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Abstract 25 

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite 26 

this predictable patient response, the mechanisms that enable hyperventilation to powerfully 27 

activate absence seizure-generating circuits remain entirely unknown. Using the WAG/Rij rat, an 28 

established rodent model of absence epilepsy, we demonstrate that absence seizures are highly 29 

sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to 30 

pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the 31 

thalamus, a structure implicated in seizure generation.  We show that intralaminar thalamus also 32 

contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation 33 

activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.  34 

 35 

Introduction 36 

 Epilepsy is a common neurological disorder characterized by recurrent and spontaneous 37 

seizures. Yet, accumulating evidence indicates that seizures are not necessarily unpredictable 38 

events (Amengual-Gual et al., 2019; Bartolini & Sander, 2019; Baud et al., 2018; Ferlisi & 39 

Shorvon, 2014). Several factors affect seizure occurrence, including metabolism (Lusardi et al., 40 

2015; Masino et al., 2012; Masino & Rho, 2012, 2019), sleep (Bazil, 2019; Fountain et al., 1998; 41 

Malow et al., 1999; Nobili et al., 2001), catamenia (Herzog & Frye, 2014; Joshi & Kapur, 2019; 42 

Reddy et al., 2001), light (Padmanaban et al., 2019) and circadian rhythm (Amengual-Gual et al., 43 

2019; Debski et al., 2020; Smyk & van Luijtelaar, 2020; Stirling et al., 2021). In extreme cases, 44 

stimuli immediately provoke seizures, a condition known as reflex epilepsy (Kasteleijn-Nolst 45 

Trenité, 2012; Koepp et al., 2016). The mechanisms that render certain seizure-generating 46 

networks susceptible to external factors remain unknown. 47 

 A highly reliable seizure trigger associated with childhood absence epilepsy is 48 

hyperventilation. Between 87-100% of all children diagnosed with the common Genetic 49 

Generalized Epilepsy produce spike-wave seizures upon voluntary hyperventilation (Hughes, 50 
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2009; Ma et al., 2011; Sadleir et al., 2009). Indeed, hyperventilation serves as a powerful tool for 51 

diagnosing this childhood epilepsy (Adams & Lueders, 1981; Holowach et al., 1962; Sadleir et al., 52 

2006; Watemberg et al., 2015). Remarkably, as no single genetic etiology drives absence 53 

epilepsy (Chen et al., 2013; Crunelli & Leresche, 2002; Helbig, 2015; Koeleman, 2018; Robinson 54 

et al., 2002; Xie et al., 2019), hyperventilation appears to recruit fundamental seizure-generating 55 

mechanisms shared by virtually all patients.  56 

 Exhalation of CO2 during hyperventilation causes hypocapnia, a state of decreased 57 

arterial CO2 partial pressure (PaCO2), and respiratory alkalosis, a state of elevated arterial pH 58 

(Laffey & Kavanagh, 2002). Hyperventilation also causes rapid arterial vasoconstriction (Raichle 59 

& Plum, 1972) and increased cardiac output (Donevan et al., 1962). Recent work demonstrates 60 

that inspiration of 5% CO2 blunts hyperventilation-provoked spike-wave seizures in humans (Yang 61 

et al., 2014). Collectively, these observations suggest that respiratory alkalosis serves as the 62 

primary trigger for hyperventilation-provoked absence seizures.  63 

 Spike-wave seizures associated with absence epilepsy arise from hypersynchronous 64 

neural activity patterns within interconnected circuits between the thalamus and the cortex (Avoli, 65 

2012; Beenhakker & Huguenard, 2009; Huguenard & McCormick, 2007; McCafferty et al., 2018; 66 

McCormick & Contreras, 2001; Meeren et al., 2002). The crux of the prevailing model describing 67 

absence seizure generation includes an initiating bout of synchronous activity within the 68 

somatosensory cortex that recruits rhythmically active circuits in the thalamus (Meeren et al., 69 

