

1 **A novel transposable element based authentication protocol for *Drosophila* cell lines**

2
3 Daniel Mariyappa^{1,*}, Douglas B. Rusch^{2,*}, Shunhua Han³, Arthur Luhur¹, Danielle Overton^{1,4},
4 David F. B. Miller², Casey M. Bergman^{3,5}, Andrew C. Zelhof^{1†}

5
6 ¹Drosophila Genomics Resource Center, Biology Department, Indiana University, Bloomington, IN

7 ²Center for Genetics and Bioinformatics, Biology Department, Indiana University, Bloomington, IN

8 ³Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA

9 ⁴Current address: Biology Department, Indiana University Purdue University Indianapolis, Indianapolis, IN

10 ⁵Department of Genetics, University of Georgia, Athens, GA

11 *Equal contribution

12 †Corresponding author

13

14 **Abstract**

15 *Drosophila* cell lines are used by researchers to investigate various cell biological phenomena. It
16 is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and
17 intraspecies cross-contamination. Prolonged culturing can lead to introduction of large- and
18 small-scale genomic changes. These factors, therefore, make it imperative that methods to
19 authenticate *Drosophila* cell lines are developed to ensure reproducibility. Mammalian cell line
20 authentication is reliant on short tandem repeat (STR) profiling, however the relatively low STR
21 mutation rate in *D. melanogaster* at the individual level is likely to preclude the value of this
22 technique. In contrast, transposable elements (TE) are highly polymorphic among individual flies
23 and abundant in *Drosophila* cell lines. Therefore, we investigated the utility of TE insertions as
24 markers to discriminate *Drosophila* cell lines derived from the same or different donor
25 genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We
26 developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the
27 genome-wide distribution of a limited number of diagnostic TE families. We determined the
28 distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2,
29 CME W1 Cl.8+, and OSS *Drosophila* cell lines. Two independent downstream analyses of the
30 NGS data yielded similar clustering of these cell lines. Double-blind testing of the protocol
31 reliably identified various *Drosophila* cell lines. In addition, our data indicate minimal changes
32 with respect to the genome-wide distribution of these five TE families when cells are passaged
33 for at least 50 times. The protocol developed can accurately identify and distinguish the

34 numerous *Drosophila* cell lines available to the research community, thereby aiding reproducible
35 *Drosophila* cell culture research.

36

37 **Introduction**

38

39 As of 2018, the estimated of the number of publications using all cell culture studies is
40 ~2 million (BAIROCH 2018). However, problems with reproducibility and authenticity hamper their
41 use (ALMEIDA *et al.* 2016). Poor culture practices in individual laboratories has led to many
42 cases of inter- and intraspecies cross-contamination (CAPES-DAVIS *et al.* 2010). Additionally,
43 prolonged passaging can lead to large- and small-scale genomic changes due to *in vitro*
44 evolution that cause sub-lines of the same cell line to vary among laboratories (BEN-DAVID *et al.*
45 2018; LIU *et al.* 2019). For example, extensive passaging (>50 passages) of viral-transformed
46 human lymphoblastoid cell lines is associated with increased genotypic instability (OH *et al.*
47 2013). Likewise, long term passaging of mammalian cell lines is known to lead to increased
48 single nucleotide variations (PAVLOVA *et al.* 2015), reduced differentiation potential (YANG *et al.*
49 2018) and changes in the karyotype (WENGER *et al.* 2004). To overcome these inconsistencies
50 in experiments across laboratories when using human cell lines, the American National
51 Standards Institute and the American Type Culture Collection (ANSI/ATCC ASN-002) have
52 provided a standard for vertebrate cell culture work. Moreover, the NIH offers guidelines for
53 authenticating key research resources that have been endorsed by several major journals
54 (ATCC 2011; NIH 2015).

55 Though most of above-mentioned problems and solutions relate to mammalian cell
56 culture practice, a significant number of laboratories use *Drosophila* cells for basic research.
57 *Drosophila* cell lines are used by researchers to investigate a myriad of cellular processes
58 including receptor-ligand interactions (OZKAN *et al.* 2013), cellular signaling (ALBERT AND BOKEL
59 2017), circadian biology (ALBERT AND BOKEL 2017), metal homeostasis (MOHR *et al.* 2018),
60 cellular stress response (AGUILERA-GOMEZ *et al.* 2017), neurobiology (TSUYAMA *et al.* 2017),
61 innate immunity (NONAKA *et al.* 2017), and functional genomics (ALBERT AND BOKEL 2017), as
62 well as being used extensively for gene editing by CRISPR Cas9 technology (LUHUR *et al.*
63 2018). Furthermore, as part of the modENCODE project, the transcriptional and chromatin
64 profiles of a large panel of *Drosophila* cell lines were determined to facilitate studies on gene
65 function and expression (CHERBAS *et al.* 2011; KHARCHENKO *et al.* 2011). However, currently
66 there are no protocols available to authenticate *Drosophila* cell lines. In addition, the effects of
67 long-term passaging on *Drosophila* cell lines have not been formally investigated despite

68 evidence for extensive changes from wild-type ploidy and copy number in many *Drosophila* cell
69 lines (ZHANG *et al.* 2010; LEE *et al.* 2014), implying that insect cells can potentially exhibit
70 genomic changes in culture like their mammalian counterparts.

71 Human cell line authentication guidelines recommend short tandem repeat (STR)
72 profiling as the method of choice for routine cell typing, although approaches using genomic
73 techniques yield more comprehensive information (ALMEIDA *et al.* 2016). The use of STR
74 profiling as the preferred method to authenticate human cell lines is based on high STR allelic
75 diversity among the donors for different cell lines, relatively low cost, stability of using STR
76 markers, and the historical availability of methods to assay STR variants during the
77 development of human cell line authentication protocols. There are a number of limitations with
78 the STR approach. The ANSI/ATCC ASN-002 standard for typing human cell lines with STRs is
79 over 100 pages long and requires careful implementation for proper interpretation. Moreover,
80 STR-based methods for human cell line authentication are primarily designed to discriminate
81 cell lines derived from different donors, but are less powerful for discriminating cell lines or sub-
82 lines from the same donor genotype.

83 Development of cell line authentication protocols requires understanding the genome
84 biology of a species, the specific characteristics of the most widely used cell lines in that
85 research community, and how these features can be used to leverage cost-effective modern
86 genomic technologies. In *Drosophila*, the majority of widely-used cell lines have been derived
87 from a limited number of donor genotypes. Coupled with the low STR mutation rate in
88 *Drosophila* relative to humans (SCHUG *et al.* 1997), the use of STR profiling for discriminating
89 different *Drosophila* cell lines is likely to be limited. In contrast, it is well-established that
90 transposable elements (TE) are highly polymorphic among individual flies (CHARLESWORTH AND
91 LANGLEY 1989) and that *Drosophila* cell lines have an increased TE abundance relative to whole
92 flies (POTTER *et al.* 1979). These properties, together with the large number of potential insertion
93 sites across the genome and stability of TE insertions at individual loci, suggest that TE
94 insertions should theoretically be useful markers to simultaneously discriminate *Drosophila* cell
95 lines made from different donor genotypes as well as from the same donor genotype, including
96 divergent sub-lines of the same cell line. HAN *et. al* (2021) recently tested this prediction and
97 demonstrated that genome-wide TE insertion profiles can reliably cluster different *Drosophila*
98 cell lines from the same donor genotypes and discriminate cell lines from different donor
99 genotypes, while also preserving information about the laboratory of origin. A minimal subset of
100 six active TE families (297, *copia*, *mdg3*, *mdg1*, *roo* and 1731) was also determined to have
101 essentially the same discriminative power as the genome-wide dataset (HAN *et al.* 2021).

102 Based upon these findings, we investigated if the genome-wide distribution of these six
103 TE families could form the basis for a reliable protocol to authenticate *Drosophila* cell lines. As
104 noted earlier, several of the modENCODE cell lines are extensively used to study genomic and
105 cell biological processes (CHERBAS *et al.* 2011; KHARCHENKO *et al.* 2011). These cell lines are
106 also amongst the most widely-ordered cell lines from *Drosophila* Genomics Resource Center
107 (DGRC). Therefore, we used six modENCODE lines derived from various *D. melanogaster*
108 developmental stages: S2R+, S2-DRSC, Kc167 (embryonic origin); ML-DmBG3-c2 (L3 larval
109 CNS origin); mbn2 (larval circulatory system origin); and CME W1 Cl.8+ (wing disc origin) in our
110 analysis. Two other non-modENCODE cell lines – S2-DGRC and OSS (ovarian somatic sheath)
111 – that are ordered frequently from the DGRC were also included.

112 Here we present data supporting the utility of a genomic TE distribution (gTED) protocol
113 to authenticate *D. melanogaster* cell lines. The developed gTED protocol was able to generate
114 distinct TE genomic distribution signatures for all the cell lines tested. Moreover, using the gTED
115 protocol we were able to authenticate blinded samples from the *Drosophila* research
116 community, thus validating the protocol. Moreover, the gTED signatures of up to 50 passages of
117 S2R+ cells do not cluster in a passage-dependent manner, indicating that this protocol could be
118 used to authenticate cell lines with up to 50 passages. Moving forward, we aim to expand the
119 repertoire of cell lines assessed for their TE genomic distribution. We now have a protocol that
120 can be adopted by the *Drosophila* research community to authenticate their cell lines and
121 provide the necessary standards as per NIH guidelines.

