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Abstract

Y chromosomes across diverse species convergently evolve a gene-poor,
heterochromatic organization enriched for duplicated genes, LTR retrotransposable
elements, and satellite DNA. Sexual antagonism and a loss of recombination play major
roles in the degeneration of young Y chromosomes. However, the processes shaping
the evolution of mature, already degenerated Y chromosomes are less well-understood.
Because Y chromosomes evolve rapidly, comparisons between closely related species
are particularly useful. We generated de novo long read assemblies complemented with
cytological validation to reveal Y chromosome organization in three closely related
species of the Drosophila simulans complex, which diverged only 250,000 years ago
and share >98% sequence identity. We find these Y chromosomes are divergent in their
organization and repetitive DNA composition and discover new Y-linked gene families
whose evolution is driven by both positive selection and gene conversion. These Y
chromosomes are also enriched for large deletions, suggesting that the repair of
double-strand breaks on Y chromosomes may be biased toward microhomology-
mediated end joining over canonical non-homologous end-joining. We propose that this
repair mechanism generally contributes to the convergent evolution of Y chromosome

organization.
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Introduction

Most sex chromosomes evolved from a pair of homologous gene-rich autosomes that
acquired sex-determining factors and subsequently differentiated. Y chromosomes
gradually lose most of their genes, while their X chromosome counterparts tend to retain
the original autosomal complement of genes. This Y chromosome degeneration follows
a suppression of recombination [1], which limits the efficacy of natural selection, and
causes the accumulation of deleterious mutations through Muller’s ratchet, background
selection, and hitchhiking effects [2-6]. As a consequence, many Y chromosomes
present a seemingly hostile environment for genes, with their mutational burden, high

repeat content and abundant silent chromatin.

Genomic studies of Y chromosome evolution focus primarily on young sex
chromosomes, addressing how the suppression of recombination promotes Y
chromosome degeneration at both the epigenetic and genetic levels [2, 7]. Although
sexually antagonistic selection is traditionally cited as the cause of recombination
suppression on the Y chromosome, direct evidence for its role is still lacking [8] and new
models propose that regulatory evolution is the initial trigger for recombination
suppression [9]. Sexually antagonistic selection may accelerate Y-linked gene evolution
to optimize male-specific functions. Indeed, Y-linked genes tend to have slightly higher
rates of protein evolution than their orthologs on other chromosomes [10, 11]. Higher
rates of Y-linked gene evolution are driven by positive selection, relaxed selective

constraints and male-biased mutation patterns, with most Y-linked genes evolving under
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at least some functional constraint [11]. Although there is evidence suggesting that
some Y chromosomes have experienced recent selective sweeps [12, 13], the relative

importance of positive selection for Y chromosome evolution remains unclear.

Y chromosomes harbor extensive structural divergence between species, in part
through the acquisition of genes from other genomic regions [14-21]. However, the
functions of most Y-linked genes are unknown [18, 21-23]. Some Y-linked genes are
duplicated and, in extreme cases, amplified into so-called ampliconic genes—gene
families with tens to hundreds of highly similar sequences. Y chromosomes of both
Drosophila and mammals have independently acquired and amplified gene families,
which turnover rapidly between closely related species [14, 17, 20, 24-26]. Following Y-
linked gene amplification, gene conversion between gene copies may enhance the

efficacy of selection on Y-linked genes in the absence of crossing over [15, 27].

Detailed analyses of old Y chromosomes have been restricted to a few species with
reference-quality assemblies, e.g., mouse and human. The challenges of cloning and
assembling repeat-rich regions of the genome have stymied progress towards a
complete understanding of Y chromosome evolution [28-30]. Recent advances in long-
read sequencing make it feasible to assemble large parts of Y chromosomes [19, 21,
22, 31] enabling comparative studies of a majority of Y-linked sequences in closely

related species.

Drosophila melanogaster and three related species in the D. simulans clade are ideally

suited to study Y chromosome evolution. These Y chromosomes are functionally
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82 divergent, contribute to hybrid sterility [32-35], and at least four X-linked meiotic drive
83 systems likely shape Y chromosome evolution in these species [36-43]. Previous

84  genetic and transcriptomic studies suggest that Y chromosome variation can impact

85 male fithess and gene regulation [44-51]. Since there is minimal nucleotide variation

86 and divergence in Y-linked protein-coding sequences within and between these

87  Drosophila species [11, 12, 40], structural variation may be responsible for the majority
88 of these effects. For example, 20-40% of D. melanogaster Y-linked regulatory variation
89 (YRV) comes from differences in ribosomal DNA (rDNA) copy numbers [52, 53]. The
90 chromatin on Drosophila Y chromosomes has genome-wide effects on expression level
91 and chromatin states [54], but aside from the rDNA, the molecular basis of Y

92 chromosome divergence and variation in these species remains elusive.

93 To better understand Y chromosome structure and evolution, we assembled the Y

94 chromosomes of the three species in the D. simulans clade and compared them to D.

95 melanogaster. We observe that the Y chromosomes of the D. simulans clade species

96 have high duplication and gene conversion rates that, along with strong positive

97 selection, shaped the evolution of two new ampliconic protein-coding gene families. We

98 propose that, in addition to positive selection, sexual antagonism, and genetic conflict,

99 differences in the usage of DNA repair pathways may give rise to the unique patterns of
100  Y-linked mutations. Together these effects may drive the convergent evolution of Y

101 chromosome structure across taxa.

102
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103 Results

104 Improving the Y chromosome assemblies using long-read assembly and

105 fluorescence in situ hybridization (FISH)

106 Long reads have enabled the assembly of many repetitive genome regions, but have
107  had limited success in assembling Y chromosomes [17, 19, 21, 22]. To improve Y

108 chromosome assemblies for comparative genomic analyses, we applied our

109  heterochromatin-sensitive assembly pipeline [22] with long reads that we previously

110  generated [55] to reassemble the Y chromosome from the three species in the

111 Drosophila simulans clade. We also resequenced male genomes using PCR-free

112 lllumina libraries to polish these assemblies. Our heterochromatin-enriched methods
113  improve contiguity compared to previous D. simulans clade assemblies. We recovered
114  all known exons of the 11 canonical Y-linked genes conserved across the melanogaster
115  group, including 58 exons missed in previous assemblies (Table S1; [55]). Based on the
116  median male-to-female coverage [22], we assigned 13.7 to 18.9 Mb of Y-linked

117  sequences per species with N50 ranging from 0.6 to 1.2 Mb. The quality of these new
118 D. simulans clade Y assemblies are comparable to D. melanogaster (Table 1; [22]). We
119  evaluated our methods by comparing our assignments for every 10-kb window of

120 assembled sequences to its known chromosomal location. Our assignments have 96,
121 98, and 99% sensitivity and 5, 0, and 3% false-positive rates in D. mauritiana, D.

122  simulans, and D. sechellia, respectively (Table S2). We have lower confidence in our D.
123  mauritiana assignments, because the male and female Illumina reads are from different
124  library construction methods. Therefore, we applied an additional criterion only in D.

125  mauritiana based on the female-to-male total mapped reads ratio (<0.1), which reduces
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126  the false-positive rate from 13 to 5% in regions with known chromosomal location (Table
127  S2; Fig S1). Based on these chromosome assignments, we find 40—-44% lower PacBio

128  coverage on Y than X chromosomes in all three species (Fig S2).

129 Table 1. Contiguity statistics for heterochromatin-enriched assemblies

Y chromosome

assembly # of contigs  Total length Contigs N50
D. melanogaster? 80 14,578,684 416,887
D. mauritiana® 55 17,880,069 1,628,994
D. simulans® 38 13,717,056 1,031,383
D. sechellia® 63 14,899,148 555,130

130 2Chang and Larracuente 2019
131 °This paper

132

133  The cytological organization of the D. simulans clade Y chromosomes is not well-

134  described [56-58]. Therefore, we generated new physical maps of the Y chromosomes
135 by combining our assemblies with cytological data. We performed FISH on mitotic

136 chromosomes using probes for 12 Y-linked sequences (Fig 1 and S3—4; Table S3) to
137  determine Y chromosome organization at the cytological level. We also determined the
138 location of the centromeres using immunostaining with a Cenp-C antibody (Fig S4;

139  [99]). These cytological data permit us to 1) validate our assemblies, and 2) infer the
140  overall organization of the Y chromosome by orienting our scaffolds on cytological

141 maps. Of the 11 Y-linked genes, we successfully ordered 10, 11, and 7 genes on the
142  cytological bands of D. simulans, D. mauritiana and D. sechellia, respectively (Fig 1 and
143  S3). We find evidence for extensive Y chromosomal structural rearrangements,

144  including changes in satellite distribution, gene order, and centromere position. These
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145  rearrangements are dramatic even among the D. simulans clade species, which

146  diverged less than 250 KYA (Fig 1 and S3). The Y chromosome centromere position
147  appears to be the same as determined by Berloco et al. for different strains of D.

