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Abstract 
 
With the increasing accessibility of individual-level data from genome wide association 
studies, it is now common for researchers to have individual-level data of some traits in 
one specific population. For some traits, we can only access public released summary-
level data due to privacy and safety concerns. The current methods to estimate genetic 
correlation can only be applied when the input data type of the two traits of interest is 
either both individual-level or both summary-level. When researchers have access to 
individual-level data for one trait and summary-level data for the other, they have to 
transform the individual-level data to summary-level data first and then apply summary 
data-based methods to estimate the genetic correlation. This procedure is 
computationally and statistically inefficient and introduces information loss. We 
introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and 
summary data), a method that can estimate within-population or transethnic genetic 
correlation based on individual-level data for one trait and summary-level data for 
another trait. Through extensive simulations and analyses of real data on within-
population and transethnic genetic correlation estimation, we show that GENJI 
produces more reliable and efficient estimation than summary data-based methods. 
Besides, when individual-level data are available for both traits, GENJI can achieve 
comparable performance than individual-level data-based methods. Downstream 
applications of genetic correlation can benefit from more accurate estimates. In 
particular, we show that more accurate genetic correlation estimation facilitates the 
predictability of cross-population polygenic risk scores.  
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Introduction 
 
Genetic correlation analysis, which quantifies the correlation of additive genetic effects 
on different traits across a set of genetic markers, has gained popularity owing to the 
remarkable success of genome-wide association study (GWAS) in the past 15 years1. 
Compared with traditional family-based approaches2, estimating genetic correlation 
from GWAS data does not require samples from large pedigrees. The phenotypes of 
interest also do not have to be measured on the same individuals. These advances 
have effectively increased the sample size and improved statistical power in genetic 
correlation studies. Consequently, genetic correlation estimation has become a routine 
for post-GWAS analysis3 and has shed light on the shared genetic basis of numerous 
human complex traits and diseases4,5.  
 
A plethora of GWAS-based methods for genetic correlation estimation have been 
developed6, such as genome-based restricted maximum likelihood7 (GREML) for 
individual-level data and linkage disequilibrium (LD) score regression8 (LDSC) for 
summary-level data. The GREML approach is based on variance components 
estimation in a linear mixed model (LMM) framework which needs individual-level 
genotype and phenotype data as input. Many computational tools have been developed 
to implement GREML9-11, which mainly differ by the algorithms used for likelihood 
optimization. LDSC, in comparison, only requires GWAS summary data and is thus 
more broadly used in GWAS analyses. Web servers have also been built to facilitate the 
computation and visualization of genetic correlations12. 
 
Despite the popularity, estimates of LDSC are substantially less precise with larger 
standard errors compared to GREML6,13 due to information loss from individual-level 
data to summary statistics. This suggests that when individual-level data are available 
for both traits, GREML (or similar methods based on individual-level data) should be the 
method of choice. In addition, transethnic genetic correlation is recently introduced to 
quantify how the genetic architecture of complex traits varies across populations14. 
Summary statistics-based approaches are particularly less reliable for transethnic 
genetic correlation due to typically smaller sample sizes of non-European GWAS and a 
lack of robustness to mismatched LD between GWAS samples and reference panels. 
Even for analysis of GWAS from the same population, summary statistics-based 
methods struggle when the input GWAS have limited power.  
 
Currently, if individual-level data are available for a trait of interest, in order to test its 
genetic correlations with published GWAS, researchers would have to first generate 
summary data for the trait and then estimate genetic correlations based on the 
summary statistics. Such a procedure is conspicuously inefficient. Our main goal in this 
study is to find a way to jointly model individual-level data (e.g., for a disease with 
limited samples or a GWAS in minority populations) and summary statistics (e.g., from 
published meta-analyses) to efficiently estimate genetic correlation. 
 
We introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and 
summary data), a method that estimates genetic correlation with individual-level data for 
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one trait and summary-level data for the other trait. Through extensive simulations, we 
demonstrate that GENJI provides statistically rigorous and computationally efficient 
inference for both within-population and transethnic genetic correlations and 
substantially outperforms summary data-based methods. We demonstrate the 
effectiveness of GENJI through applications to many datasets, including UK Biobank 
(UKBB)15, the Wellcome Trust Case Control Consortium (WTCCC)16, the Northern 
Finland Birth Cohorts program (NFBC), and numerous GWAS of complex human traits 
spanning European, African, and East Asian populations from published studies and 
BioBank Japan (BBJ)17,18. 
 
 
 
Results 
 
Overview of GENJI 
 
Genetic correlation (covariance) is the correlation (covariance) of additive genetic 
components of complex traits across a set of genetic markers. It is commonly used as 
an informative metric to quantify the shared genetic basis between two traits and has 
also been extended to study the shared and unique genetic effects on the same trait in 
multiple populations. In this paper, we refer to the former as within-population genetic 
correlation and the latter as transethnic genetic correlation. In what follows, without 
stated explicitly, within-population genetic correlation and transethnic genetic correlation 
are collectively referred to as genetic correlation. The proposed method can estimate 
both types of genetic correlations. 
 
Genetic correlation 𝑟" is genetic covariance 𝜌" normalized by SNP heritability, i.e., 𝑟" =
𝜌" %ℎ'(ℎ((⁄ , where ℎ'( and ℎ(( are the heritability of the two traits, respectively. Assume 
that we have individual-level GWAS data of the first trait (referred to as study 1 in the 
following) but only summary-level data of the second trait (referred to as study 2 in the 
following). We model phenotype 𝜙 as the sum of genetic component 𝑋𝛽 and random 
noise, where 𝑋 and 𝛽 represent genotype matrix and genetic effects, respectively. 
Denote 𝑧( as the vector of z-scores in study 2. The LD matrix for study 2 can be 
estimated by an external reference panel or even genotype data in study 1 if they are 
conducted on the same population. We compute expectations and variances of 𝑋./𝑧(𝜙'. 
and apply weighted least squares to estimate genetic covariance: 

𝐸[𝑋./𝑧(𝜙'.] = 𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋.
𝜌"

𝑚√𝑛(
+ 𝑋./𝑋.1{.>?@}

𝜌B
%𝑛3

. 

Instead of block jackknife used in LDSC8, the estimates of GENJI can use the 
theoretical standard error from weighted regression because individuals in study 1 are 
presumably unrelated to each other (Methods). 
 
