

1      **Pandemic, epidemic, endemic: B cell repertoire analysis reveals unique anti-viral responses to**  
2      **SARS-CoV-2, Ebola and Respiratory Syncytial Virus**

3      Alexander Stewart<sup>1</sup>^, Emma Sinclair<sup>1</sup>^, Joseph Ng<sup>2</sup>^, Joselli Silvia O'Hare<sup>1,2</sup>, Audrey Page<sup>2</sup>,  
4      Ilaria Serangeli<sup>3</sup>, Christian Margreitter<sup>2</sup>, Nora Kasar<sup>1</sup>, Katherine Longman<sup>1</sup>, Cecile Frampas<sup>1</sup>,  
5      Catia Costa<sup>1</sup>, Holly Lewis<sup>1</sup>, Bryan Wu<sup>2</sup>, David Kipling<sup>1</sup>, Peter Openshaw<sup>4</sup>, Christopher Chu<sup>4</sup>,  
6      J Kenneth Baillie<sup>5</sup>, Janet T Scott<sup>6</sup>, Malcolm G Semple<sup>6</sup>, Melanie Bailey<sup>1</sup>, Franca Fraternali<sup>2</sup>\*  
7      and Deborah Dunn-Walters<sup>1</sup>\*

8  
9      ^These authors have contributed equally to this work and share first authorship

10     \* These authors have contributed equally to this work and share senior authorship

11     <sup>1</sup>University of Surrey, UK

12     <sup>2</sup>King's College London, UK

13     <sup>3</sup>Sapienza Università di Roma, Italy

14     <sup>4</sup>Imperial College London, UK

15     <sup>5</sup>University of Edinburgh, Scotland

16     <sup>6</sup>University of Liverpool, UK

17  
18     Prof Deborah Dunn-Walters

19     School of Biosciences and Medicine, FHMS

20     Stag Hill Campus

21     University of Surrey

22     Guildford

23     Surrey

24     GU2 7XH

25     [d.dunn-walters@surrey.ac.uk](mailto:d.dunn-walters@surrey.ac.uk)

26     07976 557191

27      **Abstract**

28      Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune  
29      response towards different infections, enabling inference of B cell development processes. Detailed  
30      compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of  
31      pandemic, epidemic and endemic viral infections with control and vaccination samples,  
32      demonstrates general responses including increased use of *IGHV4-39* in both EBOV and COVID-19  
33      infection cohorts. We also show unique characteristics absent in RSV infection or yellow fever  
34      vaccine samples: EBOV survivors show unprecedented high levels of class switching events while  
35      COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal  
36      expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre  
37      mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is  
38      also pertinent that we find significant differences in repertoire characteristics between young and  
39      old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong  
40      but immature humoral response where failures in selection of the repertoire risks off-target effects.

## 42 Introduction

43 The emergence of SARS-CoV-2 in 2019, the ensuing pandemic and evolution of novel variants  
44 continues to make COVID-19 a matter of global public health significance. The recent SARS, MERS,  
45 Zika and Ebola outbreaks have also highlighted a need to better understand how the human immune  
46 system responds to novel infections, develop better treatments and control their emergence and  
47 spread. Initial reports from the COVID19 pandemic, relying heavily on serum antibody titres, saw  
48 rapid declines in SARS-CoV-2 specific antibodies<sup>1</sup> that raised concerns over the nature and duration  
49 of B cell memory. While total antibody titres decrease the persistent presence of SARS-CoV-2-  
50 specific memory responses some months after infection mitigates these concerns<sup>2,3</sup>.

51 Immunoglobulins (Ig), both as secreted antibodies and as B Cell Receptors (BCRs), mediate immunity  
52 against multiple pathogens through their vast variability in antigen binding. This variability is  
53 produced by V-D-J recombination <sup>4</sup>, where V, D and J genes are recombined from a pool of diverse  
54 genes. B cells with Ig genes encoding disease-specific antibodies are expanded upon challenge,  
55 causing a skewing of the repertoire towards greater use of antigen-specific genes associated with  
56 the challenge in question. Furthermore, the imprecise joining of gene segments, together with the  
57 action of terminal deoxynucleotidyl transferase (TdT) creates a highly diverse complementarity  
58 determining region (CDR)3 region, which is important for antigen binding, and can be used to  
59 identify “clones” of B cells within a repertoire. These clonal assignments allow us to track lineages  
60 and follow the progress of the post-activation diversification events of somatic hypermutation (SHM)  
61 and class switching (CSR) as the B cell response develops. Thus, repertoire analyses can help to  
62 characterise changes in the memory/effector B cell compartments and identify individual genes of  
63 interest for possible antibody therapeutics.

64 Both SHM and CSR are mediated by the enzyme Activation Induced cytidine Deaminase (AID) and  
65 have traditionally been associated with germinal centre events in secondary lymphoid tissue,  
66 involving T cell help <sup>5-7</sup>. There is, however, also evidence that CSR may occur outside the germinal  
67 centre environment <sup>8-11</sup> and may not require direct T cell help. The ability of a B cell to mount a  
68 directed effector response prior to the formation of a germinal centre allows a more rapid immune  
69 response but with lower affinity.

70 Immune responses are often impaired in older people, which has been of particular concern in  
71 COVID-19 patients. The older immune system has shown reduced responses to vaccination,  
72 frequently with higher numbers of autoreactive antibodies and inflammatory cytokines<sup>12-14</sup>. In B cells  
73 we, and others, have shown that particular subsets of B cells are altered with age: IgM memory cells  
74 (CD19+CD27+IgD+) are decreased in older people while the Double Negative (CD19+CD27-IgD-) are  
75 increased <sup>15,16</sup>. Since IgM memory cells are often associated with a T-independent response, the  
76 decrease in IgM memory in older people could have severe consequences in infections where a rapid  
77 extrafollicular response is required<sup>17,18</sup>. It has also been shown that the B cell repertoire is skewed  
78 towards sequences with longer more hydrophobic CDR3 regions as we age<sup>16,19</sup>. As an immune  
79 response can result in a shift towards lower, less hydrophobic CDR3 regions<sup>14,20</sup>, and higher  
80 hydrophobicity has previously been correlated with increased polyspecificity<sup>21-23</sup>, the older immune  
81 repertoire seems to be disadvantaged in this respect.

82 In this study we took a long-read repertoire amplification approach that allowed us to track the V-D-J  
83 clonal lineages in the context of antibody subclass to better understand, compare and contrast B cell  
84 responses to emerging or endemic viruses. Samples were taken from COVID19 patients during and  
85 after infection, Ebola virus disease (EBOV) survivors from West Africa and the UK, volunteers  
86 challenged with Respiratory Syncytial Virus and compared with samples from healthy donors. We

87 report the variation of repertoire between disease states in novel virus infection, with a focus on  
88 elderly who are known to respond less well to infection, particularly in SARS-CoV-2.

## 89 Methods

### 90 *Sample collection*

91 Whole blood samples (RSV, COVID19, Healthy) were collected into Tempus™ Blood RNA tubes, kept  
92 at 4°C, and frozen down to -20°C within 12 hours. Ebola samples were cone filters from  
93 plasmapheresis, dissolved in Tri reagent. RNA was extracted using Tempus™ kits according to  
94 instructions. Healthy samples taken after SARS-CoV-2 emergence were all confirmed negative for  
95 anti-SARS-CoV-2 antibodies by SureScreen lateral flow test and by ELISA<sup>24</sup>. Ebola RNA blood samples  
96 were collected from convalescent patients with viral RNA negative PCR tests in the 2014-2016 West  
97 African outbreak, three patients were Caucasian treated in the UK, and the remaining were  
98 convalescent plasma donor participants from a trial in Sierra Leone<sup>25</sup> (consented under the Sierra  
99 Leone Ethics and Scientific Review Committee ISRCTN13990511 and PACTR201602001355272 and  
100 authorised by Pharmacy Board of Sierra Leone, #PBSL/CTAN/MOHS-CST001). COVID-19 samples  
101 were collected from SARS Cov 2 positive patients at Frimley and Wexham Park hospitals during 2020  
102 (consented under UK London REC 14/LO/1221). Each participant was attributed a “severity score” in  
103 relation to their fitness observations at the time of hospital admission using the metadata collected.  
104 This score used the “mortality scoring” approach of SR Knight *et al.* adapted to disregard age, sex at  
105 birth and comorbidities, and ranged from 0 to 6; patients scoring 0 to 3 were attributed low severity  
106 and patients scoring 4 to 6 were attributed high severity<sup>25</sup>. Convalescent COVID-19 patients, from  
107 hospital sampling, were contacted for further donations and sample taken 2-3 months post hospital  
108 discharge. RSV samples were collected from participants who took part in a human challenge study  
109 and were monitored for infection by viral PCR tests (consented under UK London REC 11/LO/1826).  
110 Briefly, healthy participants were challenged intranasally with 10<sup>4</sup> plaque-forming units of the M37  
111 strain of RSV and monitored for up to 6 months as previously described<sup>26</sup>.

### 112 *Repertoire Library Generation*

113 Tempus tube samples were defrosted at room temperature and RNA was extracted using the  
114 Tempus RNA extraction kit according to the manufacturer’s instructions. RNA samples were  
115 template switch reverse transcribed using SMARTScribe™ reverse transcriptase (Clonetech)  
116 according to manufacturer’s instructions using the SmartNNN TSO Primer (Supp. Methods Table 1)  
117 with a minimum of 170 ng of RNA input. The sample was then treated with 0.5 units/μl of Uracil-  
118 DNA Glycosylase (NEB) for 60 min at 37°C to reduce UMI interference, then incubated at 95°C for 10  
119 min to inactivate the enzyme. Samples were amplified using Q5 polymerase (NEB) according to  
120 manufacturer’s instructions with an annealing step of 65°C for 20s and extension step of 72°C for 50  
121 s for 21 cycles. Round one of PCR was performed with forward primer Smart20 and mixed heavy  
122 chain (IG[M, G, A]-R1) reverse primers (Supp. Methods Table 1). For PCR1 8 x 20 μl reactions were  
123 performed with 1 μl of RNA input per reaction. A semi-nested 2nd PCR was performed with forward  
124 primer PID-Step and reverse primers IG[M/G/A]-R2 (Supp. Methods Table 1); 16 reactions of 20 μl  
125 each was performed for each isotype with the same thermal cycling conditions as PCR1 but with 12  
126 cycles, with 1 μl of template. The primers in PCR2 also contain Patient Identifier (PID) sequences to  
127 allow multiplexing on PacBio (Supp Methods Table 2). Samples were run on a bioanalyzer (Agilent  
128 7500), isotypes from patients were pooled at equal concentrations and concentrated using Wizard  
129 PCR Clean-up kits (Promega) according to manufacturer’s instructions with 30 μl of elute. Each  
130 isotype was then purified using a PippinPrep™ with Marker K reagents (Sage Biosciences) used as an  
131 external ladder reference (IgM/G/A 600-100bp). The concentration was checked using a DNA  
132 quantification kit on the Qubit according to manufacturer’s protocol, the different isotype samples

133 were pooled at equal concentrations and purified with SPRiselect beads (Beckman Coulter) at X0.8  
134 sample volume with elution in 30 $\mu$ l of TE buffer. Sequencing was performed on either the PacBio  
135 RSII or Sequel platforms (See Supp. Methods Table 2).

