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Abstract

Cefiderocol is a siderophore antibiotic that co-opts iron transporters to facilitate
cell entry. We show that genes related to iron uptake systems and resistance to
B-lactams in Acinetobacter baumannii have altered expression levels in the
presence of human serum, human serum albumin, or human pleural fluid.
Cefiderocol MICs are also raised in the presence of the mentioned fluids.
Clinical response in A. baumannii infections may be related to the interplay of

these human factors.
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63 Carbapenem-resistant Acinetobacter baumannii (CRAB), one of the most
64 feared pathogens in healthcare settings, driving the Centers for Disease Control
65 and Prevention (CDC) to categorize it as an “urgent threat” (1-5). As a
66 ~ consequence of A. baumannii’'s capability to develop multidrug resistance
67 (MDR), treatment strategies become extremely limited, with only a few active
68  antibiotics (6-8).

69 The increasing number of CRAB infections translates into alarmingly high
70  morbidity and mortality (2, 9-11). Consequently, numerous efforts are focusing
71 on finding novel treatment options (12-19). Cefiderocol (CFDC), formerly known
72 as S-649266, approved by the FDA in November 2019 to treat nosocomial
73 pneumonia and urinary tract infections, is a hybrid molecule that consists of a
74  cephalosporin component that targets cell wall synthesis and a catechol
75  siderophore moiety that allows cell penetration by active ferric-siderophore
76  transporters (20-24). This novel synthetic compound uses a “Trojan horse”
77 strategy to improve antibiotic penetration and reach a high concentration at the
78 target site (21, 22). CFDC’s primary targets are cell wall synthetizing proteins
79  associated with B-lactam activity (PBP1 and PBP3) (25). Early research showed
80  promising results when treating Gram-negative carbapenem-resistant infections
81 (7, 26, 27). Recently, a study described a number of unfavorable outcomes in
82  patients with pulmonary or bloodstream A. baumannii infections compared to
83  other available therapies (7). Our goal was to determine if there is a molecular
84  basis for this observation.

85 A. baumannii senses components of human fluids and responds by
86  modifying its transcriptional and phenotypic profiles (28-32). Human serum

87  albumin (HSA) as well as human pleural fluid (HPF) modulate the expression of
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88 genes associated with iron-uptake systems, biofilm formation, antibiotic
89  resistance, and DNA-acquisition among others (29, 33, 34). In previous studies
90 we observed that CRAB AB5075 genes associated with iron uptake systems
91  were down-regulated when exposed to HPF and 0.2% HSA (29), while genes
92 associated with B-lactam resistance were up-regulated in the presence of
93  physiological concentrations of HSA and human serum (HS) (33, 34). The
94  modification in expression of iron-uptake systems and [-lactam resistance
95 genes could be responsible for variations in A. baumannii susceptibility to
96 CFDC, and concomitantly for the unfavorable outcomes of patients with
97  pulmonary or bloodstream infections. In this work we describe the effect of HS,
98 HSA, and HPF on representative CRAB strains.

99 CRAB ABO0057 and AMAL16 are clinical strains that belong to different
100 clonal complexes and harbor OXA-23 and NDM-1, respectively (35, 36).
101  Quantitative RT-PCR (qRT-PCR) assays were carried out using total RNA
102  extracted from cells cultured in lysogeny broth (LB) or LB supplemented with
103 4% HPF or 3.5% HSA, or cultured in HS (Fig. 1A and B), as previously
104  described (29).

105 The expression of iron uptake related genes bauA, bask, feoA and tonB,
106 ~ was reduced in both strains under most of the conditions evaluated (Fig. 1 A
107 and B). In addition, when the hypervirulent A. baumannii AB5075 strain was
108  exposed to 3.5% HSA or HS, the expression levels of most genes analyzed
109 were down regulated. Pimentel et al. previously showed that levels of
110  expression of AB5075 iron related genes were down-regulated in cells cultured
111 in iron-rich media (29); this finding is in agreement with level of expression of

112 basE reported in this work (Fig. 1C). The thuE_1, fhuE_2, pirA and piuA genes,
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113 which are associated with iron-uptake (37), were also down-regulated in the
114  presence of HPF (Fig. S1 A). Moreover, the transcriptional levels of these
115 genes were further analyzed by gRT-PCR for the three strains (AMALG6,
116  ABO0057, and AB5075) in the three tested conditions (HFP, HS, and HSA). In
117 most of conditions evaluated, levels of expression were down-regulated (Fig. S1
118  B).

119 Genes associated with B-lactam resistance, such as blapgxa-s1-ike, blaoxa-
120 23, pbpl and pbp3 (33, 34), were up-regulated in A. baumannii AB5075, AMA16,
121 and ABO057 when cultured in the presence of 3.5% HSA. To further examine if
122 changes in genes associated with (3-lactam resistance are affected by HS or
123  HPF in the CRAB strains, qRT-PCR was used to assess gene expression of
124  blaoxa-si-ike, blaoxa-23, blanom-1, pbpl, pbp3, and carO in cultures of strains
125 AMA16 and ABO0057 containing HS or HPF. This transcriptional analysis
126 revealed a down-regulation in expression levels of blanpm-1 In A. baumannii
127  AMAL6 cultured in the presence of HS or HPF (Fig. 2 A). In this strain, the
128 levels of expression of ISAbal25, blaper-7, pbpl, and pbp3 were up-regulated in
129  the presence of HPF. HS also induced up-regulation of ISAbal25 (Fig. 2 A). In
130  the case of the ABO057 strain, we observed up-regulation of blapxa-23, blaoxa-s1,
131 carO, blaapc, pbpl and pbp3 in cultures containing HPF. In cultures containing
132 HS the former four genes were up-regulated (Fig. 2 B). Assessment of the
133 changes in B -lactam resistance-associated A. baumannii AB5075 genes in the
134  presence of HPF showed down-regulation of the carO and blaces-14 genes (Fig.
135 2 C). On the other hand, the expression levels of blapxa-si, pbpl, pbp3 and