122

123 **Materials and Methods**

124

125 *Drosophila* cell lines and genomic DNA extraction

126 Our protocol development included six modENCODE lines derived from various *Drosophila*
127 developmental stages: embryonic - S2R+ (DGRC #150, CVCL_Z831), S2-DRSC (DGRC #181,
128 CVCL_Z992), Kc167 (DGRC #1, CVCL_Z834); L3 larval CNS origin - ML-DmBG3-c2 (DGRC
129 #68, CVCL_Z728); larval circulatory system origin - mbn2 (DGRC #147, CVCL_Z706); and wing
130 disc origin - CME W1 Cl.8+ (DGRC #151, CVCL_Z790) (Table 1). Two other non-modENCODE
131 cell lines – S2-DGRC (DGRC #6, CVCL_TZ72) and OSS (ovarian somatic sheath, DGRC #190,
132 CVCL_1B46), were also included in the protocol development phase. The S2R+, S2-DRSC, S2-
133 DGRC, mbn2 cells were cultured in the Shields and Sang M3 medium (Sigma, Cat#: S8398)
134 supplemented with 10% fetal bovine serum (FBS, Hyclone, GE Healthcare), bactopeptone
135 (Sigma) and yeast extract (Sigma) M3+BPYE+10%FBS. ML-DmBG3-c2 cells were cultured in

136 M3 + BPYE + 10% FBS with 10 µg/ml insulin (Sigma-Aldrich) while CME W1 Cl.8+ cells
137 required M3 + 2% FBS + 5 µg/ml insulin + 2.5% fly extract containing medium. OSS cells were
138 cultured in M3 + 10% FBS + 10% fly extract with 60 mg L-glutathione (Sigma-Aldrich, Cat#:
139 G6013) and 10 µg/ml insulin (Sigma-Aldrich, Cat#: I9278). Kc167 cells were cultured in CCM3
140 medium (Hyclone, Cat#: SH30061.03). To extract total genomic DNA, cells were cultured to
141 confluence, harvested by pipetting, centrifuged and washed once with phosphate-buffered
142 saline (PBS). Genomic DNA (gDNA) was extracted from the PBS washed pellet using the Zymo
143 Quick-DNA™ MiniprepPlusKit (Cat#: D4068/4069), using 1 column for every 10 million cells.
144 Genomic DNA was generated for triplicate samples of all cell lines in order to investigate the
145 reproducibility of our protocol as well as to detect and mitigate potential mislabeling of individual
146 samples during the project.

147

148 *Blinded samples*

149 External blinded samples from eight cell lines were obtained as triplicates of frozen genomic
150 DNA samples extracted from insect cell lines from Dr. Sharon Gorski, British Columbia Cancer
151 Research Centre, Vancouver, Canada and the *Drosophila* RNAi Screening Center, Harvard
152 University (Table 2). The identities of the external samples sent to DGRC were blinded by the
153 sample donors. For internal blinded samples, genomic DNA was extracted from three cell lines
154 in triplicate (Table 2). The identities of the internal samples were blinded from the team
155 members involved in library preparation and downstream analyses. Genomic DNA for both the
156 external and internal blinded samples was extracted as per the protocol described above. The
157 team members involved in library preparation and downstream analyses were blind to the
158 identity and replicates of each sample.

159

160 *Passage experiment*

161 S2R+ cells were plated at 1 X 10⁶ cells per ml at every passage. A single passage experiment
162 was performed wherein cells were passaged every 2-3 days and replicates of the passages
163 were frozen at the 1st, 10th, 20th, 30th, 40th and 50th passages with the cell concentrations
164 between 2.5 – 8.6 X 10⁶ cells per ml. Triplicate genomic DNA samples from each passage was
165 extracted as described above.

166

167 *Primer design*

168 Six TE families shown by HAN et. al (2021) to be sufficient to identify *Drosophila* cell lines based
169 on WGS data were used as initial candidates for primer design. These six TE families are all

170 long terminal repeat (LTR) retrotransposons, which insert as full-length elements containing an
171 identical LTR that provides a reliably known junction for PCR at each terminus of the TE
172 (SMUKOWSKI HEIL *et al.* 2021). Primer design was based upon the protocol outlined in Figure 1,
173 involving a two-step PCR (Reaction A/B and Reaction A/B Nest PCR). Each step required one
174 primer to be within the TE at either end (one for Reaction A at the 5' of the TE and one for
175 Reaction B at the 3' of the TE). Additionally, primers for Reaction A/B and Reaction A/B Nest
176 PCR needed to have low similarity. Based on these requirements, the general workflow for
177 designing PCR primers for six diagnostic TE families for the eight focal cell lines was as follows:

178 1) *Generate consensus sequences for LTRs of candidate TE families.*

179 a. Whole genome sequencing (WGS) data from (ZHANG *et al.* 2010; LEE *et al.* 2014) and
180 (HAN *et al.* 2021) for all focal cell lines were mapped against TE canonical sequences and
181 merged into a single BAM file.

182 b. Variants were called on the merged BAM file and a VCF file was generated using bcftools
183 call (v1.9).

184 c. Full length consensus sequences for all six TE families from VCF file was generated
185 using bcftools consensus (v1.9) with variable sites encoded as ambiguities.

186 d. Both the 5' and 3' LTRs from the full-length TE consensus sequence for each family were
187 extracted.

188 2) *Detect the first round of primer candidates.*

189 Primers for nested PCR were detected with primer3 (v2.5.0) ([https://github.com/primer3-
190 org/primer3](https://github.com/primer3-org/primer3)) using the following parameters: PRIMER_LIBERAL_BASE=1;
191 PRIMER_MAX_NS_ACCEPTED=1; PRIMER_NUM_RETURN=10;
192 PRIMER_GC_CLAMP=1; PRIMER_DNA_CONC=25; PRIMER_SALT_MONOVALENT=50;
193 PRIMER_MIN_TM=60; PRIMER_OPT_TM=62; PRIMER_MAX_TM=65;
194 PRIMER_SALT_DIVALENT=2; PRIMER_DNTP_CONC=0; PRIMER_TM_FORMULA=1
195 PRIMER_OPT_SIZE=22; PRIMER_MIN_SIZE=18; PRIMER_MAX_SIZE=25;
196 PRIMER_MIN_GC=40; PRIMER_MAX_GC=60; PRIMER_PRODUCT_SIZE_RANGE=75-
197 100 150-250 100-300 301-400 401-500 501-600 601-700 701-850 851-1000.

198 3) *Detect the second round of non-overlapping primer candidates*

199 The same parameters as in the previous round of primer design were used, with the
200 additional specification that the primers designed in the first round were added to a
201 “mispriming library” to exclude these regions for primer prediction in the second round of
202 primer candidates.

203 *4) Finalize primers from both rounds of primer candidates*

204 The final primers for Reaction A/B PCR and Reaction A/B Nest PCR were selected from the
205 candidate list from both rounds of primer design. Specifically, one primer was selected for
206 Reaction A/B PCR from either round of primer design, then another primer was selected for
207 Reaction A/B Nest PCR from the other round of primer design.

208

209 Final adjustments to the primer locations were made based on testing the respective primer
210 pairs. The full list of primers used in the study are listed in Table S1.

211

212 *Nextera library preparation and nested PCR protocol*

213 Nextera libraries were constructed for all the genomic DNA samples by using Nextera DNA Flex
214 Library Prep Kit (Illumina, Cat#: 20018705) (Figure 1A). Then, the Nextera libraries were diluted
215 into 1nM, and 5 μ l of each was used as the template for the TE library construction. To amplify
216 the fragments with the TE-specific genomic context, two separate multiplex PCRs were
217 performed (Reactions A and B, Figure 1B) using TE-specific primers for all six families
218 simultaneously in combination with the Illumina i5 primer. For Reactions A and B, two sets of
219 primers (Forward and Reverse) were designed within the two LTRs of each of the TEs as
220 detailed above. Since the generation of the Nextera library is not direction specific, DNA
221 fragments can orient in either direction with respect to the i5 adaptor thus allowing for detection
222 at either ends of the TE by amplification with the Illumina i5 primer with a TE-specific primer.
223 Therefore, this PCR step amplified the DNA fragments containing the 5' (Reaction A, Reverse
224 primer) or 3' (Reaction B, Forward primer) flanking regions of the TEs. A second nested PCR
225 was performed to enrich for the TE-genomic DNA junctions, utilizing nested primers from within
226 the Reactions A and B with the i5 adaptor (Figure 1C). Both Nest PCR primers contained a
227 specific overhang region (5' GTTCAGACGTGTGCTCTTCCGATCT 3') to facilitate addition of
228 the index in the next PCR step. The final step was the Index PCR, which was performed to add
229 the i7 adaptor and index by using the kit NEBNext® Multiplex Oligos for Illumina (cat: 6609S).
230 Briefly, equal volumes of the products of Reactions A and B Nest PCRs containing either the TE
231 5' and 3' flanking regions were combined and used as the template. The Index PCR was

232 performed by using the Illumina i5 primer and the NEBNext® Multiplex Oligos to add i7 adaptor
233 and index (Figure 1D). Finally, the TE libraries were constructed with both i5 adaptors (added by
234 Nextera library construction), i7 adaptors and indexes (added by the Index adding PCR).