2002; Sarrigiannis et al., 2018). With widespread connectivity to the cortex, the thalamus then 70 

rapidly generalizes spike-wave seizures to other brain structures. The extent to which 71 

thalamocortical circuits respond to shifts in pH during hyperventilation-induced respiratory 72 

alkalosis is unknown. 73 

 Herein, we test the hypothesis that respiratory alkalosis regulates the occurrence of spike-74 

wave seizures.  We demonstrate that hyperventilation-provoked absence seizures observed in 75 

humans can be mimicked in an established rodent model, the WAG/Rij rat (Coenen, 2003; 76 
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Coenen et al., 1992; Russo et al., 2016; van Luijtelaar & Coenen, 1986). We first show that 77 

hyperventilation induced with hypoxia reliably evokes respiratory alkalosis and increases spike-78 

wave seizure count in the WAG/Rij rat. When supplemented with 5% CO2 to offset respiratory 79 

alkalosis, hypoxia did not increase spike-wave seizure count. Moreover, hypercapnia alone (high 80 

PaCO2) reduced spike-wave seizure count despite a robust increase in respiration rate. We also 81 

show that optogenetic stimulation of brainstem respiratory centers to produce respiratory alkalosis 82 

during normoxia induces CO2-sensitive spike-wave seizures. Collectively, these results identify 83 

respiratory alkalosis as the primary seizure trigger in absence epilepsy following hyperventilation. 84 

Finally, we show that structures of the intralaminar thalamic nuclei are both (1) activated during 85 

respiratory alkalosis, and (2) pH-sensitive. Thus, our data demonstrate that respiratory alkalosis 86 

provokes spike-wave seizures and shine a spotlight on the poorly understood intralaminar 87 

thalamus in the pathophysiology of spike-wave seizures.     88 

 89 

Results 90 

Hypoxia triggers spike-wave seizures in the WAG/Rij rat 91 

 We first set out to determine if an accepted rat model of absence epilepsy, the WAG/Rij 92 

rat, recapitulates hyperventilation-provoked absence seizures, as observed in humans. We 93 

combined whole-body plethysmography and electrocorticography/electromyography 94 

(ECoG/EMG) recordings in awake WAG/Rij rats to assess respiration and spike-wave seizure 95 

occurrence while exposing animals to different gas mixtures of O2, CO2 and N2 (Figure 1A,B). We 96 

only considered spike-wave seizures that persisted for a minimum of two seconds and occurred 97 

concomitantly with behavioral arrest in the animal. Spike-wave seizures are distinguishable from 98 

non-REM sleep based on the appearance of 5-8 Hz frequency harmonics in the power 99 

spectrogram (see Figure 1B, expanded trace).   100 

 We first compared respiration and ECoG/EMG activity in rats exposed to atmospheric 101 

conditions (i.e., normoxia: 21% O2; 0% CO2; 79% N2) and hypoxia (10% O2; 0% CO2;  90% N2).  102 
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Figure 1. Hypoxia provokes hyperventilation-associated spike-wave seizures in WAG/Rij 125 
rats.  126 
(A) Experiment Paradigm. Left: Plethysmography chambers recorded ventilation and 127 
ECoG/EMG signals in rats exposed to normoxia (i.e., 21% O2) and hypoxia (i.e., 10% O2). 128 
Right: Example gas exchange protocol used to generate the peristimulus time histogram in 129 
panel C. Spike-wave seizure count was measured during the 15 minutes before and after gas 130 
exchange at t = 0 min. (B) Representative recordings during transition from normoxia to 131 
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hypoxia. (1) From top to bottom: chamber O2, respiration, ECoG, EMG, and ECoG power 132 
spectrogram. White arrow points to spike-wave seizure. (2) Bottom: expanded view B1. 133 
Spectrogram reveals 5-8 Hz frequency harmonics associated with spike-wave seizures. (C) 134 
Spike-wave seizure (SWS) and respiration quantification. (1) Stacked histogram illustrating 135 
spike-wave seizure count for each animal before and after the onset of hypoxia; each color is a 136 
different rat. Arrow points to gas exchange at t = 0 min. (2) Corresponding respiratory rate for 137 
each animal shown in panel C1. (3) Mean respiratory rate for all animals. (D) Mean spike-wave 138 
seizure count per bin and (E) respiratory rate before and after gas exchange. See Tables 1 & 2 139 
for detailed statistics. ***p < 0.001. 140 
 141 

