

1 **Impact of Human Serum Proteins on Susceptibility of *Acinetobacter***
2 ***baumannii* to Cefiderocol: role of iron transport**
3

4 Casin Le^{1†}, Camila Pimentel^{1†}, Fernando Pasteran², Marisel R. Tuttobene^{3,4},
5 Tomas Subils⁵, Jenny Escalante¹, Brent Nishimura¹, Susana Arriaga¹, Aimee
6 Carranza¹, Alejandro J. Vila^{4,6}, Alejandra Corso², Luis A. Actis⁷, Marcelo E.
7 Tolmasky¹, Robert A. Bonomo^{8,9,10*}, María Soledad Ramírez^{1*}

8 ¹ Center for Applied Biotechnology Studies, Department of Biological Science, College of
9 Natural Sciences and Mathematics, California State University Fullerton, Fullerton,
10 California, 92831-3599 USA

11 ² National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio
12 Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G.
13 Malbrán, Buenos Aires, Argentina.

14 ³ Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas,
15 Universidad Nacional de Rosario, Rosario, Argentina

16 ⁴ Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario,
17 Argentina.

18 ⁵ Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-
19 UNR), Rosario S2002LRK, Argentina

20 ⁶ Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad
21 Nacional de Rosario, Rosario, Argentina.

22 ⁷ Department of Microbiology, Miami University, Oxford, OH 45056, USA;

23 ⁸ Departments of Medicine, Pharmacology, Molecular Biology and Microbiology,
24 Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University
25 School of Medicine, Cleveland, OH 44106, USA

26 ⁹ Research Service and GRECC, Louis Stokes Cleveland Department of Veterans
27 Affairs Medical Center, Cleveland, OH 44106, USA

28 ¹⁰ CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case
29 VA CARES), Cleveland, OH 44106, USA

30

31

32 * These authors have contributed equally to this work as co-corresponding authors

33 msramirez@fullerton.edu (M.S.R.); Tel.+1-657-278-4562; robert.bonomo@va.gov
34 (R.A.B); Tel. [+1 216-791-3800](tel:+12167913800)

35

36 † These authors have contributed equally to this work as co-first authors.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 **Abstract**

55 Cefiderocol is a siderophore antibiotic that co-opts iron transporters to facilitate
56 cell entry. We show that genes related to iron uptake systems and resistance to
57 β -lactams in *Acinetobacter baumannii* have altered expression levels in the
58 presence of human serum, human serum albumin, or human pleural fluid.
59 Cefiderocol MICs are also raised in the presence of the mentioned fluids.
60 Clinical response in *A. baumannii* infections may be related to the interplay of
61 these human factors.

62

63 Carbapenem-resistant *Acinetobacter baumannii* (CRAB), one of the most
64 feared pathogens in healthcare settings, driving the Centers for Disease Control
65 and Prevention (CDC) to categorize it as an “urgent threat” (1-5). As a
66 consequence of *A. baumannii*’s capability to develop multidrug resistance
67 (MDR), treatment strategies become extremely limited, with only a few active
68 antibiotics (6-8).

69 The increasing number of CRAB infections translates into alarmingly high
70 morbidity and mortality (2, 9-11). Consequently, numerous efforts are focusing
71 on finding novel treatment options (12-19). Cefiderocol (CFDC), formerly known
72 as S-649266, approved by the FDA in November 2019 to treat nosocomial
73 pneumonia and urinary tract infections, is a hybrid molecule that consists of a
74 cephalosporin component that targets cell wall synthesis and a catechol
75 siderophore moiety that allows cell penetration by active ferric-siderophore
76 transporters (20-24). This novel synthetic compound uses a “Trojan horse”
77 strategy to improve antibiotic penetration and reach a high concentration at the
78 target site (21, 22). CFDC’s primary targets are cell wall synthetizing proteins
79 associated with β -lactam activity (PBP1 and PBP3) (25). Early research showed
80 promising results when treating Gram-negative carbapenem-resistant infections
81 (7, 26, 27). Recently, a study described a number of unfavorable outcomes in
82 patients with pulmonary or bloodstream *A. baumannii* infections compared to
83 other available therapies (7). Our goal was to determine if there is a molecular
84 basis for this observation.

85 *A. baumannii* senses components of human fluids and responds by
86 modifying its transcriptional and phenotypic profiles (28-32). Human serum
87 albumin (HSA) as well as human pleural fluid (HPF) modulate the expression of

88 genes associated with iron-uptake systems, biofilm formation, antibiotic
89 resistance, and DNA-acquisition among others (29, 33, 34). In previous studies
90 we observed that CRAB AB5075 genes associated with iron uptake systems
91 were down-regulated when exposed to HPF and 0.2% HSA (29), while genes
92 associated with β -lactam resistance were up-regulated in the presence of
93 physiological concentrations of HSA and human serum (HS) (33, 34). The
94 modification in expression of iron-uptake systems and β -lactam resistance
95 genes could be responsible for variations in *A. baumannii* susceptibility to
96 CFDC, and concomitantly for the unfavorable outcomes of patients with
97 pulmonary or bloodstream infections. In this work we describe the effect of HS,
98 HSA, and HPF on representative CRAB strains.

99 CRAB AB0057 and AMA16 are clinical strains that belong to different
100 clonal complexes and harbor OXA-23 and NDM-1, respectively (35, 36).
101 Quantitative RT-PCR (qRT-PCR) assays were carried out using total RNA
102 extracted from cells cultured in lysogeny broth (LB) or LB supplemented with
103 4% HPF or 3.5% HSA, or cultured in HS (Fig. 1A and B), as previously
104 described (29).