136 Quality control, data cleaning and removal of multiplicated UMIs was carried out as previously  
137 published<sup>16,27</sup>. Immunoglobulin V-D-J gene usage and CDRH3 was determined using IMGT/High V-  
138 quest. Clonotype clustering was carried out as per<sup>16,27</sup>, in brief: a Levenshtein distance matrix was  
139 generated on the CDRH3, hierarchically clustered and branches cut at 0.05 to generate clones.  
140 Physicochemical properties were calculated using the R Peptides package<sup>28</sup>.

141 *Analysis of clonal diversity*

142 We sought for methods to qualitatively (visualising clone size distribution) and quantitatively  
143 compare clonal diversity (calculating metrics which summarise clonal diversity). We first noted, as  
144 one would expect, that sequencing depth (i.e., number of sequences sampled per repertoire) was a  
145 strong predictor of the number of clones (Supplementary Figure S1). For all repertoires considered  
146 here, a wide range of sequencing depth was observed (number of sequences range from 836 to  
147 105,323, median = 12,040). We therefore adopted the following procedure in this analysis: first, to  
148 quantify the extent of clonal diversity we used the Gini coefficient which measures the evenness in  
149 the distribution of clone size across clones; application of this metric to quantify BCR clonal diversity  
150 has been well documented<sup>29-31</sup>. For a given repertoire, clones were ordered by their clone sizes, and  
151 the cumulative distributions of clone sizes (in terms of percentage of sequences in repertoire) and its  
152 percentile distribution were compared for evenness. As such, the resulting metric was independent  
153 from the *absolute* numbers of sequences and clones, thereby allowing fair comparison across  
154 repertoire of different sequencing depths. As Gini coefficient is an indicator of evenness, we took (1  
155 – Gini coefficient) as the metric of clonal diversity. To qualitatively compare clonal diversity, we  
156 generated visualisation using the following procedure to minimise the impact of sequencing depth  
157 differences: we first sampled 12,000 sequences ( $\approx$  median sequencing depth; see above) from each  
158 repertoire; for repertoires with less than 12,000 unique observations, this number of sequences  
159 were sampled with replacement. We then sampled up to 100 clones with probability scaled by clone  
160 sizes to generate bubble plots where each bubble represents a clone and bubble sizes are scaled  
161 with clone sizes. Genotypic features like V gene usage can be represented as colours. Such plots  
162 were included in Figure 2c.

163 *Analysis of BCR clone lineage trees*

164 Lineage trees were reconstructed using the maximum parsimony method implemented in the  
165 dnaps executable in the phylib package<sup>32</sup>. All clones with at least 3 sequences were considered;  
166 IMGT-gapped, V-gene nucleotide sequences of all observations in the clone together with the  
167 annotated germline V-gene sequence (included to root the tree) were included as input to dnaps.  
168 Functionalities implemented in the alakazam R package<sup>33</sup> were used to call dnaps and reformat the  
169 output into text-based tree files (newick format) and directed graphs (igraph objects manipulated in  
170 R). The directed graphs were further parsed using functions in alakazam and igraph to obtain, for  
171 each observed sequence in the given clone, its distance  $D$  from the given germline gene  $g$  (denoted  
172 here as  $D_g$ ), as estimated by the dnaps-reconstructed lineage tree: the closer this distance is to 0,  
173 the closer the sequence is to germline and therefore a lower mutational level.

174 We sought to summarise, for a given clone, the distribution of  $D_g$ ; this distribution would indicate  
175 the overall mutational level of sequences within the clone (summarised using conventional statistics  
176 like the median of  $D_g$ ) and the evenness of mutational level (i.e. whether the clone consists of  
177 expansion of sequences with a similar mutational level, or it comprises sequences with a wide range

178 of mutational levels). This can be visualised as a heatmap (clones [vertical axis] versus  $D_g$  [horizontal  
179 axis], with colours scaling with density of the distribution; see Figure 5b), or as a curve (clones  
180 [vertical axis] versus the median of  $D_g$  [horizontal axis], See Figure 5c). The curve representation  
181 allows calculation of area-under-curve (AUC) as a metric which we termed “Germline Likeness”, to  
182 quantify mutational levels across clones. This is similar to quantifying sequence similarity to  
183 germline, except that here Germline Likeness quantifies the tendency to which all clones from the  
184 BCR repertoire of a given individual have high similarity to the germline (and therefore lower  
185 mutational levels).

186 *Detecting class-switch recombination events from lineage trees*

187 Since the lineage trees were constructed using only V-gene sequences (see above), in theory  
188 antibody sequences of different subclasses could be ordered in the tree in a way that imply class-  
189 switch recombination (CSR) events which are mechanistically impossible. We therefore pruned the  
190 dnapars-reconstructed tree to remove edges which imply CSR events that violates the physical order  
191 of constant region genes in the human IGH locus. This was performed using a Python  
192 implementation of the Edmond’s algorithm to construct a minimum spanning arborescence tree  
193 with the given germline V gene sequence as root. With this arborescence tree the type of CSR  
194 (subclass switched from/to) and the distance-from-germline at which the CSR event occurred  
195 (estimated as the median distance-from-germline of the two observations relevant to the given  
196 event) were obtained.

197 *Convergent network*

198 Productive heavy chain sequences with CDRH3 of length shorter than 30 amino acids were  
199 considered in the construction of a convergent network. Sequences were connected if they meet the  
200 following criteria (a) same V and J gene usage; (b) from different individuals; (c) same CDRH3 amino  
201 acid length, and (d)  $\geq 85\%$  CDRH3 amino acid identity. To allow interpretation of possible targets of  
202 sequences in convergent network clusters, known binders were included in constructing the  
203 network. Known binders were taken from the following sources: first experimentally determined  
204 antigen-antibody structural complexes deposited in the Protein Data Bank (PDB). PDBe was queried  
205 on 19 May 2021 with the search term ‘Organism: Severe acute respiratory syndrome coronavirus 2’.  
206 The resulting list of PDB entries were overlapped with entries in the SAbDab structural antibody  
207 databases<sup>34</sup> to obtain list of PDB complexes of antibodies and SARS-CoV-2 proteins. A total of 215  
208 heavy chains from 186 structures were considered. Second, known binders validated in experiments  
209 where antibody variable regions were cloned and assessed for SARS-CoV-2 protein binding were  
210 taken from published work<sup>35-40</sup>. All known binder sequences were annotated for V/J gene usage  
211 using either IMGT/High-VQuest (if DNA sequences were provided) or IMGT/DomainGapAlign (if only  
212 amino acid sequences were provided). Information regarding specificity (i.e. SARS-CoV-2 protein  
213 targets) were obtained from either supplementary data files in the cited publications or by visual  
214 inspection (for PDB structures). Supplementary Table S5 contains all known binder sequences  
215 included in this analysis. To construct the network, known binders were connected to one another  
216 and to repertoire sequences using the identical criteria mentioned above. In total 809 unique CDRH3  
217 sequences were considered in constructing the convergence network. The resulting network  
218 contains 7500 sequences (7370 from repertoire, 130 known binders). Analogous convergent  
219 networks were constructed using the Ebola and RSV repertoire data, separately considered with  
220 respective known binders and Healthy individuals’ repertoire; the majority of clusters were formed  
221 mainly of sequences from Healthy donors absent of known binders<sup>41-44</sup>, although we were able to  
222 identify two convergent clusters of RSV-infected individuals with similar CDRH3 to known binders of  
223 the RSV fusion glycoprotein (Supplementary Figure S6). To investigate whether clusters shared  
224 across disease conditions exist, convergent networks were also constructed considering CV, RSV and

225 EBOV repertoire and binder sequences altogether (Supplementary Figure S7). Supplementary Table  
226 S6 contains all convergent networks constructed, presented as list of pairwise sequences.

227 *Statistical analysis and Data visualisation*

228 V-D-J gene usage for each patient was turned into a proportion to normalise for different numbers  
229 of sequences and allow for comparison. Gene usage analysis was performed in GraphPad Prism 8.4.3  
230 using a two-way ANOVA with a Dunnett's post hoc test. All other statistical analyses were performed  
231 in the R statistical computing environment (version 4.0.2). Data visualisation was performed using  
232 the R ggplot2 package and the following specialised R packages: visNetwork (for visualising  
233 convergent CDRH3 network clusters) and ggseqlogo (for visualising CDRH3 sequence logos). PDB  
234 structures were visualised using PyMOL (version 2.3.0). Histograms of CDRH3 length and  
235 hydrophobicity, as measured by Kidera factor 4, were constructed on the Brepertoire website<sup>45</sup>.

236 **Results**

237 *Patient cohorts*

238 *IGH* sequences, of total V-D-J plus ~150-200 bp of C regions, were obtained from pandemic,  
239 epidemic and endemic diseases and stages along with 24 healthy controls across multiple age ranges  
240 (Figure 1, Table 1). This included: 16 hospitalised COVID-19 patients (CV19), 5 of these patients had  
241 follow-up convalescent samples (CV19-Recovered, hereafter CV19R), 12 Ebola convalescent plasma  
242 donors (EBOV), 12 participants challenged with RSV; 6 of whom became infected (RSV-I) and 6 of  
243 whom did not (RSV-U). Healthy Samples (Healthy) were a grouping of YFVD0, RSVD0 and samples  
244 taken as controls during the COVID pandemic (n=24). Numbers of sequences varied from 836 to  
245 105,323, median = 12,040 per sample, *IGH* gene usage for each patient was expressed as a  
246 proportion of the total in order to normalise for differences in sequence numbers between different  
247 samples.

248 *IGH* gene repertoire changes in response to viral infection

249 Although the humoral immune response is varied, with different subclasses of antibody having  
250 different effector functions<sup>46</sup>, many methods of repertoire analysis have hitherto not distinguished  
251 between antibody subclasses. We have used PacBio methods to obtain full V-D-J sequence in the  
252 context of subclass usage to investigate class switching events during immune responses to  
253 infection. We also distinguish between mutated versus unmutated IgM sequences, as a proxy for  
254 identifying IgM memory responses. Comparisons of subclass distribution, in relation to healthy  
255 controls, revealed a significant increase in the proportion of IgA1 compared to IgA2 in CV19, and  
256 RSV-I and the proportion of IgG1 relative to IgG2 in CV19, EBOV and RSV-I (Figure 2a, 2b). The  
257 differences in CV19 IgG and IgA repertoire returned to 'normal' healthy levels by the time of  
258 convalescent sampling (CV19-Recovered) 2-3 months later.

