

1 Unique structure and positive selection promote 2 the rapid divergence of *Drosophila* Y 3 chromosomes

4 Ching-Ho Chang^{1#*}, Lauren E. Gregory¹, Kathleen E. Gordon^{2^}, Colin D. Meiklejohn²
5 and Amanda M. Larracuente^{1*}

6 Affiliations:

7 ¹Department of Biology, University of Rochester, Rochester, NY 14627

8 ²School of Biological Sciences, University of Nebraska-Lincoln, NE 68502

9 [#]Current address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center,
10 Seattle, WA 98109

11 [^]Current address: Department of Molecular Biology and Genetics, Field of Genetics,
12 Genomics and Development, Cornell University, Ithaca, NY, 14853

13

14

15 *correspondence to cchang2@fredhutch.org, alarracu@ur.rochester.edu

16

17

18

19

20

21 **Abstract**

22 Y chromosomes across diverse species convergently evolve a gene-poor,
23 heterochromatic organization enriched for duplicated genes, LTR retrotransposable
24 elements, and satellite DNA. Sexual antagonism and a loss of recombination play major
25 roles in the degeneration of young Y chromosomes. However, the processes shaping
26 the evolution of mature, already degenerated Y chromosomes are less well-understood.
27 Because Y chromosomes evolve rapidly, comparisons between closely related species
28 are particularly useful. We generated de novo long read assemblies complemented with
29 cytological validation to reveal Y chromosome organization in three closely related
30 species of the *Drosophila simulans* complex, which diverged only 250,000 years ago
31 and share >98% sequence identity. We find these Y chromosomes are divergent in their
32 organization and repetitive DNA composition and discover new Y-linked gene families
33 whose evolution is driven by both positive selection and gene conversion. These Y
34 chromosomes are also enriched for large deletions, suggesting that the repair of
35 double-strand breaks on Y chromosomes may be biased toward microhomology-
36 mediated end joining over canonical non-homologous end-joining. We propose that this
37 repair mechanism generally contributes to the convergent evolution of Y chromosome
38 organization.

39

40 Introduction

41 Most sex chromosomes evolved from a pair of homologous gene-rich autosomes that
42 acquired sex-determining factors and subsequently differentiated. Y chromosomes
43 gradually lose most of their genes, while their X chromosome counterparts tend to retain
44 the original autosomal complement of genes. This Y chromosome degeneration follows
45 a suppression of recombination [1], which limits the efficacy of natural selection, and
46 causes the accumulation of deleterious mutations through Muller's ratchet, background
47 selection, and hitchhiking effects [2-6]. As a consequence, many Y chromosomes
48 present a seemingly hostile environment for genes, with their mutational burden, high
49 repeat content and abundant silent chromatin.

50 Genomic studies of Y chromosome evolution focus primarily on young sex
51 chromosomes, addressing how the suppression of recombination promotes Y
52 chromosome degeneration at both the epigenetic and genetic levels [2, 7]. Although
53 sexually antagonistic selection is traditionally cited as the cause of recombination
54 suppression on the Y chromosome, direct evidence for its role is still lacking [8] and new
55 models propose that regulatory evolution is the initial trigger for recombination
56 suppression [9]. Sexually antagonistic selection may accelerate Y-linked gene evolution
57 to optimize male-specific functions. Indeed, Y-linked genes tend to have slightly higher
58 rates of protein evolution than their orthologs on other chromosomes [10, 11]. Higher
59 rates of Y-linked gene evolution are driven by positive selection, relaxed selective
60 constraints and male-biased mutation patterns, with most Y-linked genes evolving under

61 at least some functional constraint [11]. Although there is evidence suggesting that
62 some Y chromosomes have experienced recent selective sweeps [12, 13], the relative
63 importance of positive selection for Y chromosome evolution remains unclear.
64 Y chromosomes harbor extensive structural divergence between species, in part
65 through the acquisition of genes from other genomic regions [14-21]. However, the
66 functions of most Y-linked genes are unknown [18, 21-23]. Some Y-linked genes are
67 duplicated and, in extreme cases, amplified into so-called ampliconic genes—gene
68 families with tens to hundreds of highly similar sequences. Y chromosomes of both
69 *Drosophila* and mammals have independently acquired and amplified gene families,
70 which turnover rapidly between closely related species [14, 17, 20, 24-26]. Following Y-
71 linked gene amplification, gene conversion between gene copies may enhance the
72 efficacy of selection on Y-linked genes in the absence of crossing over [15, 27].
73 Detailed analyses of old Y chromosomes have been restricted to a few species with
74 reference-quality assemblies, e.g., mouse and human. The challenges of cloning and
75 assembling repeat-rich regions of the genome have stymied progress towards a
76 complete understanding of Y chromosome evolution [28-30]. Recent advances in long-
77 read sequencing make it feasible to assemble large parts of Y chromosomes [19, 21,
78 22, 31] enabling comparative studies of a majority of Y-linked sequences in closely
79 related species.
80 *Drosophila melanogaster* and three related species in the *D. simulans* clade are ideally
81 suited to study Y chromosome evolution. These Y chromosomes are functionally

82 divergent, contribute to hybrid sterility [32-35], and at least four X-linked meiotic drive
83 systems likely shape Y chromosome evolution in these species [36-43]. Previous
84 genetic and transcriptomic studies suggest that Y chromosome variation can impact
85 male fitness and gene regulation [44-51]. Since there is minimal nucleotide variation
86 and divergence in Y-linked protein-coding sequences within and between these
87 *Drosophila* species [11, 12, 40], structural variation may be responsible for the majority
88 of these effects. For example, 20-40% of *D. melanogaster* Y-linked regulatory variation
89 (YRV) comes from differences in ribosomal DNA (rDNA) copy numbers [52, 53]. The
90 chromatin on *Drosophila* Y chromosomes has genome-wide effects on expression level
91 and chromatin states [54], but aside from the rDNA, the molecular basis of Y
92 chromosome divergence and variation in these species remains elusive.

93 To better understand Y chromosome structure and evolution, we assembled the Y
94 chromosomes of the three species in the *D. simulans* clade and compared them to *D.*
95 *melanogaster*. We observe that the Y chromosomes of the *D. simulans* clade species
96 have high duplication and gene conversion rates that, along with strong positive
97 selection, shaped the evolution of two new ampliconic protein-coding gene families. We
98 propose that, in addition to positive selection, sexual antagonism, and genetic conflict,
99 differences in the usage of DNA repair pathways may give rise to the unique patterns of
100 Y-linked mutations. Together these effects may drive the convergent evolution of Y
101 chromosome structure across taxa.

102

103 **Results**

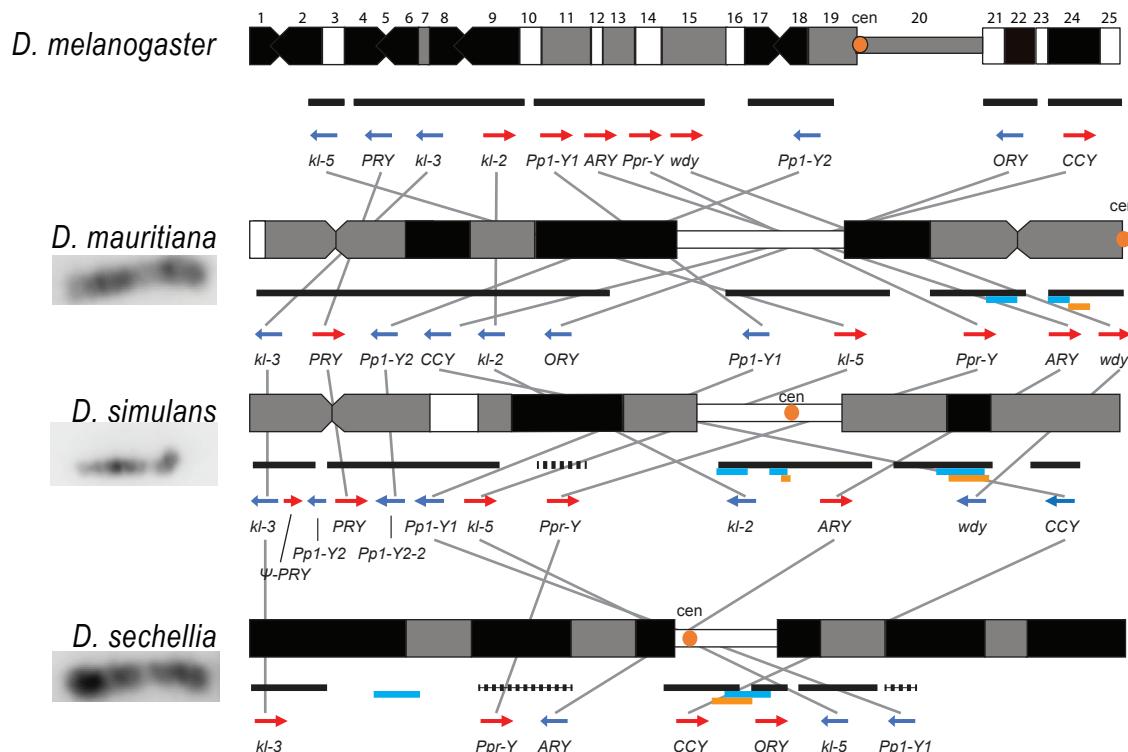
104 **Improving the Y chromosome assemblies using long-read assembly and**
105 **fluorescence in situ hybridization (FISH)**

106 Long reads have enabled the assembly of many repetitive genome regions, but have
107 had limited success in assembling Y chromosomes [17, 19, 21, 22]. To improve Y
108 chromosome assemblies for comparative genomic analyses, we applied our
109 heterochromatin-sensitive assembly pipeline [22] with long reads that we previously
110 generated [55] to reassemble the Y chromosome from the three species in the
111 *Drosophila simulans* clade. We also resequenced male genomes using PCR-free
112 Illumina libraries to polish these assemblies. Our heterochromatin-enriched methods
113 improve contiguity compared to previous *D. simulans* clade assemblies. We recovered
114 all known exons of the 11 canonical Y-linked genes conserved across the *melanogaster*
115 group, including 58 exons missed in previous assemblies (Table S1; [55]). Based on the
116 median male-to-female coverage [22], we assigned 13.7 to 18.9 Mb of Y-linked
117 sequences per species with N50 ranging from 0.6 to 1.2 Mb. The quality of these new
118 *D. simulans* clade Y assemblies are comparable to *D. melanogaster* (Table 1; [22]). We
119 evaluated our methods by comparing our assignments for every 10-kb window of
120 assembled sequences to its known chromosomal location. Our assignments have 96,
121 98, and 99% sensitivity and 5, 0, and 3% false-positive rates in *D. mauritiana*, *D.*
122 *simulans*, and *D. sechellia*, respectively (Table S2). We have lower confidence in our *D.*
123 *mauritiana* assignments, because the male and female Illumina reads are from different
124 library construction methods. Therefore, we applied an additional criterion only in *D.*
125 *mauritiana* based on the female-to-male total mapped reads ratio (<0.1), which reduces

126 the false-positive rate from 13 to 5% in regions with known chromosomal location (Table
127 S2; Fig S1). Based on these chromosome assignments, we find 40–44% lower PacBio
128 coverage on Y than X chromosomes in all three species (Fig S2).

129 **Table 1. Contiguity statistics for heterochromatin-enriched assemblies**

Y chromosome assembly	# of contigs	Total length	Contigs N50
<i>D. melanogaster</i> ^a	80	14,578,684	416,887
<i>D. mauritiana</i> ^b	55	17,880,069	1,628,994
<i>D. simulans</i> ^b	38	13,717,056	1,031,383
<i>D. sechellia</i> ^b	63	14,899,148	555,130


130 ^aChang and Larracuente 2019

131 ^bThis paper

132

133 The cytological organization of the *D. simulans* clade Y chromosomes is not well-
134 described [56–58]. Therefore, we generated new physical maps of the Y chromosomes
135 by combining our assemblies with cytological data. We performed FISH on mitotic
136 chromosomes using probes for 12 Y-linked sequences (Fig 1 and S3–4; Table S3) to
137 determine Y chromosome organization at the cytological level. We also determined the
138 location of the centromeres using immunostaining with a Cenp-C antibody (Fig S4;
139 [59]). These cytological data permit us to 1) validate our assemblies, and 2) infer the
140 overall organization of the Y chromosome by orienting our scaffolds on cytological
141 maps. Of the 11 Y-linked genes, we successfully ordered 10, 11, and 7 genes on the
142 cytological bands of *D. simulans*, *D. mauritiana* and *D. sechellia*, respectively (Fig 1 and
143 S3). We find evidence for extensive Y chromosomal structural rearrangements,
144 including changes in satellite distribution, gene order, and centromere position. These

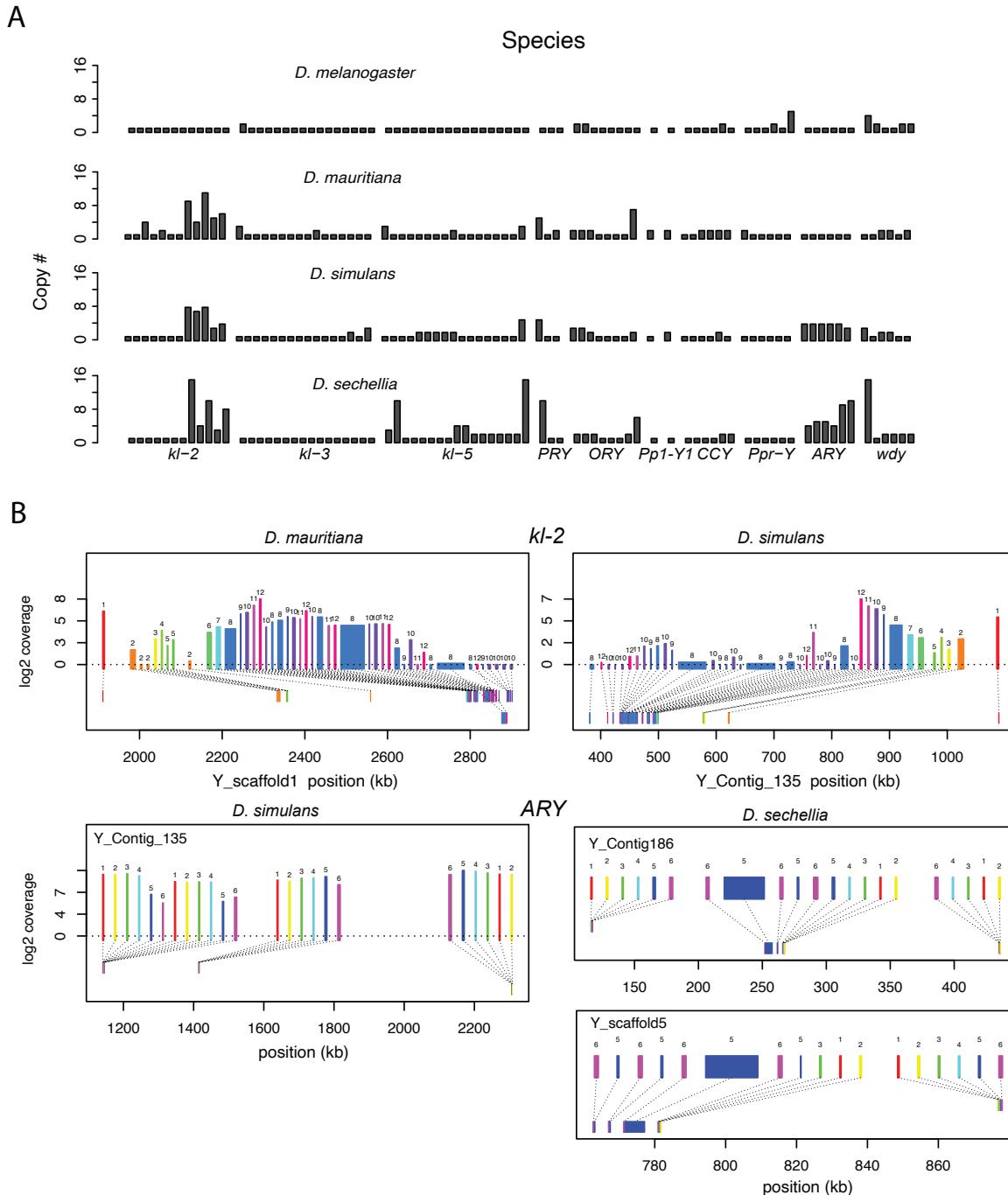
145 rearrangements are dramatic even among the *D. simulans* clade species, which
146 diverged less than 250 KYA (Fig 1 and S3). The Y chromosome centromere position
147 appears to be the same as determined by Berloco et al. for different strains of *D.*
148 *simulans* and *D. mauritiana*, but not for *D. sechellia* [58]. One explanation for this
149 discrepancy could be between-strain variation in *D. sechellia* Y chromosome
150 centromere location. Together, our new physical maps and assemblies provide both
151 large and fine-scale resolution on Y chromosome organization in the *D. simulans* clade.

152
153 **Fig 1. Y chromosome organization in *D. melanogaster* and the three *D. simulans***
154 **clade species.** Schematics of the cytogenetic maps note the locations of Y-linked
155 genes in *D. melanogaster* and *D. simulans* clade species. The bars show the relative
156 placement of the scaffolds on the cytological bands based on FISH results. The solid
157 black and dotted bars represent the scaffolds with known and unknown orientation
158 information, respectively. The light blue and orange bars represent two new Y-linked
159 gene families, *Lhk* and *CK2βtes-Y* in the *D. simulans* clade, respectively. The arrows
160 indicate the orientation of the genes (blue- minus strand; red- plus strand).

161

162 **Y-linked sequence and copy number divergence across three species**

163 Although the *D. simulans* clade species diverged only recently, Y chromosome
164 introgression between pairs of species disrupts male fertility and influences patterns of
165 genome-wide gene expression [32, 34]. One candidate locus that may contribute to
166 functional divergence and possibly hybrid lethality is the Y-linked rDNA [52, 60]. Y-
167 linked rDNA, specifically 28S rDNA, have been lost in *D. simulans* and *D. sechellia*, but
168 not in *D. mauritiana* [57, 61, 62]. However, the intergenic spacer (IGS) repeats between
169 rDNA genes, which are responsible for X-Y pairing in *D. melanogaster* males [63], are
170 retained on both sex chromosomes in all three species [57, 61, 62]. Consistent with
171 previous cytological studies [57, 61, 62], we find that *D. simulans* and *D. sechellia* lost
172 most Y-linked 18S and 28S rDNA sequences (Fig S5). Our assemblies indicate that,
173 despite this loss of the rRNA coding sequences, all three species still retain IGS
174 repeats. However, we and others do not detect Y-linked IGS repeats at the cytological
175 level in *D. sechellia* (Fig S3–4; [57, 61, 62]), suggesting that their abundance is below
176 the level of detection by FISH in this species.

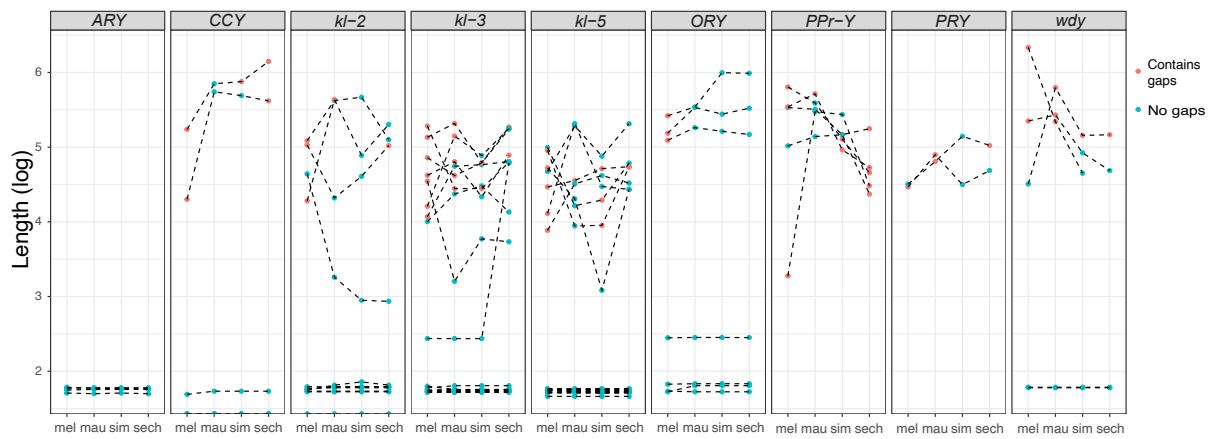

177 Structural variation at Y-linked genes may also contribute to functional variation and
178 divergence in the *D. simulans* clade. Previous studies reported many duplications of
179 canonical Y-linked genes in *D. simulans* [40, 55, 64]. We find that all three species have
180 at least one intact copy of the 11 canonical Y-linked genes, but there is also extensive
181 copy number variation in Y-linked exons across these species (Figure 2 and S6–7,
182 Table S1; [65]). Using Illumina reads, we confirm the copy number variation in our
183 assemblies, and further reveal some Y-linked duplicated exons, particularly in *kl-3*, *wdy*
184 and *Ppr-Y*, that are not assembled in *D. sechellia* (Fig S6). Some duplicates may be

185 functional because they are expressed and have complete open reading frames, (e.g.,
186 *ARY*, *Ppr-Y1* and *Ppr-Y2*). The *D. simulans* Y chromosome has four complete copies of
187 *ARY*, all of which show similar expression levels from RNA-seq data (Figure 2B and
188 Table S4), but two copies have inverted exons 1 and 2. *D. sechellia* also contains at
189 least five duplicated copies of *ARY*, some of which also have the inverted exons 1 and
190 2, but the absence of RNA-seq data from testes of this species prevents inferences
191 regarding whether all copies of *ARY* are expressed. However, most duplications include
192 only a subset of exons, and in many cases, the duplicated exons are located on the
193 periphery of the presumed functional gene copy (Figure 2B and S7, Table S4). For
194 example, both *D. simulans* and *D. mauritiana* have multiple copies of exons 8-12
195 located at the 3' end of *kl-2* (Figure 2B). In *D. simulans*, most of these extra exons have
196 low to no expression, while in *D. mauritiana*, there appears to be a substantial
197 expression from many of the duplicated terminal exons, as well as an internal
198 duplication of exon 5. It is unclear what effects these duplicated exons have on the
199 protein sequences of these fertility-essential genes.

200 All exon-intron junctions are conserved within full-length copies of the canonical Y-
201 linked genes, yet intron lengths vary between these species (Fig 3). The length of
202 longer introns (>100 bp in any species) is more dynamic than that of short introns (Fig 3;
203 Table S5). The dramatic size differences in most introns cannot be attributed to a single
204 deletion or duplication (see an example of *ORY* in Fig S8). Some Y-linked genes
205 contain mega-base sized introns (*i.e.*, mega-introns) whose transcription manifests as
206 cytologically visible lampbrush-like loops (Y-loops) in primary spermatocytes [66, 67].
207 While Y-loops are found across the *Drosophila* genus [68, 69], their potential functions

208 are unknown [70-74] and the genes/introns that produce Y-loops differs among species
209 [75] (Supplemental text). *D. melanogaster* has three Y-loops transcribed from introns of
210 *ORY* (*ks-1* in previous literature), *kl-3*, and *kl-5* [66]. Based on cytological evidence, *D.*
211 *simulans* has three Y-loops, whereas *D. mauritiana* and *D. sechellia* only have two [69].
212 Of all potential loop-producing introns, we find that only the *kl-3* mega-intron is
213 conserved in all four species and has the same intron structure and sequences (i.e.,
214 (AATAT)_n repeats). While both *kl-5* and *ORY* produce Y-loops with (AAGAC)_n repeats in
215 *D. melanogaster*, (AAGAC)_n is missing from the genomes of the *D. simulans* clade
216 species. This observation is supported by our assemblies, the Illumina raw reads (Table
217 S3), and published FISH results [76]. In the *D. simulans* clade, the *ORY* introns do not
218 carry any long tandem repeats. However, *kl-5* has introns with (AATAT)_n repeats that
219 may form a Y-loop in the *D. simulans* clade species. These data suggest that, while
220 mega-introns and Y-loops may be conserved features of spermatogenesis in
221 *Drosophila*, they turn over at both the sequence and gene levels over short periods of
222 evolutionary time (i.e., ~2 My between *D. melanogaster* and the *D. simulans* clade).