235 **Protocol:**

236 Step 1:

237 • Nextera libraries are made by following standard protocol.
238 • Each library is diluted to 1nM.

239

240 Step 2: Reaction A/B (Two sets of reactions)

241

242 Reaction A: Primers: i5 + TE Reaction A Rev (To amplify the 5' flanking region of TE gene)

243 Reaction B: Primers: i5 + TE Reaction B For (To amplify the 3' flanking region of TE gene)

244

245 2.1 PCR reagents:

5X Phusion buffer	10 μ l
100 mM dNTP mix	0.5 μ l
100 uM i5 Primer	0.5 μ l
100 uM Reaction A/B (Rev/For)	0.5 μ l
Phusion polymerase	0.5 μ l
1nM Library	5.0 μ l
ddH ₂ O	33 μ l
Total	50 μ l

246

247 2.2 PCR settings:

98°C 30 sec

98°C 10 sec

65°C 30 sec 10 cycles

72°C 60 sec

72°C 5 min

4°C Hold

248

249 2.3 Cleaned with 0.9X AMPure XP beads, washed with 80% ethanol twice, and elute with 40 μ l
250 Elution Buffer (EB).

251

252 **Step 3:** Nest PCR (Two sets of reactions)

253

254 Set 1: Primers: i5 + TE Reaction A Nest PCR Reverse (Template: Reaction A products)

255 Set 2: Primers: i5 + TE Reaction B Nest PCR Forward (Template: Reaction B products)

256

257 3.1 PCR reagents:

5X Phusion buffer	10 μ l
100 mM dNTP mix	0.5 μ l
100 uM i5 Primer	0.5 μ l
100 uM NestPCR Reaction A/B (Rev/For)	0.5 μ l
Phusion polymerase	0.5 μ l
Reaction A/B products	38 μ l

Total	50 μ l
-------	------------

258

259 3.2 PCR setting:

260

98°C	30 sec	
<hr/>		
98°C	10 sec	
65°C	30 sec	10 cycles
72°C	60 sec	
<hr/>		
72°C	5 min	
4°C	Hold	

261

262 3.3 Cleaned with 0.9X AMPure XP beads, wash with 80% ethanol twice, and eluted with 19 μ l

263 EB.

264

265 **Step 4:** Index adding PCR with NEBNext 6609 Primers

266

267 4.1 PCR reagents:

268

5X Phusion buffer	10 μ l
100 mM dNTP mix	0.5 μ l
100 μ M i5 Primer	0.5 μ l
NEBNext 6609S Primer	5 μ l
Phusion polymerase	0.5 μ l
Nest PCR Reaction A + B products	33.5 μ l
<hr/>	
Total	50 μ l

269

270 4.2 PCR settings:

271

98°C 30 sec

98°C 10 sec

65°C 30 sec 3 cycles

72°C 60 sec

72°C 5 min

4°C Hold

272

273 4.3 Cleaned with 0.8X AMPure XP beads, washed with 80% ethanol twice, and eluted with 32 μ l
274 of EB.

275

276 *Sequencing*

277 Paired end sequencing was performed on an Illumina NextSeq 500 with a 150-cycle midi-cycle
278 kits. The first read in a pair (Read 1, R1) corresponds to flanking genomic DNA; the second
279 read in a pair (Read 2, R2) corresponds to TE sequence. Raw sequencing data was submitted
280 to SRA (SRP323476).

281

282 *Sample Processing and Transposable Element Identification*

283 Reads were trimmed for adapters and low quality using Trimmomatic (v0.38;
284 ILLUMINACLIP:adapters.fa:3:20:6 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20
285 MINLEN:40). By design, R2 reads occur inside the TE and can be used to demultiplex individual
286 fragments by TE of origin from a multiplex PCR. To do this, R2 reads were aligned to a
287 database of the consensus sequences used for primer design of the relevant TEs using Bowtie2
288 (v2.3.5.1); the corresponding R1 reads from the same fragment were then demultiplexed into

289 TE specific bins based on the best alignment of R2. R1 reads were then mapped with Bowtie2 (-
290 -local -k 2) to the complement and reverse-complement *D. melanogaster* genome (version 6.30)
291 in which the TEs were N-masked (Figure 2; red plus green reads). Masking was performed by
292 searching consensus transposable elements sequences against the *D. melanogaster* genome
293 (version 6.30) using NCBI blastn (version 2.2.26) with the following parameters: -a 10 -e 1e-100
294 -F "m L" -U T -K 20000 -b 20000 -m 8. R1 reads that did not map with a uniquely best match to
295 the genome were subsequently excluded. Simultaneously, the R1 reads were mapped to the TE
296 consensus sequences. The initial goal was to identify any valid junction where we could
297 explicitly identify the transition from a unique genomic context into a TE, aka a TE junction
298 (Figure 2; green reads). For a R1 read to identify a junction, the local alignment to the genome
299 and the TE must be congruent such that the entire read was accounted for (+/- 2 bases). Valid
300 junctions were defined such that multiple independent reads with independent start sites in the
301 genome all identify the same breakpoint. To improve the sensitivity, all the data from all the
302 different samples was combined for junction identification. A valid junction had to have at least
303 12 reads with 4 distinct start positions. Once the junctions were identified, 300 bp of genomic
304 sequence outside and juxtaposed to the TE junction were isolated, which would include either 5'
305 or 3' or both ends of the inserted TE (Figure 2).

306

307 *Clustering and Visualization*

308 Read datasets were analyzed in their entirety or by random sub-sampling using vsearch
309 (v2.14.2) (ROGNES *et al.* 2016) down to 10 million reads, in order to control for sequencing depth
310 and explore how many reads were necessary per cell line to produce reliable results. Read
311 counts from sub-sampled datasets mapped to dm6 in the 300 bp intervals adjacent to TE
312 junctions defined above were used to generate a binary matrix indicating the presence/absence
313 of the TEs in any given sample. This binary matrix was constructed with custom code based on
314 the observation that there are either many reads or very few reads per sample for any given TE
315 insertion site. After normalizing the number of TE associated reads per sample, a z-score was
316 calculated for every TE across the samples. Positive z-scores were assigned as present and
317 negative z-scores as absent. Because z-score normalization uses the mean of a sample, if all or
318 most of the samples are positive, by definition, half of the samples would end up with a negative
319 z-score. To avoid this mis-identification of positive samples, we add a dummy zero value to the
320 set of samples for every real sample included before z-score calculation. This data was then
321 visualized in R using the gplots function heatmap.2. The identities of blinded samples were

322 estimated based on the clustering of these samples within the dendrogram derived from known
323 samples.

324

325 *Code*

326 Code and notes on running the TE detection and clustering pipeline are available at:
327 <https://github.com/mondegreen/DrosCellID.git>.

328

329 **Results**

330

331 *Drosophila cells have distinct TE signatures*

332 Previous analysis of available whole genome sequencing (WGS) data revealed that genomic TE
333 distribution can reliably cluster cell lines based on their genotype and laboratory of origin (HAN
334 *et al.* 2021). Moreover, WGS analysis using a limited set of six TE families (297, *copia*, *mdg3*,
335 *mdg1*, *roo* and 1731) was sufficient to replicate the clustering observed when data from all TE
336 families was used (HAN *et al.* 2021). Nevertheless, an alternative approach that selectively
337 enriches the six TE families would be more efficient and cost-effective. Therefore, based on
338 these analyses, here we set out to determine if targeted identification of the genomic distribution
339 of a small number of diagnostic TE families could be used to 1) to build an authentication
340 platform for *Drosophila* cell lines based on unique genomic TE distribution (gTED) signatures for
341 each cell line, 2) test the validity of this protocol by assessing the identities of blinded samples,
342 both internal and those provided by the *Drosophila* community and 3) assess if cell lines
343 subjected to extensive passaging retain the unique cell-specific gTED signatures.

344 To achieve these goals, we developed a novel TE based NGS enrichment protocol
345 described in the Materials and Methods (Figure 1). Briefly, this protocol uses a multiplexed
346 nested PCR approach to selectively amplify the library elements containing the 5' and 3' ends of
347 the target TE families (Reaction A and B, Figure 1). The products from the final PCR
348 amplification step were subjected to next generation sequencing (NGS) and downstream
349 analyses to determine the type of TE and identify the unique genomic DNA flanking the TE
350 sequence.

351 The NGS data obtained was first used to identify TE junctions using the bioinformatic
352 strategy outlined in Figure 2. Since the number of reads observed upon amplification with *mdg3*-
353 specific primers was very low, *mdg3* was excluded from further analyses. Normalized counts of
354 reads mapping near TE junctions for the remaining five families were then used to hierarchically
355 cluster all the cell lines. Reads mapping close to the identified TE junctions, whether at 5' or 3'

356 end or both, were included in further analyses (Figure 2). The resulting dendrogram showed that
357 the triplicate samples from most cell lines clustering together (Figure 3). Upon processing the
358 NGS data using an alternative approach (Supplementary File 1), a comparable clustering of all
359 the samples was observed (Figure S1). In both approaches, one replicate each from S2 DGRC
360 (S2-DGRC_2) and S2 DRSC (S2-DRSC_2) did not cluster with the other replicates from these
361 cell lines (Figure 3, Figure S1). The similar clustering from both bioinformatic approaches
362 suggests the non-conforming clustering of these two replicates is not an artifact of genomic or
363 computational methods, and was most likely caused by reciprocal sample mislabeling during
364 gDNA extraction. Regardless of the cause of these two discrepancies, the majority of samples
365 (2/3) for both S2 DGRC and S2 DRSC are respectively consistent with one another, providing
366 confidence in the identity of these cell line clusters.

