

1 **Confined migration promotes cancer metastasis through resistance**
2 **to anoikis and increased invasiveness**

3
4 Deborah Fanfone ^{1, 2}, Zhi Chong Wu ^{1, 3, 4}, Jade Mammi ^{1, 2}, Kevin Berthenet ^{1, 2}, David Neves
5 ⁵, Kathrin Weber ^{1, 2}, Andrea Halaburkova ^{1, 2}, François Virard ^{1, 6}, Félix Bunel ⁷, Hector
6 Hernandez-Vargas ^{1, 4, 8}, Stephen WG Tait ^{9, 10}, Anca Hennino ^{1, 3, 4}, Gabriel Ichim ^{1, 2, 11}

7

8

9 ¹ Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France

10 ² Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de Lyon, Lyon,
11 France

12 ³ Université Lyon 1, Villeurbanne, France

13 ⁴ Centre Léon Bérard, Lyon, France

14 ⁵ Netris Pharma, Lyon, France

15 ⁶ Université de Lyon, Faculté d'Odontologie, Hospices Civils de Lyon, Lyon, France

16 ⁷ ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon,
17 France

18 ⁸ Université Claude Bernard Lyon 1, Lyon, France

19 ⁹ Cancer Research UK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK

20 ¹⁰ Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University
21 of Glasgow, Bearsden, Glasgow, G61 1QH, UK

22 ¹¹ Corresponding author: Gabriel Ichim (<mailto:gabriel.ichim@lyon.unicancer.fr>)

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 **Abstract**

38 Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome
39 instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by
40 mechanical stresses not only in the primary tumour but also during metastasis. However, this
41 latter has seldom been studied with regards to mechanobiology, in particular resistance to
42 anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show *in vitro*
43 that migrating breast cancer cells develop resistance to anoikis following their passage
44 through microporous membranes mimicking confined migration (CM), a mechanical
45 constriction that cancer cells encounter during metastasis. This CM-induced resistance was
46 mediated by Inhibitory of Apoptosis Proteins (IAPs), and sensitivity to anoikis could be
47 restored after their inhibition using SMAC mimetics. Anoikis-resistant mechanically-stressed
48 cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated
49 immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice.
50 Our findings reveal that CM increases the metastatic potential of breast cancer cells.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 **Introduction**

70 The majority of cancer-related deaths arise following metastasis ^{1 2}. Metastatic cancer
71 cells acquire *de novo* phenotypic traits allowing them to efficiently leave the primary tumour,
72 enter blood circulation and survive harsh conditions, then exit the bloodstream and establish
73 metastasis at a distant site. Though the mechanisms driving cancer cell migration and
74 invasion are well documented, with a clear understanding of epithelial-mesenchymal
75 transition and the metastatic niche ³, no efficient therapeutic strategies currently prevent
76 metastasis formation. Metastasis is thus largely incurable, yet this lengthy process can take
77 years and the therapeutic window is therefore large enough to envisage its targeting ⁴.

78 Multiple mechanical forces occur at each step of cancer development, from the
79 primary tumour to metastasis. During early tumour development, excessive cell proliferation,
80 massive extracellular matrix deposition or cancer-associated fibroblasts exert compressive
81 forces on cancer cells that can reach up to 10 kPa in pancreatic ductal adenocarcinoma ⁵. As
82 they engage in their metastatic journey, cancer cells migrate through barriers including
83 desmoplastic tumour stroma, basal membranes, endothelial layers, and when entering low-
84 diameter capillaries. In healthy tissues or tumours, the extracellular matrix creates pores or
85 tunnel-shaped tracks that are often smaller than the diameter of a cell and migrating cells
86 adjust their shape and size according to these constrictions ⁶. These events, known as
87 confined migration (CM), have dramatic consequences on cancer cells and might even break
88 the nuclear envelope and trigger DNA damage and mutagenesis if the breaks are not
89 efficiently repaired ^{7 8}.

90 CM can alter the phenotypic traits of cancer cells rendering them even more
91 aggressive. More precisely, repeated nuclear deformations and loss of nuclear envelope
92 integrity can activate an invasive programme, and engage the pro-oncogenic Ras/MAPK
93 signalling pathway ^{9 10 11}. Once inside the blood or the lymphatic vessels, circulating tumour
94 cells (CTCs) are confronted with deadly fluid shear stress until they extravasate ¹². Moreover,
95 most CTCs are eliminated by apoptosis in a process called anoikis, occurring when cells
96 detach from the extracellular matrix ^{13 14}. By rapidly engaging either the death receptors or
97 the mitochondrial pathway of apoptosis, anoikis has evolved as an efficient physiological
98 barrier for preventing the formation of metastatic colonies by CTCs reaching target organs ¹³.
99 Nonetheless, cancer cells developed strategies to evade anoikis such as overly activated
100 Ras/ERK and PI3K/Akt pathways, engaging the tyrosine kinase receptor TrkB, inactivation of
101 E-cadherin and p53 or enhanced autophagy ^{15 16 17 18 19}.

102 Mechanical stress has emerged as a key factor in shaping the pro-metastatic features
103 of cancer cells. We thus hypothesized that CM may also contribute to the metastatic potential
104 by impacting anoikis and cancer invasiveness. We show here that breast cancer cells having

105 undergone CM, but not compression, become resistant to anoikis, through a mechanism
106 involving lowering apoptotic caspase activation through an upregulation of Inhibitory of
107 Apoptosis Proteins (IAPs). We also report that treatment with SMAC mimetics to lower IAP
108 expression restores the sensitivity to anoikis. Ultimately, a single round of CM is sufficient to
109 enhance emerging aggressiveness, the most obvious effects observed being random
110 migration and escape from natural killer cell-mediated immune surveillance. In addition,
111 these observations are endorsed *in vivo* by higher lung metastatic burden when mice are
112 engrafted with breast cancer cells challenged by CM. Taken together, our results support
113 that CM triggers a particular signalling signature that might favour certain metastatic
114 hallmarks such as resistance to anoikis and increased invasiveness.

115

116 **Results**

117 **Confined migration confers breast cancer cells with resistance to anoikis.**

118 The human breast cancer cells, MDA-MB-231, are highly invasive and aggressive *in vitro*
119 and *in vivo*, and represent an ideal cellular model to study metastasis²⁰. To investigate the
120 effects of constriction on these cells, we subjected them to a forced passage through a
121 membrane with 3 µm in diameter pores, via a serum gradient, mimicking the confined
122 migration (CM) encountered during cancer progression^{10 21 22}. MDA-MB-231 cells were
123 seeded onto a matrigel-coated tissue culture insert, prior to applying the serum gradient, and
124 thus initially invaded the matrigel plug before following the serum through the microporous
125 membrane (**Fig. 1a**). We ascertained that CM did not affect cell viability, by verifying the
126 incorporation of Calcein AM (viability dye), and by showing that apoptosis-triggering
127 cytochrome c was not released by the mitochondria of CM cells, as it co-localized with COX
128 IV (mitochondrial marker) (**Fig. 1b, c**). Since caspases are the main apoptotic executioners,
129 we next tested if they were activated in CM-challenged cancer cells. For this experiment,
130 MDA-MB-231 cells expressing a bimolecular fluorescence complementation (BiFC)-based
131 caspase-3 reporter²³, which is functional in actinomycin D-treated and not in CRISPR^{BAX/BAK}
132 cells, were subjected to CM (**Supplementary Fig. 1a, b**). Recovered cells were viable and
133 had not activated apoptotic effector caspases (**Fig. 1d**), substantiating our previous result. In
134 line with this, CM MDA-MB-231 cells displayed an unaltered mitochondrial membrane
135 potential, ATP production and did not generate excessive reactive oxygen species (ROS)
136 (**Supplementary Fig. 1c-f**). Moreover, these cells had a comparable proliferation rate and
137 cell cycle as control cells, as determined by InCucyte-based live-cell microscopy and flow
138 cytometry (**Fig. 1e and Supplementary Fig. 1g**). Hence, the CM model used here did not
139 alter cell viability and was deemed suitable for studying phenotypic changes occurring in
140 these mechanically-challenged cancer cells.

141 We focused on their response to anoikis, as we hypothesized that circulating tumour
142 cells (CTCs) capable of withstanding such a physiological barrier¹³ and forming metastases
143 may have acquired tumourigenic properties through the unique mechanical constriction
144 imposed by CM. Consistently, CM-challenged MDA-MB-231 cells survived, grew and formed
145 clonogenic structures in low-attachment conditions, as evidenced by the spheres generated,
146 more efficiently than control cells (**Fig. 1f**). The effect was not restricted to this cell line since
147 CM-challenged Hs578T breast cancer cells also developed more colonies than control
148 counterparts, indicating that CM-challenged cells had overcome anoikis (**Supplementary**
149 **Fig. 1h**). This is also the case when cells are grown in soft agar, in an anchorage-
150 independent manner (**Fig. 1g**). In addition, resistance to anoikis was assessed by IncuCyte
151 Imager-based real-time imaging, using SYTOX Green dye exclusion, and again breast
152 cancer cells undergoing CM had a survival advantage when grown in low-attachment
153 conditions (**Fig. 1h, i**). Next, we investigated whether the survival advantage acquired
154 following a single round of CM was transient. MDA-MB-231 cells were challenged by CM
155 once and anoikis resistance was quantified at 3, 5 and 7 days post-CM, revealing that
156 resistance to anoikis was transient (**Fig. 1j**). Since anoikis is a variant of apoptosis, we
157 wondered whether the activation of pro-apoptotic effector caspases was affected by CM.
158 This was assessed by immunoblotting for cleaved caspase-3 and PARP-1, a proxy for
159 efficient caspase activation. Strikingly, CM-challenged cancer cells had lower caspase-3
160 processing into the active p17 and p19 fragments, whereas PARP-1 cleavage followed the
161 same pattern (**Fig. 1k, l**). Inhibition of effector caspase activation was also confirmed using a
162 fluorometric caspase-3/7 assay, demonstrating that inhibition was particularly important for
163 cells grown in ultra-low attachment and soft agar conditions (further designated as anoikis-
164 favouring conditions) (**Fig. 1m**).

165 To verify whether this resistance to anoikis was specific to cells having undergone
166 CM and could not arise following the compressive stress experienced within primary tumours
167 upon uncontrolled proliferation or increased extracellular matrix deposition, we tested the
168 effects of compression on resistance to anoikis. We exposed MDA-MB-231 cells *in vitro* to a
169 defined compression by pressing them against a permeable membrane with a weighted
170 piston. The different weights translated into different pressures (200, 400 or 600 Pa)
171 (**Supplementary Fig. 1i**). As shown by the increased nuclear size in compressed cells, this
172 device was suitable to evaluate the effects of compression (**Supplementary Fig. 1j**).
173 Resistance to anoikis, as assessed by growing these cells in anoikis-favouring conditions,
174 was not modified under compression (**Fig. 1n, o**), suggesting that acquisition of resistance to
175 anoikis may be specific to CM. In addition, cancer cell migration through 8 μ m in diameter
176 microporous transwells, which do not impose cellular constriction, did not confer cancer cells
177 with resistance to anoikis (**Supplementary Fig. 1k, l**) and had no impact on caspase

178 activation (**Supplementary Fig. 1m**), thus uncoupling cell chemotaxis from this resistance.

179 In conclusion, these results show that confined migration has a profound impact on
180 cancer cells resistance to cell death through inhibition of pro-apoptotic caspases.

181

182 **Confined migration-driven resistance to anoikis relies on the anti-apoptotic IAP 183 proteins**

184 Previous studies reported that Inhibitory of Apoptosis Proteins (IAPs) such as cIAP1,
185 cIAP2 and XIAP promote resistance to anoikis in several cancers, through caspase inhibition
24 25 26. We therefore hypothesized that under CM challenge, IAP expression may underlie
186 resistance to anoikis. This was tested by immunoblotting for cIAP1, cIAP2 and XIAP protein
187 expression in CM MDA-MB-231 cells grown in anoikis-favouring conditions, which revealed
188 an upregulation of all three IAPs (**Fig. 2a**, left panel for densitometry analysis). Conversely,
189 MDA-MB-231 cells subjected to compression or migration through 8 μ m in diameter
190 microporous transwells had unaltered levels of IAPs (**Supplementary Fig. 2a, b**). To further
191 investigate this correlation, we transiently overexpressed all three IAPs in MDA-MB-231 cells
192 (**Fig. 2b**). Enforced expression of cIAP1 and XIAP significantly enhanced resistance to
193 anoikis in cells grown under anoikis-favouring conditions, while cIAP1 overexpression was
194 dispensable (**Fig. 2c-e**). In a complementary set of experiments, we deleted all three IAPs in
195 MDA-MB-231 cells through CRISPR/Cas9-mediated gene editing (**Fig. 2f**). Following CM
196 and growth in anoikis-favouring conditions, control cells (EV) displayed the expected
197 resistance to anoikis, whereas IAP-depleted cells lost their survival advantage (**Fig. 2g and**
198 **Supplementary Fig. 2c**). In addition, the use of a SMAC mimetic, one of several developed
199 to specifically induce IAP degradation, namely BV6 27, successfully depleted both cIAP1 and
200 XIAP (**Fig. 2h**). Interestingly, it also abrogated the resistance to anoikis observed in CM-
201 challenged breast cancer cells (**Fig. 2i, j**).

