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Abstract 

 

The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human 

phenotypes are highly context-specific, varying across cell types and under different conditions. Human 

induced pluripotent stem cells (hiPSCs) are uniquely suited to study these context-dependent effects, but 

to do so requires cell lines from hundreds or potentially thousands of individuals. Village cultures, where 

multiple hiPSC lines are cultured and differentiated together in a single dish, provide an elegant solution 

for scaling hiPSC experiments to the necessary sample sizes required for population-scale studies. Here, 

we show the utility of village models, demonstrating how cells can be assigned back to a donor line using 

single cell sequencing, and addressing whether line-specific signaling alters the transcriptional profiles of 

companion lines in a village culture. We generated single cell RNA sequence data from hiPSC lines 

cultured independently (uni-culture) and in villages at three independent sites. We show that the 

transcriptional profiles of hiPSC lines are highly consistent between uni- and village cultures for both 

fresh (0.46 < R < 0.88) and cryopreserved samples (0.46 < R < 0.62). Using a mixed linear model 

framework, we estimate that the proportion of transcriptional variation across cells is predominantly due 

to donor effects, with minimal evidence of variation due to culturing in a village system. We demonstrate 

that the genetic, epigenetic or hiPSC line-specific effects on gene expression are consistent whether the 

lines are uni- or village-cultured (0.82 < R < 0.94). Finally, we identify the consistency in the landscape 

of cell states between uni- and village-culture systems. Collectively, we demonstrate that village methods 

can be effectively used to detect hiPSC line-specific effects including sensitive dynamics of cell states. 
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Introduction 

 

Using human induced pluripotent stem cells (hiPSCs) and their derivatives to study human complex traits 

such as diseases and drug response is becoming a new research frontier through the intersection with 

population genetic approaches1–4. hiPSCs are karyotypically normal, self-renewable cells that are 

generated by reprogramming human somatic cells. They have the ability to differentiate into virtually any 

cell type in the human body5, providing a model system to study human cell types in vitro. Recent work 

has demonstrated that hiPSCs are a powerful system for investigating large-scale inter-individual 

variation and context-dependent effects that would be challenging to recreate in vivo. Here, we consider 

context-dependent effects to be genetic relationships with phenotypes that are only detectable under 

specific conditions. For example, some expression quantitative trait loci (eQTLs) are only detected in 

specific tissues6, cell types2,3,7, cell states8, or following drug9 or chemokine10 exposure. While hiPSCs are 

a powerful model system to interrogate these context-specific effects, large-scale hiPSC culture is 

expensive and time-consuming, creating challenges for studies that require hundreds to thousands of 

donor lines.  

 

To mitigate some of these limitations, recent studies have applied a village approach to culture hiPSCs - 

where multiple unrelated lines are cultured and differentiated in a single dish2,8,11. One of these studies 

paired flow sorting of survival motor neuron (SMN) protein levels with whole genome sequencing. The 

proportion of each hiPSC line in each SMN flow-sorted group of cells were then estimated with 

computational methods. The study design provided statistical power to detect SMN protein quantitative 

trait loci (pQTLs) - genetic variants that are associated with protein expression levels of cell lines. While 

this approach is effective, it is not easily scalable for high-throughput assays of molecular phenotypes. 

Other studies have applied village culture methods and assayed them with single cell RNA-sequencing 

(scRNA-seq). In these scenarios, each cell is assigned to a hiPSC line in the pool using demultiplexing 

methods12–15. However, the impact on molecular phenotypes such as gene expression due to the presence 

of multiple cell lines in a single village culture has not been assessed. 

 

This is a challenge, as it is not clear whether cell signaling in villages will influence the transcriptional 

profiles of each independent hiPSC line. If such effects were to exist, they would likely lead to biases in 

the identification of both eQTLs and context-dependent effects due to the creation of ‘artificial’ 

correlations in the phenotypes between donor lines. Here, we develop village culture systems, and 

demonstrate their efficacy for population-scale stem cell studies. In particular, we investigate how growth 

rates impact the proportions of cells from each line in the village, and whether cell signaling alters the 
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transcriptional profiles of individual cells in village culture conditions. We similarly evaluated these 

properties across multiple independent laboratories. 

 

We show that the inter-line gene expression is unaffected by culturing hiPSC lines in a village or between 

sites. In other words, the genetic, epigenetic or line-dependent effects that underlie variation in gene 

expression between different lines is consistent when the cells are cultured separately or in a village. We 

demonstrate that hiPSC line-specific effects that change across a cell-state pseudotime (dynamic effects) 

can be reproducibly detected, further supporting the use of village culture systems for large scale studies 

with hiPSCs. Collectively, our results demonstrate that the village model can be effectively used to detect 

eQTLs and other cell line specific effects and we provide important details that will allow these 

approaches to be easily implemented in other laboratories. 
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Results 

 

Experimental and analytical framework 

We implemented a multi-phased experimental design that enabled the interrogation of village culture 

conditions while also comparing inter-laboratory and cryopreservation effects using scRNA-seq (Figure 

1a).  