367 Distinct gTED signatures, a composite of the five TE families assessed, were observed
368 for every cell line investigated (Figure 3 and Figure S2). The tree visualization heatmap
369 demonstrates that there are very few shared TE insertions between all cell lines (Figure 3). In
370 general, the total number of TEs detected by this technique was higher in embryonic cell lines
371 as opposed to cell lines derived from larval or adult tissues (Table 1, Figure S2). The total
372 number of TEs mapped was similar for the replicates of each of the cell lines as seen in the
373 UpSET plot (LEX *et al.* 2014) for these samples (Figure S2). For many of the cell lines, the
374 majority of TE insertions detected were unique relative to those shared with other cell lines. For
375 example, OSS replicates have 262 unique TEs that are not found in any other cell line
376 investigated, with ≤9 TEs in common with any other individual cell lines (Figure S2). The only
377 lines that do not conform to having majority unique TE insertions are S2 DGRC and S2 DRSC
378 as they share a considerable proportion of the TEs with S2R+ (Figure S2). Nevertheless, unique
379 patterns of gTED were sufficient to distinguish between the various S2 sublines (Figures 3, S1
380 and S2). Two of the three larval tissue derived cell lines (ML-DmBG3-c2, mbn2 and CME W1
381 Cl.8+) have fewer genomic TE insertions as compared to embryonic S2 and Kc167 lines.
382 However, mbn2, a cell line reportedly derived from the larval circulatory system (GATEFF 1977;
383 GATEFF *et al.* 1980) has a gTED signature very close to those of the S2 lines, which are all of
384 hematopoietic origin (SCHNEIDER 1972). The unexpected similarity between S2 lines and mbn2
385 was also described recently by Han *et al.* (2021) based on WGS based TE distribution analysis.
386 These analyses demonstrated that the protocol developed to determine genomic distribution of
387 a set of five TE families in *Drosophila* cell lines can be utilized to create unique cell line-specific
388 signatures.

389

390 *TE signatures of Drosophila cell lines can be employed for authentication*
391 To assess the value of the developed gTED pipeline and validate it, we next queried if the cell
392 line-specific gTED signatures could be employed to determine the identities of blinded samples
393 (Table 2). The blinded samples were either donations from the *Drosophila* community (external
394 samples) or generated internally at DGRC. All blinded samples, as well as triplicates of an
395 internal control for S2R+ (DGRC_Blinded_control_1-3), were processed as outlined in the
396 Materials and Methods section.

397 Of the eight external cell lines processed from two different donating labs, six robust gTED
398 signatures were obtained (Figure S3A). However, very few TE insertions detected in six
399 samples, possibly from two cell lines (Figure S3A). gTED profiles for three samples
400 (DRSC_Blinded_13-15) was very similar to the internal control from S2R+ processed in this run
401 (DGRC_Blinded_control_1-3, Figure S3A). For fifteen of the eighteen samples with robust gTED
402 profiles, clusters of triplicates were observed, indicating that each cluster possibly represents
403 replicates samples of five cell lines (Figures 4 and S3A). One sample did not cluster distinctly
404 with any of the other samples (SGLab_Blinded_4, Figures 4 and S3A), however this sample had
405 a gTED profile that is visually most similar to samples SGLab_Blinded_5-6 (Figure S3A). The
406 six samples that had very few TE insertions (triplicates for each labelled DRSC_Blinded_4-6
407 and DRSC_Blinded_7-9) each passed the genomic DNA and library preparation quality control
408 steps, and the consistent lack of TE insertions among replicates suggested that this was a
409 reproducible signal. Upon clustering the external blinded samples with the previously
410 characterized set of TE signatures it was possible to predict the identities of these samples
411 (Figure 4, Table 2) as DRSC_Blinded_1-3 and DRSC_Blinded_10-12 (Kc167),
412 DRSC_Blinded_4-6 and DRSC_Blinded_7-9 (No identification), DRSC_Blinded_13-15 (S2R+),
413 DRSC_Blinded_16-18 (S2), SGLab_Blinded_1-3 (mbn2) and SGLab_Blinded_5-6 (S2).
414 Moreover, the clustering generated with gTED has the resolution to identify the various S2
415 sublines. For instance, it is evident that DRSC_Blinded_13-15 are closest to S2R+,
416 DRSC_Blinded_16-18 to S2-DGRC, and SGLab_Blinded_5-6 to S2-DRSC (Figure 4). The
417 investigators who donated the external samples confirmed that the identities determined by the
418 gTED protocol was accurate for all the samples as predicted (Table 2). The two cell lines with
419 very few TE insertions for which a cell line identity prediction could not be generated were
420 mosquito cell lines (Figure 4, Table 2). These experiments demonstrated that the gTED protocol
421 could reliably identify blinded *Drosophila* samples submitted to DGRC by the community.

422 All three internal blinded cell lines had unique gTED signatures that clustered distinctly
423 relative to all previously-characterized gTED signatures (Figures 4 and S3B). Nevertheless, the

424 triplicates from each of the internal blinded cell lines reliably clustered together (Figure 4). Upon
425 unblinding (Table 2), the internal blinded samples were found to be from three cell lines not
426 included in the initial development phase of the project: 1182-4H (DGRC_Blinded_A,
427 DGRC#177, CVCL_Z708), Ras[V12];wts[RNAi] (DGRC_Blinded_B, DGRC#189, CVCL_IY71)
428 and delta_I(3)mbt-OSC (DGRC_Blinded_C, DGRC#289). Thus, processing blinded samples
429 through the gTED pipeline revealed that 1) reliable identification of samples with known gTED
430 signatures can be achieved, 2) the protocol is capable of distinguishing *Drosophila* versus non-
431 *Drosophila* cell lines and 3) *D. melanogaster* cell lines previously uncharacterized by the gTED
432 protocol can be identified as such, without providing a false identification.

433

434 *TE signature of S2R+ is retained upon extensive passaging*

435 Extensive passaging of cell lines can potentially alter cellular genomes (WENGER *et al.* 2004; OH
436 *et al.* 2013). Apart from gross genomic changes, extensive passaging introduced single
437 nucleotide polymorphisms in mammalian cell lines (PAVLOVA *et al.* 2015). To determine the
438 effect of extensive passaging on the gTED signatures generated in this study, we passaged
439 S2R+ cell line 50 times and isolated genomic DNA in triplicate at every tenth passage for
440 processing (Fig. 5A). Upon generating a cluster using the gTED protocol, it is evident that the
441 triplicates from the passages cluster randomly and not according to passage numbers (Fig. 5B).
442 Moreover, all replicates from every passage tested form a distinct cluster (Fig. S4) indicating
443 that extensive passaging of S2R+ does not alter the S2R+ gTED signature for up to 50
444 passages.

445

446 **Discussion**

447

448 The aim of this study was to develop and test a cell authentication protocol that could reliably
449 identify the most commonly used *Drosophila* cell lines to help researchers validate their
450 reagents as per the NIH mandate. Our novel protocol allowed us to define unique gTED
451 signatures that could identify each of the *Drosophila* cell lines that were tested here. In addition,
452 the resolution obtained from the gTED signatures allows for distinguishing between S2 sublines.
453 Data presented here demonstrate that the gTED signatures of the replicates of most cell lines
454 cluster together, outlining the reproducibility of the gTED protocol while also underscoring the
455 value of having replicate samples for reliable cell line identification. Crucially, accurate
456 identification of blinded samples donated by the research community validated the gTED
457 protocol in a real-world setting.

458 To reliably identify a *D. melanogaster* cell line using the gTED protocol, an established
459 gTED signature is a prerequisite. Towards this end, we have now established gTED signatures
460 for the widely distributed lines, S2R+, S2 DGRC, S2 DRSC, Kc167 and ML-DmBG3-c2 lines
461 (LUHUR *et al.* 2018). In addition, gTED signatures are also available for OSS, mbn2, CME W1
462 CI.8+, 1182-4H, Ras[V12];wts[RNAi] and delta I(3)mbt-OSC lines. Importantly, the lack of an
463 established gTED signature does not lead to misidentification, as was observed with the internal
464 blinded samples. In the event that a cell line without an established gTED signature needs to be
465 authenticated, a stock from the DGRC repository with the same identity will be assayed
466 concurrently to serve as a control. In due course, DGRC will also expand the gTED protocol to
467 include as many cell lines from our repository as possible. These efforts will ensure the creation
468 of a comprehensive database of gTED signatures for *Drosophila* cell lines.

