140 progenitors” (Progenitor RPE) and RPE cells (RPE1-6) (**Tables 1, Figure 1**). A Chi-
141 Squared Test of Independence observed statistically significant differences in the
142 proportions of subpopulations between cases and controls ($\chi^2 (6, N = 127,659) =$
143 3672.4, $p < 2.2 \times 10^{-16}$, **Table 1**). Post-hoc pairwise comparisons revealed that the
144 proportion of all subpopulations except RPE1 differed between cases and controls
145 (**Table S4**), and there was also variation in the proportions of subpopulations between
146 individual cell lines (**Table S5, Figure S3**).

147 Genes associated with cell proliferation (*MKI67*, *TOP2A*, *TPX2*, *PTTG1*,
148 *RRM2*), expressed in progenitors and differentiating RPE cells³⁴ were most highly

149 expressed by cells of the “Progenitor RPE” and RPE1 subpopulations, indicative of a
150 differentiating and immature RPE phenotype. The high expression of the early retinal
151 development marker *PAX6* in RPE2 also suggests an early RPE stage within this
152 population (**Figure 1c**). RPE markers were observed including genes associated with
153 extracellular structure organization (*CST3*, *EFEMP1*, *ITGAV*, *CRISPLD1*, *ITGB8*),
154 phagocytosis (*GULP1*), secretion (*SERPINF1*, *VEGFA*, *ENPP2*), secretion melanin
155 biosynthesis (*PMEL*, *TTR*, *TYR*, *TYRP1*, *DCT*), visual cycle (*RPE65*, *BEST1*, *RBP1*,
156 *RLBP1*, *RGR*, *LRAT*), and lipid biosynthesis (*PTGDS*) (**Figure 1c**). The RPE genes
157 *PMEL*, *TYR* and *RBP1* were most highly expressed in the subpopulations RPE2-6,
158 whilst *RGR* and *RPE65* were mainly expressed in RPE3, RPE5 and RPE6 (**Figure**
159 **1c**). Other genes commonly expressed in native RPE cells such as *ITGB8*, *EFEMP1*,
160 *ITGAV*, *GULP1*, *RLBP1*, *RBP1*, *LRAT* were also enriched in RPE2-6 (**Figure 1c**).
161

162 ***RPE subpopulations diverge into two trajectories***

163 We used trajectory inference to identify the global lineage structure of all cells and
164 subsequently the developmental trajectories of RPE subpopulations, using the most
165 immature subpopulation - Progenitor RPE, as the origin. We observed a bifurcating
166 trajectory that diverged at RPE3 to form two branches that terminate with RPE6
167 (Trajectory 1) and RPE4 (Trajectory 2) (**Figure 2a**). We applied trajectory-based
168 differential expression analysis³⁶ and observed the transition from progenitors to RPE
169 was driven by 1,353 genes mainly involved in cell cycle (*CDKN1C*, *CENPK*, *CRABP1*,
170 *DUSP1*, *NBL1*, *PRC1*, *RELN*); differentiation (*CRABP1*, *DLK1*, *FAM161A*, *NRP2*,
171 *OLFM1*, *PCSK1N*, *PLXNA4*); cytoskeleton, adhesion and migration (*ARPC5*, *ERMN*,
172 *ITGB1*), various metabolic processes (*SAT1*, *SLC16A8*, *SLC7A5*), stress (*MGST1*,
173 *SGK1*), calcium transport and homeostasis (*ATP2B2*, *STC2*), melanin biogenesis

174 (TYR, TYRP1) or translation (EIF4EBP1) (**Figure 2b**). It is not surprising that these
175 genes show a temporary expression pattern, which would coincide with a
176 differentiation process from a progenitor cell to a differentiating and differentiated RPE
177 cell. Bifurcation of the trajectories was driven by 26 genes that were enriched for
178 mitotic processes (**Figure 2c**). Genes driving the resulting two trajectories were very
179 similar, with trajectory 1 and trajectory 2 sharing 99.4% of genes (**Supplementary**
180 **Data 2**). For instance, trajectory 1 included genes involved in ECM organisation
181 (TSPAN8), melanogenesis (TPH1) or retinal development (IRX6); and trajectory 2
182 expressed genes associated with lipid metabolism (ADIRF, APOA1, CD36), iron
183 binding (LCN2, MT1G), cytoskeleton (MYL7) or retinal development (PITX3). Those
184 variations do not point to clear differences in the two trajectories. Instead, these subtle
185 and rare differences (31 genes) suggest a close resemblance of the two trajectories
186 and further confirm the efficacy of the differentiation protocol in generating
187 homogenous populations of RPE cells in which variations between cohorts could be
188 attributed to the disease status rather than variabilities of differentiation.

189 To determine if lineages differed based on disease status, we first tested
190 whether the distribution of cells based within each condition differed across
191 pseudotime - a measure of progression through the global trajectory, and noted a
192 difference (Kolmogorov–Smirnov test. Trajectory 1 - p -value $< 2.2 \times 10^{-16}$; Trajectory 2
193 - p -value $< 2.2 \times 10^{-16}$; **Figure 2d**). We then assessed differential expression patterns
194 across the whole trajectory based on disease status and after Bonferroni correction,
195 identified 91 genes that were significant (**Supplementary Data 2**). Seven of these
196 genes - C3³⁷, CRYAB³⁸, IL6³⁹, IL8/CXCL8³⁹, EFEMP1⁴⁰, GFAP⁴¹, and TRPM3²¹, have
197 previously been linked to geographic atrophy and were differentially expressed in both
198 trajectories between control and geographic atrophy. Altogether, the differences of

199 gene expression observed between the two cohorts likely reflect subtle differentiation
200 differences and subsequent characteristics between RPE cells of healthy individuals
201 and those prone to develop geographic atrophy.

202

203 ***Geographic atrophy- RPE cells show specific differential gene expressions***

204 Next, we identified genes associated with disease status in each RPE subpopulation
205 using differential gene expression analysis (DGE), disease ontology (DO) and over-
206 representation analysis (ORA). We identified 5,012 events of differential expression,
207 consisting of 3,240 genes that were either upregulated or downregulated in geographic
208 atrophy subpopulations compared to controls (**Supplementary Data 3**). The majority
209 of differentially expressed genes were found in the two largest subpopulations - RPE1
210 (2,565 genes) and RPE2 (1,689 genes) (**Table 2**), and most genes were solely
211 differentially expressed in a single subpopulation (**Figure 3a**). We identified 27 genes
212 with known associations with Geographic Atrophy and six genes with known
213 associations with neovascular AMD (retrieved using disGeNET v7⁴²), such as
214 *PNPLA2*, *MFGE8*, *SERPINF1*, *C3*, *VEGFA*, *HTRA1*, *CFH*, *VIM*, *STK19*, *CRYAB*, *CFI*,
215 *CNN2*, *LRPAP1*, *RDH5*, *IMDH1*, *CFD*, *CFHR1*, *TSPO*, *APOE* and *EFEMP1* (**Figure**
216 **3b**). Disease ontology analysis of these genes revealed association with multiple
217 diseases including macular degeneration, retinal degeneration, diabetic retinopathy
218 and retinal vascular disease, Alzheimer's disease and tauopathy, vitiligo, metabolism
219 disorders and various cancers - as annotated by the Disease Ontology database⁴³
220 (**Figure S3b**).

221 We performed Gene Ontology (GO)-ORA with disease-associated gene
222 markers to identify biological processes, cellular components, and molecular functions
223 that may be involved in the pathogenesis of AMD-GA. The geographic atrophy-

224 progenitor RPE subpopulation was characterised by differential expression of genes
225 involved in transcription, translation, and differentiation, including many ribosomal
226 genes (**Supplementary Data 3**). The geographic atrophy- RPE1-5 subpopulations
227 consistently showed differential expression of genes in various cellular component-,
228 molecular- and biological process- pathways including in transcription and translation,
229 protein localization to endoplasmic reticulum, ATP metabolic process, and apoptosis
230 (**Supplementary Data 1**). RPE6 showed differential expression of genes mainly
231 involved in transcription, translation and ribosome biogenesis as well as endoplasmic
232 reticulum function (**Supplementary Data 1**). The amyloid fibril formation pathway was
233 also differentially expressed in RPE2-4, whilst regulation of cell migration, and
234 epithelial to mesenchymal transition (EMT) pathways were differentially expressed in
235 RPE1-3,5 and RPE1,2,5, respectively (**Supplementary Data 1**). Genes associated
236 with response to transforming growth factor beta and extracellular cellular matrix
237 (ECM) reorganisation were also modified in the geographic atrophy RPE1 and RPE2
238 subpopulations (**Supplementary Data 3**). Interestingly, a substantial number of genes
239 of the VEGFR signalling pathway was upregulated in RPE1 (*EMILIN1*, *NRP1*, *MYOF*,
240 *ROCK2*, *HIF1A*, *PAK2*, *RHOA*, *CYBA*, *PIK3R1*, *PTK2B*, *CDC42*, *SHB*, *VEGFB*,
241 *ITGA5*, *NCKAP1*, *BCAR1*, *NIBAN2*, *BAIAP2*, *CADM4*, *PTK2*, *VEGFA*, *ROCK1*,
242 *VEGFC*, *SULF1*, *MAPKAPK2*, **Supplementary Data 3**). Of note, many genes coding
243 for proteins involved in ECM regulation and known to play roles in retinal biology and
244 in AMD ⁴⁴ were differentially expressed in subpopulations of the geographic atrophy
245 case cohort, including matrix metalloproteinases (MMPs), tissue inhibitors of
246 metalloproteinases (TIMPs), a disintegrin and metalloproteinase domain (ADAMs),
247 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs). For
248 instance, *TIMP2* was upregulated in geographic atrophy RPE1-3 whilst *TIMP3* was

249 downregulated in RPE1 and upregulated in RPE2. Similarly, *MMP2* was upregulated
250 in RPE1 and downregulated in RPE2 and *MMP16* was upregulated in both geographic
251 atrophy subpopulations (**Figure 3c, Supplementary Data 3**). Mitochondrial activities
252 such as oxidative phosphorylation, mitochondrial respiratory chain complex assembly
253 and mitochondrial transport were increased in RPE1 and RPE2 (**Figure 3c**,
254 **Supplementary Data 3**). Further, RPE1,2,5 were also characterized by modifications
255 in genes involved in the ATP metabolic process, NAD metabolic process, and NADH
256 process (**Figure 3c, Supplementary Data 3**). Finally, genes involved in the response
257 to reactive oxygen species were upregulated in RPE1,3,4 (**Figure 3c, Supplementary**
258 **Data 3**). At every step, our experimental workflow ensured that both control and
259 geographic atrophy samples were assayed in shared conditions or randomized with
260 respect to disease status (Methods). Hence, we are confident these transcriptomic
261 differences are due to the genetic effects underlying the geographic atrophy risk.
262 Moreover, environmental factors are unlikely to account for a difference in gene
263 expression in differentiated cells, given the epigenetic profile of fibroblast-derived
264 iPSCs is reset during reprogramming ^{45,46}.

265

266 **The proteomic analysis of RPE cells confirms specific protein expression in**
267 **geographic atrophy cells**

268 In parallel to the scRNA-Seq harvesting, all 79 lines were differentiated to RPE cells
269 for mass spectrometry using a Tandem Mass Tag (TMT) platform for proteomics
270 identification in control and geographic atrophy RPE cells (**Figure 4, Supplementary**
271 **Data 1**). Given the experimental approach was not based on single cells but on a bulk
272 harvest and analysis for each condition, cell cultures were assessed as a whole
273 without distinction of subpopulations. Assessing protein expression levels, we

274 observed that many of the proteins upregulated in the geographic atrophy cohort are
275 typically involved in cell adhesion and ECM regulation (**Supplementary Data 1**). This
276 observation was not obtained using pathway analysis at this stage. These include
277 TIMP3 (the fifth-highest most upregulated protein in the geographic atrophy cohort),
278 EFEMP1, ITGB4, SERPINB9; various tetraspanins (TSPAN6, TSPAN10,
279 CD9/TSPAN29, CD82/TSPAN27), C1QTNF5 (second-highest most increased protein
280 in the geographic atrophy cohort) and BSG. In the geographic atrophy RPE cells, the
281 proteomic analysis also revealed increased levels of proteins known to be present in
282 drusen ⁴⁷, such as APOE and SCARB1 - also involved in cholesterol metabolism - and
283 TIMP3. A number of signaling molecules were also upregulated in the geographic
284 atrophy RPE cells, with increased levels of the growth factor SERPINF1/ PEDF (the
285 fourth-highest upregulated protein in the geographic atrophy cohort); WNT signalling
286 ligands SFRP1 and SFRP3/FRZB; the prostaglandin-synthesizing enzyme PTGDS,
287 and the lysophosphatidic acid (LPA)-producing enzyme ENPP2/ATX. The
288 complement pathway component C1R was also highly upregulated in the geographic
289 atrophy RPE cells, as observed in other retinal dystrophies' RPE cells ⁴⁸. These data
290 suggest that autocrine/paracrine signaling mechanisms are modified in the geographic
291 atrophy RPE cells. No EMT markers were observed to be different between the two
292 cohorts, suggesting that loss of epithelial cell features is not a hallmark of the
293 geographic atrophy cohort cells that were examined. Proteins involved in various
294 metabolic pathways were also upregulated in the geographic atrophy cohort, including
295 for the retinoid metabolism (RETSAT, RDH11, RDH13), and reduced expression of
296 the retinoic acid-binding protein CRABP1 - the most decreased protein in the
297 geographic atrophy cohort), lipid metabolism (MLYCD, CYP20A1, CYP27A1, ACOT1,
298 HSD17B12, TECR, KDSR, APOE, DHRS13), and gluconeogenesis and glycolysis

299 (ALDOA, ENO3). Interestingly, the proteomic analysis revealed upregulation of many
300 proteins from the respiratory chain pathway in geographic atrophy RPE. These include
301 ATP5C1, SCO1 and mitochondrial complex I components (NDUFA3, NDUFA6,
302 NDUFA8, NDUFA9, NDUFA10, NDUFA11, NDUFA13, NDUFB3, NDUFB5,
303 NDUFB10, NDUFC2, NDUFS1, NDUFS3, NDUFV1, NDUFV2). Other enzymes
304 involved in oxidoreductase activity were also upregulated, such as DHRS13, DHRS7B
305 and GPX1. This may indicate that the geographic atrophy samples exhibit increased
306 respiratory activity. Analysis of the dataset using STRING functional enrichment
307 analysis (Biological Processes – Gene Ontology) supported this observation,
308 confirming that specific pathways relating to mitochondrial processes were modulated
309 in geographic atrophy cells. The dataset was highly enriched in pathways involved in
310 oxidative phosphorylation, including mitochondrial electron transport (NADH to
311 ubiquinone); mitochondrial respiratory chain complex I assembly; mitochondrial ATP
312 synthesis coupled electron transport; oxidative phosphorylation; ATP metabolism;
313 respiratory electron transport chain and reactive oxygen species (**Figure 4a**,
314 **Supplementary Data 1**). Many of these same identified proteins were also
315 represented in local network clustering (STRING) analysis (mitochondrial respiratory
316 chain complex; oxidative phosphorylation and proton transporting) (**Figure 4b**,
317 **Supplementary Data 1**). All markers associated with the pathways identified by GO
318 and STRING analysis were upregulated in the geographic atrophy diseased cohort.
319 Unsurprisingly, KEGG analysis found that oxidative phosphorylation was the most
320 enriched biological process (ranked by strength parameters) in the diseased cohort,
321 with many of the pathway hits closely related to the neurodegenerative diseases
322 Parkinson's and Alzheimer's (**Supplementary Data 1**). Altogether, the large-scale
323 proteomics analysis confirmed that proteins and pathways associated with ECM

324 regulation, metabolism and mitochondrial functions are modified in geographic atrophy
325 RPE cells.

