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Abstract

Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune
response towards different infections, enabling inference of B cell development processes. Detailed
compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of
pandemic, epidemic and endemic viral infections with control and vaccination samples,
demonstrates general responses including increased use of IGHV4-39 in both EBOV and COVID-19
infection cohorts. We also show unique characteristics absent in RSV infection or yellow fever
vaccine samples: EBOV survivors show unprecedented high levels of class switching events while
COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal
expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre
mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is
also pertinent that we find significant differences in repertoire characteristics between young and
old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong
but immature humoral response where failures in selection of the repertoire risks off-target effects.
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Introduction

The emergence of SARS-CoV-2 in 2019, the ensuing pandemic and evolution of novel variants
continues to make COVID-19 a matter of global public health significance. The recent SARS, MERS,
Zika and Ebola outbreaks have also highlighted a need to better understand how the human immune
system responds to novel infections, develop better treatments and control their emergence and
spread. Initial reports from the COVID19 pandemic, relying heavily on serum antibody titres, saw
rapid declines in SARS-CoV-2 specific antibodies? that raised concerns over the nature and duration
of B cell memory. While total antibody titres decrease the persistent presence of SARS-CoV-2-
specific memory responses some months after infection mitigates these concerns?3.

Immunoglobulins (lg), both as secreted antibodies and as B Cell Receptors (BCRs), mediate immunity
against multiple pathogens through their vast variability in antigen binding. This variability is
produced by V-D-J recombination 4, where V, D and J genes are recombined from a pool of diverse
genes. B cells with Ig genes encoding disease-specific antibodies are expanded upon challenge,
causing a skewing of the repertoire towards greater use of antigen-specific genes associated with
the challenge in question. Furthermore, the imprecise joining of gene segments, together with the
action of terminal deoxynucleotidyl transferase (TdT) creates a highly diverse complementarity
determining region (CDR)3 region, which is important for antigen binding, and can be used to
identify “clones” of B cells within a repertoire. These clonal assignments allow us to track lineages
and follow the progress of the post-activation diversification events of somatic hypermutation (SHM)
and class switching (CSR) as the B cell response develops. Thus, repertoire analyses can help to
characterise changes in the memory/effector B cell compartments and identify individual genes of
interest for possible antibody therapeutics.

Both SHM and CSR are mediated by the enzyme Activation Induced cytidine Deaminase (AID) and
have traditionally been associated with germinal centre events in secondary lymphoid tissue,
involving T cell help 5. There is, however, also evidence that CSR may occur outside the germinal
centre environment & and may not require direct T cell help. The ability of a B cell to mount a
directed effector response prior to the formation of a germinal centre allows a more rapid immune
response but with lower affinity.

Immune responses are often impaired in older people, which has been of particular concern in
COVID-19 patients. The older immune system has shown reduced responses to vaccination,
frequently with higher numbers of autoreactive antibodies and inflammatory cytokines!?™4, In B cells
we, and others, have shown that particular subsets of B cells are altered with age: IgM memory cells
(CD19+CD27+IgD+) are decreased in older people while the Double Negative (CD19+CD27-IgD-) are
increased 16, Since IgM memory cells are often associated with a T-independent response, the
decrease in IgM memory in older people could have severe consequences in infections where a rapid
extrafollicular response is required”!8, It has also been shown that the B cell repertoire is skewed
towards sequences with longer more hydrophobic CDR3 regions as we age!®®, As an immune
response can result in a shift towards lower, less hydrophobic CDR3 regions'#%, and higher
hydrophobicity has previously been correlated with increased polyspecificity? 2, the older immune
repertoire seems to be disadvantaged in this respect.

In this study we took a long-read repertoire amplification approach that allowed us to track the V-D-J
clonal lineages in the context of antibody subclass to better understand, compare and contrast B cell
responses to emerging or endemic viruses. Samples were taken from COVID19 patients during and
after infection, Ebola virus disease (EBOV) survivors from West Africa and the UK, volunteers
challenged with Respiratory Syncytial Virus and compared with samples from healthy donors. We
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87  report the variation of repertoire between disease states in novel virus infection, with a focus on
88 elderly who are known to respond less well to infection, particularly in SARS-CoV-2.

89 Methods

90  Sample collection

91  Whole blood samples (RSV, COVID19, Healthy) were collected into Tempus™ Blood RNA tubes, kept

92 at 4°C, and frozen down to -20°C within 12 hours. Ebola samples were cone filters from

93 plasmapheresis, dissolved in Tri reagent. RNA was extracted using Tempus™ kits according to

94 instructions. Healthy samples taken after SARS-CoV-2 emergence were all confirmed negative for

95  anti-SARS-CoV-2 antibodies by SureScreen lateral flow test and by ELISA 2*. Ebola RNA blood samples

96  were collected from convalescent patients with viral RNA negative PCR tests in the 2014-2016 West

97  African outbreak, three patients were Caucasian treated in the UK, and the remaining were

98  convalescent plasma donor participants from a trial in Sierra Leone?® (consented under the Sierra