469 Mosquito cell lines included as blinded samples helped clarify that the gTED protocol
470 can discriminate non-*Drosophila* cell lines. In *Ae. aegypti* and *An. gambiae*, 10% and 6% of the
471 total genome, respectively, is comprised of LTR retrotransposons (NENE *et al.* 2007; MELO AND
472 WALLAU 2020). Presence of active LTR transposons, specifically *Ty1/copia* has also been
473 described in Aag2 (*Ae. aegypti*) cells (MARINGER *et al.* 2017). Since we confirmed that the DNA
474 and library preparation for these samples were comparable, it is most likely therefore that the
475 TE-specific primers used in this study cannot amplify mosquito TE families. Our results
476 demonstrate that in pure samples mosquito cells can be distinguished from *D. melanogaster* cell
477 lines using the gTED protocol. However, detecting low levels of inter- or intra-species
478 contamination might a more challenging pursuit. A *D. melanogaster* cell line contaminated with
479 low levels of a mosquito cell line is unlikely to be detected with gTED, necessitating using other
480 methods for such specific instances. A future avenue is to explore the sensitivity of the gTED
481 protocol to intra- or inter-species contamination. In addition, it will be imperative to determine if
482 we can determine low levels of contamination of *Drosophila* cell lines containing unique gTED
483 signatures.

484 Our analysis also demonstrated that the genomic distribution of TEs is largely
485 unchanged over 50 passages in S2R+ cells. The narrow window into the passaging-associated
486 genomic structure provided by the gTED protocol is most likely not representative of more
487 complex genomic and/or transcriptomic changes that the extensively passaged cells might have
488 undergone. Nevertheless, S2R+ cells passaged continuously for up to 50 times can still be
489 identified with the gTED protocol. Among the S2 lines assessed in this study, it has been
490 proposed that the S2R+ line is possibly the closest to the original Schneider line (SCHNEIDER
491 1972; YANAGAWA *et al.* 1998). The other two S2 sublines, S2-DGRC and S2-DRSC, are isolates

492 with less clear history from the original Schneider isolates before being added to the DGRC
493 repository (AYER AND BENYAJATI 1992; CHERRY *et al.* 2005). All three of the S2 sublines
494 assessed have unique gTED signatures that discriminate them and can be used to identify
495 blinded cell lines precisely to the S2 subline. In general, S2 sublines have a more complex TE-
496 landscape, higher aneuploidy and copy number variation than other *D. melanogaster* cell lines
497 (HAN *et al.* 2021). The possibility that the gTED signature can be used as a proxy for broader
498 genomic changes remains to be investigated.

499 In summary, utilizing the genomic distribution of five TE families we have developed the
500 gTED pipeline to facilitate the authentication of *Drosophila* cell lines. We demonstrate that the
501 developed gTED protocol can assign distinct signatures to the various *Drosophila* cell lines
502 tested. Blinded and extensively passaged samples can now be authenticated employing the
503 gTED protocol. Researchers working with *Drosophila* cell lines can independently authenticate
504 cell lines being used in their laboratories using the protocol and code described in this study.
505 Alternatively, DGRC will implement a cost-based service for the research community to access
506 and authenticate their cell lines for both publications and research funding. Ultimately, our goal
507 is to include more cell lines from the DGRC repository into the gTED pipeline and generate
508 gTED signatures for all cell lines deposited with the DGRC.

509

510 **Data availability**

511 All data necessary for confirming the conclusions in this paper are included in this article and in
512 supplemental figures and tables. All the NGS data has been deposited at Sequence Read
513 Archive available with the accession number: SRP323476

514

515 **Acknowledgments**

516 We thank Dr. Kris Klueg for critical input in shaping the manuscript. We thank Grace Kim
517 (DRSC), Dr. Stephanie Mohr (DRSC), Nancy Erro Go (British Columbia Cancer Research
518 Centre) and Dr. Sharon Gorski (British Columbia Cancer Research Centre) for providing the
519 blinded genomic DNA samples. We thank Chunlin Yang, Jie Huang, and Sumitha Nallu at the
520 Center for Genomics and Bioinformatics (Indiana University, Bloomington) for their help with
521 NGS sample processing. This work was supported by NIH grants (5P40OD010949 and
522 3P40OD010949-16S2) to the *Drosophila* Genomics Resource Center, National Science
523 Foundation under Grant No. CNS-0521433 to Center for Genomics and Bioinformatics (Indiana
524 University, Bloomington) and the University of Georgia Research Foundation to CMB.

525

526 **Figure Legends**

527

528 **Figure 1: Protocol used for generating libraries to establish genomic transposable**
529 **element distribution signatures. A)** Fragmented genomic DNA (gDNA; light brown lines) from
530 the Nextera libraries containing TEs (green bar) and flanking gDNA were amplified with the
531 randomly oriented i5 (blue arrow) and i7 (black arrow) primers. **B)** Reactions A and B involved
532 amplification with the i5 primer oriented in either direction with respect to the TE, in combination
533 either with TE-specific Reverse (dark brown arrow) and Forward (dark grey arrow) primers,
534 respectively. **C)** The Nest PCR reactions amplified from within the products of the respective
535 Reactions A and B using the i5 primer and either the TE-specific Nest Reverse (light brown
536 arrow) or TE-specific Nest Forward (light grey arrow) primers. Read 2 anchors were added onto
537 both the Nest PCR primers. **D)** The final amplification step was performed with the i5 primer and
538 the Read 2 anchor with the i7 index primer (black box). The reads from the genome sequences
539 flanking the TE are designated as Read 1; the reads internal to the TE are designated Read 2.

540

541 **Figure 2: Read mapping strategy used to generate genomic transposable element**
542 **distribution signatures.** Read 1 (R1) reads from demultiplexed fragments were used to identify
543 the transposon junctions (green) from the set of all R1 reads. The schematic represents R1
544 reads at junctions on either end (5' or 3') of a TE. The number of reads that specifically identify
545 a junction is relatively small compared to the total number of reads near the junction. Variation
546 in sequencing depth and subtle differences in the insert sizes produced by the Nextera library
547 could cause junctions to be missed if only explicit junction calls are used. To avoid these issues,
548 after the junctions have been identified, a 300 bp region of genomic sequence flanking the
549 transposon is used to quantify the number of R1 reads (red) associated with that junction.

550

551 **Figure 3: Clustering of cell lines based on genomic transposable element distribution.**
552 The cell line clustering was derived upon processing NGS data as described in the Materials
553 and Methods. The triplicates for each cell lines are indicated with 1-3 following the cell line
554 name.

555

556 **Figure 4: Cell line authentication of double-blind samples using genomic transposable**
557 **element distribution signatures.** Triplicate samples of external blinded cell lines from the lab
558 of Dr. S. Gorski (shaded yellow) and *Drosophila* RNAi Screening Center (shaded green) along
559 with internal blinded samples (shaded brown) and internal control samples (shaded red) were

560 processed with the gTED protocol (Figure 2B) and clustered as described in the Materials and
561 Methods along with the previously processed known samples. The cell lines that the blinded
562 samples cluster with are indicated with the black lines. Internal blinded samples cluster as a
563 separate group. Samples DRSC_Blinded_4-9 with very few or no TEs detected were from
564 mosquito cell lines (Table 2).

565

566 **Figure 5: Genomic transposable element distribution signatures for S2R+ cells do not**
567 **cluster by passage number. A)** Schematic outlining the protocol to acquire samples between
568 1-50 S2R+ passages for assessment by the gTED protocol. **B)** Clustering of all the passage
569 samples generated based on TE predictions. The triplicates samples of every passage are
570 shaded in one color each.

571

572 **Supplementary Figure 1: Clustering of cell lines based on genomic transposable element**
573 **distribution using an alternative bioinformatics pipeline.** The cell line clustering is derived
574 from processing NGS data as described in Supplementary File 1. The triplicates for each cell
575 lines are indicated with 1-3 following the cell line name.

576

577 **Supplementary Figure 2: Unique TEs distinguish cell lines assessed by gTED.** The
578 number of TEs that are shared between the samples (Intersection size) are plotted in this
579 UpSET plot. Filled in dots indicate the samples that share the particular set of TEs. The
580 absolute number of TEs for each of the samples is plotted as Set Size.

581

582 **Supplementary Figure 3: Blinded samples have unique gTED signatures.** External (A) and
583 internal (B) blinded samples assessed using the gTED protocol have unique gTED signatures
584 that cluster replicates by cell identity.

585

586 **Supplementary Figure 4: S2R+ cells retain unique gTED signature despite extensive**
587 **passaging.** All samples from this study assessed using the gTED protocol indicate that all the
588 S2R+ passages cluster together, still retaining a unique cell-line specific gTED signature. The
589 S2R+ passages are shaded in green.

590

591 **Supplementary File 1: Description of the alternative bioinformatics pipeline used to**
592 **cluster cell lines based on genomic transposable element distribution.** Clustering using

593 this alternative approach for cell lines used in the development phase of the project is shown in
594 Supplementary Figure 1.

595

596 **Supplementary File 2: Table of samples ID listed in SRA accession used for gTED**
597 **analysis.** The 75 samples used for the analysis in the manuscript are listed in the table. The
598 other 39 samples listed in SRP323476 were used for testing and development.

599

600 **Supplementary File 3: Presence absence matrix for cell line clustering.** The final data
601 matrix used for cell line clustering is available at:
602 <https://github.com/mondegreen/DrosCellID/blob/main/combined.presence-absence.example.tsv>.