In practice, there can be some individuals shared by the two studies. Although we have 
individual-level data for the overlapped samples in study 1, we assume the phenotypes 
of them for study 2 are unknown. We assume the first 𝑛3 samples in both studies are 
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the overlapped samples. Similar to LDSC8, sample overlap inflates the covariance 
between 𝜙'. and 𝑋./𝑧( for each overlapped individual. As a result of the expectation of 
𝑋./𝑧(𝜙'., genetic covariance 𝜌" and noise covariance 𝜌B appear in different terms and 
hence can be distinguished by regression (Methods).  
 
 
Simulations for within-population genetic covariance 
 
We performed simulations to assess the performance of GENJI on within-population 
genetic covariance estimation. We compared GENJI with two state-of-the-art methods, 
LDSC and GREML, on both quantitative and binary traits. We provided GREML with 
individual-level data, LDSC with summary-level data, and GENJI with individual-level 
data for the first study while summary-level data for the second one.  
 
To assess the robustness of different methods to sample overlap, we changed the 
proportion of overlapping samples from zero to half of the sample sizes of the studies. 
We used real genotype data from WTCCC16 to simulate traits. We equally divided 
15,918 samples in the dataset into two subsets which we denote as set 1 and set 2, 
respectively. There is no shared individuals between set 1 and set 2. Randomly 
combining the samples from set 1 and set 2, we created set 3, set 4, and set 5 which 
had 10%, 25%, and 50% overlapping samples with set 1, respectively. The simulated 
GWASs were conducted on these subsets and the sample sizes of them were all equal 
to 7,959. The SNP effects were generated by a bivariate normal distribution with genetic 
covariance ranging from 0 to 0.25 and heritability was fixed at 0.5. Each setting was 
repeated 100 times. Detailed simulation settings and quality control procedures are 
described in the Methods section. 
 
The three competing methods in this section showed well-calibrated type I error rates 
when the true covariance was zero (Supplementary Figures 1-4). LDSC and GENJI 
provided unbiased estimates across all the settings. GREML overestimated genetic 
covariance for the 10% and 25% sample overlap settings (Figure 1).  
 
In the case of zero overlapping sample (set 1 and set 2), we also included LDSC with 
intercept fixed at zero (denoted as “LDSC_no_intercept”) in the comparison. When 
there was no overlapping sample, LDSC_no_intercept, GREML and GENJI had 
comparable estimates while the statistical power of GREML or GENJI was larger than 
that of LDSC_no_intercept when the true value of genetic covariance was relatively low. 
Estimates of LDSC without constraint had substantially larger variance and lower power 
than the other methods (Figure 1A-B). This indicates that although no extra information 
for point estimation of genetic covariance can be acquired from individual-level data 
compared with summary-level data for studies with disjoint cohorts, the standard errors 
from parametric methods are more stable than those from resampling-based methods 
(e.g., block jackknife). When we did not fix intercept for LDSC, the variability of intercept 
estimates increased the standard error of genetic covariance by 30% compared to 
LDSC with a constraint, a phenomenon that was also reported in the paper of LDSC8.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Simulation results for within-population genetic covariance estimation. We compare the 
performance of LDSC, GREML, and GENJI by point estimation, type-I error, and statistical power. 
Boxplots show the quantiles of the estimates of genetic covariance in different settings. The red dashed 
lines represent the true value of genetic covariance. We use the proportion of p-values that are less than 
0.05 to estimate type-I error or statistical power when true parameters are zero or nonzero, respectively. 
(A-B) Two GWASs are simulated on two non-overlapping datasets (set 1 and set 2). Because there is no 
shared individual between the studies, we also include LDSC that constrain the intercept to zero in the 
comparison and denote it as “LDSC_no_intercept”. Panels C-H compare LDSC, GREML, and GENJI 
using GWASs (C-D) with a 10% sample overlap (set 1 and set 3), (E-F) with a 25% sample overlap (set 1 
and set 4), and (G-H) with a 50% sample overlap (set 1 and set 5). 
 
For simulations in set 1 and set 3 (10% overlap), set 4 (25% overlap), and set 5 (50% 
overlap), GENJI outperformed LDSC when the overlapping samples were less than half 
of the sample sizes of the studies (Figure 1C-F) and achieved comparable results with 
LDSC when the proportion of overlapping samples was 50% (Figure 1G-H). GENJI was 
even as powerful as GREML and had more accurate estimates under low sample 
overlap setting (<10% sample overlap). Under moderate sample overlap setting (25%), 
the power of GENJI was in between LDSC and GREML. We observe that the 
advantage of GENJI over LDSC reduces as the overlapped sample size increases, and 
reaches zero when half of study 1 samples are included in study 2. 
 
We also performed simulations for binary traits and obtained similar results except that 
genetic covariance is on the observed scale (Supplementary Figure 5). 
 
 
Simulations for transethnic genetic correlation 
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We performed simulations to assess the performance of GENJI on transethnic genetic 
covariance estimation. We compared GENJI with Popcorn14 and GREML. In this 
simulation, the first GWAS was of African ancestry and the second was of European 
ancestry. Genotypes of 6,992 related samples of African ancestry from UKBB were 
used to simulate the phenotypes of study 1. We still used samples from WTCCC (set 1; 
n=7,959) to simulate phenotypes of European ancestry for study 2. The SNP effects 
were generated by a bivariate normal distribution with genetic covariance ranging from 
0 to 0.5 and heritability was fixed at 0.5. We note that when genetic covariance is 0.5, 
the genetic correlation is equal to 1 which means the genetic effects are perfectly 
correlated between the populations. Each simulation setting was repeated 100 times. 
Detailed simulation settings and quality control procedures are described in the 
Methods section. 
 
Popcorn needs two external reference panels to estimate LD matrices in two 
populations. To make fair comparisons, we also added an additional setting for Popcorn 
using in-sample African references, which are also the African genotype data used for 
simulations (denoted as “Popcorn_in_sample”). We included two kinds of hypothesis 
testing: the null hypothesis is either (1) genetic correlation = 0; or (2) genetic correlation 
= 1. 
 
GENJI outperformed both Popcorn using external reference panel and Popcorn using 
in-sample reference panel, showing more accurate estimates and improved statistical 
power (Figure 2). Due to constraint of genetic correlation being less than 1 for GREML, 
GREML under-estimated genetic covariance for the setting of 0.5. GENJI showed 
unbiased estimates across all the settings (Figure 2A). Estimates of GENJI were as 
powerful as those of GREML in most settings (Figure 2B-C). All methods showed well-
controlled type-I error for both kinds of testing (Supplementary Figure 6-7).  
 