326

327 ***RPE-associated genetic regulation of transcriptome and proteome***

328 We investigated the relationship between genetic regulation and gene expression
329 related to disease by mapping expression quantitative trait loci (eQTL) within each
330 RPE subpopulation, and identified 439 cis-eQTL which surpassed the study-wide
331 significance of FDR < 0.05 (Benjamini–Hochberg) and had a homozygous alternate
332 allele in at least five individuals (**Table 3**, full results in **Table S6**). There is a high
333 correlation between the detection of cis-eQTL and the number of cells in a
334 subpopulation (Adjusted R²: 0.90, p-value: 6.3×10⁻⁴) which suggests the power to
335 detect eQTL is related to the number of cells. The majority of eGenes (80.8%) - genes
336 that had an eQTL - were subpopulation-exclusive, and only two eGenes - *GSTT1* and
337 *RPS26* - were common to all subpopulations (**Figure 5a**). The lead SNP for the eQTL
338 at *GSTT1* was rs5760147 in most RPE subpopulations with the exception of
339 Progenitor RPE (rs6003988) and RPE6 (rs2097433). *RPS26* was only associated with
340 two variants - rs10876864 in RPE1, RPE5 and RPE6, and rs1131017 in Progenitor
341 RPE, RPE2, RPE3 and RPE4. RPE1 and RPE2 share the greatest number of eQTLs
342 (15) and eGenes (54) (**Table S7**). The effect sizes of these shared cis-eQTL are highly
343 correlated ($r = 0.99$, $p\text{-value} = 3.8 \times 10^{-14}$), suggesting they are common genetic
344 regulation mechanisms in these two subpopulations. We matched our results with
345 previous studies and identified two eGenes with known associations with geographic
346 atrophy - *PRPH2* in RPE2 (rs9394903)⁴⁹, and *PILRB* in RPE1 (rs11772580), RPE2
347 (rs11772580) and RPE3 (rs2404976)²⁷ (**Figure 5b**). Lead eQTL identified in the
348 preliminary round of mapping then underwent additional testing to identify interaction

349 effects between alternative allelic effects and disease, and detected 45 significant
350 interactions across all profiled subpopulations (p value: < 0.05) (**Table S6**).

351 As protein expression does not necessarily correlate well with mRNA
352 expression levels⁵⁰, we performed cis-protein quantitative trait loci (cis-pQTL) to
353 identify genetic variants that regulate protein expression in the RPE cells in the context
354 of disease. It must, however, be noted that the proteomic analysis was performed on
355 bulk RPE cultures, hence the identified pQTLs cannot be assigned to individual cells
356 or subpopulations. We identified six proteins that share a lead SNP with RPE
357 subpopulation-level eQTLs - PYROXD2/Q8N2H3, RNF13/O43567, CRYZ/Q08257,
358 SPATA20/Q8TB22.2, PCOLCE/Q15113 and FIS1/Q9Y3D6 (**Table 4**). The variants
359 associated with cis-pQTLs in PYROXD2, RNF13 and SPATA20 all occur with the
360 same gene in corresponding cis-eQTLs, while the SNP associated with the cis-pQTL
361 CRYZ - rs1424671, is associated with the eGene TYW3 from RPE1 and RPE2. Two
362 pQTLs - PCOLCE and FIS1, have variants associated with the eGene CTA-339C12.1.
363 SPATA20 (Spermatogenesis Associated 20)'s functions remain elusive. PYROXD2
364 (pyridine nucleotide-disulphide oxidoreductase domain 2) is a mitochondrial
365 oxidoreductase regulating mitochondrial function and mitochondrial DNA copy number
366 ⁵¹ and FIS1 (mitochondrial fusion protein 1) regulates mitochondrial dynamics, a
367 process involved in various pathologies when dysregulated ⁵². RNF13 (Ring finger
368 protein 13) is a crucial mediator of endoplasmic reticulum stress- induced apoptosis ⁵³
369 and CRYZ (crystallin zeta, also known as quinone reductase) is an evolutionarily
370 conserved protein induced under oxidative stress conditions ⁵⁴ as well as detoxification
371 of lipid peroxidation products ⁵⁵, whilst PCOLCE (procollagen C-proteinase enhancer)
372 is a collagen- binding protein involved in ECM formation and when dysregulated in
373 fibrosis ⁵⁶.

374

375 **Transcriptome-wide association study analysis identifies novel genetic**
376 **associations for geographic atrophy**

377 Finally, we used the iPSC-derived RPE single cell eQTL data in conjunction with AMD
378 GWAS summary statistics to prioritize AMD risk genes in a transcriptome-wide
379 association study analysis (TWAS). In the single-cell TWAS, we identified 200 genes
380 associated with AMD after Bonferroni correction in each RPE subpopulation, of which
381 38 were not genome-wide significant in the per-SNP analysis (best GWAS SNP P
382 value $< 5 \times 10^{-8}$) (**Figure 6, Supplementary Data 1**). Across different subpopulations,
383 the TWAS results were generally consistent for several well-established regions, such
384 as the *CFH* locus in chromosome 1, the *ARMS2/HTRA1* locus in chromosome 10 and
385 *PILRB* in chromosome 7 (**Figure 6, Supplementary Data 1**). Interestingly, the most
386 significantly associated transcript at the chromosome 10q26 locus varied from *HTRA1*
387 in progenitor RPE and RPE6 cells to *ARMS2* in RPE2 cells. The *CFH* gene was
388 significantly associated in all but the RPE3 and RPE4 subpopulations (**Figure 6,**
389 **Supplementary Data 1**). Compared to a previous TWAS analysis based on bulk eQTL
390 datasets²⁸, *PARP12* gene was also replicated in our single-cell TWAS in the RPE1
391 cell eQTL data (**Figure 6, Supplementary Data 1**). For the previously reported gene
392 *RLBP1*²⁸, nearby gene *IDH2* was identified instead. Interestingly, the top GWAS SNP
393 rs2238307 in gene *IDH2* is highly correlated with the top SNP rs3825991 in *PARP12*
394 ($r^2 = 0.77$) (**Supplementary Data 1**). rs10137367 at the *RDH11* locus was also
395 identified in RPE1 by the single-cell TWAS (**Figure 6, Supplementary Data 1**).
396

397 **Discussion**

398 Here, we present a large-scale scRNA-seq analysis of iPSC-derived RPE cells
399 affected in geographic atrophy. Following the capture of 204,126 cells, we analysed
400 127,659 cells from 79 individuals. The cell classification and trajectory analysis clearly
401 indicated the efficiency of RPE differentiation, with most cells within the cultures
402 identified as of RPE lineage. The variations observed within the RPE subpopulations
403 were reflective to changes in maturity, rather than in cell identity, which is consistent
404 with our previous work ³⁴. Over 3,000 genes were differentially expressed between
405 control and geographic atrophy RPE cells, with most of them in the two main RPE cell
406 subpopulations RPE1 and RPE2. Genes with common risk alleles associated with
407 geographic atrophy and neovascular AMD were upregulated in geographic atrophy
408 RPE cells, including *CFH*, *HTRA1*, *EFEMP1* and *APOE*, which provide further
409 evidence of their involvement in the pathogenesis of geographic atrophy. Genes
410 associated with specific biological pathways were upregulated in the geographic
411 atrophy cohort, pointing to important functional differences between healthy and
412 geographic atrophy RPE cells. In particular, our analysis revealed underlying
413 differences in mitochondrial bioenergetic pathways, response to reactive oxygen
414 species, ECM characteristics and autocrine/paracrine signaling. Key mitochondrial
415 transcripts were altered in geographic atrophy RPE cells, with an increased expression
416 of genes of the mitochondrial OXPHOS complex I machinery, oxidative
417 phosphorylation, mitochondrial respiratory chain complex assembly and mitochondrial
418 transport. Various metabolic pathways were also upregulated in the geographic
419 atrophy cohort, in particular the ATP and the NAD/ NADH metabolic processes. The
420 upregulation of genes involved in the response to reactive oxygen species in the
421 geographic atrophy RPE cells further support a key role of cellular stress underlying
422 RPE dysfunctions associated with geographic atrophy progression. The upregulation

423 of genes involved in ECM reorganisation in the geographic atrophy samples
424 corroborate current knowledge suggesting a role of the interaction of the RPE with the
425 ECM in the development of geographic atrophy. Indeed, many of the genes we
426 identified play roles in retinal biology and in AMD ⁴⁴.

427 The scRNA-seq analysis is strongly supported by the large-scale proteomics
428 analysis carried out using the same lines. Although performed with a bulk approach,
429 which is unable to distinguish the various subpopulations of RPE identified by scRNA-
430 Seq within samples, the analysis of the RPE proteome from both cohorts confirmed
431 an upregulated expression of proteins involved in cell adhesion and ECM regulation.
432 These included TIMP3, EFEMP1, ITGB4, SERPINB9, various tetraspanins, C1QTNF5
433 and BSG in the geographic atrophy RPE - many of which had already been identified
434 by scRNA-Seq. Mutations in *TIMP3* are causative of the macular dystrophies Sorsby
435 fundus dystrophy and in *EFEMP1* of Doyne honeycomb retinal dystrophy and Malatia
436 Leventiese, which are characterised by drusen accumulation underneath the RPE, an
437 aspect that has been recapitulated *in vitro* using patient iPSC-derived RPE cells ⁴⁸.
438 Indeed, proteomic studies on drusen composition have identified TIMP3 and APOE as
439 common constituents ⁵⁷, both of which were upregulated in the geographic atrophy
440 cohort. Tetraspanins are transmembrane molecular scaffolds that concentrate
441 proteins into tetraspanin-enriched microdomains. By their interaction with molecules
442 involved in adhesion, ECM regulation and cytoskeletal rearrangements, they play roles
443 in various cellular processes, including adhesion, migration, and signalling ⁵⁸ and have
444 been implicated in various pathological events, such as angiogenesis in AMD, wound
445 healing and immune cell response and inflammation ⁵⁹. Variants in C1QTNF5, a
446 membrane protein involved in cell adhesion and secretion, are associated with late-
447 onset retinal degeneration ⁶⁰⁻⁶³. The immunoglobulin BSG, an extracellular matrix

448 metalloproteinase inducer which stimulates cells to produce MMPs, plays roles in
449 immune responses and has been implicated in photoreceptor survival ^{64,65}.

450 Interestingly, retinoid and pigmentation-related proteins were amongst the most
451 significantly differentially expressed in the proteomic analysis comparing the
452 geographic atrophy to healthy samples. The retinoid binding protein CRABP1 is the
453 most decreased protein in the geographic atrophy cohort, which complements data
454 showing decreased measurements of CRABP1 in late stage AMD eyes ⁶⁶. By contrast,
455 retinol dehydrogenase proteins RDH11 and RDH13, were highly upregulated in the
456 geographic atrophy cohort. RDH13 is expressed in the retina but has no known role in
457 the classical visual cycle, however elevated levels in the retinae of *Nrl*^{-/-} mice suggest

458 it may be important for cone function ⁶⁷. By contrast, RDH11 directly participates in the
459 visual retinoid cycle through the oxidation of 11-cis retinol ⁶⁸. Pigmentation-related
460 proteins PMEL and GPR143 were in greater abundance in the geographic atrophy
461 cohort, suggesting factors relating to melanosome formation and function could be
462 involved in disease. Indeed, melanosome movement and localisation at the apical
463 surface of the RPE is known to play an important role in the maintenance of
464 photoreceptor integrity ⁶⁹. Taken together, our data suggests that RPE cells from the
465 geographic atrophy cohort show constitutive differences in visual cycle processes and
466 melanosome function to healthy RPE cells. Whether these differences are simply
467 associated or causative of phenotypes remains to be assessed.

468 Various signaling molecules were also upregulated in the geographic atrophy
469 RPE cells including the LPA-producing enzyme ENPP2/ATX. We previously
470 demonstrated that the adult human eye secretes LPA in various locations, which
471 suggests a role of ATX/LPA in the normal physiology of the eye and potentially in
472 disease ⁷⁰. We also showed that functional ATX is mainly secreted apically of human

473 PSC-derived RPE cells, and that LPA regulates RPE homeostasis and photoreceptor
474 functions⁷⁰. Our findings, together with the long list of LPA's pleiotropic effects in
475 various cell types⁷¹, warrants further investigation on the role of ATX/LPA axis in
476 geographic atrophy.