105 The expression of iron uptake related genes *bauA*, *basE*, *feoA* and *tonB*,
106 was reduced in both strains under most of the conditions evaluated (Fig. 1 A
107 and B). In addition, when the hypervirulent *A. baumannii* AB5075 strain was
108 exposed to 3.5% HSA or HS, the expression levels of most genes analyzed
109 were down regulated. Pimentel *et al.* previously showed that levels of
110 expression of AB5075 iron related genes were down-regulated in cells cultured
111 in iron-rich media (29); this finding is in agreement with level of expression of
112 *basE* reported in this work (Fig. 1C). The *fhuE_1*, *fhuE_2*, *pirA* and *piuA* genes,

113 which are associated with iron-uptake (37), were also down-regulated in the
114 presence of HPF (Fig. S1 A). Moreover, the transcriptional levels of these
115 genes were further analyzed by qRT-PCR for the three strains (AMA16,
116 AB0057, and AB5075) in the three tested conditions (HFP, HS, and HSA). In
117 most of conditions evaluated, levels of expression were down-regulated (Fig. S1
118 B).

119 Genes associated with β -lactam resistance, such as *bla*_{OXA-51-like}, *bla*<sub>OXA-
120 23</sub>, *pbp1* and *pbp3*(33, 34), were up-regulated in *A. baumannii* AB5075, AMA16,
121 and AB0057 when cultured in the presence of 3.5% HSA. To further examine if
122 changes in genes associated with β -lactam resistance are affected by HS or
123 HPF in the CRAB strains, qRT-PCR was used to assess gene expression of
124 *bla*_{OXA-51-like}, *bla*_{OXA-23}, *bla*_{NDM-1}, *pbp1*, *pbp3*, and *carO* in cultures of strains
125 AMA16 and AB0057 containing HS or HPF. This transcriptional analysis
126 revealed a down-regulation in expression levels of *bla*_{NDM-1} in *A. baumannii*
127 AMA16 cultured in the presence of HS or HPF (Fig. 2 A). In this strain, the
128 levels of expression of ISAb_a125, *bla*_{PER-7}, *pbp1*, and *pbp3* were up-regulated in
129 the presence of HPF. HS also induced up-regulation of ISAb_a125 (Fig. 2 A). In
130 the case of the AB0057 strain, we observed up-regulation of *bla*_{OXA-23}, *bla*_{OXA-51},
131 *carO*, *bla*_{ADC}, *pbp1* and *pbp3* in cultures containing HPF. In cultures containing
132 HS the former four genes were up-regulated (Fig. 2 B). Assessment of the
133 changes in β -lactam resistance-associated *A. baumannii* AB5075 genes in the
134 presence of HPF showed down-regulation of the *carO* and *bla*_{GES-14} genes (Fig.
135 2 C). On the other hand, the expression levels of *bla*_{OXA-51}, *pbp1*, *pbp3* and
136 *bla*_{ADC} were increased (Fig. 2 C).

137 The impact of human fluids in CFDC activity was further studied using a
138 panel of twenty CRAB strains including AB5075, AMA16, and AB0057 (a strain
139 isolated in the Walter Reed Army Medical Center (38). Cells cultured in LB, and
140 LB supplemented with HPF or 3.5 % HSA were used to determine the MICs of
141 CFDC. Ten strains had baseline resistance to CFDC (Table S1). An increase in
142 the MIC values was observed in 14 strains when the cells were growing in the
143 presence of HSA or HPF (Table S1 and Fig. 2 D). We draw attention to the
144 occurrence of heteroresistant colonies with the inhibition ellipse in 10 of the
145 tested strains (Fig. S2). Most of the strains that exhibited this phenomenon
146 harbored *bla_{PER-7}* (35). Our results agree with a recent report indicating that
147 PER-like β -lactamases contribute to a decreased susceptibility to CFDC in *A.*
148 *baumannii* (39). In addition, they observed that the combination of CFDC with
149 avibactam may inhibit the activity of PER-type β -lactamases (39).

150 Overall, our results showed that *A. baumannii* responds to the interaction
151 with human bodily fluids during the establishment of infection modulating the
152 expression of iron-uptake genes and β -lactam associated genes. We
153 hypothesize that the presence of iron binding proteins in the human fluids is
154 sensed by *A. baumannii*, which in turn responds by down-regulating expression
155 of iron uptake system genes impacting CDFC activity. The particular changes in
156 gene expression of the aforementioned group of genes, which is not evaluated
157 in traditional susceptibility tests, may contribute to unfavorable outcomes
158 associated with iron-rich environments. These results also raise questions
159 regarding the expression of other factors that may contribute to challenges in
160 overcoming infections by *A. baumannii*.

161 The limitations inherent to performing MICs in the presence of bodily
162 fluids (protein binding) is recognized. We are also aware that comparing these
163 analysis does not take into account pharmacokinetics and pharmacodynamics
164 (PK/PD) parameters that usure drug efficacy (40, 41). Laslty, we appreciate
165 that these data must also be evaluated in the context of outcomes of animal
166 models of infection (42-44). Nevertheless, the impact on iron transport
167 mechanisms uncovered in these observations merits further analyses.

168

169 **Acknowledgements:** We are grateful to Dr. Michael R. Jacobs for his critical
170 reading of the manuscript.