Hypoxia reliably stimulates rapid breathing, blood alkalosis and hypocapnia in rats (Basting et al., 142 

2015; Souza et al., 2019). We cycled rats between 40-minute epochs of normoxia and 20-minute 143 

epochs of hypoxia. O2 levels were measured from the outflow of the plethysmography chamber 144 

for confirmation of gas exchange (Figure 1B, top). Hypoxia evoked a robust increase in respiratory 145 

rate (Figure 1B, expanded) and reliably provoked seizures. A peristimulus time histogram (PSTH) 146 

aligned to the onset of gas exchange shows spike-wave seizure counts during the 15 minutes 147 

immediately before and during hypoxia (Figure 1C1); the PSTH shows the contribution of each 148 

rat in stacked histogram format. Respiratory rates confirmed that hypoxia increased ventilation 149 

(Figure 1C2,3). To quantify the effect of hypoxia on seizures, we calculated the mean spike-wave 150 

seizure count across all bins for each rat. Relative to normoxia, spike-wave seizure count during 151 

hypoxia was nearly 2-fold higher (p = 4.5 x 10-7, n = 15; Fig. 1D) and respiratory rate increased 152 

by 30% (p = 1.6 x 10-5, n = 15; Fig. 1E).   153 

Recent work shows that spike-wave seizures commonly occur in several rat strains, 154 

including those that are generally not considered epileptic (Taylor et al., 2017, 2019). While 155 

between 62% (Vergnes et al., 1982) and 84% (Robinson & Gilmore, 1980) of Wistar rats do not 156 

have seizures, we nonetheless tested whether hypoxia can unmask seizure-generating potential 157 

in this strain, as Wistar and WAG/Rij rats share the same genetic background (Festing, 1979). In 158 

normoxia, seizures were absent in all four Wistar rats we tested, consistent with the infrequent 159 

spike-wave seizure occurrence reported for this strain. Relative to normoxia in Wistar rats, 160 

hypoxia induced hyperventilation, hypocapnia and blood alkalization but did not provoke spike- 161 
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 176 

Figure 2. Hypoxia does not provoke hyperventilation-associated spike-wave seizures in 177 
Wistar rats. (A) Plethysmography chambers recorded ventilation and ECoG/EMG signals in four 178 
Wistar rats exposed to normoxia (i.e., 21% O2) and hypoxia (i.e., 10% O2). Panels 1-4 include 179 
responses from four Wistar rats, respectively, and show from top to bottom: ECoG, ECoG power 180 
spectrogram, respiratory rate, and chamber O2. During the 2.5-hour recording session, rats were 181 
challenged twice with hypoxia. No spike-wave seizures were observed during either normoxia or 182 
hypoxia. (B) Expanded views of the first transition from normoxia to hypoxia shown in panel A. 183 
Increased low frequency power during normoxia in some rats (e.g., panel B2) represents sleep. 184 
Hypoxia in Wistar rats generally increased arousal. (C) Arterial measurements in the same rats 185 
show that hypoxia challenges produced a predictable drop in arterial (1) O2 and (2) CO2, as well 186 
as (3) alkalosis. See Table 3 for detailed statistics. ***p < 0.001. 187 
 188 

 189 
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wave seizures (Figure 2; see Table 3). Instead, hypoxia primarily triggered arousal in Wistar rats, 194 

as revealed in EEG spectrograms by the reduction in sleep-related frequencies. Therefore, we 195 

hypothesize that hypoxia-provoked spike-wave seizures are unique to seizure-prone rodent 196 

models, just as hyperventilation does not provoke absence seizures in otherwise healthy humans. 197 

 198 

CO2 suppresses spike-wave seizures 199 

Hyperventilation promotes hypocapnia, a state of low PaCO2. As dissolved CO2 is acidic, 200 

hyperventilation-triggered hypocapnia is also associated with respiratory alkalosis. To test the 201 

hypothesis that hypocapnia specifically provokes seizures, we next determined whether 202 

supplemental CO2 (5%) blunts the spike-wave seizure-provoking effects of hypoxia. We 203 

performed ECoG/plethysmography experiments as before but alternated between two test trials:   204 

hypoxia and hypoxia/hypercapnia (10% O2, 5% CO2; 85% N2). Test trials were interleaved with 205 