148  simulans and D. mauritiana, but not for D. sechellia [58]. One explanation for this
149  discrepancy could be between-strain variation in D. sechellia Y chromosome

150  centromere location. Together, our new physical maps and assemblies provide both

151  large and fine-scale resolution on Y chromosome organization in the D. simulans clade.

1 2 3 45 678 9 10 11 1213 14 15 16 17 18 19 cen 20 212223 24 25
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-_— — - —_— e P == =P - - —_)
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153  Fig 1. Y chromosome organization in D. melanogaster and the three D. simulans

154  clade species. Schematics of the cytogenetic maps note the locations of Y-linked
155 genes in D. melanogaster and D. simulans clade species. The bars show the relative
156  placement of the scaffolds on the cytological bands based on FISH results. The solid
157  black and dotted bars represent the scaffolds with known and unknown orientation
158 information, respectively. The light blue and orange bars represent two new Y-linked
159  gene families, Lhk and CK2Btes-Y in the D. simulans clade, respectively. The arrows
160 indicate the orientation of the genes (blue- minus strand; red- plus strand).

161
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162  Y-linked sequence and copy number divergence across three species

163  Although the D. simulans clade species diverged only recently, Y chromosome

164  introgression between pairs of species disrupts male fertility and influences patterns of
165 genome-wide gene expression [32, 34]. One candidate locus that may contribute to
166  functional divergence and possibly hybrid lethality is the Y-linked rDNA [52, 60]. Y-

167  linked rDNA, specifically 28S rDNA, have been lost in D. simulans and D. sechellia, but
168 notin D. mauritiana [57, 61, 62]. However, the intergenic spacer (IGS) repeats between
169  rDNA genes, which are responsible for X-Y pairing in D. melanogaster males [63], are
170  retained on both sex chromosomes in all three species [57, 61, 62]. Consistent with

171 previous cytological studies [57, 61, 62], we find that D. simulans and D. sechellia lost
172  most Y-linked 18S and 28S rDNA sequences (Fig S5). Our assemblies indicate that,
173  despite this loss of the rRNA coding sequences, all three species still retain IGS

174  repeats. However, we and others do not detect Y-linked IGS repeats at the cytological
175 level in D. sechellia (Fig S3—4; [57, 61, 62]), suggesting that their abundance is below

176  the level of detection by FISH in this species.

177  Structural variation at Y-linked genes may also contribute to functional variation and

178 divergence in the D. simulans clade. Previous studies reported many duplications of
179  canonical Y-linked genes in D. simulans [40, 55, 64]. We find that all three species have
180 at least one intact copy of the 11 canonical Y-linked genes, but there is also extensive
181  copy number variation in Y-linked exons across these species (Figure 2 and S6-7,

182  Table S1; [65]). Using lllumina reads, we confirm the copy number variation in our

183  assemblies, and further reveal some Y-linked duplicated exons, particularly in kI-3, wdy

184  and Ppr-Y, that are not assembled in D. sechellia (Fig S6). Some duplicates may be
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185 functional because they are expressed and have complete open reading frames, (e.g.,
186  ARY, Ppr-Y1 and Ppr-Y2). The D. simulans Y chromosome has four complete copies of
187  ARY, all of which show similar expression levels from RNA-seq data (Figure 2B and
188  Table S4), but two copies have inverted exons 1 and 2. D. sechellia also contains at
189 least five duplicated copies of ARY, some of which also have the inverted exons 1 and
190 2, but the absence of RNA-seq data from testes of this species prevents inferences

191  regarding whether all copies of ARY are expressed. However, most duplications include
192  only a subset of exons, and in many cases, the duplicated exons are located on the

193  periphery of the presumed functional gene copy (Figure 2B and S7, Table S4). For

194  example, both D. simulans and D. mauritiana have multiple copies of exons 8-12

195 located at the 3’ end of k/-2 (Figure 2B). In D. simulans, most of these extra exons have
196 low to no expression, while in D. mauritiana, there appears to be a substantial

197  expression from many of the duplicated terminal exons, as well as an internal

198  duplication of exon 5. It is unclear what effects these duplicated exons have on the

199  protein sequences of these fertility-essential genes.

200  All exon-intron junctions are conserved within full-length copies of the canonical Y-

201 linked genes, yet intron lengths vary between these species (Fig 3). The length of

202 longer introns (>100 bp in any species) is more dynamic than that of short introns (Fig 3;
203 Table S5). The dramatic size differences in most introns cannot be attributed to a single
204  deletion or duplication (see an example of ORY in Fig S8). Some Y-linked genes

205 contain mega-base sized introns (i.e., mega-introns) whose transcription manifests as
206 cytologically visible lampbrush-like loops (Y-loops) in primary spermatocytes [66, 67].

207  While Y-loops are found across the Drosophila genus [68, 69], their potential functions
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208 are unknown [70-74] and the genes/introns that produce Y-loops differs among species
209 [75] (Supplemental text). D. melanogaster has three Y-loops transcribed from introns of
210 ORY (ks-1in previous literature), kI-3, and kI-5 [66]. Based on cytological evidence, D.
211 simulans has three Y-loops, whereas D. mauritiana and D. sechellia only have two [69].
212 Of all potential loop-producing introns, we find that only the k/-3 mega-intron is

213  conserved in all four species and has the same intron structure and sequences (i.e.,
214  (AATAT)nrepeats). While both kI-5 and ORY produce Y-loops with (AAGAC), repeats in
215 D. melanogaster, (AAGAC), is missing from the genomes of the D. simulans clade

216  species. This observation is supported by our assemblies, the lllumina raw reads (Table
217  S3), and published FISH results [76]. In the D. simulans clade, the ORY introns do not
218 carry any long tandem repeats. However, k/-5 has introns with (AATAT), repeats that
219 may form a Y-loop in the D. simulans clade species. These data suggest that, while

220 mega-introns and Y-loops may be conserved features of spermatogenesis in

221 Drosophila, they turn over at both the sequence and gene levels over short periods of

222  evolutionary time (i.e., ~2 My between D. melanogaster and the D. simulans clade).

223

10
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225 Fig 2. Duplication of canonical Y-linked exons. A) Exon copy number is highly
226  variable across the three D. simulans clade species and generally greater than in D.
227 melanogaster. B) Gene structure of k-2 and ARY inferred from assemblies and RNA-
228 seq data. Upper bars indicate exons that are colored and numbered, with their height
229 showing average read depth from sequenced testes RNA (D. simulans and D.
230 mauritiana only). Lower bars indicate exon positions on the assembly and position on
231  the Y-axis indicates coding strand.
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Consistent with previous studies [18, 55], we identify high rates of gene duplication to
the D. simulans clade Y chromosome from other chromosomes. We find 49
independent duplications to the Y chromosome in our heterochromatin-enriched
assemblies (Fig 4; Table S6), including eight newly discovered duplications [18, 55].
Twenty-eight duplications are DNA-based, 13 are RNA-based, and the rest are
unknown due to the limited sequence information (Table S6). The rate of transposition
to the Y chromosome is about 3—4 times higher in the D. simulans clade compared to D.
melanogaster [22]. We also infer that 17 duplicated genes were independently deleted
from D. simulans clade Y chromosomes. Based on transcriptomes from D. simulans
and D. mauritiana testes, we suspect that more than half of the duplicated genes are
likely pseudogenes that either show no expression in testes (< 3 TPM) or lack open
reading frames (< 100 amino acids; Table S6). We also detect intrachromosomal
duplications of these Y-linked pseudogenes (Table S6), suggesting a high duplication

rate within these Y chromosomes.
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Fig 3. Evolution of intron lengths in canonical Y-linked genes. The intron length in
canonical Y-linked genes is different between D. melanogaster and the three D.

12
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250 simulans clade species. Orthologous introns are connected by dotted lines. Completely
251 assembled introns are in blue and introns with gaps in the assembly are in red, and are
252  therefore minimum intron lengths.
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253
254  Fig 4. The turnover of new duplications to Y chromosomes in D. melanogaster

255 and three species in the D. simulans clade. Using phylogenetic analyses, we inferred
256 the evolutionary histories of new Y-linked duplications. The blue and green numbers
257  represent the number of independent duplications and deletions observed in each

258  branch, respectively. The deletion events that happened in the ancestor of these four
259  species cannot be inferred without a Y chromosome assembly in the outgroup.

