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ABSTRACT9

Modelling and predicting individual differences in task-evoked FMRI activity can have a wide10

range of applications from basic to clinical neuroscience. It has been shown that models based on11

resting-state activity can have high predictive accuracy. Here we propose several improvements to12

such models. Using a sparse ensemble leaner, we show that (i) features extracted using Stochastic13

Probabilistic Functional Modes (sPROFUMO) outperform the previously proposed dual-regression14

approach, (ii) that the shape and overall intensity of individualised task activations can be modelled15

separately and explicitly, (iii) training the model on predicting residual differences in brain activity16

further boosts individualised predictions. These results hold for both surface-based analyses of the17

Human Connectome Project data as well as volumetric analyses of UK-biobank data. Overall, our18

model achieves state of the art prediction accuracy on par with the test-retest reliability of tfMRI19

scans, suggesting that it has potential to supplement traditional task localisers.20

INTRODUCTION21

Studying individual differences in brain activity and how they relate to cognitive and genetic22

traits is an important area of research in basic and clinical neuroscience. Traditionally, functional23

Magnetic Resonance Imaging (fMRI) analysis has primarily been concerned with group-average24

inference. While averaging data across individuals substantially improves signal-to-noise (SNR)25

ratio and has proved fruitful in identifying common patterns across subjects, this approach treats26

unexplained individual variations as noise, discarding unique attributes of brain activity specific to27

a particular subject. Individual variations in neuroanatomical or functional activity often carries28

valuable information. For example, if a small number of subjects in a large cohort has a rare disease,29

an indiscriminate data reduction prior to the analysis will very likely obfuscate this information.30

The rapid development of cutting-edge neuroimaging techniques in recent decades has led to31

substantial improvements in the reliability and validity of blood-oxygen-level-dependent (BOLD)32

measurements, providing an unprecedented opportunity to investigate individualised patterns of33

brain activity. Moreover, emerging “big data” projects, such as the Human Connectome Project34

(Van Essen et al. 2013) and UK Biobank (Sudlow et al. 2015), have collected multi-modal neu-35

roimaging data on very large samples, enabling researchers to more closely examine individual36

variations in neuroanatomical patterns and functional activities with enhanced statistical power.37

Among previous fMRI studies of individual variabilities, an active line of research focuses on38
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understanding how individual brains vary in response to external cognitive tasks. Following the39

work of (Tavor et al. 2016; Cole et al. 2016), a number of studies (Jones et al. 2017; Cohen et al.40

2020; Ellis and Aizenberg 2020; Dohmatob et al. 2021) have since shown that spatial patterns41

of task-evoked activation form a stable trait marker, encoded in resting-state brain activity, i.e., in42

the absence of any explicit task. In contrast to previous studies that mostly rely on correlation43

analysis (in-sample inference) to investigate individual differences, these works adopt predictive44

frameworks that allow for out-of-sample inference and greatly improved generalisability of these45

investigations of individual variability.46

Why is task-free fMRI predictive of task-evoked activation? Previous studies have suggested47

that resting-state networks and task networks may share the same intrinsic architecture (Smith et al.48

2009; Cole et al. 2014; Krienen et al. 2014; Cole et al. 2016; Elliott et al. 2019). Therefore,49

a reasonable corollary is that resting-state heterogeneity should inform on variability of task-50

evoked brain activity. Typically, resting-state data are summarised as spatially continuous parcels51

distributed across the brain (Beckmann and Smith 2004; Calhoun et al. 2008; Van Den Heuvel et al.52

2008; Calhoun et al. 2008; Bellec et al. 2010; Yeo et al. 2011; Craddock et al. 2012). These spatial53

maps are often referred to as “functional modes”, characterising functionally unified sub-processes54

underlying human cognition. Among the approaches of finding functional modes to predict task-55

fMRI, dual-regression (Beckmann et al. 2009; Filippini et al. 2009) is a widely-used algorithm,56

showing ability to predict individual idiosyncrasies in their response profiles (Tavor et al. 2016;57

Cohen et al. 2020; Dohmatob et al. 2021; Ngo et al. 2021). Although these previous attempts58

have successfully characterised individual-unique patterns of task-evoked brain activity, there are a59

few limitations yet to be accounted for. For example, these approaches focused on cortical regions60

and relied on pre-determined brain parcellations to extract predictors. Compared with models that61

take in global features without the need to a priori parcellate the brain, this introduces more free-62

parameters thus may increase the risk of over-fitting. Furthermore, these approaches did not attempt63

to explicitly model cross-subject variability of the rest and task states per se, and thus may be sub-64

optimal to capture cross-subject variations. In contrast, (Ngo et al. 2021) introduced a contrastive65

loss in combination with the common loss to maximise inter-individual differences. However,66

in practice, such loss functions are often non-convex and may have complicated behaviours (e.g.67

multiple local minimum) rendering optimisation difficult. To fully account for the inter-individual68

variations, an alternative is to explicitly train on residualised data, i.e., residuals where group-69

average information has been regressed out. The data obtained in this way has minimal shared70

variance with the group-level information, thus serves as a cleaner description of individual-level71

differences.72

Here we propose a framework that explicitly models individual variations in task-evoked brain73

activity using the resting-state variability, the latter profiled by a set of common spatial modes74

derived from a recently developed technique, Stochastic Probabilistic Functional Modes (sPRO-75

FUMO). We show that, consistent with previous studies (Harrison et al. 2015; Harrison et al. 2020;76

Farahibozorg et al. 2021), sPROFUMO provides better sets of “bases” (later referred to as PFMs) to77

reconstruct the variations in task-evoked activation patterns than the widely used dual-regression.78

Additionally, we show that an ensemble learner that combines global and local bases has improved79

capacity of not only reproducing typical activation patterns but also preserved patterns unique to80

individuals. We demonstrate that modelling of individual-level task contrast maps comprises the81

modelling of two separate sources of variability, shape of activations and the overall activation82

strength. Considering these two aspects separately in task prediction is at least as effective as or83
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even more desirable than simply modelling the original task contrast maps. Furthermore, the pro-84

posed model can recapitulate the spatial patterns of inter-individual variability, recovering regions85

that are more variable at the group-level. The model achieves state of the art prediction accuracy86

for both datasets, and is also on par with task test-retest reliability. These results demonstrate the87

potential of resting-state features to reproduce task-fMRI features, and serve as a supplement to88

task localisers in pre-surgical plannings.89

MATERIALS AND METHODS90

UK Biobank data91

UK Biobank (UKB) is a large national project that collects a wide range of health-related92

measures for over 500,000 subjects, initially aged between 40 and 69. We used the resting-state93

and task functional MRI data from a total of 17,560 subjects. The acquisition parameters and94

processing details can be found in (Miller et al. 2016; Alfaro-Almagro et al. 2018). Briefly, all95

resting-state fMRI scans were acquired with identical scanners (3T Siemens Skyra) with a TR96

of 735ms for a total of 490 time points for each individual. After the initial preprocessing, the97

data were ICA-FIX cleaned to remove structured artefacts (Salimi-Khorshidi et al. 2014), and then98

registered to the standard MNI space. Next, each individual’s resting-state 4D time series were99

further spatially smoothed with a Gaussian kernel of sigma 3mm. The task used is the Hariri100

faces/shapes “emotion” task (Hariri et al. 2002; Barch et al. 2013), scanned and processed under101

the same protocols as the resting-state data (except that the task-fMRI data is not ICA-denoised).102

Individual as well as group-average activation z-statistic maps of three contrasts (faces, shapes, and103

faces-shapes) were estimated from the task fMRI scans using FEAT (Woolrich et al. 2001; Woolrich104

et al. 2004). Additionally, 473 subjects in this 17,560 subset received second-time scanning (mean105

test-retest-interval 2.25 years, std 0.12). These second-time scans provided test-retest reliability106

scores as a benchmark for our model performance.107

Human Connectome Project data108

We used the MSMAll-registered data provided by the Human Connectome Project (HCP),109

S1200 Release (https://www.humanconnectome.org/study/hcp-young-adult). Details on the acqui-110

sition protocols and processing pipelines can be found in (Van Essen et al. 2013; Glasser et al. 2013;111