259 Immune challenge is characterised by clonal expansion of B cells that express Ig which reacts with  
260 the challenging antigen. We identify members of clones in the repertoire by clustering the CDRH3  
261 regions and looking at the largest clones in each sample we can see evidence of increased clonal  
262 expansions in CV19 patients (Figure 2c). In the full CV19 repertoire *IGHV4* family genes were  
263 expanded (Figure 2c), more specifically of *IGHV4-39* (Supplementary Figure S2) and some *IGHV3*  
264 family, this is particularly noticeable in IgG1 and IgA1. Analysis of clonal diversity of memory B cells  
265 using the Gini index, taking all possible clones into account, found CV19 patients had a less clonally  
266 diversified repertoire in all but the IgG2 and IgG4 partitions (Figure 2d, Supplementary Figure S3),  
267 suggesting pervasive expansions of specific BCR clones. Unusually, we also saw a decrease in  
268 diversity of unmutated IgM sequences, indicative of clonal expansion prior to SHM and CSR (Figure  
269 2d). These values returned to normal in the CV19R samples. In comparison, *IGHV1* family was

270 expanded in the RSV-I IgG1 partition (Figure 2c), particularly of *IGHV1-18* (Supplementary Figure S4).  
271 Active infection with RSV showed an increase in diversity of IgA2, and samples taken 28 days after  
272 yellow fever vaccination showed an increase in diversity of both IgA2 and the mutated IgM  
273 populations. Interestingly, EBOV memory B cell populations were more diverse than healthy controls  
274 in all the main switched subclasses (IgG1, IgG2, IgA1, IgA2) (Figure 2d, Supplementary Figure S3).

275 Large clone sizes can mask whole repertoire changes, so we analysed the frequency of gene use  
276 after reducing the data to one representative sequence per clone. We found increased use of *IGHV3-*  
277 *30* in IgM mutated sequences in CV19 patients (Figure 2e), and also of IgM-mutated/IgA1/IgG1 in  
278 CV19R, this was unique to CV19. An increase in use of *IGHV4-39* was found in CV19 IgA1 sequences  
279 and was also found increased across the board in EBOV and RSV-U samples (Figure 2e). *IGHV3-23*  
280 was found to be reduced in ongoing infection (likely an offset as a result of relative increases in  
281 usage of other genes) but exceeded the healthy levels in CV19R and RSV-I. *IGHV1-69*, which has  
282 previously been associated with viral infections<sup>47,48</sup> was increased in RSV-I but not EBOV or CV19.  
283 The YF day 28 vaccine samples increased use of *IGHV3-7* in IgM-mutated and *IGHV1-2* in IgG1 only  
284 (Supplementary Figure S4).

285 *Complementarity Determining Region 3 (CDRH3) immaturity in CV19*

286 Given the importance of CDRH3 in antibody recognition, and the contribution to CDRH3 from the  
287 *IGHD* and *IGHJ* genes, we analysed these also. In CV19 samples there was a significant increase in  
288 use of *IGHD2-2*, *IGHD3-3* and *IGHJ6* (Figure 2e). These genes tend to be more hydrophobic (*IGHJ6*  
289 being the exception) and all have among the longest amino acid lengths with only *IGHD3-16* being 2  
290 AA longer. This contribution can be seen in the overall CV19 repertoire which skews towards longer  
291 amino acid sequences and increased hydrophobicity, indicative of early response as affinity  
292 maturation causes shorter less hydrophobic CDRs (Supplementary Figure S5). A clustering analysis of  
293 peptide physicochemical properties of CDRH3 regions generally results in a difference between IgM  
294 sequences and memory sequences (Figure 2f), presumably reflecting biases in antigen selection  
295 during post-challenge development. We can see that healthy and CV19 subclass sequences mostly  
296 have similar CDRH3 properties to each other, however, in the case of CV19 IgG1 and IgG3 cluster  
297 closer to IgM sequences from healthy and EBOV rather than healthy IgG1 and IgG3 sequences  
298 implying a more ‘naïve’, unselected, repertoire.

299 *Convergent antibody clusters between patients*

300 To assess the functional importance of the skewed patterns of V, D and J gene usage in CV19 we  
301 created networks connecting sequences observed in our CV19 and control repertoire data (Figure  
302 3a), using criteria previously employed in discovering ‘convergent’ antibody sequences shared  
303 between patients<sup>49</sup>. By also including known SARS-CoV-2 binders we obtain clusters of CDR3  
304 sequences found in both CV19 patients and healthy controls, some of which converge towards  
305 known binders of SARS-CoV-2 proteins such as those targeting the receptor binding domain (RBD) of  
306 the spike protein (Figure 3b). Many of these large convergent clusters did not, however, include a  
307 known binder in the network (Figure 3c). Overall, convergent clusters use a diverse set of V genes,  
308 but most of our larger convergent clusters contain *IGHV3* or *IGHV4* families and demonstrate  
309 increased *IGHJ6* usage as well as the more commonly used *IGHJ4* (Figure 3c). A comparison  
310 exclusively of the known binders to date reveals distinct combinations of V and J gene preferences  
311 (Figure 3d). We do find clusters of sequences using *IGHV3-53* and *IGHV1-58* such as those used in  
312 anti-RBD antibodies (e.g. Figure 3b). We find that sequences from convergent clusters tend to be  
313 found in larger clonal expansions than those without evidence of convergence (Figure 3e), possibly  
314 implying that specific clonal expansions in response to challenge are shared across patients. We  
315 note that half of the larger clusters have substantial contributions from healthy control sequences,

316 so there may be some IGH genes, such as *IGHV3-33/IGHJ5* found also in RSV-I and EBOV convergent  
317 networks (Figure 3c, Supplementary Fig6a&b), which have increased versatility such that they are  
318 often seen in response to multiple different challenges.

319 Similar analyses of RSV and EBOV repertoires were limited by the paucity of information on antibody  
320 binders, however it was notable that only RSV-I, and not RSV-U, showed evidence of convergence.  
321 *IGHV1-18* appears in a large cluster with a known RSV F-protein binder and although the large  
322 *IGHV3-23* cluster does not contain a known binder it forms part of the larger expansion of *IGHV3-23*  
323 genes in mutated IgM genes from this cohort (Figure 2e, Supplementary Figure S6b).

324 *Age-related differences*

325 The disparity in CV19 severity and mortality between age groups is striking, so we looked for age-  
326 related differences in our B cell repertoire data. The difference in IgA1/IgA2 ratio is less in older  
327 people, not reaching significance. (Figure 4a). On the other hand, the increase usage of IgG1 in CV19  
328 and concomitant decrease in IgG2 are robust across age (Figure 4b). Considering Ig gene usage, we  
329 observe the intriguing case of *IGHV3-30* which is only preferentially used by the over 60s during  
330 infection (Figure 4c). Conversely, *IGHV3-53*, which appears relatively frequently in known binder  
331 data in combination with *IGHJ4/6* but did not appear in our total cohort analysis (Figure 2e), is  
332 significantly increased in the under 50s IgM-mutated partition (Figure 4c). We also found that  
333 *IGHV4-39*, *IGHD2-2*, *IGHD3-3* and *IGHJ6*, which we find are expanded in CV19 across multiple B cell  
334 partitions, only have significantly increased expression in the under 50s and not the over 60s *IGHV4-34*  
335 appeared increased in both age groups. (Figure 4c).

336 *Immature IgG1 responses to CV19*

337 Beyond the scope of gene usage, our BCR repertoire data also enabled reconstruction of individual  
338 BCR lineage trees to make inferences about the evolution of a particular clone. Using the annotated  
339 germline V allele as the root of the tree, we estimate, for each sequence in the lineage, its distance  
340 from the root (Figure 5a); this distance being directly proportional to mutational level. We visualise  
341 the distribution of this germline distance across all clonotypes observed in each given individual, and  
342 observe that the repertoire is dominated by clonotypes with very low mutational levels for a subset  
343 of CV19 patients, whilst the predominance of such clones is broadly absent in healthy controls  
344 (Figure 5b, c). Interestingly, in repertoires from convalescent individuals (both EBOV and CV19), we  
345 instead observe dominance of clonotypes with higher mutational levels, although the pattern is less  
346 striking than the CV19 patients during hospitalisation (Figure 5c). These curves allow for  
347 quantification of the Area Under the Curve (AUC), which constitutes a metric we term “Germline  
348 Likeness”: a higher Germline Likeness corresponds to a lower level of mutation across all clones  
349 (Figure 5d); this is akin to quantifying sequence similarity to the germline, except that Germline  
350 Likeness here quantifies such phenomenon for a given repertoire in general, rather than a specific  
351 sequence. Using this metric we confirm that CV19 repertoires were dominated by clones that were  
352 largely unmutated, while EBOV samples carried the greatest mutation rate (Figure 5e). As might be  
353 expected, with time to generate a germinal centre response, Germline Likeness in CV19 faded with  
354 time (Figure 5f), to the point where the CV19R repertoires have similar level of mutations compared  
355 to the EBOV-convalescent and healthy control repertoires. Partitioning the analysis by isotype, RSV  
356 and healthy controls demonstrate the expected trend where an increased level of mutations can be  
357 found in both IgG and IgA compared to IgM (Figure 5g). However, in CV19 only IgA showed a  
358 significant change in Germline Likeness from IgM (Figure 5g).

359 *Ongoing Class switch recombination (CSR) detectable in PBMCs of CV19 and EBOV patients*

360 Our lineage trees were further analysed for CSR events: respecting the sequential order of CSR in the  
361 genome, we identify CSR events where sequences of different antibody classes/subclasses are

362 directly connected in the lineage tree. This enables us to trace the timing of CSR events (distance  
363 from the germline), the direction of class switching (e.g. from IgM to IgG1) and frequency of  
364 observation. Many clones have evidence of CSR in CV19 and EBOV, even after correcting for clone  
365 sizes (Figure 6a). In particular, CV19 patients were more likely to switch early to IgG1 from IgM, with  
366 little mutation (Figure 6b, c, d) and to IgA1 from either IgM or IgG1 later in the lineage with more  
367 mutation (Figure 6b,d). This agrees with the lack of CDRH3 “maturity” in IgG1 (Figure 2f) and the  
368 overall increased use of IgG1 and IgA1 seen in CV19 (Figure 2 a, b).

369 The evidence of increased CSR in convalescent EBOV patients is striking and occurs across the board  
370 with the exception of IgM switching to IgG1 (Figure 6d). We noticed that although there is a similar  
371 pattern of CSR preferences in White and West Africans individuals, the overall distance from  
372 germline is longer before CSR occurs in West Africans (Figure 6b). This may suggest that the ethnic  
373 bias in existing immunoglobulin sequence databases has resulted in mis-assignment of germline  
374 alleles. No CSR differences were seen in the RSV data.