 

To compare the effects of village culture conditions in different laboratories, Phase I involved the 

generation of data from three independent sites - the University of Queensland (Brisbane, Australia; site 

1), the University of Melbourne (Melbourne, Australia; site 2) and the Garvan Institute of Medical 

Research (Sydney, Australia; site 3). The same hiPSC lines from the same passage (FSA0006, MBE1006 

and TOB0421)20, the same protocols and the same reagents (from the same batches) were used at each 

site with one exception - hiPSC lines were plated at a lower density at site 3 (~1/10 the plating density 

used at sites 1 and 2). Villages were generated using equal proportions of each uni-cultured hiPSC line 

(cultured in separate dishes) and maintained for four days prior to captures. For the scRNA-seq capture of 

uni- and village cultures in Phase I, cells were detached and dissociated at the same time at each site and 

placed on ice. Samples from sites 1 and 2 were transported to site 3 where the samples were processed 

and captured together (Figure 1a; see Methods for additional details) - thereby mitigating capture batch 

effects. Phase II investigated the potential impact of cryopreservation on inter-line effects in the village 

culture system (maintained for seven days) which was performed at site 3 alone.  (Figure 1a). Finally, 

phase III used data from all cells to investigate dynamic hiPSC line effects across cell-state pseudotime 

(inter-line effects that change over pseudotime; Figure 1a). 

 

In the analysis of the scRNA-seq data, we estimate the variance explained by hiPSC line, replicate, and 

village status using a negative binomial model (Figure 1b). The consistency of the variance explained by 

the hiPSC lines (i.e., inter-line effects) is then tested by correlating the estimates from uni-culture and 

village samples (Figure 1c). To determine the point at which a high degree of consistency is achieved 

between samples, we used a sliding window correlation to assess the relationship between every window 

of 100 genes starting with the 100 genes with the lowest inter-line variation and sliding the window by 

one gene until the 100 genes with the highest inter-line variation were correlated. Finally, for phase III, 

the variance of gene expression explained by the hiPSC lines is then tested for dynamic effects across 

pseudotime with a linear model (i.e., inter-line effects that change over pseudotime; Figure 1d). 

 

Impact of village culture system 
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To investigate the potential impacts of village culture conditions on individual hiPSC lines, we collected 

samples of the hiPSC lines cultured separately and after four days cultured in a village at the three 

independent sites as previously described (Figure 1a and 2a; see Methods for additional details).  

 

Proportions of hiPSC lines following village culturing 

Village culture systems provide advantages over uni-culture systems, provisional that the majority of the 

hiPSC lines can be maintained in culture. Therefore, we first compared the proportion of each hiPSC line 

when they were first combined (uni-culture) to the proportions following culture in a village. After 

demultiplexing the samples (see Methods), we found that all hiPSC lines were present in all samples 

albeit at different proportions in the village than the uni-culture samples at sites 1 and 2 but not 3. At sites 

1 and 2, the village samples had a larger proportion of FSA0006 and a smaller proportion of MBE1006 

and TOB0421 (Figure 2b and Table S1). The different proportions of each hiPSC line at sites 1 and 2 in 

the village compared to the uni-culture samples suggests that growth rate is an important factor to 

consider when designing village experiments for long term cell culture.  

 

Transcriptional profiles are unaffected by village culturing 

To evaluate whether cell signaling companion hiPSC lines in a village alter the transcriptional profiles of 

each individual line we compared the transcriptome profiles of each hiPSC line between uni- and village 

cultures. We observed strong correlation of the transcriptional signatures between uni-culture and village 

samples for each hiPSC line (Pearson 0.88  > R > 0.46, P < 2.2x10-308; Figure 2c and Table S2).  

 

To evaluate the effect of culturing hiPSC lines in a village on each gene, we utilized a negative binomial 

model framework to estimate the percentage of variance of the expression of each gene that was 

explained by either the line, replicate, or village (Figure 1b). Across all three sites, we observed that the 

hiPSC line explains the largest percentage of the gene expression variance (i.ei., inter-line variation; 

Figure 2d). This is supported by the observation that genes with the highest variance explained by the 

hiPSC lines included Y chromosome genes (e.g., EIF1AY - Table S3). Similarly, genes with larger inter-

line variation included genes that have been reported as expression quantitative trait genes (eGenes) in 

previous hiPSC eQTL studies (e.g., CHCHD2)21,22. These results suggest that culturing hiPSC lines in a 

village system does not significantly alter the transcriptome of each hiPSC line. 

 

Since the variation in CHCHD2 expression was largely described by the hiPSC lines and was previously 

described as an eGene, we next investigated whether we could detect the reported eQTL22 with our data. 

Indeed a previous eQTL between the single nucleotide polymorphism (SNP) rs2304376 was consistently 
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associated with CHCHD2 expression (4.3 < β < 8.2; Figure 2e). As reported previously, the reference A 

allele was associated with lower expression compared to the alternate G allele. This demonstrates that 

line-specific effects such as eQTLs can be consistently detected using village culture systems. 