171

172 **Author Contributions:** C.P., C.L., F.P., M.R.T., T.S., R.A.B, and M.S.R.
173 conceived the study and designed the experiments. C.P., C.L., F.P., M.R.T.,
174 T.S., J.E., B.N., S.A., A.C., A.J.V., L.A.A., M.E.T., R.A.B. and M.S.R. performed
175 the experiments and genomics and bioinformatics analyses. C.P., C.L., F.P.,
176 M.R.T., T.S., A.J.V., L.A.A., R.A.B., M.E.T. and M.S.R. analyzed the data and
177 interpreted the results. R.A.B., M.E.T. and M.S.R. contributed
178 reagents/materials/analysis tools. F.P., M.R.T., T.S., L.A.A., R.A.B., M.E.T. and
179 M.S.R. wrote and revised the manuscript. All authors read and approved the
180 final manuscript.

181

182 **Funding:** The authors' work was supported by NIH SC3GM125556 to MSR,
183 R01AI100560, R01AI063517, R01AI072219 to RAB, and 2R15 AI047115 to
184 MET. This study was supported in part by funds and/or facilities provided by the
185 Cleveland Department of Veterans Affairs, Award Number 1I01BX001974 to

186 RAB from the Biomedical Laboratory Research & Development Service of the
187 VA Office of Research and Development and the Geriatric Research Education
188 and Clinical Center VISN 10 to RAB. CP and JE were supported by grant
189 MHRT 2T37MD001368 from the National Institute on Minority Health and
190 Health Disparities, National Institute of Health. SA and AC were supported by
191 Project RAISE, U.S. Department of Education HSI-STEM award number
192 P031C160152. The content is solely the responsibility of the authors and does
193 not necessarily represent the official views of the National Institutes of Health or
194 the Department of Veterans Affairs. MRT and TS are recipient of a postdoctoral
195 fellowship from CONICET. A.J.V. is a staff members from CONICET. The
196 content is solely the responsibility of the authors and does not necessarily
197 represent the official views of the National Institutes of Health or the Department
198 of Veterans Affairs. MRT and TS are recipient of a postdoctoral fellowship from
199 CONICET. A.J.V. is a staff member from CONICET.

200 **Conflicts of Interest:** The authors declare no conflict of interest.

201

202 **Supplementary Materials**

203 **Table S1:** Minimal Inhibitory Concentrations of Cefiderocol (CFDC) for 22
204 Carbapenem-resistant *Acinetobacter baumanii* representative strains performed
205 using CFDC MTS strips ((Liofilchem S.r.l., Italy) on Mueller Hinton Agar (cation
206 adjusted). *A. baumannii* cells were cultured in LB or LB supplemented with
207 3.5 % HSA or HPF, respectively.

208 **Figure S1:** Differential expression of *fhuE_1*, *fhuE_2*, *pirA* and *piuA* genes
209 associated with iron-uptake obtained for *A. baumannii* AB5075 cultured in the
210 presence of HSA and HPF.

211 **Figure S2:** Intra-colonies in *A. baumannii* AMA40 representative of the tested
212 strains in the presence of HPF.

213

214 **References**

- 215 1. Eichenberger EM, Thaden JT. 2019. Epidemiology and Mechanisms of
216 Resistance of Extensively Drug Resistant Gram-Negative Bacteria.
217 *Antibiotics (Basel)* 8.
- 218 2. Holmes CL, Anderson MT, Mobley HLT, Bachman MA. 2021.
219 Pathogenesis of Gram-negative bacteremia. *Clin Microbiol Rev* 34.
- 220 3. Garcia-Ortega L, Arch O, Perez-Canosa C, Lupion C, Gonzalez C,
221 Rodriguez-Bano J, Spanish Study Group of Nosocomial I. 2011. Control
222 measures for *Acinetobacter baumannii*: a survey of Spanish hospitals.
223 *Enferm Infect Microbiol Clin* 29:36-8.
- 224 4. Ramirez MS, Bonomo RA, Tolimsky ME. 2020. Carbapenemases:
225 Transforming *Acinetobacter baumannii* into a Yet More Dangerous
226 Menace. *Biomolecules* 10.
- 227 5. CDC. 2019. Antibiotic Resistance Threats in the United States. Atlanta,
228 GA: US Department of Health and Human Services, CDC; 2019.
- 229 6. Karaikos I, Lagou S, Pontikis K, Rapti V, Poulakou G. 2019. The "Old"
230 and the "New" Antibiotics for MDR Gram-Negative Pathogens: For
231 Whom, When, and How. *Front Public Health* 7:151.
- 232 7. Bassetti M, Echols R, Matsunaga Y, Ariyasu M, Doi Y, Ferrer R, Lodise
233 TP, Naas T, Niki Y, Paterson DL, Portsmouth S, Torre-Cisneros J,
234 Toyoizumi K, Wunderink RG, Nagata TD. 2021. Efficacy and safety of
235 cefiderocol or best available therapy for the treatment of serious
236 infections caused by carbapenem-resistant Gram-negative bacteria
237 (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-
238 focused, descriptive, phase 3 trial. *Lancet Infect Dis* 21:226-240.
- 239 8. Bassetti M, Peghin M, Vena A, Giacobbe DR. 2019. Treatment of
240 Infections Due to MDR Gram-Negative Bacteria. *Front Med (Lausanne)*
241 6:74.
- 242 9. Isler B, Doi Y, Bonomo RA, Paterson DL. 2019. New treatment options
243 against carbapenem-resistant *Acinetobacter baumannii* infections.
244 *Antimicrob Agents Chemother* 63.
- 245 10. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA,
246 Westblade LF. 2018. Carbapenemase-Producing Organisms: A Global
247 Scourge. *Clin Infect Dis* 66:1290-1297.
- 248 11. Spellberg B, Bonomo RA. 2014. The deadly impact of extreme drug
249 resistance in *Acinetobacter baumannii*. *Crit Care Med* 42:1289-91.
- 250 12. Paterson DL, Isler B, Stewart A. 2020. New treatment options for
251 multiresistant gram negatives. *Curr Opin Infect Dis* 33:214-223.
- 252 13. McLeod SM, Moussa SH, Hackel MA, Miller AA. 2020. In Vitro Activity of
253 Sulbactam-Durlobactam against *Acinetobacter baumannii-calcoaceticus*
254 Complex Isolates Collected Globally in 2016 and 2017. *Antimicrob
255 Agents Chemother* 64.