40-minute periods of normoxia to allow blood gases to return to baseline levels (Figure 3A).  As  206 

before, hypoxia increased spike-wave seizure count by nearly 2-fold (p = 1.76 x 10-6, n = 9; Figure 207 

3B1, C) and increased respiratory rate by 27% (p = 6.59 x 10-4, n = 9; Figure 3B3, D). In the same 208 

rats, supplementing hypoxia with 5% CO2 suppressed the spike-wave seizure response insofar 209 

that hypoxia/hypercapnia did not change spike-wave seizure count relative to normoxia (p = 0.18, 210 

n = 9; Figures 3E1 and 3F) despite a predictable and robust elevation in respiratory rate (p = 2.71 211 

x 10-4, n = 9; Figures 3E2, 3 and 3G).  212 

 In a separate cohort of rats, we collected arterial blood samples to measure blood PaCO2, 213 

PaO2 and pH during normoxia, hypoxia and hypoxia/hypercapnia (see Table 4). We observed a 214 

considerable change in PaO2 [F (1.056, 5.281) = 406.4, p = 3.0 x 10-6], PaCO2 [F (1.641, 8.203) 215 

= 338.9, p = 1.9 x 10-8] and pH [F (1.938, 9.688) = 606, p = 7.2 x 10-11] values among the three 216 

conditions. Hypoxia decreased PaCO2 (p = 2.1 x 10-6; n = 6; Figure 3H2) and concomitantly 217 

alkalized the blood (p = 7.0 x 10-6, n = 6; Figure 3H3). We also observed a decrease in PaO2 (p =  218 

6.0 x 10-6; n = 6; Figure 3H1). Supplemental CO2 returned blood pH (p = 0.008, n = 6; Figure 3H3) 219 
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 237 
Figure 3. Supplemental CO2 suppresses hypoxia-provoked spike-wave seizures. 238 
(A) Experimental approach. Plethysmography chambers recorded ventilation and ECoG/EMG 239 
signals in WAG/Rij rats exposed to normoxia (i.e., 21% O2) and then alternately challenged with 240 
hypoxia (i.e., 10% O2) or hypoxia + CO2, (i.e., 10% O2, 5% CO2). (B-D) Hypoxia challenge. (B) 241 
Spike-wave seizure (SWS) and respiration quantification. (1) Stacked histogram illustrating spike-242 
wave seizure count for each animal before and after the onset of hypoxia. (2) Corresponding 243 
respiratory rate for each animal shown in panel B1. (3) Mean respiratory rate for all animals. (C) 244 
Mean spike-wave seizure count per bin and (D) respiratory rate before and after hypoxia 245 
exchange. (E-G) Hypoxia + CO2 challenge. (E) SWS and respiration quantification. (1) Stacked 246 
histogram illustrating spike-wave seizure count for each animal before and after the onset of 247 
hypoxia + CO2. (2) Corresponding respiratory rate for each animal shown in panel E1. (3) Mean 248 
respiratory rate for all animals. (F) Mean spike-wave seizure count per bin and (G) respiratory 249 
rate before after hypoxia + CO2 exchange. (H) Arterial measurements in the same rats show that 250 
hypoxia produced a predictable drop in arterial (1) O2 and (2) CO2, as well as (3) respiratory 251 
alkalosis (as in Wistar rats). Supplementing the chamber with 5% CO2 normalizes arterial CO2 252 
and pH. Elevated arterial O2 during hypoxia + CO2 relative to hypoxia reflects a powerful inhalation 253 
response during the former condition (c.f., panels D and G). See Tables 1, 2 and 4 for detailed 254 
statistics. **p<0.01, ***p < 0.001. 255 
 256 
 257 
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and PaCO2 (p = 0.42, n = 6; Figure 3H2) to normoxia levels. However, heightened respiratory 258 

rate in supplemental CO2 raised PaO2 (p = 00013, n = 6; Figure 3H1).  Collectively, these data 259 

support the hypothesis that blood pH powerfully regulates spike-wave seizure activity. 260 