99 Leone Ethics and Scientific Review Committee ISRCTN13990511 and PACTR201602001355272 and
100  authorised by Pharmacy Board of Sierra Leone, #PBSL/CTAN/MOHS-CST001). COVID-19 samples
101  were collected from SARS Cov 2 positive patients at Frimley and Wexham Park hospitals during 2020
102 (consented under UK London REC 14/L0/1221). Each participant was attributed a “severity score” in
103 relation to their fitness observations at the time of hospital admission using the metadata collected.
104  This score used the “mortality scoring” approach of SR Knight et al. adapted to disregard age, sex at
105 birth and comorbidities, and ranged from 0 to 6; patients scoring 0 to 3 were attributed low severity
106  and patients scoring 4 to 6 were attributed high severity®. Convalescent COVID-19 patients, from
107 hospital sampling, were contacted for further donations and sample taken 2-3 months post hospital
108 discharge. RSV samples were collected from participants who took part in a human challenge study
109 and were monitored for infection by viral PCR tests (consented under UK London REC 11/L0O/1826).
110 Briefly, healthy participants were challenged intranasally with 10* plaque-forming units of the M37
111  strain of RSV and monitored for up to 6 months as previously described 2.

112 Repertoire Library Generation

113  Tempus tube samples were defrosted at room temperature and RNA was extracted using the

114  Tempus RNA extraction kit according to the manufacturer’s instructions. RNA samples were

115  template switch reverse transcribed using SMARTScribe™ reverse transcriptase (Clonetech)

116  according to manufacturer’s instructions using the SmartNNN TSO Primer (Supp. Methods Table 1)
117  with a minimum of 170 ng of RNA input. The sample was then treated with 0.5 units/pul of Uracil-
118  DNA Glycosylase (NEB) for 60 min at 37°C to reduce UMl interference, then incubated at 95°C for 10
119 min to inactivate the enzyme. Samples were amplified using Q5 polymerase (NEB) according to

120  manufacturer’s instructions with an annealing step of 65°C for 20s and extension step of 72°C for 50
121 s for 21 cycles. Round one of PCR was performed with forward primer Smart20 and mixed heavy
122 chain (IG[M, G, A]-R1) reverse primers (Supp. Methods Table 1). For PCR1 8 x 20 pl reactions were
123 performed with 1 pl of RNA input per reaction. A semi-nested 2nd PCR was performed with forward
124 primer PID-Step and reverse primers IG[M/G/A]-R2 (Supp. Methods Table 1); 16 reactions of 20yl
125  each was performed for each isotype with the same thermal cycling conditions as PCR1 but with 12
126  cycles, with 1ul of template. The primers in PCR2 also contain Patient Identifier (PID) sequences to
127  allow multiplexing on PacBio (Supp Methods Table 2). Samples were run on a bioanalyzer (Agilent
128 7500), isotypes from patients were pooled at equal concentrations and concentrated using Wizard
129 PCR Clean-up kits (Promega) according to manufacturer’s instructions with 30 ul of elute. Each

130 isotype was then purified using a PippinPrep™ with Marker K reagents (Sage Biosciences) used as an
131  external ladder reference (IgM/G/A 600-100bp). The concentration was checked using a DNA

132  quantification kit on the Qubit according to manufacturer’s protocol, the different isotype samples

3
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were pooled at equal concentrations and purified with SPRIselect beads (Beckman Coulter) at X0.8
sample volume with elution in 30ul of TE buffer. Sequencing was performed on either the PacBio
RSl or Sequel platforms (See Supp. Methods Table 2).

Quality control, data cleaning and removal of multiplicated UMIs was carried out as previously
published'®?”. Immunoglobulin V-D-J gene usage and CDRH3 was determined using IMGT/High V-
quest. Clonotype clustering was carried out as per?®?’, in brief: a Levenshtein distance matrix was
generated on the CDRH3, hierarchically clustered and branches cut at 0.05 to generate clones.
Physicochemical properties were calculated using the R Peptides package 2.

Analysis of clonal diversity

We sought for methods to qualitatively (visualising clone size distribution) and quantitatively
compare clonal diversity (calculating metrics which summarise clonal diversity). We first noted, as
one would expect, that sequencing depth (i.e., number of sequences sampled per repertoire) was a
strong predictor of the number of clones (Supplementary Figure S1). For all repertoires considered
here, a wide range of sequencing depth was observed (number of sequences range from 836 to
105,323, median = 12,040). We therefore adopted the following procedure in this analysis: first, to
guantify the extent of clonal diversity we used the Gini coefficient which measures the evenness in
the distribution of clone size across clones; application of this metric to quantify BCR clonal diversity
has been well documented 2°731, For a given repertoire, clones were ordered by their clone sizes, and
the cumulative distributions of clone sizes (in terms of percentage of sequences in repertoire) and its
percentile distribution were compared for evenness. As such, the resulting metric was independent
from the absolute numbers of sequences and clones, thereby allowing fair comparison across
repertoire of different sequencing depths. As Gini coefficient is an indicator of evenness, we took (1
— Gini coefficient) as the metric of clonal diversity. To qualitatively compare clonal diversity, we
generated visualisation using the following procedure to minimise the impact of sequencing depth
differences: we first sampled 12,000 sequences (= median sequencing depth; see above) from each
repertoire; for repertoires with less than 12,000 unique observations, this number of sequences
were sampled with replacement. We then sampled up to 100 clones with probability scaled by clone
sizes to generate bubble plots where each bubble represents a clone and bubble sizes are scaled
with clone sizes. Genotypic features like V gene usage can be represented as colours. Such plots
were included in Figure 2c.