604 **References**

605

606 NIH Rigor and Reproducibility: Principles and Guidelines for Reporting Preclinical Research and
607 Endorsement by major journals., pp.

608 Aguilera-Gomez, A., M. Zacharogianni, M. M. van Oorschot, H. Genau, R. Grond *et al.*, 2017
609 Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation
610 upon Amino Acid Starvation. *Cell Rep* 20: 2277.

611 Albert, E. A., and C. Bokel, 2017 A cell based, high throughput assay for quantitative analysis of
612 Hedgehog pathway activation using a Smoothened activation sensor. *Sci Rep* 7: 14341.

613 Almeida, J. L., K. D. Cole and A. L. Plant, 2016 Standards for Cell Line Authentication and
614 Beyond. *PLoS Biol* 14: e1002476.

615 ATCC, 2011 Authentication of Human Cell Lines: Standardization of STR Profiling., pp. in
616 *ANSI/ATCC ASN-0002-2011*. ANSI.

617 Ayer, S., and C. Benyajati, 1992 The binding site of a steroid hormone receptor-like protein
618 within the Drosophila Adh adult enhancer is required for high levels of tissue-specific
619 alcohol dehydrogenase expression. *Molecular and Cellular Biology* 12: 661-673.

620 Bairoch, A., 2018 The Cellosaurus, a Cell-Line Knowledge Resource. *J Biomol Tech* 29: 25-38.

621 Ben-David, U., B. Siranosian, G. Ha, H. Tang, Y. Oren *et al.*, 2018 Genetic and transcriptional
622 evolution alters cancer cell line drug response. *Nature* 560: 325-330.

623 Capes-Davis, A., G. Theodosopoulos, I. Atkin, H. G. Drexler, A. Kohara *et al.*, 2010 Check your
624 cultures! A list of cross-contaminated or misidentified cell lines. *Int J Cancer* 127: 1-8.

625 Charlesworth, B., and C. H. Langley, 1989 The population genetics of Drosophila transposable
626 elements. *Annu Rev Genet* 23: 251-287.

627 Cherbas, L., A. Willingham, D. Zhang, L. Yang, Y. Zou *et al.*, 2011 The transcriptional diversity
628 of 25 Drosophila cell lines. *Genome Res* 21: 301-314.

629 Cherry, S., T. Doukas, S. Armknecht, S. Whelan, H. Wang *et al.*, 2005 Genome-wide RNAi
630 screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation
631 inhibition. *Genes & Development* 19: 445-452.

632 Gateff, E., 1977 Malignant neoplasms of the hematopoietic system in three mutants of
633 *Drosophila melanogaster*. *Ann Parasitol Hum Comp* 52: 81-83.

634 Gateff, E., L. Gissmann, R. Shrestha, N. Plus, H. Pfister *et al.*, 1980 Characterization of two
635 tumorous blood cell lines of *Drosophila melanogaster* and the viruses they contain.
636 *Invertebrate Systems in vitro*: 517-533.

637 Han, S., P. J. Basting, G. Dias, A. Luhur, A. C. Zelhof *et al.*, 2021 Transposable element profiles
638 reveal cell line identity and loss of heterozygosity in *Drosophila* cell culture. *Genetics*: (In
639 press).

640 Kharchenko, P. V., A. A. Alekseyenko, Y. B. Schwartz, A. Minoda, N. C. Riddle *et al.*, 2011
641 Comprehensive analysis of the chromatin landscape in *Drosophila melanogaster*. *Nature*
642 471: 480-485.

643 Lee, H., C. J. McManus, D. Y. Cho, M. Eaton, F. Renda *et al.*, 2014 DNA copy number evolution
644 in *Drosophila* cell lines. *Genome Biol* 15: R70.

645 Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot and H. Pfister, 2014 UpSet: Visualization of
646 Intersecting Sets. *IEEE Trans Vis Comput Graph* 20: 1983-1992.

647 Liu, Y., Y. Mi, T. Mueller, S. Kreibich, E. G. Williams *et al.*, 2019 Multi-omic measurements of
648 heterogeneity in HeLa cells across laboratories. *Nat Biotechnol* 37: 314-322.

649 Luhur, A., K. M. Klueg and A. C. Zelhof, 2018 Generating and working with *Drosophila* cell
650 cultures: Current challenges and opportunities. *Wiley Interdiscip Rev Dev Biol*: e339.

651 Maringer, K., A. Yousuf, K. J. Heesom, J. Fan, D. Lee *et al.*, 2017 Proteomics informed by
652 transcriptomics for characterising active transposable elements and genome annotation
653 in *Aedes aegypti*. *BMC Genomics* 18: 101.

654 Melo, E. S. d., and G. L. Wallau, 2020 Mosquito genomes are frequently invaded by
655 transposable elements through horizontal transfer. *PLOS Genetics* 16: e1008946.

656 Mohr, S. E., K. Rudd, Y. Hu, W. R. Song, Q. Gilly *et al.*, 2018 Zinc Detoxification: A Functional
657 Genomics and Transcriptomics Analysis in *Drosophila melanogaster* Cultured Cells. *G3*
658 (Bethesda) 8: 631-641.

659 Nene, V., J. R. Wortman, D. Lawson, B. Haas, C. Kodira *et al.*, 2007 Genome Sequence of
660 *Aedes aegypti*, a Major Arbovirus Vector. *Science* 316: 1718-1723.

661 NIH, 2015 Enhanced Reproducibility through Rigor and Transparency, pp. NIH.

662 Nonaka, S., Y. Ando, T. Kanetani, C. Hoshi, Y. Nakai *et al.*, 2017 Signaling pathway for
663 phagocyte priming upon encounter with apoptotic cells. *J Biol Chem* 292: 8059-8072.

664 Oh, J. H., Y. J. Kim, S. Moon, H. Y. Nam, J. P. Jeon *et al.*, 2013 Genotype instability during
665 long-term subculture of lymphoblastoid cell lines. *J Hum Genet* 58: 16-20.

666 Ozkan, E., R. A. Carrillo, C. L. Eastman, R. Weiszmann, D. Waghray *et al.*, 2013 An
667 extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand
668 networks. *Cell* 154: 228-239.

669 Pavlova, G. V., A. A. Vergun, E. Y. Rybalkina, P. R. Butovskaya and A. P. Ryskov, 2015
670 Identification of structural DNA variations in human cell cultures after long-term passage.
671 *Cell Cycle* 14: 200-205.

672 Potter, S. S., W. J. Brorein, Jr., P. Dunsmuir and G. M. Rubin, 1979 Transposition of elements
673 of the 412, copia and 297 dispersed repeated gene families in *Drosophila*. *Cell* 17: 415-
674 427.

675 Rognes, T., T. Flouri, B. Nichols, C. Quince and F. Mahe, 2016 VSEARCH: a versatile open
676 source tool for metagenomics. *PeerJ* 4: e2584.

677 Schneider, I., 1972 Cell lines derived from late embryonic stages of *Drosophila melanogaster*. *J*
678 *Embryol Exp Morphol* 27: 353-365.

679 Schug, M. D., T. F. Mackay and C. F. Aquadro, 1997 Low mutation rates of microsatellite loci in
680 *Drosophila melanogaster*. *Nat Genet* 15: 99-102.

681 Smukowski Heil, C., K. Patterson, A. S.-M. Hickey, E. Alcantara and M. J. Dunham, 2021
682 Transposable Element Mobilization in Interspecific Yeast Hybrids. *Genome Biology and*
683 *Evolution* 13.

684 Tsuyama, T., A. Tsubouchi, T. Usui, H. Imamura and T. Uemura, 2017 Mitochondrial
685 dysfunction induces dendritic loss via eIF2alpha phosphorylation. *J Cell Biol* 216: 815-
686 834.

687 Wenger, S. L., J. R. Senft, L. M. Sargent, R. Bamezai, N. Bairwa *et al.*, 2004 Comparison of
688 established cell lines at different passages by karyotype and comparative genomic
689 hybridization. *Biosci Rep* 24: 631-639.

690 Yanagawa, S., J. S. Lee and A. Ishimoto, 1998 Identification and characterization of a novel line
691 of *Drosophila* Schneider S2 cells that respond to wingless signaling. *J Biol Chem* 273:
692 32353-32359.

693 Yang, D., N. Li and G. Zhang, 2018 Spontaneous adipogenic differentiation potential of
694 adiposederived stem cells decreased with increasing cell passages. *Mol Med Rep* 17:
695 6109-6115.

696 Zhang, Y., J. H. Malone, S. K. Powell, V. Periwal, E. Spana *et al.*, 2010 Expression in aneuploid
697 *Drosophila* S2 cells. *PLoS Biol* 8: e1000320.