477 The large-scale analysis of the proteome also identified an overrepresentation
478 of metabolism-related pathways in the geographic atrophy proteome, including
479 pathways related to sterol, fatty acid and glycerolipid biosynthesis and metabolism and
480 oxidative phosphorylation. The retina is amongst the body's most metabolically active
481 tissues, and results of this study suggest perturbations to metabolic homeostasis is a
482 feature of geographic atrophy, either as a consequence or cause of the disease
483 process. Many proteins related to mitochondrial functions were upregulated within the
484 geographic atrophy cohort, including pathways relating to respiratory activity, oxidative
485 phosphorylation and oxidoreduction. Indeed, mitochondrial pathways have been
486 hypothesised to play a role in AMD⁷², and provide potential targets for therapy⁷³.
487 Furthermore, the over-representation of mTOR pathways in the geographic atrophy
488 samples is worth noting, as the mTOR pathway has been shown to directly control
489 mitochondrial processes⁷⁴, and when overactive can inhibit autophagy⁷⁵. Another nod
490 to metabolic perturbation in macular degeneration is the long-standing hypothesis that
491 chronic inflammation associated with the disease potentially disturbs the metabolic
492 processes that occur between the RPE and the photoreceptors, leading to increased
493 subretinal lactate concentrations, glycolysis deficit and increased ROS production⁷⁶.
494 The results of the proteomic screen further confirms the validity of the findings obtained
495 by scRNA-Seq and strongly points to a central involvement of metabolic or
496 mitochondrial dysfunction and oxidative stress as underlying molecular events in the
497 progression of geographic atrophy.

498 Our study identified a total of 439 eQTL across all RPE subpopulations, with
499 most eQTL being cell population specific and 15 shared by RPE1 and RPE2. Two
500 eGenes, *RPS26* and *GSTT1*, were common to all RPE subpopulations. Interestingly,
501 *RPS26*, which encodes for proteins forming the small subunits of ribosomes, was also
502 found to be ubiquitous in iPSC-derived retinal organoids ³² and has been associated
503 with Type 1 diabetes ⁷⁷. *GSTT1* encodes for a glutathione S transferase which is
504 protective against oxidative stress, and has also been associated with disease,
505 including ophthalmic conditions such as glaucoma ⁷⁸, diabetic retinopathy ⁷⁹ and
506 cataract ⁸⁰. Implications of *GSTT1* variants in AMD remains controversial ^{81,82}. Of
507 interest, we observed an association of the coding polymorphism in *GSDMD* in the
508 RPE1 and RPE2 subpopulations. This is interesting as gasdermin is a potential target
509 for inflammatory conditions ⁸³, and could thus be considered a novel target for
510 treatment of geographic atrophy, especially as gasdermin D is elevated in eyes from
511 geographic atrophy patients, where it plays a key role in the NLRP3 inflammasome
512 activation and subsequent RPE death ⁸⁴. Other eGenes of potential interest include
513 *PILRB*, a known genetic variant in an AMD locus, also identified as an eQTL in RPE1,
514 RPE2 and RPE3 ²¹.

515 Of all identified eQTL, 45 had a significant interaction between the SNP allelic
516 effect and geographic atrophy. Identification of a significant eQTL in the long non-
517 protein coding RNA *TNKS2-AS1* could suggest an impact of this allelic effect on
518 genome regulation, including of *TNKS2* - a telomere-related gene. This is of interest
519 given telomere length was previously demonstrated to be significantly different in
520 geographic atrophy patients' leukocytes ⁸⁵. The identification of significant eQTL in
521 mitochondrial proteins, such as *MTG2*, further suggests that variations in
522 mitochondrial activities in the RPE might be at play in the progression of geographic

523 atrophy. *TTC39C* was also identified as a significant eQTL, which encodes for a
524 protein involved in cilia functions and for which a variant (rs9966620) has previously
525 been associated with diabetic maculopathy (Meng et al., 2019). Finally, identification
526 of *CTSF* as a significant interaction between the SNP allelic effect and geographic
527 atrophy is also noteworthy, given mutations in *CTSF* are causative of ceroid
528 lipofuscinosis, a disease associated with abnormal lysosomal lipofuscin storage
529 (OMIM: 603539).

530 The investigation of regulatory mechanisms of protein expression by pQTL
531 analysis shed light on six pQTL variant-protein interactions. In particular, PYROXD2
532 and FIS1 regulate mitochondrial functions via oxidoreductase activity⁵¹ or
533 mitochondrial dynamics⁵². Previous GWAS identified genetic variants of PYROXD2
534 associated with urine trimethylamine concentration and cardiovascular disease^{86,87},
535 type 2 diabetes and obesity⁸⁸. Gain of function variants for RNF13 have been
536 associated with severe neurodegeneration leading to congenital microcephaly,
537 epileptic encephalopathy, and cortical blindness⁸⁹. CRYZ is induced under oxidative
538 stress⁵⁴ and detoxification of lipid peroxidation products⁵⁵, both molecular events
539 already implicated in AMD pathogenesis^{90–92}. Recent GWAS have identified CRYZ as
540 a susceptibility gene for insulin resistance⁹³ and amyotrophic lateral sclerosis⁹⁴.
541 Lastly, PCOLCE is known for its involvement in fibrosis in various organs and a
542 potential therapeutic target for this disease phenotype⁵⁶. These variants regulate
543 protein expression and abundance in the RPE cells and thus further highlight the
544 important role of genetic effects on protein expression in geographic atrophy.

545 Finally, the single-cell TWAS identified 200 genes associated with AMD,
546 confirming known associations for AMD, including in the *CFH* and *ARMS2/HTRA1* loci,
547 and also identifying 38 novel genes associated with geographic atrophy. One of these

548 genes, *IDH2*, was identified as a novel association. *IDH2* is a key factor involved in
549 reductive carboxylation of α -ketoglutarate in the RPE, and overexpression of *IDH2* can
550 protect against oxidative damage, supporting *IDH2* is a putative causal gene for AMD
551 risk and single-cell TWAS is a potential effective approach for fine-mapping and
552 identify drug targets ⁹⁵. *RDH11* was also identified by TWAS, with its protein highly
553 upregulated in the geographic atrophy cells as well. This is another interesting new
554 candidate given some *RDH11* variants are associated with retinal dystrophies (OMIM:
555 607849).

556 In summary, we have identified important constitutive differences in RPE
557 homeostasis associated with geographic atrophy when compared to healthy RPE
558 cells. Outside the scope of this work but of clear importance, is the functional validation
559 of the identified molecular targets and their ability to prevent or alter the course of
560 geographic atrophy pathogenesis. Although other work recently reported on the
561 transcriptomic and proteomic profiles of 151 independent iPSCs ⁹⁶, this work is the
562 first description of a population-scale analysis of the transcriptome and proteome of
563 iPSC-derived RPE cells, as well as associated with geographic atrophy.

564 **Acknowledgments and Funding**

565 We thank all participants who donated skin biopsies. This research was supported by
566 National Health and Medical Research Council (NHMRC) Practitioner Fellowship
567 (AWH), Senior Research Fellowship (AP, 1154389; SM, 1154543), Career
568 Development Fellowship (JEP) and Investigator grant (JEP), by research grants from
569 the Macular Disease Foundation Australia (RHG, AWH, JEP, AP), the NHMRC
570 (research grant 1059369 RHG, AP, synergy grant 1181010, RHG, AP), the DHB
571 Foundation (GEL, AP), retina Australia (AWH, AP), the Ophthalmic Research Institute
572 of Australia (GEL, AWH, AP), NIH/NIGMS grant R01 GM132129 (JAP), the University
573 of Melbourne and Operational Infrastructure Support from the Victorian Government.

574

575 **Author contributions**

576 Conceptualization, A.S., M.D., G.E.L., J.P., A.W.H., A.P.; Methodology, A.S., M.D.,
577 G.E.L., J.E.P, A.W.H, A.P..; Investigation, A.S., M.D., G.E.L., H.H.L., D.H., M.M., X.H.,
578 D.N., L.R., L.G., J.A.P., V.G., C.L.C, U.N, A.M.S., R.Z., N.F., V.K.G.; Resources, L.C.,
579 L.S.K., D.A.M., G.B., N.V., R.H.G., A.W.H.; Data analysis, A.S., M.D., G.E.L., M.M.,
580 R.Z., X.H., S.M.G., J.E.P, A.W.H., A.P.; Writing - original draft, A.S., M.D., G.E.L.,
581 J.E.P, A.W.H., A.P.; Writing - review & editing, all authors.; Supervision and project
582 administration, J.E.P, A.W.H., A.P.; Funding Acquisition, G.E.L., R.H.G, J.E.P.,
583 A.W.H, A.P.

584

585 **Declaration of interest**

586 The authors declare no competing interests

587

588

589 **References**

- 590 1. Chakravarthy, U. *et al.* Clinical risk factors for age-related macular degeneration: a
591 systematic review and meta-analysis. *BMC Ophthalmol.* **10**, 31 (2010).
- 592 2. Bird, A. C. *et al.* An international classification and grading system for age-related
593 maculopathy and age-related macular degeneration. The International ARM
594 Epidemiological Study Group. *Surv. Ophthalmol.* **39**, 367–374 (1995).
- 595 3. Wong, W. L. *et al.* Global prevalence of age-related macular degeneration and disease
596 burden projection for 2020 and 2040: a systematic review and meta-analysis. *Lancet*
597 *Glob Health* **2**, e106–16 (2014).
- 598 4. Rosenfeld, P. J. *et al.* Ranibizumab for neovascular age-related macular degeneration.
599 *N. Engl. J. Med.* **355**, 1419–1431 (2006).
- 600 5. Brown, D. M. *et al.* Ranibizumab versus verteporfin for neovascular age-related macular
601 degeneration. *N. Engl. J. Med.* **355**, 1432–1444 (2006).
- 602 6. Avery, R. L. *et al.* Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related
603 Macular Degeneration. *Ophthalmology* vol. 113 363–372.e5 (2006).
- 604 7. CATT Research Group *et al.* Ranibizumab and bevacizumab for neovascular age-
605 related macular degeneration. *N. Engl. J. Med.* **364**, 1897–1908 (2011).
- 606 8. Holz, F. G., Strauss, E. C., Schmitz-Valckenberg, S. & van Lookeren Campagne, M.
607 Geographic atrophy: clinical features and potential therapeutic approaches.
608 *Ophthalmology* **121**, 1079–1091 (2014).
- 609 9. Sacconi, R., Corbelli, E., Querques, L., Bandello, F. & Querques, G. A Review of
610 Current and Future Management of Geographic Atrophy. *Ophthalmol Ther* **6**, 69–77
611 (2017).
- 612 10. Holz, F. G. *et al.* Efficacy and Safety of Lampalizumab for Geographic Atrophy Due to
613 Age-Related Macular Degeneration: Chroma and Spectri Phase 3 Randomized Clinical
614 Trials. *JAMA Ophthalmol.* **136**, 666–677 (2018).
- 615 11. Yehoshua, Z. *et al.* Systemic complement inhibition with eculizumab for geographic

616 atrophy in age-related macular degeneration: the COMPLETE study. *Ophthalmology*
617 **121**, 693–701 (2014).

618 12. Rosenfeld, P. J. *et al.* A Randomized Phase 2 Study of an Anti–Amyloid β Monoclonal
619 Antibody in Geographic Atrophy Secondary to Age-Related Macular Degeneration.
620 *Ophthalmology Retina* vol. 2 1028–1040 (2018).

621 13. Rosenfeld, P. J. *et al.* Emixustat Hydrochloride for Geographic Atrophy Secondary to
622 Age-Related Macular Degeneration: A Randomized Clinical Trial. *Ophthalmology* **125**,
623 1556–1567 (2018).

624 14. Schmitz-Valckenberg, S. *et al.* Natural History of Geographic Atrophy Progression
625 Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression
626 Study). *Ophthalmology* **123**, 361–368 (2016).

627 15. Klein, R. J. Complement Factor H Polymorphism in Age-Related Macular Degeneration.
628 *Science* vol. 308 385–389 (2005).

629 16. Edwards, A. O. Complement Factor H Polymorphism and Age-Related Macular
630 Degeneration. *Science* vol. 308 421–424 (2005).

631 17. Haines, J. L. Complement Factor H Variant Increases the Risk of Age-Related Macular
632 Degeneration. *Science* vol. 308 419–421 (2005).

633 18. Hageman, G. S. *et al.* From The Cover: A common haplotype in the complement
634 regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular
635 degeneration. *Proceedings of the National Academy of Sciences* vol. 102 7227–7232
636 (2005).

637 19. Jakobsdottir, J. *et al.* Susceptibility Genes for Age-Related Maculopathy on
638 Chromosome 10q26. *The American Journal of Human Genetics* vol. 77 389–407
639 (2005).

640 20. Rivera, A. *et al.* Hypothetical LOC387715 is a second major susceptibility gene for age-
641 related macular degeneration, contributing independently of complement factor H to
642 disease risk. *Hum. Mol. Genet.* **14**, 3227–3236 (2005).

643 21. Fritsche, L. G. *et al.* A large genome-wide association study of age-related macular

644 degeneration highlights contributions of rare and common variants. *Nat. Genet.* **48**,
645 134–143 (2016).

646 22. Yan, Q. *et al.* Genome-wide analysis of disease progression in age-related macular
647 degeneration. *Hum. Mol. Genet.* **27**, 929–940 (2018).

648 23. Han, X. *et al.* Genome-wide meta-analysis identifies novel loci associated with age-
649 related macular degeneration. *Journal of Human Genetics* vol. 65 657–665 (2020).