 

Figure 2. Simulation results for transethnic genetic covariance estimation. We compare the 
performance of Popcorn, GREML and GENJI by point estimation, type-I error and statistical power. We 
include Popcorn using both external and in-sample reference panel and denote the later as 
“Popcorn_in_sample”. (A) Boxplots show the quantiles of the estimates of genetic covariance in different 
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settings. The red dashed lines represent true value of genetic covariance. (B-C) We use the proportion of 
p-values that are less than 0.05 to estimate type-I error or statistical power under true null or false null, 
respectively. 
 
 
Real data applications: within-population genetic correlation 
 
We applied GREML, LDSC, and GENJI to estimate genetic correlations across 12 traits 
in WTCCC (n~16,000) and NFBC (n~5,300) (Methods). Both studies were conducted 
on samples of European ancestry and shared zero samples hence LDSC_no_intercept 
can also be applied. Detailed information about the GWAS data is summarized in 
Supplementary Tables 1 and 2. Since individual-level data of both studies are 
available, GREML can be treated as the gold standard for the other two methods. 
Consistent with our simulation results, genetic covariance and genetic correlation 
estimates of GENJI and LDSC_no_intercept were more consistent with GREML 
estimates, measured by R2, than those of LDSC without a constraint on intercept 
(Supplementary Figure 8). Although the point estimates of GENJI and 
LDSC_no_intercept on the 36 trait pairs were similar, GENJI achieved higher statistical 
power. After Bonferroni correction (p<0.05/36=1.39e-3), genetic correlations of two trait 
pairs were identified by both GREML and GENJI while LDSC or LDSC with intercept 
fixed at zero failed to identify any trait pairs (Supplementary Table 3). The significant 
trait pairs are type-2 diabetes (T2D)19 versus body mass index (BMI)20 and hypertension 
(HT) versus high-density lipoprotein (HDL)21. The positive association between obesity 
(BMI) and T2D has long been observed22 and is replicated in our following applications 
on GWAS summary data with larger sample sizes (Figure 4). Although low levels of 
HDL cholesterol are associated with increased risk of coronary artery disease (CAD)23, 
positive correlations between HDL and HT were observed across different 
populations24,25. In a recent study, the authors showed that the biological mechanism of 
the positive association between HDL and HT is related to circulating CD34-positive cell 
levels26. 
 
 

 
Figure 3. Genetic correlations estimated by GREML, LDSC, and GENJI across traits in WTCCC and 
NFBC. The heatmaps reflect the genetic correlation estimates of (A) GREML, (B) LDSC, (C) LDSC with 
intercept fixed at zero, and (D) GENJI. Asterisks in the heatmap highlight significant genetic correlations 
after Bonferroni correction for 36 pairs. Due to low heritability estimation, estimates of LDSC for genetic 
correlation of two trait pairs are unavailable and colored as grey in panel (B). We summarize detailed 
information about each trait, including abbreviations, in Supplementary Tables 1 and 2. 
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To illustrate the superior power of GENJI over LDSC on more GWASs with larger 
sample sizes, we applied GENJI and LDSC to estimate the genetic correlations 
between 25 common traits with publicly available GWAS summary data and 6 traits 
from UKBB (n~270,000), which are the same set of the 6 NFBC traits we used before. 
We fixed the intercept of LDSC at zero because there are no overlapped samples 
between the trait pairs. We provided GENJI with the individual-level data from UKBB. 
Detailed information of the 25 GWAS summary data is summarized in Supplementary 
Table 4. Detailed information of the 6 traits from UKBB is summarized in 
Supplementary Table 5. 
 
The genetic correlation estimates of GENJI and LDSC are highly consistent (R2=0.96). 
However, the standard errors from GENJI are mostly smaller than those from LDSC. Of 
the 150 trait pairs, significant genetic correlations of 82 and 33 trait pairs are identified 
by GENJI and LDSC, respectively, after Bonferroni correction (p<0.05/150=3.3e-4) 
(Figure 4; Supplementary Table 6). All the trait pairs identified by LDSC are also 
identified by GENJI. 
 
 

 
Figure 4. Genetic correlation estimates of GENJI and LDSC for 150 trait pairs. The upper and lower 
heatmaps reflect the estimates of GENJI and LDSC, respectively. Asterisks in the heatmap highlight 
significant genetic correlations after Bonferroni correction for the 150 pairs. We summarize detailed 
information about each trait, including abbreviations, in Supplementary Tables 4 and 5. 
 
 
Real data applications: transethnic genetic correlation 
 
We applied GENJI and compared the performance of GENJI with Popcorn on 
transethnic genetic correlation estimation. We estimated the transethnic genetic 
correlation of 12 complex traits in the African, East Asian, and European populations. 
The choice of these traits was based on data availability and trait heritability (Methods). 
The GWAS data of African and European populations were from UKBB. The GWAS 
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data of the East Asian population were from BBJ17,18 due to the small sample size of 
East Asian ancestry in UKBB (n~1,500). We only have access to summary-level GWAS 
data of BBJ. The details about the sample sizes and the sources of the data that we use 
in this section can be found in Supplementary Tables 5 and 7.  
 
We first compared GENJI, Popcorn, and GREML on transethnic genetic correlation 
between European and African populations in UKBB. To reduce the computational 
burden for GREML, we used a subset of European ancestry samples from UKBB 
(n=10,000). For comparison fairness, GENJI and Popcorn also used the reduced 
dataset as input in this analysis. The individual-level data of African GWASs and 
summary-level data of European ancestry were provided to GENJI. We applied Popcorn 
twice in the comparison: (1) we used genotype data from the 1000 Genomes Project27 
as the reference panels for African and European GWASs; (2) we used genotype data 
of African samples from UKBB as the reference panel for African GWASs (in-sample 
reference panel) and European samples from 1000 Genomes Project as the reference 
panel for European GWASs. It was also for comparison fairness because GENJI took 
advantage of the information from individual-level data of African ancestry. The results 
of the GREML, GENJI, and Popcorn are presented in Supplementary Table 8. The 
estimates of GENJI were substantially more consistent with GREML estimates 
(R2=0.94) compared to Popcorn (R2=0.41) or Popcorn_in_sample (R2=0.45) 
(Supplementary Figure 9). The variability of the Popcorn estimates yielded relatively 
unreliable and improper outcomes. To be specific, the transethnic genetic correlation 
estimates of Popcorn or Popcorn_in_sample for four traits were outside of [-1,1], which 
is the range of genetic correlation. Three and two traits were unavailable for Popcorn 
and Popcorn_in_sample, respectively, because of negative estimates for heritability. As 
a comparison, two traits’ GREML estimates were outside the proper range while no 
genetic correlation estimates of GENJI were out of bound. Estimates for all traits were 
available for GREML and GENJI. Consistent with our simulation results, standard errors 
of GENJI were substantially smaller than those of Popcorn and similar to those of 
GREML (Supplementary Figure 10). No traits were identified by Popcorn_in_sample 
with transethnic genetic correlation significantly larger than zero after Bonferroni 
correction (p<0.05/24=2.1e-3) while both GREML and GENJI identified three significant 
traits: Height, BMI and HDL.  
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Figure 5. Transethnic genetic correlation estimates of GENJI and Popcorn for 12 traits cross 
different populations. To make the comparisons fair, we use in-sample reference panel for Popcorn for 
the population of which GENJI takes the individual-level data as input. African, East Asian and European 
are denoted as AFR, EAS, EUR, respectively. The point and the point range in the figures demonstrate 
the point estimates and their standard errors for transethnic genetic correlation of Popcorn and GENJI 
between (A) East Asian and European populations, (B) European and African populations, and (C) 
African and East Asian populations. Some of the point ranges are truncated due to their extraordinary 
values. Some of the estimates of Popcorn are not available due to low heritability estimation. We 
summarized the abbreviations and detailed information about the data sources in Supplementary Table 
5 and 7. 
 