 

In order to more directly test whether the village culture system impacts inter-line gene expression 

variation, we tested the correlation between the gene expression variance explained by uni-cultured and 

village samples. The percent of the variance of gene expression explained by the hiPSC line was highly 

consistent between the baseline and village samples (0.82 ≤ R ≤ 0.94; Figure 2f) which demonstrates that 

cell signaling in village cultures does not significantly alter unique hiPSC line transcriptional profiles. 

 

Finally, we evaluated whether the line and village effects were consistent across sites by estimating the 

variance of gene expression explained by the hiSPC lines (i.e., inter-line variation) or explained by the 

village status between sites. The relationship for the gene expression variance explained by the village 

(0.41 < R < 0.66; Figure S1a) was less than the relationship for the gene expression variance explained 

by the hiPSC lines (0.88 < R < 0.92; Figure S1b) These results indicate that the impact of culturing 

hiPSC lines in a village system on the cellular transcriptome is largely stochastic - indeed the mean 

percentage of variance explained by the village effect was only 1.1%. Conversely, the effect of the hiPSC 

line on gene expression variation is non-random and is consistently detected at independent sites which 

demonstrates that different laboratories using the same hiPSC lines for village experiments can produce 

the same results. 

 

Consistency of hiPSC line effects is not altered in villages 

The correlation of inter-line expression correlations were similarly high between uni-cultured and village 

samples (0.82 < R < 0.94; Figure 2f) as well as between samples from different sites (0.88 < R < 0.92; 

Figures S1b). However, it is difficult to detect whether the correlation is consistently high across all 

percentages of variance explained by the hiPSC lines (i.e., at 1% vs at 80% variance explained). 

Therefore, we next interrogated the relationship of genes by assessing the correlation of genes in windows 

of 100 - starting with the 100 genes with the lowest inter-line variation and sliding the window by one 

gene until the 100 genes with the highest inter-line variation were correlated (Figure 1c).  

 

To compare the results of the between-site and between-village correlation results, we identified the 

percent variance explained by the hiPSC lines at which a good correlation was achieved (Spearman � > 

0.5). The percent variance explained by the hiPSC lines at this threshold (Spearman � > 0.5) was not 

significantly different (P > 0.82) between the inter-village correlations (9.3% - 30.2%) and the inter-site 
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correlations (uni-culture: 12.0% - 23.0%, village: 13.9% - 23.4%; Figure S1c-e). These data demonstrate 

that 1) genes whose variance is only minimally explained by the hiPSC lines are stochastic and 2) the 

transcriptional differences observed between baseline and village samples are comparable to the 

differences observed between sites. Therefore, any variation in inter-line gene expression effects observed 

in village samples is reflective of normal, technical variation. 

 

hiPSC line effects of pluripotency genes are not impacted by villages 

It is important to understand the impact (if any) that the village culture system could have on gene 

expression denoting pluripotent state. We identified that, on average, a small percentage (< ~5%) of gene 

expression variance was explained by the hiPSC lines for common stem cell markers such as MYC, 

NANOG, SOX2 and POU5F15 (Figure 2g and Figure S1f). Even in scenarios where the village status 

explains a large percentage of the gene expression variation, the gene expression variation attributed to 

the hiPSC lines is highly consistent with the other sites (i.e., SOX2 at Site 3; Figure 2g-h and Figure 

S1f). Importantly, these data suggest that even when the village status impacts pluripotent gene 

expression, the hiPSC line effect is still detectable and consistent. 

 

Impact of village culture system in cryopreserved samples 

Since some experimental designs require cryopreserving cells at different time points, we investigated 

village effects comparing fresh and cryopreserved uni-culture and village culture samples (Figure 3a). 

 

Proportions of hiPSC lines following village culturing following cryopreservation 

Since village culture systems are only effective if cells from all hiPSC lines included in the culture can be 

detected, we first investigated whether we could detect all three hiPSC lines in our village samples by 

demultiplexing the samples and identifying the proportion of cells from each hiPSC line. We were able to 

identify cells from each hiPSC line and found that the proportions of the hiPSC lines when the village 

was generated for both fresh and cryopreserved samples were similar, indicating that the cryopreservation 

process does not significantly affect cells from specific lines. In addition, the proportions between the 

fresh uni-cultured and village-cultured samples were not significantly different (P=0.23). However, the 

proportions of each hiPSC line were different between the cryopreserved uni- and village cultured 

samples (Table S4). The cryopreserved results were consistent with the fresh village sample distributions 

from sites 1 and 2 (Figure 2b) which were plated at similar densities. This reinforces the importance of 

hiPSC growth rates when choosing compatible lines for hiPSC villages. 

 

Transcriptional profiles are unaffected by village culturing following cryopreservation 
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Next, we compared the transcriptional profiles of each of the hiPSC lines that were uni- and village 

cultured. We found that the expression profiles were well correlated (Pearson R > 0.46; Figure 3c and 

Table S5). Further, the inter-line variation explains the largest percentage of gene expression variance 

(Figure 3d). Again, the genes that demonstrated large inter-line variation included Y chromosome genes 

(i.e., EIF1AY) and genes previously reported as eGenes in hiPSCs (i.e., CHCHD2)21,22.  