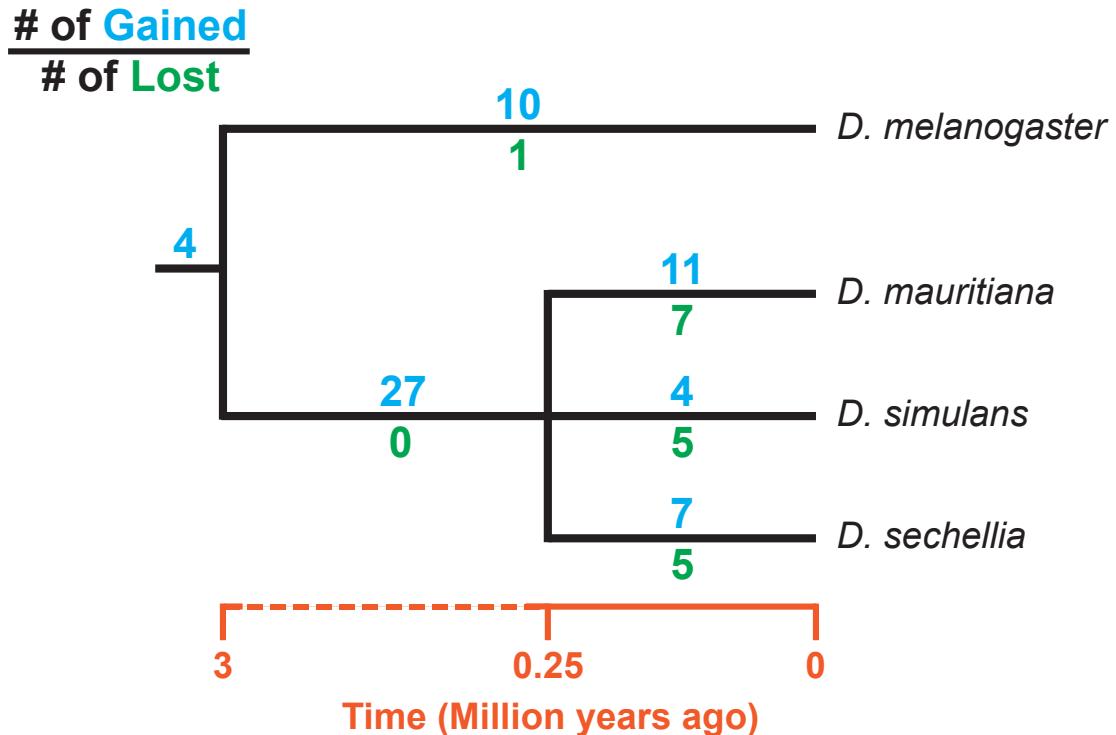
223



224

225 **Fig 2. Duplication of canonical Y-linked exons.** A) Exon copy number is highly
 226 variable across the three *D. simulans* clade species and generally greater than in *D.*
 227 *melanogaster*. B) Gene structure of *kl-2* and *ARY* inferred from assemblies and RNA-
 228 seq data. Upper bars indicate exons that are colored and numbered, with their height
 229 showing average read depth from sequenced testes RNA (*D. simulans* and *D.*
 230 *mauritiana* only). Lower bars indicate exon positions on the assembly and position on
 231 the Y-axis indicates coding strand.

232


233 Consistent with previous studies [18, 55], we identify high rates of gene duplication to
234 the *D. simulans* clade Y chromosome from other chromosomes. We find 49
235 independent duplications to the Y chromosome in our heterochromatin-enriched
236 assemblies (Fig 4; Table S6), including eight newly discovered duplications [18, 55].
237 Twenty-eight duplications are DNA-based, 13 are RNA-based, and the rest are
238 unknown due to the limited sequence information (Table S6). The rate of transposition
239 to the Y chromosome is about 3–4 times higher in the *D. simulans* clade compared to *D.*
240 *melanogaster* [22]. We also infer that 17 duplicated genes were independently deleted
241 from *D. simulans* clade Y chromosomes. Based on transcriptomes from *D. simulans*
242 and *D. mauritiana* testes, we suspect that more than half of the duplicated genes are
243 likely pseudogenes that either show no expression in testes (< 3 TPM) or lack open
244 reading frames (< 100 amino acids; Table S6). We also detect intrachromosomal
245 duplications of these Y-linked pseudogenes (Table S6), suggesting a high duplication
246 rate within these Y chromosomes.

247

248 **Fig 3. Evolution of intron lengths in canonical Y-linked genes.** The intron length in
249 canonical Y-linked genes is different between *D. melanogaster* and the three *D.*

250 simulans clade species. Orthologous introns are connected by dotted lines. Completely
251 assembled introns are in blue and introns with gaps in the assembly are in red, and are
252 therefore minimum intron lengths.

253
254 **Fig 4. The turnover of new duplications to Y chromosomes in *D. melanogaster***
255 **and three species in the *D. simulans* clade.** Using phylogenetic analyses, we inferred
256 the evolutionary histories of new Y-linked duplications. The blue and green numbers
257 represent the number of independent duplications and deletions observed in each
258 branch, respectively. The deletion events that happened in the ancestor of these four
259 species cannot be inferred without a Y chromosome assembly in the outgroup.

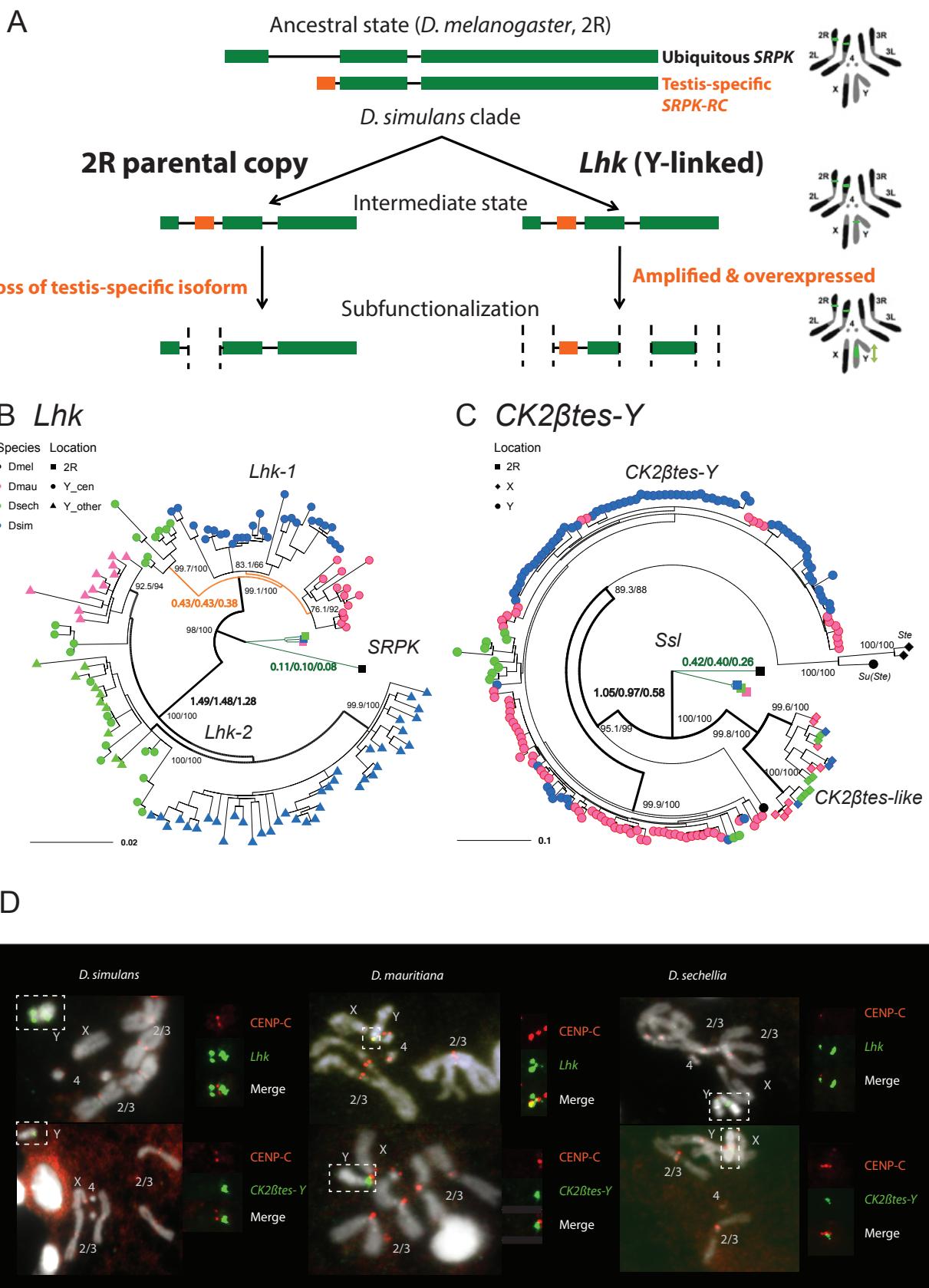
260
261 Most new Y-linked genes in *D. melanogaster* and the *D. simulans* clade have presumed
262 functions in chromatin modification, cell division, and sexual reproduction (Table S7),
263 consistent with other *Drosophila* species [17, 77]. Y-linked duplicates of genes with
264 these functions may be selectively beneficial, but a duplication bias could also
265 contribute to this enrichment, as genes expressed in the testes may be more likely to
266 duplicate to the Y chromosome due to its open chromatin structure and transcriptional
267 activity during spermatogenesis [78-80].

268 **The evolution of new Y-linked gene families**

269 Ampliconic gene families are found on Y chromosomes in multiple *Drosophila* species
270 [24]. We discovered two new gene families that have undergone extensive amplification
271 on *D. simulans* clade Y chromosomes. Both families appear to encode functional
272 protein-coding genes with complete open reading frames and high expression in
273 mRNA-seq data (Table S8), and have 36–146 copies in each species' Y chromosome.
274 We also confirm that >90% of the variants in our assembled Y-linked gene families are
275 represented in Illumina DNA-seq data (Supplemental text).

276 The first amplified Y-linked gene family, *SR Protein Kinase (SRPK)*, is derived from an
277 autosome-to-Y duplication of the sequence encoding the testis-specific isoform of the
278 gene *SR Protein Kinase (SRPK)*. After the duplication of *SRPK* to the Y chromosome,
279 the ancestral autosomal copy subsequently lost its testis-specific exon via a deletion
280 (Figure 5A). The movement of the male-specific isoform inspired us to name the Y-
281 linked *SRPK* gene family *Lo-han-kha (Lhk)*, which is the Taiwanese term for the male
282 vagabonds that moved from mainland China to Taiwan during the Qing dynasty. In *D.*
283 *melanogaster*, *SRPK* is essential for both male and female reproduction [81],
284 suggesting the hypothesis that the relocation of the testis-specific isoform to the *D.*
285 *simulans* clade Y chromosomes may have relieved intralocus sexual antagonism over
286 these two functions. Our phylogenetic analysis identified two subfamilies of *Lhk* that we
287 designate *Lhk-1* and *Lhk-2* (Figure 5B). Both subfamilies are shared by all *D. simulans*
288 clade species and show a 5.5% protein divergence between species. The two
289 subfamilies are found in different locations in our Y chromosome assemblies; consistent

290 with this observation, we detect two to three *Lhk* foci on Y chromosomes in the *D.*
291 *simulans* clade using FISH (Figure 5B and 5D and Fig S3 and S4).


292 The second amplified gene family comprises both X-linked and Y-linked duplicates of
293 the *Ss1* gene located on chromosome 2R; it is unclear whether the X- or Y-linked copies
294 originated first. The X-linked copies are known as *CK2βtes-like* in *D. simulans* [82]. The
295 Y-linked copies are also found in *D. melanogaster*, but are degenerated and have little
296 or no expression [22, 83], leading to their designation as pseudogenes. In the *D.*
297 *simulans* clade species, however, the Y-linked paralogs have high levels of expression
298 (> 50 TPM in testes, Table S8) and complete open reading frames, so we refer to this
299 gene family as *CK2βtes-Y*. Both *CK2βtes-like* (4–9 copies) and *CK2βtes-Y* (36–123
300 copies based on the assemblies) are amplified on the X and Y chromosome in the *D.*
301 *simulans* clade relative to *D. melanogaster* (Table S8) [82]. The Y-linked copies in *D.*
302 *melanogaster*, *Su(Ste)*, are known to be a source of piRNAs [84]. We did not detect any
303 testis piRNAs from either gene family in two small RNA-seq datasets (SRR7410589 and
304 SRR7410590), however, we do find some short (< 23-nt) reads (0.003–0.005% of total
305 mapped reads) mapped to these gene families (Table S9).

306 We inferred gene conversion rates and the strength of selection on these Y-linked gene
307 families using phylogenetic analyses on coding sequences. We estimated the gene
308 conversion rate in *D. simulans* clade Y-linked gene families based on four-gamete tests
309 and gene similarity [15, 22, 85, 86]. In general, *D. simulans* clade species show similar
310 gene conversion rates (on the order of 10^{-4} to 10^{-6}) in both of these families compared to
311 our previous estimates in *D. melanogaster* (Table S10; [22]). These higher gene

312 conversion rates compared to the other chromosomes might be a shared feature of Y
313 chromosomes across taxa [15].

314 To estimate rates of molecular evolution, we conducted branch-model and branch-site-
315 model tests on the reconstructed ancestral sequences of *Lhk-1*, *Lhk-2*, *CK2 β tes-Y*, and
316 two *CK2 β tes-like* using PAML (Fig 5B and 5C; [87]). We used reconstructed ancestral
317 sequences for our analyses to avoid sequencing errors in the assemblies, which appear
318 as singletons. We infer that after the divergence of *D. simulans* clade species, *Lhk-1*
319 evolved under purifying selection, whereas *Lhk-2* evolved under positive selection (Fig
320 5B; Fig S9; Table S11). Using transcriptome data, we observe that highly expressed
321 *Lhk-1* copies have fewer nonsynonymous mutations than lowly expressed copies in *D.*
322 *simulans*, consistent with purifying selection (Chi-square test's P=0.01; Fig S10 and
323 Table S12). Both *Lhk* gene families are expressed 2 to 7-fold higher than the ancestral
324 copy on 2R in the same species, and 1.9 to 64-fold higher than their ortholog, *SRPK-*
325 *RC*, in *D. melanogaster*, suggesting that gene amplification may confer increased
326 expression. In both *D. simulans* and *D. mauritiana*, *Lhk-1* is shorter due to deletions
327 following its origin and has a higher expression level than *Lhk-2*. Both *Lhk* gene families
328 have higher copy numbers in *D. simulans* than *D. mauritiana*, which likely contributes to
329 their higher expression level in *D. simulans* (Table S8). For both *Lhk-1* and *Lhk-2*,
330 copies from the same species are more similar than copies from other species—a
331 signal of concerted evolution [88].

332

334 **Fig 5. The rapid evolution and gene conversion of Y-linked ampliconic genes. A)**
335 Schematic showing the inferred evolutionary history of SRPK-Y. SRPK duplicated to the
336 ancestral Y chromosome in the *D. simulans* clade. The Y-linked copy (*Lhk*) retained an
337 exon with testis-specific expression, which was lost in the parental copy on 2R. The Y-
338 linked copy (*Lhk*) further duplicated and increased their expression in testes. B) The
339 inferred maximum likelihood phylogeny for *Lhk*. Node labels indicate SH-aLRT and
340 ultrafast bootstrap (e.g. 100/100) or rates of protein evolution from PAML with
341 CodonFreq = 0,1, or 2 (e.g. 1.01/1.02/1.03) (Fig S9 and S11). *Lhk* shows evidence for
342 positive selection (branch tests and branch-site tests with $\omega > 1$) after the duplication
343 from 2R (SRPK) to the Y chromosome in the *D. simulans* clade. One *Lhk* subfamily
344 (*Lhk-1*) is under recent purifying selection and is located close to the centromere, but
345 the other (*Lhk-2*) is rapidly evolving across the species of the *D. simulans* clade. C)
346 Same as B but for *CK2βtes-Y*. Both Y-linked *CK2βtes-Y* and X-linked *CK2βtes-like* also
347 show positive selection. All ω values shown are statistically significant (LRT tests,
348 $P \leq 0.05$; Table S11 and S12). D) On the Y chromosomes, *Lhk* FISH signals are located
349 in 2–3 cytological locations. *CK2βtes-Y* signals are only located nearby centromeres in
350 the immunolabelling with fluorescent in situ hybridization (immunoFISH) experiments.
351 Based on our analysis of sequence information, we suggest that most *Lhk-1* copies are
352 located close to *CK2βtes-Y* and centromere.

Table 2. PAML analyses reveal positive selection on Y-linked ampliconic gene families

Lhk	Branch test with CodonFreq=0						Branch-site test site class						Positively selected sites (BEB > 0.95) ^d
	ω1	ω2	ω3	L	2ΔlnL	LRT's P	ω0	ω1	ω2a	ω2b	2ΔlnL	LRT's P	
one ω	0.17			-3250.74									
two ω ^a	0.11	1.05		-3218.26	64.94	7.71E-16	0.01	1	4.87	4.87	13.04	3.05E-04	I4, H11, V32, V75, N99, Y100, D193, D199
three ω ^c	0.11	1.49	0.43	-3216.30	3.92	0.05							
<i>CK2βtes</i>													
one ω	0.35			-3295.01									
two ω ^b	0.25	1.05		-3272.00	46.01	1.18E-11	0.05	1	2.21	2.21	6.54	1.06E-02	D33, T38, K44, K100, F101, K104, M152, M155
three ω ^c	0.20	0.42	1.05	-3266.33	11.35	7.56E-04							

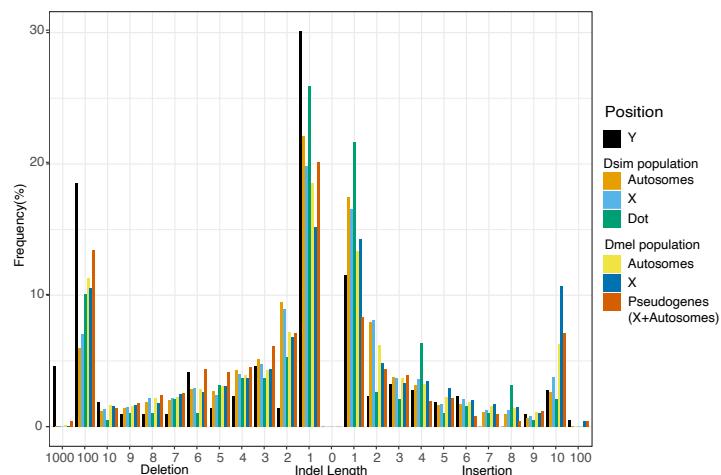
a Autosomal and Y lineage have protein evolution of ω1 and ω2, respectively.

b Autosomal and sex chromosomal (X and Y) have protein evolution of ω1 and ω2, respectively.

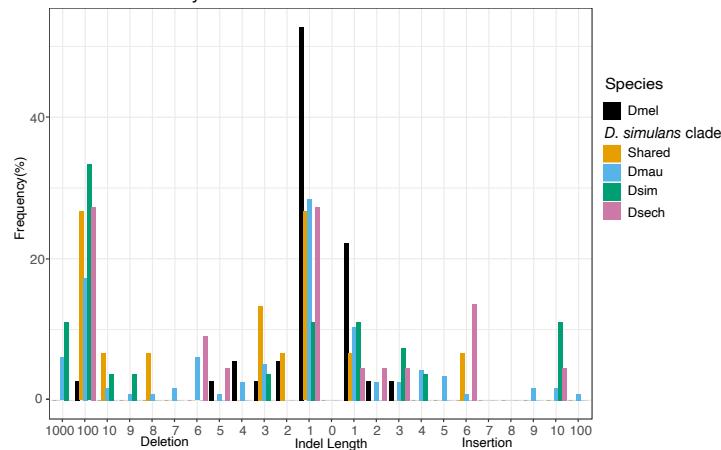
c See Figure 3C and 3D for the assignment of lineage.

d See Table S11 and S13 for all the sites.

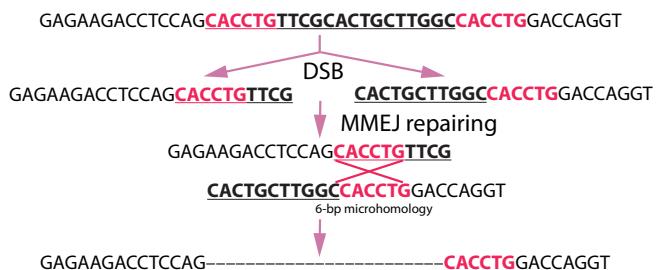
355 The ancestral *Ss1* gene experienced a slightly increased rate of protein evolution after it
356 duplicated to the X and Y chromosomes ($\omega = 0.41$ vs. 0.23; $P = 0.03$; Fig 5C; Fig S11;
357 Table S13). We find that both *CK2 β tes-like* and *CK2 β tes-Y* share strong signals of
358 positive selection, based on branch-model and branch-site-model tests ($P = 8.8E-9$; Fig
359 5C; Fig S11; Table S13). In *D. melanogaster*, the overexpression of the *CK2 β tes-like* X-
360 linked homolog, *Stellate*, can drive in the male germline by killing Y-bearing sperm and
361 generating female-biased offspring [89-91]. We suspect that *CK2 β tes-like* and *CK2 β tes-Y*
362 might have similar functions and may also have a history of conflict. Therefore, the
363 co-amplification of sex-linked genes and positive selection on their coding sequences
364 may be a consequence of an arms race between sex chromosome drivers.