Robinson et al. 2014). Resting-state and task fMRI data from 991 subjects, aged 22 to 35 years, were112

used in the analysis. Each individual had four runs of resting-state scans with a TR of 0.72s for a to-113

tal of 1,200 time points per run. The data were ICA-FIX denoised to remove the effect of structured114

artefacts automatically, then resampled onto the “32k_fs_LR” grayordinates space and minimally-115

smoothed by 2mm FWHM. All subjects were MSMAll-registered to improve functional and struc-116

tural alignment (Robinson et al. 2014). To further increase the signal-to-noise ratio, an additional117

smoothing of 4mm FWHMwas applied to the MSMAll-registered data (with subcortical structures118

smoothed within parcel boundaries, and cortical data smoothed in 2D on the surface) using the Con-119

nectome Workbench (https://www.humanconnectome.org/software/connectome-workbench). The120

task fMRI scans were acquired and pre-processed in the same way (though without FIX). We used121

the MSMAll-registered individual and group-average contrast maps with 4mm FWHM smoothing122

in the analysis, including 47 contrasts across seven task domains (Barch et al. 2013).123

Similarly to the UKB dataset, we used the HCP retest scans as the reliability benchmark for124

the predictions. Among the 991 subjects, 43 have received second-time scanning under the same125
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3T imaging and behaviour protocols with test-retest-interval ranging from 18 to 328 days (mean126

134.78; std 62.49).127

Generation of resting-state functional modes128

We used resting-state functional modes to predict individual task-fMRI. Functional modes are129

typically modelled as parcel-like spatial configurations of unified functional processes distributed130

across brain, each characterised by a summary time course that captures mode activity over time.131

Here we explored two approaches of generating individual resting-state modes, group-ICA followed132

by Dual-Regression (DR-ICA) and Stochastic Probablistic Functional Modes (sPROFUMO). DR-133

ICA is a conventional group-average algorithm to estimate individual “versions” of group-level134

spatial configurations, using a set of common spatial modes as templates (Nickerson et al. 2017).135

In DR-ICA, group-PCA was carried out on each dataset (UKB and HCP) by MELODIC’s Incre-136

mental Group-PCA (Smith et al. 2014) on the resting-state time series of all subjects (temporally137

demeaned and variance normalised), producing 1,200 weighted spatial eigenmaps for UKB and138

4,500 eigenmaps for HCP. These eigenmapswere subsequently fed into ICAusing FSL’sMELODIC139

tool to generate group-ICA spatial maps at multiple ICA-dimensions (i.e., the number of distinct140

ICA components). To obtain dual-regression maps for a specific subject at a given ICA-dimension141

: , we first regressed the corresponding :-dimensional group-ICA spatial maps into the individual142

4D time-series data, yielding a set of : time courses per subject. The resulting time courses were143

subsequently regressed into the same 4D time-series, generating : dual-regression spatial maps144

for each subject. However, a major limitations of DR-ICA is that it only allows unidirectional145

flow between group and individuals, i.e., the estimated individual modes cannot in turn drive the146

refinement of group-average modes, and may have limited ability to cope with individual deviations147

from the group-average (Bĳsterbosch et al. 2018; Bĳsterbosch et al. 2019). A recently developed148

technique, sPROFUMO, uses a Bayesian model that simutaneously estimates functional modes149

both at group- and individual-level, and is scalable to large datasets (Farahibozorg et al. 2021). In150

sPROFUMO, individual resting-state time-series are factorised into a set of spatial modes and their151

summary time courses (one per mode), together with the time course amplitudes. The group-level152

parameters constrain the estimation of (the posteriors over) individual-level parameters, of which153

the posterior evidence is accumulated across individuals to in turn infer the group-level parameters.154

The bidirectional information flow between the group and individuals aims to result in improved155

subject-specific spatial alignments. Below, we refer to the resting-state feature maps as either156

DR-ICA maps or PFMs depending on the approach used to derive them.157

Residualisation of the resting-state and task contrast maps158

Our aim is to derive a model that can predict task activation in individuals given their resting159

state modes. One of the innovations in this paper is to try to explicitly capture individual variations160

in our model. We propose that training and evaluating the model on residualised data (i.e., data161

and features where the group-averaged maps have been regressed out) would be of more value than162

training a model on the original resting-state and task contrast spatial maps.163

To understand this, consider each individual task contrast map. It can be decomposed into the164

sum of the group-averaged map (scaled by some factor) and a spatial residual map specific to the165

individual. The resting-state feature maps can also be similarly decomposed. Once a model has166

been trained, the correlation between the model prediction and the task map of a test subject is167

composed of four terms: (i) the correlation between the group averaged task map and the subject’s168

scaled version of that map (this correlation is close to or equal to one, scaled by amplitude), (ii)169
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Figure 1. An illustration of the model. Step 1. Residualisation of the resting-state models and task contrast maps.
The residualised resting-state maps were further ICA-reduced as the input of the sparse model. Step 2. Training
of the baseline and sparse model: per training subject, the baseline model yielded : reconstruction coefficients (one
coefficient per map), which were averaged across subjects as the final baseline coefficients (orange). Next, the resting-
state variation maps and the task variation maps were concatenated across subjects accordingly and then reduced to
lower dimensions via ICA. The sparse model was trained on the (ICA-reduced) across-subject variation matrices to
give the sparse regression coefficients (green). Step 3. the estimated baseline coefficients and sparse coefficients were
applied to the training subjects to get the baseline-model-fitted (pink) and sparse-model-fitted (blue) task variation
maps. Next, for each voxel across subjects, we estimated the ensemble coefficients (yellow) by fitting another linear
regressionmodel with the baseline-model-fitted activations and the Lasso-fitted activations (in the corresponding voxel)
as the two regressors. Step 4. These three sets of coefficients were finally applied to the test subjects to make new
predictions (navy).

the correlation between the residual maps for prediction and test data, and two cross terms (iii) the170

correlation between group-average and residual target, (iv) the correlation between group-average171

and residual prediction. The cross term (iii) will disappear because of the orthogonality between172

group-average and residuals, and the cross term (iv) is very close to zero in practice. Hence, only (i)173

and (ii) significantly contribute to the overall correlation, while (i) can bias the prediction towards174

the average subject. By residualising both the target task maps and the resting-state feature maps175
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with respect to their group averages, we can remove this bias and better model individual variations.176

Hence, we built themodel entirely on residualised data. The residualised resting-state functional177

modes and the residualised task contrast maps are also referred to as “resting-state variation maps"178

and “task variation maps" in the remainder of the paper. To residualise the resting-state data,179

each of the : group-average (across training subjects) ICA spatial maps was regressed out from the180

corresponding individual DR-ICAmaps for all subjects (i.e., a one-variable linear spatial regression181

per subject per dual-regression map), and similarly, each sPROFUMO group-level spatial map was182

regressed out from the same mode’s individual-level sPROFUMO spatial maps (PFMs). These183

residualised spatial maps represent individual variations in resting-state activity, serving as features184

to predict individual variations in task-fMRI.185

The task activation maps were residualised similarly for each individual, to give task variation186

maps. For a given task contrast, the group-average activation map was regressed out from the187

individual contrast maps (i.e., a simple linear regression per subject per contrast, with the group-188

average activation map as the regressor). These task variation maps describe individual differences189

in task-evoked brain activity that deviate from the typical activation patterns. Therefore themapping190

between the rest and task states is entirely based on the variations rather than on the original resting-191

state and task-evoked activity. See Figure 1 b for an illustration of residualisation.192

Finally, to compare this residualised model with the model trained on the original resting-state193

and task contrast maps (i.e., un-residualised), the task activations are predicted as a combination194

of the modelled variations and the average activation patterns. For both the rest and task data,195

we record the regression parameters as part of regressing out group-mean maps; these measures196

of overall “amplitude" are used later in the work, described below, and can of course be used197

(multiplied by the group-mean maps) to add the group-mean contribution back in where desired.198

The ensemble learner199

Our overall ensemble approach combines two separate models, “baseline" and “sparse". We200

start by describing these two individual models, and then go on to describe the ensemble method.201

The baseline model202

The baseline model assumes that, for a given task contrast, the individual task variations (i.e.,
residualised activationmaps) can be represented by a linear combination of the variations in resting-
state functional modes (i.e., residualised DR-ICA maps or PFMs). In this sense, the resting-state
modes serve as a set of “bases” that span the task space. To obtain the reconstruction coefficients
for each subject, we regressed the subject’s resting-state bases into its spatial activation map (i.e.,
a multiple-regression per subject per task contrast, with resting-state variation maps as regressors
and the task variation map as response). More specifically, suppose the number of voxels is + ,
and each individual has : number of bases (i.e., there are : group-average ICA spatial maps); to
find the reconstruction coefficients of a specific task contrast map y 9 (a + × 1 vector) for a given
subject 9 , we regress the given subject’s : resting-state variation maps, denoted by a + × : matrix
X 9 = [x19 , x29 , ..., x:9 ] for 8 = 1, 2, ...: , into the task variation map y 9 of this subject. As a standard
linear regression problem, the reconstruction coefficients VVV 9 (a : × 1 vector) of subject 9 minimise
the following loss function

