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Abstract  27 

Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune 28 

response towards different infections, enabling inference of B cell development processes. Detailed 29 

compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of 30 

pandemic, epidemic and endemic viral infections with control and vaccination samples, 31 

demonstrates general responses including increased use of IGHV4-39 in both EBOV and COVID-19 32 

infection cohorts. We also show unique characteristics absent in RSV infection or yellow fever 33 

vaccine samples: EBOV survivors show unprecedented high levels of class switching events while 34 

COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal 35 

expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre 36 

mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is 37 

also pertinent that we find significant differences in repertoire characteristics between young and 38 

old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong 39 

but immature humoral response where failures in selection of the repertoire risks off-target effects. 40 

  41 
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Introduction 42 

The emergence of SARS-CoV-2 in 2019, the ensuing pandemic and evolution of novel variants 43 

continues to make COVID-19 a matter of global public health significance. The recent SARS, MERS, 44 

Zika and Ebola outbreaks have also highlighted a need to better understand how the human immune 45 

system responds to novel infections, develop better treatments and control their emergence and 46 

spread. Initial reports from the COVID19 pandemic, relying heavily on serum antibody titres, saw 47 

rapid declines in SARS-CoV-2 specific antibodies1 that raised concerns over the nature and duration 48 

of B cell memory. While total antibody titres decrease the persistent presence of SARS-CoV-2-49 

specific memory responses some months after infection mitigates these concerns2,3. 50 

Immunoglobulins (Ig), both as secreted antibodies and as B Cell Receptors (BCRs), mediate immunity 51 

against multiple pathogens through their vast variability in antigen binding. This variability is 52 

produced by V-D-J recombination 4, where V, D and J genes are recombined from a pool of diverse 53 

genes. B cells with Ig genes encoding disease-specific antibodies are expanded upon challenge, 54 

causing a skewing of the repertoire towards greater use of antigen-specific genes associated with 55 

the challenge in question. Furthermore, the imprecise joining of gene segments, together with the 56 

action of terminal deoxynucleotidyl transferase (TdT) creates a highly diverse complementarity 57 

determining region (CDR)3 region, which is important for antigen binding, and can be used to 58 

identify “clones” of B cells within a repertoire. These clonal assignments allow us to track lineages 59 

and follow the progress of the post-activation diversification events of somatic hypermutation (SHM) 60 

and class switching (CSR) as the B cell response develops.  Thus, repertoire analyses can help to 61 

characterise changes in the memory/effector B cell compartments and identify individual genes of 62 

interest for possible antibody therapeutics.  63 

Both SHM and CSR are mediated by the enzyme Activation Induced cytidine Deaminase (AID) and 64 

have traditionally been associated with germinal centre events in secondary lymphoid tissue, 65 

involving T cell help 5–7.  There is, however, also evidence that CSR may occur outside the germinal 66 

centre environment 8–11 and may not require direct T cell help. The ability of a B cell to mount a 67 

directed effector response prior to the formation of a germinal centre allows a more rapid immune 68 

response but with lower affinity.  69 

Immune responses are often impaired in older people, which has been of particular concern in 70 

COVID-19 patients. The older immune system has shown reduced responses to vaccination, 71 

frequently with higher numbers of autoreactive antibodies and inflammatory cytokines12–14. In B cells 72 

we, and others, have shown that particular subsets of B cells are altered with age: IgM memory cells 73 

(CD19+CD27+IgD+) are decreased in older people while the Double Negative (CD19+CD27-IgD-) are 74 

increased 15,16. Since IgM memory cells are often associated with a T-independent response, the 75 

decrease in IgM memory in older people could have severe consequences in infections where a rapid 76 

extrafollicular response is required17,18.  It has also been shown that the B cell repertoire is skewed 77 

towards sequences with longer more hydrophobic CDR3 regions as we age16,19.  As an immune 78 

response can result in a shift towards lower, less hydrophobic CDR3 regions14,20, and higher 79 

hydrophobicity has previously been correlated with increased polyspecificity21–23, the older immune 80 

repertoire seems to be disadvantaged in this respect. 81 

In this study we took a long-read repertoire amplification approach that allowed us to track the V-D-J 82 

clonal lineages in the context of antibody subclass to better understand, compare and contrast B cell 83 

responses to emerging or endemic viruses. Samples were taken from COVID19 patients during and 84 

after infection, Ebola virus disease (EBOV) survivors from West Africa and the UK, volunteers 85 

challenged with Respiratory Syncytial Virus and compared with samples from healthy donors. We 86 
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report the variation of repertoire between disease states in novel virus infection, with a focus on 87 

elderly who are known to respond less well to infection, particularly in SARS-CoV-2.  88 

Methods 89 

Sample collection 90 

Whole blood samples (RSV, COVID19, Healthy) were collected into TempusTM Blood RNA tubes, kept 91 

at 4°C, and frozen down to -20°C within 12 hours. Ebola samples were cone filters from 92 

plasmapheresis, dissolved in Tri reagent. RNA was extracted using TempusTM kits according to 93 

instructions. Healthy samples taken after SARS-CoV-2 emergence were all confirmed negative for 94 

anti-SARS-CoV-2 antibodies by SureScreen lateral flow test and by ELISA 24. Ebola RNA blood samples 95 

were collected from convalescent patients with viral RNA negative PCR tests in the 2014-2016 West 96 

African outbreak, three patients were Caucasian treated in the UK, and the remaining were 97 

convalescent plasma donor participants from a trial in Sierra Leone25 (consented under the Sierra 98 

Leone Ethics and Scientific Review Committee ISRCTN13990511 and PACTR201602001355272 and 99 

authorised by Pharmacy Board of Sierra Leone, #PBSL/CTAN/MOHS-CST001). COVID-19 samples 100 

were collected from SARS Cov 2 positive patients at Frimley and Wexham Park hospitals during 2020 101 