 

Similar to the results from Phase I, the percentage of gene expression variation that was explained by the 

hiPSC lines was highly consistent between the uni- and village cultured samples (0.77 ≤ R ≤ 0.82; Figure 

3f). However, the contribution of the village status to gene expression variance was inconsistent between 

the fresh and cryopreserved conditions (R = 0.49; Figure S2a), from which we conclude that the variation 

explained by the village status was relatively stochastic. Conversely, the variance explained by the inter-

line variation was highly consistent between cryopreserved and fresh conditions (R = 0.91; Figure S2b). 

The genes whose variance was largely explained by the hiPSC lines included the Y chromosome gene 

EIF1AY and the previously reported eGene CHCHD2.  

 

We then tested for the previously reported eQTL between the rs2304376 and the CHCHD2 gene21,22 in 

these hiPSC lines and observed an effect consistent with that previously reported - the A allele was 

associated with lower expression of CHCHD2 compared to the G allele (4.3 < β < 11.7; Figure 3g). This 

effect was highly consistent across cryopreservation and village samples. These results support the 

conclusion that culturing hiPSC lines in a village model is not likely to impact the ability to identify line-

dependent transcriptional effects such as eQTLs. 

 

Consistency of hiPSC line effects is not altered in villages following cryopreservation 

The gene expression variance explained by the hiPSC lines was highly correlated between baseline and 

village samples (0.77 < R < 0.82; Figure 3f) as well as between fresh and cryopreserved samples (R = 

0.91; Figure S2b). However, it is not clear if that correlation is consistently high across all percentages of 

gene expression variation explained by the hiPSC lines (i.e., whether the correlation has the same strength 

at 1% and 90% of gene variance explained). In order to address this question, we assessed the same 

sliding window correlation approach used in Phase I. Each window included 100 genes and was moved 

by one gene to the next window until the 100 genes with the highest inter-line variance (Figure 1c). 

 

Assuming that the pairs of samples between fresh and cryopreserved samples at the same time (i.e., uni- 

or village culture samples) are representative of normal variation between samples, we can test whether 

the inter-culture method variation (i.e., uni- vs village culture samples) is reflective of normal variation 
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between samples. To test this, we compared the variance explained by the hiPSC lines that achieved a 

good correlation (Spearman � > 0.5) using the sliding window approach (Figure 1c). Indeed, we 

observed that the inter-time and inter-cryopreservation samples were not significantly different from one 

another (Wilcox Test, P = 0.21; Figure S2c-e). These data indicate that variation between baseline and 

village samples are reflective of normal sample-to-sample variation and that genes that have small inter-

line variation are relatively stochastic. 

 

hiPSC line effects of pluripotency genes are not impacted by villages culture following 

cryopreservation 

We next interrogated the expression variance explained for pluripotency genes (POU5F1, SOX2, NANOG 

and MYC, among others). Consistent with Phase I results (Figure 2h-i and Figure S1b), we observed that 

only a small percentage of the total pluripotency gene variances could be explained by the lines and that 

this effect was consistent between fresh and cryopreserved samples. This was true even when the impact 

of the village status on gene expression variation was large - for example the fresh SOX2 variance 

(Figure 3h-i and Figure S2h). 

  

Taken together, these results suggest that cryopreservation of villages does not significantly alter the 

proportions of each hiPSC line or their unique transcriptional profiles and suggests that village systems 

are indeed appropriate for population genomic studies. 

 

Dynamic effects of hiPSC line across cell state pseudotime 

From our results we conclude that culturing cells in village conditions does not significantly alter inter-

line variation in gene expression across cells. However, our results until this point do not take into 

account the potential variation in cell states. We next sought to determine the variance in gene expression 

explained in different cell states - for example differences in pluripotent potential or cells spontaneously 

differentiating.  

 

Using RNA velocity, we first positioned cells based on their estimated pseudotime trajectory (Figure 1d). 

As expected, we observed that the pseudotime landscape was strongly defined by pluripotency of the 

cells. The cells that had lower pseudotime values were more pluripotent and the cells with higher 

pseudotime had markers for spontaneous differentiation into the neural and epidermal ectoderm lineages 

(Figure 4a-e). To interrogate contributions to gene expression variation across the pseudotime, we split 

the pseudotime into quintiles (Figure 1d and Figure 4f) and assessed the variance explained by the 

hiPSC line, village status and replicates.  
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Gene expression variance explained by hiPSC lines is unaffected by villages across pseudotime 

Similar to our previous findings, the line effect explains a larger percentage of variance than the village or 

replicates (Figures S3a) and the relationship of variance explained between different sites for each 

quintile was stronger for the line than the village status (P < 0.001; Figure S3b). Further, we show that 

the correlation of the variance explained between quintiles was larger for neighboring quintiles (ie Q1 and 

Q2) than for distant quintiles (ie Q1 and Q5; Figure S3c-d).  