698

Cell line	Tissue source	DGRC Stock Number	Cellosaurus ID	Number of TE insertions Mean (± SD)
S2R+	Embryo	150	CVCL_Z831	1009 (± 30.4)
S2 DGRC	Embryo	6	CVCL_TZ72	704 (± 3.2)
mbn2	Larval circulatory system	147	CVCL_Z706	633 (± 6.4)
S2 DRSC	Embryo	181	CVCL_Z992	530 (± 14.8)
Kc167	Embryo	1	CVCL_Z834	516 (± 18.3)
OSS	Adult ovary	190	CVCL_1B46	404 (± 8.5)
CME-W1-Cl.8+	Larval wing disc	151	CVCL_Z790	309 (± 11.1)
ML-DmBG3-c2	Larval CNS	68	CVCL_Z728	227 (± 4.7)

Table 1: Summary of transposable element (TE) insertions detected by gTED. The total number TE insertions that were detected in each of the listed cell lines is presented as a mean (n=3) of the samples analyzed. SD=standard deviation, CNS: Central Nervous System

Sample label	Source	Identification with gTED pipeline	Confirmation
DRSC_Blinded_1-3	DRSC	Kc167	Kc167
DRSC_Blinded_4-6	DRSC	No ID	A. g
DRSC_Blinded_7-9	DRSC	No ID	A. a
DRSC_Blinded_10-12	DRSC	Kc167	Kc167
DRSC_Blinded_13-15	DRSC	S2R+	S2R+
DRSC_Blinded_16-18	DRSC	S2	S2
SGLab_Blinded_1-3	Gorski Lab	mbn2	mbn2
SGLab_Blinded_4-6	Gorski Lab	S2	S2
DGRC_Blinded_A	Internal	No ID	1182-4H
DGRC_Blinded_B	Internal	No ID	Ras[V12];wts [RNAi]
DGRC_Blinded_C	Internal	No ID	delta I(3)mbt-OSC

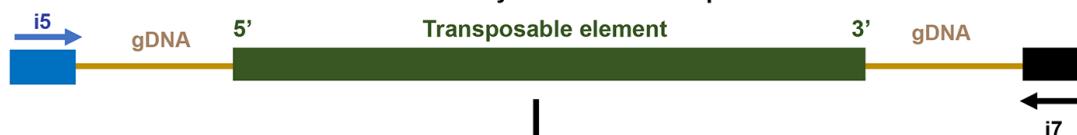
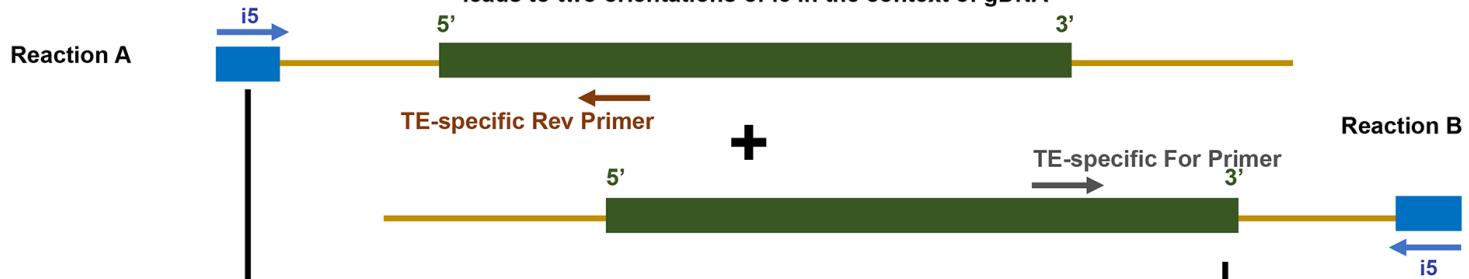

Table 2: List of blinded samples processed. Blinded samples were donated by external (*Drosophila* RNAi Screening Center and Dr. S. Gorski) or generated internally. The identifications were made upon processing the sample through the genomic TE distribution pipeline followed by computational analysis. No ID: The genomic TE signatures of the cell lines did not match with any of the lines analyzed to provide a positive identification. A. a: cell line derived from *Aedes aegypti*; A. g: cell line derived from *Anopheles gambiae*.

Figure 1

A


Nextera library prepared using Nextera flex kit

PCR Nextera library with Nextera i5/i7primers

B

Random Nextera Library generation
leads to two orientations of i5 in the context of gDNA

C

Reaction A
Nest PCR

TE-specific Nest Rev + Read2 Primer

Reaction B
Nest PCR

TE-specific Nest For + Read2 Primer

D

Read 1 →

Read2 anchor + NEBNext 6609 i7 index primer

← Read 1

Figure 2

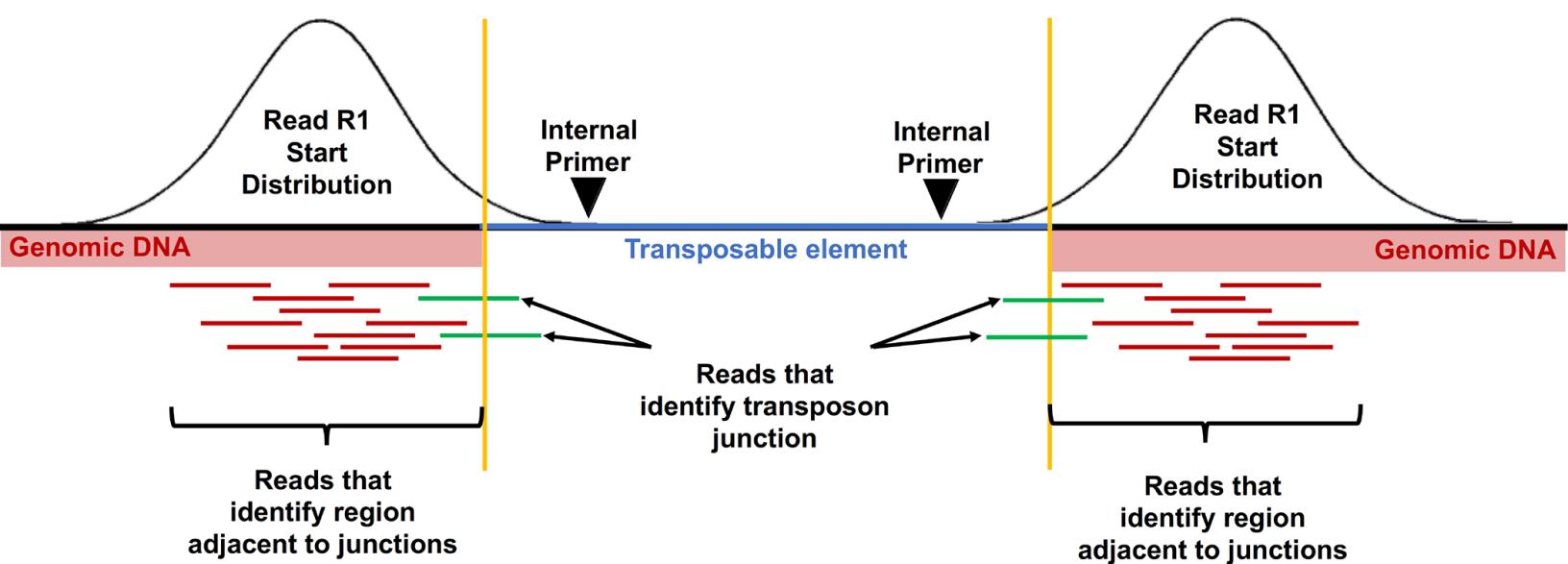
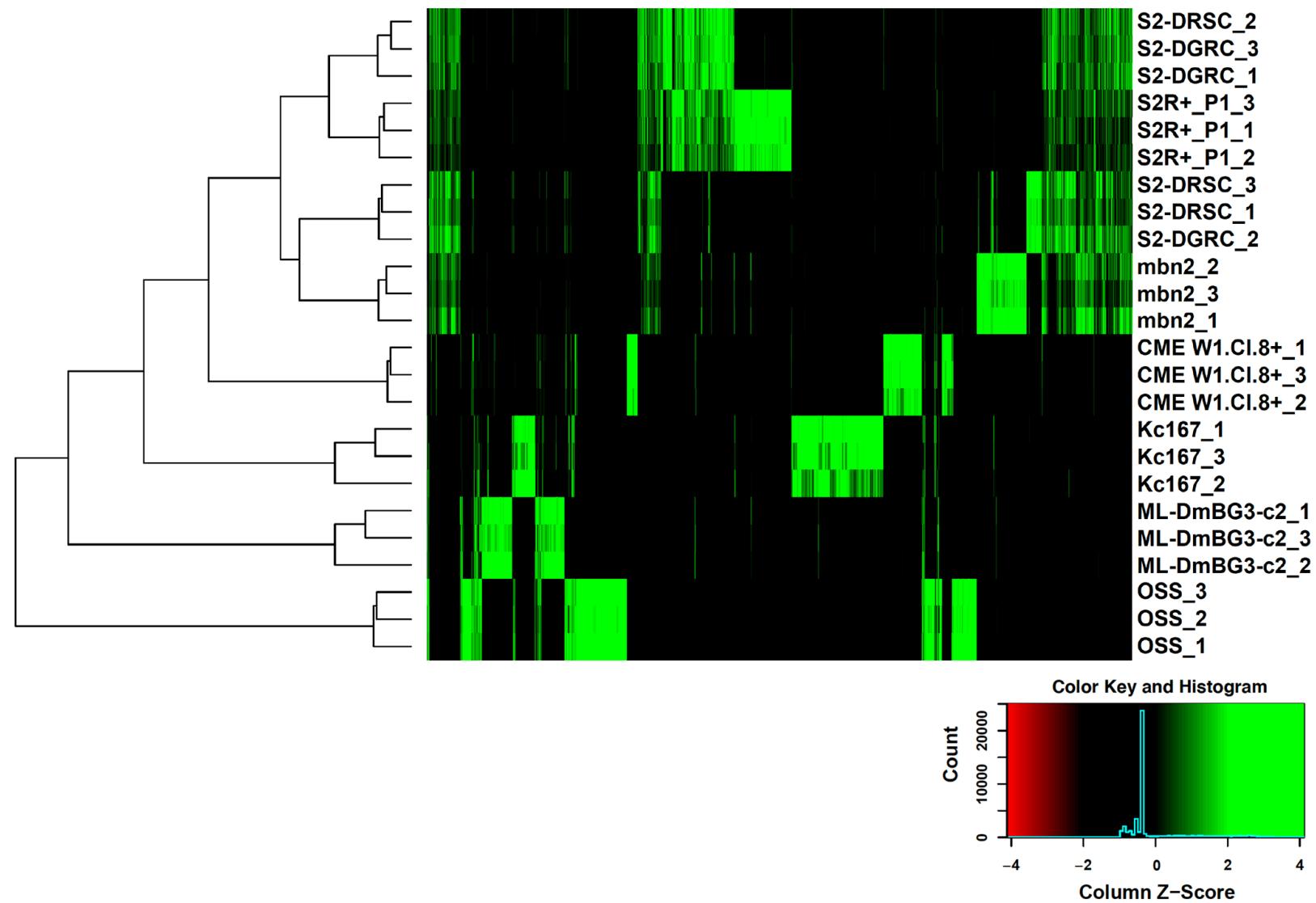