(consented under UK London REC 14/LO/1221). Each participant was attributed a “severity score” in 102 

relation to their fitness observations at the time of hospital admission using the metadata collected. 103 

This score used the “mortality scoring” approach of SR Knight et al. adapted to disregard age, sex at 104 

birth and comorbidities, and ranged from 0 to 6; patients scoring 0 to 3 were attributed low severity 105 

and patients scoring 4 to 6 were attributed high severity25. Convalescent COVID-19 patients, from 106 

hospital sampling, were contacted for further donations and sample taken 2-3 months post hospital 107 

discharge.  RSV samples were collected from participants who took part in a human challenge study 108 

and were monitored for infection by viral PCR tests (consented under UK London REC 11/LO/1826). 109 

Briefly, healthy participants were challenged intranasally with 104 plaque-forming units of the M37 110 

strain of RSV and monitored for up to 6 months as previously described 26.  111 

Repertoire Library Generation 112 

Tempus tube samples were defrosted at room temperature and RNA was extracted using the 113 

Tempus RNA extraction kit according to the manufacturer’s instructions. RNA samples were 114 

template switch reverse transcribed using SMARTScribeTM reverse transcriptase (Clonetech) 115 

according to manufacturer’s instructions using the SmartNNN TSO Primer (Supp. Methods Table 1) 116 

with a minimum of 170 ng of RNA input. The sample was then treated with 0.5 units/l of Uracil-117 

DNA Glycosylase (NEB) for 60 min at 37°C to reduce UMI interference, then incubated at 95°C for 10 118 

min to inactivate the enzyme. Samples were amplified using Q5 polymerase (NEB) according to 119 

manufacturer’s instructions with an annealing step of 65°C for 20s and extension step of 72°C for 50 120 

s for 21 cycles. Round one of PCR was performed with forward primer Smart20 and mixed heavy 121 

chain (IG[M, G, A]-R1) reverse primers (Supp. Methods Table 1). For PCR1 8 x 20 l reactions were 122 

performed with 1 l of RNA input per reaction. A semi-nested 2nd PCR was performed with forward 123 

primer PID-Step and reverse primers IG[M/G/A]-R2 (Supp. Methods Table 1); 16 reactions of 20l 124 

each was performed for each isotype with the same thermal cycling conditions as PCR1 but with 12 125 

cycles, with 1l of template. The primers in PCR2 also contain Patient Identifier (PID) sequences to 126 

allow multiplexing on PacBio (Supp Methods Table 2). Samples were run on a bioanalyzer (Agilent 127 

7500), isotypes from patients were pooled at equal concentrations and concentrated using Wizard 128 

PCR Clean-up kits (Promega) according to manufacturer’s instructions with 30 l of elute. Each 129 

isotype was then purified using a PippinPrepTM with Marker K reagents (Sage Biosciences) used as an 130 

external ladder reference (IgM/G/A 600-100bp). The concentration was checked using a DNA 131 

quantification kit on the Qubit according to manufacturer’s protocol, the different isotype samples 132 
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were pooled at equal concentrations and purified with SPRIselect beads (Beckman Coulter) at X0.8 133 

sample volume with elution in 30l of TE buffer. Sequencing was performed on either the PacBio 134 

RSII or Sequel platforms (See Supp. Methods Table 2).  135 

Quality control, data cleaning and removal of multiplicated UMIs was carried out as previously 136 

published16,27. Immunoglobulin V-D-J gene usage and CDRH3 was determined using IMGT/High V-137 

quest. Clonotype clustering was carried out as per16,27, in brief: a Levenshtein distance matrix was 138 

generated on the CDRH3, hierarchically clustered and branches cut at 0.05 to generate clones. 139 

Physicochemical properties were calculated using the R Peptides package 28 .  140 

Analysis of clonal diversity 141 

We sought for methods to qualitatively (visualising clone size distribution) and quantitatively 142 

compare clonal diversity (calculating metrics which summarise clonal diversity). We first noted, as 143 

one would expect, that sequencing depth (i.e., number of sequences sampled per repertoire) was a 144 

strong predictor of the number of clones (Supplementary Figure S1). For all repertoires considered 145 

here, a wide range of sequencing depth was observed (number of sequences range from 836 to 146 

105,323, median = 12,040). We therefore adopted the following procedure in this analysis: first, to 147 

quantify the extent of clonal diversity we used the Gini coefficient which measures the evenness in 148 

the distribution of clone size across clones; application of this metric to quantify BCR clonal diversity 149 

has been well documented 29–31. For a given repertoire, clones were ordered by their clone sizes, and 150 

the cumulative distributions of clone sizes (in terms of percentage of sequences in repertoire) and its 151 

percentile distribution were compared for evenness. As such, the resulting metric was independent 152 

from the absolute numbers of sequences and clones, thereby allowing fair comparison across 153 

repertoire of different sequencing depths. As Gini coefficient is an indicator of evenness, we took (1 154 

– Gini coefficient) as the metric of clonal diversity. To qualitatively compare clonal diversity, we 155 

generated visualisation using the following procedure to minimise the impact of sequencing depth 156 

differences: we first sampled 12,000 sequences (≈ median sequencing depth; see above) from each 157 

repertoire; for repertoires with less than 12,000 unique observations, this number of sequences 158 

were sampled with replacement. We then sampled up to 100 clones with probability scaled by clone 159 

sizes to generate bubble plots where each bubble represents a clone and bubble sizes are scaled 160 

with clone sizes. Genotypic features like V gene usage can be represented as colours. Such plots 161 

were included in Figure 2c.  162 

Analysis of BCR clone lineage trees 163 

Lineage trees were reconstructed using the maximum parsimony method implemented in the 164 

dnapars executable in the phylip package32. All clones with at least 3 sequences were considered; 165 

IMGT-gapped, V-gene nucleotide sequences of all observations in the clone together with the 166 

annotated germline V-gene sequence (included to root the tree) were included as input to dnapars. 167 