365 **Y chromosome evolution driven by specific mutation patterns**

366 The specific DNA-repair mechanisms used on Y chromosomes might contribute to their
367 high rates of intrachromosomal duplication and structural rearrangements. Because Y
368 chromosomes lack a homolog, they must repair double-strand breaks (DSBs) by non-
369 homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ), which
370 relies on short homology (usually > 2 bp) to repair DSBs [92]. Compared to NHEJ,
371 MMEJ is more error-prone and can result in translocations and duplications [93].
372 Preferential use of MMEJ instead of NHEJ could contribute to the high duplication rate
373 and extensive genome rearrangements that we observed on Y chromosomes. To infer
374 the mechanisms of DSB repair on Y chromosomes, we counted indels between Y-linked
375 duplicates and their parent genes for a set of 17 putative pseudogenes—both NHEJ
376 and MMEJ can generate indels, but NHEJ usually produces smaller indels (1–3 bp)
377 compared to MMEJ (> 3 bp) [93, 94]. We also cataloged short stretches of homology


378 between each duplicate and its parent. To compare Y-linked patterns of DSB repair to
379 other regions of the genome, we measured the size of polymorphic indels in intergenic
380 regions and pseudogenes on the autosomes and X chromosomes from population data
381 in *D. melanogaster* (DGRP [95]) and *D. simulans* [96]. To the extent that these indels do
382 not experience selection, their sizes should reflect the mutation patterns on each
383 chromosome. We observe proportionally more large deletions on Y chromosomes (25%
384 of Y-linked indels are \geq 10-bp deletions; Table S14) compared to other chromosomes in
385 both *D. melanogaster* (12.8% and 15.2% of indels are \geq 10-bp deletions in intergenic
386 regions and pseudogenes) and *D. simulans* (7.3% of indels are \geq 10-bp deletions in
387 intergenic regions; all pairwise chi-square's $P < 1e-6$; Fig 4A; Table S15). The pattern of
388 excess large deletions is shared in the three *D. simulans* clade species Y
389 chromosomes, but is not obvious in *D. melanogaster* (Fig 6B). However, because all *D.*
390 *melanogaster* Y-linked indels in our analyses are from copies of a single pseudogene
391 (CR43975), it is difficult to compare to the larger samples in the *simulans* clade species
392 (duplicates from 16 genes). The differences in deletion sizes between the Y and other
393 chromosomes are unlikely to be driven by heterochromatin or the lack of recombination
394 —the non-recombining and heterochromatic dot chromosome has a deletion size profile
395 more similar to the other autosomes in *D. simulans* (10.9% of indels are \geq 10-bp
396 deletions). These results suggest that Y chromosomes may use MMEJ over NHEJ
397 compared to other chromosomes, particularly in the *simulans* clade species. We also
398 find that across the genome larger deletions (>7bp) share a similar length of
399 microhomologies for repairing DSBs—(39.5–57% deletions have \geq 2 bp microhomology;
400 Chi-square test for microhomology length between Y and other chromosomes, $P > 0.24$;

401 Table S14 and S15), consistent with most being a consequence of MMEJ-mediated
 402 repair.


A

B Y chromosome only

C

403
 404 **Fig 6. An excess of large deletions on Y chromosomes, compared to population**
 405 **data suggests a preference for MMEJ.** A) We compared the size of 216 indels on 17
 406 recently duplicated Y-linked genes in *D. melanogaster* and the *D. simulans* clade
 407 species to the indels polymorphic in the *D. melanogaster* and *D. simulans* populations.

408 For the indels in *D. melanogaster* and *D. simulans* populations, we separated them
409 based on their location, including autosomes (excluding dot chromosomes), X
410 chromosomes, and dot chromosomes. We excluded the *D. melanogaster* dot-linked
411 indels due to the small sample size (12). B) We classify Y-linked indels by whether they
412 are shared between species or specific in one species C) The excess of large deletions
413 (underlined) on the Y chromosomes is consistent with MMEJ between short regions of
414 microhomology (red).

415

416 The satellite sequence composition of Y chromosomes differs between species [76, 97,
417 98]. A high duplication rate may accelerate the birth and turnover of Y-linked satellite
418 sequences. We discovered five new Y-linked satellites in our assemblies and validated
419 their location using FISH (Fig S3–4 and Table S16). These satellites only span a few
420 kilobases of sequences (5,515 to 26,119 bp) and are homogenized. According to its
421 flanking sequence, one new satellite, (AAACAT)_n, originated from a DM412B
422 transposable element, which has three tandem copies of AAACAT in its long terminal
423 repeats. The AAACAT repeats expanded to 764 copies on the Y chromosome
424 specifically in *D. mauritiana*. The other four novel satellites are flanked by transposons
425 (< 50 bp) and may derive from non-repetitive sequences. The MMEJ pathway may
426 contribute to the birth of new repeats, as this mechanism is known to generate tandem
427 duplications via template-switching during repair [93]. Short tandem repeats can be
428 further amplified via saltatory replication or unequal crossing-over between sister
429 chromatids.

430 Consistent with findings in other species [19, 22], we find an enrichment of LTR
431 retrotransposons on the *D. simulans* clade Y chromosomes relative to the rest of the
432 genome (Table S17). Interestingly, we find that the Y-linked LTR retrotransposons also
433 turn over between species (Fig S12 and Table S18). We find a positive correlation

434 between the difference in Y-linked TE abundance between *D. melanogaster* and each
435 of the *D. simulans* clade species versus the rest of the genome ($\rho = 0.45\text{--}0.50$; Fig
436 S13 and Table S18). This suggests that global changes in transposon activity could
437 explain the differences in Y-linked TEs abundance between species. However, the
438 correlations between species within the *D. simulans* clade are weaker ($\rho < 0.23$; Fig
439 S13 and Table S18), consistent with the possibility that some TEs may shift their
440 insertion preference between chromosomes. To test this hypothesis, we estimated the
441 ages of LTR retrotransposons by their length. We find that the recent insertions of LTR
442 transposons are differently distributed across chromosomes between species (Fig S14),
443 suggesting that insertion preferences towards genomic regions may differ for some TEs.
444 For example, we detect many recent DIVER element insertions on the Y chromosome
445 in *D. simulans*, but not in *D. sechellia* (Fig S9).

446

447 **Discussion**

448 Despite their independent origins, the degenerated Y chromosomes of mammals, fish,
449 and insects have convergently evolved structural features of gene acquisition and
450 amplification, accumulation of repetitive sequences, and gene conversion. Here we
451 consider the mutational processes that contribute to this structure and its consequences
452 for Y chromosome biology. Our assemblies revealed extensive Y chromosome
453 rearrangements between three very closely related *Drosophila* species (Figure 1).
454 These rearrangements may be the consequence of rejoining telomeres after DSBs, as
455 telomere-specific sequences are embedded in non-telomeric regions of *Drosophila* Y
456 chromosomes [58, 99, 100]. We propose that four pieces of evidence suggest DSBs on

457 Y chromosomes may be preferentially repaired using the MMEJ pathway. First, Y-linked
458 sequences are absent from the X chromosome, precluding repair of DSBs by
459 homologous recombination in meiosis. Second, NHEJ on Y chromosomes may be
460 limited because the Ku complex, which is required for NHEJ [94], is excluded from
461 HP1a-rich regions of chromosomes [101]. The Ku complex also binds telomeres and
462 might prevent telomere fusions [102, 103], suggesting that a low concentration of Ku on
463 Y chromosomes could also cause high rates of telomere rejoining. Third, the highly
464 repetitive nature of Y chromosomes may increase the rate of DSB formation, which may
465 also contribute to a higher rate of MMEJ [93, 104]. Fourth, we show that Y
466 chromosomes have high duplication and gene conversion rates, and larger deletion
467 sizes than other genomic regions (Figure 4), consistent with a preference for MMEJ to
468 repair Y-linked DSBs [93].

469 The exclusion of the Ku complex from heterochromatin could also contribute to an
470 excess of Y-linked duplications we observe in the *D. simulans* clade relative to *D.*
471 *melanogaster* (Figure 2A and 4). *D. simulans* clade Y chromosomes might harbor
472 relatively more heterochromatin than the *D. melanogaster* Y due to the partial loss of
473 their euchromatic rDNA repeats [57, 61, 62], and *D. simulans* also expresses more
474 heterochromatin-modifying factors, such as *Su(var)s* and *E(var)s* [105], compared to *D.*
475 *melanogaster*. To explore these hypotheses, the distribution of the Ku complex across
476 chromosomes in the testes of these species should be studied.

477 If MMEJ is preferentially used to fix DSBs on the Y chromosome, we might expect that
478 the mutations in the MMEJ pathway would preferentially impact Y-bearing sperm.
479 Consistent with this prediction, a previous study showed that male *D. melanogaster* with

480 a deficient MMEJ pathway (*DNApol* mutants) sire female-biased offspring [106].

481 Moreover, sperm without sex chromosomes that result from X-Y non-disjunction events

482 are not as strongly affected by an MMEJ deficiency as Y-bearing sperm [106],

483 suggesting that sperm with Y chromosomes are more sensitive to defects in MMEJ.

484 *Drosophila* Y chromosomes can act as heterochromatin sinks, sequestering

485 heterochromatin marks from pericentromeric regions and suppressing position-effect

486 variegation [54, 107-109]. Therefore, retrotransposons located in heterochromatin might

487 have higher activities in males due to the presence of Y-linked heterochromatin [54,

488 108], although the genomic distribution of heterochromatin during spermatogenesis is

489 unknown. We find that, like *D. melanogaster* [22], *D. simulans* clade Y chromosomes

490 are enriched for retrotransposons relative to the rest of the genome; however Y

491 chromosomes from even the closely related *D. simulans* clade species harbor distinct

492 retrotransposons (Figure S12 and Table S18), indicating that some TEs may have

493 rapidly shifted their insertion preference. This preference might benefit the TEs because

494 Y-linked TEs might express during spermatogenesis [110]. On the other hand, Y

495 chromosomes can be a significant source of small RNAs that silence repetitive

496 elements during spermatogenesis—e.g., *Su(Ste)* piRNAs in *D. melanogaster* [111,

497 112]—and thus may also contribute to TE suppression. If Y chromosomes contribute to

498 piRNA or siRNA production (e.g., have piRNA clusters [112, 113]), then the TE insertion

499 preference for the Y chromosome may sometimes be beneficial for the host, as they

500 could provide immunity against active TEs in males. In this sense, Y chromosomes may

501 even act as “TE traps” that incidentally suppress TE activity in the male germline by

502 producing small RNAs.

503 Genes may adapt to the Y chromosome after residing there for millions of years [114,
504 115]. While most genes that move to the Y chromosome quickly degenerate [18, 23], a
505 subset of new Y-linked genes are retained, presumably due to important roles in male
506 fertility or sex chromosome meiotic drive. New Y-linked genes may adapt to this unique
507 genomic environment, evolving structures and regulatory mechanisms that enable
508 optimal expression on the heterochromatic and non-recombining Y chromosome [116].
509 Here, we describe two new Y-linked ampliconic genes specific to the *D. simulans*
510 clade—*Lhk* and *CK2βtes-Y*—that show evidence of strong positive evolution and
511 concerted evolution, suggesting that high copy numbers and Y-Y gene conversion are
512 often important for the adaptation of new Y-linked genes.

513 Many ampliconic genes are taxonomically restricted and are not maintained at high
514 copy numbers over long periods of evolutionary time [14, 17, 20, 24-26]. Some
515 ampliconic gene families are found on both the X and Y chromosomes [24, 89, 117-
516 119]. While we do not know the function of most such co-amplified gene families, the
517 murine example of *Slx/Slx/1* and *Slx* appears to be engaged in an ongoing arms race
518 between the sex chromosomes [117]. We propose that Y-linked gene amplification in
519 the *D. simulans* clade initially occurs due to an arms race and has the added benefit of
520 being preserved by gene conversion.

521 It is intriguing that the *CK2βtes-like/CK2βtes-Y* gene family is homologous to the
522 *Ste/Su(Ste)* system in *D. melanogaster* [82], which is also hypothesized to play a role in
523 sex-chromosome meiotic drive [120]. We speculate that in both the *D. melanogaster*
524 and *D. simulans* clade lineages these gene amplifications have been driven by conflict
525 between the sex chromosomes over transmission through meiosis, but that the conflict

526 involves different molecular mechanisms. In the *CK2 β tes-like/CK2 β tes-Y* system, both
527 X and Y-linked genes are protein-coding genes, which is reminiscent of *Slx/Slx1* and
528 *Sly* which compete for access to the nucleus where they regulate sex-linked gene
529 expression[117, 118]. In contrast, the Y-linked *Su(Ste)* copies in *D. melanogaster*
530 produce small RNAs that suppress the X-linked *Stellate* [84]. We propose that *CK2 β tes-*
531 *like/CK2 β tes-Y* system in the *D. simulans* clade species may represent the ancestral
532 state because the parental gene *Ss1* is a protein-coding gene. We speculate that
533 systems arising from antagonisms between the sex chromosomes may shift from
534 protein-coding to RNA-based over time because, with RNAi, suppression is maintained
535 at a minimal translation cost.

536 Distinct Y-linked mutation patterns are described in many species [14-21]. Our analyses
537 provide a link between Y-linked mutation patterns and Y chromosome evolution. While
538 the lack of recombination and male-limited transmission of the Y chromosome reduces
539 the efficacy of selection, the high gene duplication and gene conversion rates may
540 counter these effects and help acquire and maintain new Y-linked genes. The unique Y-
541 linked mutation patterns might be the direct consequence of the heterochromatic
542 environment on sex chromosomes. Therefore, we predict that W chromosomes and
543 non-recombining sex-limited chromosomes (e.g., some B chromosomes), may share
544 similar mutation patterns with Y chromosomes. Indeed, W chromosomes of birds have
545 ampliconic genes and are rich in tandem repeats [86, 121]. However, there seem to be
546 fewer ampliconic gene families on bird W chromosomes compared to Y chromosomes
547 in other animals, suggesting that sexual selection and intragenomic conflict in
548 spermatogenesis are important contributors to Y-linked gene family evolution [122, 123].

549 **Materials and Methods**

550 **Assembling Y chromosomes using Pacbio reads in *D. simulans* clade**

551 We applied the heterochromatin-sensitive assembling pipeline from [22]. We first
552 extracted 229,464 reads with 2.2-Gbp in *D. mauritiana*, 269,483 reads with 2.3-Gbp in
553 *D. simulans*, and 257,722 reads with 2.6-Gbp in *D. sechellia* using assemblies from
554 [55], respectively. We then assembled these reads using Canu v1.3 and FALCON
555 v0.5.0 combined the parameter tuning method on 2 error rates, eM and eg, in bogart to
556 optimize the assemblies. We first made the Canu assemblies using the parameters
557 “genomeSize=30m stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100
558 ovlMerSize=31” and “genomeSize=30m stopOnReadQuality=false”. For FALCON
559 v0.5.0, we used the parameters “length_cutoff = -1; seed_coverage = 30 or 40;
560 genome_size = 30000000; length_cutoff_pr = 1000”. We then picked the assemblies
561 with highest contiguity and completeness without detectable misassemblies from each
562 setting (two Canu settings and one Falcon setting).

563 After picking the three best assemblies for each species, we tentatively reconciled the
564 assemblies using Quickmerge [124]. We examined and manually curated the merged
565 assemblies. For the *D. mauritiana* assembly, we merged two Canu and one FALCON
566 assemblies, and for our *D. simulans* and *D. sechellia* assemblies, we merged one Canu
567 and one FALCON assemblies independently. We manually curated some conserved Y-
568 linked genes using raw reads and cDNA sequences from NCBI, including *kl-3* of *D.*
569 *mauritiana*, *kl-3*, *kl-5*, and *PRY* of *D. simulans* and *CCY*, *PRY*, and *Ppr-Y* of *D.*

570 *sechellia*, due to their low coverage and importance for our phylogenetic analyses. We
571 then merged our heterochromatin restricted assemblies with contigs of the major
572 chromosome arms from [55]. We polished the resulting assemblies once with Quiver
573 using PacBio reads (SMRT Analysis v2.3.0; [125] and ten times with Pilon v1.22 [126]
574 using raw Illumina reads with parameters “--mindepth 3 --minmq 10 --fix bases”.

575 We identified misassemblies and found parts of Y-linked sequences in the contigs from
576 major arms using our female/male coverage assays in *D. sechellia*. We also assembled
577 the total reads (assuming genome size of 180 Mb) and heterochromatin-extracted reads
578 (assuming genome size 40 Mb) using wtdbg v2.4 with parameters “-x rs -t24 -X 100 -e
579 2” [127] and Flye v2.4.2 [128] with default parameters separately. We polished the
580 resulting wtdbg assemblies with raw Pacbio reads using Flye v2.4.2. We then manually
581 assembled five introns and fixed two misassemblies using sequences from wtdbg
582 whole-genome assemblies (two introns), Flye whole-genome (two introns), and
583 heterochromatin-enriched assemblies (one intron) in *D. sechellia*. We assembled one
584 intron using sequences from wtdbg whole-genome assemblies in *D. simulans*.

585 We also extracted potential microbial reads (except for *Wolbachia*) that mapped to the *D.*
586 *sechellia* microbial contigs, and assembled these reads into a 4.5 Mb contig, which
587 represents the whole genome of a *Providencia* species, using Canu v 1.6 (r8426
588 14520f819a1e5dd221cc16553cf5b5269227b0a3) with parameters “genomeSize=5m
589 useGrid=false stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100”. To
590 detect other symbiont-derived sequences in our assemblies, we used Blast v2.7.1+ [129]
591 with blobtools (v1.0; [130]) to search the nt database (parameters “-task megablast -

592 max_target_seqs 1 -max_hsps 1 -evalue 1e-25"). We estimated the Illumina coverage of
593 each contig in males for *D. mauritiana*, *D. simulans* and *D. sechellia*, respectively. We
594 designated and removed contigs homologous to bacteria and fungi in subsequent
595 analyses (Table S19).

596 **Generating DNA-seq from males in the *D. simulans* clade**

597 We extracted DNA from 30 virgin 0-day males using DNeasy Blood & Tissue Kit and
598 diluted it in 100 µL ddH₂O. The DNA was then treated with 1 µL 10mg/mL RNaseA
599 (Invitrogen) at 37°C for 1-hr and was re-diluted in 100 µL ddH₂O after ethanol
600 precipitation. The size and concentration of DNA were analyzed by gel electrophoresis,
601 Nanodrop, Qubit and Genomic DNA ScreenTape. Finally, we constructed libraries using
602 PCR-free standard Illumina kit and sequenced 125-bp paired-end reads with a 550-bp
603 insert size from the libraries using Hiseq 2500 in UR Genomics Research Center. We
604 deposited the reads in NCBI's SRA under BioProject accession number PRJNA748438.

605 **Identifying Y-linked contigs**

606 To assign contigs to the Y chromosome, we used Illumina reads from male and female
607 PCR-free genomic libraries (except females of *D. mauritiana*) as described in [22]. In
608 short, we mapped the male and female reads separately using BWA (v0.7.15; [131])
609 and called the coverage of uniquely mapped reads per site with samtools (v1.7; -Q 10
610 [132]). We further assigned contigs with the median of male-to-female coverage across
611 contigs equal to 0 as Y-linked. We examined the sensitivity and specificity of our
612 methods using all 10-kb regions with known location. Based on our results for 10-kb

613 regions with known location (Table S2) in *D. mauritiana*, we set up an additional
614 criterion for this species—"the average of female-to-male coverage < 0.1"—to reduce
615 the false discovery rate.

616 **Gene and repeat annotations**

617 We used the same pipeline and data to annotate genomes as a previous study [55]. We
618 collected transcripts and translated sequences from *D. melanogaster* (r6.14) and
619 transcript sequences from *D. simulans* [133] using IsoSeq3 [134]. We mapped these
620 sequences to each assembly to generate annotations using maker2 (v2.31.9; [135]. We
621 further mapped the transcriptomes using Star 2.7.3a 2-pass mapping with the maker2
622 annotation and parameters “-outFilterMultimapNmax 200 --alignSJoverhangMin 8 --
623 alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --
624 outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 5000000 --
625 alignMatesGapMax 5000000 --outSAMtype BAM SortedByCoordinate --
626 readFilesCommand zcat --peOverlapNbasesMin 12 --peOverlapMMp 0.1”. We then
627 generated the consensus annotations using Stringtie 2.0.3 from all transcriptomes [136].
628 We further improved the mitochondria annotation using MITOS2. We assigned
629 predicted transcripts to their homologs in *D. melanogaster* using BLAST v2.7.1+ (-
630 evalue 1e-10; [129]).

631 We used RepeatMasker v4.0.5 [137] with our custom library to annotate the assemblies
632 using parameter “-s.” Our custom library is modified from [55], by adding the consensus
633 sequence of *Jockey-3* from *D. melanogaster* to replace its homologs (G2 in *D.*

634 *melanogaster* and *Jockey-3* in *D. simulans*; [138]). We extracted the sequences and
635 copies of TEs and other repeats using scripts modified from [139]. To annotate tandem
636 repeats in assemblies, we used TRFinder (v4.09; [140] with parameters “2 7 7 80 10
637 100 2000 -ngs -h”. We also used kseek to search for tandem repeats in the male
638 Illumina reads.

639 **Transcriptome analyses**

640 We mapped the testes transcriptome to the reference genomes of *D. melanogaster*, *D.*
641 *simulans* and *D. mauritiana* (Table S20; no available transcriptome from *D. sechellia*).
642 We used Stringtie 2.0.3 [136] to estimate the expression level using the annotation.
643 However, we applied a different strategy for estimating expression levels of the Y-linked
644 gene families due to the difficulties in precisely annotating multi-copies genes. We
645 constructed a transcript reference using current gene annotation but replaced all
646 transcripts from *Lhk-1*, *Lhk-2* and *CK2βtes-Y* with their species-specific reconstructed
647 ancestral copies. We then mapped the transcriptome reads to this reference using
648 Bowtie2 v 2.3.5.1 [141] with parameters “-very-sensitive -p 24 -k 200 -X 1000 --no-
649 discordant --no-mixed”. We then estimated the expression level by salmon v 1.0.0 [142]
650 with parameters “-l A -p 24.” We also mapped small RNA reads from *D. simulans* testes
651 to our custom repeat library and reconstructed ancestral *Lhk-1*, *Lhk-2* and *CK2βtes-Y*
652 sequences using Bowtie v 1.2.3 [143] with parameters “-v3 -q -a -m 50 --best --strata.”
653 To assay the specific expression of different copies, we also mapped transcriptomic and
654 male genomic reads to the same reference using BWA (v0.7.15; [131]. We used ABRA

655 v2.22 [144] to improve the alignments around the indels of these two gene families. We
656 used samtools (v1.7; [132]) to pile up reads that mapped to reconstructed ancestral
657 copies and estimated the frequency of derived SNPs in the reads.

658 **Estimating Y-linked exon copy numbers using Illumina reads**

659 We mapped the Illumina reads from the male individuals of *D. melanogaster* and the *D.*
660 *simulans* clade species to a genome reference with transcripts of 11 conserved Y-linked
661 genes and the sequences of all non-Y chromosomes (r6.14) in *D. melanogaster*. We
662 called the depth using samtools depth (v1.7; [132]), and estimated the copy number of
663 each exon using the mapped depth. We assumed most Y-linked exons are single-copy,
664 so we divided the depth of each site by the majority of depth across all Y-linked
665 transcripts to estimate the copy number. For the comparison, we simulated the 50X
666 Illumina reads from our assemblies using ART 2.5.8 with the parameter (art_illumina -ss
667 HSXt -m 500 -s 200 -p -l 150 -f 50; [145]). We then mapped the simulated reads to the
668 same reference, called the depth, and divided the depth of each site by 50.

669 **Immunostaining and FISH of mitotic chromosomes**

670 We conducted FISH in brain cells following the protocol from [146] and immunostaining
671 with FISH (immune-FISH) in brain cells following the protocol from [147] and [138].
672 Briefly, we dissected brains from third instar larva in 1X PBS and treated them for 1-min
673 in hypotonic solution (0.5% sodium citrate). Then, we fixed brain cells in 1.8%
674 paraformaldehyde, 45% acetic acid for 6-min. We subsequently dehydrated in ethanol
675 for the FISH experiments but not for the immune-FISH.

676 For immunostaining, we rehydrated the slide using PBS with 0.1% TritonX-100 after
677 removing the coverslip using liquid nitrogen. The slides were blocked with 3% BSA and
678 1% goat serum/ PBS with 0.1% TritonX-100 for 30-min and hybridized with 1:500 anti-
679 Cenp-C antibody (gift from Dr. Barbara Mellone) overnight at 4°C. We used 1:500
680 secondary antibodies (Life Technologies Alexa-488, 546, or 647 conjugated, 1:500) in
681 blocking solution with 45-min room temperature incubation to detect the signals. We
682 fixed the slides in 4% paraformaldehyde in 4XSSC for 6-min before doing FISH.
683 We added probes and denatured the fixed slides at 95°C for 5-min and then hybridized
684 slides at 30°C overnight. For PCR amplified probes with DIG or biotin labels, we
685 blocked the slides for 1-hr using 3% BSA/PBS with 0.1% Tween and incubated slides
686 with 1:200 secondary antibodies (Roche) in 3% BSA/4X SSC with 0.1% Tween and
687 BSA at room temperature for 1 hr. We made *Lhk* and *CK2βtes-Y* probes using PCR
688 Nick Translation kits (Roche) and ordered oligo probes from IDT. We list probe
689 information in Table S3. We mounted slides in Diamond Antifade Mountant with DAPI
690 (Invitrogen) and visualized them on a Leica DM5500 upright fluorescence microscope,
691 imaged with a Hamamatsu Orca R2 CCD camera and analyzed using Leica's LAX
692 software. We interpreted the binding patterns of Y chromosomes using the density of
693 DAPI staining solely.