202 Next, we sought to understand the mechanisms responsible for IAP upregulation in
203 constricted cells. We initially performed qRT-PCR to assess IAP mRNA expression in cells
204 subjected to CM, and uncovered that their expression was comparable to control cells,
205 suggesting that IAP expression may be regulated at the post-transcriptional level
206 (**Supplementary Fig. 2d**). IAP contain a RING domain with E3 ubiquitin ligase activities,
207 mediating their own K48 polyubiquitination and that of other protein targets which, is crucial
208 for their role in suppressing apoptosis 28. To identify a possible post-transcriptional regulation
209 of IAPs, we first compared the total amount of K48-ubiquitin-linked proteins in control and
210 CM cells. Constricted cells displayed an accumulation of ubiquitinated proteins, indicating a
211 possible bottleneck for protein degradation in CM-stressed cells (**Supplementary Fig. 2e**). In
212 addition, we performed a chase assay with the protein synthesis inhibitor cycloheximide, in
213 order to assess protein half-life (**Supplementary Fig. 2f**), using MCL-1 as a positive control

215 as it is rapidly degraded by the proteasome. When focusing on XIAP, which was the most
216 differentially expressed IAP in CM-challenged cells, we observed a slower decrease in XIAP
217 protein in CM cells compared to control cells, suggesting a lower proteasomal degradation
218 (**Supplementary Fig. 2f**). XIAP may thus be more stable in CM cells, which might explain its
219 higher expression following CM. CM-triggered resistance to anoikis therefore involves the
220 pro-survival IAP proteins, which can be efficiently targeted by pre-clinically validated SMAC
221 mimetics.

222 IAP are commonly described to modulate NF κ B pathway, while in a positive feedback
223 loop NF κ B regulates IAP expression ^{29 30}. This test whether CM activates NF κ B, we first
224 assessed

225 p65 translocation from the cytoplasm to the nucleus upon CM, and showed an increase in
226 cells displaying nuclear p65 (**Fig. 2k**). Using two luciferase-based NF κ B reporter constructs,
227 CM was also found to increase NF κ B transcriptional activity (**Fig. 2l, m**). To test whether
228 NF κ B activation was required for CM-driven resistance to anoikis, we expressed in MDA-MB-
229 231 cells the I κ B super repressor (I κ B^{SR}), which is a non-degradable I κ B α that blocks the
230 nuclear shuttling of p65 ³¹. Accordingly, the stable expression of I κ B^{SR} blocked p65 nuclear
231 shuttling following TNF α treatment (**Supplementary Fig. 2g**). However, in these settings,
232 blocking the NF κ B pathway in CM cells did not prevent their resistance to anoikis (**Fig. 2n,**
233 **o**). In addition, the artificial activation of NF κ B pathway using TNF α treatment, can
234 upregulate cIAP2 as previously described, yet it had no effect on both cIAP1 and XIAP
235 (**Supplementary Fig. 2h, i**) ²⁹. These data suggest that CM-driven mechanical stress is
236 characterized by NF κ B activation, which is not involved in the survival advantage observed in
237 CM-challenged cancer cells.

238 To conclude, resistance to anoikis driven by CM mechanical stress relies on the pro-
239 survival function of IAPs, regulated at the post-transcriptional level following mechanical
240 stress.

241

242 **Confined migration enhances the aggressiveness of breast cancer cells and** 243 **promotes evasion from immune surveillance**

244 To gain mechanistic insights into the relationship between cellular constriction and
245 resistance to anoikis, we performed an RNA sequencing (RNA seq) analysis on MDA-MB-
246 231 cells undergoing CM, compared to control cells. Remarkably, CM cells displayed an
247 almost global inhibition of transcription, making their transcriptional profile distinct from
248 control cells (**Supplementary Fig 3a, b**). To investigate this effect further, we performed a
249 Western blot analysis for histone H3 epigenetic modifications, associated with transcriptional
250 activation (H3K27 acetylation) or heterochromatin (H3K9 tri-methylation). Consistently with

251 their overall transcriptional inhibition, CM cells had a lower histone H3 acetylation and a
252 reduction in heterochromatin (lower H3K9 me3), which may indicate a decrease in nuclear
253 stiffness, which is needed when cells navigate through narrow spaces (**Supplementary Fig.**
254 **2c**). When querying the Gene Ontology (GO) Biological Processes using both Enrichr
255 (**Supplementary Fig. 3d**) and g:Profiler (**Supplementary Fig. 3e**), several pathways
256 associated with cellular motility such as “Extracellular matrix organization”, “Cell-matrix
257 adhesion” or “Cell adhesion” were significantly overrepresented in CM cells ^{32 33}. Given that
258 metastatic cells acquire an aggressive phenotype, we thus hypothesized that CM may impact
259 on cancer cell motility ³.

260 Since external mechanical forces are responsible for rapid cytoskeleton
261 rearrangement, we first stained F-actin in control and CM-stressed MDA-MB-231 cells ³⁴.
262 This revealed a high degree of anisotropy in CM cells, with an increased number of stress
263 fibres following CM, in addition to more abundant filopodia (**Fig. 3a**). By using Nanolive
264 imager-based cellular tomography, we uncovered that cancer cells subjected to CM had a
265 higher variation in cell area over time (**Fig. 3b**), consistent with variations in both cellular and
266 nuclear morphology, as assessed by high content screening microscopy (**Supplementary**
267 **Fig. 3f**). To test whether these phenotypic changes were accompanied by increased cell
268 motility, single-cell random migration was first tracked in control and CM stressed cells over a
269 24-hour period. CM-challenged cancer cells displayed a significantly higher velocity and
270 travelled further than control cells (**Fig. 3c-e**). Proliferating cancer cells adhere to their
271 substrate *via* focal adhesions that are equally important during migration, especially
272 metastasis ^{35 36}. Here, we used immunofluorescence for two key components of focal
273 adhesions, namely paxillin (**Supplementary Fig. 3g**) and vinculin (**Supplementary Fig. 3h**),
274 to assess the number and distribution of focal adhesions following CM. The increased
275 random migration observed was not correlated with the number of focal adhesions. In
276 contrast to random migration, breast cancer cells subjected to a single round of CM did not
277 outperform control cells when assessed for directional cell migration or invasion (**Fig. 3f-k**).
278 As cells encounter several mechanical challenges during metastasis, we then imposed three
279 consecutive CM-passages on MDA-MB-231 cells, and found that challenged cells had a
280 significant gain in chemotaxis and directional migration (**Fig. 3l-n**, model in **Supplementary**
281 **Fig. 3i**, for experimental setup).

282 Two of the gene expression signatures over-represented in breast cancer cells undergoing
283 CM involve the regulation of T cell mediated immunity and most importantly the negative
284 regulation of natural killer (NK) cells mediated cytotoxicity (**Supplementary Fig. 3d, e**). The
285 immune system plays a crucial role in preventing metastatic dissemination through a process
286 called immune surveillance. The innate immune NK cells and the adaptive ones, T cells $\alpha\beta$
287 (CD4+ and CD8+), as well as $\gamma\delta$ T lymphocytes are the unique actors of this phenomenon ³⁷

288 ³⁸. The advantage of NK-mediated immune surveillance is that it is very effective on cancer
289 cells that are in the blood circulation ³⁹. We therefore reasoned that CM might also influence
290 NK-mediated immune surveillance. To test this, we co-cultured control and CM-challenged
291 cells stained with CFSE with primary NK cells, obtained from healthy donor blood.
292 Interestingly, breast cancer cells were partially protected from the NK-mediated cytotoxicity
293 following CM (**Fig. 3o**), consistent with lower levels of granzyme B incorporation (**Fig. 3p**).

294 Taken together, these data demonstrate that a single event of CM has a profound
295 effect on single-cell migration, while several rounds of CM enhance cancer cell chemotaxis
296 and collective migration. In addition, CM contributes to evasion from NK-mediated immune
297 surveillance.

298

299 **Breast cancer cells subjected to confined migration have an increased 300 metastatic potential *in vivo***

301 We next wondered whether the effect of CM on *in vitro* breast cancer aggressiveness
302 and invasion was applicable *in vivo*. We injected control and MDA-MB-231 cells subjected to
303 one round of CM into the tail vein of immune-deficient mice and then analysed lung
304 metastatic colonization by micro-computed tomography (microCT). We observed that
305 metastasis incidence was significantly higher in the constricted cells 6 weeks post-
306 engraftment (**Fig. 4a**). Moreover, the volume of healthy lung tissue in mice engrafted with CM
307 breast cancer cells was considerably smaller than control counterparts, indicating their
308 increased aggressiveness (**Fig. 4b, c**). Of note, this was also the case for breast cancer cells
309 experiencing three consecutive rounds of CM (**Supplementary Fig. 4a**). In addition, the
310 increased aggressiveness of constricted cells was also quantified by measuring the area of
311 metastatic lesions following H&E staining (**Fig. 4d, e**).

312 Collectively, these data demonstrate that a single event of confined migration was
313 sufficient to enhance lung metastatic colonization in mice. Hence, we show here that
314 confined migration is characterised by resistance to anoikis, increased single-cell motility,
315 NF κ B activation and escape from immune surveillance. Although independent of NF κ B
316 activation, the resistance to anoikis relies on pro-survival IAPs, regulated at the post-
317 transcriptional level following mechanical stress. Overall, these events contribute to enhancing
318 breast cancer cell aggressiveness (model in **Fig. 5**).
319

320 **Discussion**

321 The role of cell death in cancer has been extensively investigated and its inhibition by
322 cell-autonomous mechanisms such as overexpressing IAPs or anti-apoptotic BCL2 family
323 proteins is a stepping stone for oncogenesis ³⁰⁻⁴⁰. However, very little is known on how the

324 mechanically challenging tumour microenvironment impacts efficient lethal caspase
325 activation and cancer cell death, and how this might favour cancer aggressiveness. This is a
326 timely issue since the causal link between tumour stiffening, mechanical stress and cancer
327 progression is well-documented^{41 42}. As the tumour stiffness and the inherent mechanical
328 stress recently gained notoriety in favouring cancer progression, one could wonder whether
329 this pro-oncogenic effect may be partly attributed to an underappreciated inhibitory effect on
330 efficient induction of tumour cell death^{13 43 44}.

331 Here, we characterized the impact of mechanical stress, mimicking that encountered
332 either within the primary tumour (compression) or during cancer progression (confined
333 migration), on the acquisition of tumourigenic properties, in particular resistance to cell death.
334 Our experimental set-up, based on commercially available transwell membranes with pores
335 of 3 µm in diameter, forced breast cancer cells to undergo severe CM towards a chemotactic
336 cue. Although it was previously reported that CM caused nuclear lamina breaks and
337 widespread DNA damage, the MDA-MB-231 cells subjected to CM used herein recovered
338 well from the forced passage, lacked obvious apoptotic caspase activation, and displayed no
339 major differences in cell proliferation^{7 8 45 46}.

340 In addition to the CM that cells undergo to exit the primary tumour, CTCs also need to
341 survive the complete loss of cell attachment, which normally triggers anoikis. Since
342 resistance to anoikis was previously described to protect CTCs and favour their metastatic
343 seeding, we tested this in breast cancer cells challenged by CM and unveiled a significant
344 resistance to anoikis¹⁴. As anoikis is a variation of apoptosis that relies on lethal caspase
345 activation, we found that CM-driven resistance to anoikis was also mirrored by an inhibition
346 of caspase activation. Although it has been reported that resistance to anoikis could be
347 promoted by shear stress, we report here for the first time that CM, a mechanical stress in
348 the metastatic cascade happening before the fluid shear stress, can also induce resistance
349 to anoikis in breast cancer cells⁴⁷. Conversely, cancer cells migrating through larger 8 µm in
350 diameter microporous transwells, which do not induce CM, did not acquire resistance to
351 anoikis. Aside from constriction, cancer cells are subjected *in situ* to an important
352 compressive stress within a rapidly growing tumour⁴⁴. Regarding cell death sensitivity,
353 however, compression did not impart resistance to anoikis, thus discriminating both types of
354 mechanical stress. Interestingly, resistance to anoikis was transient since it remained
355 significant up to three days following the mechanical challenge. This reversibility suggests
356 that a temporary epigenetic, transcriptional and/or translational programme is induced
357 following acute constriction.

358 We then sought to uncover the cell-autonomous pro-survival pathways engaged in
359 CM-challenged breast cancer cells and we narrowed them down to the pro-survival IAPs.
360 Interestingly, these proteins were described to promote resistance to anoikis in several

361 cancers. Nevertheless this is the first study showing that mechanical stress increases IAP
362 expression, especially XIAP and cIAP1, likely by modifying their protein turnover^{24,25 26}. In an
363 effort to revert resistance to anoikis and restore caspase-dependent cell death, we used
364 SMAC mimetics developed to efficiently deplete IAPs. Currently, several SMAC mimetics
365 such as birinapant and LCL161 are in phase 2 clinical trials for ovarian cancer and myeloma
366 (source: <https://clinicaltrials.gov/>). Importantly we found that BV6 treatment re-sensitised
367 cancer cells subjected to CM to anoikis, reinforcing the relevance of SMAC mimetics for
368 clinical use. Moreover, we found that breast cancer cells experiencing CM activate the NF κ B
369 pathway, which is likely due to DNA damage^{46 48}. However, our results indicate that NF κ B
370 activation is dispensable for the acquired resistance to anoikis, yet we cannot exclude
371 additional pro-survival effects.

372 To gain a clearer insight into CM-associated gene regulation, control and cancer cells
373 experiencing CM were analysed by RNA sequencing. CM had a dramatic effect of overall
374 transcriptional inhibition, which is most probably the immediate effect of DNA damage⁴⁹. This
375 was mirrored by the marked reduction of acetylated histone H3, illustrating global
376 transcriptional inhibition. However, the duration of inhibition following acute cell constriction
377 remains to be investigated. In addition, it would be relevant to test by ChIP-Seq the exact
378 gene regulatory networks impacted by loss of histone acetylation in promoter regions.

379 Since several gene expression signatures in CM cells were focused on cell adhesion
380 and extracellular matrix disassembly, we next established whether breast cancer cells
381 acquired migratory and invasive properties after recovering from a single round of CM. In line
382 with published data, these cells displayed modifications of their cellular motility, with most
383 obvious differences observed for F-actin filament remodelling and random migration^{11 50 51}.
384 These data support the existing relationship between mechanical stress, the remodelling of
385 F-actin filaments and increased motility^{35 52}. When CM was applied three consecutive times,
386 the recovered cells were very aggressive, possibly due to the acquisition of a more stable
387 aggressive transcriptional and/or epigenetic programme. This illustrates that multiple CM
388 events encountered by a cancer cell during its dissemination to distant organs can have
389 dramatic effects on its aggressive phenotype. Aside from the capacity to overcome anoikis
390 and discrete modifications in motility, cancer cells experiencing a single CM event were also
391 protected from NK-mediated immune surveillance. Despite these promising results, further
392 research should be undertaken to evaluate NK function and analyse NK cytokine secretion in
393 the presence of mechanically stressed cells. Since NK immune surveillance is conditioned by
394 the expression on the cancer cell surface of MHC/HLA class I molecules and activation
395 ligands, their expression should also be profiled following a mechanical stress³⁹.