Functionalities implemented in the alakazam R package33 were used to call dnapars and reformat the 168 

output into text-based tree files (newick format) and directed graphs (igraph objects manipulated in 169 

R). The directed graphs were further parsed using functions in alakazam and igraph to obtain, for 170 

each observed sequence in the given clone, its distance D from the given germline gene g (denoted 171 

here as 𝐷𝑔), as estimated by the dnapars-reconstructed lineage tree: the closer this distance is to 0, 172 

the closer the sequence is to germline and therefore a lower mutational level. 173 

We sought to summarise, for a given clone, the distribution of 𝐷𝑔; this distribution would indicate 174 

the overall mutational level of sequences within the clone (summarised using conventional statistics 175 

like the median of 𝐷𝑔) and the evenness of mutational level (i.e. whether the clone consists of 176 

expansion of sequences with a similar mutational level, or it comprises sequences with a wide range 177 
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of mutational levels). This can be visualised as a heatmap (clones [vertical axis] versus 𝐷𝑔 [horizontal 178 

axis], with colours scaling with density of the distribution; see Figure 5b), or as a curve (clones 179 

[vertical axis] versus the median of 𝐷𝑔 [horizontal axis], See Figure 5c). The curve representation 180 

allows calculation of area-under-curve (AUC) as a metric which we termed “Germline Likeness”, to 181 

quantify mutational levels across clones. This is similar to quantifying sequence similarity to 182 

germline, except that here Germline Likeness quantifies the tendency to which all clones from the 183 

BCR repertoire of a given individual have high similarity to the germline (and therefore lower 184 

mutational levels). 185 

Detecting class-switch recombination events from lineage trees 186 

Since the lineage trees were constructed using only V-gene sequences (see above), in theory 187 

antibody sequences of different subclasses could be ordered in the tree in a way that imply class-188 

switch recombination (CSR) events which are mechanistically impossible. We therefore pruned the 189 

dnapars-reconstructed tree to remove edges which imply CSR events that violates the physical order 190 

of constant region genes in the human IGH locus. This was performed using a Python 191 

implementation of the Edmond’s algorithm to construct a minimum spanning arborescence tree 192 

with the given germline V gene sequence as root. With this arborescence tree the type of CSR 193 

(subclass switched from/to) and the distance-from-germline at which the CSR event occurred 194 

(estimated as the median distance-from-germline of the two observations relevant to the given 195 

event) were obtained. 196 

Convergent network 197 

Productive heavy chain sequences with CDRH3 of length shorter than 30 amino acids were 198 

considered in the construction of a convergent network. Sequences were connected if they meet the 199 

following criteria (a) same V and J gene usage; (b) from different individuals; (c) same CDRH3 amino 200 

acid length, and (d) ≥85% CDRH3 amino acid identity. To allow interpretation of possible targets of 201 

sequences in convergent network clusters, known binders were included in constructing the 202 

network. Known binders were taken from the following sources: first experimentally determined 203 

antigen-antibody structural complexes deposited in the Protein Data Bank (PDB). PDBe was queried 204 

on 19 May 2021 with the search term ‘Organism: Severe acute respiratory syndrome coronavirus 2’. 205 

The resulting list of PDB entries were overlapped with entries in the SAbDab structural antibody 206 

databases34 to obtain list of PDB complexes of antibodies and SARS-CoV-2 proteins. A total of 215 207 

heavy chains from 186 structures were considered. Second, known binders validated in experiments 208 

where antibody variable regions were cloned and assessed for SARS-CoV-2 protein binding were 209 

taken from published work 35–40 . All known binder sequences were annotated for V/J gene usage 210 

using either IMGT/High-VQuest (if DNA sequences were provided) or IMGT/DomainGapAlign (if only 211 

amino acid sequences were provided). Information regarding specificity (i.e. SARS-CoV-2 protein 212 

targets) were obtained from either supplementary data files in the cited publications or by visual 213 

inspection (for PDB structures). Supplementary Table S5 contains all known binder sequences 214 

included in this analysis. To construct the network, known binders were connected to one another 215 

and to repertoire sequences using the identical criteria mentioned above. In total 809 unique CDRH3 216 

sequences were considered in constructing the convergence network. The resulting network 217 

contains 7500 sequences (7370 from repertoire, 130 known binders). Analogous convergent 218 

networks were constructed using the Ebola and RSV repertoire data, separately considered with 219 

respective known binders and Healthy individuals’ repertoire; the majority of clusters were formed 220 

mainly of sequences from Healthy donors absent of known binders41–44, although we were able to 221 

identify two convergent clusters of RSV-infected individuals with similar CDRH3 to known binders of 222 

the RSV fusion glycoprotein (Supplementary Figure S6). To investigate whether clusters shared 223 

across disease conditions exist, convergent networks were also constructed considering CV, RSV and 224 
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EBOV repertoire and binder sequences altogether (Supplementary Figure S7). Supplementary Table 225 

S6 contains all convergent networks constructed, presented as list of pairwise sequences. 226 

Statistical analysis and Data visualisation 227 

V-D-J gene usage for each patient was turned into a proportion to normalise for different numbers 228 

of sequences and allow for comparison. Gene usage analysis was performed in GraphPad Prism 8.4.3 229 

using a two-way ANOVA with a Dunnett’s post hoc test. All other statistical analyses were performed 230 

in the R statistical computing environment (version 4.0.2). Data visualisation was performed using 231 

the R ggplot2 package and the following specialised R packages: visNetwork (for visualising 232 

convergent CDRH3 network clusters) and ggseqlogo (for visualising CDRH3 sequence logos). PDB 233 

structures were visualised using PyMOL (version 2.3.0). Histograms of CDRH3 length and 234 

hydrophobicity, as measured by Kidera factor 4, were constructed on the Brepertoire website45. 235 