 Next, we tested whether supplementing normoxia with 5% CO2 is sufficient to reduce 261 

spike-wave seizure counts. Respiration during high CO2 causes hypercapnia, a condition that 262 

increases blood PaCO2 and acidifies the blood (Eldridge et al., 1984). As with hypoxia, 263 

hypercapnia also triggers hyperventilation (Guyenet et al., 2019). We performed 264 

ECoG/plethysmography experiments in rats that cycled through trials of normoxia and 265 

hypercapnia (21% O2; 5% CO2; 74% N2) and compared the mean number of seizures observed 266 

during the two conditions. Relative to normoxia, the number of spike-wave seizures was lower 267 

during 5% CO2 (p = 0.0028, n = 8; Figure 4B1 and 4C); hypercapnia also induced a powerful 268 

respiratory response (p = 3.78 x 10-5, n = 8; Figure 4B2,3 and 4D). Blood gas measurements 269 

revealed that 5% hypercapnia increased PaCO2 (p = 0.022, n = 6; Figure 4E2) and slightly 270 

acidified blood pH (p = 0.00063, n = 6; Figure 4E3). These results provide further support for the 271 

hypothesis that the neural circuits that produce spike-wave seizures are CO2-sensitive, and thus 272 

pH-sensitive. Moreover, the results demonstrate that neither the mechanics of elevated 273 

ventilation, nor increased arousal, is sufficient to provoke spike-wave seizures.  274 

 275 

Optogenetic stimulation of the retrotrapezoid nucleus provokes spike-wave seizures 276 

 In addition to inducing hyperventilation and hypocapnia, hypoxia also lowers PaO2 (see 277 

Figure 3H1), an effect that stimulates the carotid body, the principal peripheral chemoreceptor 278 

that initiates hyperventilation during hypoxic conditions (Lindsey et al., 2018; López-Barneo et al., 279 

2016; Semenza & Prabhakar, 2018). Carotid body activity recruits neurons of the nucleus tractus 280 

solitarius (NTS) that then excite neurons of the central respiratory pattern generator to drive a 281 

respiratory response (Guyenet, 2014; López-Barneo et al., 2016). To evaluate the capacity of 282 

hyperventilation to provoke seizures in the absence of hypoxia (and, therefore, in the absence of 283 
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 303 

Figure 4. Supplemental CO2 suppresses spontaneous spike-wave seizures. 304 
(A) Experimental approach. Plethysmography chambers recorded ventilation and ECoG/EMG 305 
signals in WAG/Rij rats exposed to normoxia (i.e., 21% O2) and hypercapnia (i.e., 21% O2, 5% 306 
CO2). (B) Spike-wave seizure (SWS) and respiratory quantification. (1) Stacked histogram 307 
illustrating spike-wave seizure count for each animal before and after the onset of hypercapnia. 308 
(2) Corresponding respiratory rate for each animal shown in panel B1. (3) Mean respiratory rate 309 
for all animals. (C) Mean spike-wave seizure count per bin and (D) respiratory rate before and 310 
after hypercapnia exchange. (E) Arterial measurements in the same rats show that hypercapnia 311 
produced a predictable increase in arterial (1) O2 and (2) CO2, as well as (3) respiratory acidosis. 312 
Increase arterial O2 reflects robust ventilatory response during hypercapnia. See Tables 1, 2 and 313 
4 for detailed statistics. *p < 0.05, **p < 0.01, ***p < 0.001. 314 
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carotid body activation), we utilized an alternative approach to induce hyperventilation. Under 315 

physiological conditions, chemosensitive neurons of the retrotrapezoid nucleus (RTN), a 316 

brainstem respiratory center, are activated during an increase in PaCO2 and a consequent drop 317 

in arterial pH (Guyenet et al., 2016, 2019; Guyenet & Bayliss, 2015) that then stimulate respiration. 318 