Analysis of BCR clone lineage trees

Lineage trees were reconstructed using the maximum parsimony method implemented in the
dnapars executable in the phylip package®?. All clones with at least 3 sequences were considered;
IMGT-gapped, V-gene nucleotide sequences of all observations in the clone together with the
annotated germline V-gene sequence (included to root the tree) were included as input to dnapars.
Functionalities implemented in the alakazam R package® were used to call dnapars and reformat the
output into text-based tree files (newick format) and directed graphs (igraph objects manipulated in
R). The directed graphs were further parsed using functions in alakazam and igraph to obtain, for
each observed sequence in the given clone, its distance D from the given germline gene g (denoted
here as D), as estimated by the dnapars-reconstructed lineage tree: the closer this distance is to 0,
the closer the sequence is to germline and therefore a lower mutational level.

We sought to summarise, for a given clone, the distribution of Dg; this distribution would indicate
the overall mutational level of sequences within the clone (summarised using conventional statistics
like the median of Dy) and the evenness of mutational level (i.e. whether the clone consists of
expansion of sequences with a similar mutational level, or it comprises sequences with a wide range
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of mutational levels). This can be visualised as a heatmap (clones [vertical axis] versus D, [horizontal
axis], with colours scaling with density of the distribution; see Figure 5b), or as a curve (clones
[vertical axis] versus the median of D, [horizontal axis], See Figure 5c). The curve representation
allows calculation of area-under-curve (AUC) as a metric which we termed “Germline Likeness”, to
guantify mutational levels across clones. This is similar to quantifying sequence similarity to
germline, except that here Germline Likeness quantifies the tendency to which all clones from the
BCR repertoire of a given individual have high similarity to the germline (and therefore lower
mutational levels).

Detecting class-switch recombination events from lineage trees

Since the lineage trees were constructed using only V-gene sequences (see above), in theory
antibody sequences of different subclasses could be ordered in the tree in a way that imply class-
switch recombination (CSR) events which are mechanistically impossible. We therefore pruned the
dnapars-reconstructed tree to remove edges which imply CSR events that violates the physical order
of constant region genes in the human IGH locus. This was performed using a Python
implementation of the Edmond’s algorithm to construct a minimum spanning arborescence tree
with the given germline V gene sequence as root. With this arborescence tree the type of CSR
(subclass switched from/to) and the distance-from-germline at which the CSR event occurred
(estimated as the median distance-from-germline of the two observations relevant to the given
event) were obtained.

Convergent network

Productive heavy chain sequences with CDRH3 of length shorter than 30 amino acids were
considered in the construction of a convergent network. Sequences were connected if they meet the
following criteria (a) same V and J gene usage; (b) from different individuals; (c) same CDRH3 amino
acid length, and (d) 285% CDRH3 amino acid identity. To allow interpretation of possible targets of
sequences in convergent network clusters, known binders were included in constructing the
network. Known binders were taken from the following sources: first experimentally determined
antigen-antibody structural complexes deposited in the Protein Data Bank (PDB). PDBe was queried
on 19 May 2021 with the search term ‘Organism: Severe acute respiratory syndrome coronavirus 2’.
The resulting list of PDB entries were overlapped with entries in the SAbDab structural antibody
databases3* to obtain list of PDB complexes of antibodies and SARS-CoV-2 proteins. A total of 215
heavy chains from 186 structures were considered. Second, known binders validated in experiments
where antibody variable regions were cloned and assessed for SARS-CoV-2 protein binding were
taken from published work 37° | All known binder sequences were annotated for V/J gene usage
using either IMGT/High-VQuest (if DNA sequences were provided) or IMGT/DomainGapAlign (if only
amino acid sequences were provided). Information regarding specificity (i.e. SARS-CoV-2 protein
targets) were obtained from either supplementary data files in the cited publications or by visual
inspection (for PDB structures). Supplementary Table S5 contains all known binder sequences
included in this analysis. To construct the network, known binders were connected to one another
and to repertoire sequences using the identical criteria mentioned above. In total 809 unique CDRH3
sequences were considered in constructing the convergence network. The resulting network
contains 7500 sequences (7370 from repertoire, 130 known binders). Analogous convergent
networks were constructed using the Ebola and RSV repertoire data, separately considered with
respective known binders and Healthy individuals’ repertoire; the majority of clusters were formed
mainly of sequences from Healthy donors absent of known binders*™*, although we were able to
identify two convergent clusters of RSV-infected individuals with similar CDRH3 to known binders of
the RSV fusion glycoprotein (Supplementary Figure S6). To investigate whether clusters shared
across disease conditions exist, convergent networks were also constructed considering CV, RSV and
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EBOV repertoire and binder sequences altogether (Supplementary Figure S7). Supplementary Table
S6 contains all convergent networks constructed, presented as list of pairwise sequences.