Results 236 

Patient cohorts 237 

IGH sequences, of total V-D-J plus ~150-200 bp of C regions, were obtained from pandemic, 238 

epidemic and endemic diseases and stages along with 24 healthy controls across multiple age ranges 239 

(Figure 1, Table 1). This included: 16 hospitalised COVID-19 patients (CV19), 5 of these patients had 240 

follow-up convalescent samples (CV19-Recovered, hereafter CV19R), 12 Ebola convalescent plasma 241 

donors (EBOV), 12 participants challenged with RSV; 6 of whom became infected (RSV-I) and 6 of 242 

whom did not (RSV-U). Healthy Samples (Healthy) were a grouping of YFVD0, RSVD0 and samples 243 

taken as controls during the COVID pandemic (n=24).  Numbers of sequences varied from 836 to 244 

105,323, median = 12,040 per sample, IGH gene usage for each patient was expressed as a 245 

proportion of the total in order to normalise for differences in sequence numbers between different 246 

samples. 247 

IGH gene repertoire changes in response to viral infection  248 

Although the humoral immune response is varied, with different subclasses of antibody having 249 

different effector functions46, many methods of repertoire analysis have hitherto not distinguished 250 

between antibody subclasses.  We have used PacBio methods to obtain full V-D-J sequence in the 251 

context of subclass usage to investigate class switching events during immune responses to 252 

infection.  We also distinguish between mutated versus unmutated IgM sequences, as a proxy for 253 

identifying IgM memory responses.  Comparisons of subclass distribution, in relation to healthy 254 

controls, revealed a significant increase in the proportion of IgA1 compared to IgA2 in CV19, and 255 

RSV-I and the proportion of IgG1 relative to IgG2 in CV19, EBOV and RSV-I (Figure 2a, 2b). The 256 

differences in CV19 IgG and IgA repertoire returned to ‘normal’ healthy levels by the time of 257 

convalescent sampling (CV19-Recovered) 2-3 months later.  258 

Immune challenge is characterised by clonal expansion of B cells that express Ig which reacts with 259 

the challenging antigen.  We identify members of clones in the repertoire by clustering the CDRH3 260 

regions and looking at the largest clones in each sample we can see evidence of increased clonal 261 

expansions in CV19 patients (Figure 2c).   In the full CV19 repertoire IGHV4 family genes were 262 

expanded (Figure 2c), more specifically of IGHV4-39 (Supplementary Figure S2) and some IGHV3 263 

family, this is particularly noticeable in IgG1 and IgA1.   Analysis of clonal diversity of memory B cells 264 

using the Gini index, taking all possible clones into account,  found CV19 patients had a less clonally 265 

diversified repertoire in all but the IgG2 and IgG4 partitions (Figure 2d, Supplementary Figure S3), 266 

suggesting pervasive expansions of specific BCR clones. Unusually, we also saw a decrease in 267 

diversity of unmutated IgM sequences, indicative of clonal expansion prior to SHM and CSR (Figure 268 

2d). These values returned to normal in the CV19R samples.  In comparison, IGHV1 family was 269 
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expanded in the RSV-I IgG1 partition (Figure 2c), particularly of IGHV1-18 (Supplementary Figure S4).  270 

Active infection with RSV showed an increase in diversity of IgA2, and samples taken 28 days after 271 

yellow fever vaccination showed an increase in diversity of both IgA2 and the mutated IgM 272 

populations. Interestingly, EBOV memory B cell populations were more diverse than healthy controls 273 

in all the main switched subclasses (IgG1, IgG2, IgA1, IgA2) (Figure 2d, Supplementary Figure S3).  274 

Large clone sizes can mask whole repertoire changes, so we analysed the frequency of gene use 275 

after reducing the data to one representative sequence per clone. We found increased use of IGHV3-276 

30 in IgM mutated sequences in CV19 patients (Figure 2e), and also of IgM-mutated/IgA1/IgG1 in 277 

CV19R, this was unique to CV19. An increase in use of IGHV4-39 was found in CV19 IgA1 sequences 278 

and was also found increased across the board in EBOV and RSV-U samples (Figure 2e). IGHV3-23 279 

was found to be reduced in ongoing infection (likely an offset as a result of relative increases in 280 

usage of other genes) but exceeded the healthy levels in CV19R and RSV-I.  IGHV1-69, which has 281 

previously been associated with viral infections47,48 was increased in RSV-I but not EBOV or CV19.  282 

The YF day 28 vaccine samples increased use of IGHV3-7 in IgM-mutated and IGHV1-2 in IgG1 only 283 

(Supplementary Figure S4).  284 

Complementarity Determining Region 3 (CDRH3) immaturity in CV19 285 

Given the importance of CDRH3 in antibody recognition, and the contribution to CDRH3 from the 286 

IGHD and IGHJ genes, we analysed these also. In CV19 samples there was a significant increase in 287 

use of IGHD2-2, IGHD3-3 and IGHJ6 (Figure2e).  These genes tend to be more hydrophobic (IGHJ6 288 

being the exception) and all have among the longest amino acid lengths with only IGHD3-16 being 2 289 

AA longer. This contribution can be seen in the overall CV19 repertoire which skews towards longer 290 

amino acid sequences and increased hydrophobicity, indicative of early response as affinity 291 

maturation causes shorter less hydrophobic CDRs (Supplementary Figure S5). A clustering analysis of 292 

peptide physicochemical properties of CDRH3 regions generally results in a difference between IgM 293 

sequences and memory sequences (Figure 2f), presumably reflecting biases in antigen selection 294 

during post-challenge development.  We can see that healthy and CV19 subclass sequences mostly 295 

have similar CDRH3 properties to each other, however, in the case of CV19 IgG1 and IgG3 cluster 296 

closer to IgM sequences from healthy and EBOV rather than healthy IgG1 and IgG3 sequences 297 

implying a more ‘naïve’, unselected, repertoire. 298 

Convergent antibody clusters between patients 299 

To assess the functional importance of the skewed patterns of V, D and J gene usage in CV19 we 300 

created networks connecting sequences observed in our CV19 and control repertoire data (Figure 301 