Optogenetic activation of RTN neurons in normoxia is sufficient to evoke a powerful 319 

hyperventilatory response that alkalizes the blood (Abbott et al., 2011; Souza et al., 2020). 320 

Importantly, PaO2 remains stable (or is slightly elevated) during optogenetically-induced 321 

respiration. Therefore, hyperventilation evoked by optogenetic RTN activation during normoxia 322 

both (1) promotes respiratory alkalosis without hypoxia and (2) is a more clinically relevant 323 

approximation of voluntary hyperventilation than hypoxia-induced hyperventilation.  324 

 We selectively transduced RTN neurons of WAG/Rij rats with a lentiviral approach using 325 

the PRSX8 promoter to drive channelrhodopsin expression (Abbott et al., 2009; Hwang et al., 326 

2001; Lonergan et al., 2005). Once channelrhodopsin was expressed, we challenged rats with 327 

two test trials: RTN photostimulation during normoxia and RTN photostimulation during 328 

hypercapnia (Figure 5A); in a subset of animals, we cycled rats between the two conditions. In 329 

both trials, the laser was pulsed at 20 Hz (10msec pulse) once every four seconds for two 330 

seconds. Laser stimulation during normoxia provoked spike-wave seizures (p = 0.002; n = 10; 331 

Figures 5B, 5C1 and 5D) and also increased ventilation (p = 0.019; n = 10; Figures 5C2,3 and 332 

5E). In contrast, laser stimulation during hypercapnia in the same animals did not alter spike-wave 333 

seizure count (p = 0.86; n = 6; Figures 5F1 and 5G), despite the induction of a strong 334 

hyperventilatory response (p = 0.031; n = 6; Figures 5F2,3 and 5H). In sum, these results support 335 

the hypothesis that respiratory alkalosis is necessary to provoke seizures during hyperventilation 336 

and excludes carotid body activation as a contributing factor.  337 

 338 

Hypoxia-induced hyperventilation activates neurons of the intralaminar thalamus 339 

Thus far, our results demonstrated that respiratory alkalosis (i.e., hyperventilation that 340 
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 358 

 359 
Figure 5. Normoxic hyperventilation provokes CO2-sensitive spike-wave seizures.  360 
 (A) Experimental approach. Plethysmography chambers recorded ventilation and ECoG/EMG 361 
signals in WAG/Rij rats exposed to normoxia (i.e., 21% O2) and normoxia + CO2, (i.e., 10% O2, 362 
5% CO2). Channelrhodopsin-mediated photostimulation of the retrotrapezoid nucleus (RTN) was 363 
used to increase ventilation. (B) Example of ventilatory response and spike-wave seizure during 364 
normoxic RTN photostimulation (C-E) RTN photostimulation during normoxia. (C) Spike-wave 365 
seizure (SWS) and respiration quantification. (1) Stacked histogram illustrating spike-wave 366 
seizure count for each animal before and after normoxia photostimulation onset. (2) 367 
Corresponding respiratory rate for each animal shown in panel C1. (3) Mean respiratory rate for 368 
all animals. (D) Mean spike-wave seizure count per bin and (E) respiration rate before and after 369 
normoxia photostimulation onset. (F-H) RTN photostimulation during hypercapnia (i.e., 21% O2, 370 
5% CO2). (F) Spike-wave seizure and respiratory quantification. (1) Stacked histogram illustrating 371 
spike-wave seizure count for each animal before and after hypercapnic photostimulation onset. 372 
(2) Corresponding respiratory rate for each animal shown in panel F1. (3) Mean respiratory rate 373 
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for all animals. (G) Mean spike-wave seizure count per bin and (H) respiratory rate before and 374 
after hypercapnic photostimulation onset. See Tables 1, 2 and 4 for detailed statistics. *p < 0.05, 375 
**p < 0.01, not significant (n.s.). 376 
 377 
 378 
 379 
promotes a net decrease in PaCO2) provokes spike-wave seizures in the WAG/Rij rat. Next, we 380 

sought to identify brain structures activated during respiratory alkalosis that may contribute to 381 

spike-wave seizure provocation.  We used the neuronal activity marker cFos to identify such 382 

structures in WAG/Rij rats. To isolate activation specifically associated with respiratory alkalosis, 383 

we first administered ethosuximide (200mg/kg, i.p.) to suppress spike-wave seizures; respiration 384 

and ECoG/EMG signals confirmed ventilatory responses and spike-wave seizure suppression. 385 