396 Finally, we tested whether CM-triggered resistance to anoikis, increased single cell
397 motility and evasion from NK-mediated immune surveillance were reflected *in vivo* by

398 increasing the metastatic potential of invading cells. This was indeed the case since MDA-
399 MB-231 breast cancer cells subjected to a single round of CM had a significant advantage to
400 form metastatic lesions in the lungs of nude mice. This was also evidenced for cancer cells
401 experiencing several rounds of CM.

402 In summary, this study refines our understanding of the pathophysiological
403 relationship between mechanical stress and cancer aggressiveness. Our model of
404 mechanical stress mimicking confined migration had an unexpected effect on resistance to
405 anoikis, which was then mirrored by an enhanced metastatic seeding. In addition, our
406 findings unveiled a previously unknown reliance of mechanically-challenged breast cancer
407 cells on IAPs for survival that could be targeted by treatment with SMAC mimetics.

408

409 **Material and methods**

410 *Cell lines*

411 The cancer cell lines were obtained from American Type Culture Collection (ATCC). Human
412 breast cancer cells MDA-MB-231 and Hs 578T were maintained in RPMI supplemented with
413 2 mM L-glutamine (ThermoFisher Scientific, 25030-24), non-essential amino acids
414 (ThermoFisher Scientific, 11140-035), 1 mM sodium pyruvate (ThermoFisher Scientific,
415 11360-039), 10% FBS (Eurobio, CVFSVF00-01) and 1% penicillin/streptomycin
416 (ThermoFisher Scientific, 15140-122).

417

418 *Stable cell line generation by lentiviral transduction*

419 293T cells (1.5×10^6 in a 10 cm Petri dish) were transfected with lentiviral plasmids together
420 with pVSVG (Addgene, 8454) and psPAX2 (Addgene, 12260) using Lipofectamine 2000
421 (ThermoFisher Scientific, 11668019) according to the manufacturer's instructions. Twenty-
422 four and 48 h later, virus-containing supernatant was collected, filtered, supplemented with 1
423 μ g/mL polybrene (Sigma-Aldrich, H9268) and used to infect target cells. Two days later, the
424 transduced cells were selected by growth in the appropriate antibiotic.

425

426 *Plasmid transfection*

427 For the transient overexpression of cIAP1 and XIAP, MDA-MB-231 cells (1.2×10^6) were
428 plated overnight on a 10 cm petri dish. The cells were then transfected using Lipofectamine
429 2000 (ThermoFisher Scientific, 11668019) with pcDNA3 as empty vector or pEF-hXIAP-Flag
430 for XIAP. A co-transfection with PV2L-Blasti-TRAF2 and pEF6 2xHA cIAP1 WT was needed
431 for overexpressing cIAP1. Six hours later, the transfection medium was replaced by fresh
432 medium and the cells were allowed to grow for 48 h.

433

434 *Generation of CRISPR/Cas9-based KO cells*
435 The oligos containing the gene-specific sgRNA target were cloned into the LentiCRISPRv2
436 Blasticidin (Addgene, 83480) as previously described ⁵³. Following lentiviral transduction,
437 cells were selected with 10 mg/mL blasticidin (Invivogen, ant-bl) for 2 weeks prior to analysis.
438 The CRISPR/Cas9 primers are presented in the table 1 below.
439

440 Table 1: List of CRISPR primers

Gene of interest	Forward primer (5'-3')	Reverse primer (5'-3')
<i>BAX</i>	CACCGAGTAGAAAAGGGCGACAA CC	AAACGGTTGTCGCCCTTTCTACTC
<i>BAK1</i>	CACCGGCCATGCTGGTAGACGTG TA	AAACTACACGTCTACCAGCATGGCC
<i>BIRC2</i>	CACCGCATGGGTAGAACATGCCA AG	AAACCTTGGCATGTTCTACCCATGC
<i>BIRC3</i>	CACCGCATGGTTAACATGCCA AG	AAACCTTGGCATGTTGAACCCATGC
<i>XIAP</i>	CACCGTATCAGACACCATATAACC CG	AAACCGGGTATATGGTGTCTGATAC

441
442 *Transwell assays*
443 Breast cancer cells (MDA-MB-231, Hs578 t; 3×10^6) were plated on a 75 mm transwell insert
444 with a polycarbonate membrane pore size of 3 μ m (Corning, 3420). Before seeding, the
445 insert was coated with a layer of matrigel (300 μ g/mL). A gradient of serum was then created
446 between the two compartments of the transwell (0% FBS in the top compartment and 20%
447 below) and renewed 5 h later. After 72 h, cells were harvested after washing the insert with
448 PBS and incubation with trypsin. Cells that have migrated through the 3 μ m pores were
449 designated as the “constricted cells”, whereas the ones that did not migrate were the “control
450 cells”.
451 For the 8 μ m transwell experiments, 5×10^5 MDA-MB-231 cells were plated on a 6-well insert
452 with a polycarbonate membrane pore size of 8 μ m (Greiner Bio One 657628) and the cells
453 were recovered and analysed 48 h later.
454 For certain experiments, cells recovered for the transwell assay were stained with Hoechst
455 33342 (10 μ g/mL, ThermoFisher Scientific, H1399), calcein AM (0.4 mg/mL, Life, C1430) and
456 Vybrant TM cell-labelling solutions (Dil and DiO, V-22885 and V-22886) according to the
457 manufacturer’s instruction.
458

459 *Anoikis assay*

460 MDA-MB-231 and Hs578T cells (2×10^5) were seeded onto a 6-well Clear Flat Bottom Ultra-
461 Low Attachment plate (Corning, 3471) in complete RPMI medium. Cells then formed 3D
462 clonogenic structures that were imaged and scored after 7 and 14 days of culture. Six wells
463 were plated for each condition and experiments were repeated three times for each cell line.
464 Cells were also grown on a 1 % agarose petri dish in RPMI medium without serum for 24 h
465 and proteins were extracted with protein lysis buffer.

466

467 *Soft agar colony assay*

468 Cells (10^3 /well) were suspended in 1 mL of 0.3% low gelling temperature agarose (Sigma,
469 A9414) and plated onto a 1% agarose layer in three wells of a 6-well plate. When the 0.3%
470 agarose solidified, the wells were covered in complete RPMI media and colonies were
471 scored 4 weeks later.

472

473 *Operetta CLS High-Content Analysis*

474 Control and constricted MDA-MB-231 cells (1.5×10^4) were seeded onto 8 wells of a 96-well
475 plate. Twenty-four hours later, the cells were stained with 0.4 mg/mL calcein AM and 2
476 μ g/mL Hoescht (ThermoFisher Scientific, H1399), for 30 min at 37°C. The medium was then
477 replaced with phenol red-free DMEM (ThermoFisher Scientific, 21063029) and the cells were
478 imaged with the Operetta CLS (PerkinElmer), and the cell morphological analysis was
479 performed using the Columbus software (PerkinElmer).

480

481 *Immunofluorescence*

482 MDA-MB-231 (5×10^4) were seeded onto coverslips placed in 24-well plate overnight. For
483 studies on focal adhesions, the coverslips were first coated with 100 μ g/mL matrigel (Sigma
484 Aldrich, E1270). After washing in PBS, cells were fixed in 4% PFA for 5 min and then
485 washed once. Cells were permeabilized with 0.2% Triton X-100 (Pan Reac, A4975.01)
486 diluted in PBS, for 10 min at room temperature and the blocking of non-specific binding sites
487 was done using 2% BSA in PBS, for 1 h at room temperature. Cells were then incubated with
488 the primary antibody COX IV (Cell Signaling, 4850S), cytochrome c (Cell Signaling, 12963S),
489 Alexa Fluor 647 Phalloidin (Invitrogen, A22287), vinculin (Sigma-Aldrich, V9131), paxillin (BD
490 Transduction Biosciences, 610052) or p65 at 1/400-500 dilution in PBS, for 1 h at room
491 temperature or overnight at 4°C. Next, the cells were washed in PBS three times and then
492 incubated with the appropriate secondary antibody coupled to Alexa Fluor (1/300,
493 ThermoFisher scientific, A21151 and A31571) for 1 hour at room temperature protected from
494 light. The staining of nuclei was done with Hoechst 33342 (10 μ g/mL, ThermoFisher
495 Scientific, H1399) or with DAPI mounting medium (Vectashield). The coverslips were finally

496 mounted using Fluoromount (Southern Biotech, 0100-01). Slides were left to dry overnight
497 before image acquisition using a Zeiss Axio Imager microscope (Zeiss).

498

499 *Anoikis resistance assay using the IncuCyte ZOOM imager*

500 MDA-MB-231 cells (10^4 cells) were plated in a 96-well Clear Round Bottom Ultra-Low
501 Attachment Microplate (Corning, 7007). SytoxGreen (30 nM, Life, 1846592) was also added
502 to the medium to stain apoptotic cells. Cells were then imaged every 60 min using the
503 IncuCyte ZOOM imager.

504

505 *VC3AI reporter-based caspase activation assay*

506 MDA-MB-231 VC3AI (control and constricted) cells (2×10^5) were collected from transwell
507 assay and the mean fluorescence intensity of the green signal (VC3AI) was then determined
508 by FACS Calibur flow cytometry (BD Biosciences, San Jose, CA, USA). Control cells were
509 treated with 1 μ M Actinomycin D as a positive control for cell death.

510

511 *Fluorometric caspase 3/7 activity assay*

512 The cell pellets were resuspended in Cell Lysis Buffer before evaluating the amount of
513 protein in each sample. Twenty μ g of proteins were then mixed with Reaction Buffer
514 supplemented with DEVD-AFC substrate. After 1 h of incubation at 37°C, the caspase 3/7
515 activity was assessed by fluorescence measurement. Caspase 3 activity was determined
516 using the Caspase 3/CPP32 Fluorometric assay kit according to the manufacturer's
517 instructions (BioVision, K105).

518

519 *Mitochondrial membrane potential assay*

520 MDA-MB-231 cells (10^5) were harvested and resuspended in 0.1 μ M Tetramethylrhodamine
521 Ethyl Ester Perchlorate (TMRE, ThermoFischer Scientific, T669) for 30 min at 37°C. This
522 fluorescent compound accumulates only in intact mitochondria and highlights the
523 mitochondrial membrane potential of living cells. CCCP (carbonyl cyanide 3-
524 chlorophenylhydrazone) was used as a mitochondrial membrane potential disruptor. When
525 mitochondria are depolarized or inactivated, leading to a decrease in membrane potential,
526 TMRE accumulation is reduced. After washing, the membrane potential (mean fluorescence
527 intensity of the red signal) was determined by flow cytometry.

528

529 *Evaluation of mitochondrial superoxide levels*

530 MDA-MB-231 VC3AI (control and constricted) cells (5×10^4) were harvested and
531 resuspended in 5 μ M MitoSOX (ThermoFischer Scientific, M36008) for 15 min at 37°C. After
532 washing with PBS, the level of mitochondrial superoxide was determined by flow cytometry.

533 Cells treated 1 h with 500 μ M H₂O₂ were used as a control for the production of reactive
534 oxygen species (ROS).

535

536 *Measurement of total ROS in live cells using CellROX staining*

537 After plating 5 \times 10⁴ MDA-MB-231 cells (control and constricted) overnight in a 12-well plate,
538 cells were trypsinized and treated 30 minutes at 37°C with 5 μ M CellROX Deep Red reagent
539 (Life technologies, C10422) diluted in medium. This cell-permeant dye exhibits a strong
540 fluorescence once oxidized by cytosolic ROS. Positive control of ROS consisted in cells
541 treated 1 h with 500 μ M H₂O₂ (Sigma, H1009) before staining. Cells were then centrifuged
542 and washed in PBS three times, before being resuspended in 200 μ L of medium. The
543 subsequent analysis was performed using FACS Calibur.

544

545 *ATP assay*

546 ATP levels were measured in control and constricted breast cancer cells (3 \times 10⁵ cells) using
547 the ATP fluorometric assay kit (Sigma-Aldrich, MAK190), following the manufacturer's
548 instructions. Cells treated 1 hour with 500 μ M H₂O₂ served as a negative control. To evaluate
549 the ATP concentration, an ATP standard curve from 0 to 10 nM was used.

550

551 *Cell cycle analysis*

552 10⁵ MDA-MB-231 cells (control and constricted) were washed once in PBS and pelleted in
553 FACS tubes. Cold ethanol at 100% was added drop by drop while vortexing at a final
554 concentration of 70% in PBS. Cells were then stored at -20°C until use. For FACS analysis,
555 the cells were rinsed with PBS then centrifuged at 850 g for 5 min. The pellet was then
556 treated with 100 μ g/mL ribonuclease A (A8950) in order to specifically stain DNA. Propidium
557 iodide (Sigma, P4864) was added at 100 μ g/mL and cells were immediately analysed by flow
558 cytometry.

559

560 *Cell compression*

561 MDA-MB-231 cells (3 \times 10⁶) were plated on 75 mm transwell inserts with a polycarbonate
562 membrane pore size of 3 μ m (Corning, 3420) that allows media and gas exchange during
563 compression. Twenty-four hours later, a 2 % agarose (Sigma, A9539-100G) disk was placed
564 on top of the cells in order to prevent the direct contact with the plastic cup (3D printed by F.
565 B.) placed above the agarose disk. A range of pressure was then tested for 24 h (0, 200,
566 300, 400, 600 Pa) by adding the appropriate lead weights in the plastic cup. At the end of the
567 compression time (24 h), the cells under the agarose disk were washed and collected for
568 further analysis.