3a), using criteria previously employed in discovering ‘convergent’ antibody sequences shared 302 

between patients49.  By also including known SARS-CoV-2 binders we obtain clusters of CDR3 303 

sequences found in both CV19 patients and healthy controls, some of which converge towards 304 

known binders of SARS-CoV-2 proteins such as those targeting the receptor binding domain (RBD) of 305 

the spike protein(Figure 3b). Many of these large convergent clusters did not, however, include a 306 

known binder in the network (Figure 3c). Overall, convergent clusters use a diverse set of V genes, 307 

but most of our larger convergent clusters contain IGHV3 or IGHV4 families and demonstrate 308 

increased IGHJ6 usage as well as the more commonly used IGHJ4 (Figure 3c). A comparison 309 

exclusively of the known binders to date reveals distinct combinations of V and J gene preferences 310 

(Figure 3d).  We do find clusters of sequences using IGHV3-53 and IGHV1-58 such as those used in 311 

anti-RBD antibodies (e.g. Figure 3b). We find that sequences from convergent clusters tend to be 312 

found in larger clonal expansions than those without evidence of convergence (Figure 3e), possibly 313 

implying that specific clonal expansions in response to challenge are shared across patients.   We 314 

note that half of the larger clusters have substantial contributions from healthy control sequences, 315 
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so there may be some IGH genes, such as IGHV3-33/IGHJ5 found also in RSV-I and EBOV convergent 316 

networks (Figure 3c, Supplementary Fig6a&b), which have increased versatility such that they are 317 

often seen in response to multiple different challenges. 318 

Similar analyses of RSV and EBOV repertoires were limited by the paucity of information on antibody 319 

binders, however it was notable that only RSV-I, and not RSV-U, showed evidence of convergence.  320 

IGHV1-18 appears in a large cluster with a known RSV F-protein binder and although the large 321 

IGHV3-23 cluster does not contain a known binder it forms part of the larger expansion of IGHV3-23 322 

genes in mutated IgM genes from this cohort (Figure 2e, Supplementary Figure S6b). 323 

Age-related differences  324 

The disparity in CV19 severity and mortality between age groups is striking, so we looked for age-325 

related differences in our B cell repertoire data.  The difference in IgA1/IgA2 ratio is less in older 326 

people, not reaching significance. (Figure 4a). On the other hand, the increase usage of IgG1 in CV19 327 

and concomitant decrease in IgG2 are robust across age (Figure 4b). Considering Ig gene usage, we 328 

observe the intriguing case of IGHV3-30 which is only preferentially used by the over 60s during 329 

infection (Figure 4c). Conversely, IGHV3-53, which appears relatively frequently in known binder 330 

data in combination with IGHJ4/6 but did not appear in our total cohort analysis (Figure 2e), is 331 

significantly increased in the under 50s IgM-mutated partition (Figure 4c). We also found that 332 

IGHV4-39, IGHD2-2, IGHD3-3 and IGHJ6, which we find are expanded in CV19 across multiple B cell 333 

partitions, only have significantly increased expression in the under 50s and not the over 60s IGHV4-334 

34 appeared increased in both age groups. (Figure 4c).  335 

Immature IgG1 responses to CV19 336 

Beyond the scope of gene usage, our BCR repertoire data also enabled reconstruction of individual 337 

BCR lineage trees to make inferences about the evolution of a particular clone. Using the annotated 338 

germline V allele as the root of the tree, we estimate, for each sequence in the lineage, its distance 339 

from the root (Figure 5a); this distance being directly proportional to mutational level. We visualise 340 

the distribution of this germline distance across all clonotypes observed in each given individual, and 341 

observe that the repertoire is dominated by clonotypes with very low mutational levels for a subset 342 

of CV19 patients, whilst the predominance of such clones is broadly absent in healthy controls 343 

(Figure 5b, c). Interestingly, in repertoires from convalescent individuals (both EBOV and CV19), we 344 

instead observe dominance of clonotypes with higher mutational levels, although the pattern is less 345 

striking than the CV19 patients during hospitalisation (Figure 5c). These curves allow for 346 

quantification of the Area Under the Curve (AUC), which constitutes a metric we term “Germline 347 

Likeness”: a higher Germline Likeness corresponds to a lower level of mutation across all clones 348 

(Figure 5d); this is akin to quantifying sequence similarity to the germline, except that Germline 349 

Likeness here quantifies such phenomenon for a given repertoire in general, rather than a specific 350 

sequence. Using this metric we confirm that CV19 repertoires were dominated by clones that were 351 

largely unmutated, while EBOV samples carried the greatest mutation rate (Figure 5e). As might be 352 

expected, with time to generate a germinal centre response, Germline Likeness in CV19 faded with 353 

time (Figure 5f), to the point where the CV19R repertoires have similar level of mutations compared 354 

to the EBOV-convalescent and healthy control repertoires. Partitioning the analysis by isotype, RSV 355 

and healthy controls demonstrate the expected trend where an increased level of mutations can be 356 

found in both IgG and IgA compared to IgM (Figure 5g). However, in CV19 only IgA showed a 357 

significant change in Germline Likeness from IgM (Figure 5g).  358 

Ongoing Class switch recombination (CSR) detectable in PBMCs of CV19 and EBOV patients 359 