## 375 Discussion

376 We compared immunoglobulin gene sequences from pandemic (SARS-CoV-2), epidemic (Ebola) and  
377 endemic (Respiratory Syncytial Virus) patients in order to discover features that might distinguish  
378 newly emergent and endemic infections. The ability of B cells to generate a highly diverse  
379 immunoglobulin repertoire that might bind any antigen, and the diverse functionality of the  
380 antibodies produced, is critical for an effective immune response. Repertoire studies aim to identify  
381 specific antibodies by looking for biased usage of particular Ig genes, and have been useful in the  
382 past<sup>16,27</sup>. However, not all expanded genes encode specific binders<sup>45</sup> and we need to consider the  
383 possibility that expansions found in the midst of an acute response may be a side effect of the  
384 disease involving inappropriate expansion of B cells carrying antibodies with off-target effects rather  
385 than a specific targeting to the challenge. Repertoire selection is normally a delicate balance  
386 between tolerance versus immune response to a pathogen and the inflammatory state of acute  
387 disease can upset the balance. Serological studies have shown an increase in autoreactive  
388 antibodies, particularly to interferons, during acute CV19 for example<sup>50,51</sup>.

389 Looking across different viral diseases, we found a general increase of *IGHV4-39* use in the repertoire  
390 of two different viral diseases (COVID19 and Ebola). Despite this, only one of our convergent  
391 clusters, dominated by CV19 sequences, use *IGHV4-39* (Figure 3c); it is possible that there are  
392 unannotated *IGHV4-39* SAR-CoV-2 binders. One single cluster does not, however, explain the larger  
393 expansion in *IGHV4-39* use across the COVID19 or Ebola repertoire. *IGHV4-39* may therefore be  
394 involved in the pathogenesis of the disease by promiscuous binding to self-proteins. Alternatively,  
395 *IGHV4-39* may simply support a wide range of specific binding properties, supported by the lack of  
396 convergence and given it has also been dominant in cancer, bacterial infection, influenza and HIV  
397 responses<sup>52-55</sup>. Such promiscuous binders would have networks contributed to by more than 1  
398 cohort with 52 networks matching this description in our data. It is also significant across all 64 large  
399 clusters 14 were dominated by CV19/CV19-R sequences yet only 5 matched known binders  
400 suggesting previously unknown SARS-CoV-2 specific binders.

401 In addition to expansion of gene use as an indicator of activation, we can infer biological information  
402 from assessment of the AID-mediated activities of CSR and SHM. These have long been associated  
403 with germinal centre formation<sup>56,57</sup>. However, there is mounting evidence that CSR can occur prior  
404 to the germinal centre formation<sup>8-11</sup>. T-independent activation has been shown to be driven by  
405 CD40-independant TLR/TACI activation<sup>58</sup>. Our data indicates an early switching to IgG1 without  
406 extensive hypermutation. This data is consistent with Woodruff *et al*<sup>59</sup> who also found high

407 germline similarity in IgA1, and <sup>39</sup> where CV19 samples were found to have more naïve-like  
408 characteristics. Our CV19 IgA1 sequences also indicate a lower level of hypermutation than the  
409 control group, albeit higher than the IgG1, likely reflecting their distance along the CSR hierarchy.  
410 Uniquely, our diversity analyses also indicate expansion of unmutated IgM clones. Alongside these  
411 data we see that CDRH3 region maturation of IgG1 and IgG3 genes in the CV19 patients is less  
412 removed from the IgM state than healthy IgG1 and IgG3, or any other class switched repertoires.  
413 Together with the lineage analysis of CSR timing, the whole picture in CV19 is of an early immature  
414 response of IgM, switching to IgG1 and then IgA1 but without much SHM, such as might occur in the  
415 absence of T cell help in a GC reaction. Whether these responses are unique to a live infection or  
416 because the virus is so novel is difficult to ascertain, with future vaccine and comparative studies  
417 likely to shed further light on this phenomenon. IgG1 is known for its antiviral properties <sup>46,60</sup> so is  
418 expected in this data. The majority of rapid immunological protection assays for COVID-19 focus on  
419 IgM or IgG <sup>61–64</sup>. Since switching to IgA1 is notable in our data it would be useful for future serology  
420 assays to include IgA. Euroimmun's IgA on LFA had one of the highest sensitivities at 87.8%  
421 compared to IgM and IgG from other assays (range 43.8-93%, mean 72.5%, median 76%) <sup>63,65</sup>.

422 It is known that healthy older people generally have more antibodies capable of binding self-  
423 proteins<sup>66</sup>. The balance between antibodies with positive versus negative/bystander activity may be  
424 changed in older patients. We cannot tell this from our data except that we see a higher frequency  
425 of known spike binders clustering with CV19 repertoires in the younger cohort. Significant age-  
426 related differences occur in the dominant IGH CV19 genes: The increased use of *IGHV3-30* is only  
427 seen in older CV19 patients and that of *IGHV4-39* only in the younger group. We also see selection  
428 for *IGHD2-2*, *IGHD3-3* and *IGHJ6* only in the young, with *IGHJ6* occurring frequently in known binder  
429 networks, given the importance of *IGHD* and *IGHJ* genes to the CDRH3 region it is striking that the  
430 differences seen here are solely in the younger age group.

431 In comparison to our CV19 data our Ebola data paints an unusual picture where, even 2-3 months  
432 post-recovery with viral negative PCR tests, there are abnormally high proportions of class switched  
433 clones with little or no direction towards a particular sub-class. Given CSR is largely understudied, as  
434 far as we can tell such high rates of class switching, particularly so long after recovery, is entirely  
435 unique to this infection. Another unusual observation was that EBOV survivor's memory B cell  
436 populations were more diverse than healthy controls suggesting stimulation with more diverse  
437 antigens, or a less structured and directed immune response. A 'decay-stimulation-decay' pattern  
438 resulting in the peak of antibody response being some 200 days after infection has previously been  
439 reported <sup>67</sup> and cytokine storms during infection may also be contributing to this phenomenon <sup>68,69</sup>.  
440 It was not possible to collect blood samples from unrecovered patients, so we do not know if these  
441 observations were a requirement of patient recovery or a phenomenon unique to Ebola infection in  
442 general.

443 By comparing examples of pandemic, epidemic and endemic viral disease responses our results  
444 show that while aspects of B cell responses are unique to particular infections, the human  
445 immunoglobulin gene repertoire can show similarities of response across two very different  
446 diseases. There are many questions to be answered about the balance of beneficial versus  
447 bystander responses in acute inflammatory diseases, where the initial class switched responses  
448 seem to be immature (CV19) and possibly unregulated (EBOV infection). Coupled with the finding of  
449 genes such as *IGHV4-39* appearing in two completely different diseases, these data add weight to  
450 the hypotheses that an emergency humoral immune response to primary challenge can bypass  
451 normal stringent regulation and thus allow the production of autoimmune antibodies.

452 *Data Availability*  
453 IMGT/High-VQuest-annotated immunoglobulin sequence data file is available at Zenodo  
454 (<https://dx.doi.org/10.5281/zenodo.5146019>).  
455 *Code Availability*  
456 Functions implemented to generate and analyse lineage trees were included in a R package  
457 *BrepPhylo*, which is available at <https://github.com/Fraternallilab/BrepPhylo>. All other code snippets  
458 used in analysing data presented in this work are available as R markdown files available at  
459 <https://github.com/Fraternallilab/BrepPhyloAnalysis>.  
460 *Acknowledgements*  
461 This work was funded by the MRC (MR/L01257X/1 and MC\_PC\_15068), BBSRC (BB/T002212/1 and  
462 BB/V011456/1), EPSRC (EP/R031118/1) and UK National Core Studies (NCSi4P programme) funding.  
463 Ebola samples were kindly donated by Prof Alain Townsend (Oxford). Thanks also to the Surrey  
464 COVID-19 Collaboration and all volunteers for sample collection and to Gill Wallace and Vasiliki  
465 Tsioligka for technical support. The study “Convalescent plasma for early Ebola virus disease in Sierra  
466 Leone” (ISRCTN13990511 and PACTR201602001355272) was supported by the Wellcome Trust  
467 (Award 106491) and Bill and Melinda Gates Foundation; Public Health England Ebola Emergency  
468 Response; and the Blood Safety Programme, National Health Service Blood and Transplant. MGS was  
469 supported by the UK National Institute for Health Research Health Protection Research Unit in  
470 Emerging and Zoonotic Infections. We acknowledge the contribution of the Sierra Leone Association  
471 of Ebola Survivors and Ebola CP Consortium Investigators. The funders had no role in the collection  
472 and analysis of the samples, in the interpretation of data, in writing the report, nor in the decision to  
473 submit the paper for publication.  
474  
475 *Contributions*  
476 DDW, AS, JSO, MB designed study and protocols to collect and analyse COVID19 and YFV  
477 samples under REC 14/LO/1221  
478 AS, MB, NK, ES, KL, CF, CCo, HL acquired and biobanked COVID19 samples  
479 CCh and PO provided RSV samples  
480 MGS, JTS, JKB, AT provided Ebola samples  
481 ES, AS, IS, JSO, AP, BW devised repertoire protocol and performed repertoire data  
482 generation  
483 JN, AS, ES, DK, CM, DDW, FF performed bioinformatic analysis and data interpretation  
484 All authors have read and commented on the manuscript  
485  
486 1. Seow, J. *et al.* Longitudinal evaluation and decline of antibody responses in SARS-CoV-2  
487 infection. *Nat. Microbiol.* 2020.07.09.20148429 (2020) doi:10.1101/2020.07.09.20148429.  
488 2. Siggins, M. K., Thwaites, R. S. & Openshaw, P. J. M. Durability of Immunity to SARS-CoV-2 and  
489 Other Respiratory Viruses. *Trends Microbiol.* **29**, 648–662 (2021).  
490 3. Gudbjartsson, D. F. *et al.* Humoral Immune Response to SARS-CoV-2 in Iceland.  
491 <https://doi.org/10.1056/NEJMoa2026116> **383**, 1724–1734 (2020).  
492 4. Chi, X., Li, Y. & Qiu, X. V(D)J recombination, somatic hypermutation and class switch  
493 recombination of immunoglobulins: mechanism and regulation. *Immunology* vol. 160 233–  
494 247 (2020).

495 5. Xu, Z., Zan, H., Pone, E. J., Mai, T. & Casali, P. Immunoglobulin class-switch DNA  
496 recombination: Induction, targeting and beyond. *Nature Reviews Immunology* vol. 12 517–  
497 531 (2012).

498 6. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch  
499 recombination. *Annual Review of Immunology* vol. 26 261–292 (2008).

500 7. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalysed cytosine  
501 deamination on single-stranded DNA simulates somatic hypermutation. *Nature* **424**, 103–107  
502 (2003).

503 8. Roco, J. A. *et al.* Class-Switch Recombination Occurs Infrequently in Germinal Centers.  
504 *Immunity* **51**, 337–350.e7 (2019).

505 9. Pape, K. A. *et al.* Visualization of the genesis and fate of isotype-switched B cells during a  
506 primary immune response. *J. Exp. Med.* **197**, 1677–1687 (2003).

507 10. Toellner, K. M., Gulbranson-Judge, A., Taylor, D. R., Sze, D. M. Y. & MacLennan, I. C.  
508 Immunoglobulin switch transcript production in vivo related to the site and time of antigen-  
509 specific B cell activation. *J. Exp. Med.* **183**, 2303–2312 (1996).