136 blaapc were increased (Fig. 2 C).
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137 The impact of human fluids in CFDC activity was further studied using a
138 panel of twenty CRAB strains including AB5075, AMA16, and AB0O057 (a strain
139  isolated in the Walter Reed Army Medical Center (38). Cells cultured in LB, and
140 LB supplemented with HPF or 3.5 % HSA were used to determine the MICs of
141  CFDC. Ten strains had baseline resistance to CFDC (Table S1). An increase in
142  the MIC values was observed in 14 strains when the cells were growing in the
143  presence of HSA or HPF (Table S1 and Fig. 2 D). We draw attention to the
144  occurrence of heteroresistant colonies with the inhibition elipse in 10 of the
145 tested strains (Fig. S2). Most of the strains that exhibited this phenomenon
146  harbored blapgr.7 (35). Our results agree with a recent report indicating that
147  PER-like B-lactamases contribute to a decreased susceptibility to CFDC in A.
148  baumannii (39). In addition, they observed that the combination of CFDC with
149  avibactam may inhibit the activity of PER-type RR-lactamases (39).

150 Overall, our results showed that A. baumannii responds to the interaction
151 with human bodily fluids during the establishment of infection modulating the
152 expression of iron-uptake genes and p-lactam associated genes. We
153  hypothesize that the presence of iron binding proteins in the human fluids is
154  sensed by A. baumannii, which in turn responds by down-regulating expression
155  of iron uptake system genes impacting CDFC activity. The particular changes in
156  gene expression of the aforementioned group of genes, which is not evaluated
157 in traditional susceptibility tests, may contribute to unfavorable outcomes
158  associated with iron-rich environments. These results also raise questions
159  regarding the expression of other factors that may contribute to challenges in

160  overcoming infections by A. baumannii.
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161 The limitations inherent to performing MICs in the presence of bodily
162  fluids (protein binding) is recognized. We are also aware that comparing these
163  analysis does not take into account pharmacokinetics and pharmacodynamics
164 (PK/PD) parameters that usure drug efficacy (40, 41). Laslty, we appreciate
165 that these data must also be evaluated in the context of outcomes of animal
166 ~models of infection (42-44). Nevertheless, the impact on iron transport
167  mechanisms uncovered in these observations merits further analyses.
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202  Supplementary Materials

203 Table S1: Minimal Inhibitory Concentrations of Cefiderocol (CFDC) for 22
204 Carbapenem-resistant Acinetobacter baumanii representative strains performed
205  using CFDC MTS strips ((Liofilchem S.r.l., Italy) on Mueller Hinton Agar (cation
206 adjusted). A. baumannii cells were cultured in LB or LB supplemented with
207 3.5 % HSA or HPF, respectively.

208 Figure S1: Differential expression of fhukE_1, fhuE_2, pirA and piuA genes
209 associated with iron-uptake obtained for A. baumannii AB5075 cultured in the

210  presence of HSA and HPF.
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211 Figure S2: Intra-colonies in A. baumannii AMA40 representative of the tested
212 strains in the presence of HPF.

213
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405 Figure legends

406  Figure 1. Genetic analysis of iron uptake genes of AMA16 (A), ABO057 (B) and
407  AB5075 (C) A. baumannii strains. gqRT-PCR of genes associated with iron
408  uptake, bauA, bask, feoA and tonB expressed in LB or LB supplemented with
409  HPF or HSA, or cultured in HS. Fold changes were calculated using double ACt
410 analysis. At least three independent samples were used, and four technical
411  replicates were performed from each sample. The LB was used as reference.
412 Statistical significance (p< 0.05) was determined by ANOVA followed by
413 Tukey’s multiple-comparison test, one asterisks: p< 0.05; two asterisks: p< 0.01
414  and three asterisks: p< 0.001.

415

416  Figure 2. (A-C) Genetic analysis of B-lactamase + PBP genes of AMA16 (A),
417 AB0057 (B) and AB5075 (C) A. baumannii strains. qRT-PCR of genes
418  associated with B-lactams resistance expressed in LB, LB supplemented with
419  HPF, or in HS. Fold changes were calculated using double ACt analysis. At
420 least three independent samples were used. LB was used as the reference
421  condition. Statistical significance (p< 0.05) was determined by ANOVA followed
422 by Tukey’s multiple-comparison test, one asterisks: p< 0.05; two asterisks: p<
423 0.01, and three asterisks: p< 0.001. (D) Effect of HSA and HPF on the
424  antimicrobial susceptibility of A. baumannii representatives strains AMA40 and
425  AMA113 strains grew in LB broth, LB broth plus 3.5 % HSA, or HPF were used
426 to performed cefiderocol (CFDC) susceptibility. Minimum inhibitory
427  concentration (MIC) on cation adjusted Mueller Hinton agar was performed by

428  MTS (Liofilchem S.r.1., Italy) following manufacter’'s recommendations.
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