256 14. Lomovskaya O, Nelson K, Rubio-Aparicio D, Tsivkovski R, Sun D,
257 Dudley MN. 2020. The Impact of Intrinsic Resistance Mechanisms on
258 Potency of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase
259 Inhibitor of Serine and Metallo Beta-Lactamases in Enterobacteriaceae,
260 *Pseudomonas aeruginosa*, and *Acinetobacter baumannii*. *Antimicrob Agents Chemother*.
261

262 15. Karaiskos I, Galani I, Souli M, Giannarellou H. 2019. Novel beta-lactam-
263 beta-lactamase inhibitor combinations: expectations for the treatment of
264 carbapenem-resistant Gram-negative pathogens. *Expert Opin Drug
265 Metab Toxicol* 15:133-149.

266 16. Barnes MD, Kumar V, Bethel CR, Moussa SH, O'Donnell J, Rutter JD,
267 Good CE, Hujer KM, Hujer AM, Marshall SH, Kreiswirth BN, Richter SS,
268 Rather PN, Jacobs MR, Papp-Wallace KM, van den Akker F, Bonomo
269 RA. 2019. Targeting Multidrug-Resistant *Acinetobacter* spp.: Sulbactam
270 and the Diazabicyclooctenone beta-Lactamase Inhibitor ETX2514 as a
271 Novel Therapeutic Agent. *mBio* 10.

272 17. Zhanell GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanell
273 M, Lagace-Wiens PRS, Walkty A, Denisuk A, Golden A, Gin AS, Hoban
274 DJ, Lynch JP, 3rd, Karlowsky JA. 2018. Imipenem-Relebactam and
275 Meropenem-Vaborbactam: Two Novel Carbapenem-beta-Lactamase
276 Inhibitor Combinations. *Drugs* 78:65-98.

277 18. Wright H, Bonomo RA, Paterson DL. 2017. New agents for the treatment
278 of infections with Gram-negative bacteria: restoring the miracle or false
279 dawn? *Clin Microbiol Infect* 23:704-712.

280 19. Durand-Reville TF, Guler S, Comita-Prevoir J, Chen B, Bifulco N, Huynh
281 H, Lahiri S, Shapiro AB, McLeod SM, Carter NM, Moussa SH, Velez-
282 Vega C, Olivier NB, McLaughlin R, Gao N, Thresher J, Palmer T,
283 Andrews B, Giacobbe RA, Newman JV, Ehmann DE, de Jonge B,
284 O'Donnell J, Mueller JP, Tommasi RA, Miller AA. 2017. ETX2514 is a
285 broad-spectrum beta-lactamase inhibitor for the treatment of drug-
286 resistant Gram-negative bacteria including *Acinetobacter baumannii*. *Nat
287 Microbiol* 2:17104.

288 20. Parsels KA, Mastro KA, Steele JM, Thomas SJ, Kufel WD. 2021.
289 Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant
290 Gram-negative bacterial infections. *J Antimicrob Chemother* 76:1379-
291 1391.

292 21. Bonomo RA. 2019. Cefiderocol: A Novel Siderophore Cephalosporin
293 Defeating Carbapenem-resistant Pathogens. *Clin Infect Dis* 69:S519-
294 S520.

295 22. Zhanell GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ,
296 Idowu T, Domalaon R, Schweizer F, Zhanell MA, Lagace-Wiens PRS,
297 Walkty AJ, Noreddin A, Lynch Iii JP, Karlowsky JA. 2019. Cefiderocol: A
298 Siderophore Cephalosporin with Activity Against Carbapenem-Resistant
299 and Multidrug-Resistant Gram-Negative Bacilli. *Drugs* 79:271-289.

300 23. Aoki T, Yoshizawa H, Yamawaki K, Yokoo K, Sato J, Hisakawa S,
301 Hasegawa Y, Kusano H, Sano M, Sugimoto H, Nishitani Y, Sato T, Tsuji
302 M, Nakamura R, Nishikawa T, Yamano Y. 2018. Cefiderocol (S-649266),
303 A new siderophore cephalosporin exhibiting potent activities against
304 *Pseudomonas aeruginosa* and other gram-negative pathogens including

305 multi-drug resistant bacteria: Structure activity relationship. *Eur J Med Chem* 155:847-868.

306

307 24. Ito A, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, Tsuji M, Yamano Y. 2016. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* 60:7396-7401.

308

309 25. Sato T, Yamawaki K. 2019. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. *Clin Infect Dis* 69:S538-S543.

310

311 26. Wunderink RG, Matsunaga Y, Ariyasu M, Clevenbergh P, Echols R, Kaye KS, Kollef M, Menon A, Pogue JM, Shorr AF, Timsit JF, Zeitlinger M, Nagata TD. 2021. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. *Lancet Infect Dis* 21:213-225.

312

313 27. Jacobs MR, Abdelhamed AM, Good CE, Rhoads DD, Hujer KM, Hujer AM, Domitrovic TN, Rudin SD, Richter SS, van Duin D, Kreiswirth BN, Greco C, Fouts DE, Bonomo RA. 2019. ARGONAUT-I: Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, against Gram-Negative Bacteria, Including Carbapenem-Resistant Nonfermenters and *Enterobacteriaceae* with Defined Extended-Spectrum beta-Lactamases and Carbapenemases. *Antimicrob Agents Chemother* 63.