We then used the whole dataset of European ancestry samples in UKBB and GWAS 
summary data from BBJ to estimate the transethnic genetic correlation across African, 
East Asian, and European populations for the 12 traits. The genotype data provided to 
GENJI were also used as the reference panel for Popcorn (in-sample reference panel) 
(Methods). The point estimates from GENJI and Popcorn were similar (Figure 5). 
Since the sample sizes of the GWAS summary data from BBJ were larger than those of 
African population GWASs (Supplementary Table 5 and 7), the standard errors for the 
transethnic genetic correlation between European and East Asian populations were 
smaller than the other two population pairs. The standard errors of GENJI estimates 
were consistently smaller than those of Popcorn. Due to the unstable estimates for 
heritability, the transethnic genetic correlation estimates of Popcorn for prostate cancer 
(PC)28 were unavailable. The genetic correlations between European and East Asian 
population were significantly larger those between European and African populations 
(Wilcoxon test p=4.9e-4) and those between East Asian and African populations 
(Wilcoxon test p=9.8e-4) across the 12 traits. The differences of genetic correlation 
between African and European populations and African and East Asian populations 
were not statistically significant (Wilcoxon test p=0.42). The transethnic genetic 
correlation estimates of GENJI for most traits were significantly larger than zero and 
smaller than one across the populations (Supplementary Tables 9-11), which indicates 
that the genetic effects for most traits are neither independent nor perfectly correlated 
between the populations. All traits show genetic correlation significantly larger than zero 
between European and East Asian populations according to the results of GENJI. Only 
two traits, age at natural menopause (ANM)29 and PC did not show genetic correlations 
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significantly larger than zero between European and African populations. A recent trans-
ancestry GWAS of PC showed that the gap of R2 of the polygenic risk score (PRS) for 
African ancestry was substantially lower than that of East Asian and European ancestry 
if the polygenic risk score (PRS) is trained by the GWAS which mostly consists of 
European ancestry30. 
 
 
GENJI improves cross-population risk prediction 
 
To illustrate the benefits of improved transethnic genetic correlation estimation, we 
show that cross-population PRS is more predictive with the help of more accurate 
genetic correlation estimates. It has been shown that leveraging transethnic genetic 
correlation can substantially improve PRS performance especially for minority groups31. 
Here, based on a commonly used method for computing PRS, clumping and 
thresholding (C+T)32-34, we highlight the advances of GENJI that the cross-population 
PRS improved by genetic correlation estimates of GENJI is more predictive than PRSs 
constructed in other ways.  
 
We constructed the PRSs of Height and BMI for the samples of African ancestry in 
Population Architecture Genomics and Epidemiology (PAGE): Multiethnic Cohort (MEC) 
(n=3,520). The genetic weights were trained from UKBB data. We used the estimates of 
transethnic genetic correlation between African and European populations in the 
previous section to improve the prediction (Methods). We also included PRS 
constructed by meta-analysis of African and European populations using METAL35 in 
the comparison. 
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Figure 6. The R2 of the cross-population PRS. The R2 of the PRSs for BMI and Height are visualized 
by bar plots. The exact values of R2 are annotated in the figure. The PRSs are constructed by four 
different ways: (1) Original, only using the GWAS of African population to construct the PRS; (2) METAL, 
using meta-analysis of GWASs of African and European populations to construct the PRS; (3) Popcorn, 
using estimates of Popcorn to adjust the genetic weights in PRS; (4) GENJI, using estimates of GENJI to 
adjust the genetic weights in PRS.  
 
The predictive R2 of PRSs improved by GENJI were higher than all the other 
approaches (Figure 6) as a result of the more accurate estimates from GENJI. The R2 
of the PRSs that only were constructed by GWAS of African population were saliently 
the lowest. Since the transethnic genetic correlation of BMI is relatively low (GENJI 
corr=0.61) and the transethnic genetic correlation of BMI estimated by Popcorn 
(Popcorn corr=0.68) is relatively close to that estimated by GENJI (Figure 5), PRSs 
improved by GENJI and Popcorn outperformed the PRS constructed by METAL for 
BMI. On the other hand, the transethnic genetic correlation of Height is relatively high 
(GENJI corr=0.74). In addition, the estimate of Popcorn (Popcorn corr=0.60) is far from 
that of GENJI and might underestimate the transethnic genetic correlation for Height 
(Figure 5). Consequentially, PRS improved by GENJI and the PRS constructed by 
METAL outperformed PRS improved by Popcorn for Height. 
 
 
Discussion 
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Genetic correlation is a powerful metric to effectively measure the etiologic sharing of 
numerous phenotypes. Recently, increasing attention has been paid to the genetic 
architecture of non-European populations36-38. Transethnic genetic correlation can 
provide insights to study how the genetic architecture of complex phenotypes varies 
between populations14. Methods to estimate genetic correlation based on individual-
level data or summary-level data have achieved some success. The individual-level 
data based methods (e.g. GREML7) have proved to be statistically more efficient than 
the summary-level data based methods6. When individual-level data are available for 
one trait and summary-level data are available for the other trait, to estimate genetic 
correlation, researchers have to transform the individual-level data to summary statistics 
and apply summary-statistics-based methods, leading to information loss and 
suboptimal estimates. Now that individual-level data are increasingly accessible, we 
propose a statistical framework that can estimate within-population or transethnic 
genetic correlation with individual-level data for one trait and summary-level data for the 
other trait which can provide more accurate estimates than summary-statistics-based 
methods. 
 