Figure 3

Figure 4

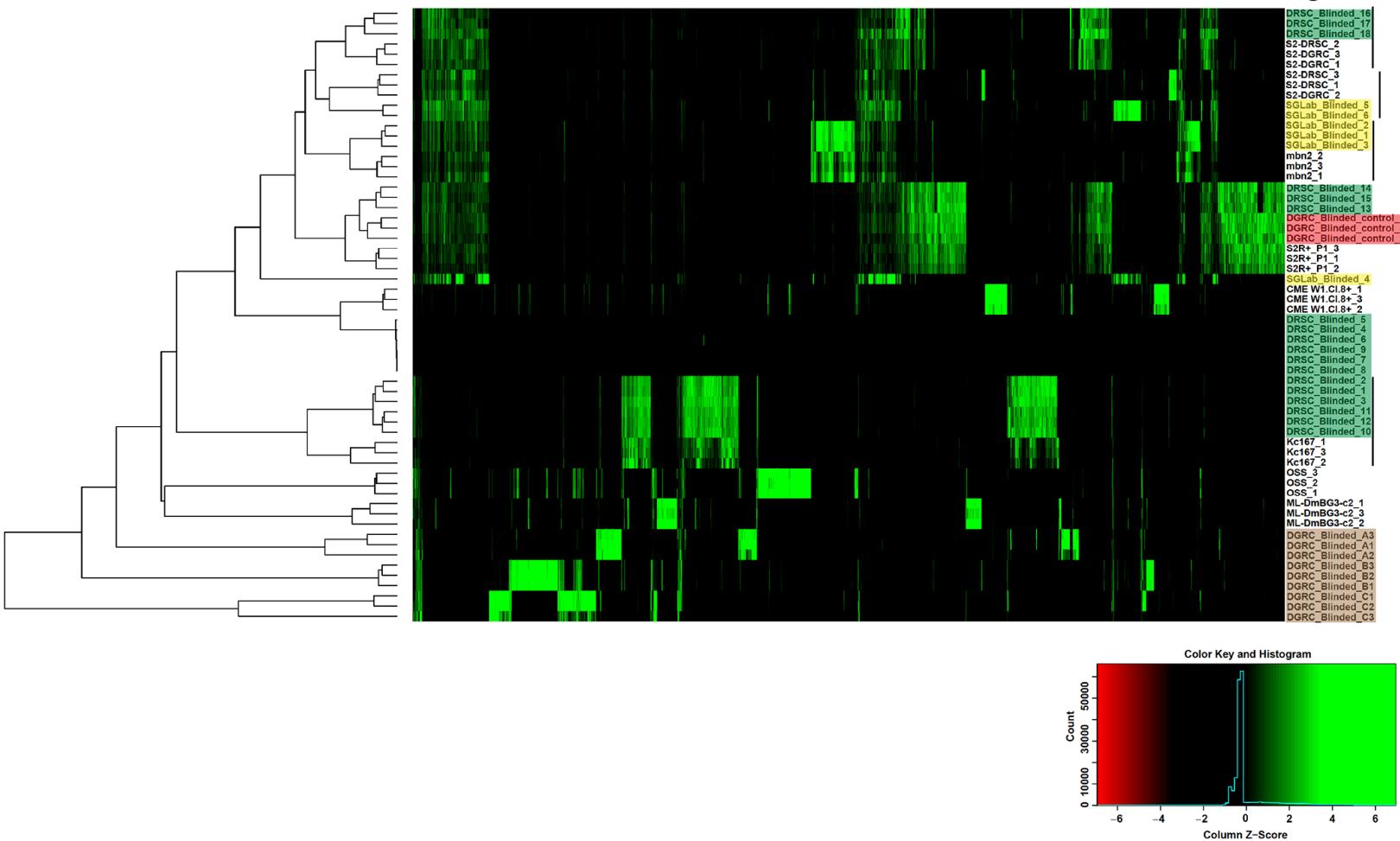
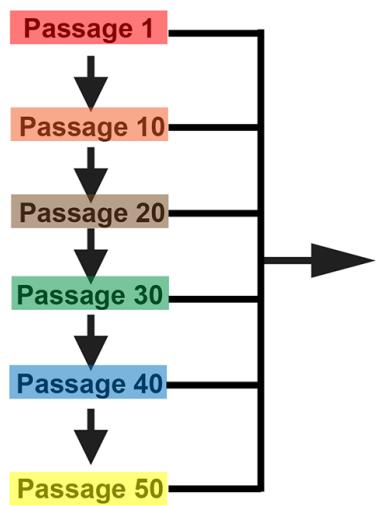
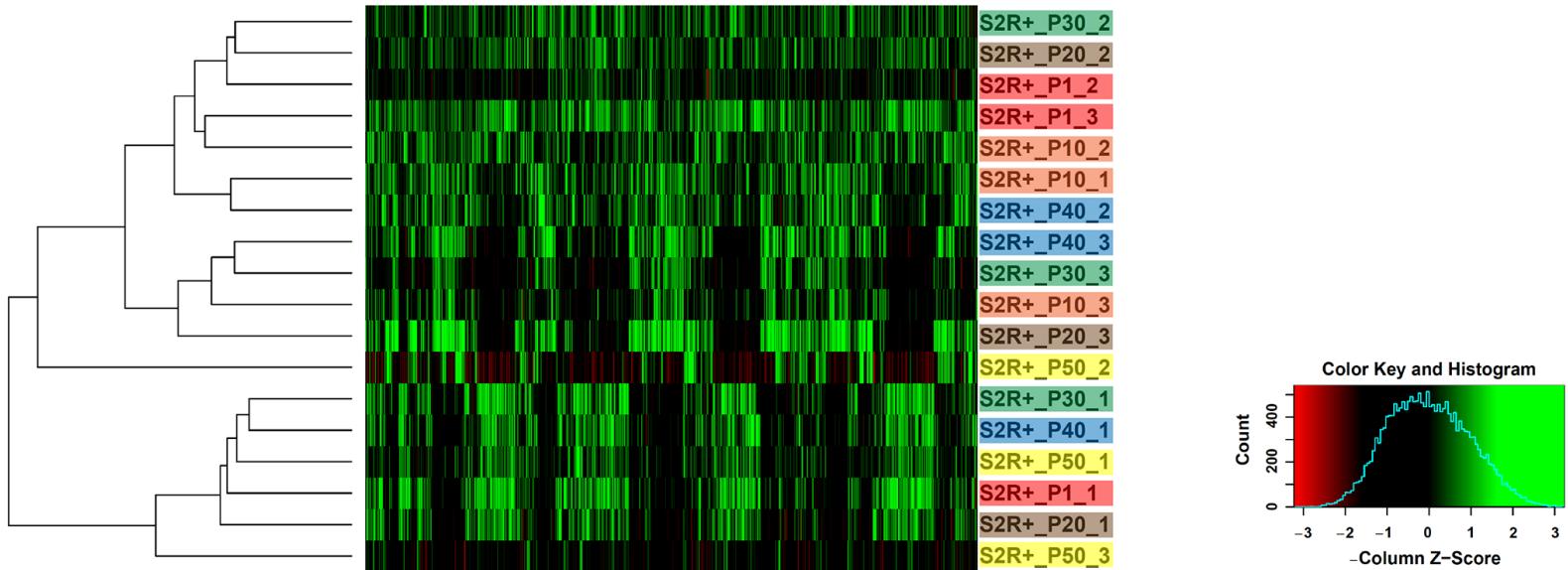



Figure 5


A

Genomic DNA isolation
from triplicates at
every 10th passage

Run samples through NGS pipeline and
downstream analysis to determine
genome-wide TE distribution

B