694 **Phylogenetic analyses of Y-linked genes**

695 We used BLAST v2.7.1+ [129] to extract the sequences of Y-linked duplications and
696 conserved Y-linked genes from the genome. We only used high-quality sequences

697 polished by Pilon (--mindepth 3 --minmq 10) for our phylogenetic analyses. We aligned
698 and manually inspected sequences with reference transcripts from Flybase using
699 Geneious v8.1.6 [148]. For most Y-linked duplications, except for the genes
700 homologous to *Lhk* and *CK2βtes-Y*, we constructed neighbor-joining trees using the
701 HKY model with 1,000 replicates using Geneious v8.1.6 [148] to infer their phylogenies.
702 We also measured the length and microhomology in 216 indels from 17 Y-linked
703 duplications using these alignments (Table S14). We also infer the potential
704 mechanisms causing the indels, including tandem duplications and polymerase slippage
705 during DNA replication. We measured the length and microhomology of polymorphic
706 indels in *D. melanogaster* (DGRP [95]) and *D. simulans* [96] populations from [55]. For
707 *Lhk* and *CK2βtes-Y*, we constructed phylogeny using iqtree 1.6.12 [149, 150] using
708 parameters “-m MFP -nt AUTO -alrt 1000 -bb 1000 -bnni”. The node labels in Figure 5
709 correspond to SH-aLRT support (%) / ultrafast bootstrap support (%). The nodes with
710 SH-aLRT >= 80% and ultrafast bootstrap support >= 95% are strongly supported.
711 Protein evolutionary rates (with CodonFreq = 0/1/2 in PAML) of the bold branches were
712 estimated using PAML with branch models on the reconstructed ancestor sequences
713 (Fig S9 and S11).

714 **Estimating recombination and selection on Y-linked ampliconic genes**

715 Using the phylogenetic trees from iqtree, we infer the most probable sequences for the
716 internal nodes using MEGA 10.1.5 [151, 152] using the maximal likelihood method and
717 G+I model with GTR model. We conducted branch and branch-site models tests in

718 PAML 4.8 using the ancestral sequences of Y-linked and X-linked ampliconic gene
719 families with their homologs on autosomes. We plotted the tree using R package ape
720 5.3 [153].

721 We used compute 0.8.4 [154] to calculate Rmin and population recombination rates
722 based on linkage disequilibrium [155, 156] and gene similarity. We included sites with
723 indel polymorphisms in these analyses to increase the sample size (558–1,544 bp
724 alignments). We also reanalyzed data from Chang and Larracuente 2019 [22] to include
725 variant information from these sites. The high similarity between Y-linked ampliconic
726 gene copies may lead us to overestimate gene conversion based on gene similarity
727 [155]. We therefore also reported the lower bound on the gene conversion rate using
728 Rmin [156].

729 **GO term analysis**

730 We used PANTHER (Released 20190711; [157]) with GO Ontology database
731 (Released 2019-10-08) to perform Biological GO term analysis of new Y-linked
732 duplicated genes using Fisher's exact tests with FDR correction. We input 70 duplicated
733 genes with any known GO terms and used all genes (13767) in *D. melanogaster* as
734 background.

735 **Data availability**

736 Genomic DNA sequence reads are in NCBI's SRA under BioProject PRJNA748438. All
737 scripts and pipelines are available in GitHub (forthcoming) and the Dryad digital
738 repository (doi forthcoming).

739

740 **Acknowledgements**

741 This work was funded by the National Institutes of Health (NIH) (R35GM119515 to
742 A.M.L. and R01GM123194 to C.D.M.), National Science Foundation (NSF MCB
743 1844693) to A.M.L. and funding from the University of Nebraska-Lincoln to C.D.M..
744 A.M.L. was supported by a Stephen Biggar and Elisabeth Asaro fellowship in Data
745 Science. C.-H.C. was supported by the Messersmith Fellowship from the U of
746 Rochester, the Government Scholarship to Study Abroad from Taiwan, and the Damon
747 Runyon fellowship (DRG: 2438-21). We thank our collaborators, Drs. J.J. Emerson and
748 Mahul Chakraborty, for generating PacBio reads in the *D. simulans* clade, Dr. Barbara
749 Mellone for the antibodies, and Drs. Casey Bergman, Grace YC Lee, Kevin Wei and
750 Anthony Geneva and Larrauente lab members for helpful discussion. We also thank
751 the U of Rochester CIRC for access to computing cluster resources and UR Genomics
752 Research Center for the library construction and sequencing.

753

754

755 References

756 1. Rice WR. The Accumulation of Sexually Antagonistic Genes as a Selective Agent
757 Promoting the Evolution of Reduced Recombination between Primitive Sex-Chromosomes.
758 *Evolution*. 1987;41(4):911-4. doi: Doi 10.2307/2408899. PubMed PMID:
759 WOS:A1987J007200019.

760 2. Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-
761 chromosome degeneration. *Nature reviews Genetics*. 2013;14(2):113-24. Epub 2013/01/19. doi:
762 10.1038/nrg3366. PubMed PMID: 23329112; PubMed Central PMCID: PMCPMC4120474.

763 3. Charlesworth B. Model for evolution of Y chromosomes and dosage compensation.
764 *Proceedings of the National Academy of Sciences of the United States of America*.
765 1978;75(11):5618-22. Epub 1978/11/01. PubMed PMID: 281711; PubMed Central PMCID:
766 PMCPMC393018.

767 4. Rice WR. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex
768 chromosome. *Genetics*. 1987;116(1):161-7. Epub 1987/05/01. PubMed PMID: 3596229;
769 PubMed Central PMCID: PMCPMC1203114.

770 5. Charlesworth D, Charlesworth B, Morgan MT. The pattern of neutral molecular variation
771 under the background selection model. *Genetics*. 1995;141(4):1619-32. Epub 1995/12/01.
772 PubMed PMID: 8601499; PubMed Central PMCID: PMCPMC1206892.

773 6. Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. *Philos Trans R
774 Soc Lond B Biol Sci*. 2000;355(1403):1563-72. Epub 2000/12/29. doi: 10.1098/rstb.2000.0717.
775 PubMed PMID: 11127901; PubMed Central PMCID: PMCPMC1692900.

776 7. Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system.
777 *Curr Biol*. 2015;25(9):1234-40. Epub 2015/04/29. doi: 10.1016/j.cub.2015.03.015. PubMed
778 PMID: 25913399.

779 8. Bergero R, Gardner J, Bader B, Yong L, Charlesworth D. Exaggerated heterochiasmy in
780 a fish with sex-linked male coloration polymorphisms. *Proceedings of the National Academy of
781 Sciences of the United States of America*. 2019;116(14):6924-31. Epub 2019/03/22. doi:
782 10.1073/pnas.1818486116. PubMed PMID: 30894479; PubMed Central PMCID:
783 PMCPMC6452659.

784 9. Lenormand T, Fyon F, Sun E, Roze D. Sex Chromosome Degeneration by Regulatory
785 Evolution. *Curr Biol*. 2020;30(15):3001-6 e5. Epub 2020/06/20. doi: 10.1016/j.cub.2020.05.052.
786 PubMed PMID: 32559446.

787 10. Bachtrog D. Protein evolution and codon usage bias on the neo-sex chromosomes of
788 *Drosophila miranda*. *Genetics*. 2003;165(3):1221-32. Epub 2003/12/12. PubMed PMID:
789 14668377; PubMed Central PMCID: PMCPMC1462847.

790 11. Singh ND, Koerich LB, Carvalho AB, Clark AG. Positive and purifying selection on the
791 *Drosophila* Y chromosome. *Mol Biol Evol*. 2014;31(10):2612-23. Epub 2014/06/30. doi:
792 10.1093/molbev/msu203. PubMed PMID: 24974375; PubMed Central PMCID:
793 PMCPMC4166921.

794 12. Larracuente AM, Clark AG. Surprising differences in the variability of Y chromosomes in
795 African and cosmopolitan populations of *Drosophila melanogaster*. *Genetics*. 2013;193(1):201-
796 14. Epub 2012/10/23. doi: 10.1534/genetics.112.146167. PubMed PMID: 23086221; PubMed
797 Central PMCID: PMCPMC3527246.

798 13. Bachtrog D. Evidence that positive selection drives Y-chromosome degeneration in
799 *Drosophila miranda*. *Nat Genet*. 2004;36(5):518-22. Epub 2004/04/27. doi: 10.1038/ng1347.
800 PubMed PMID: 15107853.

801 14. Soh YQ, Alfoldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, et al. Sequencing the
802 mouse Y chromosome reveals convergent gene acquisition and amplification on both sex

803 chromosomes. *Cell*. 2014;159(4):800-13. Epub 2014/11/25. doi: 10.1016/j.cell.2014.09.052.
804 PubMed PMID: 25417157; PubMed Central PMCID: PMCPMC4260969.
805 15. Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, et al.
806 Abundant gene conversion between arms of palindromes in human and ape Y chromosomes.
807 *Nature*. 2003;423(6942):873-6. Epub 2003/06/20. doi: 10.1038/nature01723. PubMed PMID:
808 12815433.
809 16. Hughes JF, Page DC. The Biology and Evolution of Mammalian Y Chromosomes.
810 Annual review of genetics. 2015;49:507-27. Epub 2015/10/08. doi: 10.1146/annurev-genet-
811 112414-055311. PubMed PMID: 26442847.
812 17. Bachtrog D, Mahajan S, Bracewell R. Massive gene amplification on a recently formed
813 Drosophila Y chromosome. *Nat Ecol Evol*. 2019;3(11):1587-97. Epub 2019/11/02. doi:
814 10.1038/s41559-019-1009-9. PubMed PMID: 31666742.
815 18. Tobler R, Nolte V, Schlotterer C. High rate of translocation-based gene birth on the
816 Drosophila Y chromosome. *Proceedings of the National Academy of Sciences of the United
817 States of America*. 2017;114(44):11721-6. Epub 2017/10/29. doi: 10.1073/pnas.1706502114.
818 PubMed PMID: 29078298; PubMed Central PMCID: PMCPMC5676891.
819 19. Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, et al. Assembly of a
820 young vertebrate Y chromosome reveals convergent signatures of sex chromosome evolution.
821 *bioRxiv*. 2019;2019.12.12.874701. doi: 10.1101/2019.12.12.874701.
822 20. Brashear WA, Raudsepp T, Murphy WJ. Evolutionary conservation of Y Chromosome
823 ampliconic gene families despite extensive structural variation. *Genome research*.
824 2018;28(12):1841-51. Epub 2018/11/02. doi: 10.1101/gr.237586.118. PubMed PMID:
825 30381290; PubMed Central PMCID: PMCPMC6280758.
826 21. Hall AB, Papathanos PA, Sharma A, Cheng C, Akbari OS, Assour L, et al. Radical
827 remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. *Proceedings of
828 the National Academy of Sciences of the United States of America*. 2016;113(15):E2114-23.
829 Epub 2016/04/02. doi: 10.1073/pnas.1525164113. PubMed PMID: 27035980; PubMed Central
830 PMCID: PMCPMC4839409.
831 22. Chang CH, Larracuente AM. Heterochromatin-Enriched Assemblies Reveal the
832 Sequence and Organization of the *Drosophila melanogaster* Y Chromosome. *Genetics*.
833 2019;211(1):333-48. Epub 2018/11/14. doi: 10.1534/genetics.118.301765. PubMed PMID:
834 30420487; PubMed Central PMCID: PMCPMC6325706.
835 23. Carvalho AB, Vicoso B, Russo CA, Swenor B, Clark AG. Birth of a new gene on the Y
836 chromosome of *Drosophila melanogaster*. *Proceedings of the National Academy of Sciences of
837 the United States of America*. 2015;112(40):12450-5. Epub 2015/09/20. doi:
838 10.1073/pnas.1516543112. PubMed PMID: 26385968; PubMed Central PMCID:
839 PMCPMC4603513.
840 24. Ellison C, Bachtrog D. Recurrent gene co-amplification on *Drosophila* X and Y
841 chromosomes. *PLoS Genet*. 2019;15(7):e1008251. Epub 2019/07/23. doi:
842 10.1371/journal.pgen.1008251. PubMed PMID: 31329593; PubMed Central PMCID:
843 PMCPMC6690552.
844 25. Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SK, Minx PJ, et al.
845 Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene
846 content. *Nature*. 2010;463(7280):536-9. Epub 2010/01/15. doi: 10.1038/nature08700. PubMed
847 PMID: 20072128; PubMed Central PMCID: PMCPMC3653425.
848 26. Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM. The mouse
849 X chromosome is enriched for multicopy testis genes showing postmeiotic expression. *Nat
850 Genet*. 2008;40(6):794-9. Epub 2008/05/06. doi: 10.1038/ng.126. PubMed PMID: 18454149;
851 PubMed Central PMCID: PMCPMC2740655.

852 27. Connallon T, Clark AG. Gene duplication, gene conversion and the evolution of the Y
853 chromosome. *Genetics*. 2010;186(1):277-86. doi: 10.1534/genetics.110.116756. PubMed
854 PMID: 20551442; PubMed Central PMCID: PMCPMC2940292.

855 28. Carlson M, Brutlag D. Cloning and characterization of a complex satellite DNA from
856 *Drosophila melanogaster*. *Cell*. 1977;11(2):371-81. Epub 1977/06/01. PubMed PMID: 408008.

857 29. Lohe AR, Brutlag DL. Identical satellite DNA sequences in sibling species of *Drosophila*.
858 *J Mol Biol*. 1987;194(2):161-70. Epub 1987/03/20. PubMed PMID: 3112413.

859 30. Lohe AR, Brutlag DL. Adjacent satellite DNA segments in *Drosophila* structure of
860 junctions. *J Mol Biol*. 1987;194(2):171-9. Epub 1987/03/20. PubMed PMID: 3112414.

861 31. Mahajan S, Wei KH, Nalley MJ, Gibilisco L, Bachtrog D. De novo assembly of a young
862 *Drosophila* Y chromosome using single-molecule sequencing and chromatin conformation
863 capture. *PLoS Biol*. 2018;16(7):e2006348. Epub 2018/07/31. doi: 10.1371/journal.pbio.2006348.
864 PubMed PMID: 30059545; PubMed Central PMCID: PMCPMC6117089.

865 32. Araripe LO, Tao Y, Lemos B. Interspecific Y chromosome variation is sufficient to rescue
866 hybrid male sterility and is influenced by the grandparental origin of the chromosomes. *Heredity*
867 (Edinb). 2016;116(6):516-22. Epub 2016/03/17. doi: 10.1038/hdy.2016.11. PubMed PMID:
868 26980343; PubMed Central PMCID: PMCPMC4868264.

869 33. Bayes JJ, Malik HS. Altered heterochromatin binding by a hybrid sterility protein in
870 *Drosophila* sibling species. *Science*. 2009;326(5959):1538-41. Epub 2009/11/26. doi:
871 10.1126/science.1181756. PubMed PMID: 19933102; PubMed Central PMCID:
872 PMCPMC2987944.

873 34. Johnson NA, Perez DE, Cabot EL, Hollocher H, Wu CI. A test of reciprocal X-Y
874 interactions as a cause of hybrid sterility in *Drosophila*. *Nature*. 1992;358(6389):751-3. Epub
875 1992/08/27. doi: 10.1038/358751a0. PubMed PMID: 1508270.

876 35. Coyne JA. The genetic basis of Haldane's rule. *Nature*. 1985;314(6013):736-8. Epub
877 1985/04/01. doi: 10.1038/314736a0. PubMed PMID: 3921852.

878 36. Bozzetti MP, Massari S, Finelli P, Meggio F, Pinna LA, Boldyreff B, et al. The Ste locus,
879 a component of the parasitic cry-Ste system of *Drosophila melanogaster*, encodes a protein that
880 forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein
881 kinase 2. *Proceedings of the National Academy of Sciences of the United States of America*.
882 1995;92(13):6067-71. Epub 1995/06/20. PubMed PMID: 7597082; PubMed Central PMCID:
883 PMCPMC41643.

884 37. Courret C, Chang CH, Wei KH, Montchamp-Moreau C, Larracuente AM. Meiotic drive
885 mechanisms: lessons from *Drosophila*. *Proc Biol Sci*. 2019;286(1913):20191430. Epub
886 2019/10/24. doi: 10.1098/rspb.2019.1430. PubMed PMID: 31640520; PubMed Central PMCID:
887 PMCPMC6834043.

888 38. Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, Hartl DL. A sex-ratio meiotic drive system in
889 *Drosophila simulans*. II: an X-linked distorter. *PLoS Biol*. 2007;5(11):e293. Epub 2007/11/09.
890 doi: 10.1371/journal.pbio.0050293. PubMed PMID: 17988173; PubMed Central PMCID:
891 PMCPMC2062476.

892 39. Tao Y, Hartl DL, Laurie CC. Sex-ratio segregation distortion associated with reproductive
893 isolation in *Drosophila*. *Proceedings of the National Academy of Sciences of the United States
894 of America*. 2001;98(23):13183-8. Epub 2001/11/01. doi: 10.1073/pnas.231478798. PubMed
895 PMID: 11687638; PubMed Central PMCID: PMCPMC60845.

896 40. Helleu Q, Courret C, Ogereau D, Burnham KL, Chaminade N, Chakir M, et al. Sex-Ratio
897 Meiotic Drive Shapes the Evolution of the Y Chromosome in *Drosophila simulans*. *Mol Biol Evol*.
898 2019;36(12):2668-81. Epub 2019/07/11. doi: 10.1093/molbev/msz160. PubMed PMID:
899 31290972.

900 41. Branco AT, Tao Y, Hartl DL, Lemos B. Natural variation of the Y chromosome
901 suppresses sex ratio distortion and modulates testis-specific gene expression in *Drosophila*

902 simulans. *Heredity (Edinb)*. 2013;111(1):8-15. Epub 2013/04/18. doi: 10.1038/hdy.2013.5.
903 PubMed PMID: 23591516; PubMed Central PMCID: PMCPMC3692315.

904 42. Montchamp-Moreau C, Ginhoux V, Atlan A. The Y chromosomes of *Drosophila simulans*
905 are highly polymorphic for their ability to suppress sex-ratio drive. *Evolution*. 2001;55(4):728-37.
906 Epub 2001/06/08. PubMed PMID: 11392391.

907 43. Meiklejohn CD, Landeen EL, Gordon KE, Rzatkiewicz T, Kingan SB, Geneva AJ, et al.
908 Gene flow mediates the role of sex chromosome meiotic drive during complex speciation. *Elife*.
909 2018;7. Epub 2018/12/14. doi: 10.7554/eLife.35468. PubMed PMID: 30543325; PubMed
910 Central PMCID: PMCPMC6292695.

911 44. Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, et al. Diverse
912 spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel
913 RNA-binding protein gene. *Nat Genet*. 1995;10(4):383-93. Epub 1995/08/01. doi:
914 10.1038/ng0895-383. PubMed PMID: 7670487.

915 45. Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, et al.
916 Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11.
917 *Hum Mol Genet*. 1996;5(7):933-43. Epub 1996/07/01. PubMed PMID: 8817327.

918 46. Sun C, Skaletsky H, Rozen S, Gromoll J, Nieschlag E, Oates R, et al. Deletion of
919 azoospermia factor a (AZFa) region of human Y chromosome caused by recombination
920 between HERV15 proviruses. *Hum Mol Genet*. 2000;9(15):2291-6. Epub 2000/09/26. PubMed
921 PMID: 11001932.

922 47. Repping S, Skaletsky H, Brown L, van Daalen SK, Korver CM, Pyntikova T, et al.
923 Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance
924 between recurrent mutation and haploid selection. *Nat Genet*. 2003;35(3):247-51. Epub
925 2003/10/07. doi: 10.1038/ng1250. PubMed PMID: 14528305.

926 48. Morgan AP, Pardo-Manuel de Villena F. Sequence and Structural Diversity of Mouse Y
927 Chromosomes. *Mol Biol Evol*. 2017;34(12):3186-204. Epub 2017/10/14. doi:
928 10.1093/molbev/msx250. PubMed PMID: 29029271.

929 49. Lemos B, Branco AT, Hartl DL. Epigenetic effects of polymorphic Y chromosomes
930 modulate chromatin components, immune response, and sexual conflict. *Proceedings of the
931 National Academy of Sciences of the United States of America*. 2010;107(36):15826-31. Epub
932 2010/08/28. doi: 10.1073/pnas.1010383107. PubMed PMID: 20798037; PubMed Central
933 PMCID: PMCPMC2936610.

934 50. Wang M, Branco AT, Lemos B. The Y Chromosome Modulates Splicing and Sex-Biased
935 Intron Retention Rates in *Drosophila*. *Genetics*. 2017. Epub 2017/12/22. doi:
936 10.1534/genetics.117.300637. PubMed PMID: 29263027.

937 51. Sackton TB, Montenegro H, Hartl DL, Lemos B. Interspecific Y chromosome
938 introgressions disrupt testis-specific gene expression and male reproductive phenotypes in
939 *Drosophila*. *Proceedings of the National Academy of Sciences of the United States of America*.
940 2011;108(41):17046-51. Epub 2011/10/05. doi: 10.1073/pnas.1114690108. PubMed PMID:
941 21969588; PubMed Central PMCID: PMCPMC3193250.

942 52. Zhou J, Sackton TB, Martinsen L, Lemos B, Eickbush TH, Hartl DL. Y chromosome
943 mediates ribosomal DNA silencing and modulates the chromatin state in *Drosophila*.
944 *Proceedings of the National Academy of Sciences of the United States of America*.
945 2012;109(25):9941-6. Epub 2012/06/06. doi: 10.1073/pnas.1207367109. PubMed PMID:
946 22665801; PubMed Central PMCID: PMCPMC3382510.

947 53. Case LK, Wall EH, Osmanski EE, Dragon JA, Saligrama N, Zachary JF, et al. Copy
948 number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect
949 on CNS autoimmune disease in female offspring. *Genome Biol*. 2015;16:28. Epub 2015/04/19.
950 doi: 10.1186/s13059-015-0591-7. PubMed PMID: 25886764; PubMed Central PMCID:
951 PMCPMC4396973.

952 54. Brown E, Bachtrog D. The *Drosophila* Y chromosome affects heterochromatin integrity
953 genome-wide. *bioRxiv*. 2017. doi: 10.1101/156000.

954 55. Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, et al.
955 Evolution of genome structure in the *Drosophila simulans* species complex. *Genome research*.
956 2021;31(3):380-96. Epub 2021/02/11. doi: 10.1101/gr.263442.120. PubMed PMID: 33563718;
957 PubMed Central PMCID: PMCPMC7919458.

958 56. Lemeunier F, Ashburner M. Relationships within the *melanogaster* species subgroup of
959 the genus *Drosophila* (Sophophora). *Chromosoma*. 1984;89(5):343-51. doi:
960 10.1007/bf00331251.

961 57. Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, Lemeunier F, et al.
962 Evolution of the chromosomal location of rDNA genes in two *Drosophila* species subgroups:
963 *ananassae* and *melanogaster*. *Heredity (Edinb)*. 2005;94(4):388-95. Epub 2005/02/24. doi:
964 10.1038/sj.hdy.6800612. PubMed PMID: 15726113.

965 58. Berloco M, Fanti L, Sheen F, Levis RW, Pimpinelli S. Heterochromatic distribution of
966 HeT-A- and TART-like sequences in several *Drosophila* species. *Cytogenetic and genome*
967 *research*. 2005;110(1-4):124-33. Epub 2005/08/12. doi: 10.1159/000084944. PubMed PMID:
968 16093664.