GENJI provides statistically rigorous and computationally efficient inference for both 
within-population and transethnic genetic correlations and substantially outperforms 
summary data-based methods in our simulations. We also observe that the information 
loss from individual-level data to summary-level data is likely to be induced by 
estimation of covariance of non-genetic effects for overlapped samples which 
parameterized as the intercept of LDSC. The point estimation of LDSC with intercept 
fixed at zero is comparable with GREML and GENJI and is more efficient than LDSC 
without constraint on intercept by 30% under the circumstance of no overlapped 
samples. Since LDSC uses block jackknife to estimate the standard errors, the 
statistical power of LDSC is suboptimal no matter whether its intercept is fixed or not. 
The “samples” in the regression model of GENJI are the individuals in the studies. So, if 
the GWAS samples are unrelated, we can directly compute the standard errors of the 
estimates in the close form instead of applying resampling based methods. 
 
Applied to different datasets to estimate within-population genetic correlation, GENJI 
consistently identified more significant trait pairs than LDSC. The findings of GENJI 
have been validated by GREML on both point estimation and false discovery control. 
Notably, GENJI identified 148% more trait pairs than LDSC in an application to 150 trait 
pairs from UKBB and 25 publicly available GWAS summary datasets. 
 
GENJI can also yield reliable outcomes for transethnic genetic correlation estimation. 
Estimates of GENJI are more consistent with those of GREML than the estimates from 
Popcorn. In addition, the standard errors from GENJI are substantially smaller than 
those from Popcorn. The results show that the genetic effects of East Asian and 
European are more correlated than African and European or African and East Asian, 
which might be interpreted by the closer genetic distance between Europeans and 
Asians.  
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Furthermore, for most traits, we observe that the transethnic genetic correlations across 
populations are significantly different from either zero or one. These results suggest that 
more sophisticated methods are in need to study the genetic architectures for non-
European populations. On one hand, it is inappropriate to directly generalize the 
findings in European population to non-European population36,37. On the other hand, 
much amount of information can be borrowed by cross-population analysis. For 
example, elaborated modeling of GWAS from multiple populations can improve PRS 
prediction. Researchers have proposed several methods for cross-population PRS 
which leverage GWAS data from other populations to boost the performance of PRS 
prediction on the target population31,38-40. Genetic correlation has proved to be a 
powerful way to improve PRS performance31,41. PRS prediction is bound to benefit from 
more accurate estimation of genetic correlation. As a showcase, we used the estimates 
for transethnic genetic correlation between African and European populations from 
GENJI and Popcorn to construct cross-population PRS for African population. We 
compared the PRS improved by genetic correlation with two alternative approaches: 
PRS based on the target population alone and PRS built on a meta-analysis combing 
multiple populations, which are equivalent to the cases of genetic correlation equal to 
zero and one, respectively. The performance of PRS can be evaluated by predictive R2 
in external testing datasets. We find that PRS improved by the GENJI outperformed 
other approaches, which suggests that estimation from GENJI is closer to the 
underlying true value. 
 
Our method has some limitations. First, to implement the weighted regression in GENJI, 
if the two studies share non-zero samples, we need to know who is included in the set 
of the shared samples. Second, the advantage of GENJI diminishes with the increase of 
the proportion of overlapping samples. Too many overlapping samples between the 
studies make the regression problem in GENJI suffer from multicollinearity and result in 
unstable estimates (Methods). We note that these two limitations are both induced by 
sample overlapping, which does not exist in transethnic genetic correlation applications. 
Third, genome-wide genetic correlations only reflect the average concordance of 
genetic effects across the genome and often fail to reveal the local, heterogenous 
pleiotropic effects, especially when the underlying genetic basis involves multiple 
etiologic pathways42-44. Future directions include extending our method to estimate local 
genetic correlation jointly using individual-level and summary-level data.  
 
Taken together, GENJI provides a biologically-motivated and statistically principled 
analytical strategy to tackle etiologic sharing of complex traits within and across 
populations. A combination of individual-level and summary-level data is more desired 
to fully utilize the information provided by the data. Moreover, it is doable in prospect 
owing to increasing availability of individual-level data. We believe GENJI will have wide 
applications in complex traits and cross-population genetics researches. 
 
 
 
Methods 
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Statistical model 
 
The statistical frameworks of GENJI for the estimations of within-population genetic 
correlation and transethnic genetic correlation are nearly the same. Assume that the two 
studies have sample size 𝑛' and 𝑛(, respectively. Standardized trait values 𝜙' and 𝜙( 
follow the linear models below: 

𝜙' = 𝑋𝛽 + 𝜀 
𝜙( = 𝑌𝛾 + 𝛿, 

where 𝑋 and 𝑌 are 𝑛' × 𝑚 and 𝑛( ×𝑚 standardized genotype matrices; 𝑚 is the 
number of shared SNPs between the two studies; 𝜀 and 𝛿 are the noise terms; and 𝛽 
and 𝛾 denote the genetic effects for 𝜙' and 𝜙(. The genetic covariance 𝜌" is defined as 
the covariance of the (population-specific) allele-variance-normalized random SNP 
effect sizes. So, the combined random vector of 𝛽 and 𝛾 follows a multivariate normal 
distribution given by: 