260
261  Most new Y-linked genes in D. melanogaster and the D. simulans clade have presumed

262 functions in chromatin modification, cell division, and sexual reproduction (Table S7),
263  consistent with other Drosophila species [17, 77]. Y-linked duplicates of genes with
264 these functions may be selectively beneficial, but a duplication bias could also

265 contribute to this enrichment, as genes expressed in the testes may be more likely to
266 duplicate to the Y chromosome due to its open chromatin structure and transcriptional

267  activity during spermatogenesis [78-80].
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268 The evolution of new Y-linked gene families

269  Ampliconic gene families are found on Y chromosomes in multiple Drosophila species
270 [24]. We discovered two new gene families that have undergone extensive amplification
271 on D. simulans clade Y chromosomes. Both families appear to encode functional

272  protein-coding genes with complete open reading frames and high expression in

273 mRNA-seq data (Table S8), and have 36—146 copies in each species’ Y chromosome.
274  We also confirm that >90% of the variants in our assembled Y-linked gene families are

275 represented in lllumina DNA-seq data (Supplemental text).

276  The first amplified Y-linked gene family, SR Protein Kinase (SRPK), is derived from an
277 autosome-to-Y duplication of the sequence encoding the testis-specific isoform of the
278 gene SR Protein Kinase (SRPK). After the duplication of SRPK to the Y chromosome,
279 the ancestral autosomal copy subsequently lost its testis-specific exon via a deletion
280 (Figure 5A). The movement of the male-specific isoform inspired us to name the Y-
281 linked SRPK gene family Lo-han-kha (Lhk), which is the Taiwanese term for the male
282  vagabonds that moved from mainland China to Taiwan during the Qing dynasty. In D.
283 melanogaster, SRPK is essential for both male and female reproduction [81],

284  suggesting the hypothesis that the relocation of the testis-specific isoform to the D.
285 simulans clade Y chromosomes may have relieved intralocus sexual antagonism over
286 these two functions. Our phylogenetic analysis identified two subfamilies of Lhk that we
287 designate Lhk-1 and Lhk-2 (Figure 5B). Both subfamilies are shared by all D. simulans
288 clade species and show a 5.5% protein divergence between species. The two

289 subfamilies are found in different locations in our Y chromosome assemblies; consistent
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290 with this observation, we detect two to three Lhk foci on Y chromosomes in the D.

291  simulans clade using FISH (Figure 5B and 5D and Fig S3 and S4).

292  The second amplified gene family comprises both X-linked and Y-linked duplicates of
293 the Ssl gene located on chromosome 2R; it is unclear whether the X- or Y-linked copies
294  originated first. The X-linked copies are known as CK28tes-like in D. simulans [82]. The
295 Y-linked copies are also found in D. melanogaster, but are degenerated and have little
296  or no expression [22, 83], leading to their designation as pseudogenes. In the D.

297  simulans clade species, however, the Y-linked paralogs have high levels of expression
298 (> 50 TPM in testes, Table S8) and complete open reading frames, so we refer to this
299 gene family as CK2Btes-Y. Both CK2tes-like (4—9 copies) and CK2tes-Y (36—123
300 copies based on the assemblies) are amplified on the X and Y chromosome in the D.
301  simulans clade relative to D. melanogaster (Table S8) [82]. The Y-linked copies in D.
302 melanogaster, Su(Ste), are known to be a source of piRNAs [84]. We did not detect any
303 testis piRNAs from either gene family in two small RNA-seq datasets (SRR7410589 and
304 SRR7410590), however, we do find some short (< 23-nt) reads (0.003—-0.005% of total

305 mapped reads) mapped to these gene families (Table S9).

306 We inferred gene conversion rates and the strength of selection on these Y-linked gene
307 families using phylogenetic analyses on coding sequences. We estimated the gene

308 conversion rate in D. simulans clade Y-linked gene families based on four-gamete tests
309 and gene similarity [15, 22, 85, 86]. In general, D. simulans clade species show similar
310 gene conversion rates (on the order of 10 to 10) in both of these families compared to

311 our previous estimates in D. melanogaster (Table S10; [22]). These higher gene
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312  conversion rates compared to the other chromosomes might be a shared feature of Y

313 chromosomes across taxa [15].

314  To estimate rates of molecular evolution, we conducted branch-model and branch-site-
315 model tests on the reconstructed ancestral sequences of Lhk-1, Lhk-2, CK2[3tes-Y, and
316  two CK2Btes-like using PAML (Fig 5B and 5C; [87]). We used reconstructed ancestral
317  sequences for our analyses to avoid sequencing errors in the assemblies, which appear
318 as singletons. We infer that after the divergence of D. simulans clade species, Lhk-1
319 evolved under purifying selection, whereas Lhk-2 evolved under positive selection (Fig
320 5B; Fig S9; Table S11). Using transcriptome data, we observe that highly expressed
321 Lhk-1 copies have fewer nonsynonymous mutations than lowly expressed copies in D.
322  simulans, consistent with purifying selection (Chi-square test’s P=0.01; Fig S10 and

323 Table S12). Both Lhk gene families are expressed 2 to 7-fold higher than the ancestral
324  copy on 2R in the same species, and 1.9 to 64-fold higher than their ortholog, SRPK-
325 RC, in D. melanogaster, suggesting that gene amplification may confer increased

326  expression. In both D. simulans and D. mauritiana, Lhk-1 is shorter due to deletions
327 following its origin and has a higher expression level than Lhk-2. Both Lhk gene families
328 have higher copy numbers in D. simulans than D. mauritiana, which likely contributes to
329 their higher expression level in D. simulans (Table S8). For both Lhk-1 and Lhk-2,

330 copies from the same species are more similar than copies from other species—a

331  signal of concerted evolution [88].

332
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334 Fig 5. The rapid evolution and gene conversion of Y-linked ampliconic genes. A)
335 Schematic showing the inferred evolutionary history of SRPK-Y. SRPK duplicated to the
336 ancestral Y chromosome in the D. simulans clade. The Y-linked copy (Lhk) retained an
337 exon with testis-specific expression, which was lost in the parental copy on 2R. The Y-
338 linked copy (Lhk) further duplicated and increased their expression in testes. B) The
339 inferred maximum likelihood phylogeny for Lhk. Node labels indicate SH-aLRT and

340 ultrafast bootstrap (e.g. 100/100) or rates of protein evolution from PAML with

341  CodonFreq =0,1, or 2 (e.g. 1.01/1.02/1.03) (Fig S9 and S11). Lhk shows evidence for
342  positive selection (branch tests and branch-site tests with w>1) after the duplication

343 from 2R (SRPK) to the Y chromosome in the D. simulans clade. One Lhk subfamily

344  (Lhk-1)is under recent purifying selection and is located close to the centromere, but
345 the other (Lhk-2) is rapidly evolving across the species of the D. simulans clade. C)

346 Same as B but for CK28tes-Y. Both Y-linked CK2tes-Y and X-linked CK2Btes-like also
347  show positive selection. All w values shown are statistically significant (LRT tests,

348 P<0.05; Table S11 and S12). D) On the Y chromosomes, Lhk FISH signals are located
349 in 2-3 cytological locations. CK2Rtes-Y signals are only located nearby centromeres in
350 the immunolabelling with fluorescent in situ hybridization (immunoFISH) experiments.
351 Based on our analysis of sequence information, we suggest that most Lhk-1 copies are
352 located close to CK2Btes-Y and centromere.

18


https://doi.org/10.1101/2021.08.16.456461
http://creativecommons.org/licenses/by/4.0/

353

354

Table 2. PAML analyses reveal positive selection on Y-linked ampliconic gene families

Branch test with CodonFreq=0

Branch-site test site class

Lhk w1 w2 w3 L 2AInL  LRT's P w0 wl w2a w2b 2AInL LRT'sP Positively selected sites (BEB > 0.95)¢

one w 0.17 -3250.74

two w? 0.11  1.05 -3218.26 64.94 7.71E-16 0.01 1 487 487 13.04 3.05E-04 14, H11,V32,V75,N99, Y100, D193, D199
three w®* 0.11 1.49 043 -3216.30 3.92 0.05

CK2Btes

one w 0.35 -3295.01

two w® 0.25 1.05 -3272.00 46.01 1.18E-11 0.05 1 221 221 6.54 1.06E-02 D33, T38, K44, K100, F101, K104, M152, M155
three w®* 0.20 042 1.05 -3266.33 11.35 7.56E-04

a Autosomal and Y lineage have protein evolution of w1 and w2, respectively.

b Autosomal and sex chromosomal (X and Y) have protein evolution of w1 and w2, respectively.
¢ See Figure 3C and 3D for the assignment of lineage.

d See Table S11 and S13 for all the sites.
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355  The ancestral Ss/ gene experienced a slightly increased rate of protein evolution after it
356 duplicated to the X and Y chromosomes (w= 0.41 vs. 0.23; P = 0.03; Fig 5C; Fig S11;
357 Table S13). We find that both CK2Btes-like and CK2Btes-Y share strong signals of