969 59. Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. Genome-wide
970 analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. *J Cell*
971 *Biol*. 2008;183(5):805-18. Epub 2008/12/03. doi: 10.1083/jcb.200806038. PubMed PMID:
972 19047461; PubMed Central PMCID: PMCPMC2592830.

973 60. Paredes S, Branco AT, Hartl DL, Maggert KA, Lemos B. Ribosomal DNA deletions
974 modulate genome-wide gene expression: "rDNA-sensitive" genes and natural variation. *PLoS*
975 *Genet*. 2011;7(4):e1001376. Epub 2011/05/03. doi: 10.1371/journal.pgen.1001376. PubMed
976 PMID: 21533076; PubMed Central PMCID: PMCPMC3080856.

977 61. Lohe AR, Roberts PA. Evolution of DNA in heterochromatin: the *Drosophila*
978 *melanogaster* sibling species subgroup as a resource. *Genetica*. 2000;109(1-2):125-30. Epub
979 2001/04/11. PubMed PMID: 11293787.

980 62. Lohe AR, Roberts PA. An unusual Y chromosome of *Drosophila simulans* carrying
981 amplified rDNA spacer without rRNA genes. *Genetics*. 1990;125(2):399-406. Epub 1990/06/01.
982 PubMed PMID: 2379820; PubMed Central PMCID: PMCPMC1204028.

983 63. McKee BD, Karpen GH. *Drosophila* ribosomal RNA genes function as an X-Y pairing site
984 during male meiosis. *Cell*. 1990;61(1):61-72. Epub 1990/04/06. PubMed PMID: 2156630.

985 64. Kopp A, Frank A, Fu J. Historical biogeography of *Drosophila simulans* based on Y-
986 chromosomal sequences. *Mol Phylogenet Evol*. 2006;38(2):355-62. Epub 2005/07/30. doi:
987 10.1016/j.ympev.2005.06.006. PubMed PMID: 16051503.

988 65. Chakraborty M, Chang C-H, Khost D, Vedanayagam J, Adrion JR, Liao Y, et al.
989 Evolution of genome structure in the *Drosophila simulans* species complex. *bioRxiv*. 2020.

990 66. Bonaccorsi S, Pisano C, Puoti F, Gatti M. Y chromosome loops in *Drosophila*
991 *melanogaster*. *Genetics*. 1988;120(4):1015-34. Epub 1988/12/01. PubMed PMID: 2465201;
992 PubMed Central PMCID: PMCPMC1203565.

993 67. Bonaccorsi S, Gatti M, Pisano C, Lohe A. Transcription of a satellite DNA on two Y
994 chromosome loops of *Drosophila melanogaster*. *Chromosoma*. 1990;99(4):260-6. Epub
995 1990/08/01. PubMed PMID: 2119983.

996 68. Meyer GnF. Die Funktionsstrukturen des Y-Chromosoms in den Spermatocytenkernen
997 von *Drosophila hydei*, *D. neohydei*, *D. repleta* und einigen anderen *Drosophila*-Arten.
998 *Chromosoma*. 1963;14(3):207-55. doi: 10.1007/bf00326814.

999 69. Piergentili R. Evolutionary conservation of lampbrush-like loops in drosophilids. *BMC*
1000 *Cell Biol*. 2007;8:35. Epub 2007/08/19. doi: 10.1186/1471-2121-8-35. PubMed PMID:
1001 17697358; PubMed Central PMCID: PMCPMC1978495.

1002 70. Fingerhut JM, Moran JV, Yamashita YM. Satellite DNA-containing gigantic introns in a
1003 unique gene expression program during *Drosophila* spermatogenesis. *PLoS Genet.*
1004 2019;15(5):e1008028. Epub 2019/05/10. doi: 10.1371/journal.pgen.1008028. PubMed PMID:
1005 31071079; PubMed Central PMCID: PMCPMC6508621.

1006 71. Redhouse JL, Mozziconacci J, White RA. Co-transcriptional architecture in a Y loop in
1007 *Drosophila melanogaster*. *Chromosoma*. 2011;120(4):399-407. Epub 2011/05/11. doi:
1008 10.1007/s00412-011-0321-1. PubMed PMID: 21556802.

1009 72. Pisano C, Bonaccorsi S, Gatti M. The kl-3 loop of the Y chromosome of *Drosophila*
1010 *melanogaster* binds a tektin-like protein. *Genetics*. 1993;133(3):569-79. Epub 1993/03/01.
1011 PubMed PMID: 8454204; PubMed Central PMCID: PMCPMC1205344.

1012 73. Piergentili R, Bonaccorsi S, Raffa GD, Pisano C, Hackstein JH, Mencarelli C. Autosomal
1013 control of the Y-chromosome kl-3 loop of *Drosophila melanogaster*. *Chromosoma*.
1014 2004;113(4):188-96. Epub 2004/09/01. doi: 10.1007/s00412-004-0308-2. PubMed PMID:
1015 15338233.

1016 74. Piergentili R, Mencarelli C. *Drosophila melanogaster* kl-3 and kl-5 Y-loops harbor triple-
1017 stranded nucleic acids. *J Cell Sci.* 2008;121(Pt 10):1605-12. Epub 2008/04/24. doi:
1018 10.1242/jcs.025320. PubMed PMID: 18430782.

1019 75. Chang CH, Larracuente AM. Genomic changes following the reversal of a Y
1020 chromosome to an autosome in *Drosophila pseudoobscura*. *Evolution*. 2017;71(5):1285-96.
1021 Epub 2017/03/23. doi: 10.1111/evol.13229. PubMed PMID: 28322435; PubMed Central PMCID:
1022 PMCPMC5485016.

1023 76. Jagannathan M, Warsinger-Pepe N, Watase GJ, Yamashita YM. Comparative Analysis
1024 of Satellite DNA in the *Drosophila melanogaster* Species Complex. *G3 (Bethesda)*.
1025 2017;7(2):693-704. Epub 2016/12/23. doi: 10.1534/g3.116.035352. PubMed PMID: 28007840;
1026 PubMed Central PMCID: PMCPMC5295612.

1027 77. Mahajan S, Bachtrog D. Convergent evolution of Y chromosome gene content in flies.
1028 *Nat Commun.* 2017;8(1):785. Epub 2017/10/06. doi: 10.1038/s41467-017-00653-x. PubMed
1029 PMID: 28978907; PubMed Central PMCID: PMCPMC5627270.

1030 78. Greil F, Ahmad K. Nucleolar dominance of the Y chromosome in *Drosophila*
1031 *melanogaster*. *Genetics*. 2012;191(4):1119-28. Epub 2012/06/01. doi:
1032 10.1534/genetics.112.141242. PubMed PMID: 22649076; PubMed Central PMCID:
1033 PMCPMC3415996.

1034 79. Mahadevaraju S, Fear JM, Akeju M, Galletta BJ, Pinheiro M, Avelino CC, et al. Dynamic
1035 sex chromosome expression in *Drosophila* male germ cells. *Nat Commun.* 2021;12(1):892.
1036 Epub 2021/02/11. doi: 10.1038/s41467-021-20897-y. PubMed PMID: 33563972; PubMed
1037 Central PMCID: PMCPMC7873209.

1038 80. Hess O, Meyer GF. Genetic activities of the Y chromosome in *Drosophila* during
1039 spermatogenesis. *Adv Genet.* 1968;14:171-223. Epub 1968/01/01. doi: 10.1016/s0065-
1040 2660(08)60427-7. PubMed PMID: 4884781.

1041 81. Loh BJ, Cullen CF, Vogt N, Ohkura H. The conserved kinase SRPK regulates
1042 karyosome formation and spindle microtubule assembly in *Drosophila* oocytes. *J Cell Sci.*
1043 2012;125(Pt 19):4457-62. Epub 2012/08/03. doi: 10.1242/jcs.107979. PubMed PMID:
1044 22854045; PubMed Central PMCID: PMCPMC3500864.

1045 82. Kogan GL, Usakin LA, Ryazansky SS, Gvozdev VA. Expansion and evolution of the X-
1046 linked testis specific multigene families in the *melanogaster* species subgroup. *PLoS One*.
1047 2012;7(5):e37738. Epub 2012/06/01. doi: 10.1371/journal.pone.0037738. PubMed PMID:
1048 22649555; PubMed Central PMCID: PMCPMC3359341.

1049 83. Danilevskaya ON, Kurenova EV, Pavlova MN, Bebehov DV, Link AJ, Koga A, et al. He-T
1050 family DNA sequences in the Y chromosome of *Drosophila melanogaster* share homology with
1051 the X-linked stellate genes. *Chromosoma*. 1991;100(2):118-24. Epub 1991/02/01. PubMed
1052 PMID: 1672635.

1053 84. Aravin AA, Klenov MS, Vagin VV, Bantignies F, Cavalli G, Gvozdev VA. Dissection of a
1054 natural RNA silencing process in the *Drosophila melanogaster* germ line. *Mol Cell Biol*.
1055 2004;24(15):6742-50. Epub 2004/07/16. doi: 10.1128/MCB.24.15.6742-6750.2004. PubMed
1056 PMID: 15254241; PubMed Central PMCID: PMCPMC444866.

1057 85. Ohta T. Some models of gene conversion for treating the evolution of multigene families.
1058 *Genetics*. 1984;106(3):517-28. PubMed PMID: 6706111; PubMed Central PMCID:
1059 PMCPMC1224254.

1060 86. Backstrom N, Ceplitis H, Berlin S, Ellegren H. Gene conversion drives the evolution of
1061 HINTW, an ampliconic gene on the female-specific avian W chromosome. *Mol Biol Evol*.
1062 2005;22(10):1992-9. doi: 10.1093/molbev/msi198. PubMed PMID: 15972846.

1063 87. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood.
1064 *Comput Appl Biosci*. 1997;13(5):555-6. Epub 1997/11/21. PubMed PMID: 9367129.

1065 88. Dover G. Molecular drive: a cohesive mode of species evolution. *Nature*.
1066 1982;299(5879):111-7. Epub 1982/09/09. doi: 10.1038/299111a0. PubMed PMID: 7110332.

1067 89. Malone CD, Lehmann R, Teixeira FK. The cellular basis of hybrid dysgenesis and
1068 Stellate regulation in *Drosophila*. *Curr Opin Genet Dev*. 2015;34:88-94. Epub 2015/10/10. doi:
1069 10.1016/j.gde.2015.09.003. PubMed PMID: 26451497; PubMed Central PMCID:
1070 PMCPMC4674331.

1071 90. Palumbo G, Bonaccorsi S, Robbins LG, Pimpinelli S. Genetic analysis of Stellate
1072 elements of *Drosophila melanogaster*. *Genetics*. 1994;138(4):1181-97. Epub 1994/12/01.
1073 PubMed PMID: 7896100; PubMed Central PMCID: PMCPMC1206257.

1074 91. Meyer GF, Hess O, Beermann W. Phasenspezifische Funktionsstrukturen in
1075 Spermatocytenkernen von *Drosophila melanogaster* und Ihre Abhangigkeit vom Y-Chromosom.
1076 *Chromosoma*. 1961;12(1):676-716. doi: 10.1007/BF00328946.

1077 92. Chan SH, Yu AM, McVey M. Dual roles for DNA polymerase theta in alternative end-
1078 joining repair of double-strand breaks in *Drosophila*. *PLoS Genet*. 2010;6(7):e1001005. Epub
1079 2010/07/10. doi: 10.1371/journal.pgen.1001005. PubMed PMID: 20617203; PubMed Central
1080 PMCID: PMCPMC2895639.

1081 93. McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted
1082 sequences and alternative endings. *Trends Genet*. 2008;24(11):529-38. Epub 2008/09/24. doi:
1083 10.1016/j.tig.2008.08.007. PubMed PMID: 18809224; PubMed Central PMCID:
1084 PMCPMC5303623.

1085 94. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining
1086 and alternative pathways to double-strand break repair. *Nat Rev Mol Cell Biol*. 2017;18(8):495-
1087 506. Epub 2017/05/18. doi: 10.1038/nrm.2017.48. PubMed PMID: 28512351.

1088 95. Huang W, Massouras A, Inoue Y, Peiffer J, Ramia M, Tarone AM, et al. Natural variation
1089 in genome architecture among 205 *Drosophila melanogaster* Genetic Reference Panel lines.
1090 *Genome research*. 2014;24(7):1193-208. Epub 2014/04/10. doi: 10.1101/gr.171546.113.
1091 PubMed PMID: 24714809; PubMed Central PMCID: PMCPMC4079974.

1092 96. Signor SA, New FN, Nuzhdin S. A Large Panel of *Drosophila simulans* Reveals an
1093 Abundance of Common Variants. *Genome biology and evolution*. 2018;10(1):189-206. doi:
1094 10.1093/gbe/evx262. PubMed PMID: 29228179; PubMed Central PMCID: PMCPMC5767965.

1095 97. Wei KHC, Lower SE, Caldas IV, Sless TJ, Barbash DA, Clark AG. Variable rates of
1096 simple satellite gains across the *Drosophila* phylogeny. *Molecular Biology and Evolution*.
1097 2018;msy005-msy. doi: 10.1093/molbev/msy005.

1098 98. Cechova M, Harris RS, Tomaszkiewicz M, Arbeithuber B, Chiaromonte F, Makova KD.
1099 High satellite repeat turnover in great apes studied with short- and long-read technologies. *Mol
1100 Biol Evol*. 2019. Epub 2019/07/06. doi: 10.1093/molbev/msz156. PubMed PMID: 31273383;
1101 PubMed Central PMCID: PMCPMC6805231.

1102 99. Abad JP, de Pablos B, Agudo M, Molina I, Giovinazzo G, Martin-Gallardo A, et al.
1103 Genomic and cytological analysis of the Y chromosome of *Drosophila melanogaster*: telomere-

1104 derived sequences at internal regions. *Chromosoma*. 2004;113(6):295-304. Epub 2004/12/24.
1105 doi: 10.1007/s00412-004-0318-0. PubMed PMID: 15616866.

1106 100. Agudo M, Losada A, Abad JP, Pimpinelli S, Ripoll P, Villasante A. Centromeres from
1107 telomeres? The centromeric region of the Y chromosome of *Drosophila melanogaster* contains
1108 a tandem array of telomeric HeT-A- and TART-related sequences. *Nucleic Acids Res.*
1109 1999;27(16):3318-24. Epub 1999/08/24. PubMed PMID: 10454639; PubMed Central PMCID:
1110 PMCPMC148565.

1111 101. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH. Double-strand
1112 breaks in heterochromatin move outside of a dynamic HP1a domain to complete
1113 recombinational repair. *Cell*. 2011;144(5):732-44. Epub 2011/03/01. doi:
1114 10.1016/j.cell.2011.02.012. PubMed PMID: 21353298; PubMed Central PMCID:
1115 PMCPMC3417143.

1116 102. Melnikova L, Biessmann H, Georgiev P. The Ku protein complex is involved in length
1117 regulation of *Drosophila* telomeres. *Genetics*. 2005;170(1):221-35. Epub 2005/03/23. doi:
1118 10.1534/genetics.104.034538. PubMed PMID: 15781709; PubMed Central PMCID:
1119 PMCPMC1449706.

1120 103. Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA. Mammalian Ku86
1121 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-
1122 strand overhang. *EMBO reports*. 2000;1(3):244-52. Epub 2001/03/21. doi: 10.1093/embo-
1123 reports/kvd051. PubMed PMID: 11256607; PubMed Central PMCID: PMCPMC1083725.

1124 104. Katsura Y, Sasaki S, Sato M, Yamaoka K, Suzukawa K, Nagasawa T, et al. Involvement
1125 of Ku80 in microhomology-mediated end joining for DNA double-strand breaks in vivo. *DNA*
1126 *Repair* (Amst). 2007;6(5):639-48. Epub 2007/01/24. doi: 10.1016/j.dnarep.2006.12.002.
1127 PubMed PMID: 17236818.

1128 105. Lee YCG, Karpen GH. Pervasive epigenetic effects of *Drosophila* euchromatic
1129 transposable elements impact their evolution. *Elife*. 2017;6. Epub 2017/07/12. doi:
1130 10.7554/elife.25762. PubMed PMID: 28695823; PubMed Central PMCID: PMCPMC5505702.

1131 106. McKee BD, Hong CS, Das S. On the roles of heterochromatin and euchromatin in
1132 meiosis in *drosophila*: mapping chromosomal pairing sites and testing candidate mutations for
1133 effects on X-Y nondisjunction and meiotic drive in male meiosis. *Genetica*. 2000;109(1-2):77-93.
1134 Epub 2001/04/11. PubMed PMID: 11293799.

1135 107. Dimitri P, Pisano C. Position effect variegation in *Drosophila melanogaster*: relationship
1136 between suppression effect and the amount of Y chromosome. *Genetics*. 1989;122(4):793-800.
1137 Epub 1989/08/01. PubMed PMID: 2503420; PubMed Central PMCID: PMCPMC1203755.

1138 108. Henikoff S. Dosage-dependent modification of position-effect variegation in *Drosophila*.
1139 *BioEssays : news and reviews in molecular, cellular and developmental biology*.
1140 1996;18(5):401-9. Epub 1996/05/01. doi: 10.1002/bies.950180510. PubMed PMID: 8639163.

1141 109. Gatti M, Pimpinelli S. Functional elements in *Drosophila melanogaster* heterochromatin.
1142 *Annual review of genetics*. 1992;26:239-75. Epub 1992/01/01. doi:
1143 10.1146/annurev.ge.26.120192.001323. PubMed PMID: 1482113.

1144 110. Lawlor MA, Cao W, Ellison CE. A burst of transposon expression accompanies the
1145 activation of Y chromosome fertility genes during *Drosophila* spermatogenesis. *bioRxiv*.
1146 2021:2021.05.10.443472. doi: 10.1101/2021.05.10.443472.

1147 111. Quenerch'du E, Anand A, Kai T. The piRNA pathway is developmentally regulated
1148 during spermatogenesis in *Drosophila*. *RNA*. 2016;22(7):1044-54. Epub 2016/05/22. doi:
1149 10.1261/rna.055996.116. PubMed PMID: 27208314; PubMed Central PMCID:
1150 PMCPMC4911912.

1151 112. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. Double-
1152 stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the
1153 *D. melanogaster* germline. *Curr Biol*. 2001;11(13):1017-27. Epub 2001/07/27. PubMed PMID:
1154 11470406.

1155 113. Chen P, Kotov AA, Godneeva BK, Bazylev SS, Olenina LV, Aravin AA. piRNA-mediated
1156 gene regulation and adaptation to sex-specific transposon expression in *D. melanogaster* male
1157 germline. *Genes Dev.* 2021;35(11-12):914-35. Epub 2021/05/15. doi: 10.1101/gad.345041.120.
1158 PubMed PMID: 33985970; PubMed Central PMCID: PMCPMC8168559.

1159 114. Wakimoto BT, Hearn MG. The effects of chromosome rearrangements on the
1160 expression of heterochromatic genes in chromosome 2L of *Drosophila melanogaster*. *Genetics*.
1161 1990;125(1):141-54. Epub 1990/05/01. PubMed PMID: 2111264; PubMed Central PMCID:
1162 PMCPMC1203996.

1163 115. Hearn MG, Hedrick A, Grigliatti TA, Wakimoto BT. The effect of modifiers of position-
1164 effect variegation on the variegation of heterochromatic genes of *Drosophila melanogaster*.
1165 *Genetics*. 1991;128(4):785-97. Epub 1991/08/01. PubMed PMID: 1916244; PubMed Central
1166 PMCID: PMCPMC1204552.

1167 116. Dupim EG, Goldstein G, Vanderlinde T, Vaz SC, Krsticevic F, Bastos A, et al. An
1168 investigation of Y chromosome incorporations in 400 species of *Drosophila* and related genera.
1169 *PLoS Genet.* 2018;14(11):e1007770. Epub 2018/11/06. doi: 10.1371/journal.pgen.1007770.
1170 PubMed PMID: 30388103; PubMed Central PMCID: PMCPMC6235401.

1171 117. Cocquet J, Ellis PJ, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS. A genetic
1172 basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. *PLoS
1173 Genet.* 2012;8(9):e1002900. Epub 2012/10/03. doi: 10.1371/journal.pgen.1002900. PubMed
1174 PMID: 23028340; PubMed Central PMCID: PMCPMC3441658.

1175 118. Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG, Hu YC, et al. A
1176 Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal
1177 Sex Ratio in Mice. *Curr Biol.* 2019;29(21):3699-706 e5. Epub 2019/10/22. doi:
1178 10.1016/j.cub.2019.08.057. PubMed PMID: 31630956.

1179 119. Lahn BT, Page DC. A human sex-chromosomal gene family expressed in male germ
1180 cells and encoding variably charged proteins. *Hum Mol Genet.* 2000;9(2):311-9. Epub
1181 1999/12/23. doi: 10.1093/hmg/9.2.311. PubMed PMID: 10607842.

1182 120. Hurst LD. Is Stellate a relict meiotic driver? *Genetics*. 1992;130(1):229-30. Epub
1183 1992/01/01. PubMed PMID: 1732164; PubMed Central PMCID: PMCPMC1204797.

1184 121. Komissarov AS, Galkina SA, Koshel EI, Kulak MM, Dyomin AG, O'Brien SJ, et al. New
1185 high copy tandem repeat in the content of the chicken W chromosome. *Chromosoma*.
1186 2018;127(1):73-83. Epub 2017/09/28. doi: 10.1007/s00412-017-0646-5. PubMed PMID:
1187 28951974.

1188 122. Bachtrog D. The Y Chromosome as a Battleground for Intragenomic Conflict. *Trends
1189 Genet.* 2020;36(7):510-22. Epub 2020/05/26. doi: 10.1016/j.tig.2020.04.008. PubMed PMID:
1190 32448494.

1191 123. Rogers MJ. Y chromosome copy number variation and its effects on fertility and other
1192 health factors: a review. *Transl Androl Urol.* 2021;10(3):1373-82. Epub 2021/04/15. doi:
1193 10.21037/tau.2020.04.06. PubMed PMID: 33850773; PubMed Central PMCID:
1194 PMCPMC8039628.

1195 124. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de
1196 novo assembly of metazoan genomes with modest long read coverage. *Nucleic Acids Res.*
1197 2016;44(19):e147. Epub 2016/11/02. doi: 10.1093/nar/gkw654. PubMed PMID: 27458204;
1198 PubMed Central PMCID: PMCPMC5100563.

1199 125. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid,
1200 finished microbial genome assemblies from long-read SMRT sequencing data. *Nat Methods*.
1201 2013;10(6):563-9. Epub 2013/05/07. doi: 10.1038/nmeth.2474. PubMed PMID: 23644548.

1202 126. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
1203 integrated tool for comprehensive microbial variant detection and genome assembly
1204 improvement. *PLoS One.* 2014;9(11):e112963. Epub 2014/11/20. doi:

1205 10.1371/journal.pone.0112963. PubMed PMID: 25409509; PubMed Central PMCID:
1206 PMCPMC4237348.

1207 127. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. *Nat Methods*. 2019.
1208 Epub 2019/12/11. doi: 10.1038/s41592-019-0669-3. PubMed PMID: 31819265.

1209 128. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using
1210 repeat graphs. *Nat Biotechnol*. 2019;37(5):540-6. Epub 2019/04/03. doi: 10.1038/s41587-019-
1211 0072-8. PubMed PMID: 30936562.

1212 129. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
1213 *J Mol Biol*. 1990;215(3):403-10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2.
1214 PubMed PMID: 2231712.

1215 130. Laetsch D, Blaxter M. BlobTools: Interrogation of genome assemblies [version 1; peer
1216 review: 2 approved with reservations]. *F1000Research*. 2017;6(1287). doi:
1217 10.12688/f1000research.12232.1.