510 11. King, H. W. *et al.* Single-cell analysis of human B cell maturation predicts how antibody class  
511 switching shapes selection dynamics. *Sci. Immunol.* **6**, (2021).

512 12. Dunn-Walters, D. K., Stewart, A. T., Sinclair, E. L. & Serangeli, I. Age-Related Changes in B Cells  
513 Relevant to Vaccine Responses. *Interdiscip. Top. Gerontol. Geriatr.* **43**, 56–72 (2020).

514 13. Lord, J. M. The effect of aging of the immune system on vaccination responses. *Human  
515 Vaccines and Immunotherapeutics* vol. 9 1364–1367 (2013).

516 14. Ademokun, A. *et al.* Vaccination-induced changes in human B-cell repertoire and  
517 pneumococcal IgM and IgA antibody at different ages. *Aging Cell* **10**, 922–930 (2011).

518 15. Colonna-Romano, G. *et al.* A double-negative (IgD-CD27-) B cell population is increased in the  
519 peripheral blood of elderly people. *Mech. Ageing Dev.* **130**, 681–690 (2009).

520 16. Wu, Y. C. *et al.* High-throughput immunoglobulin repertoire analysis distinguishes between  
521 human IgM memory and switched memory B-cell populations. *Blood* **116**, 1070–1078 (2010).

522 17. Taylor, J. J., Pape, K. A. & Jenkins, M. K. A germinal center-independent pathway generates  
523 unswitched memory B cells early in the primary response. *J. Exp. Med.* **209**, 597–606 (2012).

524 18. Allman, D., Wilmore, J. R. & Gaudette, B. T. The continuing story of T-cell independent  
525 antibodies. *Immunological Reviews* vol. 288 128–135 (2019).

526 19. Bryan Wu, Y. C., Kipling, D. & Dunn-Walters, D. K. Age-related changes in human peripheral  
527 blood IGH repertoire following vaccination. *Front. Immunol.* **3**, 193 (2012).

528 20. Townsend, C. L. *et al.* Significant differences in physicochemical properties of human  
529 immunoglobulin kappa and lambda CDR3 regions. *Front. Immunol.* **7**, 388 (2016).

530 21. Dunn-Walters, D., Townsend, C., Sinclair, E. & Stewart, A. Immunoglobulin gene analysis as a  
531 tool for investigating human immune responses. *Immunological Reviews* vol. 284 132–147  
532 (2018).

533 22. Perchiacca, J. M., Ladiwala, A. R. A., Bhattacharya, M. & Tessier, P. M. Aggregation-resistant  
534 domain antibodies engineered with charged mutations near the edges of the  
535 complementarity-determining regions. *Protein Eng. Des. Sel.* **25**, 591–601 (2012).

536 23. Laffy, J. *et al.* Promiscuous antibodies characterised by their physico-chemical properties:  
537 From sequence to structure and back. *Prog. Biophys. Mol. Biol.* **128**, 47–56 (2017).

538 24. Stadlbauer, D. *et al.* SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a  
539 Serological Assay, Antigen Production, and Test Setup. *Curr. Protoc. Microbiol.* **57**, e100  
540 (2020).

541 25. Tedder, R. S. *et al.* Detection, characterization, and enrollment of donors of Ebola  
542 convalescent plasma in Sierra Leone. *Transfusion* **58**, 1289–1298 (2018).

543 26. Habibi, M. S. *et al.* Impaired antibody-mediated protection and defective IgA B-cell memory in  
544 experimental infection of adults with respiratory syncytial virus. *Am. J. Respir. Crit. Care Med.*  
545 **191**, 1040–1049 (2015).

546 27. Martin, V., Wu, Y. C., Kipling, D. & Dunn-Walters, D. K. Age-related aspects of human IgM+ B  
547 cell heterogeneity. *Ann. N. Y. Acad. Sci.* **1362**, 153–163 (2015).

548 28. Osorio, D., Rondón-Villarreal, P. & Torres, R. Peptides: A Package for Data Mining of  
549 Antimicrobial Peptides. *R J.* **7**, 4–14 (2015).

550 29. Bashford-Rogers, R. *et al.* B cell receptor repertoire analysis in six immune-mediated diseases.  
551 *Nature* **574**, 122 (2019).

552 30. Stephenson, E. *et al.* Single-cell multi-omics analysis of the immune response in COVID-19.  
553 *Nat. Med.* **2021** *27*, 904–916 (2021).

554 31. Bashford-Rogers, R. J. M. *et al.* Network properties derived from deep sequencing of human  
555 B-cell receptor repertoires delineate B-cell populations. *Genome Res.* **23**, 1874 (2013).

556 32. Felsenstein, J. PHYLIP - Phylogeny Inference Package (Version 3.2). *Cladistics* **5**, 164–166  
557 (1989).

558 33. Stern, J. N. H. *et al.* B cells populating the multiple sclerosis brain mature in the draining  
559 cervical lymph nodes. *Sci. Transl. Med.* **6**, 248ra107-248ra107 (2014).

560 34. Dunbar, J. *et al.* SAbDab: the structural antibody database. *Nucleic Acids Res.* **42**, D1140–  
561 D1146 (2014).

562 35. Gaebler, C. *et al.* Evolution of antibody immunity to SARS-CoV-2. *Nature* **591**, 639–644 (2021).

563 36. Zost, S. J. *et al.* Rapid isolation and profiling of a diverse panel of human monoclonal  
564 antibodies targeting the SARS-CoV-2 spike protein. *Nat. Med.* **26**, 1422–1427 (2020).

565 37. Robbiani, D. F. *et al.* Convergent antibody responses to SARS-CoV-2 in convalescent  
566 individuals. *Nature* **584**, 437–442 (2020).

567 38. Kreer, C. *et al.* Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing  
568 Antibodies from COVID-19 Patients. *Cell* **182**, 843-854.e12 (2020).

569 39. Dugan, H. L. *et al.* Profiling B cell immunodominance after SARS-CoV-2 infection reveals  
570 antibody evolution to non-neutralizing viral targets. *Immunity* **54**, 1290-1303.e7 (2021).

571 40. Brouwer, P. J. M. *et al.* Potent neutralizing antibodies from COVID-19 patients define multiple  
572 targets of vulnerability. *Science* (80- ). **369**, 643–650 (2020).

573 41. Cortjens, B. *et al.* Broadly Reactive Anti-Respiratory Syncytial Virus G Antibodies from  
574 Exposed Individuals Effectively Inhibit Infection of Primary Airway Epithelial Cells. *J. Virol.* **91**,  
575 (2017).

576 42. Goodwin, E. *et al.* Infants Infected with Respiratory Syncytial Virus Generate Potent  
577 Neutralizing Antibodies that Lack Somatic Hypermutation. *Immunity* **48**, 339-349.e5 (2018).

578 43. Gilman, M. S. A. *et al.* Rapid profiling of RSV antibody repertoires from the memory B cells of  
579 naturally infected adult donors. *Sci. Immunol.* **1**, (2016).

580 44. Davis, C. *et al.* Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection.  
581 *Cell* **177**, 1566-1582.e17 (2019).

582 45. Margreitter, C. *et al.* BRepertoire: a user-friendly web server for analysing antibody repertoire  
583 data. *Nucleic Acids Res.* **46**, W264–W270 (2018).

584 46. Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: From structure to  
585 effector functions. *Front. Immunol.* **5**, 520 (2014).

586 47. Smith, S. A. *et al.* VH1-69 Utilizing Antibodies Are Capable of Mediating Non-neutralizing Fc-  
587 Mediated Effector Functions Against the Transmitted/Founder gp120. *Front. Immunol.* **0**,  
588 3163 (2019).

589 48. Avnir, Y. *et al.* IGHV1-69 polymorphism modulates anti-influenza antibody repertoires,  
590 correlates with IGHV utilization shifts and varies by ethnicity. *Sci. Rep.* **6**, (2016).

591 49. Nielsen, S. C. A. *et al.* Human B Cell Clonal Expansion and Convergent Antibody Responses to  
592 SARS-CoV-2. *Cell Host Microbe* **28**, 516-525.e5 (2020).

593 50. AG, R. *et al.* Establishing the prevalence of common tissue-specific autoantibodies following  
594 severe acute respiratory syndrome coronavirus 2 infection. *Clin. Exp. Immunol.* **205**, 99–105  
595 (2021).

596 51. Bastard, P. *et al.* Autoantibodies against type I IFNs in patients with life-threatening COVID-  
597 19. *Science (80-. ).* **370**, (2020).

598 52. Rossi, D. *et al.* Association between molecular lesions and specific B-cell receptor subsets in  
599 chronic lymphocytic leukemia. *Blood* **121**, 4902–4905 (2013).

600 53. Yamayoshi, S., Yasuhara, A., Ito, M., Uraki, R. & Kawaoka, Y. Differences in the ease with  
601 which mutant viruses escape from human monoclonal antibodies against the HA stem of  
602 influenza A virus. *J. Clin. Virol.* **108**, 105–111 (2018).

603 54. Morris Abdoor Karim, L. *et al.* Germline Ig Gene Repertoire HIV-1 Antibodies Is Not Restricted  
604 by the Ability To Develop Broadly Neutralizing. (2021) doi:10.4049/jimmunol.1500118.

605 55. Yeung, Y. A. *et al.* Germline-encoded neutralization of a *Staphylococcus aureus* virulence  
606 factor by the human antibody repertoire. *Nat. Commun.* **7**, 1–14 (2016).

607 56. Muramatsu, M. *et al.* Class switch recombination and hypermutation require activation-  
608 induced cytidine deaminase (AID), a potential RNA editing enzyme. *Cell* **102**, 553–563 (2000).

609 57. Muramatsu, M. *et al.* Specific expression of activation-induced cytidine deaminase (AID), a  
610 novel member of the RNA-editing deaminase family in germinal center B cells. *J. Biol. Chem.*  
611 **274**, 18470–18476 (1999).

612 58. Pone, E. J. *et al.* BCR-signalling synergizes with TLR-signalling for induction of AID and  
613 immunoglobulin class-switching through the non-canonical NF- $\kappa$ B pathway. *Nat. Commun.* **3**,  
614 1–12 (2012).

615 59. Woodruff, M. C. *et al.* Extrafollicular B cell responses correlate with neutralizing antibodies  
616 and morbidity in COVID-19. *Nat. Immunol.* **21**, 1506–1516 (2020).

617 60. Ferrante, A., Beard, L. J. & Feldman, R. G. IgG subclass distribution of antibodies to bacterial  
618 and viral antigens. *Pediatr. Infect. Dis. J.* **9**, S16-24 (1990).

619 61. Higgins, R. L. *et al.* Longitudinal SARS-CoV-2 antibody study using the Easy Check COVID-19  
620 IgM/IgG™ lateral flow assay. *PLoS One* **16**, e0247797 (2021).

621 62. Wu, J. L. *et al.* Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for  
622 assessing dynamics of antibody responses to SARS-CoV-2. *J. Infect.* **81**, 435–442 (2020).