358 positive selection, based on branch-model and branch-site-model tests (P = 8.8E-9; Fig
359 5C; Fig S11; Table S13). In D. melanogaster, the overexpression of the CK2Rtes-like X-
360 linked homolog, Stellate, can drive in the male germline by killing Y-bearing sperm and
361 generating female-biased offspring [89-91]. We suspect that CK2Btes-like and CK2Rtes-
362 Y might have similar functions and may also have a history of conflict. Therefore, the
363 co-amplification of sex-linked genes and positive selection on their coding sequences

364 may be a consequence of an arms race between sex chromosome drivers.
365 Y chromosome evolution driven by specific mutation patterns

366 The specific DNA-repair mechanisms used on Y chromosomes might contribute to their
367 high rates of intrachromosomal duplication and structural rearrangements. Because Y
368 chromosomes lack a homolog, they must repair double-strand breaks (DSBs) by non-
369 homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ), which
370 relies on short homology (usually > 2 bp) to repair DSBs [92]. Compared to NHEJ,

371 MMEJ is more error-prone and can result in translocations and duplications [93].

372  Preferential use of MMEJ instead of NHEJ could contribute to the high duplication rate
373 and extensive genome rearrangements that we observed on Y chromosomes. To infer
374  the mechanisms of DSB repair on Y chromosomes, we counted indels between Y-linked
375 duplicates and their parent genes for a set of 17 putative pseudogenes—both NHEJ
376 and MMEJ can generate indels, but NHEJ usually produces smaller indels (1-3 bp)

377 compared to MMEJ (> 3 bp) [93, 94]. We also cataloged short stretches of homology
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378 between each duplicate and its parent. To compare Y-linked patterns of DSB repair to
379 other regions of the genome, we measured the size of polymorphic indels in intergenic
380 regions and pseudogenes on the autosomes and X chromosomes from population data
381 in D. melanogaster (DGRP [95]) and D. simulans [96]. To the extent that these indels do
382 not experience selection, their sizes should reflect the mutation patterns on each

383 chromosome. We observe proportionally more large deletions on Y chromosomes (25%
384 of Y-linked indels are >10-bp deletions; Table S14) compared to other chromosomes in
385 both D. melanogaster (12.8% and 15.2% of indels are >10-bp deletions in intergenic
386 regions and pseudogenes) and D. simulans (7.3% of indels are >10-bp deletions in

387 intergenic regions; all pairwise chi-square’s P < 1e-6; Fig 4A; Table S15). The pattern of
388 excess large deletions is shared in the three D. simulans clade species Y

389 chromosomes, but is not obvious in D. melanogaster (Fig 6B). However, because all D.
390 melanogaster Y-linked indels in our analyses are from copies of a single pseudogene
391 (CR43975), it is difficult to compare to the larger samples in the simulans clade species
392 (duplicates from 16 genes). The differences in deletion sizes between the Y and other
393 chromosomes are unlikely to be driven by heterochromatin or the lack of recombination
394 —the non-recombining and heterochromatic dot chromosome has a deletion size profile
395 more similar to the other autosomes in D. simulans (10.9% of indels are >10-bp

396 deletions). These results suggest that Y chromosomes may use MMEJ over NHEJ

397 compared to other chromosomes, particularly in the simulans clade species. We also
398 find that across the genome larger deletions (>7bp) share a similar length of

399  microhomologies for repairing DSBs-(39.5-57% deletions have > 2 bp microhomology;

400 Chi-square test for microhomology length between Y and other chromosomes, P > 0.24;
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401 Table S14 and S15), consistent with most being a consequence of MMEJ-mediated

402  repair.
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403
404 Fig 6. An excess of large deletions on Y chromosomes, compared to population

405 data suggests a preference for MMEJ. A) We compared the size of 216 indels on 17
406 recently duplicated Y-linked genes in D. melanogaster and the D. simulans clade
407  species to the indels polymorphic in the D. melanogaster and D. simulans populations.
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408 For the indels in D. melanogaster and D. simulans populations, we separated them

409 based on their location, including autosomes (excluding dot chromosomes), X

410 chromosomes, and dot chromosomes. We excluded the D. melanogaster dot-linked
411  indels due to the small sample size (12). B) We classify Y-linked indels by whether they
412  are shared between species or specific in one species C) The excess of large deletions
413  (underlined) on the Y chromosomes is consistent with MMEJ between short regions of
414  microhomology (red).

415

416  The satellite sequence composition of Y chromosomes differs between species [76, 97,
417  98]. A high duplication rate may accelerate the birth and turnover of Y-linked satellite
418 sequences. We discovered five new Y-linked satellites in our assemblies and validated
419 their location using FISH (Fig S3—4 and Table S16). These satellites only span a few
420 kilobases of sequences (5,515 to 26,119 bp) and are homogenized. According to its
421  flanking sequence, one new satellite, (AAACAT),, originated from a DM412B

422  transposable element, which has three tandem copies of AAACAT in its long terminal
423 repeats. The AAACAT repeats expanded to 764 copies on the Y chromosome

424  specifically in D. mauritiana. The other four novel satellites are flanked by transposons
425 (< 50 bp) and may derive from non-repetitive sequences. The MMEJ pathway may
426  contribute to the birth of new repeats, as this mechanism is known to generate tandem
427  duplications via template-switching during repair [93]. Short tandem repeats can be
428  further amplified via saltatory replication or unequal crossing-over between sister

429  chromatids.

430 Consistent with findings in other species [19, 22], we find an enrichment of LTR
431 retrotransposons on the D. simulans clade Y chromosomes relative to the rest of the
432 genome (Table S17). Interestingly, we find that the Y-linked LTR retrotransposons also

433  turn over between species (Fig S12 and Table S18). We find a positive correlation
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434  between the difference in Y-linked TE abundance between D. melanogaster and each
435 of the D. simulans clade species versus the rest of the genome (rho = 0.45-0.50; Fig
436 S13 and Table S18). This suggests that global changes in transposon activity could

437  explain the differences in Y-linked TEs abundance between species. However, the

438  correlations between species within the D. simulans clade are weaker (rho < 0.23; Fig
439 S13 and Table S18), consistent with the possibility that some TEs may shift their

440 insertion preference between chromosomes. To test this hypothesis, we estimated the
441  ages of LTR retrotransposons by their length. We find that the recent insertions of LTR
442  transposons are differently distributed across chromosomes between species (Fig S14),
443  suggesting that insertion preferences towards genomic regions may differ for some TEs.
444  For example, we detect many recent DIVER element insertions on the Y chromosome

445 in D. simulans, but not in D. sechellia (Fig S9).

446

447 Discussion

448  Despite their independent origins, the degenerated Y chromosomes of mammals, fish,
449 and insects have convergently evolved structural features of gene acquisition and

450 amplification, accumulation of repetitive sequences, and gene conversion. Here we

451  consider the mutational processes that contribute to this structure and its consequences
452  for Y chromosome biology. Our assemblies revealed extensive Y chromosome

453  rearrangements between three very closely related Drosophila species (Figure 1).

454  These rearrangements may be the consequence of rejoining telomeres after DSBs, as
455 telomere-specific sequences are embedded in non-telomeric regions of Drosophila Y

456  chromosomes [58, 99, 100]. We propose that four pieces of evidence suggest DSBs on
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457 Y chromosomes may be preferentially repaired using the MMEJ pathway. First, Y-linked
458  sequences are absent from the X chromosome, precluding repair of DSBs by

459  homologous recombination in meiosis. Second, NHEJ on Y chromosomes may be

460 limited because the Ku complex, which is required for NHEJ [94], is excluded from

461  HP1a-rich regions of chromosomes [101]. The Ku complex also binds telomeres and
462  might prevent telomere fusions [102, 103], suggesting that a low concentration of Ku on
463 Y chromosomes could also cause high rates of telomere rejoining. Third, the highly

464  repetitive nature of Y chromosomes may increase the rate of DSB formation, which may
465  also contribute to a higher rate of MMEJ [93, 104]. Fourth, we show that Y

466 chromosomes have high duplication and gene conversion rates, and larger deletion

467  sizes than other genomic regions (Figure 4), consistent with a preference for MMEJ to

468 repair Y-linked DSBs [93].

469 The exclusion of the Ku complex from heterochromatin could also contribute to an

470 excess of Y-linked duplications we observe in the D. simulans clade relative to D.