V̂VV 9 = argmin
VVV 9∈R:

| |y 9 − X 9VVV 9 | |22 (1)
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for 9 ∈ S, where S is the set of training subjects. The estimated reconstruction coefficients203

V̂VV 9 are given as (X)
9
X 9 )−1X)

9
y 9 , where X 9 is subject 9’s resting-state variation maps. These204

coefficientswere averaged across the training subjects to give the final estimates of the reconstruction205

coefficients, i.e., V̂VV = 1
#

∑
9∈S V̂VV 9 , where |S| = # is the number of training subjects.206

To predict the activation map of an unseen subject ; in a test set T , we applied the reconstruction
coefficients averaged from the training set to the subject’s own resting-state variation maps X; , i.e.,

ŷ; = X; V̂VV (2)

for ; ∈ T . Note that the baseline model is different from (Tavor et al. 2016; Cohen et al. 2020;207

Dohmatob et al. 2021) in two ways. First, their models were primarily local, i.e., one linear208

regression per brain region, rather than a global linear regression for the whole brain. Second,209

with the group-average content regressed out from both the resting-state dual-regression maps and210

task activations, our baseline model aims to establish linear relationships between the variations of211

the two states (relative to the group-average) rather than the original resting-state and task activity212

(which is possibly dominated by the group average).213

The sparse model214

The baseline model has a few limitations. First, it has very few free parameters, resulting in one215

reconstruction coefficient per basis, which is then pooled (averaged) across all subjects. Crucially,216

each feature (spatial map) is associated with a single regression coefficient, regardless of which217

part of the brain is being modelled. Second, the coefficients learned from each training subject218

are estimated separately, which ignores patterns of between-subject variations. We re-formulated219

the problem in a more flexible, highly-parameterised framework, referred to below as the sparse220

model, with appropriate regularisation techniques to protect against too much flexibility.221

First, to create feature maps that contain information of cross-subject variability, each of the :222

resting-state variation maps is first concatenated across the set of training subjects S, yielding one223

# ×+ resting-state matrix per group-average spatial map, with a total of : such matrices. Denoting224

the 8-th matrix X̃8
S = [x81, x

8
2, ..., x

8
#
]) , where x8

9
is the 8-th resting-state variation map of subject 9 ,225

we then dimensionality-reduce these matrices into a set of 3 components using ICA: X̃8
S = A8

SS8226

for 8 = 1, 2, ..., : . Following this decomposition, A8
S is an # × 3 mixing matrix and S8 is a set227

of 3 independent components representing common spatial variations across the training subjects228

S. The mixing matrices of each ICA contains “coordinates” of each individual in the resting-state229

space spanned by these common modes, providing profiles of the resting-state variabilities of these230

individuals. The : mixing matrices are concatenated to give a single reduced variation matrix Arest
S231

as the final predictors, where Arest
S = [A1S ,A

2
S , ...,A

:
S] is an # × 3: matrix.232

Likewise, the task variation maps (residualised activation maps) are concatenated across the233

training subjects S, resulting in an # × + task variation matrix YS = [y1, y2, ...y# ]) per contrast.234

The reduced resting-state variation matrix (Arest
S ) will be used to predict the concatenated task235

variation matrix. Under this formulation, the model has a large number of potential predictors. To236

prevent over-fitting, we enforce sparsity on the prediction regression coefficients, to enable selection237

of the subset of features that are most desirable for prediction. In addition, given that predictions238

made on the original task matrix are not only computationally expensive but also involve many239

redundant and noisy features (which will likely compete with the “real” features in the training),240

we also consider to similarly decompose the task matrix into a set of ? independent components,241

i.e., YS = Atask
S Stask, where Atask

S is the # × ? mixing matrix, and Stask is the set of ? independent242
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components. Thus, both the features matrix (Arest
S ) and the regression target used in training (YS)243

are sparse, low-rank versions of their original versions (through ICA), and contain information on244

individual variations (through concatenation of subjects).245

To find the sparse coefficients W, we solve the following regularised regression problem on the
ICA-reduced task matrix Atask

S

Ŵ = argmin
W=[w1,w2,...,w?]∈R3:×?

{| |Atask
S − Arest

S W| |2� +
?∑
8=1

_8 | |w8 | |1} (3)

or on the original task maps YS

Ŵ = argmin
W=[w1,w2,...,w+ ]∈R3:×+

{| |YS − Arest
S W| |2� +

+∑
8=1

_8 | |w8 | |1} (4)

where the Lasso penalty is univariately applied to columns of W (with different hyper-parameters246

to allow differential amounts of regularisation), encouraging it to be element-wise sparse. Note247

that an alternative way of introducing sparsity is to use an !1,2 penalty on W that enforces row-wise248

sparsity, as commonly applied in the grouped Lasso and themultivariate Lasso. That strategywould249

permit simultaneous use of all outputs to estimate a sole regularisation parameter. It implicitly250

assumes that predictions of different outputs (columns of Atask
S or YS) tend to require the same set251

of features. This underlying assumption of row-sparsity penalty is not very appropriate and tends252

to require heterogeneous feature selection. Other alternatives that simultaneously use all outputs253

include Partial Least Squares (PLS), Canonical Correlation Analysis (CCA), and their variants,254

as well as a range of multi-task learning approaches. Given that multi-task learning approaches255

with sparsity regularisations usually have more complex behaviours than the pure Lasso, we simply256

choose the Lasso penalty, which is also particularly easy to parallelise across columns of Atask
S or257

YS (i.e., across task voxels).258

Topredict task variationmaps for a set of unseen subjects, denoted byT , we first need to translate
the subjects’ resting-state variations into the subspace spanned by the resting-state common modes
(decomposed from the training subjects). This is conducted by regressing each across-subject
basis matrix onto the corresponding set of resting-state common modes. Again, suppose the 8-th
(across-subject) resting-state variation matrix of the test subjects is denoted by an = × + matrix
X̃8
T , where T is the test set, and = = |T | the number of test subjects. We seek to solve the linear

regression problem

Â8
T = argmin

A8
T∈R=×3

| |X̃8
T − A8

TS8 | |2� (5)

where Â8
T is the estimated “mixing matrix” of the 8-th resting-state variation matrix across the

test subjects T , and S8 is the independent components calculated from the training subjects for
8 = 1, 2, ..., : . Next, the sparse coefficients Ŵ, estimated via (3) or (4), are applied onto the
concatenated variability profiles Ârest

T = [Â1T , Â
2
T , ..., Â

:
T ] (an = × 3: matrix), to give predictions

for the set of unseen subjects T

ŶT = Ârest
T ŴStask (6)
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if Ŵ is solved via (3) or

ŶT = Ârest
T Ŵ (7)

if Ŵ is solved via (4).259

This completes the specification of the sparse model. To summarise the approach, we use260

concatenation of training subjects to incorporate information on subject variability in the training,261

we apply ICA to sparcify this data to help with fitting, and we employ further regularisation via the262

Lasso cost function on the regression coefficients. For UKB, we chose to reduce each across-subject263

resting-state matrix to 3,000 independent components and the task matrix to 4,000 independent264

components (however, reducing the resting-state and task matrices to 1,000 independent compo-265

nents yields comparable results, see Figure S5 a). For HCP, in contrast, we chose to reduce each266

resting-state matrix to its full rank (i.e., number of the training subjects, around 900 in each fold)267

but kept the original spatial dimension of each task matrix (i.e., no ICA on the task matrix), which268

yielded the best performance on a left-out subset (see Figure S5 b).269

The ensemble model270

A single model usually represents a single hypothesis space of the particular prediction prob-271

lem. Although the single models may contain the hypothesis space already well-suited for a specific272

problem, combining multiple hypotheses allows for more flexible structures to exist between pre-273

dictors and response variables, and can potentially improve model performance (again, as long as274

over-fitting is avoided through correct use of, for example, cross-validation or left-out data). Here275

the two single models are tailored to different aspects of the underlying hypothesis that variations276

in resting-state activity can inform task variations. As mentioned above, the baseline model treats277

the resting-state variation maps as a set of “bases” that spans the task variation map for each278

individual. It is obvious that the baseline model assumes that the mapping between resting-state279

and task space is within-subjects and thus ignores between-subject patterns of variations which280

might also be useful for the predictions. The underlying hypothesis of the sparse model captures a281

different aspect, though closely-connected with the baseline model hypothesis. With the variation282

maps reduced to the corresponding subspaces, the sparse model assumes that the “coordinates” of283

the subjects in resting-state space can be translated into their “coordinates” in task space.284