569

570 *Western blot analysis*

571 Proteins were isolated by lysing cell pellets in RIPA lysis buffer (Cell Signaling, 9806S)
572 supplemented with phosphatase inhibitors complex 2 and 3 (Sigma Aldrich, P5726-1ML,
573 P6044-1ML), DTT 10 mM and protease inhibitor cocktail (Sigma-Aldrich, 4693116001). The
574 protein concentration was then determined using the Protein Assay dye Reagent
575 Concentrate (Biorad, 50000006). Equal amounts (15-20 µg) of each sample were separated
576 on 4-12 % SDS-polyacrylamide gels (Biorad) under denaturing conditions (SDS PAGE
577 Sample loading buffer (VWR, GENO786-701) supplemented with 1 mM DTT). The gels were
578 then transferred onto a nitrocellulose membrane using the Transblot Turbo Transfer System
579 (Biorad, 1704150EDU). An incubation of 1 h with Intercept blocking buffer (Licor, 927-70001)
580 blocked non-specific binding sites before incubating the membranes with the primary
581 antibody (1/1000 in Intercept T20 Antibody Diluent (Licor) overnight at 4°C, under agitation.
582 The primary antibodies used were: actin (Sigma-Aldrich, A3854), MCL-1 (Cell Signaling,
583 4572S), PARP-1 (Cell Signaling, 9532), Caspase-3 (Cell Signaling, 9662S), GFP (Life,
584 A11122), BAX (Cell Signaling, 2772S), BAK (Cell Signaling, 12105S), HSP60 (Cell Signaling,
585 4870), K48-Ub (Cell Signaling, 8081S), COX IV (Cell Signaling, 4850S), cIAP1 (Cell
586 Signaling, 7065T), cIAP2 (Cell Signaling, 3130T), XIAP (Cell Signaling, 14334S), HSC70
587 (Santa Cruz Biotechnology, sc-7298), H3K27ac (Diagenode, C15210016), H3K9me3
588 (Diagenode, C15200153). The membranes were rinsed 4 times for 5 min in TBST 0.1% and
589 then incubated with appropriate secondary antibody coupled to IRDye® 800CW or 680RD
590 dye (Licor; 1/10000) for 1 h at room temperature under agitation and protected from light.
591 Four extra washing steps in TBST 1% and 1 in TBS were performed before scanning the
592 membrane by Odyssey® Imaging System for near infrared detection.

593

594 *Cycloheximide chase assay*

595 To determine protein half-life, control and constricted MDA-MB-231 cells (5×10^5) were
596 treated in ultra-low attachment conditions with cycloheximide (CHX; 50 µg/mL) for different
597 durations (0, 6, 16, 24, 33, 48 h) and protein extracts were analysed by Western blot.

598

599 *Dual luciferase reporter assay*

600 MDA-MB-231 cells (10^5) were plated in 12-well plates for 24 h and were then co-transfected
601 with the NFkB luciferase reporter-containing plasmid and a Renilla plasmid using
602 Lipofectamine 2000. After 48 hours of transfection, the luciferase activity was assessed with
603 the Dual luciferase reporter assay (Promega, E1910) following the manufacturer's
604 instructions. Firefly luciferase activity was then normalized against Renilla luciferase activity.

605

606

607 *Holotomographic microscopy (HTM)*

608 MDA-MB-231 cells (5×10^4) cells were seeded onto Fluorodishes (ibidi GmbH, Gräfeling, 609 Germany). HTM was performed on the 3D Cell-Explorer Fluo (Nanolive, Ecublens, 610 Switzerland) using a 60X air objective at a wavelength of $\lambda = 520$ nm. Physiological 611 conditions for live cell imaging were maintained using a top-stage incubator (Oko-lab, 612 Pozzuoli, Italy). A constant temperature of 37°C and an air humidity saturation as well as a 613 level of 5% CO₂ were maintained throughout imaging. Refractory index maps were 614 generated every 5 min for 1 h. Images were processed with the software STEVE.

615

616 *Random migration assay*

617 10^3 breast cancer cells were seeded onto a 96-well ImageLock plate (Sartorius, 4379) and 618 imaged for 24 hours using the IncuCyte ZOOM-based time-lapse microscopy. The acquired 619 time-lapse images were treated with a manual tracking plugin using the Image J software. 620 About 100 cells/condition were followed for 30 min in order to determine the accumulated 621 distance and their velocity.

622

623 *Wound healing assay*

624 MDA-MB 231 cells (5.5×10^4) were seeded onto a 96-well imageLock plate (Sartorius, 4379) 625 and grown for 24 h until cell confluence was reached. A scratch was then performed in the 626 cell monolayer using a WoundMaker (Sartorius, 4563), following the manufacturer's 627 instructions. Wound closure was imaged and quantified using the IncuCyte ZOOM imaging 628 system.

629

630 *Invasion assay*

631 Wells of a 96-well imageLock plate (4379, Sartorius) were first coated with 100 µg/mL of 632 Matrigel (Sigma Aldrich, E609-10mL). After 1 h, MDA-MB-231 cells (5.5×10^4) were seeded 633 24 h prior to the assay. A wound was then performed in the cell monolayer with the 634 WoundMaker and a new layer of Matrigel (800 µg/mL) was deposited onto cells for 1 h at 635 37°C to allow polymerization. The top of the cells was covered with complete medium and 636 the invasion potential of cancer cells was evaluated and quantified using IncuCyte ZOOM- 637 based time-lapse microscopy.

638

639 *RNA sequencing*

640 RNA sequencing from control and mechanically-challenged MDA-MB-231 cells was done by 641 the CRCL Cancer Genomics core facility. The libraries were prepared from 600 ng total RNA 642 using the TruSeq Stranded mRNA kit (Illumina) following the manufacturer's instructions. The 643 different steps include the PolyA mRNA capture with oligo dT beads, cDNA double strand

644 synthesis, adaptors ligation, library amplification and sequencing. Sequencing was carried
645 out with the NextSeq500 Illumina sequencer in 75 bp paired-end.

646

647 *Bioinformatics analysis*

648 All genomic data were analysed with R/Bioconductor packages, R version 4.0.3 (2020-10-10)
649 [<https://cran.r-project.org/>; <http://www.bioconductor.org/>] on a linux platform (x86_64-
650 gnu [64-bit]).

651 Illumina sequencing was performed on RNA extracted from triplicates of each condition.
652 Standard Illumina bioinformatics analyses were used to generate fastq files, followed by
653 quality assessment [MultiQC v1.7 <https://multiqc.info/>], trimming and demultiplexing.
654 'Rsubread' v2.4.3 was used for mapping to the hg38 genome and creating a matrix of RNA-
655 Seq counts. Rsamtools v2.6.0 * was used to merge two bam files for each sample (run in two
656 different lanes). Next, a DGElist object was created with the 'edgeR' package v3.32.1
657 [<https://doi.org/10.1093/bioinformatics/btp616>]. After normalization for composition bias,
658 genewise exact tests were computed for differences in the means between groups, and
659 differentially expressed genes (DEGs) were extracted based on an FDR-adjusted p value <
660 0.05 and a minimum absolute fold change of 2. All raw and processed RNAseq data have
661 been deposited at the Gene Expression Omnibus (GEO) repository, under accession number
662 GSE176081.

663 * Martin Morgan, Hervé Pagès, Valerie Obenchain and Nathaniel Hayden (2020). Rsamtools:
664 Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. R package version
665 2.6.0. <https://bioconductor.org/packages/Rsamtools>

666

667 *Quantitative RT-PCR*

668 Total RNA extraction was performed using the Nucleospin RNA Macherey-Nagel kit
669 (740955) and quantified by NanoDrop. The conversion of messenger RNA into cDNA was
670 performed using the Sensifast cDNA synthesis kit (Bioline, BIO- 65053). cDNA was then
671 amplified by PCR using specific primers for each gene designed with Primer-blast software
672 (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/>) and listed in Table 2. GAPDH, ACTB and
673 HPRT were used as housekeeping genes. The thermal cycling steps included an initial
674 polymerase activation step at 95°C for 2 min, followed by 40 cycles at 95°C, 5 s, and 60°C,
675 30 s. The qRT-PCR experiments were performed using SYBR Green and a Lightcycler96
676 (Roche, Indianapolis, USA).

677

678

679

680

681 Table 2: List of qRT-PCR primers

Gene of interest	Forward primer (5'-3')	Reverse primer (5'-3')
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
hACTB	AGAGCTACGAGCTGCCTGAC	AGCACTGTGTTGGCGTACAG
hHPRT	TGAGGATTGGAAAGGGTGT	GAGCACACAGAGGGCTACAA
hXIAP	TGAGGGAGACGAAGGGACTT	TTGTCCACCTTCGCGCC
hBIRC2	ATCGTGCAGCAGAGTGAGC	CTTCAGGGTTGAAATCGCAGT
hBIRC3	CTCTGGCAGCAGGTTACAA	AGGTCTCCATTTGAGATGTTTGA

682

683

684 *In vivo lung metastasis model and lung imaging*

685 MDA-MB-231 control and constricted cells (2.5×10^4) were suspended in 100 μ L PBS and
686 injected into the tail vein of NMRI nude female mice. The absence of mycoplasma in injected
687 cells was controlled before injection in animals. Burden of lung metastasis was evaluated
688 over time by X-ray microCT-Scan (Quantum FX®, Perkin Elmer). Mice were anesthetized
689 with a continuous flow of 2 to 4% isoflurane/air (1.5 L/min). The lungs were imaged in a
690 longitudinal manner for 2 min with an exposure of 0.746 Gy and the obtained raw data were
691 reconstructed with the following acquisition settings: a 24mm FOV diameter, 512 slices and
692 50 μ m voxel. The resulting images were viewed and analysed using “Analyze of Caliper”
693 software (AnalyzeDirect) and the remaining healthy lung volume was quantified and 3D-
694 represented.

695

696 *Histological analyses*

697 If limiting points were not observed, mice were euthanized 8 weeks post-engraftment. Lungs
698 were fixed in 4% buffered formalin, paraffin embedded and three 3 μ m-sections separated by
699 300 μ m were stained with Hematoxylin-Eosin. The slides were scanned using the panoramic
700 scan II (3D Histech). These were then analyzed with CaseViewer 2.2.0.85100 software
701 (3DHISTECH Ltd.) for the detection of metastasis.

702

703 *NK-mediated immune-surveillance*

704 Control and constricted MDA-MB-231 cells were cocultured with human NK cells sorted from
705 peripheral blood using the NK cell isolation Kit (Miltenyi Biotec 130-092-657) at the ratio of
706 1:20, in triplicate for each condition. Before co-culturing, tumour cells were pretreated with 10
707 μ g/mL mitomycin for 1 h to stop proliferation, and were incubated and tagged with CFSE
708 (Invitrogen CellTrace, C34570) at 1 μ L/mL for 20 min. Twenty-four hours later, cells in each
709 condition were recovered by trypsin and stained intracellularly with Granzyme B (Biolegend,

710 AF647, clone GB11). Flow cytometry was performed by BD LSR Fortessa HTS and data
711 were analysed using GraphPad Prism V9.

712

713 *Image analysis*

714 Image analysis was performed using the ImageJ software 1.52a.

715

716 *Statistical analysis*

717 Data are expressed as the mean \pm SEM. A two-tailed Student's t-test was applied to
718 compare two groups of data. Analyses were performed using the Prism 5.0 software
719 (GraphPad).

720

721 **Acknowledgements**

722 This work was supported by funding from LabEx DEVweCAN (University of Lyon), Agence
723 Nationale de la Recherche (ANR) Young Researchers Project (ANR-18-CE13-0005-01), La
724 Ligue Nationale Contre le Cancer and Fondation de France. We thank Brigitte Mansip for
725 reviewing the manuscript, Virgile Raufaste-Cazavieille, Léa Magadoux and Thomas Barre
726 (AniCan Image, Lyon, France, funding PHENOCAN ANR -11-EQPX-0035 PHENOCAN) and
727 the Anatomopathology core facility for technical assistance.

728 **Author contributions**

729 Conceptualization, G. Ichim, S.T. and D.F.; Methodology, G. Ichim, D.F., H. H.-V.; Formal
730 analysis, G. Ichim, D.F., Z. W., H. H.-V. and A. H.; Investigation, G. Ichim, D.F., Z. W., J. M.,
731 K. B., D. N., K. W., A. H. and H. H.-V.; Resources, D. N., F. B. and A. H.; Writing – Original
732 Draft and Editing, G. Ichim and D. F.; All authors reviewed and edited the manuscript;
733 Supervision, G. Ichim, D. F. and A. H.; Project administration and funding acquisition, G.
734 Ichim.

735

736 **Conflicts of interest**

737 The authors declare no conflicts of interests.

738

739 **References**

- 740 1 Dillekås, H., Rogers, M. S. & Straume, O. Are 90% of deaths from cancer caused by
741 metastases? *Cancer medicine* **8**, 5574-5576, doi:10.1002/cam4.2474 (2019).
- 742 2 Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. *Science* **331**, 1559-
743 1564, doi:10.1126/science.1203543 (2011).
- 744 3 Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging Biological Principles of
745 Metastasis. *Cell* **168**, 670-691, doi:10.1016/j.cell.2016.11.037 (2017).

746 4 Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. *Nature reviews. Cancer* **6**,
747 449-458, doi:nrc1886 [pii] 10.1038/nrc1886 [doi] (2006).

748 5 Nia, H. T. *et al.* Solid stress and elastic energy as measures of tumour mechanopathology.
749 *Nature biomedical engineering* **1**, doi:10.1038/s41551-016-0004 (2016).

750 6 Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression.
751 *Nature reviews. Cancer* **9**, 108-122, doi:10.1038/nrc2544 (2009).

752 7 Raab, M. *et al.* ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA
753 damage and cell death. *Science* **352**, 359-362, doi:10.1126/science.aad7611 (2016).