 

hiPSC line effect is dynamic across pseudotime 

The stronger similarity of inter-line variance between neighboring quintiles (Figure S3c ) suggests that 

the gene expression variance explained by the hiPSC lines is dynamic, although consistently changing 

across pseudotime. To test this hypothesis, we used linear models to estimate the relationship in the gene 

expression variance explained across quintiles - correcting for the different conditions (site 1, site 2, site3 

and site 3 Cryopreserved; Figure 1d). We identified 1,965 significant dynamic line effects - inter-line 

variation that consistently decreases or increases across pseudotime (FDR < 0.05, Table S6). Thirty-five 

of those significant dynamic effects had an effect size (β) between -0.05 and 0.05 (Figure 4g). 

Importantly, none of those significant dynamic genes were pluripotency genes - indicating that any inter-

line variation of pluripotency genes is consistent across pseudotime. 

 

The 35 genes with large dynamic effect sizes included the RARRES2 gene - a retinoic acid receptor 

responder that is an important chemoattractant for immune response23. The interline variation was larger 

for the more pluripotent quintiles (Q1) than the spontaneously differentiated quintiles (Q5; Figure 4h). 

This effect was highly consistent across different sites and replicates (Figure 4h-i), which confirms that 

village culture systems do not significantly alter transcriptional profiles - even across pseudotime or 

different cell states. 

 

RARRES2 has previously been described as an eGene in hiPSCs21 and a dynamic eGene dependent on 

aryl hydrocarbon receptor (AHR) activation24. The association between the dynamic eQTL rs2108852 

SNP genotype and RARRES2 expression in the pluripotent quintile (Q1) of the hiPSCs was consistent 

with the previously reported effect where the alternative C allele was associated with higher expression of 

RARRES2. Further, this effect (β) continuously decreased with each sequential quintile (Figure S5e). 

rs2108851 is also in high linkage disequilibrium (R2 = 0.86) with the eQTL SNP previously described in 

hiPSCs (rs11766288), and demonstrates the same allelic direction of effect21. These results support the 
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conclusions that sensitive, dynamic differences in the inter-line expression variation in hiPSC lines can be 

effectively detected using village culturing systems. 

 

Collectively, these data demonstrate that village culture methods can be effectively used for population 

genomic studies with hiPSC lines. We have also demonstrated that cryopreservation does not alter the 

transcriptional profiles or hiPSC line proportions and even sensitive dynamic effects can be reproduced 

with village systems. 
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Discussion 

 

Advances in human genetics, stem cell biology, and single cell technologies have given rise to the 

convergence of these research domains that allows better evaluation of the complexity of human genetic 

regulation. Population genomic studies using hiPSCs and hiPSC-derived cells have steadily increased in 

sample size and frequency as more hiPSC lines have become available and methods for culturing hiPSCs 

and hiPSC-derived cells have developed. However, maintaining hiPSCs and hiPSC-derived cells is still 

expensive and time consuming which compromises the ability to apply large-scale population genomic 

studies with consistency. 

 

To date, the majority of population genetics hiPSC studies have been conducted using bulk sequencing 

methods - which means that the transcriptomes of all the cells in a sample are combined and assayed 

together as one. These studies have provided significant new knowledge on the role of genetic variation in 

genome regulation, although by using bulk sequencing approaches, they effectively remove any 

heterogeneity in a sample which is important for cell type-specific and context-specific effects. We argue 

that in contrast, single cell technologies provide a powerful solution for this challenge, as individual cells 

are assayed separately and context-specific effects can be interrogated. Indeed, a few recent studies have 

demonstrated that single cell and deconvolution methods applied to hiPSCs and hiPSC-derived cells can 

be used for detection of pQTLs11 and eQTLs, and identify context-specific effects2–4,8. 

 

Studies that have used village culture systems coupled with scRNA-seq have employed computational 

demultiplexing approaches to effectively obtain RNA measures for each cell from each hiPSC line2,8. 

Those studies have identified context-dependent eQTLs, but have not assessed the potential impact of cell 

signaling in the village culture system, and whether it alters the transcriptional profiles of companion 

lines. They detected a lower number of eQTLs per cell type than anticipated for the sample sizes which 

could have been partially due to introduction of non-genetic variance as a result of the village model2,8. 

Therefore, to confidently use village models for future population-scale experiments, there was a critical 

need to thoroughly assess whether using a village culture system would alter the transcriptional profiles of 

the cells from each hiPSC line. Our experimental procedure was specifically designed to address that 

question and provide a roadmap to village culture experimental design. 

 

Our results demonstrate that, while it is important to consider hiPSC line growth rates, village 

experimental culture systems do not alter the unique transcriptional profiles of each hiSPC line and are 

therefore an applicable system for population-scale experiments. Importantly, we were able to detect each 
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hiPSC line in all samples, and consistently identify line-dependent variation. Transcriptional profiles were 

highly consistent in villages and at different sites which also demonstrates that village experiments could, 

theoretically, be conducted across multiple sites. In addition, cryopreservation had no detectable effect on 

transcriptional profiles regardless of whether they were cryopreserved at the time of forming the village 

or after being cultured in a village. Therefore, we conclude that line-dependent studies like QTL studies 

can effectively be carried out by using village culturing designs.  

 

The advantages gained from using single cell data to obtain purer cell subtypes and from leveraging 

village culture systems to increase throughput are extensive. In our opinion, these advantages 

significantly outweigh the possibility of not detecting a small effect size QTL for studies in hiPSCs. 