314

315 28. Martinez J, Razo-Gutierrez C, Le C, Courville R, Pimentel C, Liu C, Fung SE, Tuttobene MR, Phan K, Vila AJ, Shahrestani P, Jimenez V, Tolmasky ME, Becka SA, Papp-Wallace KM, Bonomo RA, Soler-Bistue A, Sieira R, Ramirez MS. 2021. Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in *Acinetobacter baumannii*. *Sci Rep* 11:4737.

316

317 29. Pimentel C, Le C, Tuttobene MR, Subils T, Martinez J, Sieira R, Papp-Wallace KM, Keppetipola N, Bonomo RA, Actis LA, Tolmasky ME, Ramirez MS. 2021. Human Pleural Fluid and Human Serum Albumin Modulate the Behavior of a Hypervirulent and Multidrug-Resistant (MDR) *Acinetobacter baumannii* Representative Strain. *Pathogens* 10:471.

318

319 30. Martinez J, Fernandez JS, Liu C, Hoard A, Mendoza A, Nakanouchi J, Rodman N, Courville R, Tuttobene MR, Lopez C, Gonzalez LJ, Shahrestani P, Papp-Wallace KM, Vila AJ, Tolmasky ME, Bonomo RA, Sieira R, Ramirez MS. 2019. Human pleural fluid triggers global changes in the transcriptional landscape of *Acinetobacter baumannii* as an adaptive response to stress. *Sci Rep* 9:17251.

320

321 31. Rodman Nyah MJ, Fung Sammie, Nakanouchi Jun, Myers Amber L., Harris Caitlin M., Dang Emily, Fernandez Jennifer S., Liu Christine, Mendoza Anthony M., Jimenez Veronica, Nikolaidis Nikolas, Brennan Catherine A., Bonomo Robert A., Sieira Rodrigo, Ramirez Maria Soledad. 2019. Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in *Acinetobacter baumannii* to Enhance Cytotoxicity and Immune Evasion. *Frontiers in Microbiology* 10:1581.

322

323 32. Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J, Traglia GM, Montana S, Cantera V, Place K, Bonomo RA, Iriarte A, Ramirez MS. 2018. Human serum albumin alters specific genes that can play a role in survival and persistence in *Acinetobacter baumannii*. *Sci Rep* 8:14741.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355 33. Le C, Pimentel C, Tuttobene MR, Subils T, Nishimura B, Traglia GM,
356 Perez F, Papp-Wallace KM, Bonomo RA, Tolmasky ME, Ramirez MS.
357 2021. Interplay between meropenem and human serum albumin on
358 expression of carbapenem resistance genes and natural competence in
359 *Acinetobacter baumannii*. *Antimicrob Agents Chemother*:AAC0101921.

360 34. Pimentel C, Le C, Tuttobene MR, Subils T, Papp-Wallace KM, Bonomo
361 RA, Tolmasky ME, Ramirez MS. 2021. Interaction of *Acinetobacter*
362 *baumannii* with Human Serum Albumin: Does the Host Determine the
363 Outcome? *Antibiotics (Basel)* 10.

364 35. Adams MD, Pasteran F, Traglia GM, Martinez J, Huang F, Liu C,
365 Fernandez JS, Lopez C, Gonzalez LJ, Albornoz E, Corso A, Vila AJ,
366 Bonomo RA, Ramirez MS. 2020. Distinct mechanisms of dissemination
367 of NDM-1 metallo- beta-lactamase in *Acinetobacter* spp. in Argentina.
368 *Antimicrob Agents Chemother*.

369 36. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ,
370 MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo
371 RA, Gill SR. 2008. Comparative genome sequence analysis of multidrug-
372 resistant *Acinetobacter baumannii*. *J Bacteriol* 190:8053-8064.

373 37. Tiwari V, Rajeswari MR, Tiwari M. 2019. Proteomic analysis of iron-
374 regulated membrane proteins identify FhuE receptor as a target to inhibit
375 siderophore-mediated iron acquisition in *Acinetobacter baumannii*. *Int J*
376 *Biol Macromol* 125:1156-1167.

377 38. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey
378 CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R, Thomson JM, Rather
379 PN, Craft DW, Fishbain JT, Ewell AJ, Jacobs MR, Paterson DL, Bonomo
380 RA. 2006. Analysis of antibiotic resistance genes in multidrug-resistant
381 *Acinetobacter* sp. isolates from military and civilian patients treated at the
382 Walter Reed Army Medical Center. *Antimicrob Agents Chemother*
383 50:4114-23.

384 39. Poirel L, Sadek M, Nordmann P. 2021. Contribution of PER-type and
385 NDM-type ss-lactamases to cefiderocol resistance in *Acinetobacter*
386 *baumannii*. *Antimicrob Agents Chemother*:AAC0087721.