Our lineage trees were further analysed for CSR events: respecting the sequential order of CSR in the 360 

genome, we identify CSR events where sequences of different antibody classes/subclasses are 361 
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directly connected in the lineage tree. This enables us to trace the timing of CSR events (distance 362 

from the germline), the direction of class switching (e.g. from IgM to IgG1) and frequency of 363 

observation. Many clones have evidence of CSR in CV19 and EBOV, even after correcting for clone 364 

sizes (Figure 6a). In particular, CV19 patients were more likely to switch early to IgG1 from IgM, with 365 

little mutation (Figure 6b, c, d) and to IgA1 from either IgM or IgG1 later in the lineage with more 366 

mutation (Figure 6b,d). This agrees with the lack of CDRH3 “maturity” in IgG1 (Figure 2f) and the 367 

overall increased use of IgG1 and IgA1 seen in CV19 (Figure 2 a, b).   368 

The evidence of increased CSR in convalescent EBOV patients is striking and occurs across the board 369 

with the exception of IgM switching to IgG1 (Figure 6d). We noticed that although there is a similar 370 

pattern of CSR preferences in White and West Africans individuals, the overall distance from 371 

germline is longer before CSR occurs in West Africans (Figure 6b). This may suggest that the ethnic 372 

bias in existing immunoglobulin sequence databases has resulted in mis-assignment of germline 373 

alleles. No CSR differences were seen in the RSV data.  374 

Discussion  375 

We compared immunoglobulin gene sequences from pandemic (SARS-CoV-2), epidemic (Ebola) and 376 

endemic (Respiratory Syncytial Virus) patients in order to discover features that might distinguish 377 

newly emergent and endemic infections. The ability of B cells to generate a highly diverse 378 

immunoglobulin repertoire that might bind any antigen, and the diverse functionality of the 379 

antibodies produced, is critical for an effective immune response. Repertoire studies aim to identify 380 

specific antibodies by looking for biased usage of particular Ig genes, and have been useful in the 381 

past16,27.  However, not all expanded genes encode specific binders45 and we need to consider the 382 

possibility that expansions found in the midst of an acute response may be a side effect of the 383 

disease involving inappropriate expansion of B cells carrying antibodies with off-target effects rather 384 

than a specific targeting to the challenge.  Repertoire selection is normally a delicate balance 385 

between tolerance versus immune response to a pathogen and the inflammatory state of acute 386 

disease can upset the balance. Serological studies have shown an increase in autoreactive 387 

antibodies, particularly to interferons, during acute CV19 for example50,51.   388 

Looking across different viral diseases, we found a general increase of IGHV4-39 use in the repertoire 389 

of two different viral diseases (COVID19 and Ebola). Despite this, only one of our convergent 390 

clusters, dominated by CV19 sequences, use IGHV4-39 (Figure 3c); it is possible that there are 391 

unannotated IGHV4-39 SAR-CoV-2 binders. One single cluster does not, however, explain the larger 392 

expansion in IGHV4-39 use across the COVID19 or Ebola repertoire. IGHV4-39 may therefore be 393 

involved in the pathogenesis of the disease by promiscuous binding to self-proteins. Alternatively, 394 

IGHV4-39 may simply support a wide range of specific binding properties, supported by the lack of 395 

convergence and given it has also been dominant in cancer, bacterial infection, influenza and HIV 396 

responses 52–55. Such promiscuous binders would have networks contributed to by more than 1 397 

cohort with 52 networks matching this description in our data. It is also significant across all 64 large 398 

clusters 14 were dominated by CV19/CV19-R sequences yet only 5 matched known binders 399 

suggesting previously unknown SARS-CoV-2 specific binders. 400 

In addition to expansion of gene use as an indicator of activation, we can infer biological information 401 

from assessment of the AID-mediated activities of CSR and SHM. These have long been associated 402 

with germinal centre formation 56,57. However, there is mounting evidence that CSR can occur prior 403 

to the germinal centre formation 8–11.  T-independent activation has been shown to be driven by 404 

CD40-independant TLR/TACI activation 58.  Our data indicates an early switching to IgG1 without 405 

extensive hypermutation.  This data is consistent with Woodruff et al 59 who also found high 406 
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germline similarity in IgA1, and 39 where CV19 samples were found to have more naïve-like 407 

characteristics.  Our CV19 IgA1 sequences also indicate a lower level of hypermutation than the 408 

control group, albeit higher than the IgG1, likely reflecting their distance along the CSR hierarchy. 409 

Uniquely, our diversity analyses also indicate expansion of unmutated IgM clones.  Alongside these 410 

data we see that CDRH3 region maturation of IgG1 and IgG3 genes in the CV19 patients is less 411 

removed from the IgM state than healthy IgG1 and IgG3, or any other class switched repertoires.  412 

Together with the lineage analysis of CSR timing, the whole picture in CV19 is of an early immature 413 

response of IgM, switching to IgG1 and then IgA1 but without much SHM, such as might occur in the 414 

absence of T cell help in a GC reaction. Whether these responses are unique to a live infection or 415 

because the virus is so novel is difficult to ascertain, with future vaccine and comparative studies 416 

likely to shed further light on this phenomenon.IgG1 is known for its antiviral properties 46,60 so is 417 

expected in this data. The majority of rapid immunological protection assays for COVID-19 focus on 418 

IgM or IgG 61–64.  Since switching to IgA1 is notable in our data it would be useful for future serology 419 

assays to include IgA. Euroimmun’s IgA on LFA had one of the highest sensitivities at 87.8% 420 

compared to IgM and IgG from other assays (range 43.8-93%, mean 72.5%, median 76%) 63,65.   421 