1218 131. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
1219 *Bioinformatics*. 2010;26(5):589-95. Epub 2010/01/19. doi: 10.1093/bioinformatics/btp698.
1220 PubMed PMID: 20080505; PubMed Central PMCID: PMCPMC2828108.

1221 132. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1222 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9. Epub 2009/06/10.
1223 doi: 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID:
1224 PMCPMC2723002.

1225 133. Nouhaud P. Long-read based assembly and annotation of a *Drosophila*
1226 *simulans* genome. *bioRxiv*. 2018:425710. doi: 10.1101/425710.

1227 134. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al. Widespread
1228 Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. *PLoS One*.
1229 2015;10(7):e0132628. Epub 2015/07/16. doi: 10.1371/journal.pone.0132628. PubMed PMID:
1230 26177194; PubMed Central PMCID: PMCPMC4503453.

1231 135. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management
1232 tool for second-generation genome projects. *BMC Bioinformatics*. 2011;12:491. Epub
1233 2011/12/24. doi: 10.1186/1471-2105-12-491. PubMed PMID: 22192575; PubMed Central
1234 PMCID: PMCPMC3280279.

1235 136. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
1236 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol*.
1237 2015;33(3):290-5. Epub 2015/02/19. doi: 10.1038/nbt.3122. PubMed PMID: 25690850; PubMed
1238 Central PMCID: PMCPMC4643835.

1239 137. Smit A, Hubley R, Green P. RepeatMasker 2013. Available from:
1240 <http://www.repeatmasker.org>.

1241 138. Chang CH, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, et al. Islands of
1242 retroelements are major components of *Drosophila* centromeres. *PLoS Biol*.
1243 2019;17(5):e3000241. Epub 2019/05/16. doi: 10.1371/journal.pbio.3000241. PubMed PMID:
1244 31086362; PubMed Central PMCID: PMCPMC6516634.

1245 139. Bailly-Bechet M, Haudry A, Lerat E. "One code to find them all": a perl tool to
1246 conveniently parse RepeatMasker output files. *Mobile DNA*. 2014;5(1):13. doi: 10.1186/1759-
1247 8753-5-13.

1248 140. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids
1249 Res*. 1999;27(2):573-80. Epub 1998/12/24. PubMed PMID: 9862982; PubMed Central PMCID:
1250 PMCPMC148217.

1251 141. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
1252 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286;
1253 PubMed Central PMCID: PMCPMC3322381.

1254 142. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-
1255 aware quantification of transcript expression. *Nat Methods*. 2017;14(4):417-9. Epub 2017/03/07.

1256 doi: 10.1038/nmeth.4197. PubMed PMID: 28263959; PubMed Central PMCID:
1257 PMCPMC5600148.

1258 143. Langmead B. Aligning short sequencing reads with Bowtie. Current protocols in
1259 bioinformatics / editorial board, Andreas D Baxevanis [et al]. 2010;Chapter 11:Unit 11 7. Epub
1260 2010/12/15. doi: 10.1002/0471250953.bi1107s32. PubMed PMID: 21154709; PubMed Central
1261 PMCID: PMCPMC3010897.

1262 144. Mose LE, Perou CM, Parker JS. Improved indel detection in DNA and RNA via
1263 realignment with ABRA2. *Bioinformatics*. 2019;35(17):2966-73. Epub 2019/01/17. doi:
1264 10.1093/bioinformatics/btz033. PubMed PMID: 30649250; PubMed Central PMCID:
1265 PMCPMC6735753.

1266 145. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator.
1267 *Bioinformatics*. 2012;28(4):593-4. Epub 2011/12/27. doi: 10.1093/bioinformatics/btr708.
1268 PubMed PMID: 22199392; PubMed Central PMCID: PMCPMC3278762.

1269 146. Larracuente AM, Ferree PM. Simple method for fluorescence DNA in situ hybridization
1270 to squashed chromosomes. *JoVE*. 2015;95:e52288. doi: doi:10.3791/52288.

1271 147. Pimpinelli S, Bonaccorsi S, Fanti L, Gatti M. Immunostaining of mitotic chromosomes
1272 from *Drosophila* larval brain. *Cold Spring Harbor protocols*. 2011;2011(9). doi:
1273 10.1101/pdb.prot065524. PubMed PMID: 21880821.

1274 148. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
1275 Basic: an integrated and extendable desktop software platform for the organization and analysis
1276 of sequence data. *Bioinformatics*. 2012;28(12):1647-9. Epub 2012/05/01. doi:
1277 10.1093/bioinformatics/bts199. PubMed PMID: 22543367; PubMed Central PMCID:
1278 PMCPMC3371832.

1279 149. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
1280 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*.
1281 2015;32(1):268-74. Epub 2014/11/06. doi: 10.1093/molbev/msu300. PubMed PMID: 25371430;
1282 PubMed Central PMCID: PMCPMC4271533.

1283 150. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the
1284 Ultrafast Bootstrap Approximation. *Mol Biol Evol*. 2018;35(2):518-22. Epub 2017/10/28. doi:
1285 10.1093/molbev/msx281. PubMed PMID: 29077904; PubMed Central PMCID:
1286 PMCPMC5850222.

1287 151. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary
1288 Genetics Analysis across Computing Platforms. *Mol Biol Evol*. 2018;35(6):1547-9. Epub
1289 2018/05/04. doi: 10.1093/molbev/msy096. PubMed PMID: 29722887; PubMed Central PMCID:
1290 PMCPMC5967553.

1291 152. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for
1292 macOS. *Mol Biol Evol*. 2020. Epub 2020/01/07. doi: 10.1093/molbev/msz312. PubMed PMID:
1293 31904846.

1294 153. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R
1295 language. *Bioinformatics*. 2004;20(2):289-90. Epub 2004/01/22. PubMed PMID: 14734327.

1296 154. Thornton K. Libsequence: a C++ class library for evolutionary genetic analysis.
1297 *Bioinformatics*. 2003;19(17):2325-7. Epub 2003/11/25. PubMed PMID: 14630667.

1298 155. Hudson RR. Estimating the recombination parameter of a finite population model without
1299 selection. *Genetical research*. 1987;50(3):245-50. PubMed PMID: 3443297.

1300 156. Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in
1301 the history of a sample of DNA sequences. *Genetics*. 1985;111(1):147-64. Epub 1985/09/01.
1302 PubMed PMID: 4029609; PubMed Central PMCID: PMCPMC1202594.

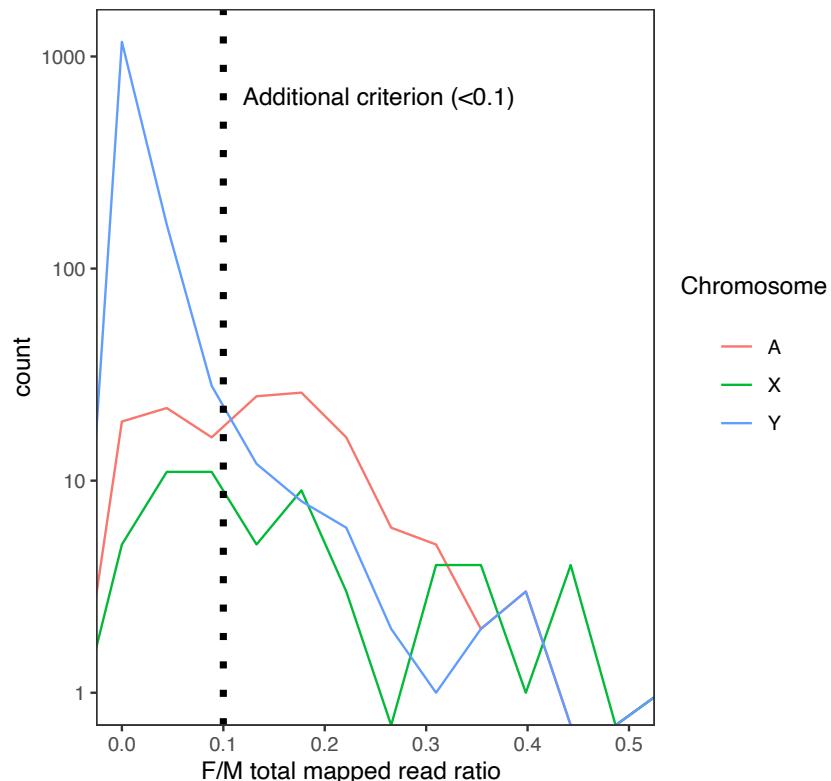
1303 157. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more
1304 genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic
1305 Acids Res*. 2019;47(D1):D419-D26. Epub 2018/11/09. doi: 10.1093/nar/gky1038. PubMed
1306 PMID: 30407594; PubMed Central PMCID: PMCPMC6323939.

1307 **Supplementary text**

1308

1309 **Validation of variants in Y-linked gene families**

1310 We mapped Illumina reads from male genomic DNA and testis RNAseq to the
1311 reconstructed ancestral transcript sequences of each gene cluster (*Lhk-1*, *Lhk-2*,
1312 *CK2 β tes-Y*) to estimate the expression level of the different Y-linked copies. We first
1313 asked if the variants in these two gene families found in our assemblies can be
1314 consistently detected in Illumina reads from male genomes. We found that the
1315 abundance of derived variants in these two gene families in the DNA-seq data are
1316 highly correlated to the frequency of variants in our assemblies ($R = 0.89$ and 0.98 in *D.*
1317 *mauritiana* and *D. simulans*, respectively). For 559 variants in the *D. simulans*
1318 assembly, 33 of them (28 appear once and four appear twice) are missing from the
1319 DNA-seq data. For 446 variants in the *D. mauritiana* assembly, 43 of them (32 appear
1320 once and six appear twice) are missing from the DNA-seq data. Additionally, nine and
1321 eight inconsistent variants are located near (< 100 bp) the start or end of transcripts in
1322 *D. simulans* and *D. mauritiana*, respectively. These regions at the edges of transcripts
1323 might have fewer Illumina reads coverage than more central regions.
1324 We compared the proportion of synonymous and nonsynonymous changes between
1325 copies with high and low expression using transcriptome data to infer selection
1326 pressures on different mutations (Fig S10; Table S21).
1327 To reduce the effect of sequencing errors and simplify the phylogenetic analyses on
1328 protein evolution rates, we first reconstructed the ancestral sequences of each gene
1329 cluster (*Lhk-1*, *Lhk-2*, *CK2 β tes-Y*, and 2 *CK2 β tes-like*; see Fig 5). The reconstructed

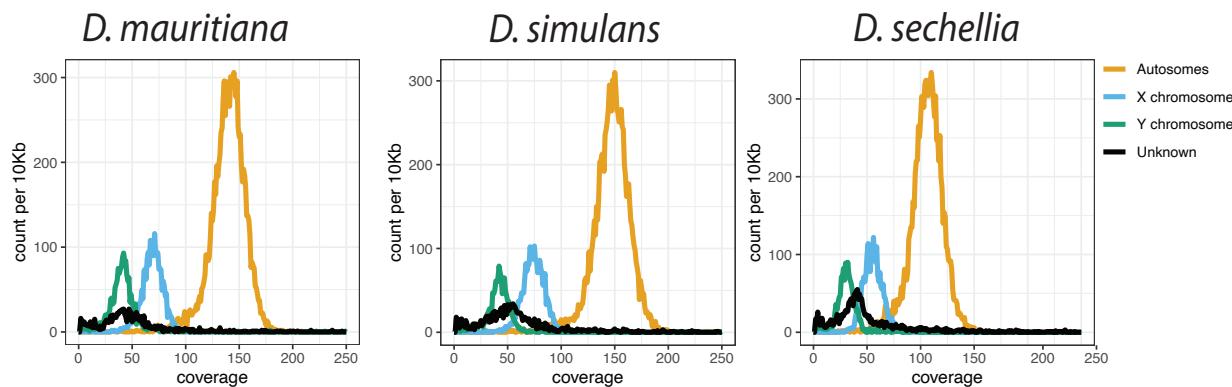

1330 ancestral sequences should eliminate misassembled bases, which are typically
1331 singletons. We conducted branch-model and branch-site-model tests on the
1332 reconstructed ancestral sequence using PAML and inferred that both gene families
1333 experienced strong positive selection following their duplication to the Y chromosome
1334 (from branch model; Tables S17 and S18, Fig 5). The high rate of protein evolution in
1335 the Y-linked ampliconic genes suggests that, in addition to subfunctionalization or
1336 degeneration, they may also acquire new functions and adapt to being Y-linked.

1337

1338

1339 **Supplementary Figures**

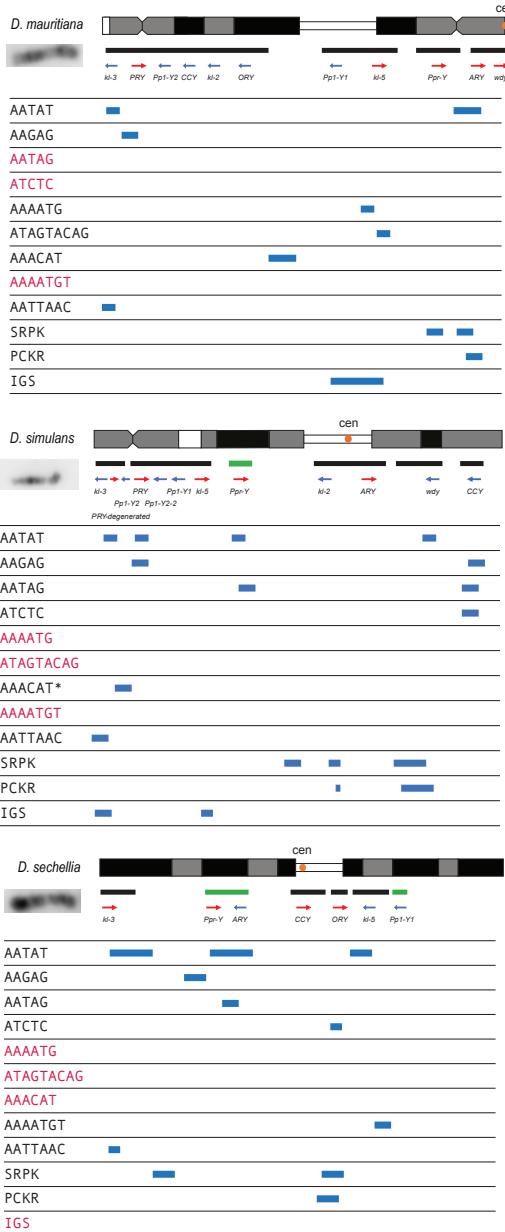
1340



1341

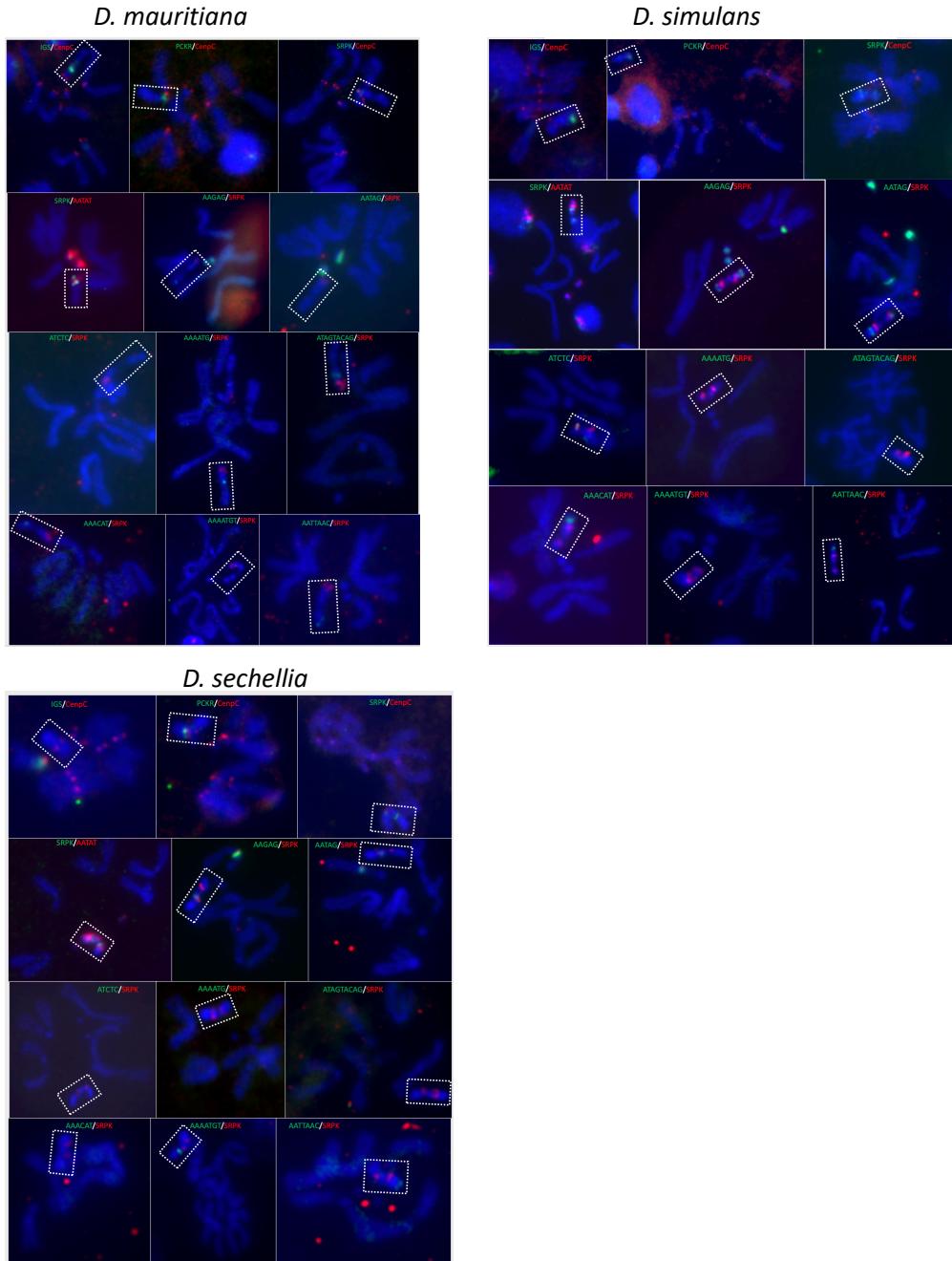
1342 **Fig S1. The distribution of female to male total mapped read ratio in each 10-kb**
1343 **window in *D. mauritiana*.** Many non-Y regions have median male-to-female coverage
1344 0 in our *D. mauritiana* data. Therefore, we applied an additional criterion based on the
1345 female-to-male total mapped reads ratio (<0.1) to reduce the false-positive rate.

1346


1347

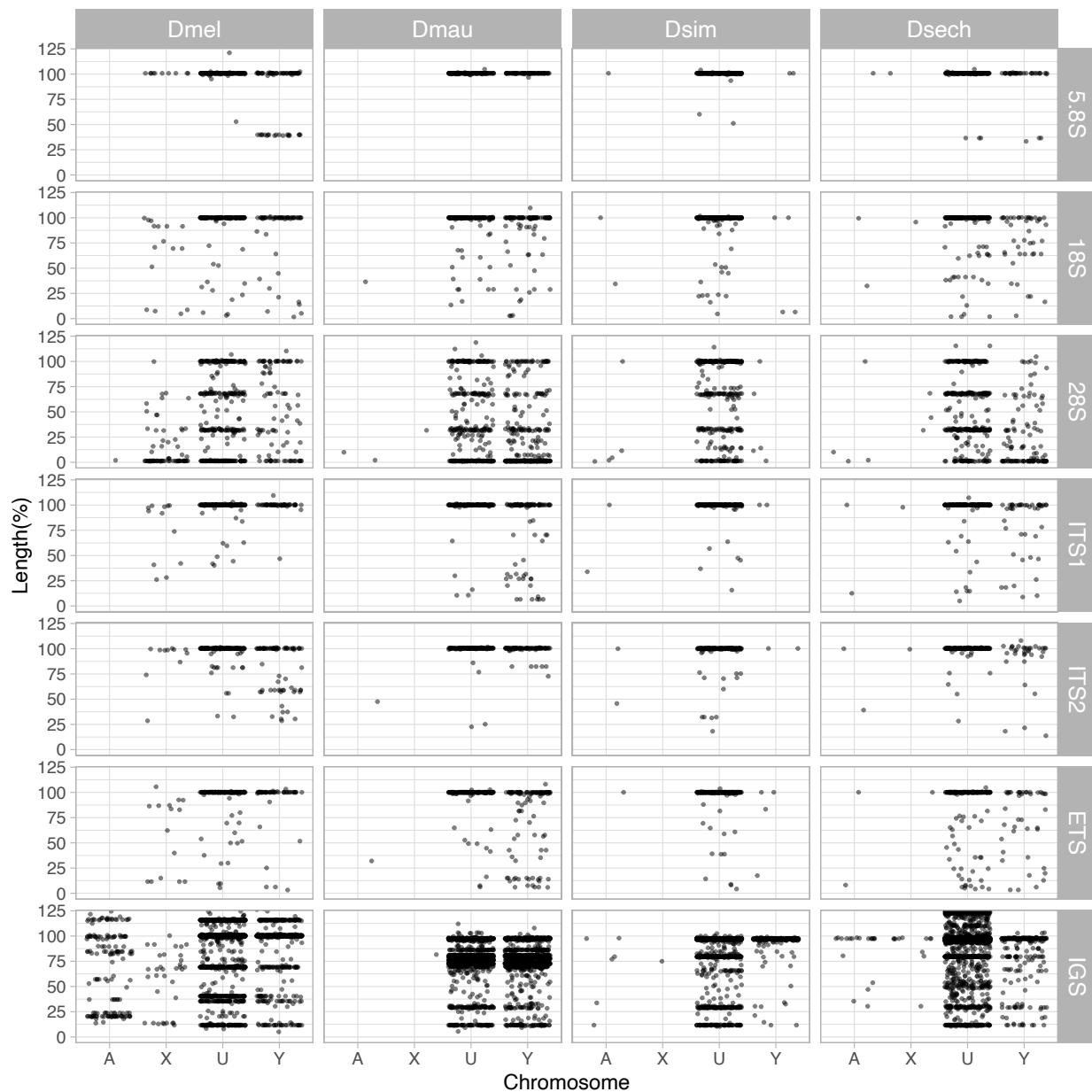
1348

1349 **Fig S2. The low Pacbio coverage on the Y chromosome in the *D. simulans* clade.**
1350 We calculated the median coverage of Pacbio reads every 10-kb and plotted the
1351 histogram of depth across genomes based on their chromosome location.