Statistical analysis and Data visualisation

V-D-J gene usage for each patient was turned into a proportion to normalise for different numbers
of sequences and allow for comparison. Gene usage analysis was performed in GraphPad Prism 8.4.3
using a two-way ANOVA with a Dunnett’s post hoc test. All other statistical analyses were performed
in the R statistical computing environment (version 4.0.2). Data visualisation was performed using
the R ggplot2 package and the following specialised R packages: visNetwork (for visualising
convergent CDRH3 network clusters) and ggseglogo (for visualising CDRH3 sequence logos). PDB
structures were visualised using PyMOL (version 2.3.0). Histograms of CDRH3 length and
hydrophobicity, as measured by Kidera factor 4, were constructed on the Brepertoire website®,

Results

Patient cohorts

IGH sequences, of total V-D-J plus ~150-200 bp of C regions, were obtained from pandemic,
epidemic and endemic diseases and stages along with 24 healthy controls across multiple age ranges
(Figure 1, Table 1). This included: 16 hospitalised COVID-19 patients (CV19), 5 of these patients had
follow-up convalescent samples (CV19-Recovered, hereafter CV19R), 12 Ebola convalescent plasma
donors (EBOV), 12 participants challenged with RSV; 6 of whom became infected (RSV-I) and 6 of
whom did not (RSV-U). Healthy Samples (Healthy) were a grouping of YFVDO, RSVDO and samples
taken as controls during the COVID pandemic (n=24). Numbers of sequences varied from 836 to
105,323, median = 12,040 per sample, IGH gene usage for each patient was expressed as a
proportion of the total in order to normalise for differences in sequence numbers between different
samples.

IGH gene repertoire changes in response to viral infection

Although the humoral immune response is varied, with different subclasses of antibody having
different effector functions®®, many methods of repertoire analysis have hitherto not distinguished
between antibody subclasses. We have used PacBio methods to obtain full V-D-J sequence in the
context of subclass usage to investigate class switching events during immune responses to
infection. We also distinguish between mutated versus unmutated IgM sequences, as a proxy for
identifying IgM memory responses. Comparisons of subclass distribution, in relation to healthy
controls, revealed a significant increase in the proportion of IgA1 compared to IgA2 in CV19, and
RSV-I and the proportion of IgG1 relative to IgG2 in CV19, EBOV and RSV-I (Figure 2a, 2b). The
differences in CV19 IgG and IgA repertoire returned to ‘normal’ healthy levels by the time of
convalescent sampling (CV19-Recovered) 2-3 months later.

Immune challenge is characterised by clonal expansion of B cells that express Ig which reacts with
the challenging antigen. We identify members of clones in the repertoire by clustering the CDRH3
regions and looking at the largest clones in each sample we can see evidence of increased clonal
expansions in CV19 patients (Figure 2c). In the full CV19 repertoire IGHV4 family genes were
expanded (Figure 2c), more specifically of IGHV4-39 (Supplementary Figure S2) and some IGHV3
family, this is particularly noticeable in 1IgG1 and IgA1l. Analysis of clonal diversity of memory B cells
using the Gini index, taking all possible clones into account, found CV19 patients had a less clonally
diversified repertoire in all but the 1gG2 and IgG4 partitions (Figure 2d, Supplementary Figure S3),
suggesting pervasive expansions of specific BCR clones. Unusually, we also saw a decrease in
diversity of unmutated IgM sequences, indicative of clonal expansion prior to SHM and CSR (Figure
2d). These values returned to normal in the CV19R samples. In comparison, IGHV1 family was
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expanded in the RSV-I IgG1 partition (Figure 2c), particularly of IGHV1-18 (Supplementary Figure S4).
Active infection with RSV showed an increase in diversity of IgA2, and samples taken 28 days after
yellow fever vaccination showed an increase in diversity of both IgA2 and the mutated IgM
populations. Interestingly, EBOV memory B cell populations were more diverse than healthy controls
in all the main switched subclasses (IgG1, 1gG2, IgA1l, IgA2) (Figure 2d, Supplementary Figure S3).

Large clone sizes can mask whole repertoire changes, so we analysed the frequency of gene use
after reducing the data to one representative sequence per clone. We found increased use of IGHV3-
30in IgM mutated sequences in CV19 patients (Figure 2e), and also of IgM-mutated/IgA1/1gG1 in
CV19R, this was unique to CV19. An increase in use of IGHV4-39 was found in CV19 IgA1 sequences
and was also found increased across the board in EBOV and RSV-U samples (Figure 2e). IGHV3-23
was found to be reduced in ongoing infection (likely an offset as a result of relative increases in
usage of other genes) but exceeded the healthy levels in CV19R and RSV-I. IGHV1-69, which has
previously been associated with viral infections*’*® was increased in RSV-I but not EBOV or CV19.
The YF day 28 vaccine samples increased use of IGHV3-7 in IgM-mutated and /IGHV1-2 in 1gG1 only
(Supplementary Figure S4).

Complementarity Determining Region 3 (CDRH3) immaturity in CV19

Given the importance of CDRH3 in antibody recognition, and the contribution to CDRH3 from the
IGHD and IGHJ genes, we analysed these also. In CV19 samples there was a significant increase in
use of IGHD2-2, IGHD3-3 and IGHJ6 (Figure2e). These genes tend to be more hydrophobic (IGHJ6
being the exception) and all have among the longest amino acid lengths with only IGHD3-16 being 2
AA longer. This contribution can be seen in the overall CV19 repertoire which skews towards longer
amino acid sequences and increased hydrophobicity, indicative of early response as affinity
maturation causes shorter less hydrophobic CDRs (Supplementary Figure S5). A clustering analysis of
peptide physicochemical properties of CDRH3 regions generally results in a difference between IgM
sequences and memory sequences (Figure 2f), presumably reflecting biases in antigen selection
during post-challenge development. We can see that healthy and CV19 subclass sequences mostly
have similar CDRH3 properties to each other, however, in the case of CV19 IgG1 and IgG3 cluster
closer to IgM sequences from healthy and EBOV rather than healthy I1gG1 and 1gG3 sequences
implying a more ‘naive’, unselected, repertoire.