623 63. Flower, B. *et al.* Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in  
624 a national COVID-19 seroprevalence survey. *Thorax* **75**, 1082–1088 (2020).

625 64. Whitman, J. D. *et al.* Evaluation of SARS-CoV-2 serology assays reveals a range of test  
626 performance. *Nat. Biotechnol.* **38**, 1174–1183 (2020).

627 65. Jääskeläinen, A. J. *et al.* Performance of six SARS-CoV-2 immunoassays in comparison with  
628 microneutralisation. *J. Clin. Virol.* **129**, 104512 (2020).

629 66. Dunn-Walters, D. K. The ageing human B cell repertoire: a failure of selection? *Clin. Exp.*  
630 *Immunol.* **183**, 50–56 (2016).

631 67. Adaken, C. *et al.* Ebola virus antibody decay–stimulation in a high proportion of survivors.  
632 *Nature* **590**, 468–472 (2021).

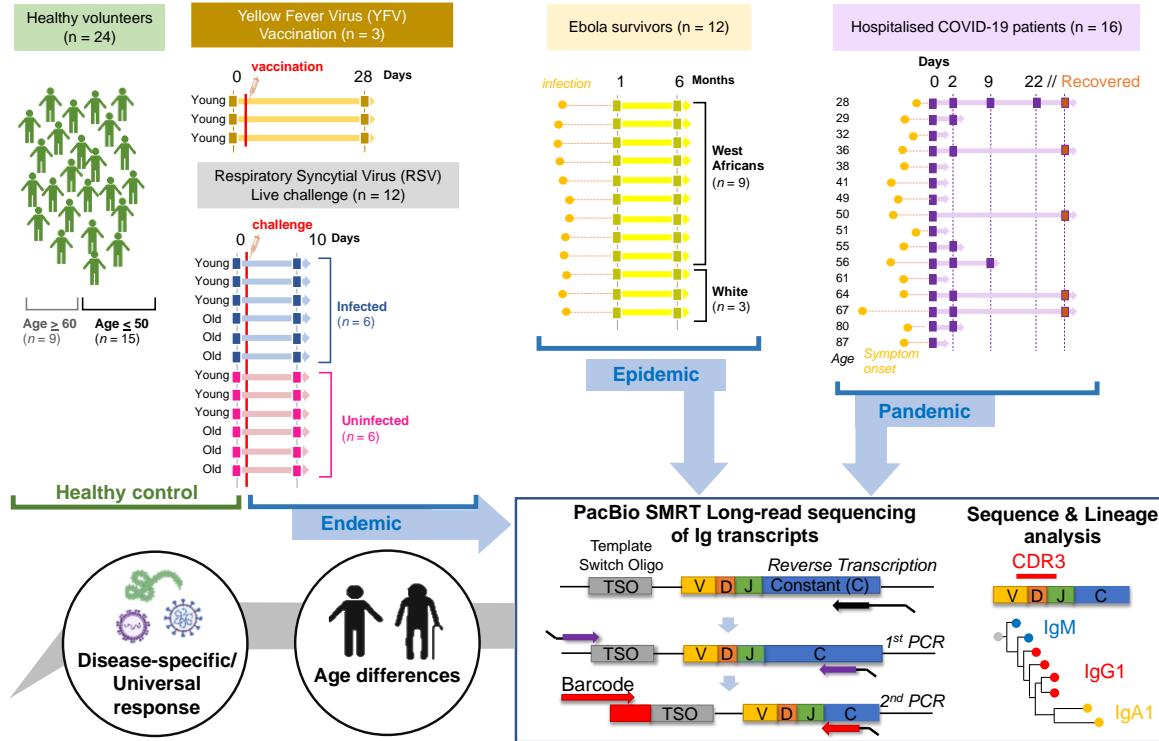
633 68. Zampieri, C. A., Sullivan, N. J. & Nabel, G. J. Immunopathology of highly virulent pathogens:  
634 Insights from Ebola virus. *Nat. Immunol.* **8**, 1159–1164 (2007).

635 69. Kennedy, J. R. Phosphatidylserine's role in Ebola's inflammatory cytokine storm and  
636 hemorrhagic consumptive coagulopathy and the therapeutic potential of annexin V. *Med.*  
637 *Hypotheses* **135**, 109462 (2020).

638

639

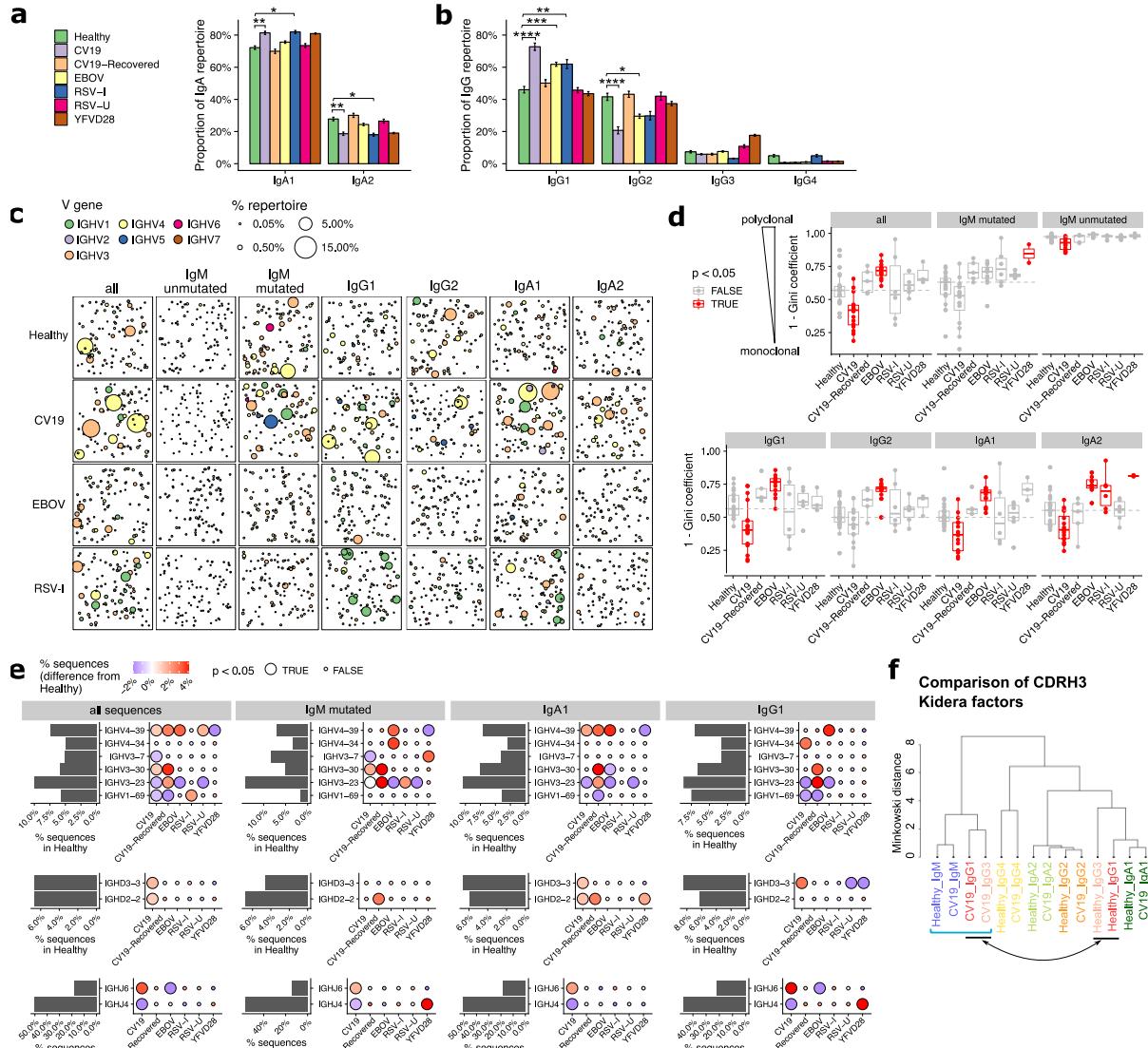
640 **Figures**



641

642 Figure 1. Schematic to illustrate data collection and analysis conducted in this study. Samples were  
 643 taken from Healthy individuals, recovered Ebola survivors, hospitalised COVID-19 patients, live RSV  
 644 challenge participants that either became infected or did not and Yellow Fever vaccine recipients  
 645 before vaccine and 28 days post-inoculation. Extracted sample RNA was subject to a heavy gene  
 646 specific race 5' and nested PCR amplification process retaining V-D-J and sub-class information.