Here we aggregate the predictions of each single model, to give the final prediction for unseen
subjects using simple linear regression. Suppose Ŷbaseline

S is the # × + baseline-model-fitted
activations of the training subjects S, and Ŷsparse

S is the sparse-model-fitted maps. Particularly, we
use ŷbaseline·8 and ŷsparse·8 to denote the fitted activations in voxel 8 across subjects (i.e., each is an
# × 1 vector). At the ensemble stage, we aim to find the coefficients for each constituent model by
column-wisely fitting a simple linear regression on the task matrix of training subjects YS , i.e.,

\̂
(1)
8
, \̂
(2)
8

= argmin
\
(1)
8
,\
(2)
8

| |yS·8 − \
(1)
8

ŷbaseline·8 − \ (2)
8

ŷsparse·8 | |22 (8)

for the “true” activations in voxel 8 across the # training subjects, denoted by yS·8 , for 8 = 1, 2, ..., + .285

The two coefficients, \ (1)
8

and \ (2)
8

, will then be applied to the baseline-model-predicted and sparse-286

model-predicted maps to yield predictions of task variations for the unseen subjects. See Figure 1287

for an illustration of model training and Table S2 for a summary of the notations.288
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For UKB, the ensemble model and its constituent base models were trained and tested on289

17,560 subjects (3-fold cross-validation); for HCP, the models were trained and tested on 991290

subjects (10-fold cross-validation). The hyper-parameter of the !1 penalty was optimised within291

each fold’s training data via nested cross-validation (3-fold). The other free parameters (e.g., the292

number of resting-state bases and the number of independent components in the sparse model)293

were determined on a different subset of 4,700 subjects for the UKB dataset (trained on 4,000 and294

tested on 700). Due to the limited number of HCP subjects, we randomly selected 10% of the HCP295

subjects and investigated how the choice of these parameters would affect the model.296

The amplitude model297

The amplitude model aims to predict the task activation amplitude for each individual (i.e.,298

the beta coefficients from regression against the group-average activation map, as recorded during299

residualisation, one scalar value per subject per contrast) using the resting-state amplitude (i.e., the300

beta coefficients from regression of resting maps against the group-mean dual-regression maps, one301

scalar value per subject per basis). There are a few reasons for incorporating a separate amplitude302

estimation. First, one important source of individual variabilities in task-evoked activity is the303

(overall) activation amplitude. Explicitly predicting this information may help capture a different304

kind of individual variability that cannot be fully modelled by the aforementioned spatial models305

(indeed we would not expect to capture this from the residualised predictions). Second, the final306

predictions for test subjects are ideally given as a combination of modelled residual variations and307

the typical activation patterns. In order to recover the activation maps from the variation maps308

for each individual, the group-average activations are yet to be added back in appropriately, scaled309

by the activation amplitude of the specific individual. However, the activation maps of the test310

subjects are of course not seen during training. Therefore, we are not able to estimate the activation311

amplitude (i.e, betas from task residualisation) by simply regressing the group-average activations312

into the inidividual activations. As an alternative, the resting-state amplitude may be predictive313

of the overall activation amplitude (Figure S1 and S2) and thus may serve as a substitute for this314

information. The surrogate activation amplitude was generated as follows. Remembering that each315

subject has : resting-state amplitude values, corresponding to each of the : group-average spatial316

maps (i.e., one amplitude value per map): for a given contrast, a multiple linear regression model317

with the activation amplitude as the response and the resting-state amplitude as the predictors was318

trained across subjects (3-fold cross validation on UKB; 10-fold cross validation on HCP). These319

surrogate activation amplitude are subsequently applied to the predicted variation maps as the new320

beta coefficients, such that the re-scaled group-average effects can be added back in accordingly.321

The other hypothesis about the overall activation amplitude is that it serves as another important322

source of individual variabilities. To explore this possibility, we also consider to incorporate323

the amplitude information into the ensemble stage to test whether it can further improve model324

performance. Given that the : resting-state amplitude values of the : sets of dual-regression maps325

are correlated (across subjects), we reduce the : amplitude features into a few principal components,326

the number of which are determined via cross-validation. These components are included in the327

ensemble model as additional predictors to predict each column (voxel) of Y.328

Measures of model performance329

Assessment of model performance is primarily based on Pearson’s correlations between pre-330

dicted maps and the actual maps (in subjects left out of the training process). Apart from the331

standard MNI152 brain mask applied at the beginning of all the analysis, we choose not to apply332
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further thresholding of the resulting maps. Although further masking of the images may emphasise333

certain regions that are more of interest, the choice of thresholds can have a complex impact on334

evaluation and requires caution.335

For a given task contrast, the predicted maps are correlated with the actual maps for all subjects,336

yielding a “subject by subject” correlation matrix, where the entry in the 8-th row and 9-th column337

corresponds to the correlation between subject 8’s predicted map and subject 9’s actual map. The338

mean of the diagonal elements measures the overall prediction accuracy, i.e., how well the model339

can reproduce the spatial patterns of activation for each subject, averaged across subjects. However,340

this measure cannot fully quantify model performance because the overall model accuracy can be341

boosted by simply reproducing the group-average activation, particularly when most subjects are342

“normal”, having activations patterns close to the group-average. Therefore, it is also important to343

make differentiated predictions, i.e., how well the model can capture atypical variations that deviate344

from the group-average activations. This necessitates measuring the extent to which, for a specific345

subject, the model can make predictions that are closer to the subject’s own activation maps than346

to the others. This is of course particularly relevant if doing non-residualised prediction.347

The new evaluation measure is calculated as follows: after the correlation matrix (between348

predicted maps and the actual maps for all subjects) is normalised via Fisher’s transformation, for349

each subject, we calculate the difference between two values: (i) correlation between the subject’s350

predicted map and the subject’s actual map; (ii) mean of the correlations between the subject’s351

predicted maps and other subjects’ actual maps. The difference between (i) and (ii) provides a352

quantitative evaluation of the model’s capability of predicting individual differences distinct from353

the group mean. In the following text, the first measure is referred to as “prediction accuracy”, and354

the second one is referred to as “prediction discriminability”.355

Additionally, we calculated the between-subject standard deviation map of the actual task vari-356

ations (as a measure of inter-individual voxel-wise variability) and also of the predicted variations357

(as a measure of predicted variability) for each contrast. We then correlated the predicted variabil-358

ity maps against the actual variability map as a third measure of model performance. A higher359

correspondence between the two standard deviation maps indicates better ability to reproduce the360

spatial pattern of between-subject variability.361

RESULTS362

The ensemble model outperforms its constituent single models363

To compare DR-ICA maps with PFMs, we chose the optimal dimensionality of each method,364

DR-ICA25 and PFM-50 for UKB, and DR-ICA50 and PFM-150 for HCP, respectively. The fact365

that PFM optimal dimensions were found to be higher than those of DR-ICA suggests that the366

former yielded more reliable functional modes particularly at higher dimensions (however, note367

that PFMs consistently outperformed DR-ICA across all dimensions. See Figure S3). In the368

baseline model, overall, most variation maps contributed to the predictions (Figure S4), suggesting369

that these resting-state variation modes did capture a significant proportion of the variance in task370

variation maps.371

We found that the sPROFUMOmodes had overall higher accuracy in predicting task variations372

than the DR-ICA maps, consistently across the baseline, sparse, and ensemble model (Figure 2).373

Compared with predictions based on DR-ICA, the biggest improvement introduced by sPROFUMO374

modes was evident from the baseline model, suggesting that sPROFUMO provides a fundamentally375
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Figure 2. Prediction accuracy of the individual task variations and of the inter-individual variability. PFM
better captures task variations than DR-ICA maps (dark colors vs pale colors); the ensemble model outperformed its
constituent single models in predicting individual task variations and reproducing inter-individual variability patterns
(blue, green, and red). (a) Prediction accuracy of the baseline, sparse, and ensemble models for 17,560 UKB subjects
across the three contrasts, the last columns showing all contrasts pooled together. White diamonds show the means
along with the boxplots showing the medians and quartiles. (b) Equivalent plots of 991 HCP subjects across seven
representative contrasts, the last column showing all 47 contrasts pooled together. (c) Correlations between the
predicted and the actual inter-individual variability maps calculated across 17,560 UKB subjects. Overall, ensemble
trained on PFM yielded the highest correspondence with the inter-individual variability. (d) Equivalent plots across
991 HCP subjects. See Figure S7 for all HCP contrasts. (e) The actual (first row) and the predicted (second row)
inter-individual variability across 17,560 UKB subjects of the three contrasts, shown volumetrically. Warmer colors
indicate higher variability with the maximum normalised to 1. (f) The actual (first row) and the predicted (second
row) inter-individual variability calculated across 991 HCP subjects of the seven representative contrasts, shown on
the cortical surface.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456783
http://creativecommons.org/licenses/by/4.0/


better set of resting-state bases to reconstruct task variations than DR-ICA. This corresponds with376

previous evidence that sPROFUMO better accounts for cross-subject misalignment and accommo-377

dates higher predictive power of population heterogeneity (Farahibozorg et al. 2021). Additionally,378

sPROFUMO modes also exhibited higher prediction accuracy for the sparse and ensemble model.379