650 24. Fritsche, L. G. *et al.* Seven new loci associated with age-related macular degeneration.
651 *Nat. Genet.* **45**, 433–9, 439e1–2 (2013).

652 25. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs:
653 illuminating the dark road from association to function. *Am. J. Hum. Genet.* **93**, 779–797
654 (2013).

655 26. Strunz, T. *et al.* A mega-analysis of expression quantitative trait loci in retinal tissue.
656 *PLoS Genet.* **16**, e1008934 (2020).

657 27. Orozco, L. D. *et al.* Integration of eQTL and a Single-Cell Atlas in the Human Eye
658 Identifies Causal Genes for Age-Related Macular Degeneration. *Cell Rep.* **30**, 1246–
659 1259.e6 (2020).

660 28. Ratnapriya, R. *et al.* Author Correction: Retinal transcriptome and eQTL analyses
661 identify genes associated with age-related macular degeneration. *Nat. Genet.* **51**, 1067
662 (2019).

663 29. Takahashi, K. *et al.* Induction of pluripotent stem cells from adult human fibroblasts by
664 defined factors. *Cell* **131**, 861–872 (2007).

665 30. Yu, J. *et al.* Induced pluripotent stem cell lines derived from human somatic cells.
666 *Science* **318**, 1917–1920 (2007).

667 31. Crombie, D. E. *et al.* Development of a Modular Automated System for Maintenance
668 and Differentiation of Adherent Human Pluripotent Stem Cells. *SLAS Discov* **22**, 1016–
669 1025 (2017).

670 32. Daniszewski, M. *et al.* Retinal ganglion cell-specific genetic regulation in primary open
671 angle glaucoma. *bioRxiv* 2021.07.14.452417 (2021) doi:10.1101/2021.07.14.452417.

672 33. McCarthy, S. *et al.* A reference panel of 64,976 haplotypes for genotype imputation.
673 *Nat. Genet.* **48**, 1279–1283 (2016).

674 34. Lidgerwood, G. E. *et al.* Transcriptomic Profiling of Human Pluripotent Stem Cell-
675 derived Retinal Pigment Epithelium over Time. *Genomics Proteomics Bioinformatics*
676 (2020) doi:10.1016/j.gpb.2020.08.002.

677 35. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred:
678 accurate supervised method for cell-type classification from single-cell RNA-seq data.
679 *Genome Biol.* **20**, 264 (2019).

680 36. Van den Berge, K. *et al.* Trajectory-based differential expression analysis for single-cell
681 sequencing data. *Nat. Commun.* **11**, 1201 (2020).

682 37. Liao, D. S. *et al.* Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy
683 Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial.
684 *Ophthalmology* **127**, 186–195 (2020).

685 38. Sreekumar, P. G. *et al.* Intra-vitreal α B crystallin fused to elastin-like polypeptide
686 provides neuroprotection in a mouse model of age-related macular degeneration. *J.*
687 *Control. Release* **283**, 94–104 (2018).

688 39. Krogh Nielsen, M. *et al.* Systemic Levels of Interleukin-6 Correlate With Progression
689 Rate of Geographic Atrophy Secondary to Age-Related Macular Degeneration. *Invest.*
690 *Ophthalmol. Vis. Sci.* **60**, 202–208 (2019).

691 40. Haimovici, R. *et al.* Symptomatic abnormalities of dark adaptation in patients with
692 EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy).
693 *Eye* **16**, 7–15 (2002).

694 41. Pilotto, E. *et al.* Müller cells and choriocapillaris in the pathogenesis of geographic
695 atrophy secondary to age-related macular degeneration. *Graefes Arch. Clin. Exp.*
696 *Ophthalmol.* **257**, 1159–1167 (2019).

697 42. Piñero, J. *et al.* The DisGeNET knowledge platform for disease genomics: 2019 update.
698 *Nucleic Acids Res.* **48**, D845–D855 (2020).

699 43. Schriml, L. M. *et al.* Disease Ontology: a backbone for disease semantic integration.

700 *Nucleic Acids Res.* **40**, D940–6 (2012).

701 44. García-Onrubia, L. *et al.* Matrix Metalloproteinases in Age-Related Macular
702 Degeneration (AMD). *Int. J. Mol. Sci.* **21**, (2020).

703 45. Lister, R. *et al.* Hotspots of aberrant epigenomic reprogramming in human induced
704 pluripotent stem cells. *Nature* **471**, 68–73 (2011).

705 46. Polo, J. M. *et al.* A molecular roadmap of reprogramming somatic cells into iPS cells.
706 *Cell* **151**, 1617–1632 (2012).

707 47. Wang, L. *et al.* Abundant lipid and protein components of drusen. *PLoS One* **5**, e10329
708 (2010).

709 48. Galloway, C. A. *et al.* Drusen in patient-derived hiPSC-RPE models of macular
710 dystrophies. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E8214–E8223 (2017).

711 49. Smailhodzic, D. *et al.* Central areolar choroidal dystrophy (CACD) and age-related
712 macular degeneration (AMD): differentiating characteristics in multimodal imaging.
713 *Invest. Ophthalmol. Vis. Sci.* **52**, 8908–8918 (2011).

714 50. Battle, A. *et al.* Genomic variation. Impact of regulatory variation from RNA to protein.
715 *Science* **347**, 664–667 (2015).

716 51. Wang, T. *et al.* Pyridine nucleotide-disulphide oxidoreductase domain 2 (PYROXD2):
717 Role in mitochondrial function. *Mitochondrion* **47**, 114–124 (2019).

718 52. Archer, S. L. Mitochondrial Dynamics — Mitochondrial Fission and Fusion in Human
719 Diseases. *New England Journal of Medicine* vol. 369 2236–2251 (2013).

720 53. Arshad, M. *et al.* RNF13, a RING finger protein, mediates endoplasmic reticulum stress-
721 induced apoptosis through the inositol-requiring enzyme (IRE1 α)/c-Jun NH₂-terminal
722 kinase pathway. *J. Biol. Chem.* **288**, 8726–8736 (2013).

723 54. Fernández, M. R. *et al.* Human and yeast zeta-crystallins bind AU-rich elements in RNA.
724 *Cell. Mol. Life Sci.* **64**, 1419–1427 (2007).

725 55. Porté, S. *et al.* Kinetic and structural evidence of the alkenal/one reductase specificity of
726 human ζ -crystallin. *Cell. Mol. Life Sci.* **68**, 1065–1077 (2011).

727 56. Lagoute, P., Bettler, E., Vadon-Le Goff, S. & Moali, C. Procollagen C-proteinase

728 enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. *Matrix*
729 *Biology Plus* 100062 (2021).

730 57. Crabb, J. W. *et al.* Drusen proteome analysis: an approach to the etiology of age-related
731 macular degeneration. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 14682–14687 (2002).

732 58. Termini, C. M. & Gillette, J. M. Tetraspanins Function as Regulators of Cellular
733 Signaling. *Front. Cell Dev. Biol.* **5**, (2017).

734 59. Jiang, X., Zhang, J. & Huang, Y. Tetraspanins in Cell Migration. *Cell Adh. Migr.* **9**, 406
735 (2015).

736 60. Stanton, C. M. *et al.* Novel pathogenic mutations in C1QTNF5 support a dominant
737 negative disease mechanism in late-onset retinal degeneration. *Sci. Rep.* **7**, 12147
738 (2017).

739 61. Shu, X. *et al.* Disease mechanisms in late-onset retinal macular degeneration
740 associated with mutation in C1QTNF5. *Human Molecular Genetics* vol. 15 1680–1689
741 (2006).

742 62. Chekuri, A. *et al.* Late-onset retinal degeneration pathology due to mutations in CTRP5
743 is mediated through HTRA1. *Aging Cell* vol. 18 (2019).

744 63. Kellner, U. *et al.* Autosomal Dominant Gyrate Atrophy-Like Choroidal Dystrophy
745 Revisited: 45 Years Follow-Up and Association with a Novel Missense Variant. *Int. J.*
746 *Mol. Sci.* **22**, (2021).

747 64. Aït-Ali, N. *et al.* Rod-Derived Cone Viability Factor Promotes Cone Survival by
748 Stimulating Aerobic Glycolysis. *Cell* vol. 161 817–832 (2015).

749 65. Muramatsu, T. Basigin (CD147), a multifunctional transmembrane glycoprotein with
750 various binding partners. *J. Biochem.* **159**, 481–490 (2016).

751 66. Nordgaard, C. L. *et al.* Proteomics of the Retinal Pigment Epithelium Reveals Altered
752 Protein Expression at Progressive Stages of Age-Related Macular Degeneration. *Invest.*
753 *Ophthalmol. Vis. Sci.* **47**, 815–822 (2006).

754 67. Kanan, Y. *et al.* Retinoid processing in cone and Müller cell lines. *Exp. Eye Res.* **86**,
755 344–354 (2008).

756 68. Parker, R. O. & Crouch, R. K. Retinol dehydrogenases (RDHs) in the visual cycle. *Exp.*
757 *Eye Res.* **91**, 788–792 (2010).

758 69. Burgoyne, T., O'Connor, M. N., Seabra, M. C., Cutler, D. F. & Futter, C. E. Regulation of
759 melanosome number, shape and movement in the zebrafish retinal pigment epithelium
760 by OA1 and PMEL. *J. Cell Sci.* **128**, 1400–1407 (2015).

761 70. Lidgerwood, G. E. *et al.* Role of lysophosphatidic acid in the retinal pigment epithelium
762 and photoreceptors. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* **1863**, 750–761
763 (2018).

764 71. Frisca, Frisca, F., Sabbadini, R. A., Goldshmit, Y. & Pébay, A. Biological Effects of
765 Lysophosphatidic Acid in the Nervous System. *International Review of Cell and*
766 *Molecular Biology Volume 296* 273–322 (2012) doi:10.1016/b978-0-12-394307-
767 1.00005-9.

768 72. Golestaneh, N. *et al.* Repressed SIRT1/PGC-1 α pathway and mitochondrial
769 disintegration in iPSC-derived RPE disease model of age-related macular degeneration.
770 *J. Transl. Med.* **14**, 344 (2016).

771 73. Terluk, M. R. *et al.* Investigating mitochondria as a target for treating age-related
772 macular degeneration. *J. Neurosci.* **35**, 7304–7311 (2015).

773 74. Ramanathan, A. & Schreiber, S. L. Direct control of mitochondrial function by mTOR.
774 *Proc. Natl. Acad. Sci. U. S. A.* **106**, 22229–22232 (2009).

775 75. Nazio, F. *et al.* mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-
776 association and function through AMBRA1 and TRAF6. *Nat. Cell Biol.* **15**, 406–416
777 (2013).

778 76. Léveillard, T., Philp, N. & Sennlaub, F. Is Retinal Metabolic Dysfunction at the Center of
779 the Pathogenesis of Age-related Macular Degeneration? *International Journal of*
780 *Molecular Sciences* vol. 20 762 (2019).

781 77. Dixon, A. L. *et al.* A genome-wide association study of global gene expression. *Nat.*
782 *Genet.* **39**, 1202–1207 (2007).

783 78. Yu, Y., Weng, Y., Guo, J., Chen, G. & Yao, K. Association of glutathione S transferases

784 polymorphisms with glaucoma: a meta-analysis. *PLoS One* **8**, e54037 (2013).

785 79. Sun, L., Zhang, Y. & Xiong, Y. GSTM1 and GSTT1 null genotype and diabetic

786 retinopathy: a meta-analysis. *Int. J. Clin. Exp. Med.* **8**, 1677–1683 (2015).

787 80. Sun, W., Su, L., Sheng, Y., Shen, Y. & Chen, G. Is there association between

788 Glutathione S Transferases polymorphisms and cataract risk: a meta-analysis? *BMC*

789 *Ophthalmology* vol. 15 (2015).

790 81. Liu, M. M., Chan, C.-C. & Tuo, J. Genetic mechanisms and age-related macular

791 degeneration: common variants, rare variants, copy number variations, epigenetics, and

792 mitochondrial genetics. *Hum. Genomics* **6**, 13 (2012).

793 82. Hunter, A. A., 3rd *et al.* GSTM1 and GSTM5 Genetic Polymorphisms and Expression in

794 Age-Related Macular Degeneration. *Curr. Eye Res.* **41**, 410–416 (2016).

795 83. Minton, K. Inflammasome: Looking death in the eye. *Nat. Rev. Immunol.* **18**, 4 (2017).

796 84. Kerur, N. *et al.* cGAS drives noncanonical-inflammasome activation in age-related

797 macular degeneration. *Nat. Med.* **24**, 50–61 (2017).

798 85. Banevicius, M. *et al.* Association of relative leukocyte telomere length and genetic

799 variants in telomere-related genes () with atrophic age-related macular degeneration.

800 *Ophthalmic Genet.* **42**, 189–194 (2021).

801 86. Nicholson, G. *et al.* A genome-wide metabolic QTL analysis in Europeans implicates

802 two loci shaped by recent positive selection. *PLoS Genet.* **7**, e1002270 (2011).

803 87. Wang, Z. *et al.* Gut flora metabolism of phosphatidylcholine promotes cardiovascular

804 disease. *Nature* **472**, 57–63 (2011).

805 88. Fadason, T., Ekblad, C., Ingram, J. R., Schierding, W. S. & O'Sullivan, J. M. Physical

806 Interactions and Expression Quantitative Traits Loci Identify Regulatory Connections for

807 Obesity and Type 2 Diabetes Associated SNPs. *Front. Genet.* **8**, 150 (2017).

808 89. Edvardson, S. *et al.* Heterozygous RNF13 Gain-of-Function Variants Are Associated

809 with Congenital Microcephaly, Epileptic Encephalopathy, Blindness, and Failure to

810 Thrive. *Am. J. Hum. Genet.* **104**, 179–185 (2019).

811 90. Kopitz, J., Holz, F. G., Kaemmerer, E. & Schutt, F. Lipids and lipid peroxidation products

812 in the pathogenesis of age-related macular degeneration. *Biochimie* **86**, 825–831
813 (2004).