Village systems - paired with single cell technologies - promise to revolutionize the field of population 

genomics of gene regulation.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.457030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.457030
http://creativecommons.org/licenses/by-nc/4.0/


14 

Materials and Methods 

Ethics 

The research carried out in this study was in accordance with the Declaration of Helsinki and approved by 

the Human Research Ethics committees of the University of Melbourne (1545394), the Garvan Institute 

of Medical Research (ETH01307) and the University of Queensland (2015001434). 

 

hiPSC Cell Culture 

1mL aliquots of each of the hiPSC lines FSA0006, MBE1006 and TOB042120 (passage 18; 

Supplementary Table S3) were thawed at each site on the same day and plated in StemFlex media (Life 

Technologies; Catalog Number: A3349401; Lot Number: 2093181) complete with StemFlex Supplement 

(Life Technologies, Catalog Number: A33492-01; Lot Number: 2090179) with Rock inhibitor Y-27632 

(10µM final concentration; Stem Cell Technologies; Catalog Number: 72304) on Costar non-treated 6 

well polystyrene plates (Catalog Number: 3736; Lot Number: 30417038) coated with Vitronectin XF 

(Stem Cell Technologies; Catalog Number: 07180; Lot Number: 18B87584) diluted in CellAdhere Buffer 

(Stem Cell Technologies, Catalog Number: 07183; Lot Number: 18M979058). Cells were subcultured 

once a week with ReLeSR for two weeks (Stem Cell Technologies; Catalog Number: 05872) before equal 

numbers of the hiPSC lines were combined and plated together. The same lot number of all reagents were 

used between the three locations (University of Queensland in Brisbane, the University of Melbourne in 

Melbourne and the Garvan Institute of Medical Research in Sydney). 

 

scRNA-seq Capture 

Totalseq-A antibodies (Biolegend) were used to hashtag hiPSC pools from each different location 

(University of Queensland, Garvan Institute of Medical Research and University of Melbourne) before 

combining and superloading onto the 10X Genomics Chromium Controller (10x Genomics) to capture 

single cells. Briefly, 1x106 cells from each replicate at each site were centrifuged at 300g for three 

minutes and the supernatant was discarded. The cell pellets were resuspended in 100µL cold 

Fluorescence-Activated Cell Sorting (FACS) buffer (phosphate buffered saline [PBS] with two percent 

fetal bovine serum [FBS]). Then, 2µL of Totalseq-A hashing antibody was added and the cells were 

gently pipetted to mix before incubating for 20 minutes on ice. Cells were then washed twice with FACS 

buffer by centrifuging at 300g for 5 minutes, discarding the supernatant and resuspending the cell pellet in 

100µL cold FACS buffer. Cells were briefly stained with 4′,6-diamidino-2-phenylindole (DAPI) before 

using flow cytometry (BD FACS Aria, 100um nozzle, 4-way purity mode, temperature controlled) to sort 

and capture live single cells. Cell pools contained one sample from each site. Trypan blue was then used 

to assess the pool viability (> 75% viable). Approximately 32,000 cells were loaded onto the Chromium 
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Single Cell Chip B (10X Genomics; Catalog Number: PN-1000073) in order to capture 20,000 single 

cells with the Gel Bead Kit V3.0 (10x Genomics; Catalog Number: PN-1000076).  

 

GEM generation, barcoding, cDNA amplification, and library construction were performed according to 

the 10x Genomics Chromium User Guide (CG000183). Libraries were prepared with the Single Cell 3' 

V3.0 Library and Gel Bead Kit (10x Genomics; Catalog Number: PN-1000077 and PN-1000078 ).  

 

scRNA-seq Read Alignment 

The 10x Genomics Cell Ranger Single Cell Software Suite (version 3.1.0) was used to process the 3’ 

single cell RNA-seq libraries (chemistry v3). Raw base calls were used to demultiplex the multiplexed 

pools, which were then mapped to the GRCh38-1.2.0 genome (Ensembl release 84) using STAR for 

each pool independently. 

 

scRNA-seq Demultiplexing and Doublet Detection 

The lines in the scRNA-seq pools were demultiplexed using SNP genotype demultiplexing with Popscle 

Demuxlet v0.1-beta13, Popscle Freemuxlet v0.1-beta25, scSplit v1.0.114, Souporcell v1.015, and Vireo 

v0.4.212. These methods both demultiplex the different hiPSC lines in the pools and identify doublets 

between two different lines. The recommended guidelines were followed for each of the demultiplexing 

softwares as briefly described. 

 

Popscle Demuxlet 

Popscle pileup was used to identify the single nucleotide variants (SNVs) in the pool. Then, Demuxlet 

was run with reference genotypes for each hiPSC line in the pool using a genotype error coefficient of 1 

and genotype error offset rate of 0.05 and default options for all other parameters. 

 

Popscle Freemuxlet 

Popscle pileup was used to identify the single nucleotide variants (SNVs) in the pool followed by 

Freeuxlet executed with default parameters. 