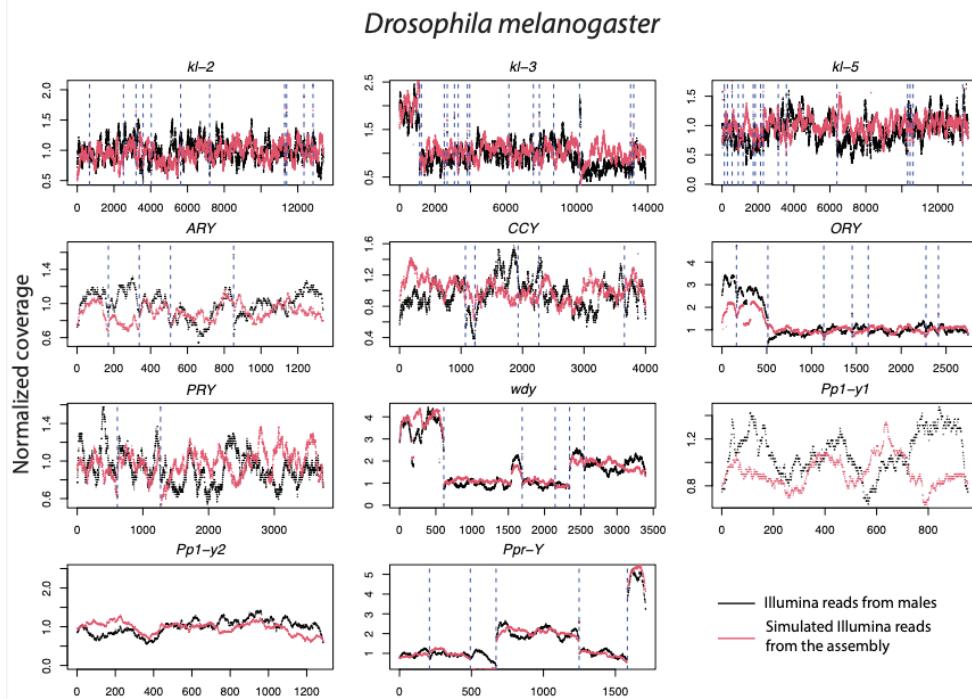

1352

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

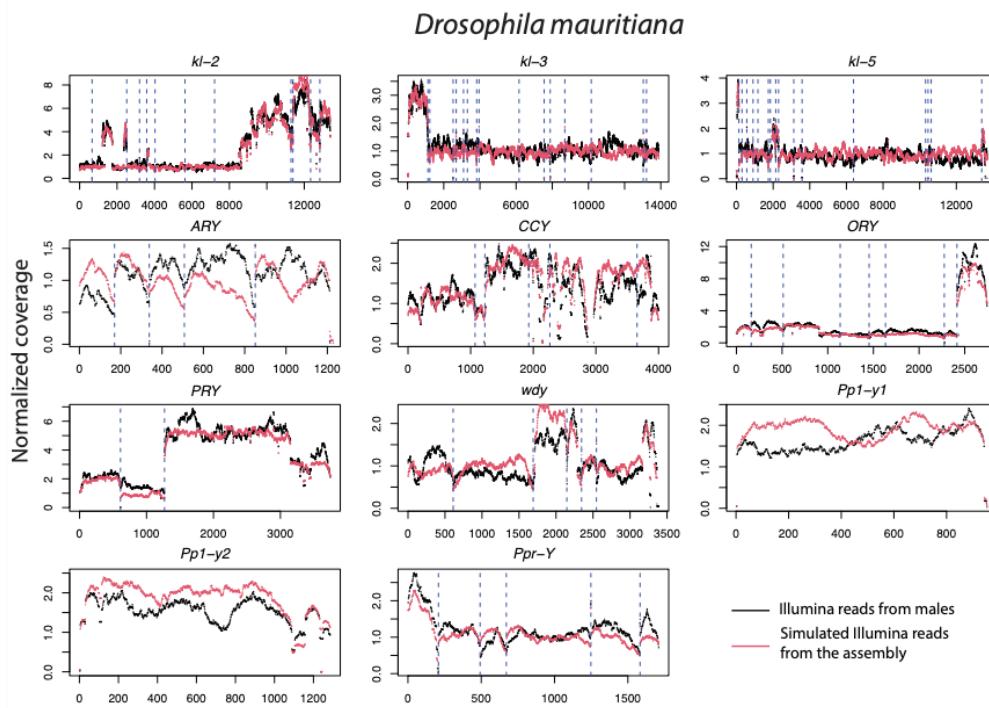
Fig S3. The summarized cytological location of satellite DNA, gene families, and conserved genes on the Y chromosome of the *D. simulans* clade. We used FISH as well as our assemblies to infer the cytological location of Y-linked sequences. The bars represent the location of scaffolds or contigs, and the green bars are scaffolds or contigs without known direction. The satellites in red are sequences we cannot detect on Y chromosomes using FISH.


*Based on the repeat content from the Illumina data (Table S16), the AACAT signal is probably from the AAACAAT tandem array, instead of AACAT, in *D. simulans*.

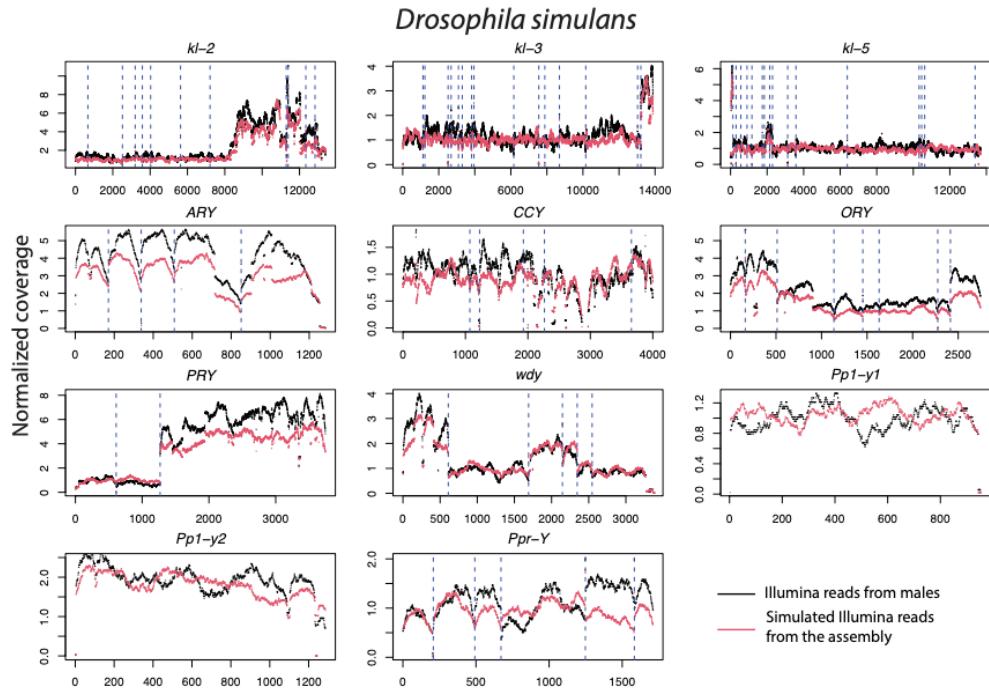
1363
1364
1365
1366
1367

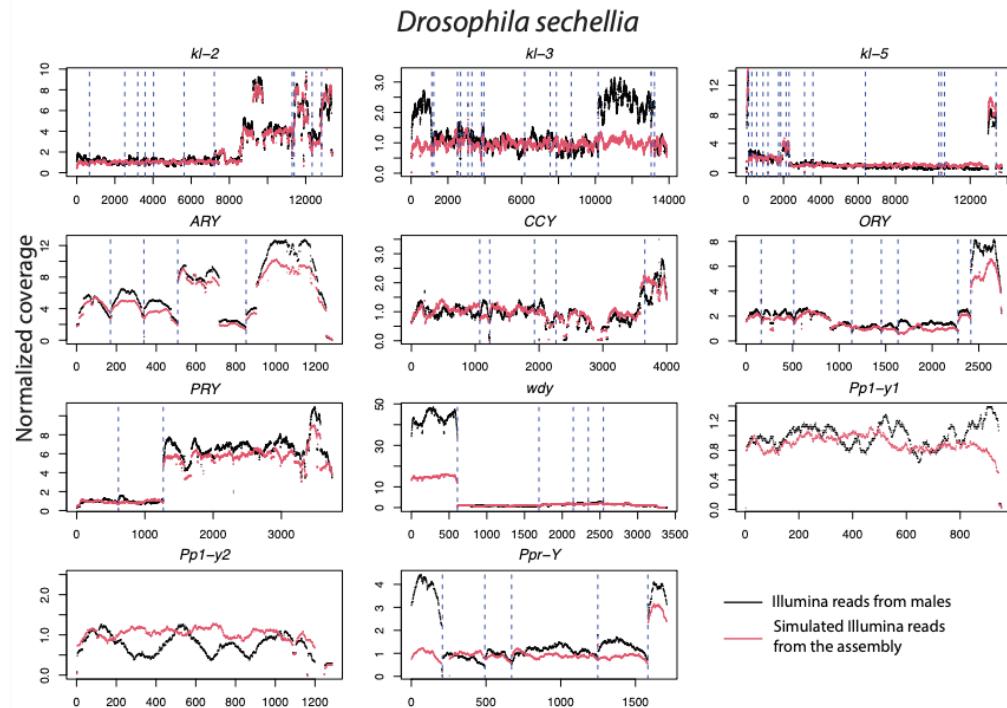

Fig S4. The FISH of satellite and gene families, and conserved genes in the *D. simulans* clade. We surveyed the location of 12 Y-linked sequences using FISH and immunostaining. The colors on the figure represent the probes we used for the experiments.

1368

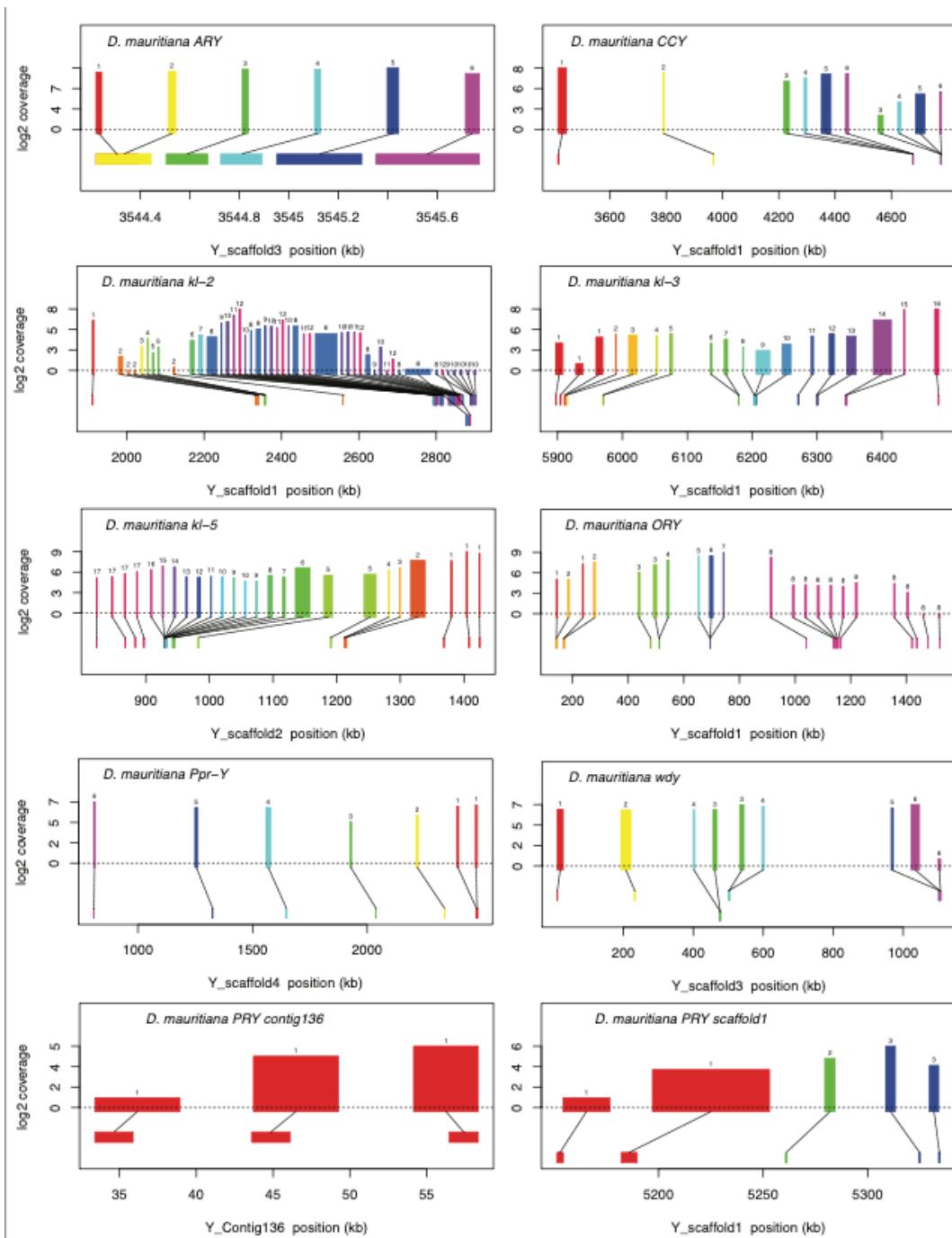


1369

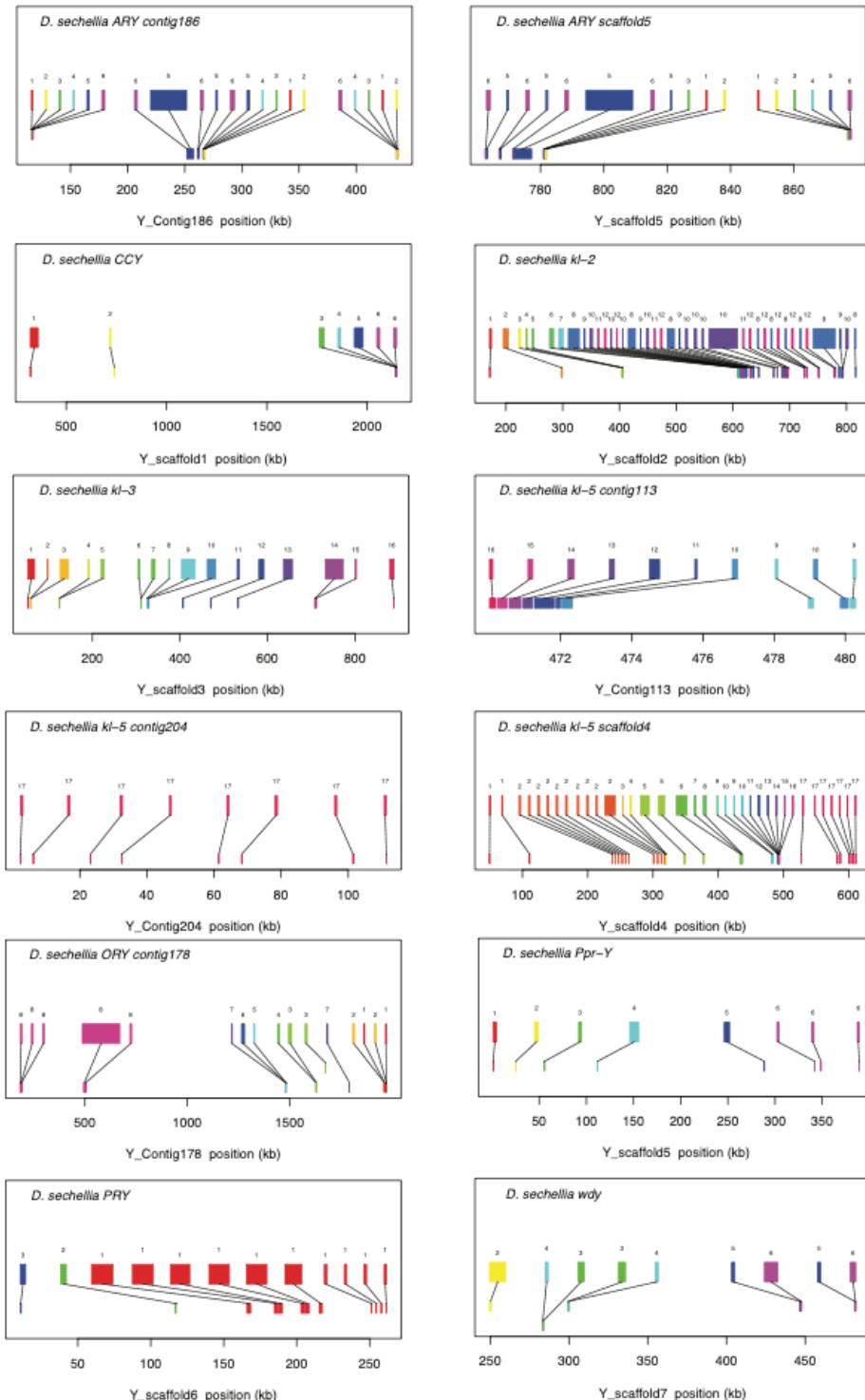

1370 **Fig S5. The length of rDNA elements across the chromosomes in *D. melanogaster***
1371 **and the *D. simulans* clade.** We surveyed the length of rDNA elements across
1372 chromosomes (A: autosomes, X: X chromosome, U: unknown location and Y: Y
1373 chromosome). The length of elements is normalized by the length of consensus from
1374 functional elements.


1375

1376

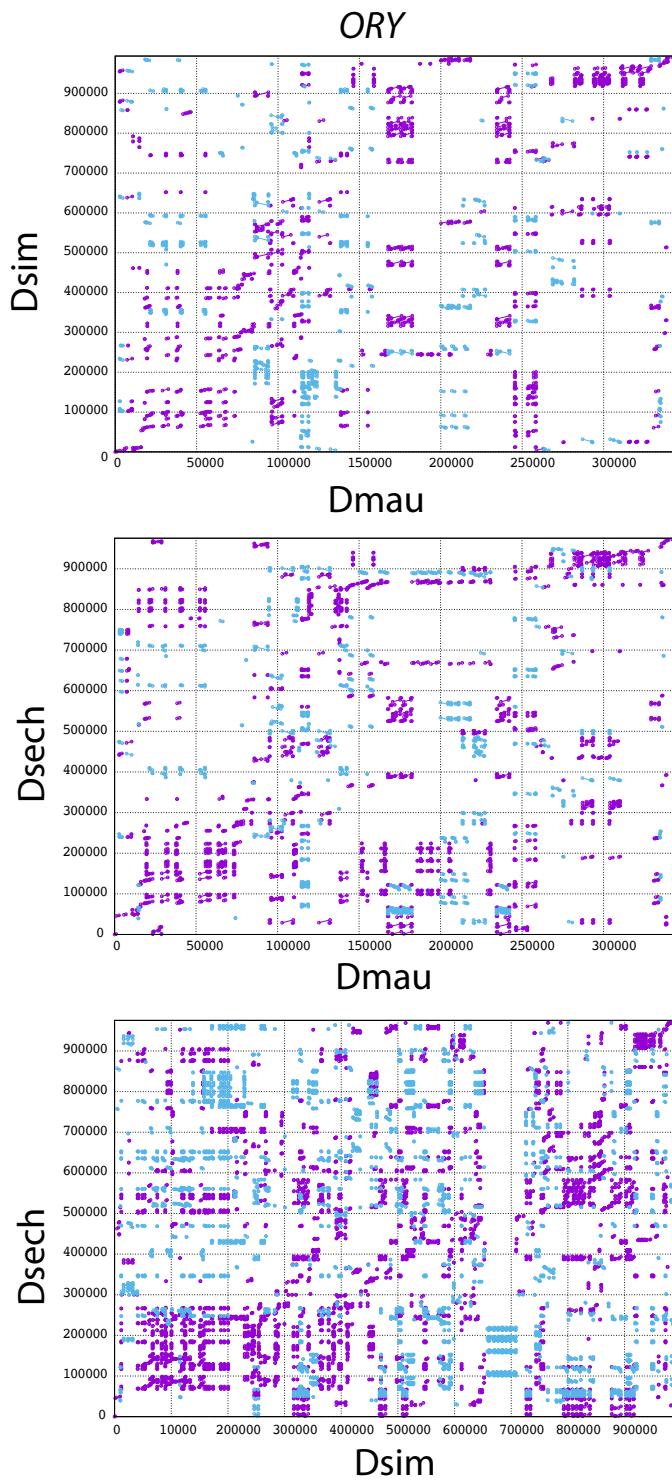



1377



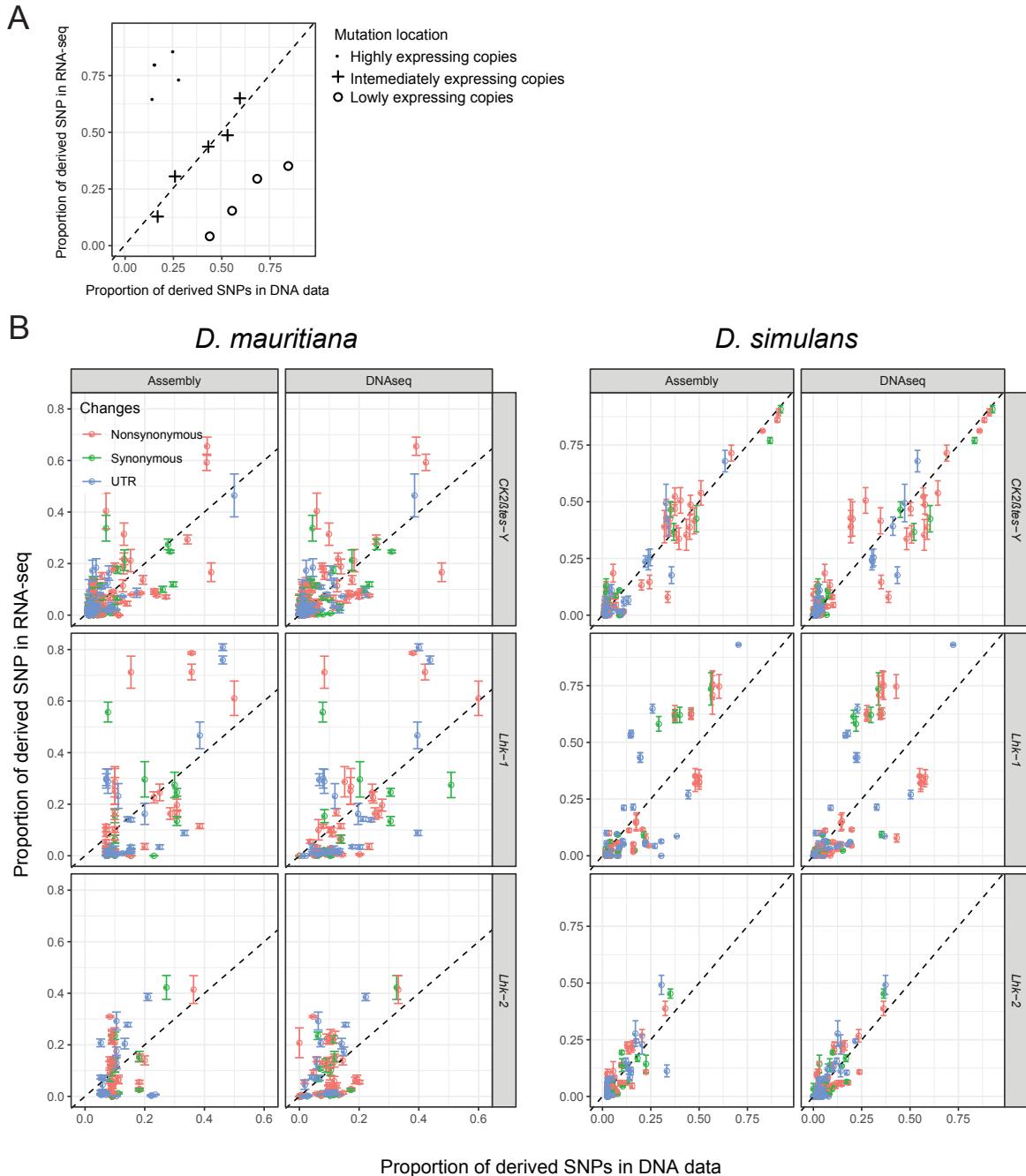
1378

1379 **Fig S6. The copy number of male Illumina DNA-seq reads in 11 canonical Y-linked**
1380 **genes.** To confirm the copy number of Y-linked genes across species in our assembly,
1381 we mapped the Illumina reads from males to a single of *D. melanogaster* Y-linked
1382 transcripts and estimated the copy number based on their coverage (black lines). For
1383 the comparison, we also simulated Illumina reads from our assemblies and mapped
1384 them to the same reference to estimate their copy number (red lines). The dotted lines
1385 separate each exon.