754 8 Denais, C. M. *et al.* Nuclear envelope rupture and repair during cancer cell migration. *Science*
755 **352**, 353-358, doi:10.1126/science.aad7297 (2016).

756 9 Nader, G. P. F. *et al.* Compromised nuclear envelope integrity drives tumor cell invasion.
757 *bioRxiv*, 2020.2005.2022.110122, doi:10.1101/2020.05.22.110122 (2020).

758 10 Rudzka, D. A. *et al.* Selection of established tumour cells through narrow diameter
759 micropores enriches for elevated Ras/Raf/MEK/ERK MAPK signalling and enhanced tumour
760 growth. *Small GTPases*, 1-17, doi:10.1080/21541248.2020.1780108 (2020).

761 11 Rudzka, D. A. *et al.* Migration through physical constraints is enabled by MAPK-induced cell
762 softening via actin cytoskeleton re-organization. *Journal of cell science* **132**,
763 doi:10.1242/jcs.224071 (2019).

764 12 Fan, R. *et al.* Circulatory shear flow alters the viability and proliferation of circulating colon
765 cancer cells. *Scientific reports* **6**, 27073, doi:10.1038/srep27073 (2016).

766 13 Shen, M. & Kang, Y. Stresses in the metastatic cascade: molecular mechanisms and
767 therapeutic opportunities. *Genes & development* **34**, 1577-1598,
768 doi:10.1101/gad.343251.120 (2020).

769 14 Paoli, P., Giannoni, E. & Chiarugi, P. Anoikis molecular pathways and its role in cancer
770 progression. *Biochimica et biophysica acta* **1833**, 3481-3498,
771 doi:10.1016/j.bbamcr.2013.06.026 (2013).

772 15 de Sousa Mesquita, A. P., de Araújo Lopes, S., Pernambuco Filho, P. C. A., Nader, H. B. &
773 Lopes, C. C. Acquisition of anoikis resistance promotes alterations in the Ras/ERK and
774 PI3K/Akt signaling pathways and matrix remodeling in endothelial cells. *Apoptosis* **22**, 1116-
775 1137, doi:10.1007/s10495-017-1392-0 (2017).

776 16 Douma, S. *et al.* Suppression of anoikis and induction of metastasis by the neurotrophic
777 receptor TrkB. *Nature* **430**, 1034-1039, doi:10.1038/nature02765 (2004).

778 17 Derk森, P. W. *et al.* Somatic inactivation of E-cadherin and p53 in mice leads to metastatic
779 lobular mammary carcinoma through induction of anoikis resistance and angiogenesis.
780 *Cancer cell* **10**, 437-449, doi:10.1016/j.ccr.2006.09.013 (2006).

781 18 Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular
782 matrix detachment promotes cell survival. *Molecular biology of the cell* **19**, 797-806,
783 doi:10.1091/mbc.e07-10-1092 (2008).

784 19 Chavez-Dominguez, R., Perez-Medina, M., Lopez-Gonzalez, J. S., Galicia-Velasco, M. &
785 Aguilar-Cazares, D. The Double-Edge Sword of Autophagy in Cancer: From Tumor
786 Suppression to Pro-tumor Activity. *Front Oncol* **10**, 578418, doi:10.3389/fonc.2020.578418
787 (2020).

788 20 Cailleau, R., Young, R., Olivé, M. & Reeves, W. J., Jr. Breast tumor cell lines from pleural
789 effusions. *J Natl Cancer Inst* **53**, 661-674, doi:10.1093/jnci/53.3.661 (1974).

790 21 Porporato, P. E. *et al.* A mitochondrial switch promotes tumor metastasis. *Cell reports* **8**, 754-
791 766, doi:10.1016/j.celrep.2014.06.043 (2014).

792 22 Xia, Y. *et al.* Rescue of DNA damage after constricted migration reveals a mechano-regulated
793 threshold for cell cycle. *The Journal of cell biology* **218**, 2545-2563,
794 doi:10.1083/jcb.201811100 (2019).

795 23 Zhang, J. *et al.* Visualization of caspase-3-like activity in cells using a genetically encoded
796 fluorescent biosensor activated by protein cleavage. *Nature communications* **4**, 2157,
797 doi:10.1038/ncomms3157 (2013).

798 24 Toruner, M. *et al.* Antianoikis effect of nuclear factor-kappaB through up-regulated
799 expression of osteoprotegerin, BCL-2, and IAP-1. *The Journal of biological chemistry* **281**,
800 8686-8696, doi:10.1074/jbc.M512178200 (2006).

801 25 Liu, Z. *et al.* Detachment-induced upregulation of XIAP and cIAP2 delays anoikis of intestinal
802 epithelial cells. *Oncogene* **25**, 7680-7690, doi:10.1038/sj.onc.1209753 (2006).

803 26 Berezovskaya, O. *et al.* Increased expression of apoptosis inhibitor protein XIAP contributes
804 to anoikis resistance of circulating human prostate cancer metastasis precursor cells. *Cancer*
805 **65**, 2378-2386, doi:10.1158/0008-5472.can-04-2649 (2005).

806 27 Varfolomeev, E. *et al.* IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB
807 activation, and TNFalpha-dependent apoptosis. *Cell* **131**, 669-681,
808 doi:10.1016/j.cell.2007.10.030 (2007).

809 28 Estornes, Y. & Bertrand, M. J. IAPs, regulators of innate immunity and inflammation. *Semin*
810 *Cell Dev Biol* **39**, 106-114, doi:10.1016/j.semcdb.2014.03.035 (2015).

811 29 Diessenbacher, P. *et al.* NF-kappaB inhibition reveals differential mechanisms of TNF versus
812 TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of
813 cIAP2. *The Journal of investigative dermatology* **128**, 1134-1147, doi:10.1038/sj.jid.5701141
814 (2008).

815 30 Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-kappaB,
816 inflammation and cancer. *Nature reviews. Cancer* **10**, 561-574, doi:10.1038/nrc2889 (2010).

817 31 Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-
818 alpha-induced apoptosis by NF-kappaB. *Science* **274**, 787-789,
819 doi:10.1126/science.274.5288.787 (1996).

820 32 Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment analysis
821 tool. *BMC bioinformatics* **14**, 128, doi:10.1186/1471-2105-14-128 (2013).

822 33 Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and
823 conversions of gene lists (2019 update). *Nucleic acids research* **47**, W191-w198,
824 doi:10.1093/nar/gkz369 (2019).

825 34 Torrino, S. *et al.* Mechano-induced cell metabolism promotes microtubule glutamylation to
826 force metastasis. *Cell Metab*, doi:10.1016/j.cmet.2021.05.009 (2021).

827 35 Devreotes, P. & Horwitz, A. R. Signaling networks that regulate cell migration. *Cold Spring*
828 *Harbor perspectives in biology* **7**, a005959, doi:10.1101/cshperspect.a005959 (2015).

829 36 Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. *Nature reviews. Cancer*
830 **11**, 573-587, doi:10.1038/nrc3078 (2011).

831 37 Pagès, F. *et al.* Effector memory T cells, early metastasis, and survival in colorectal cancer.
832 *The New England journal of medicine* **353**, 2654-2666, doi:10.1056/NEJMoa051424 (2005).

833 38 Barrow, A. D. *et al.* Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.
834 *Cell* **172**, 534-548.e519, doi:10.1016/j.cell.2017.11.037 (2018).

835 39 Garrido, F. & Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours
836 versus metastases. *Immunology* **158**, 255-266, doi:10.1111/imm.13114 (2019).

837 40 Strasser, A. & Vaux, D. L. Cell Death in the Origin and Treatment of Cancer. *Molecular cell* **78**,
838 1045-1054, doi:10.1016/j.molcel.2020.05.014 (2020).

839 41 Paszek, M. J. *et al.* Tensional homeostasis and the malignant phenotype. *Cancer cell* **8**, 241-
840 254, doi:10.1016/j.ccr.2005.08.010 (2005).

841 42 Acerbi, I. *et al.* Human breast cancer invasion and aggression correlates with ECM stiffening
842 and immune cell infiltration. *Integr Biol (Camb)* **7**, 1120-1134, doi:10.1039/c5ib00040h
843 (2015).

844 43 Gensbittel, V. *et al.* Mechanical Adaptability of Tumor Cells in Metastasis. *Developmental cell*
845 **56**, 164-179, doi:10.1016/j.devcel.2020.10.011 (2021).

846 44 Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. *Science* **370**,
847 doi:10.1126/science.aaz0868 (2020).

848 45 Harada, T. *et al.* Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit
849 survival. *The Journal of cell biology* **204**, 669-682, doi:10.1083/jcb.201308029 (2014).

850 46 Pfeifer, C. R. *et al.* Constricted migration increases DNA damage and independently represses
851 cell cycle. *Molecular biology of the cell* **29**, 1948-1962, doi:10.1091/mbc.E18-02-0079 (2018).

852 47 Li, S. *et al.* Shear stress promotes anoikis resistance of cancer cells via caveolin-1-dependent
853 extrinsic and intrinsic apoptotic pathways. *Journal of cellular physiology* **234**, 3730-3743,
854 doi:<https://doi.org/10.1002/jcp.27149> (2019).

855 48 Hadian, K. & Krappmann, D. Signals from the nucleus: activation of NF-kappaB by cytosolic
856 ATM in the DNA damage response. *Science signaling* **4**, pe2, doi:10.1126/scisignal.2001712
857 (2011).

858 49 Heine, G. F., Horwitz, A. A. & Parvin, J. D. Multiple mechanisms contribute to inhibit
859 transcription in response to DNA damage. *The Journal of biological chemistry* **283**, 9555-
860 9561, doi:10.1074/jbc.M707700200 (2008).

861 50 Liu, Y. J. *et al.* Confinement and low adhesion induce fast amoeboid migration of slow
862 mesenchymal cells. *Cell* **160**, 659-672, doi:10.1016/j.cell.2015.01.007 (2015).

863 51 Tse, J. M. *et al.* Mechanical compression drives cancer cells toward invasive phenotype.
864 *Proceedings of the National Academy of Sciences of the United States of America* **109**, 911-
865 916, doi:10.1073/pnas.1118910109 (2012).

866 52 Vicente-Manzanares, M., Choi, C. K. & Horwitz, A. R. Integrins in cell migration--the actin
867 connection. *Journal of cell science* **122**, 199-206, doi:10.1242/jcs.018564 (2009).

868 53 Shalem, O. *et al.* Genome-scale CRISPR-Cas9 knockout screening in human cells. *Science* **343**,
869 84-87, doi:10.1126/science.1247005 (2014).

870

871 **Figures legends**

872 **Figure 1: Confined migration confers breast cancer cells with resistance to 873 anoikis**

874 a) Schematic illustration of the 3 μ m transwell-based confined migration (CM) model.

875 b) MDA-MB-231 control cells or cells recovered from CM were stained with the Calcein AM
876 viability dye and imaged by epifluorescence microscopy.

877 c) Representative immunofluorescence images of control and CM-challenged MDA-MB-231
878 cells stained for COX IV and cytochrome c.

879 d) Flow cytometry-based quantitative analysis of cells activating the VC3AI caspase reporter
880 (n = 3, One-way ANOVA statistical test).

881 e) IncuCyte ZOOM live-cell imaging-based analysis of cell proliferation (n=3, a representative
882 experiment is shown).

883 f) Representative images of clonogenic structures from control and confined MDA-MB-231
884 cells grown in anoikis-promoting, ultra-low attachment conditions (left panel). Corresponding
885 quantification of resistance to anoikis after 7 and 14 days of culture (right panel, n = 3, Two-
886 way ANOVA statistical test).

887 g) Control and CM-challenged MDA-MB-231 cells were grown in soft agar to test their
888 anchorage-independent growth. Left panel depicts representative images, while the right
889 panel is the quantification of clonogenic structures after 1 month (n = 3, t test).
890 h) Control and CM-challenged MDA-MB-231 cells were imaged for 48 h in an IncuCyte
891 ZOOM imager in anoikis-promoting, ultra-low attachment conditions, and stained with
892 SYTOX Green (n=3, a representative experiment is shown).
893 i) IncuCyte-based SYTOX Green staining quantification of cell survival in control and CM
894 MDA-MB-231 cells in anoikis-promoting conditions (n=3, a representative experiment is
895 shown).
896 j) Quantitative analysis of clonogenic structures illustrating the duration of resistance to
897 anoikis between control and CM MDA-MB-231 cells up to 7 days post-CM (n = 3, One-way
898 ANOVA statistical test).
899 k) Western blot analysis of PARP-1 cleavage and caspase-3 processing following confined
900 migration and anoikis growth in control and in CRISPR/Cas9-mediated BAX/BAK DKO MDA-
901 MB-231 cells. Actinomycin D treatment (1 μ M for 12 h) is used as a positive control for
902 induction of apoptosis.
903 l) Densitometry analysis of PARP-1 and caspase-3 cleavage (ratio of CM cells to control) in
904 anoikis conditions in MDA-MB-231 cells (n = 3-4, t test).
905 m) The effect of CM on effector caspase activation was assessed using a fluorometric assay.
906 Caspase activation was tested either immediately after CM, either in cells that were
907 subsequently grown 24 h in anoikis conditions (n = 3, Two-way ANOVA statistical test).
908 n) Quantification of clonogenic structures formed by control or compressed MDA-MB-231
909 cells (subjected to 200, 400 or 600 Pa of compression for 16 h) after 7 and 14 days of culture
910 in anoikis conditions (n = 3, Two-way ANOVA statistical test).
911 o) Quantification of clonogenic structures formed in soft agar by compressed MDA-MB-231
912 cells (n = 3, One-way ANOVA statistical test).
913

914 **Supplementary figure 1 (related to Figure 1)**

915 a) Representative epifluorescence and phase images of VC3AI caspase reporter-expressing
916 control and BAX/BAK double-KO MDA-MB-231 cells validating the BiFC caspase reporter.
917 Treatment with Actinomycin D was used as a positive control to induce caspase activation.
918 b) Western blot analysis of BAX and BAK protein expression, validating their knocking out
919 through CRISPR/Cas9 in VC3AI-expressing (GFP positive) MDA-MB-231 cells.
920 c) Flow cytometric analysis of mitochondrial membrane potential (TMRE staining). CCCP
921 treatment at 12.5 μ M was used as a positive control for disrupting the mitochondrial
922 membrane potential (n = 3, One-way ANOVA statistical test).