 

scSplit 

Low quality and duplicated reads were removed before using freebayes to classify high quality SNVs in 

the dataset. The resulting bam and vcf were used for scSplit using default options and the -n 3 option to 

provide the number of hiPSC lines in the pool. 
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Souporcell 

Souporcell was run using the souporcell_pipeline.py script with known variant locations from the 

reference imputed SNP genotypes that overlapped gene exons using the --common_variants parameter 

and all other default parameter options. 

 

Vireo 

Model 1 of cellSNP v0.3.2 was used to identify allele frequencies at the locations of the common variants 

(MAF = 0.1) in the genotyped reference genotype file for the three hiPSC lines. The resulting pileup was 

filtered for SNP locations that were covered by at least 20 UMIs and had at least 10% minor allele 

frequency across all droplets. Vireo version 0.4.2 was then used to demultiplex the droplets in the pool 

using reference SNP genotypes and indicating the number of individuals in the pools. 

 

Scrublet 

Scrublet was used to identify transcription-based doublets that included two cells from different cell types 

in. Scrublet was implemented in python v3.6.3 per developer recommendations with at least three counts 

per droplet, three cells expressing a given gene, 30 PCs and a doublet rate based on the following 

equation: 

� �
� �  0.008

1000
 

where N is the number of droplets captured and R is the expected doublet rate. Scrublet was assessed at 

four different minimum numbers of variable gene percentiles: 80, 85, 90 and 95. Then, the best variable 

gene percentile was selected based on the distribution of the simulated doublet scores and the location of 

the doublet threshold selection. In the case that the selected threshold does not fall between a bimodal 

distribution, those pools were run again with a manual threshold set. 

 

Hashtag Demultiplexing 

Hashtag demultiplexing17 was used to identify cells from each location and doublets that included cells 

from two different locations.  

 

Droplets that were classified as singlets by at least four of the SNP-based demultiplexing or transcription-

based doublet detecting softwares as well as the hashtag demultiplexing and were classified as the same 

hiPSC line by at least three of the SNP-based demultiplexing softwares were retained for downstream 

analysis. All other droplets were excluded. 
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Quality Control 

Droplets were considered outliers and excluded from further analysis if they were more than four median 

average deviations (MAD) from the mitochondrial percent median or contained less than 1,750 total 

genes. This resulted in 88,927 high quality single cells to be used for downstream analysis. Cyclone from 

the scran package v1.4.526 was used to detect the cell cycle state of each cell. The quality control metrics 

for these high-quality single cells for the fresh samples (Figure 2a) are presented in Figure S4 and the 

cryopreserved experiment samples (Figure 3a) are presented in Figure S5. 

 

Data were normalized with a regularized negative binomial regression and variance stabilized with 

Pearson residuals as previously described27. Expression data were also corrected by cell cycle status, 

mitochondrial percent and ribosomal percent. 

 

Correlation of Transcriptional Profiles 

The mean expression of each gene for each hiPSC line at each site was compared between baseline and 

village samples with a Pearson correlation. 

 

Covariate Contribution to Gene Variance 

The proportion of the variance explained by the hiPSC line, the replicate and the village status for each 

gene was determined by fitting a negative binomial model for normalized UMI counts of each gene 

following a method previously described28. Briefly, normalized UMI counts were fit as the dependent 

variable of a negative binomial model with the independent variables fit as random effects. The intercept 

and variance were then used to estimate the within-cluster variance (
����
��) for each independent 

variable (
������� 1) where ���
�is the marginal expectation defined in 
������� 2. 

�1�      
����
��  �  ����

���  �  �
������  �  1� 

 

�2�  ���
� �  
�����    

��

2
� 

 

Sliding Window Methods for Identify Consistency Gene Variance Explained  

To identify the percent variance explained by hiPSC line effects that were consistent between conditions 

(between different sites or different times) we used a sliding window approach. Each window included 

100 genes and was shifted by one gene starting with the 100 genes with the lowest variance explained by 

the hiPSC lines and ending with the 100 genes with the highest variance explained by the hiPSC lines. 
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The spearman correlation coefficient was calculated for each pair of sites at each time (baseline or 

village) and for each pair of times at each same site. 

 

RNA Velocity Pseudotime 

Pseudotime was estimated using RNA velocity implemented with the scvelo29 package (v0.2.3) to 

estimate latent time of all single cells. First, sequence reads overlapping spliced and unspliced read count 

matrices were prepared using velocyto30  (v0.17.17). Cells that had less than 1000 unspliced counts and 

genes that were expressed in less than 20 cells and had less than 10 unspliced counts were filtered and 

removed. The batch effects were normalized using pycombat31 (Combat v0.3.0) using a proposed 

approach32. Briefly, the spliced (!) and unspliced (") counts were combined to create the total counts 

matrix (#;  
������� 3). An additional matrix (�) was also constructed to aid in deriving the corrected 

spliced (!�) and unspliced ("�) matrices following batch correction of #(
������� 4�. Then M was 

corrected for site, hiPSC line and village status batch effects using pycombat. Following batch correction, 

batch corrected splicted (!�) and unspliced ("�) matrices were derived using the �matrix (
�������' 5& 

6). 