647

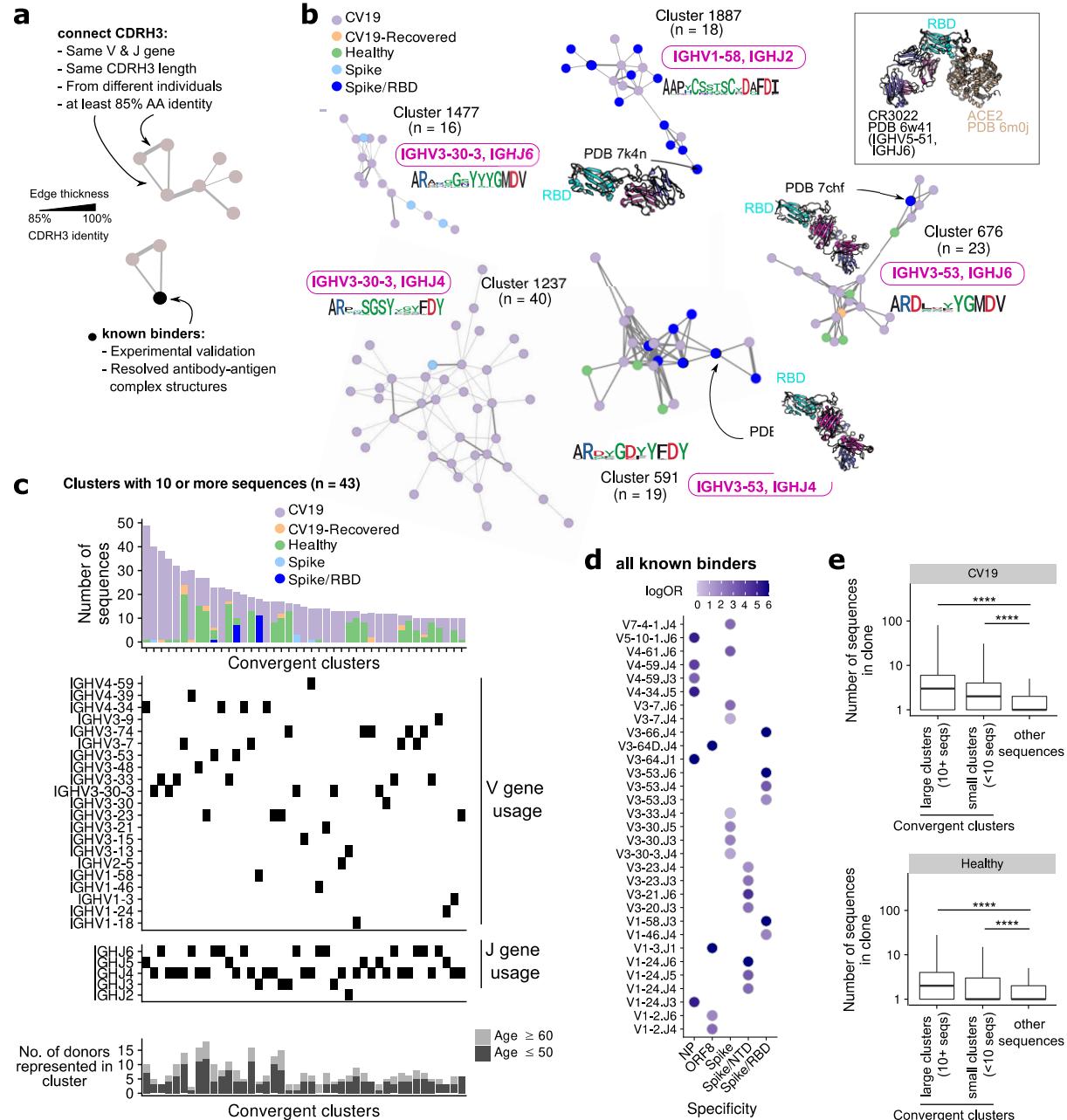


648

649 Figure 2. Distinct V-D-J and isotype usage in CV19, EBOV and RSV BCR repertoires.

650 (a-b) Difference in sub-class use of IgA (A) and IgG (B) in viral disease and healthy BCR repertoires. (c) Clonal  
651 expansion of sequences of relevant effector types (as revealed in A) plus unmutated and mutated IgM to  
652 identify trends of V gene usage in viral infections. Each bubble sampled to a uniform depth (see Methods),  
653 with size proportional to clone size, represents one clone colour-coded by V-family usage. (d) Quantification of  
654 clonal expansion calculated using the Gini coefficient (see methods), revealed clonally expanded effector  
655 populations (more monoclonal/less diverse, closer to 1) or more diverse clones (closer to 0) in viral infections.  
656 Sample types with significant differences ( $p < 0.05$ ) compared against Healthy were highlighted in red. Dashed  
657 line indicates the median diversity in the Healthy cohort. (e) Frequency of selected V-D-J gene usage in  
658 different cohorts for all sequences and further subdivided by IgM-mutated, IgA1, IgG1. Bar charts depict gene  
659 frequency usage in the Healthy cohort. Bubble plots depict the difference in usage (coloured: blue reduced/red  
660 increased) compared to healthy repertoires. (f) CDRH3 physicochemical characteristics (represented by Kidera  
661 factors) were analysed separated by sub-classes and disease status (Healthy/CV19), and compared using  
662 Minkowski distance. Note that IgG1 and IgG3 sequences from CV19 cluster together with IgM (square bracket),  
663 away from those of the same sub-classes from healthy individuals (indicated by arrow). Statistical significance  
664 in panels a, d and e was evaluated using one-way ANOVA and Dunnett post-hoc comparison against the  
665 Healthy cohort: p-value indicated either with colour (panel c), bubble size (e) or the symbols under the  
666 following scheme: \*,  $p < 0.05$ ; \*\*,  $p < 0.01$ , \*\*\*,  $p < 0.001$ , \*\*\*\*,  $p < 0.0001$ .

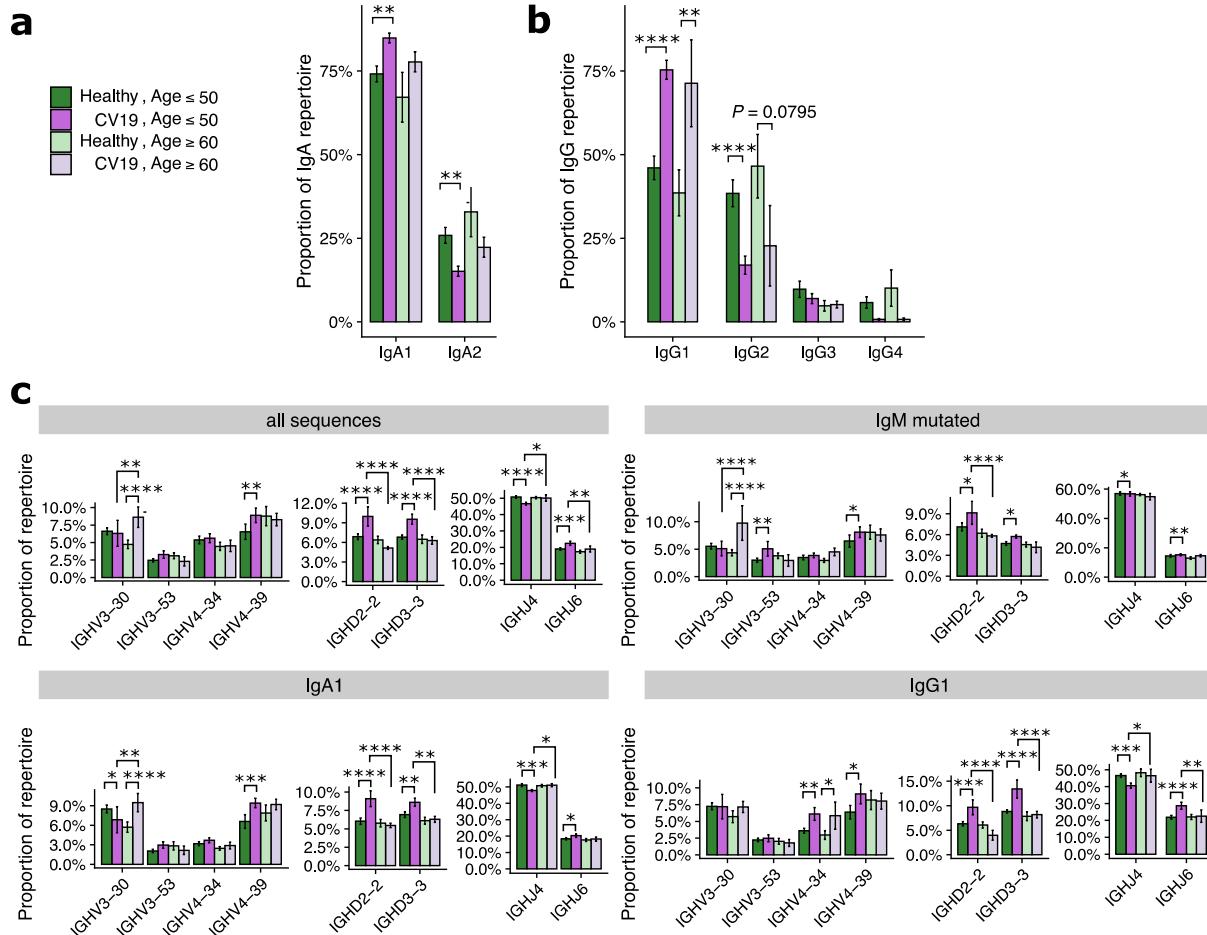
667



669 Figure 3. Convergent CDR3 clusters of sequences from CV19 repertoires and known SARS-CoV-2 binders.

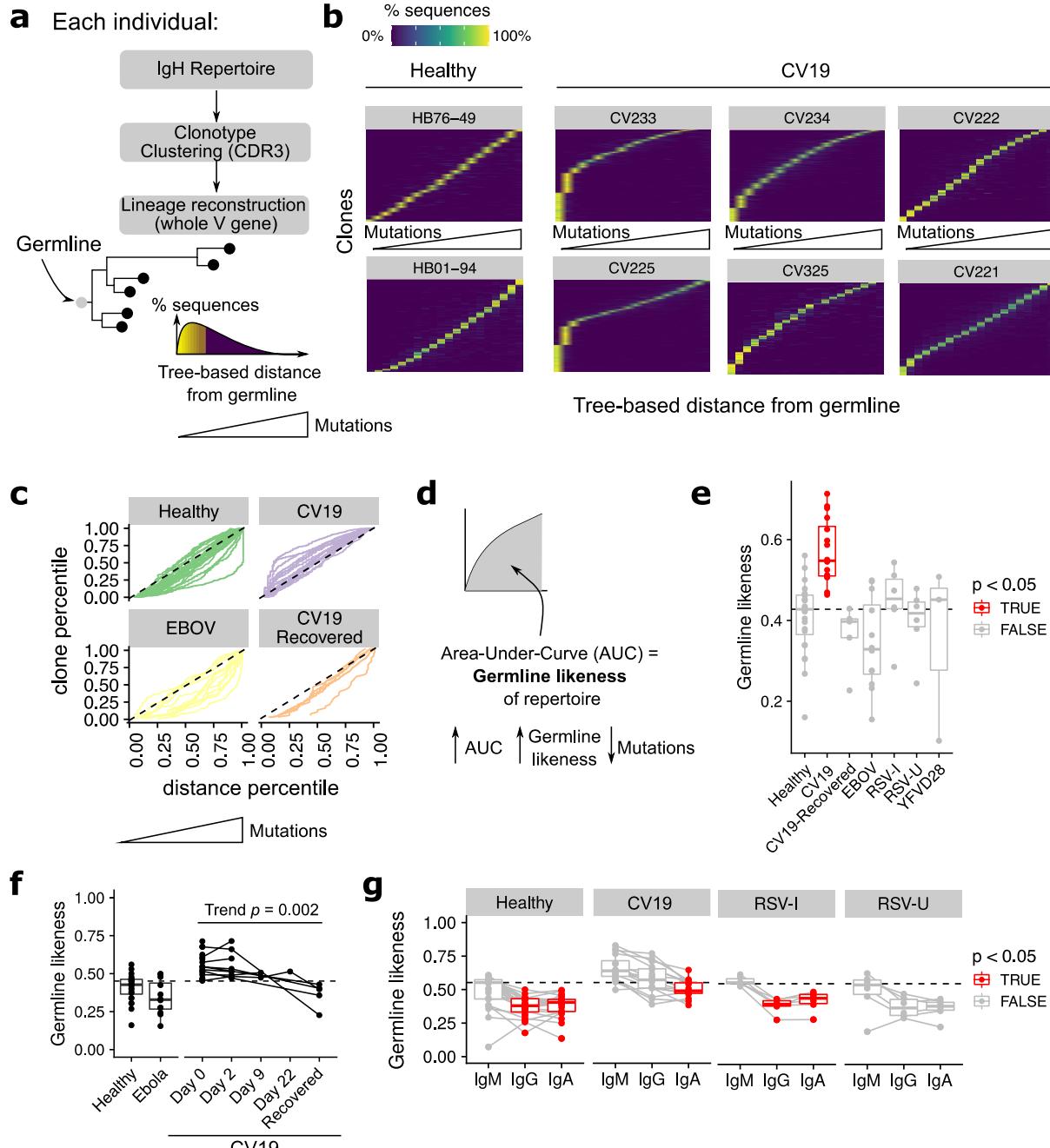
(a) CDR3 Known binder networks were created using same V, J and CDR3 length with at least 85% amino acid (AA) identity. (b) Convergent clusters from healthy and CV19 repertoire with known PDB structures. *IGHV* and *IGHJ* use and the CDR3 AA sequence were noted. (c) Clusters containing at least 10 sequences were visualized, with breakdown of repertoire origin (stacked bar plots), and the *IGHV* and *IGHJ* gene usage of each cluster aligned beneath. The number of donors with sequences in each depicted clusters are shown as bar graphs (bottom panel, c), broken down into subsets with age  $\leq 50$  (light grey) and  $\geq 60$  (dark grey). (d) All known binders were analysed for similarity of *IGHV*/J gene use to specific SAR-CoV-2 antibody targets (d). Dots coloured by enrichment (log-odds ratio, logOR) evaluated using Fisher's exact test. Only V/J-specificity combinations with significant ( $p < 0.05$ ) enrichment were shown. (e) Comparison of clonal expansion of convergent (split by clone size;  $\geq 10$  or  $< 10$  sequences) and non-convergent clusters in healthy and CV19 repertoires. Statistical significance evaluated using a Wilcoxon rank-sum test, \*\*\*\*:  $p < 0.0001$ . See Supplementary Figure S6 for analogous analyses on RSV and EBOV repertoires.