923 d) Quantification of total ATP content in control and constricted MDA-MB-231 cells (n = 3,
924 One-way ANOVA statistical test).

925 e-f) Flow cytometry-based quantification as mean fluorescence intensity (MFI) for
926 mitochondrial reactive oxygen species (ROS) (e) and overall cellular ROS (f). Cells treated
927 with 500 μ M H₂O₂ were used as a control for the production of ROS (n = 3, One-way ANOVA
928 statistical test).

929 g) Assessment of MDA-MB-231 cell cycle profile using PI staining and flow cytometry
930 analysis.

931 h) Representative pictures of control and CM Hs578T cells cultured in ultra-low attachment
932 condition and forming clonogenic structures (left panel). The corresponding quantitative
933 analysis of the number of clonogenic structures after 7 and 14 days of culture is shown in the
934 right panel (n = 3, Two-way ANOVA statistical test).

935 i) Schematic diagram of the compression device, allowing the compression of breast cancer
936 cells (MDA-MB-231) with a constant force. Cells are plated on a transwell membrane,
937 allowing gas and passage of nutrient. An agarose cushion is placed on top of the cell
938 monolayer (control cells were compressed only by the agarose disk) and a custom printed
939 cup is then added on top and filled with the corresponding weight in lead, resulting in various
940 pressures.

941 j) Representative images of MDA-MB-231 nuclei (stained with Hoechst) during 600 Pa
942 compression (left panel) and the corresponding quantification of nuclear area showing a
943 significant increase under compression (right panel, n = 3, t test).

944 k-l) Quantitative comparison of the number of clonogenic structures for MDA-MB-231
945 passing through transwells with 8 μ m in diameter pores in ultra-low attachment conditions (k,
946 n = 3, Two-way ANOVA statistical test) or in soft agar (l, n = 3, t test).

947 m) The effect of MDA-MB-231 cells migrating through transwells with 8 μ m in diameter pores
948 on caspase-3/7 activation as assessed by a fluorometric assay. This was either tested
949 immediately after the transwell assay or in cells that were subsequently grown 24 h in anoikis
950 conditions (n = 3, Two-way ANOVA statistical test).

951

952 **Figure 2: Confined migration-induced resistance to anoikis relies on IAPs.**

953 a) Western blot analysis of IAP protein expression in MDA-MB-231 cells after confined
954 migration (CM) through 3 μ m in diameter membranes, with cells grown in ultra-low
955 attachment conditions (left panel) and the corresponding densitometry analysis (right panel)
956 (n = 3-4, Two-way ANOVA statistical test).

957 b) Validation of IAP protein overexpression in MDA-MB-231 cells by Western blot.

958 c-e) Quantitative comparison of resistance to anoikis in c-IAP1 (c), clAP2 (d) and XIAP (e)
959 overexpressing MDA-MB-231 cells in steady-state conditions. Clonogenic structures were

960 counted after 7 and 14 days of culture in ultra-low attachment condition (n = 3, Two-way
961 ANOVA statistical test).
962 f) Western blot analysis of protein expression validating the efficacy of CRISPR/Cas9-
963 mediated deletion of IAP proteins.
964 g) Quantitative comparison of resistance to anoikis in MDA-MB-231 cells deleted for cIAP1,
965 cIAP2 and XIAP using CRISPR/Cas9 and subjected to CM (n = 3, Two-way ANOVA
966 statistical test).
967 h) Validation by Western blot of IAP expression inhibition by treating MDA-MB-231 cells with
968 BV6. Two concentrations of BV6 (0.5 and 1 μ M) were used for 16 h of treatment.
969 i) Representative images of clonogenic structures from MDA-MB-231 control and CM cells
970 cultured in low attachment conditions and treated with 0.5 μ M of BV6.
971 j) Quantitative comparison of resistance to anoikis in CM MDA-MB-231 cells treated with 0.5
972 μ M of SMAC mimetic BV6. Western blot analysis confirming inhibition of cIAP1 and XIAP
973 expression following BV6 treatment (n = 3, Two-way ANOVA statistical test).
974 k) The effect of confined migration on p65 nuclear localization in MDA-MB-231 cells was
975 assessed by immunofluorescence. TNF α treatment (20 ng/mL for 1 h) was used to induce
976 activation and nuclear translocation of p65. Corresponding quantification of the percentage of
977 cells with nuclear p65 staining is shown in the right panel.
978 l) Luciferase assay to validate the NF κ B luciferase reporters following stimulation with TNF α
979 (20 ng/mL for 1 h) (n = 4, Two-way ANOVA statistical test).
980 m) MDA-MB-231 cells transiently expressing two NF κ B luciferase reporters were
981 mechanically stressed by CM and luciferase activity was immediately assessed (n = 3, Two-
982 way ANOVA statistical test).
983 n) Empty vector or I κ B^{SR}-expressing MDA-MB-231 control or CM cells were cultured for 7
984 and 14 days in anoikis-favouring conditions and the surviving clonogenic structures were
985 quantified (n = 3, Two-way ANOVA statistical test).
986 o) Quantification of resistance to anoikis in empty vector or I κ B^{SR}-expressing MDA-MB-231
987 by SYTOX Green incorporation and IncuCyte ZOOM-based live-cell microscopy (n=3, a
988 representative experiment is shown).
989

990 **Supplementary Figure 2 (related to Figure 2)**

991 a) Western blot analysis of IAP protein expression in MDA-MB-231 cells compressed 24 h
992 with 200, 400 or 600 Pa.
993 b) Western blot analysis of IAP expression, PARP-1 cleavage and caspase-3 processing in
994 MDA-MB-231 cells after their migration through transwell pores of 8 μ m in diameter.

995 c) Quantitative comparison of soft agar clonogenic survival using control or CM MDA-MB-231
996 cells deleted for individual IAPs using CRISPR/Cas9 (n = 3, One-way ANOVA statistical
997 test).
998 d) IAP relative mRNA expression by qRT-PCR in control and CM MDA-MB-231 cells.
999 e) Western blot analysis of K48 ubiquitination in total protein lysates from control and CM
1000 cells (left panel). Treatment with MG132 was used as a positive control for proteasome
1001 inhibition. The right panel depicts the corresponding densitometry analysis (n = 4, t test).
1002 f) Cycloheximide chase assay (50 ng/mL) showing by Western blot XIAP and MCL1
1003 proteasomal degradation (upper panel). Lower panel represents the corresponding
1004 densitometry analysis, n = 2.
1005 g) Representative immunofluorescence images of p65 nuclear localization in MDA-MB-231
1006 cell lines expressing the empty vector (EV) or $\text{I}\kappa\text{B}^{\text{SR}}$ and subjected to CM (left panel).
1007 Corresponding quantification for the percentage of cells presenting nuclear p65 staining is
1008 shown in the right panel.
1009 h) Luciferase assay validating NF κ B activation following TNF α treatment (20 ng/mL) for 6
1010 and 24 h (n = 3, One-way ANOVA statistical test).
1011 i) Western blot analysis of IAP expression in MDA-MB-231 cells treated as in N.
1012

1013 **Figure 3: Confined migration confers breast cancer cells with a discrete
1014 aggressive behaviour**

1015 a) Representative immunofluorescence images of MDA-MB-231 cells after CM with
1016 Phalloidin-stained actin filaments.
1017 b) Representative kinetics holotomographic images (phase and cell segmentation) of control
1018 and MDA-MB-231 cells subjected to CM obtained by Nanolive imaging (left panel).
1019 Corresponding quantitative analysis of cell area variations of control and constricted cells
1020 during a 60 min time-lapse acquisition is shown in the right panel.
1021 c) Spider plot analysis for random migration assay. Control (117 cells) and CM (110 cells)
1022 cells were tracked for 24 h.
1023 d-e) Quantitative analysis of random cell migration velocity (d) and distance travelled (e)
1024 between control and CM MDA-MB-231 cells.
1025 f) Schematic representation of the IncuCyte ZOOM imager-based wound healing assay.
1026 g) Monolayers of MDA-MB-231 control and CM cells were wounded and pictures were taken
1027 immediately after wound induction (T0) and 24 h later.
1028 h) Corresponding quantitative analysis of the migratory potential of control and CM cells
1029 through wound area measurement (n=3, a representative experiment is shown).
1030 i) Schematic representation of invasion assay. After the wound was made, breast cancer
1031 MDA-MB-231 cells invaded through a matrigel plug until they closed the wound.

1032 j) Monolayers of MDA-MB-231 control and CM cells were wounded and pictures were taken
1033 immediately after wound induction (T0) and 24 h later.
1034 k) Corresponding quantitative analysis of the invasive potential of control and CM cells
1035 through wound area measurement (n=3, a representative experiment is shown).
1036 l) Representative images of control and MDA-MB-231 cells subjected to serial CM and
1037 undergoing chemotaxis through transwell membranes with 8 μ m in diameter pores.
1038 m) Chemotaxis quantification relative to l) (n = 3, One-way ANOVA statistical test).
1039 n) Comparative quantitative analysis based on IncuCyte ZOOM imager of the migratory
1040 potential between control and MDA-MB-231 cells that have undergone serial CM (for three
1041 different clones) (n=3, a representative experiment is shown).
1042 o) FACS analysis of apoptotic cells among CM tumour cells compared to control cells, co-
1043 cultured with NK cells at the ratio of 1:20 for NK cells. Results were analysed by assessing
1044 the ratio of CFSE^{low}/CFSE^{high} with baseline-correction to no NK cell culture condition (n=3, t
1045 test).
1046 p) FACS analysis of GrzB+ tumour cells among CM and control MDA-MB-231 cells, co-
1047 cultured with NK cells at a ratio of 1:20 (n=3, t test).
1048

1049 **Supplementary Figure 3 (related to Figure 3)**

1050 a) Unsupervised clustering of the RNA sequencing data in control and CM MDA-MB-231
1051 cells. Orange indicates increased and blue decreased mRNA abundance of selected genes
1052 with fold change above 3, 3 replicates/condition.
1053 b) Volcano plot displaying the expression (in log fold change) of each differentially expressed
1054 gene.
1055 c) Western blot analysis of H3K27 acetylation and H3K9 tri-methylation in control and CM
1056 MDA-MB-231 cells.
1057 d-e) Enrichr (d) and g:Profiler (e) based gene ontology (GO) analysis of the genes
1058 differentially expressed (above 2 FC, up- and downregulated) in cancer cells subjected to
1059 CM. Signatures related to cellular motility are in red while those concerning immune
1060 surveillance are in green.
1061 f) Quantitative Operetta HCS-based imaging comparison of cell and nucleus morphology
1062 parameters (area, ratio w/l and roundness).
1063 g-h) Assessment of the number of focal adhesions between control and CM MDA-MB-231
1064 cells based on immunostaining for paxillin (g) and vinculin (h).
1065 i) Schematic representation of the serial constricted migration. Between CM events, cells
1066 were amplified and re-challenged until reaching three consecutive CM.
1067

1068 **Figure 4: Breast cancer cells subjected to confined migration acquire an
1069 enhanced metastatic potential**

1070 a) Analysis of lung metastasis incidence in nude mice engrafted with either control or CM
1071 MDA-MB-231 cells (two-tailed Fisher's exact test).
1072 b) Representative microCT-based 3D reconstructions (red represents healthy lung volume)
1073 of lungs from mice engrafted with either control or MDA-MB-231 cells undergoing confined
1074 migration, 15 mice/condition.
1075 c) Corresponding quantification of remaining healthy lung volume 6 and 8 weeks post-
1076 engraftment.
1077 d) Representative H&E staining of lung sections.
1078 e) Quantification of lung metastatic foci (% ratio to total lung surface).

1079

1080 **Supplementary Figure 4 (related to Figure 4)**

1081 a) Analysis of lung metastasis incidence in nude mice engrafted with either control or MDA-
1082 MB-231 cells undergoing three consecutive rounds of CM (left panel). Right panel presents
1083 the corresponding quantification of remaining healthy lung volume in engrafted mice, 4-5
1084 mice/condition.

1085

1086 **Figure 5: Model**

1087 As a consequence of confined migration but not compression, cancer cells become resistant
1088 to cell death triggered by loss of cell attachment (anoikis), which relies on increased
1089 expression of IAP proteins. NFkB is also activated by mechanical stress, yet it does not
1090 impact resistance to anoikis. In addition, constricted cancer cells are more resistant to
1091 Natural Killer (NK)-mediated immune surveillance. Together with a marked motility
1092 advantage, this confers an increased metastatic colonization advantage to breast cancer
1093 cells having undergone confined migration.