814 91. Kaemmerer, E., Schutt, F., Krohne, T. U., Holz, F. G. & Kopitz, J. Effects of lipid
815 peroxidation-related protein modifications on RPE lysosomal functions and POS
816 phagocytosis. *Invest. Ophthalmol. Vis. Sci.* **48**, 1342–1347 (2007).

817 92. Zhao, T., Guo, X. & Sun, Y. Iron Accumulation and Lipid Peroxidation in the Aging
818 Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. *Aging Dis.* **12**,
819 529–551 (2021).

820 93. Qi, Q. *et al.* Genome-wide association analysis identifies TYW3/CRYZ and NDST4 loci
821 associated with circulating resistin levels. *Hum. Mol. Genet.* **21**, 4774–4780 (2012).

822 94. Wei, L. *et al.* Identification of TYW3/CRYZ and FGD4 as susceptibility genes for
823 amyotrophic lateral sclerosis. *Neurology Genetics* vol. 5 e375 (2019).

824 95. Du, J. *et al.* Reductive carboxylation is a major metabolic pathway in the retinal pigment
825 epithelium. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 14710–14715 (2016).

826 96. Mirauta, B. A. *et al.* Population-scale proteome variation in human induced pluripotent
827 stem cells. *Elife* **9**, (2020).

828 97. Daniszewski, M. *et al.* Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs
829 Cultured in Different Commercial Media. *iScience* **7**, 30–39 (2018).

830 98. Okita, K. *et al.* A more efficient method to generate integration-free human iPS cells.
831 *Nat. Methods* **8**, 409–412 (2011).

832 99. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888–
833 1902.e21 (2019).

834 100. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
835 seq data using regularized negative binomial regression. *Genome Biol.* **20**, 296 (2019).

836 101. Das, S. *et al.* Next-generation genotype imputation service and methods. *Nat. Genet.*
837 **48**, 1284–1287 (2016).

838 102. Loh, P.-R. *et al.* Reference-based phasing using the Haplotype Reference Consortium
839 panel. *Nat. Genet.* **48**, 1443–1448 (2016).

840 103. Kang, H. M. *et al.* Multiplexed droplet single-cell RNA-sequencing using natural genetic
841 variation. *Nat. Biotechnol.* **36**, 89–94 (2018).

842 104. Heaton, H. *et al.* Souporcell: robust clustering of single-cell RNA-seq data by genotype
843 without reference genotypes. *Nat. Methods* **17**, 615–620 (2020).

844 105. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell
845 Doublets in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281–291.e9 (2019).

846 106. Shor, J. *DoubletDetection*. (Github).

847 107. Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP.
848 *Nat. Biotechnol.* (2018) doi:10.1038/nbt.4314.

849 108. Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell
850 transcriptomics. *BMC Genomics* **19**, 477 (2018).

851 109. Finak, G. *et al.* MAST: a flexible statistical framework for assessing transcriptional
852 changes and characterizing heterogeneity in single-cell RNA sequencing data. *Genome
853 Biol.* **16**, 278 (2015).

854 110. Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene
855 Ontology Consortium. *Nat. Genet.* **25**, 25–29 (2000).

856 111. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine.
857 *Nucleic Acids Res.* **49**, D325–D334 (2021).

858 112. Schriml, L. M. *et al.* Human Disease Ontology 2018 update: classification, content and
859 workflow expansion. *Nucleic Acids Res.* **47**, D955–D962 (2019).

860 113. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing
861 biological themes among gene clusters. *OMICS* **16**, 284–287 (2012).

862 114. Gusev, A. *et al.* Integrative approaches for large-scale transcriptome-wide association
863 studies. *Nature Genetics* vol. 48 245–252 (2016).

864 115. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
865 and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

866 116. Smedley, D. *et al.* BioMart – biological queries made easy. *BMC Genomics* **10**, 1–12
867 (2009).

868 117. Hubbard, T. *et al.* The Ensembl genome database project. *Nucleic Acids Res.* **30**, 38–
869 41 (2002).

870 118. Delaneau, O. *et al.* A complete tool set for molecular QTL discovery and analysis. *Nat.*
871 *Commun.* **8**, 15452 (2017).

872

873 **Online methods**

874 **Participant recruitment**

875 All participants gave informed written consent. This study was approved by the Human
876 Research Ethics committees of the Royal Victorian Eye and Ear Hospital (11/1031H,
877 13/1151H-004), University of Melbourne (1545394), University of Tasmania
878 (H0014124) UWA (EPS) as per the requirements of the NHMRC, in accordance with
879 the Declarations of Helsinki. Cases who had advanced AMD with geographic atrophy
880 in at least one eye and an age at first diagnosis over 50 years, were recruited through
881 local ophthalmic clinics (mean \pm SD age at recruitment: 83.8 ± 8.2 years). The control
882 cohort has previously been described in ³², and had no manifest ophthalmic disease
883 or drusen. The mean \pm SD age at recruitment for participants was 69.8 ± 9.5 years.
884 To ensure a diagnosis of AMD and not a monogenic retinal disease causing atrophy,
885 all case participants had drusen identified on clinical examination. Dominantly
886 inherited drusen phenotypes such as Sorsby fundus dystrophy, Doyne's honeycomb
887 dystrophy and Malattia Leventinese as well as fleck dystrophies such as Stargardt's
888 disease were excluded.

889

890 **Fibroblast culture**

891 Punch biopsies were obtained from subjects over the age of 18 years. Fibroblasts
892 were expanded, cultured and banked in DMEM with high glucose, 10% fetal bovine
893 serum (FBS), L-glutamine, 100 U/mL penicillin and 100 μ g/mL streptomycin (all from
894 Thermo Fisher Scientific, USA). All cell lines were mycoplasma-free (MycoAlert
895 mycoplasma detection kit, Lonza, Switzerland). Fibroblasts at passage (p) 2 were
896 used for reprogramming.

897

898 **Generation, selection and iPSC maintenance**

899 The maintenance and passaging of iPSCs were performed using a TECAN liquid
900 handling platform as described⁹⁷. Briefly, iPSCs were generated by the nucleofection
901 (Lonza) of episomal vectors expressing *OCT-4*, *SOX2*, *KLF4*, *L-MYC*, *LIN28* and
902 shRNA against *p53*⁹⁸ in feeder- and serum-free conditions using TeSR™-
903 E7™ medium (Stem Cell Technologies) as described⁹⁷. Pluripotent cells were selected
904 using anti-human TRA-1-60 Microbeads (Miltenyi)³¹ and subsequently maintained
905 onto vitronectin XF™-coated plates (Stem Cell Technologies) in StemFlex™ (Thermo
906 Fisher Scientific), with media changes every second day and weekly passaging using
907 ReLeSR™ (Stem Cell Technologies). Pluripotency was assessed by expression of the
908 markers OCT3/4 (sc-5279, Santa Cruz Biotechnology) and TRA-1-60 (MA1-023-PE,
909 Thermo Fisher Scientific; ab16288, Abcam) by immunocytochemistry, and virtual
910 karyotyping by CNV array on all lines, as described in⁹⁷. Only geographic atrophy
911 lines were generated for this study, as all control lines were already generated, and
912 characterised in³².

913

914 **Differentiation of iPSCs into RPE cells**

915 RPE cells were generated as we described previously³⁴. Briefly, iPSCs were
916 differentiated in E6 medium (Stem Cell Technologies) containing N2 supplement (Life
917 Technologies), penicillin - streptomycin (Life Technologies) for 21-38 days (to reach
918 RPE differentiation), switched to RPE medium (α MEM, 5% FBS, non-essential amino
919 acids, N1 supplement, penicillin - streptomycin - glutamate, taurine - hydrocortisone -
920 triiodothyronine) and cultured for a further 22-29 days with media changes every 2-3
921 days. Cells were then passaged with 0.25% trypsin-EDTA and plated onto growth

922 factor-reduced Matrigel-coated plates (Corning) to enrich in RPE cells for an additional
923 30 days (76-88 days total).

924

925 **RPE cell harvest and single-cell preparation**

926 RPE cells were harvested with 0.25% Trypsin-EDTA for 8 min, inactivated with RPE
927 medium, and dissociated using manual trituration to yield a single-cell suspension.
928 The cell suspension was centrifuged (5 minutes, 300 g, 4 °C), following which cells
929 were resuspended in 1 mL of 0.1% BSA in PBS solution. Subsequently, cells were
930 counted and assessed for viability with Trypan Blue, then pooled (eight samples
931 maximum) at a concentration of 1000 live cells/µl (1*10⁶ cells/mL).

932

933 **Single cell 3' RNA-sequencing and pre-processing of transcriptome data**

934 Multi-donor single-cell suspensions were prepared for scRNA-seq using the
935 Chromium Single Cell 3' Library & Gel bead kit (10x Genomics; PN-120237). Each
936 pool was loaded onto individual wells of 10x Genomics Single Cell A Chip along with
937 the reverse transcription (RT) master mix to generate single-cell gel beads in emulsion
938 (GEMs). Reverse transcription was performed using a C1000 Touch Thermal Cycler
939 with a Deep Well Reaction Module (Bio-Rad) as follows: 45 min at 53 °C; 5 min at 85
940 °C; hold 4 °C. cDNA was recovered and purified with DynaBeads MyOne Silane Beads
941 (Thermo Fisher Scientific; catalog no. 37002D). Subsequently, it was amplified as
942 follows: for 3 min at 98°C; 12× (for 15 sec at 98 °C; for 20 sec at 67 °C; for 60 sec at
943 72°C); for 60 sec at 72 °C; hold 4 °C followed recommended cycle number based on
944 targeted cell number. Amplified cDNA was purified with SPRIselect beads (Beckman
945 Coulter; catalog no. B23318) and underwent quality control following manufacturer's
946 instructions. Sequencing libraries for each pool were labelled with unique sample

947 indices (SI) and combined for sequencing across two 2 x 150 cycle flow cells on an
948 Illumina NovaSeq 6000 (NovaSeq Control Software v1.6) using S4 Reagent kit
949 (catalog no. 20039236). Raw base calls from the sequencer then underwent
950 demultiplexing, quality control, mapping and quantification with the Cell Ranger Single
951 Cell Software Suite 3.1.0 by 10x Genomics (<https://www.10xgenomics.com/>). The
952 *count* pipeline was run on each pool, with the target cell number set to 20,000 and
953 demultiplexed reads mapped to the *Homo sapiens* reference *hg19/GRCh37* from
954 ENSEMBL (release 75). The resulting transcriptome data for each pool then
955 underwent quality control using the *Seurat* R package ⁹⁹. Cells were removed if they
956 did not meet the upper and lower thresholds calculated from 3 Median Absolute
957 Deviations (MAD) of total UMI counts and number of detected genes, and if transcripts
958 from mitochondrial genes exceeded 25% of total transcripts. Raw UMI counts from
959 remaining cells then underwent normalization and scaling using the SCTransform
960 function as implemented in *Seurat* ¹⁰⁰.

961

962 **SNP genotype analysis and imputation**

963 DNA was extracted from cell pellets using QIAamp DNA Mini Kit (QIAGEN, 51306)
964 following the manufacturer's instructions. DNA concentration was determined with a
965 SimpliNano spectrophotometer (GE Life Sciences), diluted to a final concentration of
966 10-15 ng/µl and samples were genotyped on the UK Biobank Axiom™ Arrays at the
967 Ramaciotti Centre for Genomics, Sydney, Australia. Genotype data were exported into
968 PLINK data format using GenomeStudio PLINK Input Report Plug-in v2.1.4 and
969 screened for SNP and individual call rates (<0.97), HWE failure ($p < 10^{-6}$), and MAF
970 (<0.01). Samples with excess autosomal heterozygosity or with sex-mismatch were
971 excluded. In addition, a genetic relationship matrix from all the autosomal SNPs were

972 generated using the GCTA tool and one of any pair of individuals with estimated
973 relatedness larger than 0.125 were removed from the analysis. Individuals with non-
974 European ancestry were excluded outside of an “acceptable” box of +/- 6SD from the
975 European mean in PC1 and PC2 in a SMARTPCA analysis. The 1000G Phase 3
976 population was used to define the axes, and the samples were projected onto those
977 axes. Imputation was performed on each autosomal chromosome using the Michigan
978 Imputation Server with the Haplotype Reference Consortium panel (HRC r1.1 2016)
979 and run using Minimac3 and Eagle v2.3^{101,102}. Only SNPs with INFO > 0.8 and MAF
980 > 0.1 were retained for downstream analyses.

981

982 **Demultiplexing of cell pools into individual donors**

983 We used two SNP-based demultiplexing methods (demuxlet v0.1-beta¹⁰³ and
984 souporcell v2.0¹⁰⁴) and two transcription-based doublet detection methods (scrublet
985 v0.2.1¹⁰⁵ and DobuletDetection v2.5.2¹⁰⁶) to identify droplets that contained one cell
986 (singlets) and assign those cells to the correct donor. Droplets were considered
987 singlets if they were classified as a singlet by all four softwares and were assigned to
988 the same individual by both demuxlet and souporcell. For demuxlet, allele frequencies
989 were first calculated with *popsicle dsc-pileup* using all default parameters and known
990 SNP locations based on imputed SNP genotypes overlapping exons. To classify
991 doublets and assign singlets to each individual we ran *popsicle demuxlet* using those
992 pileup counts with default parameters except --geno_error_offset set to 0.1 and --
993 geno_error_coeff set to 0. Souporcell was used to classify droplets as doublets or
994 singlets and to assign the singlets to clusters with *souporcell_pipeline.py* using default
995 parameters and the --common_variants parameter to use just the known SNP
996 locations overlapping exons that had been imputed for the individuals in the study. The

997 SNP genotypes of the identified clusters were then correlated with the reference SNP
998 genotypes. A cluster was assigned to a given individual if the correlation between them
999 was the highest for both that individual and that cluster. Scrublet was run four different
1000 times using four different minimum variable percentile gene levels: 80, 85, 90 and 95
1001 with all other default recommendations. The best variable percentile gene level was
1002 selected based on the best bimodal distribution of the simulated doublets with a
1003 reasonable doublet threshold (i.e. at the lowest point between the bimodal
1004 distribution). DoubletDetection detected doublets based on simulated transcriptional
1005 profiles by using the *doubletdetection.BoostClassifier* function with 50 iterations,
1006 *use_phenograph* set to False and *standard_scaling* set to True. The number of
1007 doublets per iteration were visualised to ensure convergence.