471  melanogaster (Figure 2A and 4). D. simulans clade Y chromosomes might harbor

472  relatively more heterochromatin than the D. melanogaster Y due to the partial loss of
473  their euchromatic rDNA repeats [57, 61, 62], and D. simulans also expresses more

474  heterochromatin-modifying factors, such as Su(var)s and E(var)s [105], compared to D.
475 melanogaster. To explore these hypotheses, the distribution of the Ku complex across

476  chromosomes in the testes of these species should be studied.

477  If MMEJ is preferentially used to fix DSBs on the Y chromosome, we might expect that
478 the mutations in the MMEJ pathway would preferentially impact Y-bearing sperm.

479  Consistent with this prediction, a previous study showed that male D. melanogaster with
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480 a deficient MMEJ pathway (DNApol mutants) sire female-biased offspring [106].
481  Moreover, sperm without sex chromosomes that result from X-Y non-disjunction events
482  are not as strongly affected by an MMEJ deficiency as Y-bearing sperm [106],

483  suggesting that sperm with Y chromosomes are more sensitive to defects in MMEJ.

484  Drosophila’ Y chromosomes can act as heterochromatin sinks, sequestering

485 heterochromatin marks from pericentromeric regions and suppressing position-effect
486  variegation [54, 107-109]. Therefore, retrotransposons located in heterochromatin might
487  have higher activities in males due to the presence of Y-linked heterochromatin [54,

488  108], although the genomic distribution of heterochromatin during spermatogenesis is
489 unknown. We find that, like D. melanogaster [22], D. simulans clade Y chromosomes
490 are enriched for retrotransposons relative to the rest of the genome; however Y

491  chromosomes from even the closely related D. simulans clade species harbor distinct
492  retrotransposons (Figure S12 and Table S18), indicating that some TEs may have

493 rapidly shifted their insertion preference. This preference might benefit the TEs because
494  Y-linked TEs might express during spermatogenesis [110]. On the other hand, Y

495 chromosomes can be a significant source of small RNAs that silence repetitive

496 elements during spermatogenesis—e.g., Su(Ste) piRNAs in D. melanogaster [111,

497 112]—and thus may also contribute to TE suppression. If Y chromosomes contribute to
498  piRNA or siRNA production (e.g., have piRNA clusters [112, 113]), then the TE insertion
499 preference for the Y chromosome may sometimes be beneficial for the host, as they
500 could provide immunity against active TEs in males. In this sense, Y chromosomes may
501 even act as “TE traps” that incidentally suppress TE activity in the male germline by

502  producing small RNAs.
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503 Genes may adapt to the Y chromosome after residing there for millions of years [114,
504  115]. While most genes that move to the Y chromosome quickly degenerate [18, 23], a
505 subset of new Y-linked genes are retained, presumably due to important roles in male
506 fertility or sex chromosome meiotic drive. New Y-linked genes may adapt to this unique
507  genomic environment, evolving structures and regulatory mechanisms that enable

508 optimal expression on the heterochromatic and non-recombining Y chromosome [116].
509 Here, we describe two new Y-linked ampliconic genes specific to the D. simulans

510 clade—Lhk and CK2Btes-Y-that show evidence of strong positive evolution and

511  concerted evolution, suggesting that high copy numbers and Y-Y gene conversion are

512  often important for the adaptation of new Y-linked genes.

513  Many ampliconic genes are taxonomically restricted and are not maintained at high
514  copy numbers over long periods of evolutionary time [14, 17, 20, 24-26]. Some

515 ampliconic gene families are found on both the X and Y chromosomes [24, 89, 117-
516  119]. While we do not know the function of most such co-amplified gene families, the
517  murine example of SIx/SIxI1 and Sly appears to be engaged in an ongoing arms race
518 between the sex chromosomes [117]. We propose that Y-linked gene amplification in
519 the D. simulans clade initially occurs due to an arms race and has the added benefit of

520 being preserved by gene conversion.

521  ltis intriguing that the CK2Btes-like/CK2Btes-Y gene family is homologous to the

522  Ste/Su(Ste) system in D. melanogaster [82], which is also hypothesized to play a role in
523 sex-chromosome meiotic drive [120]. We speculate that in both the D. melanogaster
524 and D. simulans clade lineages these gene amplifications have been driven by conflict

525 between the sex chromosomes over transmission through meiosis, but that the conflict
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526 involves different molecular mechanisms. In the CK2Btes-like/CK2tes-Y system, both
527 X and Y-linked genes are protein-coding genes, which is reminiscent of SIx/SIx/1 and
528  Sly which compete for access to the nucleus where they regulate sex-linked gene

529  expression[117, 118]. In contrast, the Y-linked Su(Ste) copies in D. melanogaster

530 produce small RNAs that suppress the X-linked Stellate [84]. We propose that CK23tes-
531  like/CK2Btes-Y system in the D. simulans clade species may represent the ancestral
532 state because the parental gene Ssl is a protein-coding gene. We speculate that

533  systems arising from antagonisms between the sex chromosomes may shift from

534  protein-coding to RNA-based over time because, with RNAI, suppression is maintained

535 at a minimal translation cost.

536  Distinct Y-linked mutation patterns are described in many species [14-21]. Our analyses
537 provide a link between Y-linked mutation patterns and Y chromosome evolution. While
538 the lack of recombination and male-limited transmission of the Y chromosome reduces
539 the efficacy of selection, the high gene duplication and gene conversion rates may

540 counter these effects and help acquire and maintain new Y-linked genes. The unique Y-
541  linked mutation patterns might be the direct consequence of the heterochromatic

542  environment on sex chromosomes. Therefore, we predict that W chromosomes and

543  non-recombining sex-limited chromosomes (e.g., some B chromosomes), may share
544  similar mutation patterns with Y chromosomes. Indeed, W chromosomes of birds have
545 ampliconic genes and are rich in tandem repeats [86, 121]. However, there seem to be
546  fewer ampliconic gene families on bird W chromosomes compared to Y chromosomes
547  in other animals, suggesting that sexual selection and intragenomic conflict in

548  spermatogenesis are important contributors to Y-linked gene family evolution [122, 123].
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549 Materials and Methods

550 Assembling Y chromosomes using Pacbio reads in D. simulans clade

551  We applied the heterochromatin-sensitive assembling pipeline from [22]. We first

552  extracted 229,464 reads with 2.2-Gbp in D. mauritiana, 269,483 reads with 2.3-Gbp in
553  D. simulans, and 257,722 reads with 2.6-Gbp in D. sechellia using assemblies from
554  [55], respectively. We then assembled these reads using Canu v1.3 and FALCON

555  v0.5.0 combined the parameter tuning method on 2 error rates, eM and eg, in bogart to
556  optimize the assemblies. We first made the Canu assemblies using the parameters
557  “genomeSize=30m stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100
558 ovIiMerSize=31" and “genomeSize=30m stopOnReadQuality=false”. For FALCON

559  v0.5.0, we used the parameters “length_cutoff = -1; seed_coverage = 30 or 40;

560 genome_size = 30000000; length_cutoff_pr = 1000". We then picked the assemblies
561  with highest contiguity and completeness without detectable misassemblies from each

562  setting (two Canu settings and one Falcon setting).

563  After picking the three best assemblies for each species, we tentatively reconciled the
564  assemblies using Quickmerge [124]. We examined and manually curated the merged
565 assemblies. For the D. mauritiana assembly, we merged two Canu and one FALCON
566  assemblies, and for our D. simulans and D. sechellia assemblies, we merged one Canu
567 and one FALCON assemblies independently. We manually curated some conserved Y-
568 linked genes using raw reads and cDNA sequences from NCBI, including k/-3 of D.

569  mauritiana, kI-3, kI-5, and PRY of D. simulans and CCY, PRY, and Ppr-Y of D.
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570 sechellia, due to their low coverage and importance for our phylogenetic analyses. We
571  then merged our heterochromatin restricted assemblies with contigs of the major

572  chromosome arms from [55]. We polished the resulting assemblies once with Quiver
573  using PacBio reads (SMRT Analysis v2.3.0; [125] and ten times with Pilon v1.22 [126]

574  using raw lllumina reads with parameters “--mindepth 3 --minmq 10 --fix bases”.

575 We identified misassemblies and found parts of Y-linked sequences in the contigs from
576  major arms using our female/male coverage assays in D. sechellia. We also assembled
577 the total reads (assuming genome size of 180 Mb) and heterochromatin-extracted reads
578 (assuming genome size 40 Mb) using wtdbg v2.4 with parameters “-x rs -t24 -X 100 -e
579 2" [127] and Flye v2.4.2 [128] with default parameters separately. We polished the

580 resulting wtdbg assemblies with raw Pacbio reads using Flye v2.4.2. We then manually
581 assembled five introns and fixed two misassemblies using sequences from wtdbg

582  whole-genome assemblies (two introns), Flye whole-genome (two introns), and

583 heterochromatin-enriched assemblies (one intron) in D. sechellia. We assembled one

584 intron using sequences from wtdbg whole-genome assemblies in D. simulans.