Convergent antibody clusters between patients

To assess the functional importance of the skewed patterns of V, D and J gene usage in CV19 we
created networks connecting sequences observed in our CV19 and control repertoire data (Figure
3a), using criteria previously employed in discovering ‘convergent’ antibody sequences shared
between patients*. By also including known SARS-CoV-2 binders we obtain clusters of CDR3
sequences found in both CV19 patients and healthy controls, some of which converge towards
known binders of SARS-CoV-2 proteins such as those targeting the receptor binding domain (RBD) of
the spike protein(Figure 3b). Many of these large convergent clusters did not, however, include a
known binder in the network (Figure 3c). Overall, convergent clusters use a diverse set of V genes,
but most of our larger convergent clusters contain IGHV3 or IGHV4 families and demonstrate
increased /IGHJ6 usage as well as the more commonly used IGHJ4 (Figure 3c). A comparison
exclusively of the known binders to date reveals distinct combinations of V and J gene preferences
(Figure 3d). We do find clusters of sequences using IGHV3-53 and IGHV1-58 such as those used in
anti-RBD antibodies (e.g. Figure 3b). We find that sequences from convergent clusters tend to be
found in larger clonal expansions than those without evidence of convergence (Figure 3e), possibly
implying that specific clonal expansions in response to challenge are shared across patients. We
note that half of the larger clusters have substantial contributions from healthy control sequences,
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so there may be some IGH genes, such as IGHV3-33/IGHJ5 found also in RSV-l and EBOV convergent
networks (Figure 3c, Supplementary Figba&b), which have increased versatility such that they are
often seen in response to multiple different challenges.

Similar analyses of RSV and EBOV repertoires were limited by the paucity of information on antibody
binders, however it was notable that only RSV-I, and not RSV-U, showed evidence of convergence.
IGHV1-18 appears in a large cluster with a known RSV F-protein binder and although the large
IGHV3-23 cluster does not contain a known binder it forms part of the larger expansion of IGHV3-23
genes in mutated IgM genes from this cohort (Figure 2e, Supplementary Figure S6b).

Age-related differences

The disparity in CV19 severity and mortality between age groups is striking, so we looked for age-
related differences in our B cell repertoire data. The difference in IgA1/IgA2 ratio is less in older
people, not reaching significance. (Figure 4a). On the other hand, the increase usage of IgG1 in CV19
and concomitant decrease in IgG2 are robust across age (Figure 4b). Considering Ig gene usage, we
observe the intriguing case of IGHV3-30 which is only preferentially used by the over 60s during
infection (Figure 4c). Conversely, IGHV3-53, which appears relatively frequently in known binder
data in combination with /GHJ4/6 but did not appear in our total cohort analysis (Figure 2e), is
significantly increased in the under 50s IgM-mutated partition (Figure 4c). We also found that
IGHV4-39, IGHD2-2, IGHD3-3 and IGHJ6, which we find are expanded in CV19 across multiple B cell
partitions, only have significantly increased expression in the under 50s and not the over 60s IGHV4-
34 appeared increased in both age groups. (Figure 4c).

Immature IgG1 responses to CV19

Beyond the scope of gene usage, our BCR repertoire data also enabled reconstruction of individual
BCR lineage trees to make inferences about the evolution of a particular clone. Using the annotated
germline V allele as the root of the tree, we estimate, for each sequence in the lineage, its distance
from the root (Figure 5a); this distance being directly proportional to mutational level. We visualise
the distribution of this germline distance across all clonotypes observed in each given individual, and
observe that the repertoire is dominated by clonotypes with very low mutational levels for a subset
of CV19 patients, whilst the predominance of such clones is broadly absent in healthy controls
(Figure 5b, c). Interestingly, in repertoires from convalescent individuals (both EBOV and CV19), we
instead observe dominance of clonotypes with higher mutational levels, although the pattern is less
striking than the CV19 patients during hospitalisation (Figure 5c). These curves allow for
quantification of the Area Under the Curve (AUC), which constitutes a metric we term “Germline
Likeness”: a higher Germline Likeness corresponds to a lower level of mutation across all clones
(Figure 5d); this is akin to quantifying sequence similarity to the germline, except that Germline
Likeness here quantifies such phenomenon for a given repertoire in general, rather than a specific
sequence. Using this metric we confirm that CV19 repertoires were dominated by clones that were
largely unmutated, while EBOV samples carried the greatest mutation rate (Figure 5e). As might be
expected, with time to generate a germinal centre response, Germline Likeness in CV19 faded with
time (Figure 5f), to the point where the CV19R repertoires have similar level of mutations compared
to the EBOV-convalescent and healthy control repertoires. Partitioning the analysis by isotype, RSV
and healthy controls demonstrate the expected trend where an increased level of mutations can be
found in both 1gG and IgA compared to IgM (Figure 5g). However, in CV19 only IgA showed a
significant change in Germline Likeness from IgM (Figure 5g).