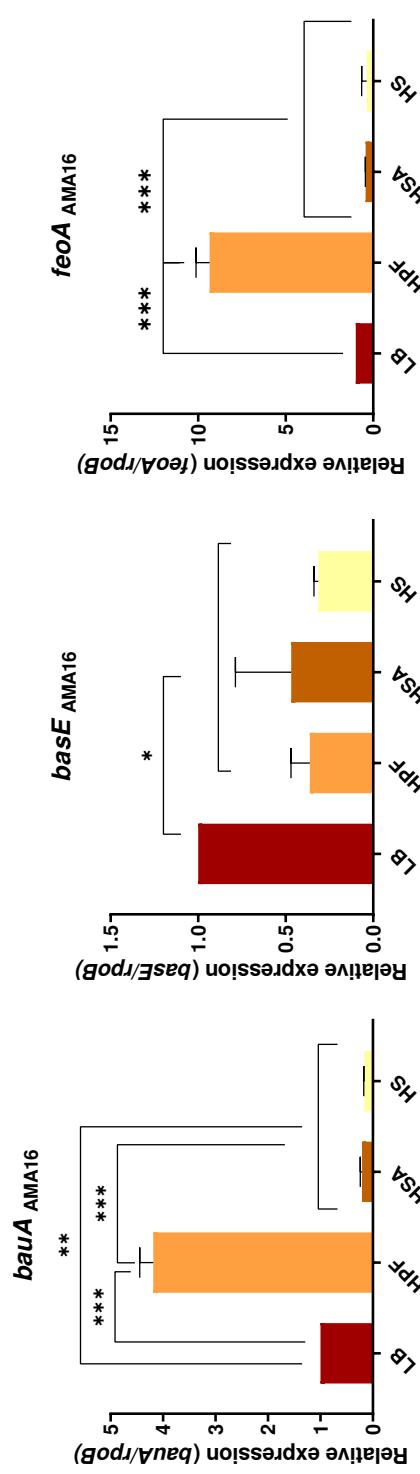
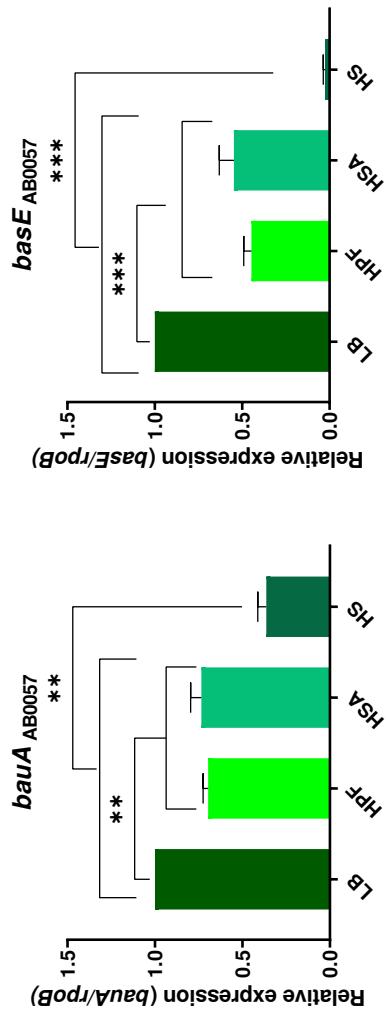
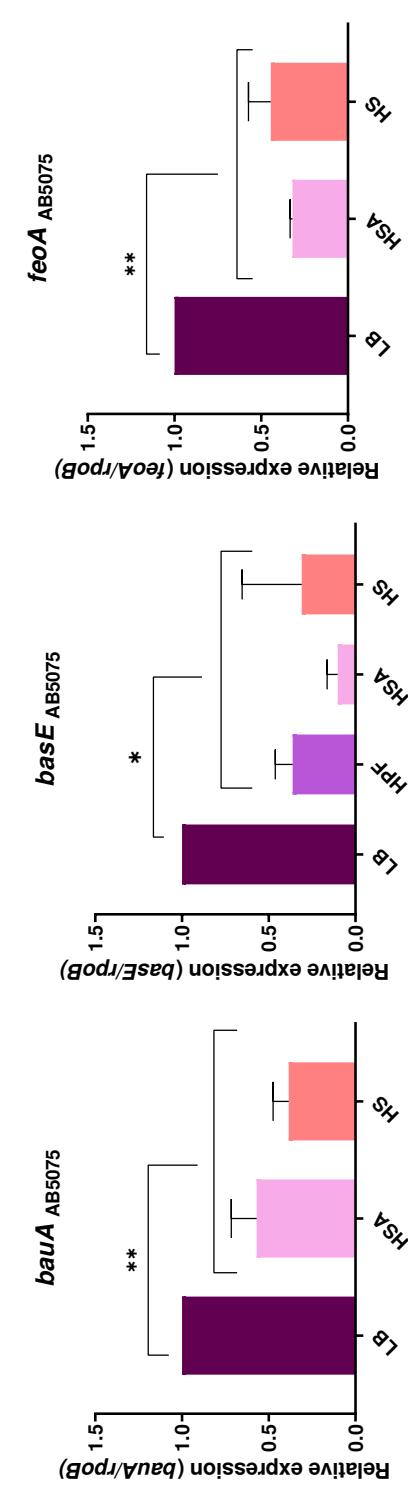
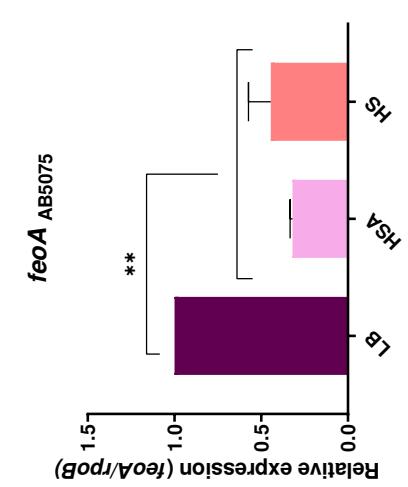
387 40. McCreary EK, Heil EL, Tamma PD. 2021. New Perspectives on
388 Antimicrobial Agents: Cefiderocol. *Antimicrob Agents Chemother*.