It is known that healthy older people generally have more antibodies capable of binding self-422 

proteins66.  The balance between antibodies with positive versus negative/bystander activity may be 423 

changed in older patients.  We cannot tell this from our data except that we see a higher frequency 424 

of known spike binders clustering with CV19 repertoires in the younger cohort.  Significant age-425 

related differences occur in the dominant IGH CV19 genes:  The increased use of IGHV3-30 is only 426 

seen in older CV19 patients and that of IGHV4-39 only in the younger group. We also see selection 427 

for IGHD2-2, IGHD3-3 and IGHJ6 only in the young, with IGHJ6 occurring frequently in known binder 428 

networks, given the importance of IGHD and IGHJ genes to the CDRH3 region it is striking that the 429 

differences seen here are solely in the younger age group.   430 

In comparison to our CV19 data our Ebola data paints an unusual picture where, even 2-3 months 431 

post-recovery with viral negative PCR tests, there are abnormally high proportions of class switched 432 

clones with little or no direction towards a particular sub-class. Given CSR is largely understudied, as 433 

far as we can tell such high rates of class switching, particularly so long after recovery, is entirely 434 

unique to this infection. Another unusual observation was that EBOV survivor’s memory B cell 435 

populations were more diverse than healthy controls suggesting stimulation with more diverse 436 

antigens, or a less structured and directed immune response.  A ‘decay-stimulation-decay’ pattern 437 

resulting in the peak of antibody response being some 200 days after infection has previously been 438 

reported 67 and cytokine storms during infection may also be contributing to this phenomenon 68,69 . 439 

It was not possible to collect blood samples from unrecovered patients, so we do not know if these 440 

observations were a requirement of patient recovery or a phenomenon unique to Ebola infection in 441 

general.  442 

By comparing examples of pandemic, epidemic and endemic viral disease responses our results 443 

show that while aspects of B cell responses are unique to particular infections, the human 444 

immunoglobulin gene repertoire can show similarities of response across two very different 445 

diseases.  There are many questions to be answered about the balance of beneficial versus 446 

bystander responses in acute inflammatory diseases, where the initial class switched responses 447 

seem to be immature (CV19) and possibly unregulated (EBOV infection). Coupled with the finding of 448 

genes such as IGHV4-39 appearing in two completely different diseases, these data add weight to 449 

the hypotheses that an emergency humoral immune response to primary challenge can bypass 450 

normal stringent regulation and thus allow the production of autoimmune antibodies. 451 
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Data Availability 452 

IMGT/High-VQuest-annotated immunoglobulin sequence data file is available at Zenodo 453 

(https://dx.doi.org/10.5281/zenodo.5146019). 454 

Code Availability 455 

Functions implemented to generate and analyse lineage trees were included in a R package 456 

BrepPhylo, which is available at https://github.com/Fraternalilab/BrepPhylo. All other code snippets 457 

used in analysing data presented in this work are available as R markdown files available at 458 

https://github.com/Fraternalilab/BrepPhyloAnalysis. 459 
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Figures 640 

 641 

Figure 1. Schematic to illustrate data collection and analysis conducted in this study. Samples were 642 

taken from Healthy individuals, recovered Ebola survivors, hospitalised COVID-19 patients, live RSV 643 

challenge participants that either became infected or did not and Yellow Fever vaccine recipients 644 

before vaccine and 28 days post-inoculation. Extracted sample RNA was subject to a heavy gene 645 

specific race 5’ and nested PCR amplification process retaining V-D-J and sub-class information.    646 
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 648 

Figure 2. Distinct V-D-J and isotype usage in CV19, EBOV and RSV BCR repertoires. 649 

(a-b) Difference in sub-class use of IgA (A) and IgG (B) in viral disease and healthy BCR repertoires. (c) Clonal 650 
expansion of sequences of relevant effector types (as revealed in A) plus unmutated and mutated IgM to 651 
identify trends of V gene usage in viral infections. Each bubble sampled to a uniform depth (see Methods), 652 
with size proportional to clone size, represents one clone colour-coded by V-family usage. (d) Quantification of 653 
clonal expansion calculated using the Gini coefficient (see methods), revealed clonally expanded effector 654 
populations (more monoclonal/less diverse, closer to 1) or more diverse clones (closer to 0) in viral infections. 655 
Sample types with significant differences (p < 0.05) compared against Healthy were highlighted in red. Dashed 656 
line indicates the median diversity in the Healthy cohort. (e) Frequency of selected V-D-J gene usage in 657 
different cohorts for all sequences  and further subdivided by IgM-mutated, IgA1, IgG1. Bar charts depict gene 658 
frequency usage in the Healthy cohort. Bubble plots depict the difference in usage (coloured: blue reduced/red 659 
increased) compared to healthy repertoires. (f) CDRH3 physicochemical characteristics (represented by Kidera 660 
factors) were analysed separated by sub-classes and disease status (Healthy/CV19), and compared using 661 
Minkowski distance. Note that IgG1 and IgG3 sequences from CV19 cluster together with IgM (square bracket), 662 
away from those of the same sub-classes from healthy individuals (indicated by arrow). Statistical significance 663 
in panels a, d and e was evaluated using one-way ANOVA and Dunnett post-hoc comparison against the 664 
Healthy cohort: p-value indicated either with colour (panel c), bubble size (e) or the symbols under the 665 
following scheme: *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.0001. 666 

  667 
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 668 

Figure 3. Convergent CDR3 clusters of sequences from CV19 repertoires and known SARS-CoV-2 binders. 669 

(a) CDR3 Known binder networks were created using same V, J and CDR3 length with at least 85% amino acid 670 
(AA) identity. (b) Convergent clusters from healthy and CV19 repertoire with known PDB structures. IGHV and 671 
IGHJ use and the CDR3 AA sequence were noted. (c) Clusters containing at least 10 sequences were visualized, 672 
with breakdown of repertoire origin (stacked bar plots), and the IGHV and IGHJ gene usage of each cluster 673 
aligned beneath. The number of donors with sequences in each depicted clusters are shown as bar graphs 674 
(bottom panel, c), broken down into subsets with age <50 (light grey) and >60 (dark grey). (d) All known 675 
binders were analysed for similarity of IGHV/J gene use to specific SAR-CoV-2 antibody targets (d). Dots 676 
coloured by enrichment (log-odds ratio, logOR) evaluated using Fisher’s exact test. Only V/J-specificity 677 
combinations with significant (p < 0.05) enrichment were shown. (e) Comparison of clonal expansion of 678 
convergent (split by clone size; ≥10 or <10 sequences) and non-convergent clusters in healthy and CV19 679 
repertoires. Statistical significance evaluated using a Wilcoxon rank-sum test, ****: p < 0.0001. See 680 
Supplementary Figure S6 for analogous analyses on RSV and EBOV repertoires. 681 
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 683 