1094

1095

1096

1097

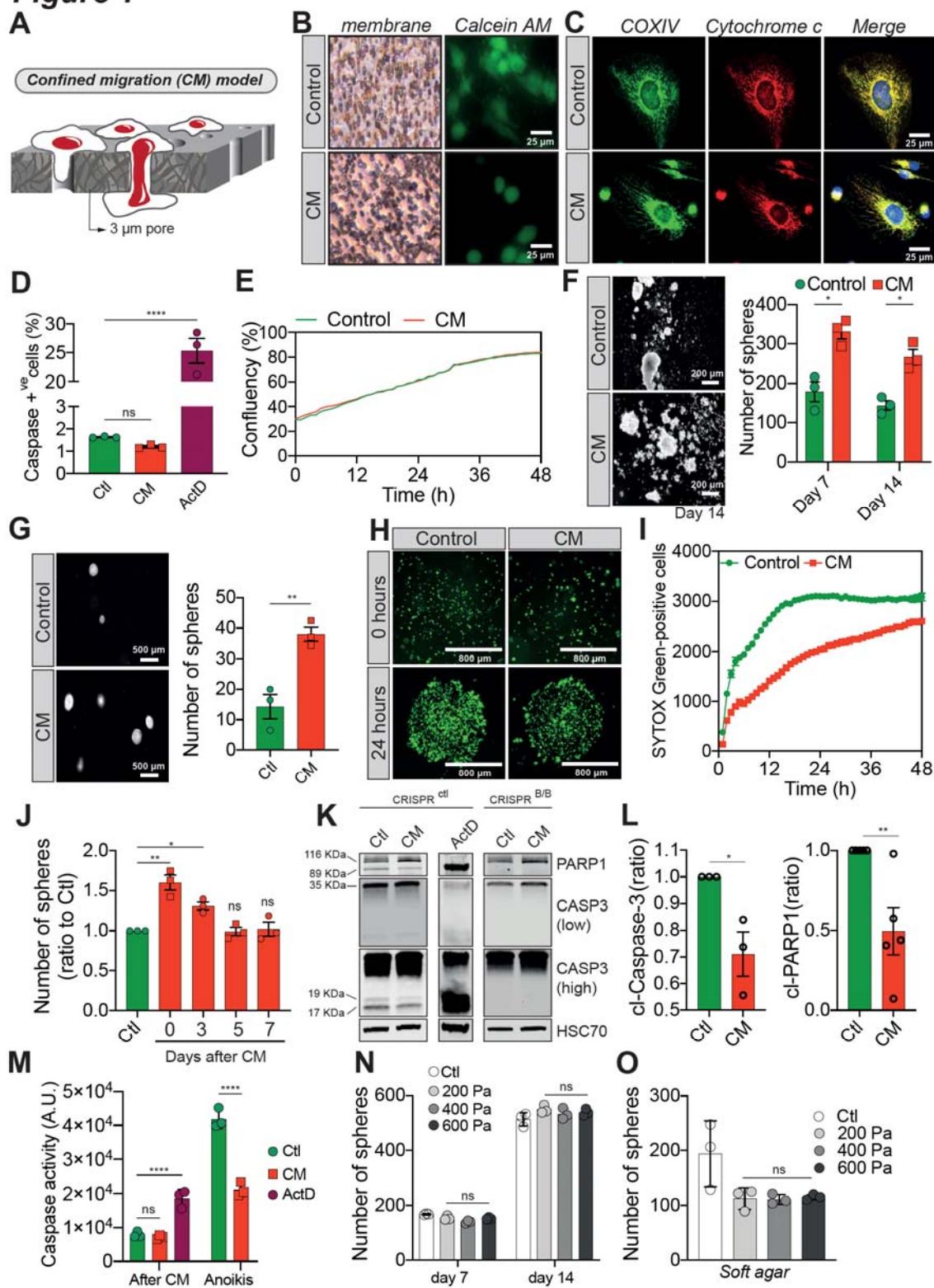
1098

1099

1100

1101

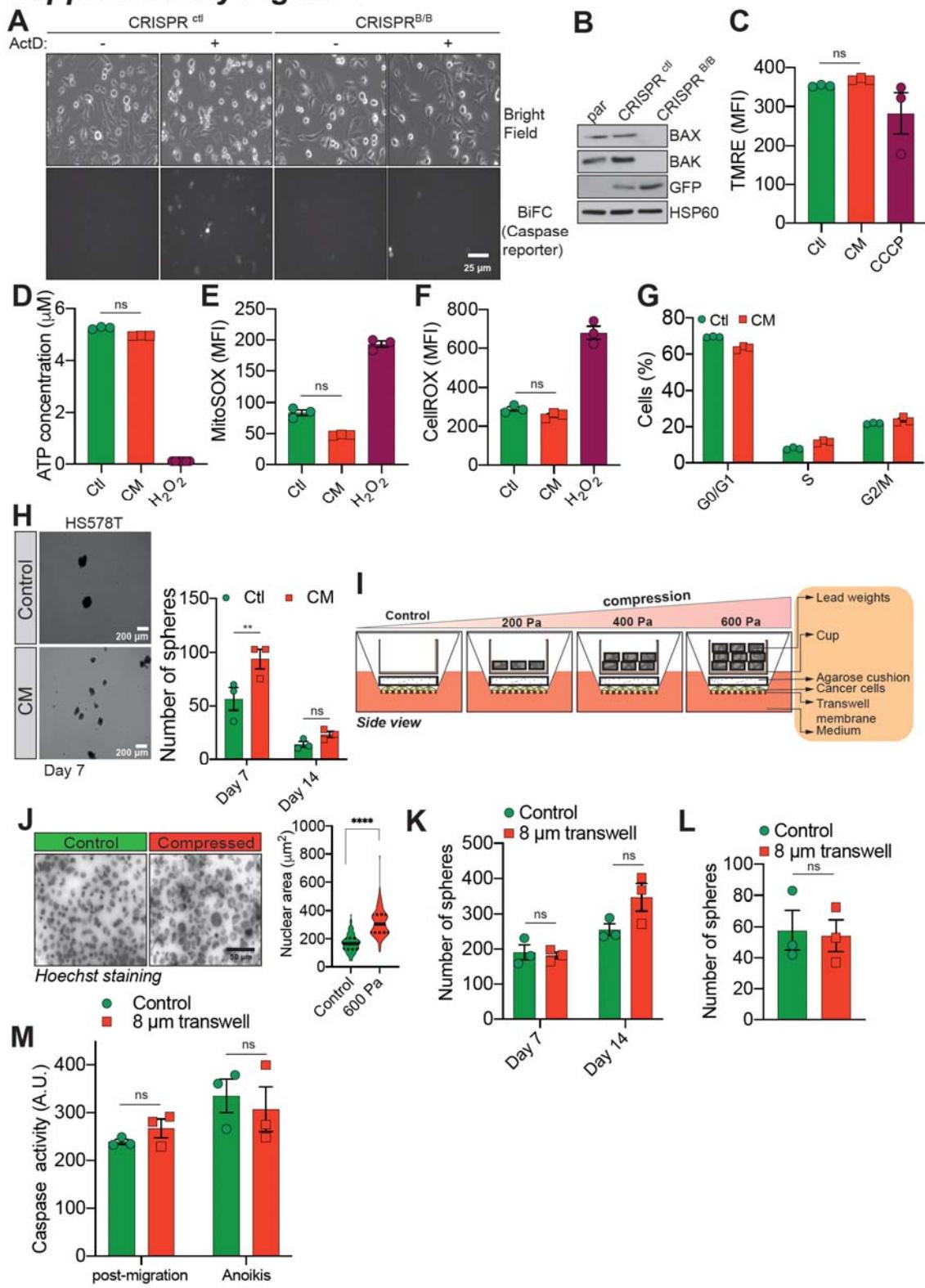
1102


1103

1104

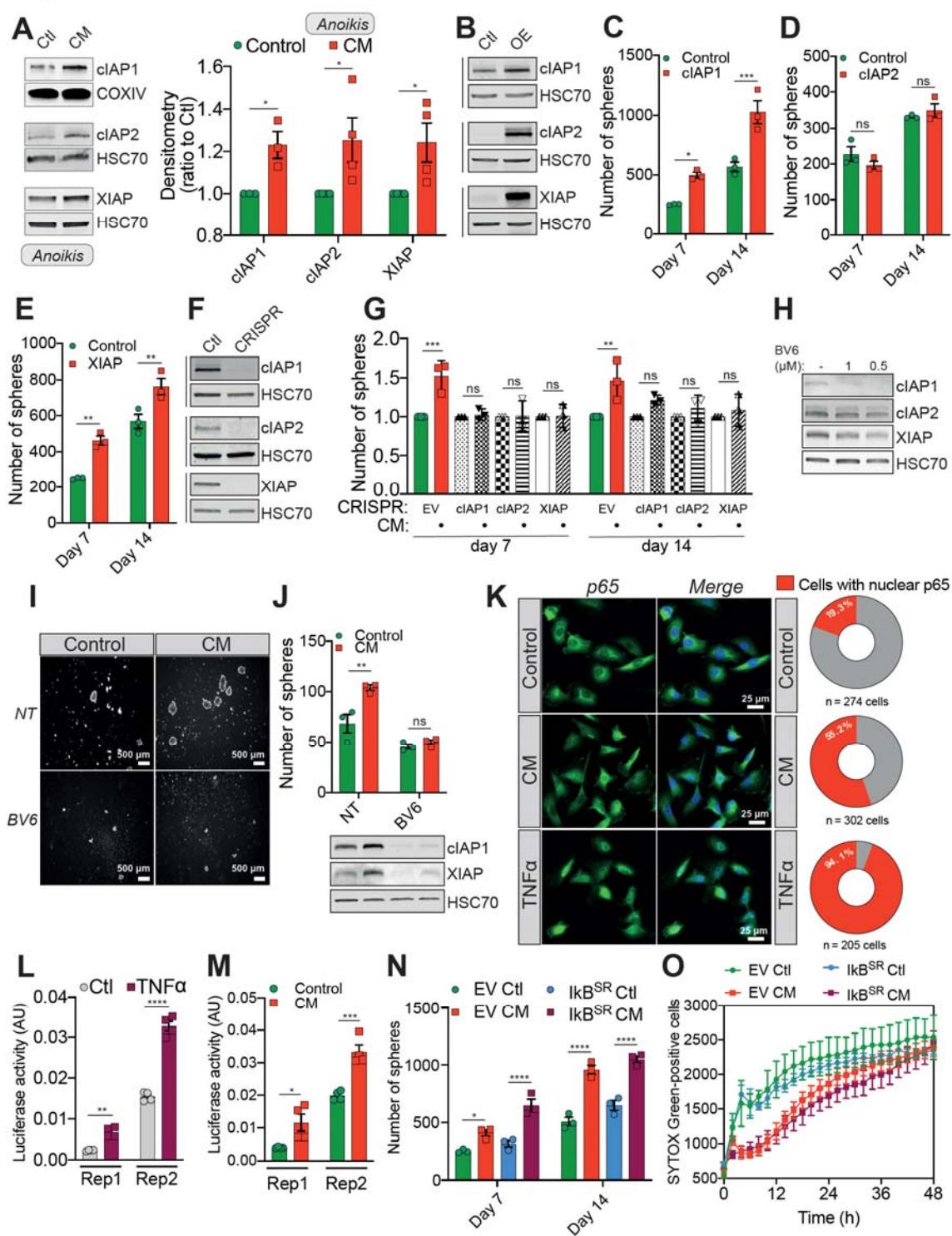
1105

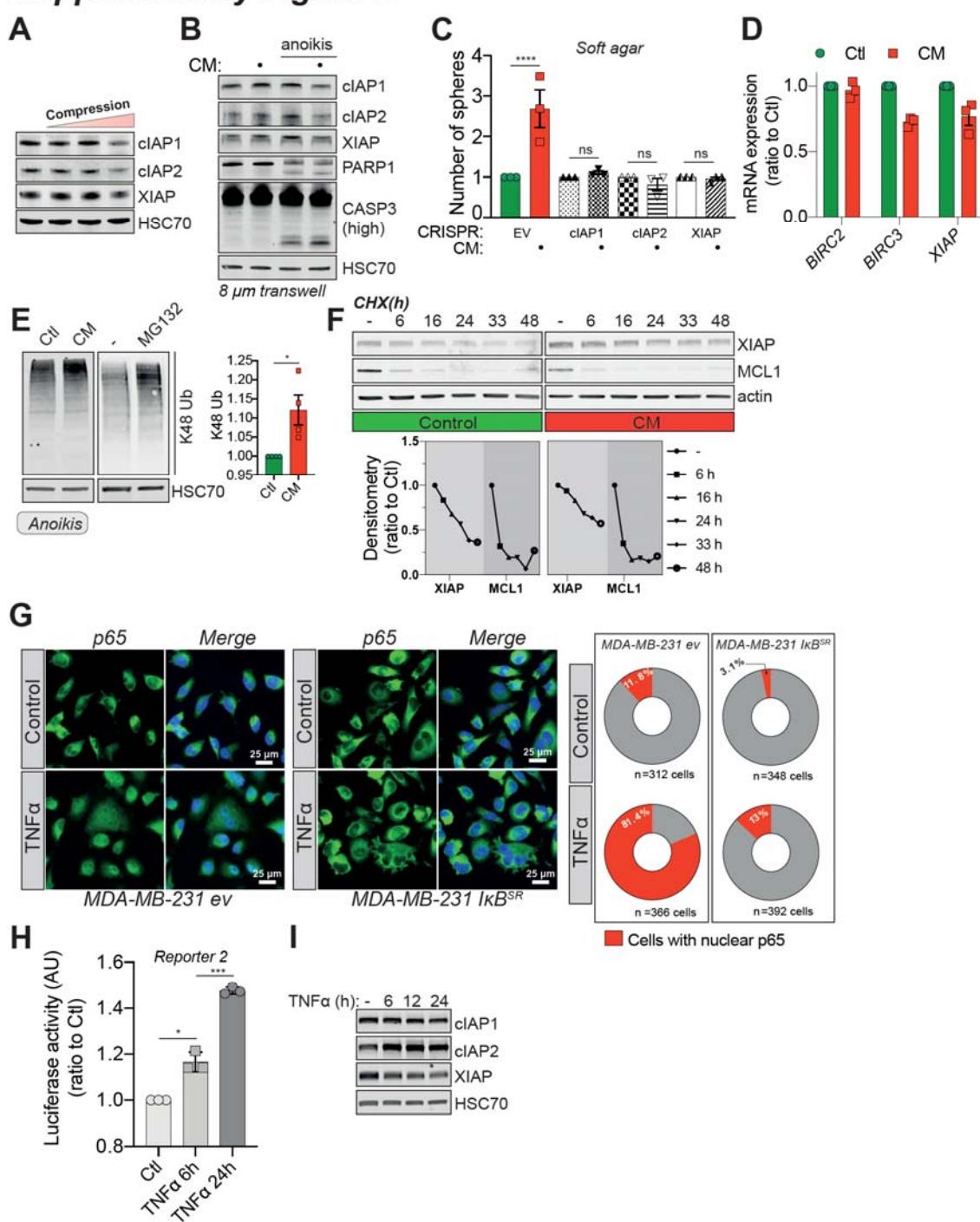
1106


Figure 1

1107

1108


Supplementary Figure 1

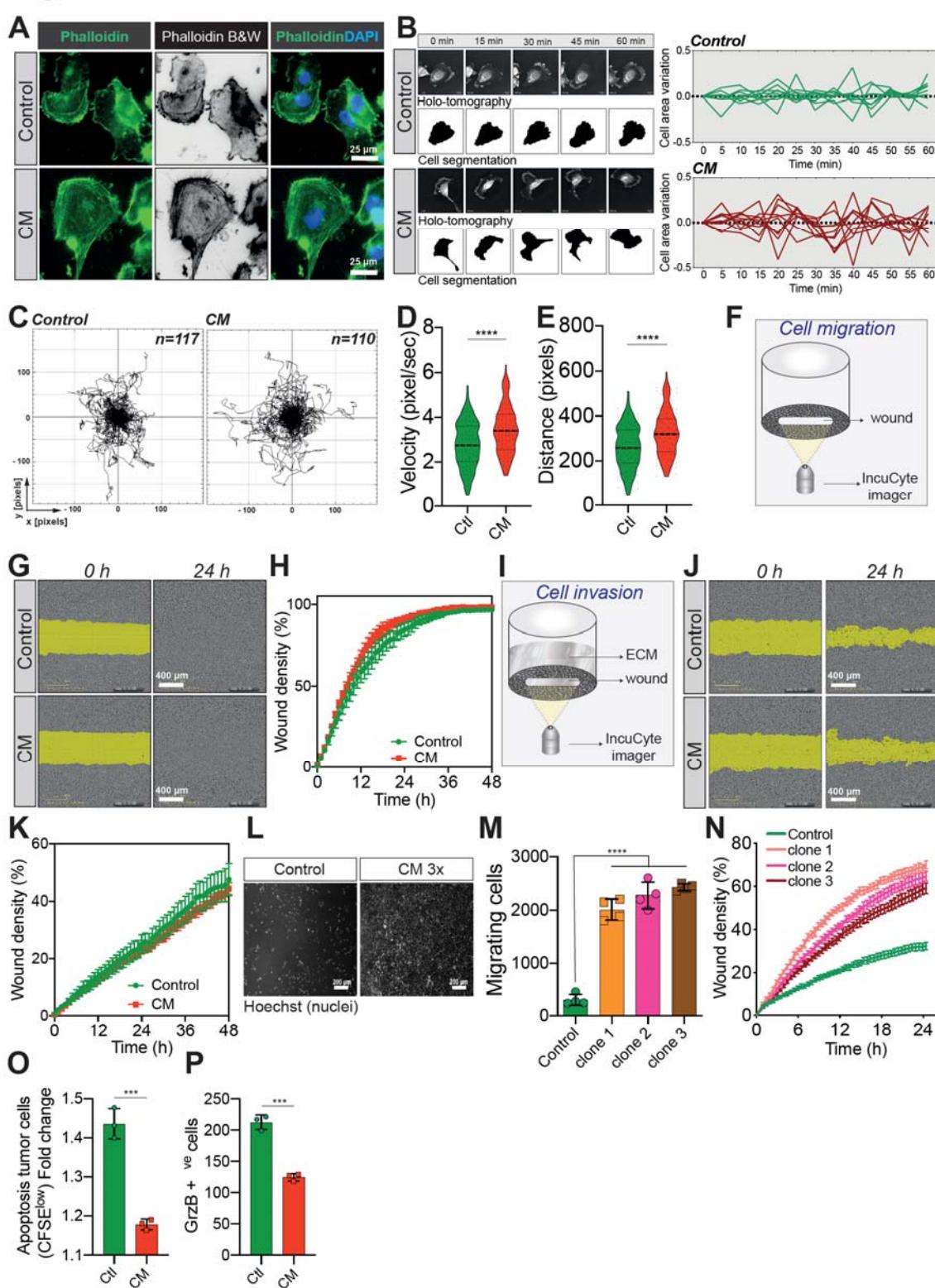

1109

1110

Figure 2

Supplementary Figure 2

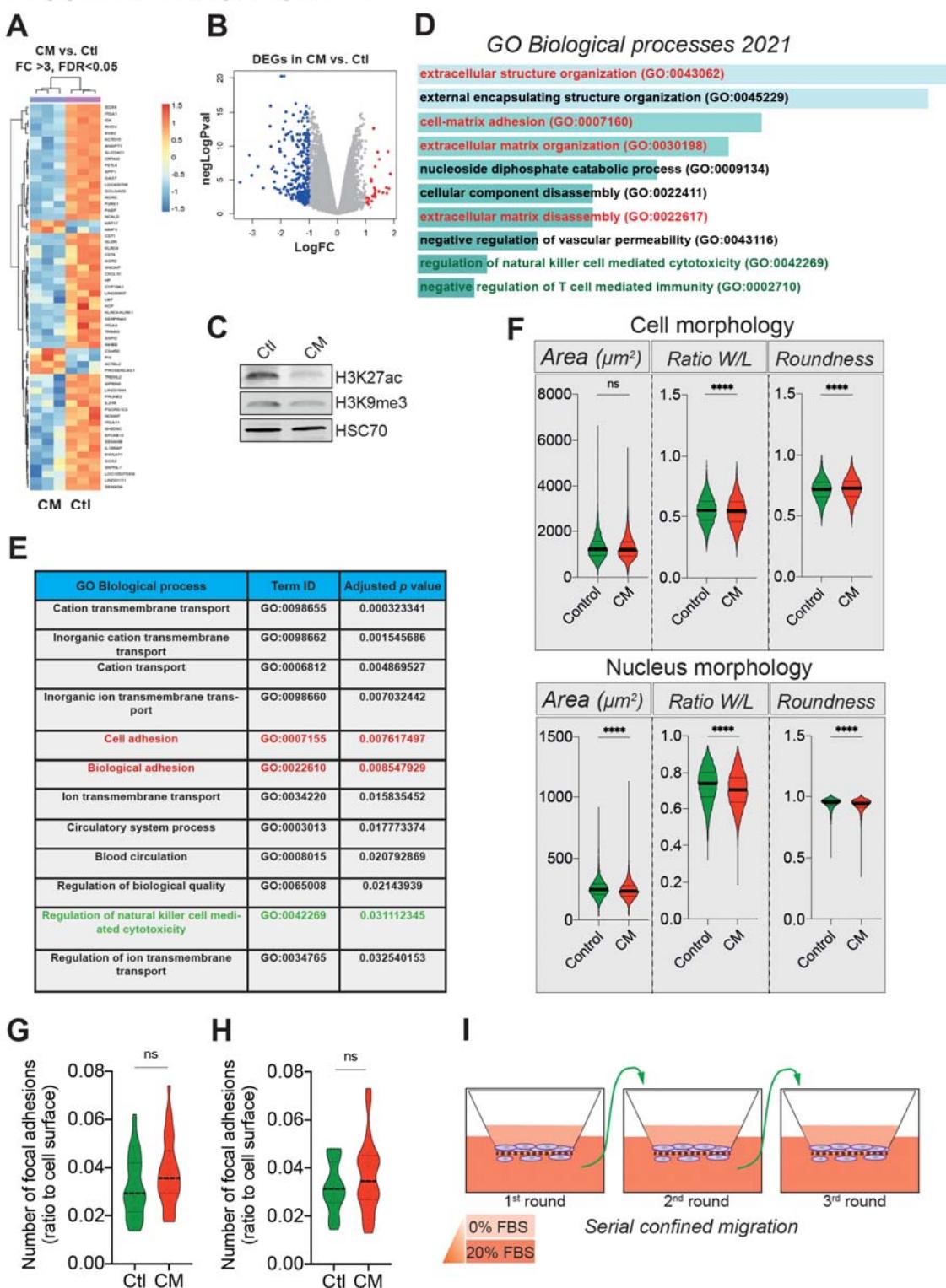
1114


1115

1116

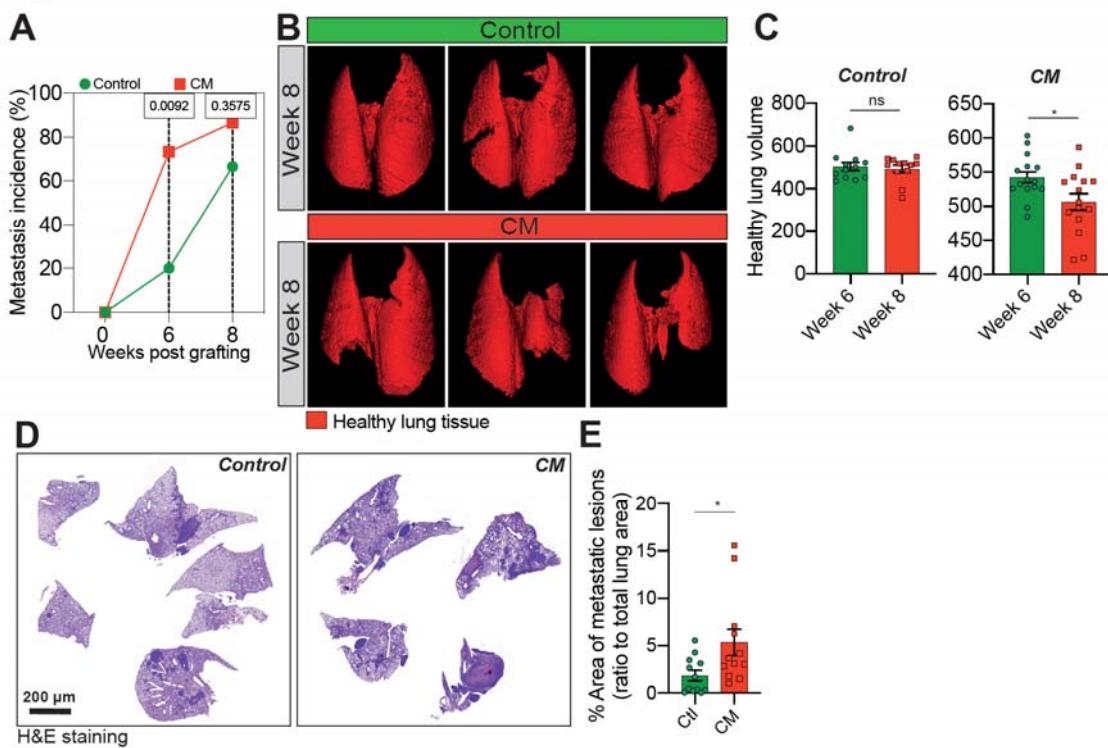