Ongoing Class switch recombination (CSR) detectable in PBMCs of CV19 and EBOV patients
Our lineage trees were further analysed for CSR events: respecting the sequential order of CSR in the
genome, we identify CSR events where sequences of different antibody classes/subclasses are
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directly connected in the lineage tree. This enables us to trace the timing of CSR events (distance
from the germline), the direction of class switching (e.g. from IgM to 1gG1) and frequency of
observation. Many clones have evidence of CSR in CV19 and EBOV, even after correcting for clone
sizes (Figure 6a). In particular, CV19 patients were more likely to switch early to IgG1 from IgM, with
little mutation (Figure 6b, c, d) and to IgA1 from either IgM or I1gG1 later in the lineage with more
mutation (Figure 6b,d). This agrees with the lack of CORH3 “maturity” in IgG1 (Figure 2f) and the
overall increased use of IgG1 and IgAl seen in CV19 (Figure 2 a, b).

The evidence of increased CSR in convalescent EBOV patients is striking and occurs across the board
with the exception of IgM switching to IgG1 (Figure 6d). We noticed that although there is a similar
pattern of CSR preferences in White and West Africans individuals, the overall distance from
germline is longer before CSR occurs in West Africans (Figure 6b). This may suggest that the ethnic
bias in existing immunoglobulin sequence databases has resulted in mis-assignment of germline
alleles. No CSR differences were seen in the RSV data.

Discussion

We compared immunoglobulin gene sequences from pandemic (SARS-CoV-2), epidemic (Ebola) and
endemic (Respiratory Syncytial Virus) patients in order to discover features that might distinguish
newly emergent and endemic infections. The ability of B cells to generate a highly diverse
immunoglobulin repertoire that might bind any antigen, and the diverse functionality of the
antibodies produced, is critical for an effective immune response. Repertoire studies aim to identify
specific antibodies by looking for biased usage of particular Ig genes, and have been useful in the
past'®?’, However, not all expanded genes encode specific binders* and we need to consider the
possibility that expansions found in the midst of an acute response may be a side effect of the
disease involving inappropriate expansion of B cells carrying antibodies with off-target effects rather
than a specific targeting to the challenge. Repertoire selection is normally a delicate balance
between tolerance versus immune response to a pathogen and the inflammatory state of acute
disease can upset the balance. Serological studies have shown an increase in autoreactive
antibodies, particularly to interferons, during acute CV19 for example®%>?,

Looking across different viral diseases, we found a general increase of IGHV4-39 use in the repertoire
of two different viral diseases (COVID19 and Ebola). Despite this, only one of our convergent
clusters, dominated by CV19 sequences, use IGHV4-39 (Figure 3c); it is possible that there are
unannotated /GHV4-39 SAR-CoV-2 binders. One single cluster does not, however, explain the larger
expansion in IGHV4-39 use across the COVID19 or Ebola repertoire. IGHV4-39 may therefore be
involved in the pathogenesis of the disease by promiscuous binding to self-proteins. Alternatively,
IGHV4-39 may simply support a wide range of specific binding properties, supported by the lack of
convergence and given it has also been dominant in cancer, bacterial infection, influenza and HIV
responses °27°°, Such promiscuous binders would have networks contributed to by more than 1
cohort with 52 networks matching this description in our data. It is also significant across all 64 large
clusters 14 were dominated by CV19/CV19-R sequences yet only 5 matched known binders
suggesting previously unknown SARS-CoV-2 specific binders.

In addition to expansion of gene use as an indicator of activation, we can infer biological information
from assessment of the AID-mediated activities of CSR and SHM. These have long been associated
with germinal centre formation >®%’, However, there is mounting evidence that CSR can occur prior
to the germinal centre formation 1. T-independent activation has been shown to be driven by
CD40-independant TLR/TACI activation 8. Our data indicates an early switching to 1IgG1 without
extensive hypermutation. This data is consistent with Woodruff et al > who also found high
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germline similarity in IgA1, and 3° where CV19 samples were found to have more naive-like
characteristics. Our CV19 IgAl sequences also indicate a lower level of hypermutation than the
control group, albeit higher than the IgG1, likely reflecting their distance along the CSR hierarchy.
Uniquely, our diversity analyses also indicate expansion of unmutated IgM clones. Alongside these
data we see that CDRH3 region maturation of IgG1 and IgG3 genes in the CV19 patients is less
removed from the IgM state than healthy IgG1 and 1gG3, or any other class switched repertoires.
Together with the lineage analysis of CSR timing, the whole picture in CV19 is of an early immature
response of IgM, switching to IgG1 and then IgA1 but without much SHM, such as might occur in the
absence of T cell help in a GC reaction. Whether these responses are unique to a live infection or
because the virus is so novel is difficult to ascertain, with future vaccine and comparative studies
likely to shed further light on this phenomenon.lgG1 is known for its antiviral properties ¢ so is
expected in this data. The majority of rapid immunological protection assays for COVID-19 focus on
IgM or 1gG ®17%*, Since switching to IgA1l is notable in our data it would be useful for future serology
assays to include IgA. Euroimmun’s IgA on LFA had one of the highest sensitivities at 87.8%
compared to IgM and IgG from other assays (range 43.8-93%, mean 72.5%, median 76%) %39,

It is known that healthy older people generally have more antibodies capable of binding self-
proteins®®. The balance between antibodies with positive versus negative/bystander activity may be
changed in older patients. We cannot tell this from our data except that we see a higher frequency
of known spike binders clustering with CV19 repertoires in the younger cohort. Significant age-
related differences occur in the dominant IGH CV19 genes: The increased use of IGHV3-30 is only
seen in older CV19 patients and that of IGHV4-39 only in the younger group. We also see selection
for IGHD2-2, IGHD3-3 and IGHJ6 only in the young, with IGHJ6 occurring frequently in known binder
networks, given the importance of IGHD and IGHJ genes to the CDRH3 region it is striking that the
differences seen here are solely in the younger age group.