J𝛽𝛾K~𝑁 NO
0
⋮
0
R ,

1
𝑚S

ℎ'(𝐼U 𝜌"𝐼U
𝜌"𝐼U ℎ((𝐼U

VW, 

where 𝐼U is the identity matrix of size 𝑚. In the estimation of transethnic genetic 
correlation, this assumption for the distribution of SNP effect sizes corresponds to 
genetic-impact correlation in Popcorn paper14. Since trait values 𝜙' and 𝜙( are 
standardized, we have 𝑉𝑎𝑟Z𝜀.[\ = 1 − ℎ'( and 𝑉𝑎𝑟Z𝛿.]\ = 1 − ℎ(( for 1 ≤ 𝑖' ≤ 𝑛' and 1 ≤
𝑖( ≤ 𝑛(. The covariance of genetic factors of the two traits is equal to 𝜌". In fact, for an 
individual with normalized genotype vector 𝑋`, 𝐶𝑜𝑣(𝑋`/𝛽, 𝑋`/𝛾) = 𝐸[𝛽/𝑋`𝑋`/𝛾] = 𝜌". Here 
we assume that we have individual-level data for the first study and only summary-level 
data for the second study. With this assumption, we treat 𝑋 as a fixed genotype matrix, 
and 𝑌 as an unknown random design matrix. We further assume that each row of 𝑌 is 
independently drawn from a distribution with covariance matrix 𝑅, the 𝑚 ×𝑚 LD matrix 
for study 2, i.e., 𝐶𝑜𝑣Z𝑌.]∙\ = 𝑅. The LD matrix can be estimated from external reference 
panel (e.g., 1000 Genomes Project27) or the genotype of study 1 if the two studies are 
conducted on the same population. For the phenotype vectors 𝜙' and 𝜙(, we assume 
𝜙' is known while 𝜙( is unknown. For GWAS summary data of study 2, we only observe 
z-scores and we can approximate z-score of SNP 𝑗 by 𝑧(f ≈ 𝑌∙f/𝜙( √𝑛(⁄ . We use 𝑧( to 
denote the vector of length 𝑚 which contains all the z-scores in study 2. 
 
In practice, for within-population genetic correlation estimation, two different studies 
may share a subset of samples. Without loss of generality, we assume the first 𝑛3 
samples in each study are shared (𝑛3 ≤ 𝑛' and 𝑛3 ≤ 𝑛(). The non-genetic effects of the 
shared samples for the two studies are correlated: 

𝐶𝑜𝑣h𝜀.[, 𝛿.]i = j𝜌B, 1 ≤ 𝑖' = 𝑖( ≤ 𝑛3
0,										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

We denote the genotype of the overlapped samples as 𝑋3, which consists of the first 𝑛3 
rows of 𝑋. We note that the genotype matrix 𝑋3 is known to us because 𝑋3 is a 
submatrix of 𝑋. We also note that the phenotypes for study 2 of the overlapped samples 
are unknown although we know their genotypes. 
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Parameter estimation 
 
The primary parameter to be estimated is genetic covariance 𝜌". To fully utilize the 
individual-level information, we relate the expectation of 𝑋./𝑧(𝜙'. to the parameter of 
interest, where 𝑋. and 𝜙'. are the genotype vector and phenotype value of the 𝑖th 
sample in study 1, respectively. It can be shown that  

𝐸[𝑋./𝑧(𝜙'.] = 𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋.
𝜌"

𝑚√𝑛(
+ 𝑋./𝑋.1{.>?@}

𝜌B
%𝑛3

, (1) 

where 1{.>?@} is the indicator function for the overlapped samples. We estimate genetic 
covariance by regressing 𝑋./𝑧(𝜙'. against 𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋. and then multiplying 
the resulting slope by 𝑚√𝑛(. We note that for transethnic genetic covariance, since 
there is no overlapp sample between the studies, (1) reduces to 

𝐸[𝑋./𝑧(𝜙'.] = 𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋.
𝜌"

𝑚√𝑛(
 

and we constrain the intercept of the regression to be zero. 
 
To obtain the optimal estimator of the regression, we apply weighted regression. The 
weights are given by the reciprocal of the variance of 𝑋./𝑧(𝜙'.: 

𝑉𝑎𝑟[𝑋./𝑧(𝜙'.] = S𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋.
𝜌"

𝑚√𝑛(
+ 𝑋./𝑋.1{.>?@}

𝜌B
%𝑛3

V
(

+
1
𝑛(
p𝑋./𝑋.

ℎ'(

𝑚 + (1 − ℎ'()q r𝑋./[𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅][𝑋3/𝑋3 + (𝑛( − 𝑛3)𝑅]𝑋.
ℎ((

𝑚

+ 𝑋./𝑋3/𝑋3𝑋.(1 − ℎ(() + (𝑛( − 𝑛3)𝑋./𝑅𝑋.s. 

The weights depend on ℎ'(, ℎ((, 𝜌" and 𝜌B that are unknown. The parameters for 
heritability ℎ'( and ℎ(( can be estimated by GREML and LDSC, respectively. For 𝜌" and 
𝜌B, we estimate them in two steps. In the first step, we set 𝜌" = 𝜌B = 0 to calculate the 
weights. Then, we use the estimates of 𝜌" and 𝜌B in the first step to calculate the 
weights for the second step. The result of genetic covariance estimation is the estimate 
from the second regression. 
 
The estimate for genetic covariance is on the observed scale if one or both studies are 
case-control study. The observed scale genetic covariance is 𝜌tu3 =
𝜌"𝜙(𝜏')𝜙(𝜏()%𝑃'(1 − 𝑃')𝑃((1 − 𝑃() [𝐾'(1 − 𝐾')𝐾((1 − 𝐾()]y  when both studies are 
case-control studies, where 𝜌" is the liability scale genetic covariance, 𝜙 is the standard 
normal density, 𝜏' and 𝜏(, 𝑃' and 𝑃(, and 𝐾' and 𝐾( are the liability threshold, sample 
prevalence, and population prevalence of study 1 and study 2, respectively. If one study 
is case-control study, the observed scale genetic covariance is given by 𝜌tu3 =
𝜌"𝜙(𝜏.)%𝑃.(1 − 𝑃.) [𝐾.(1 − 𝐾.)]y , 𝑖 = 1,2. The detailed derivations are similar to those 
presented in the Supplementary Note of Zhang et al.42. 
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Since the samples are independent to each other, we can directly use the standard 
errors of the coefficients estimated by the weighted regression. Z-test is applied to 
determine the statistical significance. For transethnic genetic correlation, we also use 
the standard errors from weighted regression to test whether the genetic correlation is 
significantly below 1 with one-tailed test. 
 
We can extend the above method to include the covariates of study 1: 

𝜙' = 𝐴𝑏 + 𝑋𝛽 + 𝜀. (2) 
Here 𝐴 is an 𝑛' × 𝑝 matrix of covariates and 𝑏 is a vector of length 𝑝 for fixed effects. 
Let 𝑝` be the rank of 𝐴 and 𝑈 be an 𝑛' × (𝑛' − 𝑝`) matrix that consists of the 
orthonormal bases of the orthogonal complement space of 𝐴. 𝑈 satisfies 𝑈/𝑈 = 𝐼?[���  
and 𝑈𝑈/ = 𝐼?[ − 𝐴`(𝐴`

/𝐴`)�'𝐴`/, where 𝐴` is an 𝑛' × 𝑝` full rank submatrix of 𝐴. We 
multiply by 𝑈/ on both sides of (2) which yields: 

𝑈/𝜙' = 𝑈/𝑋𝛽 + 𝑈/𝜀. 
We can simply use standardized 𝑈/𝜙' as the corrected phenotypes and column 
standardized 𝑈/𝑋 as the corrected genotypes and then input the corrected phenotypes 
and genotypes to the regression introduced above in (1). 
 