1008

1009 **Classification of cell subpopulations**

1010 Cells were assigned to RPE subpopulations using a supervised cell classification
1011 method called *scPred* v0.9³⁵. A classifier was prepared from a reference dataset that
1012 had been characterised in a previous study³⁴, and consisted of iPSC-derived RPE
1013 cells that had been profiled at two time points: 1 month and 12 months. Expression
1014 data from the reference was normalised using the *SCTransform* method from Seurat
1015 v3¹⁰⁰, log2-transformed and scaled. The normalised values were then reduced to 15
1016 Principal Components (PCs) with the *eigenDecompose* function from *scPred* and used
1017 to train the model with default settings. Classification was performed on each batch,
1018 and each cell was assigned a probability of belonging to a reference cluster based on
1019 the fit of its expression profile to the reference. To account for the transitional nature
1020 of cells from this experiment, we applied an adaptive threshold based on a cell having

1021 a prediction probability that lies within 0.3 standard deviations of the mean of all
1022 prediction probabilities of a reference subpopulation.

1023

1024 **Integration and dimensionality reduction of transcriptome data from multiple**
1025 **pools**

1026 Transcriptome data from all pools were combined and batch-normalized using
1027 integration methods from Seurat v3⁹⁹. Integration anchors were selected from 2000 of
1028 the most variable genes using Canonical Correlation Analysis (CCA). As the individual
1029 datasets had been normalized with SCTtransform on a cell-cell level, integration was
1030 performed with the argument ``normalization.method = "SCT"``. Dimensionality
1031 reduction using Principal Component Analysis (PCA) and Uniform Manifold
1032 Approximation Projection (UMAP)¹⁰⁷ was then performed using values produced by
1033 the integration process.

1034

1035 **Trajectory inference and pseudotime-based differential expression analysis**

1036 Trajectory inference - the identification of global lineage structures and the ordering of
1037 cellular states, was performed using *slingshot* v2.0.0¹⁰⁸. Unnormalized, log-
1038 transformed UMI counts from 2000 of the most variable genes and the UMAP
1039 projection generated from the integration step were used by *slingshot* to build a
1040 minimum spanning tree across the subpopulations progressing from ProgenitorRPE,
1041 and calculate pseudotime across the trajectories. This information was used by
1042 *tradeSeq* v1.6.0³⁶ to fit a generalized additive model to six knots, and apply the
1043 following differential expression tests: *associationTest* to identify trajectory- and
1044 condition-specific markers, *patternTest* and *diffEndTest* to identify genes with different
1045 transcription dynamics during the progression of the trajectory and at the end of the

1046 trajectory, and *conditionTest* to identify genes specific to disease status. Pseudotime-
1047 based differential expression results were corrected for multiple testing using
1048 Bonferroni correction, and the threshold for significance was 2.5×10^{-5} .

1049

1050 **Differential expression analysis**

1051 Gene markers specific to disease status and subpopulation were identified using
1052 differential expression analysis, as implemented in MAST v1.16¹⁰⁹. MAST was run
1053 through Seurat's FindMarkers function on log-transformed, unnormalized UMI counts
1054 with the following latent variables: total UMI count (library size), pool number, age and
1055 sex. Bonferroni correction was used to correct p-values for multiple testing, and the
1056 threshold for significance was $|\text{Average log2 fold change}| > 0.25$ and adjusted p-value
1057 $< 1.8 \times 10^{-5}$.

1058

1059 **Gene Ontology and Disease Ontology Over-Representation Analysis**

1060 Gene sets were prepared for each subpopulation, from genes identified via
1061 pseudotime-based differential expression analysis and standard differential
1062 expression analysis. If fold change information was available, genes were also
1063 grouped by direction of regulation. Over-representation analysis was performed with
1064 the Gene Ontology^{110,111} and Disease Ontology¹¹² databases, as accessed through
1065 *clusterProfiler*¹¹³. P-values were corrected for multiple testing using Benjamini &
1066 Hochberg FDR and filtered for significance using a q-value threshold of 0.2.

1067

1068 **Transcriptome wide association study**

1069 TWAS was implemented in the FUSION pipeline (available at
1070 https://github.com/gusevlab/fusion_twash)¹¹⁴. We first computed the single-cell eQTL

1071 weights using the “blup”, “lasso”, and “enet” models ¹¹⁴ in each subpopulation. Then,
1072 the single-cell gene-expressions were used in a TWAS using AMD GWAS summary
1073 statistics ²³ to evaluate the association between inferred gene-expression and AMD.
1074 The TWAS *p*-values were adjusted for multiple testing using the Bonferroni method
1075 (approximately 19000 genes in each subpopulation).

1076

1077 **Preparation of protein samples**

1078 RPE cell cultures were lysed in RIPA buffer supplemented with phosphatase and
1079 protease inhibitors, sonicated with a probe sonicator (40 HZ × 2 pulses × 15 s), and
1080 insoluble debris were removed by centrifugation at 14,000 rpm for 15 min at 4°C, prior
1081 to measurement of protein contents by standard bicinchoninic acid assay (MicroBCA
1082 protein assay kit, Thermo Scientific). Solubilised proteins were reduced using 5 mM
1083 dithiothreitol and alkylated using 10 mM iodoacetamide. Proteins (150 µg) were initially
1084 digested at room temperature overnight using a 1:100 enzyme-to-protein ratio using
1085 Lys-C (Wako, Japan), followed by digestion with Trypsin (Promega, Madison, WI) for
1086 at least 4 hours at 37°C also at a 1:100 enzyme-to-protein ratio. Resultant peptides
1087 were acidified with 1% trifluoroacetic acid and purified using styrene divinylbenzene-
1088 reverse phase sulfonate (Empore) stage tips. The proteome was identified on a
1089 Tandem Mass Tag (TMT) platform (Progenetech, Sydney, Australia).

1090

1091 **TMT Labelling**

1092 8 independent 10 plex TMT experiments were carried out. Briefly, dried peptides from
1093 each sample were resuspended in 100 mM HEPES (pH 8.2) buffer and peptide
1094 concentration measured using the MicroBCA protein assay kit. Sixty micrograms of
1095 peptides from each sample was subjected to TMT labelling with 0.8 mg of reagent per

1096 tube. Labelling was carried out at room temperature for 1 h with continuous vortexing.
1097 To quench any remaining TMT reagent and reverse the tyrosine labelling, 8 μ l of 5%
1098 hydroxylamine was added to each tube, followed by vortexing and incubation for 15
1099 min at room temperature. For each of the respective ten plex experiments, the ten
1100 labelled samples were combined, and then dried down by vacuum centrifugation. Prior
1101 to High-pH reversed-phase fractionation, the digested and TMT-labelled peptide
1102 samples were cleaned using a reverse-phase C18 clean-up column (Sep-pak, Waters)
1103 and dried in vacuum centrifuge. The peptide mixture was resuspended in loading
1104 buffer (5 mM ammonia solution (pH 10.5), separated into a total of 96 fractions using
1105 an Agilent 1260 HPLC system equipped with quaternary pump, a degasser and a
1106 Multi-Wavelength Detector (MWD) (set at 210-, 214- and 280-nm wavelength).
1107 Peptides were separated on a 55-min linear gradient from 3 to 30% acetonitrile in 5
1108 mM ammonia solution pH 10.5 at a flow rate of 0.3 mL/min on an Agilent 300 Extend
1109 C18 column (3.5 μ m particles, 2.1 mm ID and 150 mm in length). The 96 fractions
1110 were finally consolidated into eight fractions. Each peptide fraction was dried by
1111 vacuum centrifugation, resuspended in 1% formic acid and desalted again using SDB-
1112 RPS (3M-Empore) stage tips.

1113

1114 **Liquid chromatography electrospray ionization tandem mass spectrometry (LC-
1115 ESI-MS/MS) data acquisition**

1116 Mass spectrometric data were collected on an Orbitrap Lumos mass spectrometer
1117 coupled to a Proxeon NanoLC-1200 UHPLC. The 100 μ m capillary column was
1118 packed with 35 cm of Accucore 150 resin (2.6 μ m, 150 \AA ; ThermoFisher Scientific).
1119 The scan sequence began with an MS1 spectrum (Orbitrap analysis, resolution
1120 60,000, 400–1600 Th, automatic gain control (AGC) target 4 x105, maximum injection

1121 time 50 ms). Data was acquired for 90 minutes per fraction. Analysis at the MS2 stage
1122 consisted of higher energy collision-induced dissociation (HCD), Orbitrap analysis with
1123 resolution of 50,000, automatic gain control (AGC) 1.25 x105, NCE (normalized
1124 collision energy) 37, maximum injection time 120 ms, and an isolation window at 0.5
1125 Th. For data acquisition including FAIMS, the dispersion voltage (DV) was set at
1126 5000V, the compensation voltages (CVs) were set at -40V, -60V, and -80V, and
1127 TopSpeed parameter was set at 1.5 sec per CV.

1128

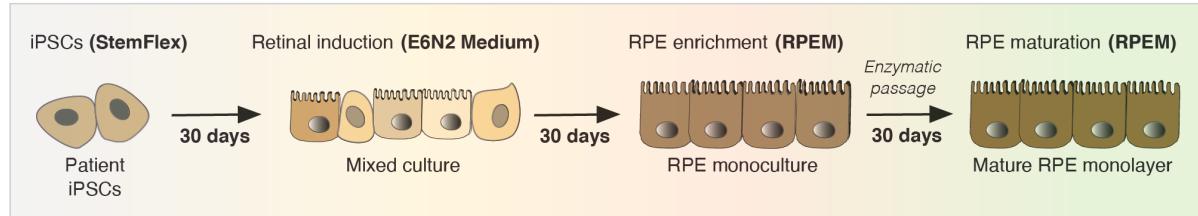
1129 **Proteomic data analysis**

1130 Spectra were converted to mzXML via MSconvert. Database searching included all
1131 entries from the Human UniProt Database (downloaded: August 2019). The database
1132 was concatenated with one composed of all protein sequences for that database in
1133 the reversed order. Searches were performed using a 50-ppm precursor ion tolerance
1134 for total protein level profiling. The product ion tolerance was set to 0.2 Da. These wide
1135 mass tolerance windows were chosen to maximize sensitivity in conjunction with
1136 Comet searches and linear discriminant analysis. TMT tags on lysine residues and
1137 peptide N-termini (+229.163 Da for TMT) and carbamidomethylation of cysteine
1138 residues (+57.021 Da) were set as static modifications, while oxidation of methionine
1139 residues (+15.995 Da) was set as a variable modification. Peptide-spectrum matches
1140 (PSMs) were adjusted to a 1% false discovery rate (FDR). PSM filtering was performed
1141 using a linear discriminant analysis, as described previously and then assembled
1142 further to a final protein-level FDR of 1%. Proteins were quantified by summing
1143 reporter ion counts across all matching PSMs, also as described previously. Reporter
1144 ion intensities were adjusted to correct for the isotopic impurities of the different TMT
1145 reagents according to manufacturer specifications. The signal-to-noise (S/N)

1146 measurements of peptides assigned to each protein were summed and these values
1147 were normalized so that the sum of the signal for all proteins in each channel was
1148 equivalent to account for equal protein loading. Finally, each protein abundance
1149 measurement was scaled, such that the summed signal-to-noise for that protein
1150 across all channels equaled 100, thereby generating a relative abundance (RA)
1151 measurement. Investigation of protein–protein interactions and functional enrichment
1152 GO analysis of DE proteins were performed with STRING database version 11.0.
1153 STRING analysis was performed on the entire proteomics dataset, generating a
1154 network of interactions (based on both evidence of functional and physical
1155 interactions). Network lines represent the protein interaction score, which was set at a
1156 minimum medium confidence (0.4). Active interaction sources were based on text
1157 mining, experiments, databases, co-expression, neighbourhood, gene fusion and co-
1158 occurrence data.