Figure 4. Age differences in V-D-J and isotype usage in CV19 repertoires. 684 

CV19 and healthy patients were split by over 60s and under 50s and were compared for IgA (a), IgG 685 

(b) usage and selected V-D-J gene usage (c). Statistical significance evaluated using two-way ANOVA 686 

and Tukey’s post-hoc test: *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.0001..  687 
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 688 

Figure 5. Mutational levels in BCR lineages. 689 

(a) Lineages trees were constructed by clonotyping the IgH CDR3 and the lineages reconstructed using the 690 
whole V gene rooting on the predicted germline, allowing the distance from germline to be estimated for each 691 
sequence. This allows ordering of sequences based on this distance from germline: depicted as a histogram 692 
[(a) bottom right]. (b) Clones in the repertoire, for selected donors, were ordered (vertical axis) using median 693 
distance from germline (horizontal axis), and the distribution of such distance for each clone was plotted with 694 
heatmap colours being the percentage of sequences within the clone containing the a given level of mutation. 695 
(c) Distance from germline distributions for every donor, split by condition, represented as curves. Dotted line 696 
represents the theoretical expectation of mutational level. (d) From each of these curves (in c) the area under 697 
the curve (AUC) was calculated giving a statistic of ‘Germline Likeness’, a higher AUC resembling more the 698 
germline and a lower AUC indicating more mutations. (e) Comparison of Germline Likeness between 699 
conditions: sample types with significant (p < 0.05) differences compared to Healthy (Wilcoxon rank-sum test) 700 
are highlighted in red with the dotted line being the healthy median. (f) The Germline Likeness across 701 
timepoints for CV19 patients with Healthy and Ebola data are reproduced here for comparison: trend was 702 
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evaluated using the Jonckheere-Terpstra test. (G) Comparison of germline distance split by immunoglobulin 703 
isotype was performed split by cohort: significant (p < 0.05) differences compared to IgM (Wilcoxon rank-sum 704 
test) are highlighted in red.  705 
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 707 

Figure 6. Prevalence of Class-switch recombination estimated from BCR lineage trees. 708 

(a) Lineage clones (see Figure 5) were assessed for prevalence of CSR events in terms of the proportion of 709 
clones and plotted by clone size and split by condition. (b) Bubble plot depicting the frequency and distance-710 
from-germline of CSR events, separated by the CSR start (‘From’, vertical axis) and end (‘To’, horizontal axis) 711 
isotypes. Quantification was performed separately for different sample types. Bubble sizes are proportional to 712 
the frequency of CSR and colour is scaled by distance from germline at which CSR occurs, as estimated from 713 
the reconstructed lineage trees. (c) Statistical comparison of the median distance from germline at which CSR 714 
events occurred across sample types. Each donor was considered separately for every switch possibility. (d) 715 
Comparison of CSR frequency (percentage of clones with evidence of CSR) for each condition was also 716 
assessed for each donor (median, d). Statistical significance was evaluated using one-way ANOVA and Dunnett 717 
post-hoc comparison against Healthy with p < 0.05 highlighted in red (c, d). For (d), Supplementary Figure S8 718 
contain analogous plots for all CSR combinations with significant (p < 0.05) differences compared against 719 
Healthy. 720 
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Sample Age Gender Ethnicity 
COVID-19 

Severity Score 
(out of 6) 

Days since 
symptom onset 

Healthy  
(n = 24) 

Median 29.5 (Range 23 - 76)  
≤50 years old: 15/24 (62.5%)  
≥60 years old:   9/24 (37.5%) 

Female:      7/24 (29.2%)  
Male:          5/24 (20.8%) 
Unknown: 12/24 (50%) 

White:       12/24 (50%) 
Unknown: 12/24 (50%) 

  

      

COVID-19 (n 
= 16) 

Median 50.5 (Range 28 - 87) 
≤50:      8/16 (50%) 
50-60:  3/16 (18.75%) 
≥60:     5/16 (31.25%) 

Female:     7/16 (43.75%) 
Male:         9/16 (56.25%) 

White:  13/16 (81.25%) 
South East Asian:  
              1/16 (6.25%) 
Indian Subcontinent: 
              2/16 (12.5%) 

Median 3 (Range 
1 - 5) 

Median 8 
(Range 1 – 35) 
 

      
COVID-19 
Recovered 

(n = 5) 

Median 50 (Range 28 - 87) 
≤50:   3/5 (60%) 
≥60:   2/5 (40%) 

Female:      3/5 (60%) 
Male:          2/5 (40%) 

White:     4/5 (80%) 
Indian Subcontinent:  
               1/5 (20%) 

  

      
RSV 

Infected  
(n = 6) 

Young: 3/6 (50%) 
Older:   3/6 (50%) 
 

    

      
RSV 

Uninfected 
(n = 6) 

Young: 3/6 (50%) 
Older:   3/6 (50%) 
 

    

      

Ebola  
(n = 12) 

Young:      3/12 (50%) 
Unknown: 9/12 (50%) 
 

Female:    1/12 (8.3%) 
Male:        2/12 (16.7%) 
Unknown: 9/12 (75%) 

White:   3/12 (25%) 
West African:  
             9/12 (75%) 

  

      
YFV D28 (n 

= 3) 
 

Median 28 (Range 27 - 28) 
Young:      3/3 (100%) 

Female:    1/3 (33.3%) 
Male:        2/3 (66.7%) 

White:   3/3 (100%)   

Table 1. Donor characteristics. See Supplementary Table S1 for a detailed summary of metadata per donor. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456951
http://creativecommons.org/licenses/by-nd/4.0/