Interestingly, the baseline and sparse model based on DR-ICA had very distinct performance on380

the two datasets. For HCP, the baseline model yielded higher prediction accuracy than the sparse381

model (Figure 2b, blue and green), while for UKB, this relationship was entirely reversed (Fig-382

ure 2a, blue and green). However, introducing sPROFUMOmodes as bases substantially enhanced383

prediction accuracy of the baseline model for UKB, making it tend to outperform the sparse model.384

Here we provide a possible explanation for this discrepancy. The two single models are tailored385

to different data scenarios. If the resting-state modes form the set of bases that do fundamentally386

have the ability to predict the task maps, then the baseline model should suffice, i.e., we don’t need387

the sparse model to emphasise specific spatial features. In practice, however, DR-ICA maps are388

not the perfect sets of individual “versions” of the group-average modes, containing many noisy389

voxels irrelevant to task-fMRI prediction. A major difference between the two datasets is that the390

UKB data we used to train the model is volumetric while the HCP data is grayordinates. As a391

consequence, there is more functional spatial variability (misalignment) in the UKB data (Coalson392

et al. 2018) and hence more “errors” in its individual dual-regression maps. In addition, HCP393

data is MSMAll-aligned and UKB is not. On the other hand, sPROFUMO better accounts for394

cross-subject misalignment and allows more fine-grained delineation of individual differences in395

resting-state data, thus it has improved ability to capture variations in task data. Furthermore, due to396

the shorter scanning sessions, the resting-state and task-fMRI scans in UKB have higher noise than397

in HCP, requiring additional benefits of identifying which voxels/spatial features are more desirable398

in the modelling. Hence, UKB requires greater spatial modelling complexity as well as greater399

spatial smoothing, provided by the sparse model (note that conducting ICA on the resting-state and400

task matrices across subjects in the sparse model may serve as a kind of de-noising).401

For both datasets, overall, the ensemble model outperformed its constituent single models.402

Remember that the task variations are the residuals of regressing the group-average activations403

into the individuals, thus they are orthogonal to the group-mean by design. This also implies that404

these task variation maps have minimal overall cross-subject similarity, i.e., the spatial correlations405

between pairs of subjects fluctuate around zero. Therefore, the plots of prediction accuracy406

and of discriminability will look almost identical, because the predicted maps will have near-to-407

zero correlations with the maps of the other subjects, i.e., the off-diagonals of the (subject by408

subject) correlation matrices (between the predicted maps and the actual maps) are all close to zero409

(Figures S8 and S9).410

In addition to predicting the individual variations in task activity, all three models could repro-411

duce the spatial pattern of inter-individual variability (standard derivation maps across subjects)412

for both datasets (Figure 2c and d). Similar to the previous scenario, using sPROFUMO modes413

as bases improved the prediction of inter-individual variability for the baseline model on both414

datasets (Figure 2c and d, blue), corroborating the conclusion that sPROFUMO better aligns the415

subjects, refines the spatial details of cross-subject heterogeneity, and thus provides a better set of416

bases to reconstruct task variation space. In terms of the sparse and ensemble model, DR-ICA and417

sPROFUMO yielded comparable correspondence with the true inter-individual variability.418

These actual and predicted (via the ensemblemodel) inter-individual variability maps are shown419

in Figure 2e and f. Regions of higher variability across subjects are those more involved in the420
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corresponding task execution. For example, somato-sensory and motor regions are more variable421

across subjects in the motor contrasts; fronto-parietal regions exhibits higher variability in more422

cognitive contrasts; the visual areas tend to be more variable in general, for all contrasts. In423

summary, all three models are able to capture individual-unique activation patterns that deviate424

from the typical activation patterns as well as recapitulating the spatial pattern of inter-individual425

variability. In the subsequent analysis, we used PFM50 for UKB, and PFM150 for HCP. The426

subjects identification accuracy (i.e. the probability that predicted maps had the highest correlation427

with the subjects’ own residual maps) can be found in Figure S8 and S9.428

Training on the un-residualised data is suboptimal to capture individual differences429

Up to this point, we have shown that resting-state variations can fundamentally capture the inter-430

subject differences in task-evoked brain activity. The next question we asked is whether the model431

can recover individual idiosyncrasies in task-fMRI, if trained on the un-residualised resting-state432

spatial modes and the task activations, as opposed to the residualised data (i.e., variation maps).433

Having close-to-zero shared variance with the group-average, the residuals more accurately profile434

the individual differences by design; we posit that training on residuals avoids the contamination of435

group-level information and thus may potentially facilitate capturing individual-unique patterns. To436

fairly compare the two options requires recovering the actual task-evoked responses (as opposed to437

the residuals) from the predicted variations for each individual. To explore this, we next generated438

the surrogate activation amplitude using the PFMs’ amplitude for each individual, then added439

the group-average activation map (scaled by the resting-state-predicted amplitude) back to the440
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Figure 3. Comparison between the Tavor model and the ensemble models. Overall, the ensemble model trained
on variation maps (residualised maps) outperformed the other two options; error bars show the 95% CI of the means.
(a) Prediction accuracy across 17,560 UKB subjects of the three contrasts, the last column showing all contrasts pooled
together. (b) Equivalent plots across 991 HCP subjects of seven representative contrasts, the last column showing all
47 contrasts pooled together. (c) Prediction discriminability in UKB. (d) Prediction discriminability in HCP in a subset
of task contrasts (see Figure S10 for all HCP contrasts).
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predicted variation maps. These predictions with group-average added back in were correlated441

against the actual (un-residualised) activations for all subjects, again yielding a subject by subject442

correlation matrix per contrast. We calculated the prediction accuracy and discriminability from443

these correlation matrices, and compared them with the model trained on the un-residualised PFMs444

and task activations.445

Overall, both options manifested considerable predictive power of individual activations, as446

suggested by the overall accuracy and discriminability (Figure 3, red and orange). Additionally,447

we found that although training on variations exhibited little improvement on the actual prediction448

accuracy (figure 3a and b), it tended to improve prediction discriminability (figure 3c and d).449

This suggests that it is more desirable to establish a mapping between the variations in rest and450

task data per se than simply use the original data with group-average effects present. This is451

probably because residualisation orthogonalises the individual maps with respect to the group-452

average maps and prevents the dominance of the typical activation patterns. Furthermore, this453

shows that separating out the modelling of overall amplitude from (group-mean-removed) map454

variability, and then recombining these parts of the model later, is at least as effective as predicting455

raw task from raw resting maps. This is valuable, as it does suggest that these different data aspects456

can indeed be considered separately. The subject identification accuracy based on residualised457

predictions (with group-average effects added back in evaludation) is shown in Figure S11 and458

Figure S12.459

We also benchmark our model against previous GLM-based methods (Tavor et al. 2016) using460

the same subjects. The Tavor method is based on multiple GLMs, essentially very similar to461

the baseline model, except for a few differences: (1) instead of training a global GLM for the462

whole brain between the resting-state and the task maps (as in our baseline model), the Tavor463

model seeks to fit multiple “local” GLMs within each of the pre-determined parcels; (2) the464

features of the Tavor model are seed-based connectivity maps, while our baseline model uses the465

dual-regression maps (i.e., multiple regression against the many “seed” timeseries output by the466

first stage of dual-regression). The ensemble model, trained either on the un-residualised data467

or on the variation maps, yielded higher prediction accuracy than the Tavor method. On the468

UKB dataset, the ensemble model substantially improved prediction accuracy and discriminability;469

on the HCP dataset, the Tavor method and the ensemble model trained on variations manifested470

comparable discriminability, both superior to the ensemble model trained on un-residualised data471