1159

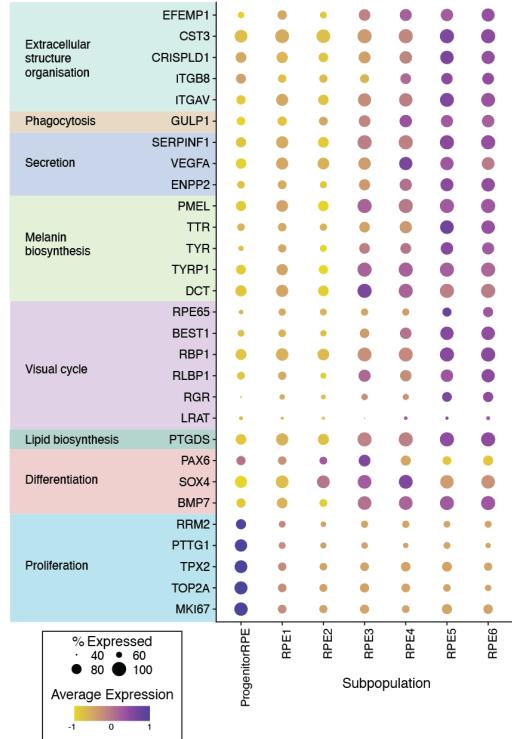
1160 **Mapping of expression and protein QTL**


1161 QTL mapping was performed using expression and protein measurements, and the
1162 genotype data of cell line donors that had been filtered for common SNPs (4,309,001
1163 SNPs, Minor Allele Frequency > 10%). For eQTL, a donor-gene matrix was generated
1164 for each RPE subpopulation by taking the mean of normalized, corrected UMI counts
1165 for each gene from cells belonging to each donor that was present in the
1166 subpopulation. Genes that were expressed in less than 30% of the donor population
1167 were excluded. The resulting values were log-transformed and quantile normalised
1168 with the `normalizeBetweenArrays` function from the limma R package ¹¹⁵.
1169 MatrixEQTL was run with an additive linear model using sex, age and the top six
1170 genotype principal components as covariates, and lead eQTL was selected based on

1171 the following thresholds: FDR (Benjamini–Hochberg procedure) < 0.05 and
1172 homozygous alternate allele frequency > 5. To identify eQTL that had alternative allelic
1173 effects under different disease statuses, we included an interaction term (SNP:disease
1174 status) in the original linear model for each eQTL identified by preliminary mapping
1175 and filtered by p-value < 0.05 of the interaction term. pQTL mapping was performed
1176 at a bulk level using protein abundance measurements taken from individual RPE cell
1177 lines. Abundance measurements were normalised using rank-based inverse normal
1178 transformation, and the protein-donor matrix was converted to an exon-donor matrix
1179 by matching protein identifiers and isoforms to exons listed in the Ensembl *Homo*
1180 *sapiens* Genes database^{116,117}. SNPs that were within 1MB of exons were selected
1181 for mapping, which was performed with the *cis* function from QTLtools¹¹⁸. As the same
1182 protein measurement was used for each exon belonging to a protein, the abundance
1183 measurements for each exon were grouped by protein and the mean value of each
1184 group - the measurement of each protein, was used for testing. pQTL results were
1185 matched to eQTL results by matching lead SNPs from pQTL analysis to SNPs with an
1186 eGene from *cis*-eQTL analysis. Benjamini & Hochberg FDR values for filtered pQTL
1187 results were calculated using adjusted beta p-values and filtered for significance using
1188 a threshold of 0.1.

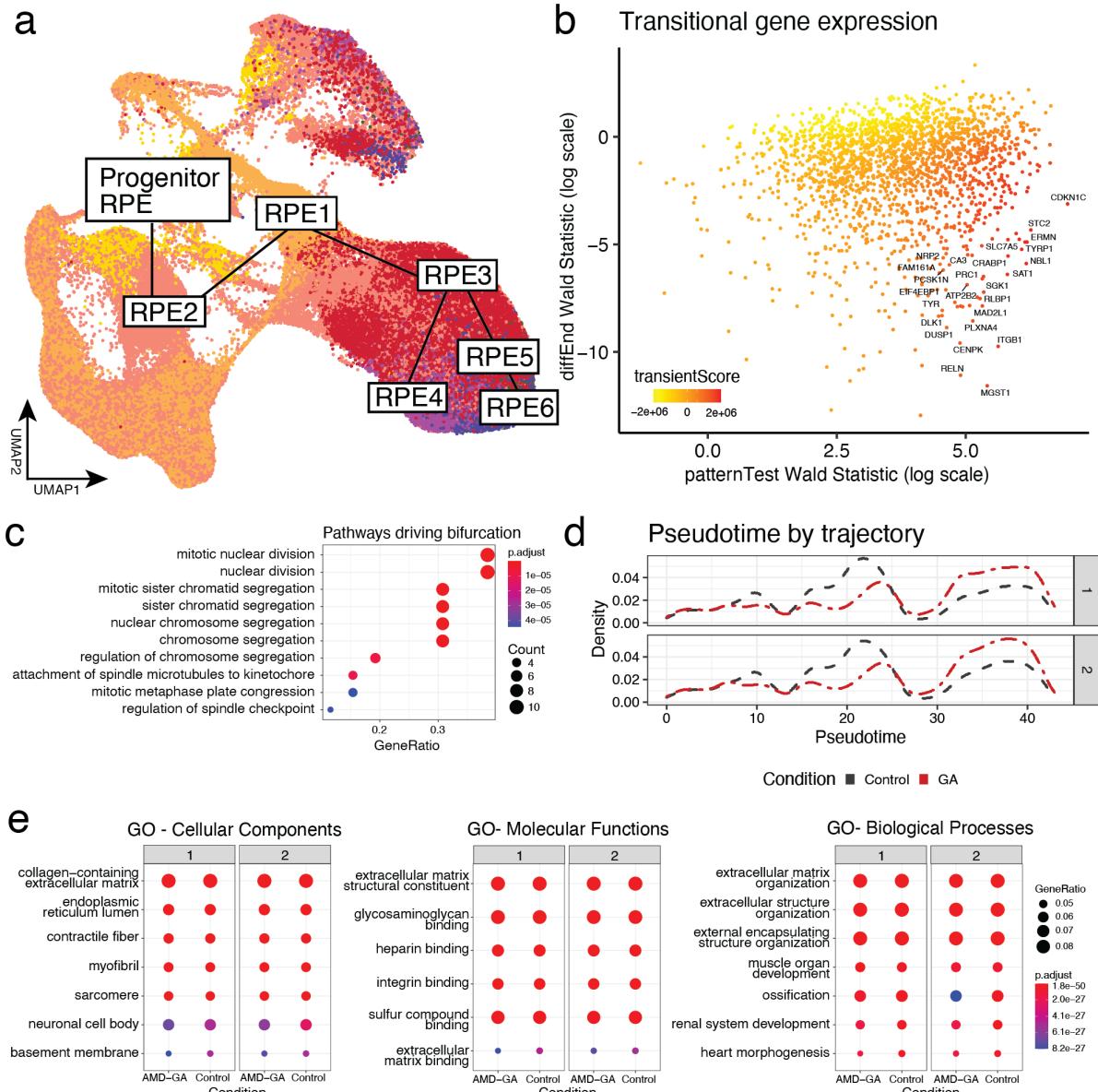
1189

1190 **Figures**


a Cell culture and experimental workflow

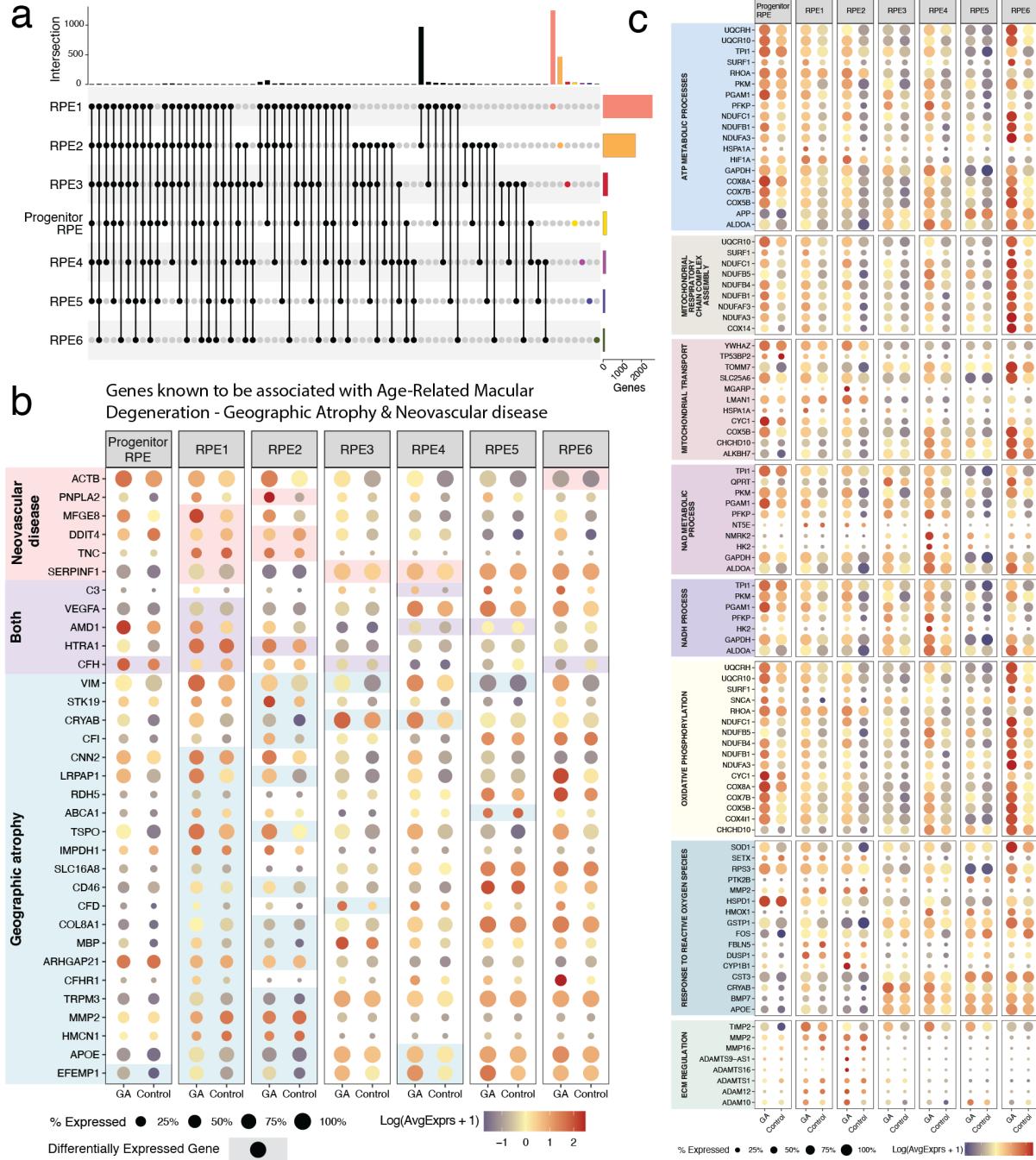
b RPE subpopulations

c Genes associated with progenitors and RPE functions



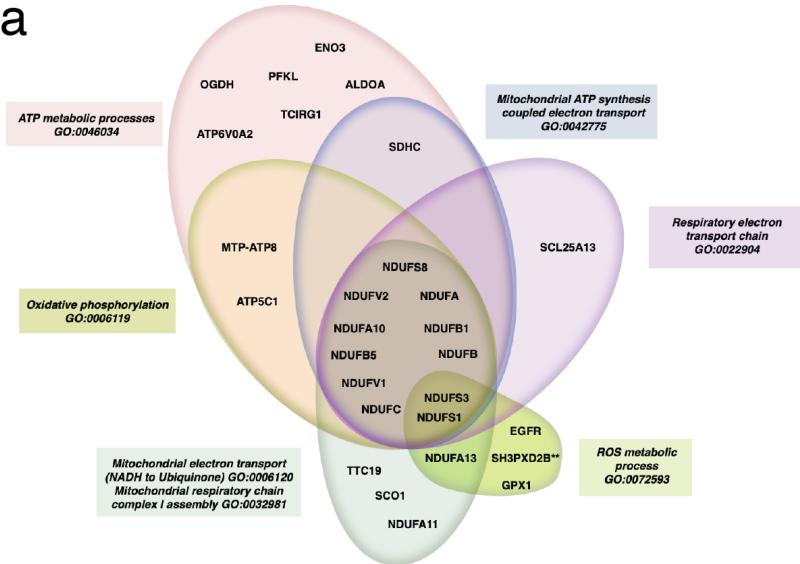
1191

1192 **Figure 1. Generation of RPE from iPSCs, identification and characterisation of**
1193 **RPE subpopulations. (a)** Schematic representation of the cell culture flow, with
1194 **iPSCs differentiated into RPE cells in 90 days prior to harvest for scRNA-seq and mass**
1195 **spectrometry. (b)** Uniform Manifold Approximation and Projection (UMAP) of cells
1196 **labelled by subpopulation. Cells were assigned to subpopulations identified in a**
1197 **previous study using a supervised classification method, and coloured by**
1198 **subpopulation. (c)** Dotplot representation of average expression of genes associated
1199 **with RPE functions (extracellular structure organisation, phagocytosis, secretion,**
1200 **melanin biosynthesis, visual cycle, lipid biosynthesis, differentiation and proliferation)**
1201 **and progenitors (differentiation, proliferation) in the various subpopulations. Levels of**
1202 **gene expression per cell are shown with colour gradients, and frequencies of cells**
1203 **expressing the respective gene (% expressed) are shown with size of dots.**


1204

1205

1206


1207 **Figure 2. Trajectory analysis of the various subpopulations. (a)** Uniform Manifold
1208 Approximation and Projection (UMAP) of cells labelled by subpopulation showing the
1209 two developmental trajectories bifurcating at RPE3. **(b)** Identification of transiently-
1210 expressed genes by contrasting rankings of genes (transientScore) that are
1211 differentially expressed during trajectory progression (patternTest) against expression
1212 of genes at trajectory end points (diffEnd). **(c)** Enrichment of genes that are
1213 differentially expressed during the bifurcation of the main trajectory. **(d)** Density of cells
1214 across pseudotime. Grey dashed lines represent density of cells from control donors,
1215 while red dashed lines represent density of cells from AMD-GA lines. **(e)** Enrichment
1216 of genes differentially expressed across pseudotime, that are associated with
1217 trajectories and conditions.
1218

