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Abstract 54 

Cefiderocol is a siderophore antibiotic that co-opts iron transporters to facilitate 55 

cell entry. We show that genes related to iron uptake systems and resistance to 56 

β-lactams in Acinetobacter baumannii have altered expression levels in the 57 

presence of human serum, human serum albumin, or human pleural fluid. 58 

Cefiderocol MICs are also raised in the presence of the mentioned fluids. 59 

Clinical response in A. baumannii infections may be related to the interplay of 60 

these human factors.  61 

  62 
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Carbapenem-resistant Acinetobacter baumannii (CRAB), one of the most 63 

feared pathogens in healthcare settings, driving the Centers for Disease Control 64 

and Prevention (CDC) to categorize it as an “urgent threat” (1-5). As a 65 

consequence of A. baumannii’s capability to develop multidrug resistance 66 

(MDR), treatment strategies become extremely limited, with only a few active 67 

antibiotics (6-8).  68 

The increasing number of CRAB infections translates into alarmingly high 69 

morbidity and mortality (2, 9-11). Consequently, numerous efforts are focusing 70 

on finding novel treatment options (12-19). Cefiderocol (CFDC), formerly known 71 

as S-649266, approved by the FDA in November 2019 to treat nosocomial 72 

pneumonia and urinary tract infections, is a hybrid molecule that consists of a 73 

cephalosporin component that targets cell wall synthesis and a catechol 74 

siderophore moiety that allows cell penetration by active ferric-siderophore 75 

transporters (20-24). This novel synthetic compound uses a “Trojan horse” 76 

strategy to improve antibiotic penetration and reach a high concentration at the 77 

target site (21, 22). CFDC’s primary targets are cell wall synthetizing proteins 78 

associated with β-lactam activity (PBP1 and PBP3) (25). Early research showed 79 

promising results when treating Gram-negative carbapenem-resistant infections 80 

(7, 26, 27). Recently, a study described a number of unfavorable outcomes in 81 

patients with pulmonary or bloodstream A. baumannii infections compared to 82 

other available therapies (7). Our goal was to determine if there is a molecular 83 

basis for this observation. 84 

A. baumannii senses components of human fluids and responds by 85 

modifying its transcriptional and phenotypic profiles (28-32). Human serum 86 

albumin (HSA) as well as human pleural fluid (HPF) modulate the expression of 87 
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genes associated with iron-uptake systems, biofilm formation, antibiotic 88 

resistance, and DNA-acquisition among others (29, 33, 34). In previous studies 89 

we observed that CRAB AB5075 genes associated with iron uptake systems 90 

were down-regulated when exposed to HPF and 0.2% HSA (29), while genes 91 

associated with β-lactam resistance were up-regulated in the presence of 92 

physiological concentrations of HSA and human serum (HS) (33, 34). The 93 

modification in expression of iron-uptake systems and β-lactam resistance 94 

genes could be responsible for variations in A. baumannii  susceptibility to 95 

CFDC, and concomitantly for the unfavorable outcomes of patients with 96 

pulmonary or bloodstream infections. In this work we describe the effect of HS, 97 

HSA, and HPF on representative CRAB strains.  98 

CRAB AB0057 and AMA16 are clinical strains that belong to different 99 

clonal complexes and harbor OXA-23 and NDM-1, respectively (35, 36). 100 

Quantitative RT-PCR (qRT-PCR) assays were carried out using total RNA 101 

extracted from cells cultured in lysogeny broth (LB) or LB supplemented with 102 

4% HPF or 3.5% HSA, or cultured in HS (Fig. 1A and B), as previously 103 

described (29). 104 

The expression of iron uptake related genes bauA, basE, feoA and tonB, 105 

was reduced in both strains under most of the conditions evaluated (Fig. 1 A 106 

and B). In addition, when the hypervirulent A. baumannii AB5075 strain was 107 

exposed to 3.5% HSA or HS, the expression levels of most genes analyzed 108 

were down regulated. Pimentel et al. previously showed that levels of 109 

expression of AB5075 iron related genes were down-regulated in cells cultured 110 

in iron-rich media (29); this finding is in agreement with level of expression of 111 

basE reported in this work (Fig. 1C). The fhuE_1, fhuE_2, pirA and piuA genes, 112 
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which are associated with iron-uptake (37), were also down-regulated in the 113 

presence of HPF (Fig. S1 A). Moreover, the transcriptional levels of these 114 

genes were further analyzed by qRT-PCR for the three strains (AMA16, 115 

AB0057, and AB5075) in the three tested conditions  (HFP, HS, and HSA). In 116 

most of conditions evaluated, levels of expression were down-regulated (Fig. S1 117 

B). 118 

Genes associated with β-lactam resistance, such as blaOXA-51-like, blaOXA-119 

23, pbp1 and pbp3 (33, 34), were up-regulated in A. baumannii AB5075, AMA16, 120 

and AB0057 when cultured in the presence of 3.5% HSA. To further examine if 121 

changes in genes associated with β-lactam resistance are affected by HS or 122 

HPF in the CRAB strains, qRT-PCR was used to assess gene expression of 123 

blaOXA-51-like, blaOXA-23, blaNDM-1, pbp1, pbp3, and carO in cultures of strains 124 

AMA16 and AB0057 containing HS or HPF. This transcriptional analysis 125 

revealed a down-regulation in expression levels of blaNDM-1 in A. baumannii 126 

AMA16 cultured in the presence of HS or HPF (Fig. 2 A). In this strain, the 127 

levels of expression of ISAba125, blaPER-7, pbp1, and pbp3 were up-regulated in 128 

the presence of HPF. HS also induced up-regulation of ISAba125 (Fig. 2 A). In 129 

the case of the AB0057 strain, we observed up-regulation of blaOXA-23, blaOXA-51, 130 

carO, blaADC, pbp1 and pbp3 in cultures containing HPF. In cultures containing 131 