(see Figure S10 for all HCP task contrasts). Note that, among the HCP contrasts, motor-tasks472

exhibited weak prediction discriminability.A possible explanation for this is that the individual473

response profiles to motor-related stimulus had little cross-subject variations, such that the model474

was not able to extract sufficient information to discriminate between subjects. The relatively lower475

prediction accuracy of motor tasks is, on the other hand, unexpected, especially considering the476

strong activations in cortical regions that are supposed to enable the model to learn the mapping477

between resting-state and motor tasks. Understanding this discrepancy between motor tasks and478

resting-state activity requires future investigations andwould be important to understand the ongoing479

interplay of resting-state networks in task execution.480

The fact that the model trained on the variations per se (with an explicit and separate amplitude481

prediction) can better capture patterns unique to individuals than its un-residualised counterpart482

corroborates the assumption that, in addition to the spatial layout (shapes) of activations, the overall483

activation intensity also contributes to the variability of task-elicited activity. Following this, we484

also tested whether incorporating resting-state amplitude as additional predictors explicitly at the485
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ensemble stage would further facilitate capturing individual-unique patterns for the un-residualised486

model. We found that, though having little effect on the actual prediction accuracy, including487

the PFMs’ amplitude as explicit predictors (in addition to the other two predictors, the baseline-488

model predicted and sparse-model-predicted values in the corresponding voxel) did further improve489

discriminability (Figure S13a and b). This again supports our findings that the inherent variations in490

resting-state and task activity are more informative of the mapping between the two states than the491

original activity profiles. For the ensemble model trained on the residualised data, regressing out492

the group-average response “removes” the overall activation intensity relative to the group-average493

activations for each individual. Therefore, introducing resting-state amplitude to the residualised494

ensemble model, in theory, should have little effect on model performance. However, in practice,495

we found that incorporating resting-state amplitude as additional features in the ensemble stage also496

increased prediction discriminability for the residualised ensemble model. There are a few possible497

explanations for this discrepancy. One possible explanation is that the group-average activation498

patterns were not entirely removed particularly from the subjects that are very atypical, probably499

due to GLM’s sensitivity to outliers or noise in the fitting (e.g., related to regression dilution). In500

this sense, including resting-state amplitude as additional features thus accounted for the remnants501

of the amplitude information particularly for those atypical subjects, and thus increased the overall502

prediction discriminability (Figure S13d and f) on the UKB dataset. Another possibility is that503

the overall activation intensity may still inform the (strength of the) variabilities of the shape of504

activations. This possibility can be partially validated by the findings that it further improved the505

fit with the spatial pattern of inter-individual variability by including resting-state amplitude as506

additional features at the ensemble stage (Figure S13c and f). Note that, however, the resting-state507

amplitude is not expected to be a perfect surrogate of the task amplitude. The '2 between the actual508

and the predicted task amplitude is actually small (Figure S1 and S2).509

Prediction accuracy paralleled test-retest reliability510

To evaluate whether the predicted task maps can reliably capturing individual differences in511

tasks, we utilised retest scans in HCP data to compare the prediction accuracy of task maps512

against test-retest correlations of tasks. The second-scan task contrast maps (either residualised513

or un-residualised) were correlated against the first-scan task maps for subjects that had received514

second-time scanning, yielding a subject by subject correlation matrix per given contrast. We also515

investigated the reliability of activation amplitude by residualising the second-time task contrast516

maps using the original (time 1) group-average map, and correlated the amplitude values (i.e.,517

regression betas) against the first time task amplitude. We tested whether resting-state-predicted518

amplitude is more robust than those measured directly in tfMRI.519

For both datasets, the PFM-predicted contrast maps yielded higher overall accuracy than the520

repeat scans, consistent across all task contrasts (Figure 4a and c, light blue and light white),521

suggesting that resting-state predicted activations can surpass task-fMRI retest reliability. This522

coincides with previous studies that resting-state features serves as a reliable trait marker and523

may even be more heritable than task-fMRI phenotypes (Winkler et al. 2010). Note that, the524

accuracy of PFM-predicted activations that is on par with the test-retest reliability is unlikely a525

result of over-fitting to the first-visit tfMRI data. With the repeat scans entirely invisible to training,526

the PFM-predicted task activations still generalised well to the second-visit task contrast maps527

(see Figure 4, light green bars); actually, the PFM-predicted task maps (predicted using the first528

visit resting maps only) gave comparable prediction accuracy for both visits. Furthermore, the529
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Figure 4. Test-retest reliability of PFM-predicted task maps. In (a) and (c), dark colors denote accuracy of residual
predictions; pale colors the accuracy of group-average-added-back predictions. Blue: accuracy of PFM-predicted
maps. Red: accuracy of the second-visit tfMRI contrast maps. Although the group-average-added-back predictions
consistently yielded higher accuracy than the retest scans, on UKB the accuracy of residual predictions is yet to be
improved. On HCP, in contrast, the accuracy of residual predictions was approaching the second-visit scans, possibly
due to the much longer scanning sessions. (b) and (d). For both datasets, PFM-predicted task amplitude was overall
more reliable than the second-time task-fMRI scans.

PFM-predicted task amplitude proved more reliable to task-fMRI scans in replicating the overall530

activation amplitude (Figure 4b and d).531

As mentioned in previous sections, predicting residual variation is of more interest. On the532

HCP dataset, the accuracy of residualised predictions approaches the test-retest reliability of task533
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Figure 5. Predicted, actual, and group-average activations of 6 example UKB subjects. The predicted activations
captured the atypical activations in individual subjects (with group-mean-related components included). The subjects
ranked between 50% to 75% according to their correlations with the corresponding group-average activations. See
Figure S17 for the plots of the predicted and the actual task variation maps of the same example subjects.

variation maps (Figure 4c) for most contrasts, and yielded higher accuracy for several contrasts534

(GAMBLING_REWARD, GAMBLING_PUNISHMENT, SOCIAL_MATCH-REL, etc.). On the535

UKBdataset, however, the re-test (residualised) tfMRI scans still yieldedmuch higher accuracy than536

the PFM-predicted task variations (Figure 4a), possibly because of the much shorter resting-state537

scanning sessions. The retest scans also had higher prediction discriminability than did the group-538

average-added-back predictions, which is un-surprising due to the dominance of group-average539

effects (Figure S16).540

Figures 5 and 6 show the comparison between the predicted, actual, and group-average acti-541

vations volumetrically (for UKB) and on the surface (for HCP). It can be seen that the predicted542

activations provide a “smoothed” estimation of the individual activations, while preserving the543

unique patterns in individual subjects (for the actual and the predicted task variation maps of the544

same example subjects, see Figure S17 and S18).545

DISCUSSION546

In this paper, we extended previous GLM-based approaches (Tavor et al. 2016; Cohen et al.547

2020; Dohmatob et al. 2021) and proposed an ensemble learner to model individual variations548

in task activations on two large datasets, UKB and HCP. Enabled by a recently developed tech-549

nique, sPROFUMO, we exploited the richness of individual variability in resting-state to reproduce550

task-evoked activation patterns unique to individuals. We demonstrated that sPROFUMO can551
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Figure 6. Predicted, actual, and group-average activations of example HCP subjects. The predicted activations
captured the atypical activations in individual subjects; these subjects ranked in the lower 50% percentile according
to their correlations with the corresponding group-average activations. See Figure S18 for plots of the actual and the
predicted task variations maps of the same example subjects.

accommodate higher predictive power than DR-ICA, especially in terms of the overall capacity552

of reproducing between-subject differences. This added advantage of sPROFUMO arises from553

its enhanced ability to depict fine-grained resting-state variability in rich detail due to its bidi-554

rectional and hierarchical architecture between the group-average and individual,in contrast to the555

unidirectional group-average algorithms (e.g., DR-ICA). Furthermore, we showed that modelling556

the individual activation profiles as a combination of the group-average and predicted variations557

can be more desirable than simply modelling the raw task map, suggesting that two sources of558

task variability, shape and amplitude, factorise into different compartments and can be modelled559

separately. Characterising different aspects of task variability is important to understanding the560

sources of these cross-subject differences. Overall, resting-state functional modes serve as a set561

of bases that can not only sufficiently reconstruct individual task-fMRI space but also yield more562

reliable localisation of individual task-evoked response profiles.563

Our ensemble framework consists a baseline model and a sparse model, each tailored to a564

different scenario. In the baseline model, for each individual, the resting-state modes span the565

space of the task activation maps and thus, in theory, can reproduce task-fMRI in itself. In practice,566

however, more spatial complexity is often required to select local features that are “cleaner” or567

of more interest. The sparse model largely accounts for this limitation. For example, the motor568

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456783
http://creativecommons.org/licenses/by/4.0/


network in resting-state modes contains components that are often in sync with each other and are569

part of the same spatial basis. The baseline model cannot split them, while the sparse model may570

select the components more desirable for prediction. However, the sparse model has another caveat.571

Despite the existing rescaling techniques (e.g., fitting another OLS on top of the selected features;572

introducing a re-scale factor), the Lasso penalty often introduces too much shrinkage, particularly573

when the prediction involves too many candidate features. As a results, the predicted response may574

become too biased towards zero thus degrading model discriminability. The ensemble model, by575

fitting another OLS on top of each voxel, de-biases the over-shrinkage of the sparse model.576