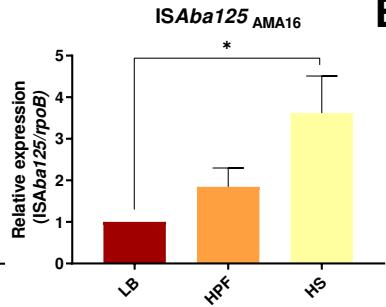
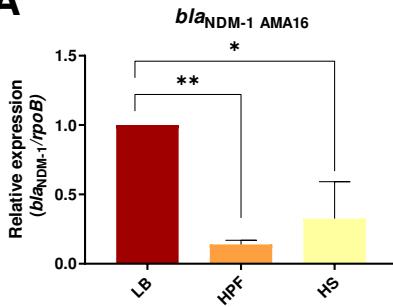
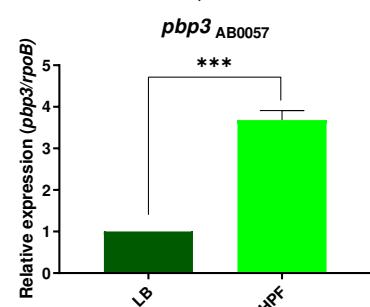
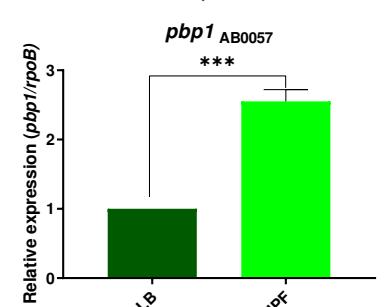
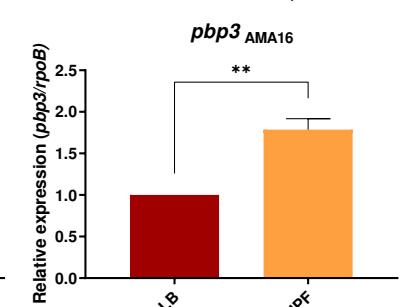
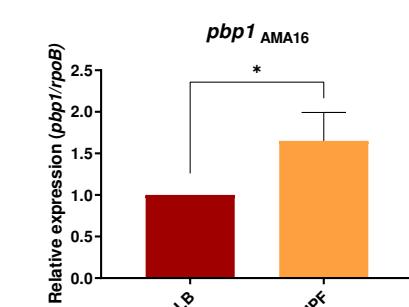
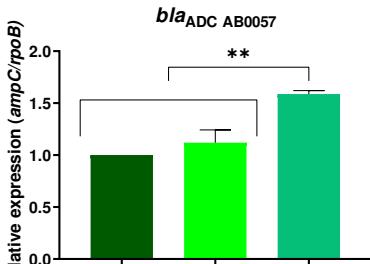
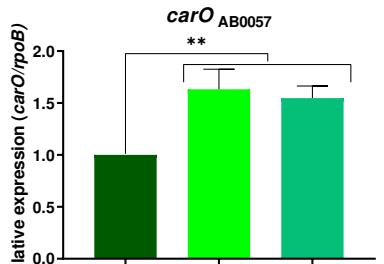
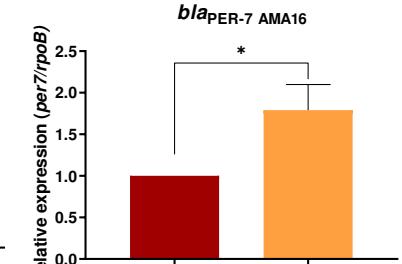
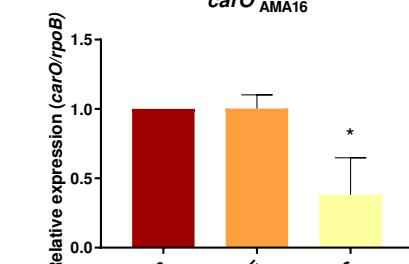
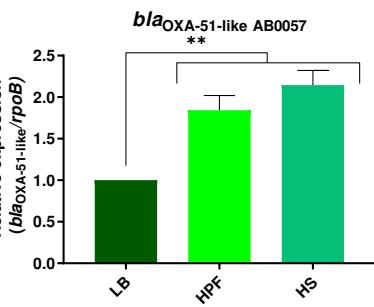
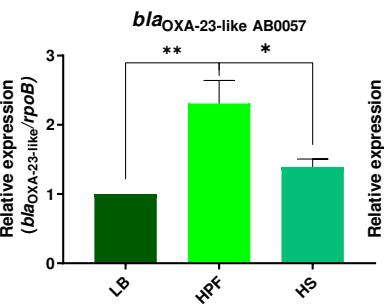
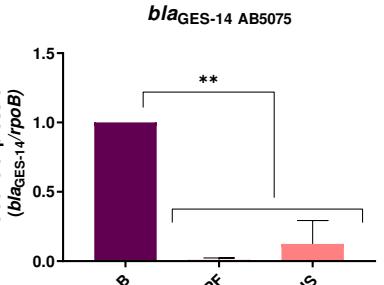
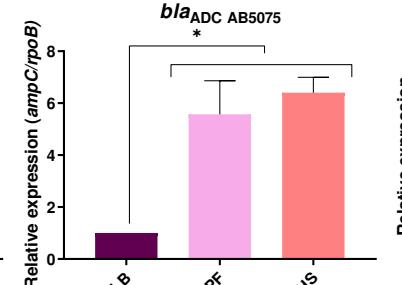
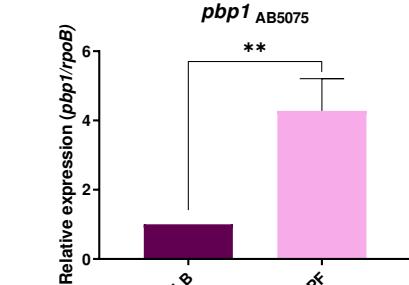
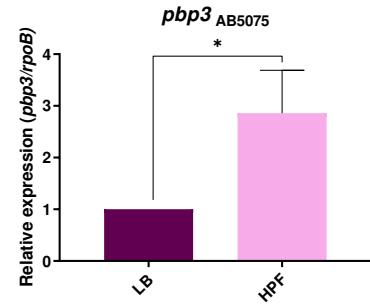
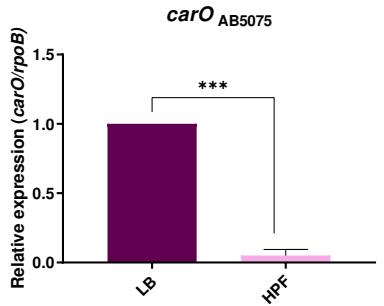
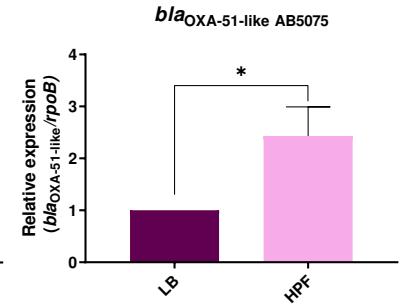
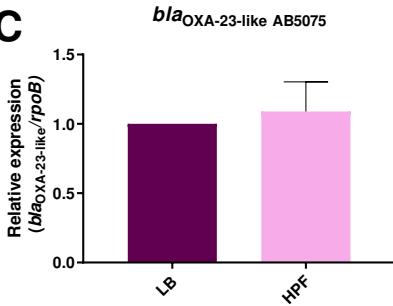
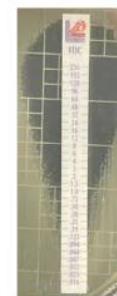
389 41. Konig C, Both A, Rohde H, Kluge S, Frey OR, Rohr AC, Wichmann D.
390 2021. Cefiderocol in Critically Ill Patients with Multi-Drug Resistant
391 Pathogens: Real-Life Data on Pharmacokinetics and Microbiological
392 Surveillance. *Antibiotics (Basel)* 10.