HS the former four genes were up-regulated (Fig. 2 B). Assessment of the 132 

changes in β-lactam resistance-associated A. baumannii AB5075 genes in the 133 

presence of HPF showed down-regulation of the carO and blaGES-14 genes (Fig. 134 

2 C). On the other hand, the expression levels of blaOXA-51, pbp1, pbp3 and 135 

blaADC were increased (Fig. 2 C). 136 
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The impact of human fluids in CFDC activity was further studied using a 137 

panel of twenty CRAB strains including AB5075, AMA16, and AB0057 (a strain 138 

isolated in the Walter Reed Army Medical Center (38). Cells cultured in LB, and 139 

LB supplemented with HPF or 3.5 % HSA were used to determine the MICs of 140 

CFDC. Ten strains had baseline resistance to CFDC (Table S1). An increase in 141 

the MIC values was observed in 14 strains when the cells were growing in the 142 

presence of HSA or HPF (Table S1 and Fig. 2 D). We draw attention to the 143 

occurrence of heteroresistant colonies with the inhibition elipse in 10 of the 144 

tested strains (Fig. S2). Most of the strains that exhibited this phenomenon 145 

harbored blaPER-7 (35). Our results agree with a recent report indicating that 146 

PER-like β-lactamases contribute to a decreased susceptibility to CFDC in A. 147 

baumannii (39). In addition, they observed that the combination of CFDC with 148 

avibactam may inhibit the activity of PER-type ß-lactamases (39). 149 

Overall, our results showed that A. baumannii responds to the interaction 150 

with human bodily fluids during the establishment of infection modulating the 151 

expression of iron-uptake genes and β-lactam associated genes. We 152 

hypothesize that the presence of iron binding proteins in the human fluids is 153 

sensed by A. baumannii, which in turn responds by down-regulating expression 154 

of iron uptake system genes impacting CDFC activity. The particular changes in 155 

gene expression of the aforementioned  group of genes, which is not evaluated 156 

in traditional susceptibility tests, may contribute to unfavorable outcomes 157 

associated with iron-rich environments. These results also raise questions 158 

regarding the expression of other factors that may contribute to challenges in 159 

overcoming infections by A. baumannii. 160 
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 The limitations inherent to performing MICs in the presence of bodily 161 

fluids (protein binding) is recognized. We are also aware that comparing these 162 

analysis does not take into account pharmacokinetics and pharmacodynamics 163 

(PK/PD) parameters that usure drug efficacy (40, 41).  Laslty, we appreciate 164 

that these data must also be evaluated in the context of outcomes of animal 165 

models of infection (42-44). Nevertheless, the impact on iron transport 166 

mechanisms uncovered in these observations merits further analyses. 167 

 168 
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Supplementary Materials 202 

Table S1: Minimal Inhibitory Concentrations of Cefiderocol (CFDC) for 22 203 

Carbapenem-resistant Acinetobacter baumanii representative strains performed 204 

using CFDC MTS strips ((Liofilchem S.r.l., Italy) on Mueller Hinton Agar (cation 205 

adjusted). A. baumannii cells were cultured in LB or LB supplemented with 206 

3.5 % HSA or HPF, respectively. 207 

Figure S1: Differential expression of fhuE_1, fhuE_2, pirA and piuA genes 208 

associated with iron-uptake obtained for A. baumannii AB5075 cultured in the 209 

presence of HSA and HPF. 210 
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Figure S2: Intra-colonies in A. baumannii AMA40 representative of the tested 211 

strains in the presence of HPF. 212 

 213 
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 Figure legends 405 

Figure 1. Genetic analysis of iron uptake genes of AMA16 (A), AB0057 (B) and 406 

AB5075 (C) A. baumannii strains. qRT-PCR of genes associated with iron 407 

uptake, bauA, basE, feoA and tonB expressed in LB or LB supplemented with 408 

HPF or HSA, or cultured in HS. Fold changes were calculated using double ΔCt 409 

analysis. At least three independent samples were used, and four technical 410 

replicates were performed from each sample. The LB was used as reference. 411 

Statistical significance (p< 0.05) was determined by ANOVA followed by 412 

Tukey’s multiple-comparison test, one asterisks: p< 0.05; two asterisks: p< 0.01 413 

and three asterisks: p< 0.001. 414 

 415 

Figure 2. (A-C) Genetic analysis of β-lactamase + PBP genes of AMA16 (A), 416 

AB0057 (B) and AB5075 (C) A. baumannii strains. qRT-PCR of genes 417 

associated with β-lactams resistance expressed in LB, LB supplemented with 418 

HPF, or in HS. Fold changes were calculated using double ΔCt analysis. At 419 

least three independent samples were used. LB was used as the reference 420 

condition. Statistical significance (p< 0.05) was determined by ANOVA followed 421 

by Tukey’s multiple-comparison test, one asterisks: p< 0.05; two asterisks: p< 422 

0.01, and three asterisks: p< 0.001. (D) Effect of HSA and HPF on the 423 

antimicrobial susceptibility of A. baumannii representatives strains AMA40 and 424 

AMA113 strains grew in LB broth, LB broth plus 3.5 % HSA, or HPF were used 425 

to performed cefiderocol (CFDC) susceptibility. Minimum inhibitory 426 

concentration (MIC) on cation adjusted Mueller Hinton agar was performed by 427 

MTS (Liofilchem S.r.l., Italy) following manufacter’s recommendations. 428 
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