1117

1118


Figure 3

1119

1120


Supplementary Figure 3

1121

1122

Figure 4

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

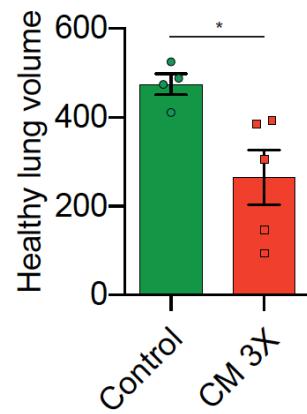
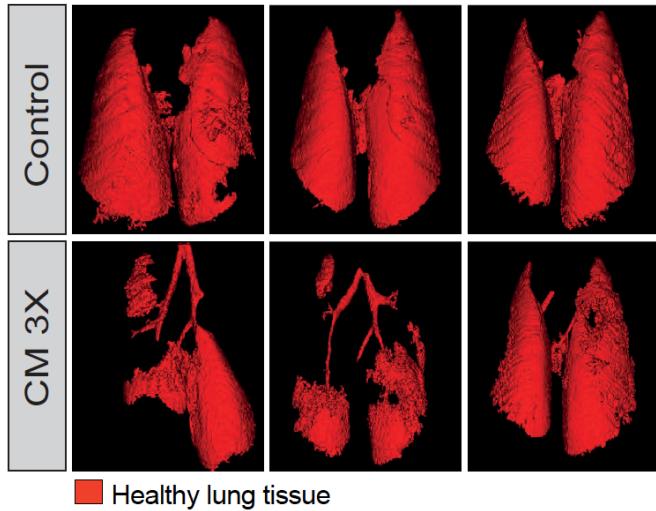
1133

1134

1135

1136

1137



1138

1139

1140

Supplementary Figure 4

A

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

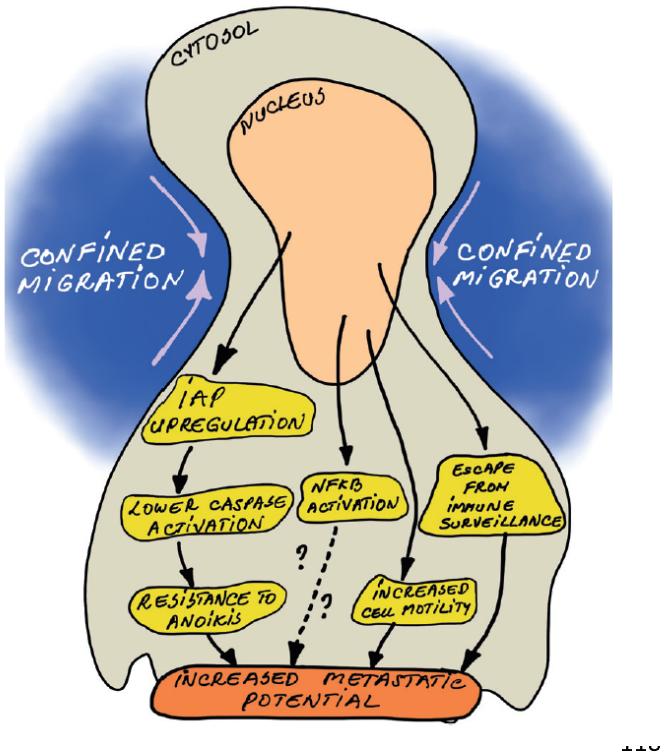
1163

1164

1165

1166

1167


1168

1169

1170

1171

Figure 5

1188

1189

1190