 
Simulation settings for within-population genetic correlation 
 
In this section, we introduce the procedure that we use simulated data to compare the 
performance of GENJI, LDSC, and GREML. Phenotypes in our simulations were 
generated based on unimputed genotype data from the WTCCC for within-population 
genetic correlation estimation. Samples were randomly divided into two equal 
subgroups and each subgroup had 7,959 individuals. We denote them as set 1 and set 
2, respectively. We randomly sampled individuals from set 1 and set 2 and created set 
3, set 4 and set 5 whose sample sizes were all equal to 7,959 such that they had 10%, 
25% and 50% overlapped samples with set 1, respectively. Genotype data of 503 
individuals with European ancestry from the 1000 Genomes Project phase III27 were 
used as the LD reference in our simulations. SNPs with ambiguous alleles or minor 
allele frequencies (MAF) less than 5% were removed. 253,196 SNPs presented in both 
WTCCC and 1000 Genomes Project remained. 
 
The effect sizes of SNPs were generated by a multivariate normal distribution and we 
applied Genome-wide Complex Trait Analysis (GCTA)9 to simulate the phenotypes. We 
used PLINK34 to run GWAS and obtain summary statistics of the two simulated 
phenotypes. We repeated each simulation setting 100 times. Detailed simulation 
settings are summarized below. 
 
We fixed the heritability of the phenotypes as 0.5 and the values of genetic covariance 
were set from 0 to 0.25. The first GWAS was simulated on the individuals in set 1 and 
the second GWAS was simulated for set 2, set 3, set 4 and set 5 in four scenarios with 
different sample overlapping. The covariance of non-genetic effects on overlapped 
samples was set to be 0.2, i.e., 𝜌B = 0.2. When there was no overlapped sample 
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between the two studies, we also included LDSC with intercept fixed at zero in our 
comparison. GCTA was applied for GREML implementation. 
 
We also simulated binary traits using the liability model for no-sample-overlap scenario 
to investigate the performance of the methods for case-control study. The liability scale 
genetic covariance was still set from 0 to 0.25. We set the threshold for the liability to be 
80% quantile of standard normal distribution such that the prevalence of the binary traits 
was 0.2. 
 
 
Simulation settings for transethnic genetic correlation 
 
In this section, we used similar procedure introduced above to compare the 
performance of GENJI, Popcorn, and GREML on transethnic genetic correlation 
estimation. The unimputed European genotype data from the WTCCC (set 1), and 
genotype data of genetically unrelated UKBB African ancestry samples were used to 
generate phenotypes, with sample sizes to be 7,959 and 6,992, respectively. We 
provided GENJI with individual-level data of African ancestry from UKBB and summary-
level data generated from WTCCC European samples. Individuals of European and 
African ancestry from the 1000 Genomes Project phase III were used as the reference 
for Popcorn. For fair comparison, we also added an additional setting for Popcorn, 
where the reference panel was the genotype data used to generate the phenotype of 
the African traits (in-sample reference) because GENJI uses the individual-level data of 
the GWASs of African ancestry to estimate genetic correlation. SNPs with ambiguous 
alleles or MAFs less than 5% were removed. 159,093 shared SNPs remained in 
genotype data of WTCCC, UKBB, and 1000 Genomes Project. 
 
Genetic effect sizes were generated by multivariate normal distribution. Similarly, 
phenotypes and summary statistics were generated by GCTA and PLINK, respectively. 
The heritability of the phenotypes was still set to be 0.5, and the values of genetic 
covariance were set to range from 0 to 0.5. Each setting was repeated 100 times. We 
used the genetic impact correlation for Popcorn. Since it was also of great interest to 
investigate whether the genetic effects of a specific trait between two populations were 
perfectly correlated (transethnic genetic correlation=1), besides the traditional null that 
genetic correlation is equal to zero, we also tested for 𝐻`: 𝑐𝑜𝑟𝑟 = 1 with alternative 𝐻' =
𝑐𝑜𝑟𝑟 < 1. 
 
 
Within-population genetic correlation estimation for European ancestry GWASs 
 
We used GREML, LDSC, and GENJI to estimate genetic correlations across the 12 
phenotypes in WTCCC and NFBC datasets. We downloaded genotype and phenotype 
data of NFBC from dbGaP45 (accession: phs000276.v2.p1). Since only a small 
proportion of SNPs were shared by these these two datasets, we imputed WTCCC 
using the Michigan Imputation server46 which ended up with 227,383 shared SNPs with 
NFBC with MAF larger than 0.05. Sex, age, and top 4 principal components were 
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included as covariates to implement GREML, GENJI and perform GWAS. To run GENJI 
and LDSC, we generated summary data for both cohorts using PLINK. We provided 
GENJI with individual-level data from NFBC and summary data from WTCCC. 
Genotypes of European ancestry in 1000 Genomes Project were still used as reference 
panel for GENJI and LDSC. The details of the phenotypes and samples sizes are 
summarized in Supplementary Tables 1 and 2. 
 
We then applied GENJI on GWASs of European ancestry with much larger sample 
sizes. We estimated the genetic correlation between 25 common traits with publicly 
available GWAS summary data and 6 common traits from UKBB. We included the 
genotypes of 276,731 genetically unrelated samples of European ancestry and 306,579 
Axiom Array (unimputed) SNPs with MAF larger than 0.05 from UKBB in the analysis. 
All the trait pairs of WTCCC and NFBC were also included between UKBB traits and the 
25 GWASs summary data. Due to the unavailability of the individual-level data of 25 
GWASs, GREML was not implemented. Sex, age, and top 4 principal components of 
UKBB samples were included as covariates to implement GENJI and perform GWAS. 
We transformed GWASs of UKBB traits to summary data by PLINK as the input to 
LDSC. Since there was no overlapped sample between UKBB and the 25 GWASs, we 
fixed the intercept of LDSC at zero. The details about the phenotypes and samples 
sizes of the UKBB traits are given in Supplementary Table 5. The details about the 
sample sizes and the sources of the 25 GWASs are given in Supplementary Table 4. 
 