585  We also extracted potential microbial reads (except for Wolbachia) that mapped to the D.
586  sechellia microbial contigs, and assembled these reads into a 4.5 Mb contig, which
587 represents the whole genome of a Providencia species, using Canu v 1.6 (r8426
588 14520f819a1e5dd221cc16553cf5b5269227b0a3) with parameters “genomeSize=5m
589 useGrid=false stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100". To
590 detect other symbiont-derived sequences in our assemblies, we used Blast v2.7.1+ [129]

591  with blobtools (v1.0; [130]) to search the nt database (parameters “-task megablast -

10
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592 max_target_seqs 1 -max_hsps 1 -evalue 1e-25"). We estimated the lllumina coverage of
593 each contig in males for D. mauritiana, D. simulans and D. sechellia, respectively. We
594  designated and removed contigs homologous to bacteria and fungi in subsequent

595 analyses (Table S19).

596 Generating DNA-seq from males in the D. simulans clade

597  We extracted DNA from 30 virgin 0-day males using DNeasy Blood & Tissue Kit and
598 diluted itin 100 pL ddH20. The DNA was then treated with 1 yL 10mg/mL RNaseA

599  (Invitrogen) at 37°C for 1-hr and was re-diluted in 100 yL ddH2O after ethanol

600 precipitation. The size and concentration of DNA were analyzed by gel electrophoresis,
601  Nanodrop, Qubit and Genomic DNA ScreenTape. Finally, we constructed libraries using
602 PCR-free standard lllumina kit and sequenced 125-bp paired-end reads with a 550-bp
603 insert size from the libraries using Hiseq 2500 in UR Genomics Research Center. We

604 deposited the reads in NCBI's SRA under BioProject accession number PRINA748438.

605 Identifying Y-linked contigs

606 To assign contigs to the Y chromosome, we used lllumina reads from male and female
607 PCR-free genomic libraries (except females of D. mauritiana) as described in [22]. In
608 short, we mapped the male and female reads separately using BWA (v0.7.15; [131])
609 and called the coverage of uniquely mapped reads per site with samtools (v1.7; -Q 10
610 [132]). We further assigned contigs with the median of male-to-female coverage across
611  contigs equal to 0 as Y-linked. We examined the sensitivity and specificity of our

612 methods using all 10-kb regions with known location. Based on our results for 10-kb

11
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613 regions with known location (Table S2) in D. mauritiana, we set up an additional
614  criterion for this species—“the average of female-to-male coverage < 0.1"—to reduce

615 the false discovery rate.

616 Gene and repeat annotations

617 We used the same pipeline and data to annotate genomes as a previous study [55]. We
618 collected transcripts and translated sequences from D. melanogaster (r6.14) and

619 transcript sequences from D. simulans [133] using IsoSeq3 [134]. We mapped these
620 sequences to each assembly to generate annotations using maker2 (v2.31.9; [135]. We
621  further mapped the transcriptomes using Star 2.7.3a 2-pass mapping with the maker2
622 annotation and parameters “-outFilterMultimapNmax 200 --alignSJoverhangMin 8 --

623 alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --

624  outFilterMismatchNoverReadLmax 0.04 --alignintronMin 20 --alignintronMax 5000000 --
625 alignMatesGapMax 5000000 --outSAMtype BAM SortedByCoordinate --

626 readFilesCommand zcat --peOverlapNbasesMin 12 --peOverlapMMp 0.1”. We then

627 generated the consensus annotations using Stringtie 2.0.3 from all transcriptomes [136].
628  We further improved the mitochondria annotation using MITOS2. We assigned

629 predicted transcripts to their homologs in D. melanogaster using BLAST v2.7.1+ (-

630 evalue 1e-10; [129])).

631  We used RepeatMasker v4.0.5 [137] with our custom library to annotate the assemblies
632  using parameter “-s.” Our custom library is modified from [55], by adding the consensus

633  sequence of Jockey-3 from D. melanogaster to replace its homologs (G2 in D.

12
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634  melanogaster and Jockey-3 in D. simulans; [138]). We extracted the sequences and
635 copies of TEs and other repeats using scripts modified from [139]. To annotate tandem
636 repeats in assemblies, we used TRFinder (v4.09; [140] with parameters “2 7 7 80 10
637 100 2000 -ngs -h". We also used kseek to search for tandem repeats in the male

638 lllumina reads.

639 Transcriptome analyses

640 We mapped the testes transcriptome to the reference genomes of D. melanogaster, D.
641  simulans and D. mauritiana (Table S20; no available transcriptome from D. sechellia).
642 We used Stringtie 2.0.3 [136] to estimate the expression level using the annotation.

643 However, we applied a different strategy for estimating expression levels of the Y-linked
644  gene families due to the difficulties in precisely annotating multi-copies genes. We

645  constructed a transcript reference using current gene annotation but replaced all

646 transcripts from Lhk-1, Lhk-2 and CK2Btes-Y with their species-specific reconstructed
647 ancestral copies. We then mapped the transcriptome reads to this reference using

648 Bowtie2 v 2.3.5.1 [141] with parameters “-very-sensitive -p 24 -k 200 -X 1000 --no-

649 discordant --no-mixed”. We then estimated the expression level by salmon v 1.0.0 [142]
650 with parameters “-| A -p 24.” We also mapped small RNA reads from D. simulans testes
651  to our custom repeat library and reconstructed ancestral Lhk-1, Lhk-2 and CK2Btes-Y

652 sequences using Bowtie v 1.2.3 [143] with parameters “-v3 -q -a -m 50 --best —strata.”

653 To assay the specific expression of different copies, we also mapped transcriptomic and

654 male genomic reads to the same reference using BWA (v0.7.15; [131]. We used ABRA

13
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655 v2.22 [144] to improve the alignments around the indels of these two gene families. We
656 used samtools (v1.7; [132]) to pile up reads that mapped to reconstructed ancestral

657 copies and estimated the frequency of derived SNPs in the reads.

658 Estimating Y-linked exon copy numbers using lllumina reads

659 We mapped the lllumina reads from the male individuals of D. melanogaster and the D.
660 simulans clade species to a genome reference with transcripts of 11 conserved Y-linked
661 genes and the sequences of all non-Y chromosomes (r6.14) in D. melanogaster. We
662 called the depth using samtools depth (v1.7; [132]), and estimated the copy number of
663 each exon using the mapped depth. We assumed most Y-linked exons are single-copy,
664 so we divided the depth of each site by the majority of depth across all Y-linked

665 transcripts to estimate the copy number. For the comparison, we simulated the 50X

666 Illlumina reads from our assemblies using ART 2.5.8 with the parameter (art_illumina -ss
667 HSXt-m 500 -s 200 -p -l 150 -f 50; [145]). We then mapped the simulated reads to the

668 same reference, called the depth, and divided the depth of each site by 50.

669 Immunostaining and FISH of mitotic chromosomes

670 We conducted FISH in brain cells following the protocol from [146] and immunostaining
671  with FISH (immune-FISH) in brain cells following the protocol from [147] and [138].

672  Briefly, we dissected brains from third instar larva in 1X PBS and treated them for 1-min
673 in hypotonic solution (0.5% sodium citrate). Then, we fixed brain cells in 1.8%

674 paraformaldehyde, 45% acetic acid for 6-min. We subsequently dehydrated in ethanol

675 for the FISH experiments but not for the immune-FISH.
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676 For immunostaining, we rehydrated the slide using PBS with 0.1% TritonX-100 after
677 removing the coverslip using liquid nitrogen. The slides were blocked with 3% BSA and
678 1% goat serum/ PBS with 0.1% TritonX-100 for 30-min and hybridized with 1:500 anti-
679  Cenp-C antibody (gift from Dr. Barbara Mellone) overnight at 4°C. We used 1:500

680 secondary antibodies (Life Technologies Alexa-488, 546, or 647 conjugated, 1:500) in
681  blocking solution with 45-min room temperature incubation to detect the signals. We

682 fixed the slides in 4% paraformaldehyde in 4XSSC for 6-min before doing FISH.