393 42. Kidd JM, Abdelraouf K, Nicolau DP. 2019. Development of Neutropenic
394 Murine Models of Iron Overload and Depletion To Study the Efficacy of
395 Siderophore-Antibiotic Conjugates. *Antimicrob Agents Chemother* 64.

396 43. Kidd JM, Abdelraouf K, Nicolau DP. 2019. Efficacy of Humanized
397 Cefiderocol Exposure Is Unaltered by Host Iron Overload in the Thigh
398 Infection Model. *Antimicrob Agents Chemother* 64.

399 44. Matsumoto S, Singley CM, Hoover J, Nakamura R, Echols R,
400 Rittenhouse S, Tsuji M, Yamano Y. 2017. Efficacy of Cefiderocol against
401 Carbapenem-Resistant Gram-Negative Bacilli in Immunocompetent-Rat
402 Respiratory Tract Infection Models Recreating Human Plasma
403 Pharmacokinetics. *Antimicrob Agents Chemother* 61.





404





















405 **Figure legends**

406 **Figure 1.** Genetic analysis of iron uptake genes of AMA16 (A), AB0057 (B) and
407 AB5075 (C) *A. baumannii* strains. qRT-PCR of genes associated with iron
408 uptake, *bauA*, *basE*, *feoA* and *tonB* expressed in LB or LB supplemented with
409 HPF or HSA, or cultured in HS. Fold changes were calculated using double ΔCt
410 analysis. At least three independent samples were used, and four technical
411 replicates were performed from each sample. The LB was used as reference.
412 Statistical significance ($p < 0.05$) was determined by ANOVA followed by
413 Tukey's multiple-comparison test, one asterisks: $p < 0.05$; two asterisks: $p < 0.01$
414 and three asterisks: $p < 0.001$.

415

416 **Figure 2.** (A-C) Genetic analysis of β -lactamase + PBP genes of AMA16 (A),
417 AB0057 (B) and AB5075 (C) *A. baumannii* strains. qRT-PCR of genes
418 associated with β -lactams resistance expressed in LB, LB supplemented with
419 HPF, or in HS. Fold changes were calculated using double ΔCt analysis. At
420 least three independent samples were used. LB was used as the reference
421 condition. Statistical significance ($p < 0.05$) was determined by ANOVA followed
422 by Tukey's multiple-comparison test, one asterisks: $p < 0.05$; two asterisks: $p <$
423 0.01 , and three asterisks: $p < 0.001$. (D) Effect of HSA and HPF on the
424 antimicrobial susceptibility of *A. baumannii* representatives strains AMA40 and
425 AMA113 strains grew in LB broth, LB broth plus 3.5 % HSA, or HPF were used
426 to performed cefiderocol (CFDC) susceptibility. Minimum inhibitory
427 concentration (MIC) on cation adjusted Mueller Hinton agar was performed by
428 MTS (Liofilchem S.r.l., Italy) following manufacturer's recommendations.

A**B****C****C**

A**B****C****D** **AMA40** **AMA40 (HSA)** **AMA40 (HPF)****AMA40** **AMA16** **AMA16 (HSA)****AMA16** **AMA16 (HPF)****AMA113****AMA113** **AMA113 (HPF)**