 
Transethnic genetic correlation estimation for European, African, and East Asian 
ancestry GWASs 
 
We used individual-level data of samples with European ancestry and African ancestry 
in UKBB and summary-level data from BBJ17,18 to estimate transethnic genetic 
correlation of 12 traits across the three populations. Our choice of these traits was 
based on the availability of the data and the heritability of the traits. All the chosen traits 
have nominally significant heritability (p<0.05) across all the populations 
(Supplementary Table 12). We used GWAS summary data from BBJ because they are 
publicly available and have larger sample sizes than samples of East Asian ancestry in 
UKBB. Similarly, we only used unimputed SNPs from UKBB. We used the genetic 
impact correlation for Popcorn. Detailed information about datasets used in this section 
is summarized in Supplementary Tables 5 and 7. 
 
We first compared the performance of GENJI with Popcorn by the consistency with 
GREML on transethnic genetic correlation estimation between the European ancestry 
and African ancestry populations. Since it is of expensive computational burden to 
implement GREML on Biobank-scale data (n=276,731 for samples of European 
ancestry), we randomly extracted 10,000 individuals of European ancestry and 
performed the three methods on the GWASs based on this subset. Sex, age, and top 4 
principal components were included as covariates. We provided GENJI with individual-
level data of African ancestry and summary-level generated from European ancestry. 
For African population, Genotype data of African ancestry from 1000 Genome Project 
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(external reference panel) and UKBB (in-sample reference panel) were used as 
reference panel to estimate LD in two implementations of Popcorn, respectively, for the 
sake of comparison fairness between GENJI and Popcorn. For European population, 
genotype data of European ancestry in 1000 Genomes Project (external reference 
panel) was used as reference panel for both GENJI and Popcorn. 
 
Then, GENJI and Popcorn were further compared on the estimation of transethnic 
genetic correlation among European, African, and East Asian ancestry GWASs with 
larger sample sizes. For the results between African and European populations, genetic 
correlations were estimated using the whole dataset of UKBB. Similarly, we provided 
GENJI with individual-level data of African ancestry and summary-level generated from 
European ancestry. Individuals of African ancestry from UKBB (in-sample reference 
panel) and of European ancestry from the 1000 Genomes Project were used as the 
reference for Popcorn. GENJI also used European ancestry genotype from the 1000 
Genomes Project as the reference panel. The GWAS summary data for East Asian 
population were downloaded from BBJ website (URLs). For the genetic correlation 
between African and East Asian populations, and European and East Asian 
populations, we provided GENJI with individual-level data from UKBB (African or 
European population) and summary data for East Asian population. Individuals of 
African or European ancestry in UKBB (in-sample reference panel), and of East Asian 
ancestry from the 1000 Genomes Project were used as the reference for Popcorn while 
GENJI used the genotype of East Asian ancestry from 1000 Genomes Project as its 
reference panel. 
 
 
Using transethnic genetic correlation to improve cross-population PRS 
 
We used the transethnic genetic correlation estimated by GENJI and Popcorn to 
improve PRS prediction for Height and BMI on African population. We compared the 
PRS adjusted by genetic correlation with the unadjusted PRS and the PRS based on 
the meta-analysis combining the GWASs of European and African populations using 
METAL35. We used the GWAS data of African and European populations for Height and 
BMI from UKBB as the training data. The transethnic genetic correlations for Height and 
BMI were directly applied from the previous section. Samples of African ancestry from 
PAGE: MEC were included in the testing set. We downloaded the individual-level 
phenotype and genotype data from dbGaP45 (accession: phs000220.v2.p2). We 
imputed genotype from PAGE using the Michigan Imputation server46. We restricted the 
analysis to autosomal variants with genotype missing rate per marker < 0.05, missing 
rate per individual < 0.1, Hardy-Weinberg Equilibrium p-value > 1e-9, and MAF > 0.05. 
After quality control, we ended with 3,520 samples of African ancestry with both 
genotype and phenotype data available. 1,334,601 SNPs remained in the imputed 
genotype data of PAGE remain.  
 
For the unadjusted PRS, we first clumpedd the SNPs by PLINK34. We set the 
significance threshold for index SNPs as 1, LD threshold for clumping as 0.1, and 
physical distance threshold for clumping as 250 kb. We then used --score function in 
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PLINK to calculate the unadjusted PRS. The PRS from meta-analysis was constructed 
similarly. We used the inverse variance based analytical strategy given by Table 1 of 
METAL35 and generate genetic weights to compute PRS. 
 
For PRS adjusted by genetic correlation, we applied similar methods in Multi-Trait 
Analysis of GWAS (MTAG)47 and Multi-Ancestry Meta-Analysis (MAMA)48 to adjust the 
effect sizes of SNPs. The effect size vector for the first study (population) is 𝛽 which is 
used to construct the PRS for the target population. The effect size vector for the 
second study (population) is 𝛾 which is the auxiliary data. We only used the SNPs after 
clumping and hence the SNPs were considered to be independent (no LD). So, without 
LD, conditioned on the true effect size 𝛽., the marginal effect of normalized genotype for 
SNP 𝑖 from the GWAS of the target population is subject to normal distribution: 
𝛽�.|𝛽.~𝑁(𝛽., 1 𝑛'⁄ ). The conditional distribution of 𝛾�. given 𝛽. is: 

𝛾�.|𝛽.~𝑁 S
𝜌"
ℎ'(
𝛽.,
ℎ'(ℎ(( − 𝜌"(

𝑚ℎ'(
+
1
𝑛(
V. 

Finally, the conditional expectation of 𝛽. given 𝛽�. and 𝛾�. is: 

𝐸h𝛽.|𝛽�., 𝛾�.i =
𝛽�.𝑛' + J

𝜌"
ℎ'(
𝛾�.K S 1𝑛(

+
ℎ'(ℎ(( − 𝜌"(

𝑚ℎ'(
V�

𝑛' + J
𝜌"(
ℎ'�
K S 1𝑛(

+
ℎ'(ℎ(( − 𝜌"(
𝑚ℎ'(

V�
. (3) 

We plugged the estimates from GENJI and Popcorn into (3) and used the results given 
by (3) as the genetic weight improved by transethnic genetic correlation to compute the 
new PRS. 
 
 
 
URLs 
 
GCTA (https://cnsgenomics.com/software/gcta/#GREML) 
LDSC (https://github.com/bulik/ldsc) 
Popcorn (https://github.com/brielin/popcorn) 
UKBB (https://www.ukbiobank.ac.uk) 
WTCCC (https://www.wtccc.org.uk) 
BBJ (http://jenger.riken.jp/) 
PLINK (https://zzz.bwh.harvard.edu/plink/profile.shtml) 
Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html#!) 
 
 
 
Data and code availability 
 
GENJI software is publicly available at https://github.com/YiliangTracyZhang/GENJI 
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