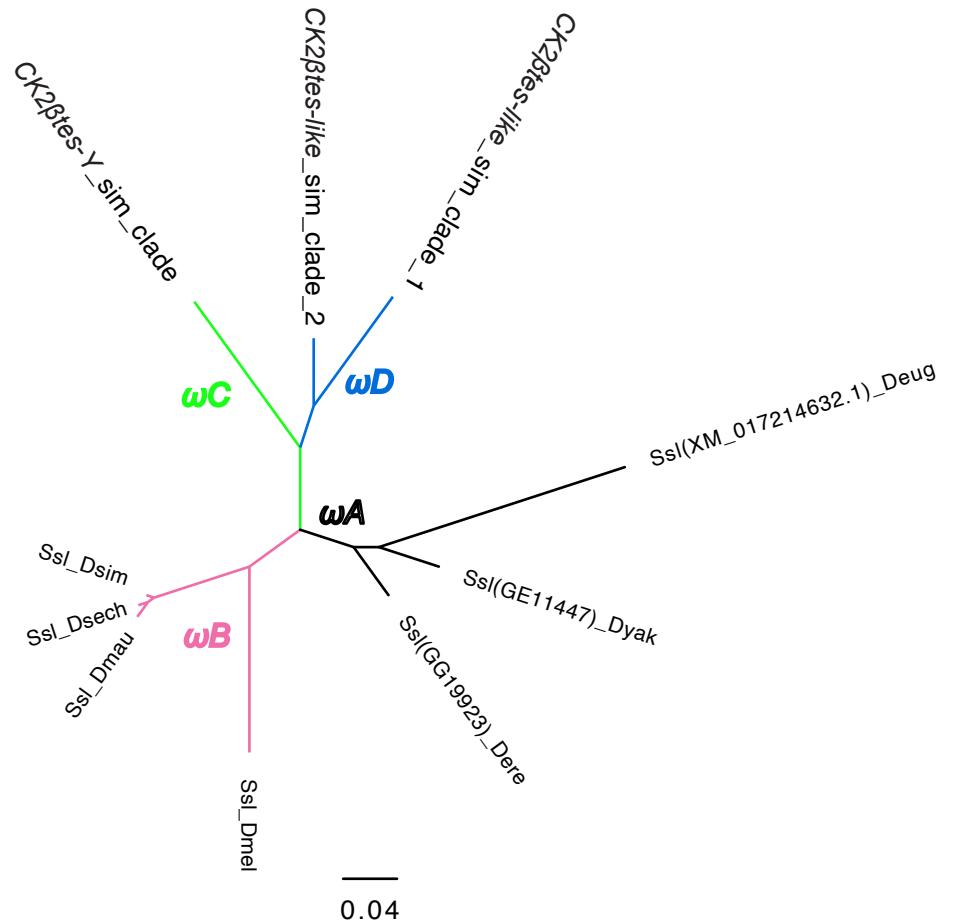
1388
1389
1390
1391
1392
1393

Fig S7. Gene structure of 11 conserved Y-linked genes inferred from assemblies and RNA-seq data. Upper bars indicate exons that are colored and numbered, with their height indicating average read depth from sequenced testes RNA (*D. simulans* and *D. mauritiana* only). Lower bars indicate exon positions on the assembly and position on the Y-axis indicates coding strand.



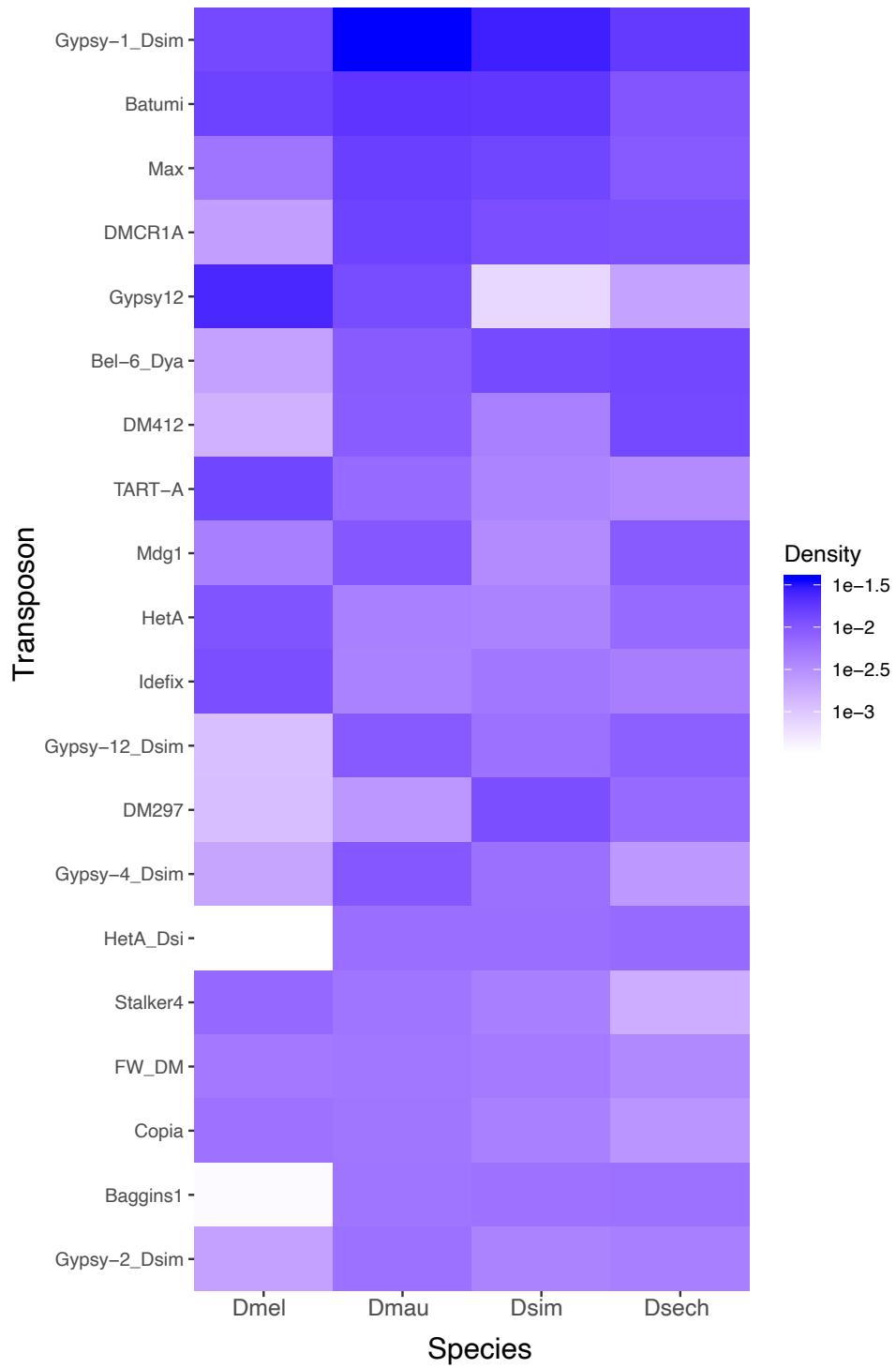
1394
1395
1396
1397
1398

Fig S8. The mummerplot of the ORY alignment in the *D. simulans* clade. We used MUMMER to align ORY from different species and plot the figure. Purple lines and dots represent forward matches, and blue lines and dots represent reverse matches.

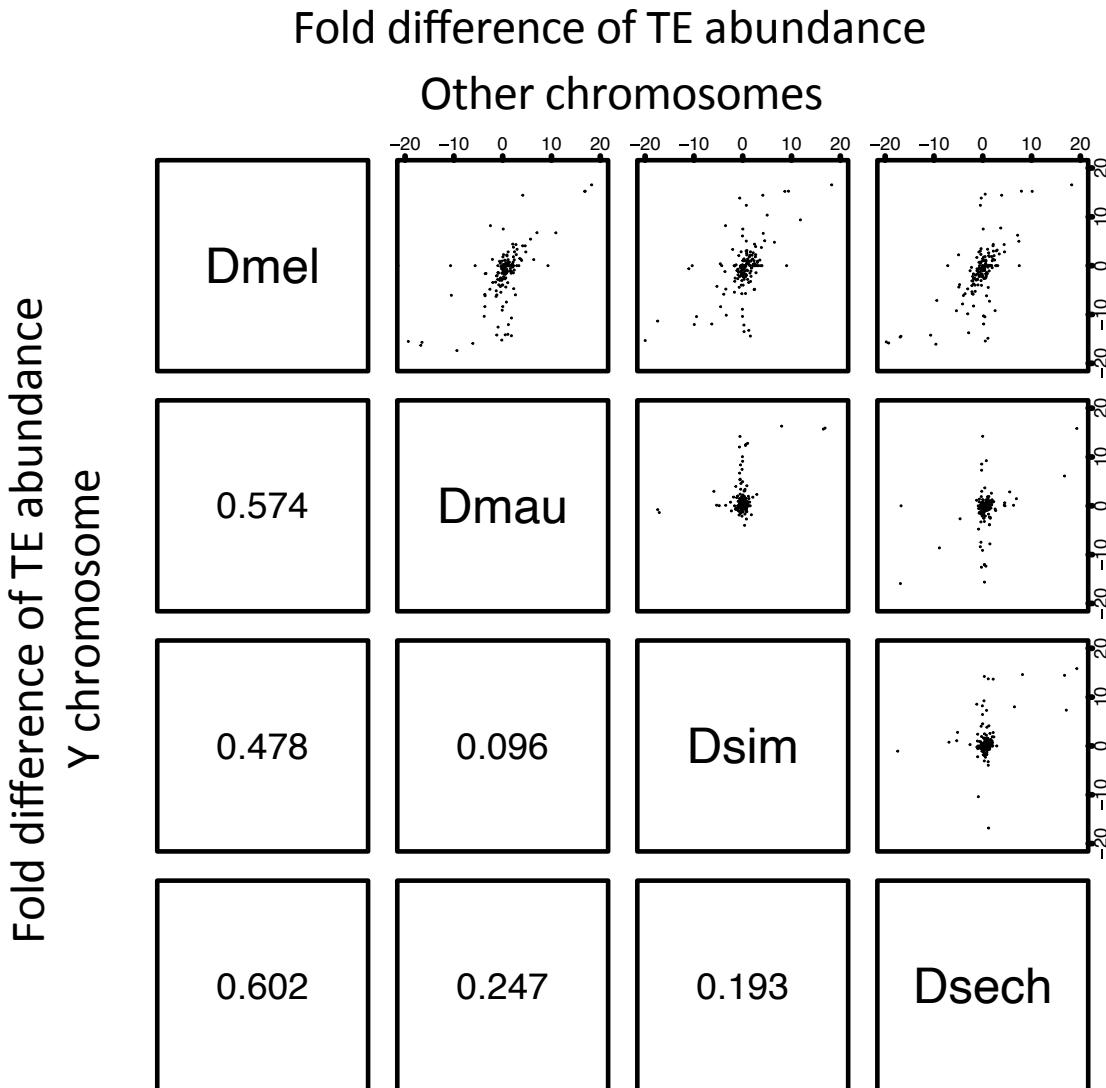

1399
1400 **Fig S9. The phylogeny of *Lhk* used in PAML analyses.** We marked the branches
1401 used in branch-model and branch-site model tests. We did all comparisons using the
1402 branch with different colors in likelihood-ratio tests. Please see the detailed results in
1403 Table S17.
1404

Fig

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414


S10. The expression of different copies from *Lhk* and *CK2Btes-Y* gene families.
 (A) We quantify the frequency of each derived SNP within the genome using DNA-seq and the expression level of each allele using RNA-seq. We catalogued each SNP as synonymous, nonsynonymous or UTR. (B) We found that across three Y-linked gene families, only highly expressed *Lhk-1* copies have fewer nonsynonymous mutations than lowly expressed copies in *D. simulans*, consistent with purifying selection (Table S12 and S21; Chi-square test's $P=0.01$). We did not detect other significant changes in other comparisons (Table S12 and S21; Chi-square test's $P > 0.01$).

1415
1416
1417
1418
1419
1420


S11. The phylogeny of CK2 β tes-Y used in PAML analyses. We marked the branches used in branch-model and branch-site model tests. We did all comparisons using the branch with different colors in likelihood-ratio tests. Please see the detailed results in Table S18.

Fig

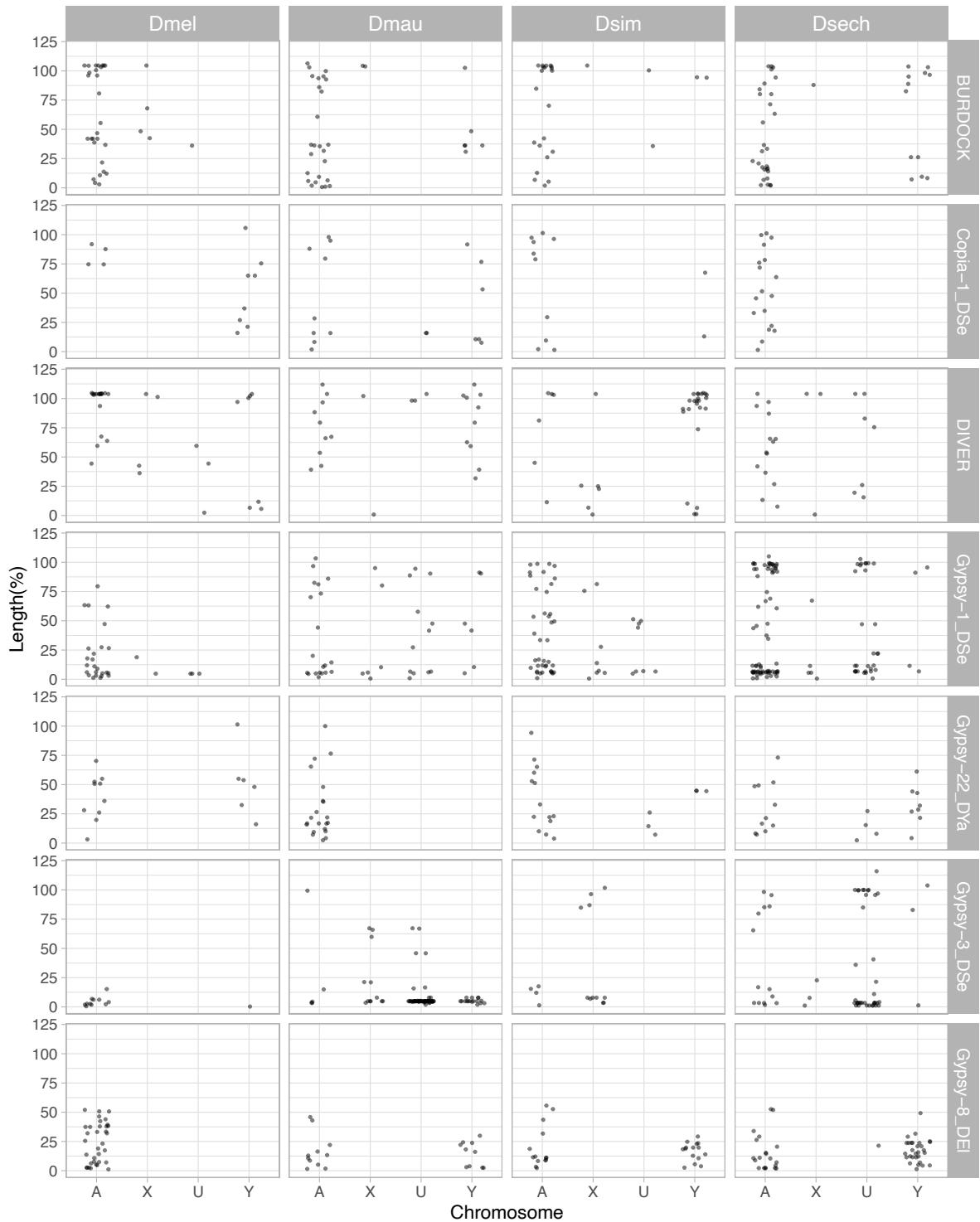

1421
1422
1423
1424
1425
1426
1427

Fig S12. The abundance of repetitive elements on Y chromosomes of *D. melanogaster* and the *D. simulans* clade species. We plotted the density of 20 most enriched (by total occupying sequences) repetitive elements on Y chromosomes across four species. The colors represent the proportion of repetitive sequences in all assembled Y-linked sequences.

1428
1429
1430
1431
1432
1433
1434
1435

Fig S13. The correlation of TE abundance between Y chromosomes and other chromosomes of *D. melanogaster* and the *D. simulans* clade. We calculated the fold changes of TE occupying sites (bp) between species by chromosomes. Each point from the figures above the diagonal represents the changes of a TE element on the Y chromosome and the other (non-Y) chromosomes. The number below the diagonal shows Spearman's rank correlation coefficient for each comparison.

1436
1437
1438
1439
1440
1441
1442

Fig S14. The length of LTR retrotransposons between Y chromosomes and other chromosomes of *D. melanogaster* and the *D. simulans* clade. We surveyed the length of LTR retrotransposons across chromosomes (A: autosomes, X: X chromosome, U: unknown location and Y: Y chromosome). The length of elements is normalized by the length of consensus from full-length elements and represents the ages of each LTR retrotransposon.

1443 **Supplementary Table legend**

1444 **Table S1. The copy number of exons in conserved Y-linked genes.** We listed the
1445 copy number of each exon in conserved Y-linked genes based on BLAST results.

1446
1447 **Table S2. The estimates of sensitivity and specificity of our Y-linked sequence**
1448 **assignment methods using 10-kb regions with known chromosomal location.** We
1449 calculated the median female-over-male coverage in our Illumina data in every 10-kb
1450 region with known chromosomal location. We then estimated the sensitivity and
1451 specificity of our methods using these data.

1452
1453 **Table S3. Probe and primer information.**

1454
1455 **Table S4. The genomic location of duplicated exons in conserved Y-linked genes.**
1456 We listed the genomic location of each exon in conserved Y-linked genes in our
1457 assemblies based on BLAST results.

1458
1459 **Table S5. The intron length of all conserved Y-linked genes across species.** We
1460 showed the length of each Y-linked exon in all conserved Y-linked genes based on
1461 BLAST results. If there are multiple copies of an exon, we choose the copy with a
1462 complete open reading frame and the highest expression level.

1463
1464 **Table S6. Recent Y-linked duplications in *D. melanogaster* and species in the *D.***
1465 ***simulans* clade.** We list information on the recent Y-linked duplications and genes,
1466 including copy numbers, expression levels, phylogenies, and open reading frames. We
1467 also included some duplications from repetitive regions where we can date their origins.

1468
1469 **Table S7. Enriched GO terms in Y-linked duplicated genes in *D. melanogaster* and**
1470 **the *D. simulans* clade.** We searched the enriched GO term from recently duplicated Y-
1471 linked genes from Table S6 using PANTHER (Released 20190711; [157]). We listed all
1472 GO terms significantly enriched in the duplication (FDR < 0.05).

1473
1474 **Table S8. The summary of conserved Y-linked genes and ampliconic genes**
1475 **expression.** We summarized the expression level of conserved Y-linked genes and
1476 ampliconic genes. We sum up the gene expression for genes with multiple duplicated
1477 copies on Y chromosomes.

1478
1479 **Table S9. The number of small RNA reads mapped to the repetitive sequences**
1480 **and Y-linked gene families in the *D. simulans* clade.**

1481
1482 **Table S10. Gene conversion rates for Y-linked ampliconic genes in the *D.***
1483 ***simulans* clade.** We listed the gene conversion rates and gene similarities on each Y-
1484 linked ampliconic gene family (e.g., *Lhk-1*, *Lhk-2*, and *CK2 β tes-Y*). We estimated gene
1485 conversion rates using both gene similarities (p) and population recombination rates
1486 (Rmin and rho).

1487

1488 **Table S11. PAML results for branch and branch-site model analyses of *Lhk* in the**
1489 ***D. simulans* clade.** We showed raw results and LRT tests for branch and branch-site
1490 model analyses from PAML. We also report rates of protein evolution for each branch in
1491 each model and sites under positive selection in the branch-site model analyses.
1492

1493 **Table S12. The number of new mutations observed in highly and lowly expressed**
1494 **copies of Y-linked gene families.** We list the number of synonymous, nonsynonymous
1495 and UTR changes in highly and lowly expressed copies of Y-linked genes families. We
1496 suggest that highly expressed copies evolve under stronger selection (positive or
1497 purifying) than other copies. Therefore, we compared the number of synonymous
1498 changes over nonsynonymous changes in highly expressing copies to the other copies.
1499 See Table S21 for detailed information.
1500

1501 **Table S13. PAML results for branch and branch-site model analyses of *CK2Btes-Y***
1502 **in the *D. simulans* clade.** We showed raw results and LRT tests for branch and
1503 branch-site model analyses from PAML. We also report rates of protein evolution for
1504 each branch in each model and sites under positive selection in the branch-site model
1505 analyses.
1506

1507 **Table S14. Indels in Y-linked duplications in *D. melanogaster* and the *D. simulans***
1508 **clade.** We listed the position and sizes of all indels we found in Y-linked duplications.
1509 We also inferred the potential microhomologies used for MHEJ repairing. We also infer
1510 other DSB repairing mechanisms, including tandem duplications and replication
1511 slippages, based on the sequence information.
1512

1513 **Table S15. Polymorphic indels in *D. melanogaster* and *D. simulans* populations.**
1514 We listed the position and sizes of polymorphic indels from *D. melanogaster* and *D.*
1515 *simulans* populations. We also inferred the potential microhomologies causing the
1516 deletions.
1517

1518 **Table S16. The abundance of simple repeats in Illumina reads from male flies**
1519 **estimated with kseek and from our genome assemblies.** We used kseek to measure
1520 the relative abundance of simple repeats in our Illumina reads. We also used TRF finder
1521 to calculate repeat contents in our assemblies. We compared the two results and picked
1522 probes for our FISH experiments.
1523

1524 **Table S17. Repeat composition across chromosomes in *D. melanogaster* and the**
1525 ***D. simulans* clade.** We list the composition of LTR retrotransposon, LINE, DNA
1526 transposons, satellite, simple repeats, rRNA, and other repeats across every
1527 chromosome in our assemblies.
1528

1529 **Table S18. The detail of repetitive sequences across chromosomes in *D.***
1530 ***melanogaster* and the *D. simulans* clade.** We list the total sequence length from each
1531 transposon or complex repeat on Y-linked contigs/scaffolds and other contigs/scaffolds
1532 in our assemblies.
1533

1534 **Table S19. The Illumina coverage and blast result for each contig in the *D.***
1535 ***simulans* clade.** We used Blast v2.7.1+ [129] with blobtools (v1.0; [130]) to search the
1536 nt database (parameters “-task megablast -max_target_seqs 1 -max_hsps 1 -evalue 1e-
1537 25”). We estimated the Illumina coverage of each contig in males of *D. mauritiana*, *D.*
1538 *simulans* and *D. sechellia*, respectively.
1539

1540 **Table S20. The summary of reads data used in this study**

1541
1542 **Table S21. The information and read coverage of each SNP in Y-linked gene**
1543 **families from Illumina reads.** We listed the coverage of each SNP in Y-linked gene
1544 from each RNA-seq replicate and DNA-seq. We also recorded their frequency in our
1545 assembly and their translated amino acid. We estimated the expression level of each
1546 variant based on the SNP frequency in the genome. We also performed Welch’s t-test
1547 to compare SNP frequency from DNA-seq and assemblies to it from RNA-seq. We
1548 further identify the SNPs associated with the allele that change more than 5 TPM
1549 compared to its estimated expression level from its frequency. The SNPs significant in
1550 the Welch’s t-test and located in lowly or highly expressing alleles are chosen to
1551 perform the Chi-square test in Table S12.
1552