It is worth noting that the group-average activation patterns alone can have considerable overlap577

with individual activation maps. Thus one can obtain moderate prediction accuracy by simply578

reproducing the group-average. Hence, the accuracy of residualised predictions, or the discrim-579

inability of the group-average-added-back predictions, are more informative on the model’s ability580

to make individualised predictions. This is of particular importance, because many existing algo-581

rithms tend to push predictions towards the mean. In a higher-dimensional setting, the relation582

between the twomeasures becomes complicated, but it is not difficult to see that the improvement of583

discriminability may degrade accuracy a little. Training and evaluating the model on residualised584

resting-state and task data thus have more desirable properties, not only to simplify the assessment585

of model performance but also to maximise ability to capture inter-individual differences. Other586

approaches to improve prediction discriminability include introducing a contrastive loss term to587

push between-subject differences to be large (Ngo et al. 2021). It is yet to be investigated whether588

the two approaches are comparable. However, introducing extra terms may complicate the loss589

function (for example, turn a convex loss function into a non-convex one) and thus may be less sta-590

ble. Training on residualised data keeps the original loss function structure and is usually simplier591

to train.592

In addition to predicting individual-unique activations, it is also of value to investigate the causes593

of the variations in task-evoked activations, particularly, what information in resting-state activity594

drives the individual differences in task activity. For example, do variations in peak activation595

patterns correspond to the changes in resting-state activity in the same location, or is it actually596

driven by more complicated configuration of the dense connectivity pattern? Such investigations597

would help us understand the nature of the inherent resting-state features that characterise variations598

in task activity. For example, these features can be “structurally” inherent (characterised by brain599

organization and connectivity) or “functionally inherent” (related to the cognitive state of subjects600

during the resting-state scan) (Tavor et al. 2016), both of whichmay cause the re-configuration or re-601

allocation of peak activation patterns. Note that, individual differences in task-evoked activations602

may be partially due to inter-subject misalignment. Indeed, registration remains an empirical603

question and may be sub-optimal in practice. However, it is very unlikely that our results only604

account for misalignment between subjects, as the model can capture variations not only in shape605

and position but also in topology of the activations. Indeed, it is likely that the relatively state-of-606

the-art alignments used here in preprocessing reduced intersubject variability, rather than increased607

it.608

Using resting-state fMRI scans to infer individualised task-evoked response has a wide range of609

implications in translational and clinical neuroscience. One potential application of the proposed610

model is to infer individualised functional localisers based on resting-state fMRI scans. This is611

important because tfMRI scans are often of limited accuracy and reliability (Elliott et al. 2020;612

Ellis et al. 2020), possibly due to poor task performance and noise that is hard to remove in pre-613
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processing. Such a framework can supplement task localisers, potentially improving the prediction614

of individual functional mapping and facilitating investigations of individualised response profiles615

of localised brain regions. Furthermore, as numerous multi-site multi-scanner consortia emerge,616

it is also important to reduce scanner-induced or age-induced bias such that the model can be617

generalised beyond sites or populations. This requires efforts to develop a model that is capable of618

learning features invariant across scanners and insensitive to confounds. If generalisable to other619

populations, such a model can be used to localise regions of interest for those who cannot perform620

tasks, such as paralysed patients and infants.621

There are a few limitations in this study. First, the ensemble model is a linear combination of622

two single (largely) linear models and thus has limited ability to capture higher-order non-linear623

relationships between the resting-state and task-evoked brain activity. Second, the decompositions624

of common modes of variations are unsupervised. In the future, more complex modelling could625

be adopted to simultaneously estimate the common modes of variations and the reconstruction626

coefficients. Third, the rich information derivable from T1 and diffusion MRI scans may further627

aid the predictions of individual differences in task-evoked activity, and this model is yet to be628

adapted into a multi-modal framework.629

CODE AVAILABILITY630

Code for themodel and analysis in this paper can be found in https://github.com/yingqiuz/predict-631

task-individual-variability.632

Code for obtaining PFMs will be made available in an upcoming FSL release. It is currently633

available in https://git.fmrib.ox.ac.uk/rezvanh/sprofumo_develop.634
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SUPPLEMENTARY INFORMATION770

HCP contrast
category HCP contrast index and name

EMOTION 01_EMOTION_FACES 02_EMOTION_SHAPES
03_EMOTION_FACES-SHAPES

GAMBLING 07_GAMBLING_PUNISH 08_GAMBLING_REWARD
09_GAMBLING_PUNISH-REWARD

LANGUAGE 13_LANGUAGE_MATH 14_LANGUAGE_STORY
15_LANGUAGE_MATH-STORY

MOTION

19_MOTOR_CUE 20_MOTOR_LF 21_MOTOR_LH 22_MO-
TOR_RF 23_MOTOR_RH 24_MOTOR_T 25_MOTOR_AVG
26_MOTOR_CUE-AVG 27_MOTOR_LF-AVG 28_MOTOR_LH-
AVG 29_MOTOR_RF-AVG 30_MOTOR_RH-AVG 31_MOTOR_T-
AVG

RELATIONAL 45_RELATIONAL_MATCH 46_RELATIONAL_REL
47_RELATIONAL_MATCH-REL

SOCIAL 51_SOCIAL_RANDOM 52_SOCIAL_TOM
53_SOCIAL_RANDOM-TOM

WORKING
MEMORY

57_WM_2BK 58_WM_2BK 59_WM_2BK 60_WM_2BK
61_WM_0BK 62_WM_0BK 63_WM_0BK 64_WM_0BK
65_WM_2BK 66_WM_0BK 67_WM_2BK-0BK 71_WM_BODY
72_WM_FACE 73_WM_PLACE 74_WM_TOOL 75_WM_BODY-
AVG 76_WM_FACE-AVG 77_WM_PLACE-AVG 78_WM_TOOL-
AVG

TABLE S1. List of the 47 HCP contrasts. We used the 47 unique contrast maps for HCP, excluding all redundant
contrasts.
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Notation Explanation Notation Explanation

+ the number of voxels :

the number of dual-
regression maps per
subject

S the training set T the test set

#
the number of training sub-
jects = the number of test subjects

x8
9
∈ R+ the 8-th resting-state varia-

tion map of subject 9 X 9 ∈ R+×:
the resting-state variation
maps of subject 9

VVV 9 , V̂VV 9 ∈ R:
the (estimated) baseline co-
efficients for subject 9 V̂VV ∈ R:

the baseline coefficients
(averaged across the train-
ing set)

X̃8
S ∈ R

#×+
the 8-th across-subject
resting-state variation
matrix (of the training set)

YS , ŶS ∈ R:
the (predicted) across-
subject task variation
matrix

A8
S , Â

8
S ∈ R

#×3

the (estimated) mixing ma-
trix of the 8-th across-
subject resting-state varia-
tion matrix

S8 ∈ R3×+
the independent compo-
nents of the 8-th across-
subject resting-state varia-
tion matrix

Arest
S , Ârest

S ∈ R
#×3:

the concatenated : mixing
matrices of the resting-state
variation matrices

3

the number of modes/in-
dependent components of
each resting-state variation
matrix

Atask
S ∈ R#×?

the mixing matrix of the
across-subject task varia-
tion matrix

Stask ∈ R?×+
the independent compo-
nents of the task variation
matrix

y 9 ∈ R+
the task variation map of
subject 9 ?

the number of modes/inde-
pendent components of the
task variation matrix

W, Ŵ ∈ R3:×? or
R3:×+

the (estimated) sparse coef-
ficients w8, ŵ8 ∈ R3:

the 8-th column of the esti-
mated sparse coefficients

_8

the hyper-parameter of the
!1 penalty for the 8-th col-
umn of W

Ŷbaseline
S ∈ R#×+

the baseline-model-fitted
task variation matrix for
the training subjects

Ŷsparse
S ∈ R#×+

the sparse-model-fitted task
variation matrix for the
training subjects

ŷbaseline·8 , ŷsparse·8) ∈ R#
the 8-th column/voxel of the
baseline- / sparse-model fit-
ted task variation matrix