In comparison to our CV19 data our Ebola data paints an unusual picture where, even 2-3 months
post-recovery with viral negative PCR tests, there are abnormally high proportions of class switched
clones with little or no direction towards a particular sub-class. Given CSR is largely understudied, as
far as we can tell such high rates of class switching, particularly so long after recovery, is entirely
unique to this infection. Another unusual observation was that EBOV survivor’s memory B cell
populations were more diverse than healthy controls suggesting stimulation with more diverse
antigens, or a less structured and directed immune response. A ‘decay-stimulation-decay’ pattern
resulting in the peak of antibody response being some 200 days after infection has previously been
reported  and cytokine storms during infection may also be contributing to this phenomenon
It was not possible to collect blood samples from unrecovered patients, so we do not know if these
observations were a requirement of patient recovery or a phenomenon unique to Ebola infection in
general.

By comparing examples of pandemic, epidemic and endemic viral disease responses our results
show that while aspects of B cell responses are unique to particular infections, the human
immunoglobulin gene repertoire can show similarities of response across two very different
diseases. There are many questions to be answered about the balance of beneficial versus
bystander responses in acute inflammatory diseases, where the initial class switched responses
seem to be immature (CV19) and possibly unregulated (EBOV infection). Coupled with the finding of
genes such as IGHV4-39 appearing in two completely different diseases, these data add weight to
the hypotheses that an emergency humoral immune response to primary challenge can bypass
normal stringent regulation and thus allow the production of autoimmune antibodies.
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Data Availability
IMGT/High-VQuest-annotated immunoglobulin sequence data file is available at Zenodo
(https://dx.doi.org/10.5281/zenod0.5146019).

Code Availability

Functions implemented to generate and analyse lineage trees were included in a R package
BrepPhylo, which is available at https://github.com/Fraternalilab/BrepPhylo. All other code snippets
used in analysing data presented in this work are available as R markdown files available at
https://github.com/Fraternalilab/BrepPhyloAnalysis.
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642 Figure 1. Schematic to illustrate data collection and analysis conducted in this study. Samples were
643 taken from Healthy individuals, recovered Ebola survivors, hospitalised COVID-19 patients, live RSV
644  challenge participants that either became infected or did not and Yellow Fever vaccine recipients
645 before vaccine and 28 days post-inoculation. Extracted sample RNA was subject to a heavy gene
646 specific race 5’ and nested PCR amplification process retaining V-D-J and sub-class information.
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Figure 2. Distinct V-D-J and isotype usage in CV19, EBOV and RSV BCR repertoires.

(a-b) Difference in sub-class use of IgA (A) and IgG (B) in viral disease and healthy BCR repertoires. (c) Clonal
expansion of sequences of relevant effector types (as revealed in A) plus unmutated and mutated IgM to
identify trends of V gene usage in viral infections. Each bubble sampled to a uniform depth (see Methods),
with size proportional to clone size, represents one clone colour-coded by V-family usage. (d) Quantification of
clonal expansion calculated using the Gini coefficient (see methods), revealed clonally expanded effector
populations (more monoclonal/less diverse, closer to 1) or more diverse clones (closer to 0) in viral infections.
Sample types with significant differences (p < 0.05) compared against Healthy were highlighted in red. Dashed
line indicates the median diversity in the Healthy cohort. (e) Frequency of selected V-D-J gene usage in
different cohorts for all sequences and further subdivided by IgM-mutated, IgA1, IgG1. Bar charts depict gene
frequency usage in the Healthy cohort. Bubble plots depict the difference in usage (coloured: blue reduced/red
increased) compared to healthy repertoires. (f) CDRH3 physicochemical characteristics (represented by Kidera
factors) were analysed separated by sub-classes and disease status (Healthy/CV19), and compared using
Minkowski distance. Note that IgG1 and IgG3 sequences from CV19 cluster together with IgM (square bracket),
away from those of the same sub-classes from healthy individuals (indicated by arrow). Statistical significance
in panels a, d and e was evaluated using one-way ANOVA and Dunnett post-hoc comparison against the
Healthy cohort: p-value indicated either with colour (panel c), bubble size (e) or the symbols under the
following scheme: *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p <0.0001.
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669 Figure 3. Convergent CDR3 clusters of sequences from CV19 repertoires and known SARS-CoV-2 binders.

670 (a) CDR3 Known binder networks were created using same V, J and CDR3 length with at least 85% amino acid
671 (AA) identity. (b) Convergent clusters from healthy and CV19 repertoire with known PDB structures. IGHV and
672 IGHJ use and the CDR3 AA sequence were noted. (c) Clusters containing at least 10 sequences were visualized,
673 with breakdown of repertoire origin (stacked bar plots), and the IGHV and IGHJ gene usage of each cluster
674 aligned beneath. The number of donors with sequences in each depicted clusters are shown as bar graphs
675 (bottom panel, c), broken down into subsets with age <50 (light grey) and >60 (dark grey). (d) All known

676 binders were analysed for similarity of IGHV/) gene use to specific SAR-CoV-2 antibody targets (d). Dots

677 coloured by enrichment (log-odds ratio, logOR) evaluated using Fisher’s exact test. Only V/J-specificity

678 combinations with significant (p < 0.05) enrichment were shown. (e) Comparison of clonal expansion of

679 convergent (split by clone size; 210 or <10 sequences) and non-convergent clusters in healthy and CV19

680 repertoires. Statistical significance evaluated using a Wilcoxon rank-sum test, ****: p < 0.0001. See

681 Supplementary Figure S6 for analogous analyses on RSV and EBOV repertoires.
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684 Figure 4. Age differences in V-D-J and isotype usage in CV19 repertoires.