683 We added probes and denatured the fixed slides at 95°C for 5-min and then hybridized
684  slides at 30°C overnight. For PCR amplified probes with DIG or biotin labels, we

685 blocked the slides for 1-hr using 3% BSA/PBS with 0.1% Tween and incubated slides
686  with 1:200 secondary antibodies (Roche) in 3% BSA/4X SSC with 0.1% Tween and
687 BSA at room temperature for 1 hr. We made Lhk and CK2Btes-Y probes using PCR
688  Nick Translation kits (Roche) and ordered oligo probes from IDT. We list probe

689 information in Table S3. We mounted slides in Diamond Antifade Mountant with DAPI
690 (Invitrogen) and visualized them on a Leica DM5500 upright fluorescence microscope,
691 imaged with a Hamamatsu Orca R2 CCD camera and analyzed using Leica’s LAX

692 software. We interpreted the binding patterns of Y chromosomes using the density of

693  DAPI staining solely.

694 Phylogenetic analyses of Y-linked genes

695 We used BLAST v2.7.1+ [129] to extract the sequences of Y-linked duplications and

696 conserved Y-linked genes from the genome. We only used high-quality sequences
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697  polished by Pilon (--mindepth 3 --minmq 10) for our phylogenetic analyses. We aligned
698 and manually inspected sequences with reference transcripts from Flybase using

699 Geneious v8.1.6 [148]. For most Y-linked duplications, except for the genes

700 homologous to Lhk and CK2tes-Y, we constructed neighbor-joining trees using the
701 HKY model with 1,000 replicates using Geneious v8.1.6 [148] to infer their phylogenies.
702  We also measured the length and microhomology in 216 indels from 17 Y-linked

703  duplications using these alignments (Table S14). We also infer the potential

704  mechanisms causing the indels, including tandem duplications and polymerase slippage
705  during DNA replication. We measured the length and microhomology of polymorphic
706 indels in D. melanogaster (DGRP [95]) and D. simulans [96] populations from [55]. For
707  Lhk and CK2Btes-Y, we constructed phylogeny using igtree 1.6.12 [149, 150] using
708 parameters “-m MFP -nt AUTO -alrt 1000 -bb 1000 -bnni”. The node labels in Figure 5
709  correspond to SH-aLRT support (%) / ultrafast bootstrap support (%). The nodes with
710 SH-aLRT >= 80% and ultrafast bootstrap support >= 95% are strongly supported.

711 Protein evolutionary rates (with CodonFreq = 0/1/2 in PAML) of the bold branches were
712 estimated using PAML with branch models on the reconstructed ancestor sequences

713 (Fig S9 and S11).

714  Estimating recombination and selection on Y-linked ampliconic genes

715  Using the phylogenetic trees from iqtree, we infer the most probable sequences for the
716  internal nodes using MEGA 10.1.5 [151, 152] using the maximal likelihood method and

717 G+l model with GTR model. We conducted branch and branch-site models tests in
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718 PAML 4.8 using the ancestral sequences of Y-linked and X-linked ampliconic gene
719  families with their homologs on autosomes. We plotted the tree using R package ape

720  5.3[153].

721 We used compute 0.8.4 [154] to calculate Rmin and population recombination rates

722  based on linkage disequilibrium [155, 156] and gene similarity. We included sites with
723  indel polymorphisms in these analyses to increase the sample size (558—1,544 bp

724  alignments). We also reanalyzed data from Chang and Larracuente 2019 [22] to include
725  variant information from these sites. The high similarity between Y-linked ampliconic
726  gene copies may lead us to overestimate gene conversion based on gene similarity

727  [155]. We therefore also reported the lower bound on the gene conversion rate using

728  Rmin [156].

729 GO term analysis

730 We used PANTHER (Released 20190711; [157]) with GO Ontology database

731 (Released 2019-10-08) to perform Biological GO term analysis of new Y-linked

732 duplicated genes using Fisher’s exact tests with FDR correction. We input 70 duplicated
733  genes with any known GO terms and used all genes (13767) in D. melanogaster as

734  background.
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735 Data availability

736  Genomic DNA sequence reads are in NCBI’'s SRA under BioProject PRINA748438. All
737  scripts and pipelines are available in GitHub (forthcoming) and the Dryad digital
738  repository (doi forthcoming).
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1307 Supplementary text
1308

1309 Validation of variants in Y-linked gene families

1310  We mapped lllumina reads from male genomic DNA and testis RNAseq to the

1311 reconstructed ancestral transcript sequences of each gene cluster (Lhk-1, Lhk-2,

1312 CK2Btes-Y) to estimate the expression level of the different Y-linked copies. We first
1313  asked if the variants in these two gene families found in our assemblies can be

1314  consistently detected in lllumina reads from male genomes. We found that the

1315  abundance of derived variants in these two gene families in the DNA-seq data are
1316  highly correlated to the frequency of variants in our assemblies (R = 0.89 and 0.98 in D.
1317  mauritiana and D. simulans, respectively). For 559 variants in the D. simulans

1318 assembly, 33 of them (28 appear once and four appear twice) are missing from the
1319 DNA-seq data. For 446 variants in the D. mauritiana assembly, 43 of them (32 appear
1320 once and six appear twice) are missing from the DNA-seq data. Additionally, nine and
1321  eight inconsistent variants are located near (< 100 bp) the start or end of transcripts in
1322  D. simulans and D. mauritiana, respectively. These regions at the edges of transcripts

1323  might have fewer lllumina reads coverage than more central regions.

1324  We compared the proportion of synonymous and nonsynonymous changes between
1325  copies with high and low expression using transcriptome data to infer selection

1326  pressures on different mutations (Fig S10; Table S21).

1327  To reduce the effect of sequencing errors and simplify the phylogenetic analyses on
1328  protein evolution rates, we first reconstructed the ancestral sequences of each gene

1329  cluster (Lhk-1, Lhk-2, CK2Btes-Y, and 2 CK2Btes-like; see Fig 5). The reconstructed
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1330 ancestral sequences should eliminate misassembled bases, which are typically

1331  singletons. We conducted branch-model and branch-site-model tests on the

1332  reconstructed ancestral sequence using PAML and inferred that both gene families
1333  experienced strong positive selection following their duplication to the Y chromosome
1334  (from branch model; Tables S17 and S18, Fig 5). The high rate of protein evolution in
1335 the Y-linked ampliconic genes suggests that, in addition to subfunctionalization or

1336  degeneration, they may also acquire new functions and adapt to being Y-linked.

1337

1338
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Fig S1. The distribution of female to male total mapped read ratio in each 10-kb
window in D. mauritiana. Many non-Y regions have median male-to-female coverage
0 in our D. mauritiana data. Therefore, we applied an additional criterion based on the

female-to-male total mapped reads ratio (<0.1) to reduce the false-positive rate.
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Fig S2. The low Pacbio coverage on the Y chromosome in the D. simulans clade.
We calculated the median coverage of Pacbio reads every 10-kb and plotted the
histogram of depth across genomes based on their chromosome location.
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1353

1354  Fig S3. The summarized cytological location of satellite DNA, gene families, and
1355 conserved genes on the Y chromosome of the D. simulans clade. We used FISH
1356  as well as our assemblies to infer the cytological location of Y-linked sequences. The
1357  bars represent the location of scaffolds or contigs, and the green bars are scaffolds or
1358  contigs without known direction. The satellites in red are sequences we cannot detect
1359 on Y chromosomes using FISH.

1360 *Based on the repeat content from the Illumina data (Table S16), the AAACAT signal is
1361  probably from the AAACAAT tandem array, instead of AAACAT, in D. simulans.

1362
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D. mauritiana D. simulans

D. sechellia

1363
1364 Fig S4. The FISH of satellite and gene families, and conserved genes in the D.

1365 simulans clade. We surveyed the location of 12 Y-linked sequences using FISH and
1366  immunostaining. The colors on the figure represent the probes we used for the
1367  experiments.
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1369 Chromosome

1370 Fig S5. The length of rDNA elements across the chromosomes in D. melanogaster
1371 and the D. simulans clade.We surveyed the length of rDNA elements across

1372  chromosomes (A: autosomes, X: X chromosome, U: unknown location and Y: Y

1373  chromosome). The length of elements is normalized by the length of consensus from
1374  functional elements.
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Fig S6. The copy number of male lllumina DNA-seq reads in 11 canonical Y-linked
genes. To confirm the copy number of Y-linked genes across species in our assembly,
we mapped the lllumina reads from males to a single of D. melanogaster Y-linked
transcripts and estimated the copy number based on their coverage (black lines). For
the comparison, we also simulated Illlumina reads from our assemblies and mapped
them to the same reference to estimate their copy number (red lines). The dotted lines
separate each exon.
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Fig S7. Gene structure of 11 conserved Y-linked genes inferred from assemblies
and RNA-seq data. Upper bars indicate exons that are colored and numbered, with
their height indicating average read depth from sequenced testes RNA (D. simulans and
D. mauritiana only). Lower bars indicate exon positions on the assembly and position on
the Y-axis indicates coding strand.
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1395 Fig S8. The mummerplot of the ORY alignment in the D. simulans clade. We used
1396 MUMMER to align ORY from different species and plot the figure. Purple lines and dots
1397  represent forward matches, and blue lines and dots represent reverse matches.
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Fig S9. The phylogeny of Lhk used in PAML analyses. We marked the branches
used in branch-model and branch-site model tests. We did all comparisons using the

branch with different colors in likelihood-ratio tests. Please see the detailed results in
Table S17.
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S10. The expression of different copies from Lhk and CK2Btes-Y gene families.
(A) We quantify the frequency of each derived SNP within the genome using DNA-seq
and the expression level of each allele using RNA-seq. We cataloged each SNP as
synonymous, nonsynonymous or UTR. (B) We found that across three Y-linked gene
families, only highly expressed Lhk-1 copies have fewer nonsynonymous mutations
than lowly expressed copies in D. simulans, consistent with purifying selection (Table
S12 and S21; Chi-square test’'s P=0.01). We did not detect other significant changes in
other comparisons (Table S12 and S21; Chi-square test’'s P > 0.01).
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1416  S11. The phylogeny of CK2Btes-Y used in PAML analyses. We marked the

1417  branches used in branch-model and branch-site model tests. We did all comparisons
1418  using the branch with different colors in likelihood-ratio tests. Please see the detailed
1419  results in Table S18.
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1422  Fig $12. The abundance of repetitive elements on Y chromosomes of D.