682



684 Figure 4. Age differences in V-D-J and isotype usage in CV19 repertoires.

685 CV19 and healthy patients were split by over 60s and under 50s and were compared for IgA (a), IgG  
 686 (b) usage and selected V-D-J gene usage (c). Statistical significance evaluated using two-way ANOVA  
 687 and Tukey's post-hoc test: \*, p < 0.05; \*\*, p < 0.01, \*\*\*, p < 0.001, \*\*\*\*, p < 0.0001..



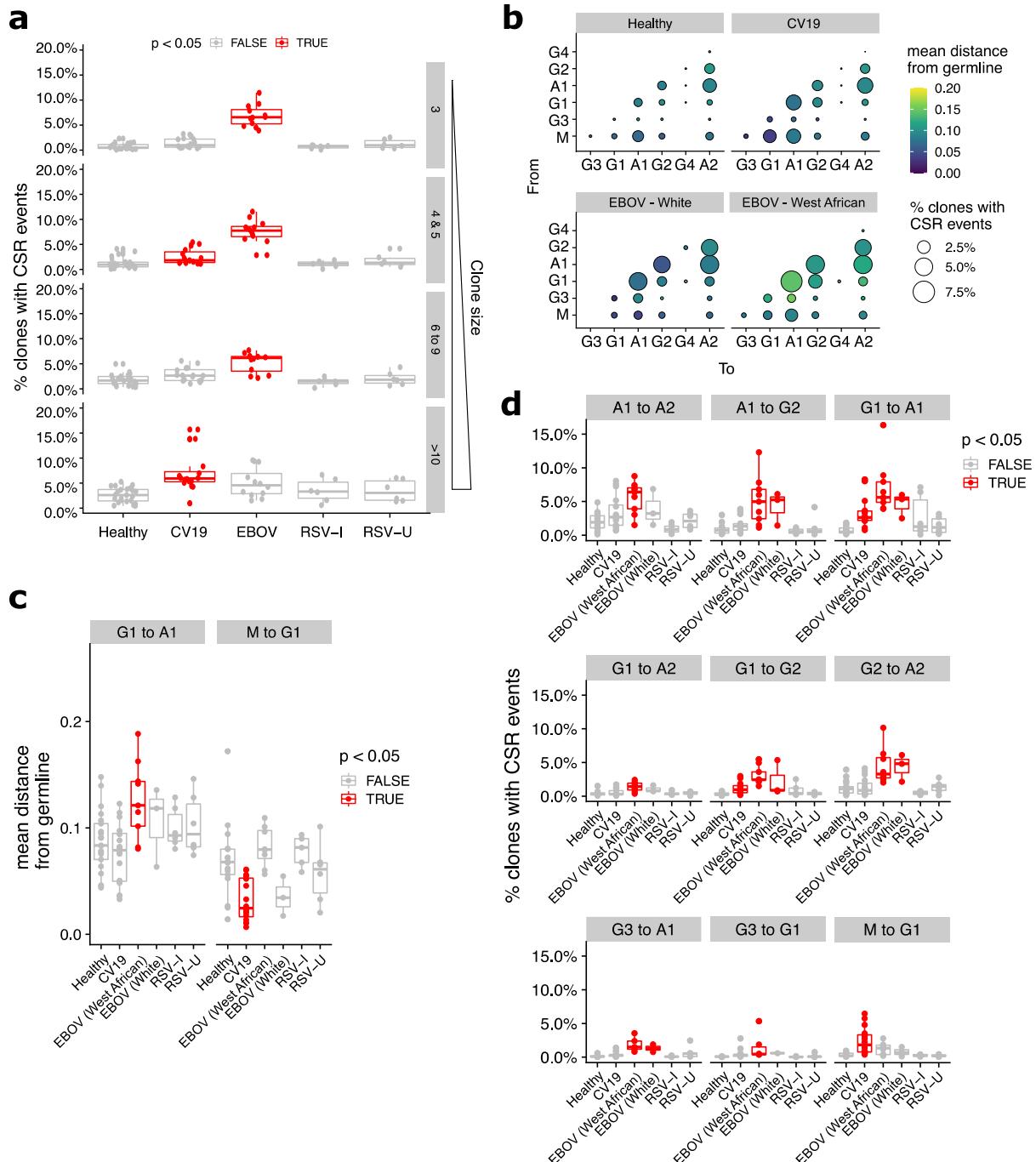
688

689 Figure 5. Mutational levels in BCR lineages.

690 (a) Lineages trees were constructed by clonotyping the IgH CDR3 and the lineages reconstructed using the  
 691 whole V gene rooting on the predicted germline, allowing the distance from germline to be estimated for each  
 692 sequence. This allows ordering of sequences based on this distance from germline: depicted as a histogram  
 693 [(a) bottom right]. (b) Clones in the repertoire, for selected donors, were ordered (vertical axis) using median  
 694 distance from germline (horizontal axis), and the distribution of such distance for each clone was plotted with  
 695 heatmap colours being the percentage of sequences within the clone containing the a given level of mutation.  
 696 (c) Distance from germline distributions for every donor, split by condition, represented as curves. Dotted line  
 697 represents the theoretical expectation of mutational level. (d) From each of these curves (in c) the area under  
 698 the curve (AUC) was calculated giving a statistic of 'Germline Likeness', a higher AUC resembling more the  
 699 germline and a lower AUC indicating more mutations. (e) Comparison of Germline Likeness between  
 700 conditions: sample types with significant ( $p < 0.05$ ) differences compared to Healthy (Wilcoxon rank-sum test)  
 701 are highlighted in red with the dotted line being the healthy median. (f) The Germline Likeness across  
 702 timepoints for CV19 patients with Healthy and Ebola data are reproduced here for comparison: trend was

703 evaluated using the Jonckheere-Terpstra test. **(G)** Comparison of germline distance split by immunoglobulin  
704 isotype was performed split by cohort: significant ( $p < 0.05$ ) differences compared to IgM (Wilcoxon rank-sum  
705 test) are highlighted in red.

706



707

708 Figure 6. Prevalence of Class-switch recombination estimated from BCR lineage trees.

709 (a) Lineage clones (see Figure 5) were assessed for prevalence of CSR events in terms of the proportion of  
710 clones and plotted by clone size and split by condition. (b) Bubble plot depicting the frequency and distance-  
711 from-germline of CSR events, separated by the CSR start ('From', vertical axis) and end ('To', horizontal axis)  
712 isotypes. Quantification was performed separately for different sample types. Bubble sizes are proportional to  
713 the frequency of CSR and colour is scaled by distance from germline at which CSR occurs, as estimated from  
714 the reconstructed lineage trees. (c) Statistical comparison of the median distance from germline at which CSR  
715 events occurred across sample types. Each donor was considered separately for every switch possibility. (d)  
716 Comparison of CSR frequency (percentage of clones with evidence of CSR) for each condition was also  
717 assessed for each donor (median, d). Statistical significance was evaluated using one-way ANOVA and Dunnert  
718 post-hoc comparison against Healthy with  $p < 0.05$  highlighted in red (c, d). For (d), Supplementary Figure S8  
719 contain analogous plots for all CSR combinations with significant ( $p < 0.05$ ) differences compared against  
720 Healthy.

721

| Sample                            | Age                                                                                          | Gender                                                             | Ethnicity                                                                                    | COVID-19 Severity Score (out of 6) | Days since symptom onset |
|-----------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|--------------------------|
| <b>Healthy (n = 24)</b>           | Median 29.5 (Range 23 - 76)<br>≤50 years old: 15/24 (62.5%)<br>≥60 years old: 9/24 (37.5%)   | Female: 7/24 (29.2%)<br>Male: 5/24 (20.8%)<br>Unknown: 12/24 (50%) | White: 12/24 (50%)<br>Unknown: 12/24 (50%)                                                   |                                    |                          |
| <b>COVID-19 (n = 16)</b>          | Median 50.5 (Range 28 - 87)<br>≤50: 8/16 (50%)<br>50-60: 3/16 (18.75%)<br>≥60: 5/16 (31.25%) | Female: 7/16 (43.75%)<br>Male: 9/16 (56.25%)                       | White: 13/16 (81.25%)<br>South East Asian: 1/16 (6.25%)<br>Indian Subcontinent: 2/16 (12.5%) | Median 3 (Range 1 - 5)             | Median 8 (Range 1 – 35)  |
| <b>COVID-19 Recovered (n = 5)</b> | Median 50 (Range 28 - 87)<br>≤50: 3/5 (60%)<br>≥60: 2/5 (40%)                                | Female: 3/5 (60%)<br>Male: 2/5 (40%)                               | White: 4/5 (80%)<br>Indian Subcontinent: 1/5 (20%)                                           |                                    |                          |
| <b>RSV Infected (n = 6)</b>       | Young: 3/6 (50%)<br>Older: 3/6 (50%)                                                         |                                                                    |                                                                                              |                                    |                          |
| <b>RSV Uninfected (n = 6)</b>     | Young: 3/6 (50%)<br>Older: 3/6 (50%)                                                         |                                                                    |                                                                                              |                                    |                          |
| <b>Ebola (n = 12)</b>             | Young: 3/12 (50%)<br>Unknown: 9/12 (50%)                                                     | Female: 1/12 (8.3%)<br>Male: 2/12 (16.7%)<br>Unknown: 9/12 (75%)   | White: 3/12 (25%)<br>West African: 9/12 (75%)                                                |                                    |                          |
| <b>YFV D28 (n = 3)</b>            | Median 28 (Range 27 - 28)<br>Young: 3/3 (100%)                                               | Female: 1/3 (33.3%)<br>Male: 2/3 (66.7%)                           | White: 3/3 (100%)                                                                            |                                    |                          |

Table 1. Donor characteristics. See Supplementary Table S1 for a detailed summary of metadata per donor.