\
(1)
8

ensemble coefficient for the
8-th voxel of the baseline
mode

\
(2)
8

ensemble coefficient for the
8-th voxel of the sparse
mode

TABLE S2. List of the notations.
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Figure S1. Using resting-state amplitude to predict activation amplitude (UKB). For each task contrast, the
activation amplitude was predicted using the amplitude of the 50 PFMs (700 subjects shown).
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Figure S2. Using resting-state amplitude to predict activation amplitude (HCP). For each task contrast, task
amplitude was predicted using the amplitude of 150 PFMs via 10-fold cross-validation (i.e., trained on 9 folds and
predicted on the rest).
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Figure S3. Choices of the functional modes’ dimensions. Lower dimensions often result in larger parcels and tend
to reflect whole brain resting-state networks. Higher dimensions, in contrast, tend to break down the parcels into more
fine-grained functional subprocesses. We argue that the resolution of functional parcellations may non-trivially impact
prediction of individual variations in task-evoked activations. The number of resting-state modes must be optimised in
the first place for the the subsequent analysis. White diamond shows the mean. (a) Prediction accuracy of DR-ICA25,
DR-ICA50, and DR-ICA100 across a subset of 700 UKB subjects. (b) Equivalent plots of PFM25, PFM50, and
PFM100. (c) and (d) Equivalent plots of 98 HCP subjects at 50, 100, and 150 modes. The results were based on the
residualised data; for the un-residualised data, different dimensions had similar effects on the accuracy, though with
smaller differences (not shown here).
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Figure S4. Baseline coefficients (betas of the baseline model) of the residualised data. Error bars showing
95% CI of the mean beta values (calculated across 1,000 UKB subjects and 891 HCP subjects). For each subject,
the coefficients were divided by the maximum beta value within the given contrast. Overall, most functional modes
exhibited consistent patterns within each task domain.
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Figure S5. Prediction accuracy of the sparse model at a range of PFM dimensions, trained on a subset of 4,000
UKB subjects and tested on 700. Overall, prediction accuracy increases with the number of functional modes. Note
that the results were based on residualised data. The un-residualised data exhibited similar accuracy patterns, though
with smaller differences between the choices of dimensions (not shown here).
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Figure S6. Prediction accuracy of the sparse model at a range of PFM dimensions, trained on 891 HCP subjects
and tested on 98. Overall, accuracy increases with the number of functional modes. The un-residualised data exhibited
similar accuracy patterns, though with smaller differences between the choices of dimensions (not shown here).
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Figure S7. Comparison between the ensemble model and the single models, shown across all 47 HCP task
contrasts. (a) Equivalent plots of Figure 2b. (b) Equivalent plots of Figure 2d.
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10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456783
http://creativecommons.org/licenses/by/4.0/


accuracy
99.39%

EMOTION_FACES

accuracy
98.39%

EMOTION_SHAPES

accuracy
98.49%

EMOTION_FACES-SHAPES

accuracy
99.80%

GAMBLING_PUNISH

accuracy
99.90%

GAMBLING_REWARD

accuracy
46.96%

GAMBLING_PUNISH-REWARD

accuracy
99.80%

LANGUAGE_MATH

accuracy
99.09%

LANGUAGE_STORY

accuracy
99.80%

LANGUAGE_MATH-STORY

accuracy
99.70%

MOTOR_CUE

accuracy
97.46%

MOTOR_LF

accuracy
96.85%

MOTOR_LH

accuracy
97.87%

MOTOR_RF

accuracy
97.97%

MOTOR_RH

accuracy
97.05%

MOTOR_T

accuracy
98.78%

MOTOR_AVG

accuracy
99.90%

MOTOR_CUE-AVG

accuracy
76.93%

MOTOR_LF-AVG

pr
ed

ict
ed

 ta
sk

 a
ct

iv
at

io
ns

accuracy
85.06%

MOTOR_LH-AVG

accuracy
76.52%

MOTOR_RF-AVG

accuracy
81.00%

MOTOR_RH-AVG

accuracy
89.74%

MOTOR_T-AVG

accuracy
99.80%

RELATIONAL_MATCH

accuracy
99.90%

RELATIONAL_REL

accuracy
84.62%

RELATIONAL_MATCH-REL

accuracy
99.90%

SOCIAL_RANDOM

accuracy
99.90%

SOCIAL_TOM

accuracy
97.77%

SOCIAL_RANDOM-TOM

accuracy
99.49%

WM_2BK_BODY

accuracy
99.70%

WM_2BK_FACE

accuracy
99.80%

WM_2BK_PLACE

accuracy
99.80%

WM_2BK_TOOL

accuracy
99.39%

WM_0BK_BODY

accuracy
99.49%

WM_0BK_FACE

accuracy
99.80%

WM_0BK_PLACE

accuracy
99.70%

WM_0BK_TOOL

accuracy
99.90%

WM_2BK

accuracy
99.80%

WM_0BK

accuracy
93.80%

WM_2BK-0BK

accuracy
99.70%

WM_BODY

accuracy
99.90%

WM_FACE

accuracy
99.90%

WM_PLACE

accuracy
99.90%

WM_TOOL

accuracy
89.84%

WM_BODY-AVG

actual task activations

accuracy
96.65%

WM_FACE-AVG

accuracy
95.43%

WM_PLACE-AVG

accuracy
81.50%

WM_TOOL-AVG

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.1

0.0

0.1

0.2

0.3

0.1

0.0

0.1

0.2

0.3

0.1

0.0

0.1

0.2

0.3

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.05

0.00

0.05

0.10

0.15

0.05

0.00

0.05

0.10

0.15

0.20

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.0

0.1

0.2

0.3

0.4

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.1

0.0

0.1

0.2

0.3

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Figure S9. HCP subjects identification accuracy (based on residualised data). For illustration purpose, only 100
subjects were shown above.
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Figure S10. Comparison of the Tavor model and the ensemble model (both un-residualised and residualised)
across 991 HCP subjects for all 47 task contrasts. The ensemble model (either residualised or not) outperformed the
Tavor model in terms of the actual prediction accuracy; however, the Tavor model could make more individualised
predictions than the ensemble model if both trained on un-residualised data. The residualised ensemble model
outperformed the other two both in accuracy and discriminability, except for the motor task domain.
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Figure S11. UKB subjects identification accuracy (with group-average activations added back in). The off-
diagonal values no longer fluctuate around zero. The subject identification accuracy remains high. For illustration
purpose, only 100 subjects were shown above.
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Figure S12. HCP subjects identification accuracy (with group-average activations added back in). For illustration
purpose, only 100 subjects were shown above.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456783
http://creativecommons.org/licenses/by/4.0/


EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

ALL
0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

a UKB contrasts (un-residualised)
un-residualised without amplitude
un-residualised with amplitude

EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

ALL
0.12

0.14

0.16

0.18

0.20

di
sc

rim
in

ab
ilit

y

b UKB contrasts (un-residualised)
un-residualised without amplitude
un-residualised with amplitude

EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

di
sc

rim
in

ab
ilit

y

c UKB contrasts (un-residualised)
un-residualised without amplitude
un-residualised with amplitude

EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

ALL
0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

d residualised (group-average added back)
residualised without amplitude
residualised with amplitude

EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

ALL
0.12

0.14

0.16

0.18

0.20

di
sc

rim
in

ab
ilit

y

e residualised (group-average added back)
residualised without amplitude
residualised with amplitude

EMOTION
FACES

EMOTION
SHAPES

EMOTION
FACES-SHAPES

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

di
sc

rim
in

ab
ilit

y

f residualised (group-average added back)
residualised without amplitude
residualised with amplitude

Figure S13. Prediction accuracy and discrimininability of the ensemble model with or without PFM amplitude
as additional features, calculated across 17,560 UKB subjects Although incorporating amplitude did not further
increase the overall accuracy for UKB, it did marginally improve prediction discriminability. This coincides with (c)
and (d), which shows that the std. maps of predicted activations (across subjects) exhibited higher correspondence
with the actual inter-individual variability.
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Figure S14. Prediction accuracy and discrimininability of the ensemble model with and without resting-state
amplitude as additional features for all 47 HCP contrasts. For HCP, however, including PFM amplitude as
additional features at the ensemble stage did not further improve prediction discriminability.
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Figure S15. Test-retest reliability of PFM-predicted task maps. The red and blue bars/lines is identical to those
shown in Figure 4. The green bars are correlations (accuracy) between the first-time-predicted task maps and the
second-visit task contrast maps (note that the second-time data is entirely invisible to training). That the red and
green had comparable accuracy suggests the PFM-predicted activations did not overfit to the first-time task-fMRI and
generalised well to task-fMRI collected at different visits.
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Figure S16. Test-retest reliability of prediction discriminability. Due to the dominance of group-average
activations, the predicted task maps (with group-average added back in) yielded lower discriminability than the retest
scans.
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Figure S17. The actual and the predicted task variations (residuals) of the example UKB subjects, shown on the brain.
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Figure S18. The actual and the predicted task variations (residuals) of the HCP subjects, shown on the surface.
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