1423 melanogaster and the D. simulans clade species. We plotted the density of 20 most
1424  enriched (by total occupying sequences) repetitive elements on Y chromosomes across
1425  four species. The colors represent the proportion of repetitive sequences in all

1426  assembled Y-linked sequences.
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1428
1429  Fig S13. The correlation of TE abundance between Y chromosomes and other

1430 chromosomes of D. melanogaster and the D. simulans clade. We calculated the
1431  fold changes of TE occupying sites (bp) between species by chromosomes. Each point
1432  from the figures above the diagonal represents the changes of a TE element on the Y
1433  chromosome and the other (non-Y) chromosomes. The number below the diagonal
1434  shows Spearman’s rank correlation coefficient for each comparison.
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Fig S14. The length of LTR retrotransposons between Y chromosomes and other
chromosomes of D. melanogaster and the D. simulans clade. We surveyed the
length of LTR retrotransposons across chromosomes (A: autosomes, X: X
chromosome, U: unknown location and Y: Y chromosome). The length of elements is
normalized by the length of consensus from full-length elements and represents the
ages of each LTR retrotransposon.
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1443  Supplementary Table legend

1444  Table S1. The copy number of exons in conserved Y-linked genes. We listed the
1445  copy number of each exon in conserved Y-linked genes based on BLAST results.

1446

1447 Table S2. The estimates of sensitivity and specificity of our Y-linked sequence
1448 assignment methods using 10-kb regions with known chromosomal location. We
1449  calculated the median female-over-male coverage in our Illlumina data in every 10-kb
1450 region with known chromosomal location. We then estimated the sensitivity and

1451  specificity of our methods using these data.

1452

1453  Table S3. Probe and primer information.

1454

1455 Table S4. The genomic location of duplicated exons in conserved Y-linked genes.
1456  We listed the genomic location of each exon in conserved Y-linked genes in our

1457  assemblies based on BLAST results.

1458

1459 Table S5. The intron length of all conserved Y-linked genes across species. We
1460 showed the length of each Y-linked exon in all conserved Y-linked genes based on
1461  BLAST results. If there are multiple copies of an exon, we choose the copy with a

1462  complete open reading frame and the highest expression level.

1463

1464 Table S6. Recent Y-linked duplications in D. melanogaster and species in the D.
1465  simulans clade. We list information on the recent Y-linked duplications and genes,
1466  including copy numbers, expression levels, phylogenies, and open reading frames. We
1467  also included some duplications from repetitive regions where we can date their origins.
1468

1469 Table S7. Enriched GO terms in Y-linked duplicated genes in D. melanogaster and
1470 the D. simulans clade. We searched the enriched GO term from recently duplicated Y-
1471  linked genes from Table S6 using PANTHER (Released 20190711; [157]). We listed all
1472 GO terms significantly enriched in the duplication (FDR < 0.05).

1473

1474  Table S8. The summary of conserved Y-linked genes and ampliconic genes

1475  expression. We summarized the expression level of conserved Y-linked genes and
1476  ampliconic genes. We sum up the gene expression for genes with multiple duplicated
1477  copies on Y chromosomes.

1478

1479 Table S9. The number of small RNA reads mapped to the repetitive sequences
1480 and Y-linked gene families in the D. simulans clade.

1481

1482 Table S10. Gene conversion rates for Y-linked ampliconic genes in the D.

1483  simulans clade. We listed the gene conversion rates and gene similarities on each Y-
1484  linked ampliconic gene family (e.g., Lhk-1, Lhk-2, and CK23tes-Y). We estimated gene
1485  conversion rates using both gene similarities (p) and population recombination rates
1486  (Rmin and rho).

1487
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1488 Table S11. PAML results for branch and branch-site model analyses of Lhk in the
1489 D. simulans clade. We showed raw results and LRT tests for branch and branch-site
1490 model analyses from PAML. We also report rates of protein evolution for each branch in
1491  each model and sites under positive selection in the branch-site model analyses.

1492

1493 Table S12. The number of new mutations observed in highly and lowly expressed
1494  copies of Y-linked gene families. We list the number of synonymous, nonsynonymous
1495 and UTR changes in highly and lowly expressed copies of Y-linked genes families. We
1496  suggest that highly expressed copies evolve under stronger selection (positive or

1497  purifying) than other copies. Therefore, we compared the number of synonymous

1498 changes over nonsynonymous changes in highly expressing copies to the other copies.
1499  See Table S21 for detailed information.

1500

1501  Table S13. PAML results for branch and branch-site model analyses of CK2Btes-Y
1502 in the D. simulans clade. We showed raw results and LRT tests for branch and

1503  branch-site model analyses from PAML. We also report rates of protein evolution for
1504  each branch in each model and sites under positive selection in the branch-site model
1505 analyses.

1506

1507 Table S14. Indels in Y-linked duplications in D. melanogaster and the D. simulans
1508 clade. We listed the position and sizes of all indels we found in Y-linked duplications.
1509  We also inferred the potential microhomologies used for MHEJ repairing. We also infer
1510  other DSB repairing mechanisms, including tandem duplications and replication

1511  slippages, based on the sequence information.

1512

1513 Table S$15. Polymorphic indels in D. melanogaster and D. simulans populations.
1514  We listed the position and sizes of polymorphic indels from D. melanogaster and D.
1515  simulans populations. We also inferred the potential microhomologies causing the

1516  deletions.

1517

1518 Table S16. The abundance of simple repeats in lllumina reads from male flies

1519 estimated with kseek and from our genome assemblies. We used kseek to measure
1520 the relative abundance of simple repeats in our lllumina reads. We also used TRF finder
1521  to calculate repeat contents in our assemblies. We compared the two results and picked
1522  probes for our FISH experiments.

1523

1524 Table S17. Repeat composition across chromosomes in D. melanogaster and the
1525  D. simulans clade. We list the composition of LTR retrotransposon, LINE, DNA

1526  transposons, satellite, simple repeats, rRNA, and other repeats across every

1527  chromosome in our assemblies.

1528

1529 Table S18. The detail of repetitive sequences across chromosomes in D.

1530 melanogaster and the D. simulans clade. We list the total sequence length from each
1531  transposon or complex repeat on Y-linked contigs/scaffolds and other contigs/scaffolds
1532  in our assemblies.

1533
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1534  Table S19. The lllumina coverage and blast result for each contig in the D.

1535  simulans clade. We used Blast v2.7.1+ [129] with blobtools (v1.0; [130]) to search the
1536 nt database (parameters “-task megablast -max_target_seqs 1 -max_hsps 1 -evalue 1e-
1537  25”). We estimated the lllumina coverage of each contig in males of D. mauritiana, D.
1538  simulans and D. sechellia, respectively.

1539

1540 Table S20. The summary of reads data used in this study

1541

1542  Table S21. The information and read coverage of each SNP in Y-linked gene
1543  families from lllumina reads. We listed the coverage of each SNP in Y-linked gene
1544  from each RNA-seq replicate and DNA-seq. We also recorded their frequency in our
1545  assembly and their translated amino acid. We estimated the expression level of each
1546  variant based on the SNP frequency in the genome. We also performed Welch's t-test
1547  to compare SNP frequency from DNA-seq and assemblies to it from RNA-seq. We
1548 further identify the SNPs associated with the allele that change more than 5 TPM

1549  compared to its estimated expression level from its frequency. The SNPs significant in
1550 the Welch’s t-test and located in lowly or highly expressing alleles are chosen to

1551  perform the Chi-square test in Table S12.

1552
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