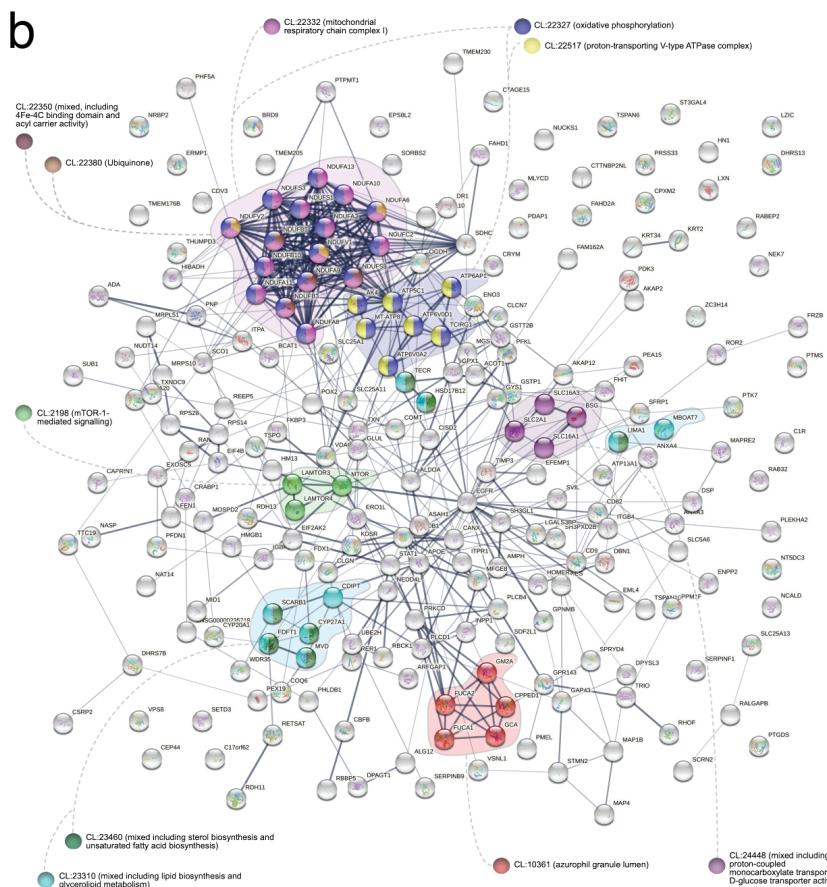
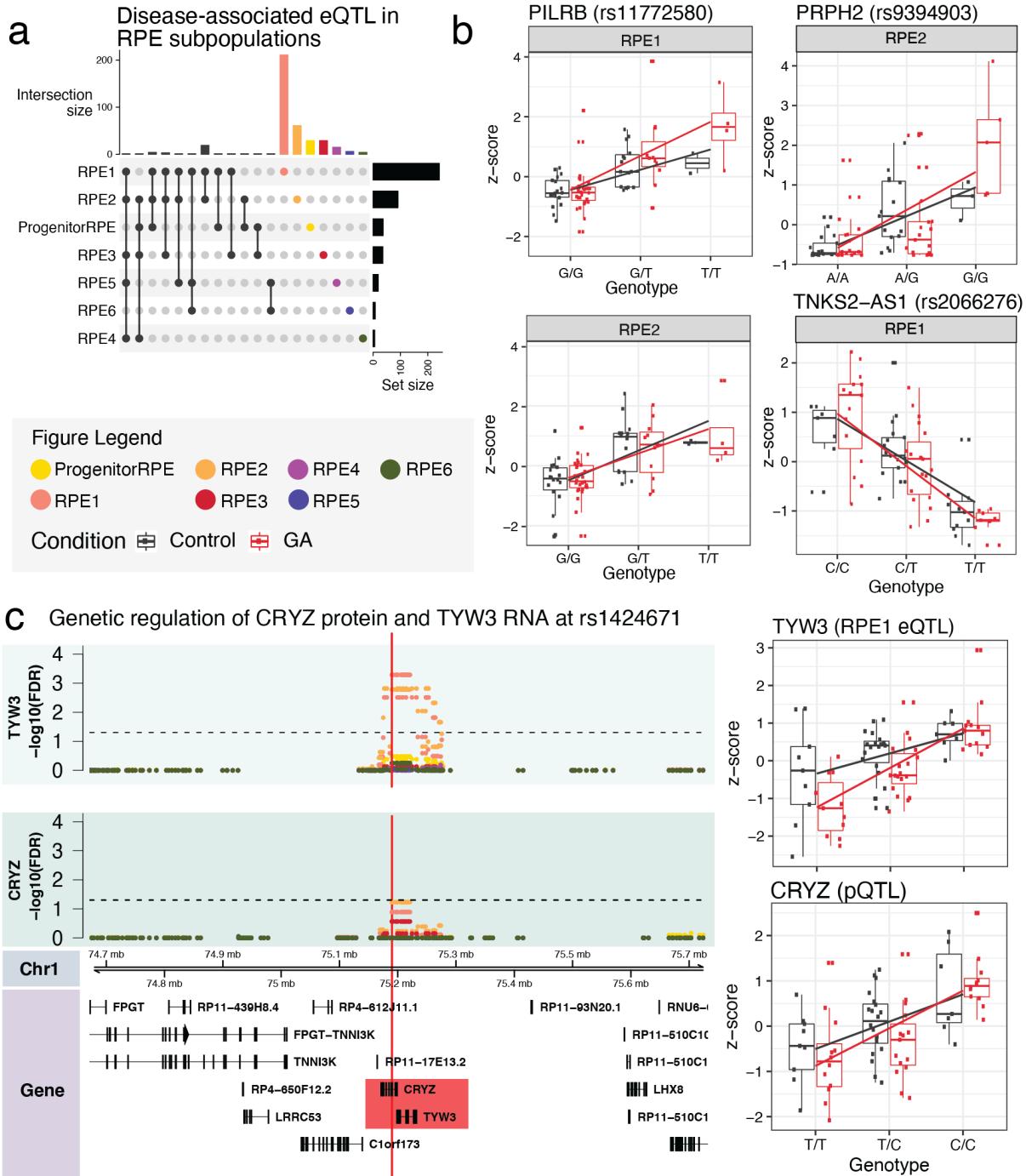
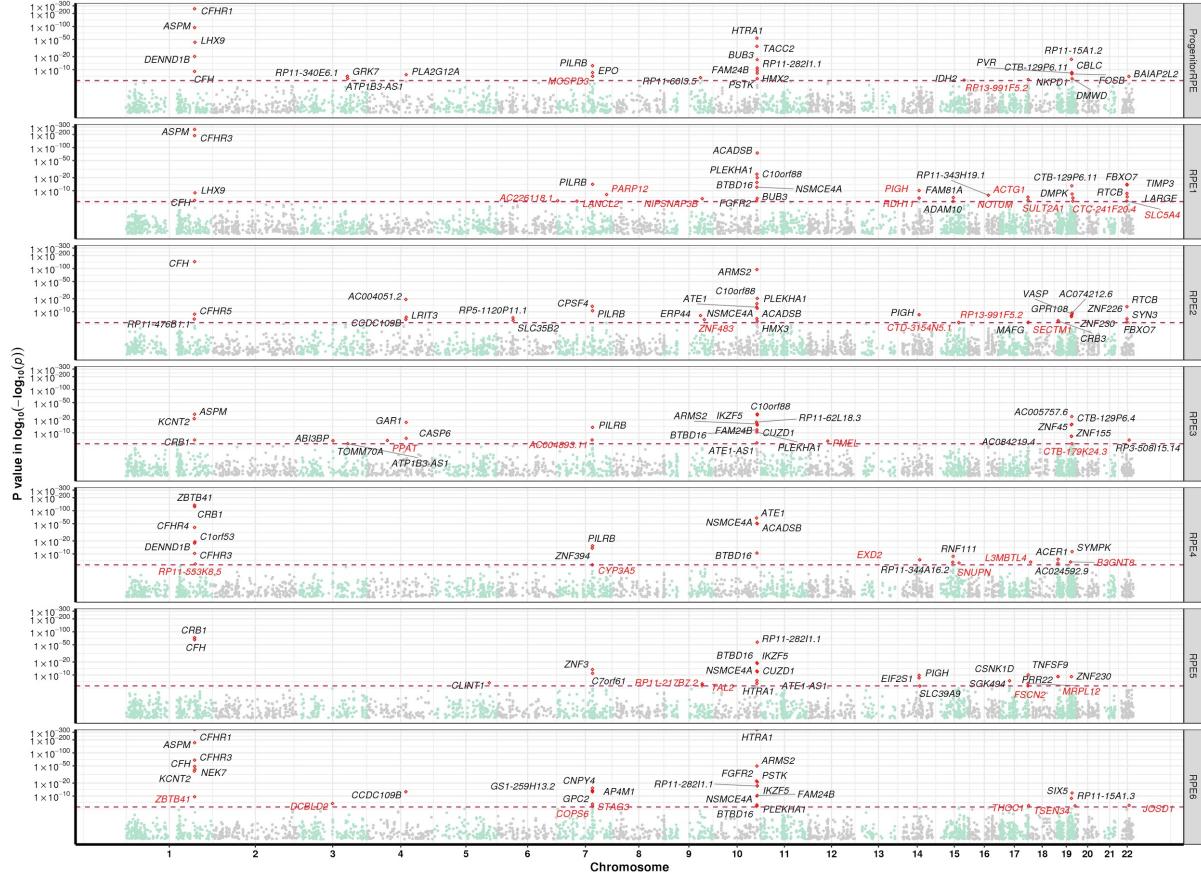

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

Figure 3. Genes associated with cell subpopulations and their expression in geographic atrophy and control cells. (a) Summary of cell subpopulation- specific gene regulation. (b, c) Dotplot representation of single cell expression profile of genes associated with geographic atrophy or neovascular AMD (b) and of genes associated with biological processes of interest (c) in geographic atrophy (GA) and in Control iPSC-derived subpopulations. Levels of gene expression per cell are shown with colour gradients, and frequencies of cells expressing the respective gene (% expressed) are shown with size of dots.

a



b



1229
1230
1231
1232
1233
1234

Figure 4. Proteome analysis of control and geographic atrophy-RPE cells. (a) Representation of enriched biological processes (Gene Ontology) related to mitochondrial function identified using STRING analysis. **(b)** Entire local network clustering (STRING) with enriched pathways highlighted in coloured nodules.

Figure 5. Genetic regulation of disease-associated expression and protein in RPE. (a) Distribution of disease-associated cis-eQTL across RPE subpopulations. (b) Gene-donor expression boxplots by genotype of eGenes that have a known association with AMD-GA - PILRB (RPE1 and RPE2), and PRPH2 (RPE2), and a candidate eGene TNKS2-AS1 (RPE1). (c) Locus zoom plot focusing on the 500kb region around rs1424671 that includes TYW3 (eQTL interaction in RPE1) and CRYZ (pQTL interaction in bulk samples). Scatter plot axes show $-\log_{10}(\text{FDR})$ values of eQTL results of genes TYW3 and CRYZ across all RPE subpopulations in this region.

1246

1247 **Figure 6. Prioritization of geographic atrophy risk genes.** Genes that are
1248 significant after Bonferroni correction are highlighted with red dots, with the nearest
1249 gene names in black text (previously implicated genes), of which not genome-wide
1250 significant in the per-SNP analysis (top GWAS SNP p-value $< 5 \times 10^{-8}$) are highlighted
1251 in red text (novel genes identified). The x-axis is the genome position from
1252 chromosome 1 to chromosome 22, the y-axis is the TWAS p-value in log-log scale.
1253 The maroon horizontal dash line is the Bonferroni correction level.
1254

1255 **Tables**

1256 **Table 1. Summary of cells retrieved in each RPE subpopulation**

Subpopulation	Number of cells (Control)	Number of cells (GA)	Total number of cells	% of Control cells	% of GA cells
Progenitor RPE	3,159	2,977	6,136	5.8%	4.1%
RPE1	24,027	32,254	56,281	44.1%	44.1%
RPE2	16,780	14,620	31,400	30.8%	19.9%
RPE3	5,851	14,501	20,352	10.7%	19.8%
RPE4	2,113	4,329	6,442	3.9%	5.9%
RPE5	1,396	2,269	3,665	2.6%	3.1%
RPE6	1,172	2,211	3,383	2.1%	3.0%
Total	54,498	73,161	127,659	100.0%	100.0%

1257 Abbreviation: RPE, retinal pigmented epithelium; GA, geographic atrophy.

1258

1259

1260 **Table 2. Summary of Differentially-Expressed Genes in Geographic Atrophy**
1261 **(GA)**

Subpopulation	Upregulated	Downregulated	Total	Known Association with GA
Progenitor RPE	54	131	185	2
RPE1	1,987	578	2,565	22
RPE2	1,361	328	1,689	15
RPE3	156	88	244	4
RPE4	126	15	141	5
RPE5	36	68	104	3
RPE6	41	43	84	1

1262

1263

1264 **Table 3. Summary of lead cis-eQTL per subpopulation**

Subpopulation	Number of eQTLs	Number of eSNPs	Number of interactions
Progenitor RPE	37	37	4
RPE1	242	233	22
RPE2	91	90	8
RPE3	36	35	9
RPE4	6	5	1
RPE5	19	19	1
RPE6	8	8	0
Total	439	377	45

1265

Table 4. Common genetic regulation mechanisms of transcriptome and proteome in RPE

Subpopulation (eQTL)	Uniprot ID	Gene (pQTL)	rsID	Beta (pQTL)	P-value (pQTL)	FDR (pQTL)	Gene (eQTL)	Beta (eQTL)	P-value (eQTL)	FDR (eQTL)
RPE1	Q08257	CRYZ	rs1424671	5.97E-01	3.66E-03	2.56E-02	TYW3	8.53E-01	2.77E-08	5.14E-04
RPE2	Q08257	CRYZ	rs1424671	5.97E-01	3.66E-03	2.56E-02	TYW3	8.60E-01	4.60E-08	1.65E-03
RPE1	Q8N2H3	PYROXD2	rs942813	6.37E-01	1.59E-03	1.67E-02	PYROXD2	8.57E-01	1.60E-07	2.12E-03
RPE1	Q8TB22.2	SPATA20	rs989128	-6.64E-01	1.59E-02	6.69E-02	SPATA20	-9.02E-01	1.10E-07	1.76E-04
RPE1	O43567	RNF13	rs772903	-8.02E-01	1.67E-04	3.51E-03	RNF13	-7.40E-01	5.74E-06	4.54E-02
RPE1	Q15113	PCOLCE	rs13239622	-5.76E-01	1.37E-02	6.69E-02	CTA-339C12.1	7.40E-01	5.86E-06	2.28E-02
RPE1	Q9Y3D6	FIS1	rs1859628	5.50E-01	2.60E-02	9.11E-02	CTA-339C12.1	8.08E-01	2.87E-06	1.17E-02