685  CV19 and healthy patients were split by over 60s and under 50s and were compared for IgA (a), I1gG
686  (b) usage and selected V-D-J gene usage (c). Statistical significance evaluated using two-way ANOVA
687 and Tukey’s post-hoc test: *, p < 0.05; **, p < 0.01, ***, p <0.001, **** p < 0.0001..
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689 Figure 5. Mutational levels in BCR lineages.

690 (a) Lineages trees were constructed by clonotyping the IgH CDR3 and the lineages reconstructed using the
691 whole V gene rooting on the predicted germline, allowing the distance from germline to be estimated for each
692 sequence. This allows ordering of sequences based on this distance from germline: depicted as a histogram
693 [(a) bottom right]. (b) Clones in the repertoire, for selected donors, were ordered (vertical axis) using median
694 distance from germline (horizontal axis), and the distribution of such distance for each clone was plotted with
695 heatmap colours being the percentage of sequences within the clone containing the a given level of mutation.
696 (c) Distance from germline distributions for every donor, split by condition, represented as curves. Dotted line
697 represents the theoretical expectation of mutational level. (d) From each of these curves (in c) the area under
698 the curve (AUC) was calculated giving a statistic of ‘Germline Likeness’, a higher AUC resembling more the
699 germline and a lower AUC indicating more mutations. (e) Comparison of Germline Likeness between

700 conditions: sample types with significant (p < 0.05) differences compared to Healthy (Wilcoxon rank-sum test)
701 are highlighted in red with the dotted line being the healthy median. (f) The Germline Likeness across

702 timepoints for CV19 patients with Healthy and Ebola data are reproduced here for comparison: trend was
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703 evaluated using the Jonckheere-Terpstra test. (G) Comparison of germline distance split by immunoglobulin
704 isotype was performed split by cohort: significant (p < 0.05) differences compared to IgM (Wilcoxon rank-sum
705 test) are highlighted in red.

706
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Figure 6. Prevalence of Class-switch recombination estimated from BCR lineage trees.

(a) Lineage clones (see Figure 5) were assessed for prevalence of CSR events in terms of the proportion of
clones and plotted by clone size and split by condition. (b) Bubble plot depicting the frequency and distance-
from-germline of CSR events, separated by the CSR start (‘From’, vertical axis) and end (‘To’, horizontal axis)
isotypes. Quantification was performed separately for different sample types. Bubble sizes are proportional to
the frequency of CSR and colour is scaled by distance from germline at which CSR occurs, as estimated from
the reconstructed lineage trees. (c) Statistical comparison of the median distance from germline at which CSR
events occurred across sample types. Each donor was considered separately for every switch possibility. (d)
Comparison of CSR frequency (percentage of clones with evidence of CSR) for each condition was also
assessed for each donor (median, d). Statistical significance was evaluated using one-way ANOVA and Dunnett
post-hoc comparison against Healthy with p < 0.05 highlighted in red (c, d). For (d), Supplementary Figure S8
contain analogous plots for all CSR combinations with significant (p < 0.05) differences compared against

Healthy.
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CovID-19

Sample Age Gender Ethnicity Severity Score Days since
symptom onset
(out of 6)
Health Median 29.5 (Range 23 - 76) Female: 7/24(29.2%) White:  12/24 (50%)
(n= 24‘)/ <50 years old: 15/24 (62.5%) Male: 5/24 (20.8%) Unknown: 12/24 (50%)
- >60 years old: 9/24 (37.5%) Unknown: 12/24 (50%)
Median 50.5 (Range 28 - 87) Female: 7/16 (43.75%) White: 13/16 (81.25%) Median 3 (Range  Median 8
COVID-19 (n <50: 8/16 (50%) Male: 9/16 (56.25%) South East Asian: 1-5) (Range 1 —-35)
- 16) 50-60: 3/16 (18.75%) 1/16 (6.25%)
- >60: 5/16(31.25%) Indian Subcontinent:
2/16 (12.5%)
COVID-19  Median 50 (Range 28 - 87) Female: 3/5 (60%) White: 4/5 (80%)
Recovered <50: 3/5 (60%) Male: 2/5 (40%) Indian Subcontinent:
(n=5) >60: 2/5 (40%) 1/5 (20%)
RSV Young: 3/6 (50%)
Infected Older: 3/6 (50%)
(n=6)
RSV Young: 3/6 (50%)
Uninfected Older: 3/6 (50%)
(n=6)
Ebola Young: 3/12 (50%) Female: 1/12(8.3%) White: 3/12 (25%)
(n=12) Unknown: 9/12 (50%) Male: 2/12 (16.7%) West African:
- Unknown: 9/12 (75%) 9/12 (75%)
YFV D28 (n Median 28 (Range 27 - 28) Female: 1/3(33.3%) White: 3/3 (100%)
=3) Young:  3/3 (100%) Male: 2/3 (66.7%)

Table 1. Donor characteristics. See Supplementary Table S1 for a detailed summary of metadata per donor.
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