 

�3�    # �  !   " 

 

�4�       �  �  
!

!   "
 

 

�5�      !�  �  #�  �  � 
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Those matrices were then used to calculate the dynamical RNA velocity latent time with the scvelo 

package. 

 

Integrating Conditions for Visualization 

Cells from each cell line in each village status and at each site were integrated for visualization using the 

reciprocal principal component analysis (RPCA) method implemented with the Seurat package (v4.0.0)33.  
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Figure Legends 
 

 
 

 

 

Figure 2: Impact of village culturing system. a) Experimental design to test impact of village culturing 
systems of hiPSC transcriptional profiles. The same experiment was carried out at each of the three 
different sites in triplicate. b) The proportions of each of the three hiPSC lines at each of the three different 
sites at baseline and after culturing the cells in a village. The proportions between baseline and village are 
different at Sites 1 and 2 but the same at site 3. c) Pearson correlation between the expression profiles of 
each hiPSC line at each Site at baseline and after village culturing demonstrates a strong relationship 
between the two conditions (0.46 < R < 0.88). d) The variance in gene expression explained by the hiPSC 
line, replicate and village status demonstrates that the hiPSC line explains a larger percentage of the 
variance than the replicate or village status. e) The previously-reported eQTL for CHCHD2 demonstrates a 
strong and consistent effect across different Sites and village status which is even slightly stronger for the 
cells cultured in a village as compared to when they were cultured separately. f) The variation in gene 
expression that can be explained by the hiPSC lines is highly correlated between baseline and village 
samples at each site (Pearson correlation: 0.82 ≤ R ≤ 0.94). g-h) The variance of important stem cell 
markers explained by the hPSC lines was relatively small < 5% and was not impacted by the variance 
explained by the village status. hiPSC: human induced pluripotent stem cell. 

Figure 1: Experimental Design and Analytical Approaches. a) The experimental design to test for the 

impact of village culture conditions on individual hiPSC lines using scRNA-seq. Phase I compares the 

impact of the village culture system using fresh samples collected at each site. Phase II investigates 

whether cryopreservation of village samples impacts individual hiPSC lines. Phase III utilizes all samples to 

investigate dynamic effects of the hiPSC lines across pseudotime. Each phase utilizes expression matrices 

that are separated by condition (site for phase I, cryopreservation status for phase II and pseudotime for 

phase III) as well as covariate matrices for each condition that contain the hiPSC line, replicate and village 

status. b) A negative binomial model is used to estimate the variance of expression for each gene that is 

explained by each covariate. Those estimates are calculated for each condition in each Phase of the 

experimental design and used for downstream analyses. c) Correlation is used to assess the consistency 

of the variance explained between different conditions. Then, to further interrogate the point at which 

the relationship between the two conditions is more consistent, we correlate the variance explained in 

windows of 100 genes and slide the window by one across all of the genes until the last 100 genes. Those 

correlation coefficients are then plotted to demonstrate trends in the correlations and identify the points 

at which a consistent increase in the correlations are achieved. d) The pseudotime is estimated for the 

cells from all samples and they are then partitioned into quintiles. Then, the dynamic effects of the 

variance explained by the hiPSC lines across the quintiles is detected with a linear model. x3: samples in 

triplicate; 10x Genomics: 10x scRNA-seq capture.  
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Figure 4: Dynamic Variance Explained Across Stem Cell Pseudotime. a) Pseudotime was defined by 
pluripotency markers and ectodermal markers with the lower pseudotime corresponding to spontaneously 
differentiated cells. b) The pseudotime projected onto the UMAP of all cells. c-e) Markers representative of 
the three groups defining the pseudotime: pluripotency (POU5F1), Neural Ectoderm (LIX1) and Epidermal 
Ectoderm (PTN). f) The quintiles used for dynamic variance explained detection projected onto the UMAP. 
g) The top dynamic variance explained genes. h-i) For example, RARRES2 demonstrates a consistent 
decrease in variance explained across the different quintiles described by each Site. 

Figure 3: Impact of village culturing system on cryopreserved samples. a) The experimental design to 
test the effect of the village culturing method with cryopreservation - only carried out at Site 3. b) The 
proportion of each hiPSC line was consistent for the fresh but not the cryopreserved samples c) The 
expression profiles of each hiPSC line for fresh and cryopreserved samples are well correlated (Pearson 
correlation: 0.46 < R < 0.62). d) The expression variance explained by the hiPSC lines, the replicate and 
the village status  shows that the hiPSC line explains the largest percentage of the gene expression 
variance. e) Testing for the previously reported eQTL between the rs2304376 SNP and CHCHD2 
expression demonstrates a strong relationship between the SNP genotype and CHCHD2 expression level. 
Further, the effects are consistently higher for hiPSC lines cultured as a village than when cultured 
separately. f) The variance observed in gene expression was strongly correlated between baseline and 
village sample for both fresh and cryopreserved samples (Pearson correlation: 0.77 < R < 0.82). g-h) The 
hiPSC lines explained a small < ~5% of the variance of important stem cell markers which was unaffected 
by the village status. 
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