Ethosuximide-injected rats were exposed to either hypoxia, normoxia or hypoxia/hypercapnia for 386 

30 minutes and then transcardially perfused 90 minutes later. Brains were harvested and 387 

evaluated for cFos immunoreactivity. Surprisingly, in rats exposed to hypoxia we observed 388 

heightened immunoreactivity in the intralaminar nuclei, a group of higher-order thalamic nuclei 389 

that, unlike first-order thalamic nuclei, do not receive peripheral sensory information (Saalmann, 390 

2014) (Figure 6A,B). Indeed, cFos immunoreactivity was largely absent from first-order thalamic 391 

nuclei and cortex, and was blunted in rats treated with normoxia and hypoxia/hypercapnia (Figure 392 

6B). Importantly, the latter condition elevates respiration but normalizes arterial pH (see Figure 393 

3G and 3H). Immunoreactivity quantification revealed that the number of cFos-positive cells within 394 

the intralaminar thalamic nuclei was highest following hypoxia [ANOVA: F (2, 6) = 31.59, p = 395 

0.00019, Figure 6C].  396 

 As heightened cFos immunoreactivity was observed primarily following hypoxia that 397 

results in pronounced respiratory alkalosis, we next tested the hypothesis that neurons of the 398 

intralaminar nuclei are pH-sensitive. We stereotaxically delivered the pan-neuronal expressing 399 

GCaMP7s (pGP-AAV-syn-jGCaMP7s-WPRE) to the intralaminar nuclei and harvested acute 400 

brain sections three weeks later (Figure 6D). Recording fluorescence changes in brain sections 401 

revealed that extracellular alkalosis quickly and reversibly activated neurons of the intralaminar 402 
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nuclei (Figure 6D). Collectively, these results support the hypothesis that respiratory alkalosis 403 

activates pH-sensitive neurons of the intralaminar thalamic nuclei in the WAG/Rij rat.  404 

 405 

Discussion 406 

 Hyperventilation-provoked seizures associated with absence epilepsy were first formally 407 

described in 1928 by William Lennox (Lennox, 1928) and despite the clinical ubiquity of utilizing 408 

hyperventilation to diagnose the common form of childhood epilepsy, no animal studies have 409 

attempted to resolve the physiological events that enable hyperventilation to reliably provoke 410 

spike-wave seizures. To resolve events and relevant brain structures recruited during this 411 

phenomenon, we first utilized the WAG/Rij rat to establish a rodent model that mimics 412 

hyperventilation-provoked spike-wave seizures in humans. With this model, we show that 413 

hyperventilation only provokes spike-wave seizures in seizure-prone, not generally seizure-free, 414 

rats.  We then show that supplemental CO2, by mitigating respiratory alkalosis, suppresses spike-415 

wave seizures triggered by hyperventilation during either hypoxia or direct activation of brainstem 416 

respiratory centers. Moreover, supplemental CO2, by producing respiratory acidosis, suppresses 417 

spontaneous spike-wave seizures (i.e., those occurring during normoxia) despite a compensatory  418 

increase in respiratory rate. These data demonstrate that spike-wave seizures are yoked to 419 

arterial CO2/pH. Finally, we demonstrate that respiratory alkalosis activates neurons of the 420 

intralaminar thalamic nuclei, also in a CO2-dependent manner; activation of these neurons is also 421 

pH-sensitive. With these observations, we propose a working model wherein respiratory alkalosis 422 

activates pH-sensitive neurons of the intralaminar nuclei that in turn engage seizure-generating 423 

neural circuits to produce spike-wave seizures (Figure 7).  424 

 425 

Cortical EEG Patterns Evoked by Hyperventilation 426 

 Hyperventilation produces stereotypical EEG patterns in both healthy children and 427 

children with absence epilepsy (Barker et al., 2012). In healthy children, hyperventilation can 428 
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 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 
 445 
Figure 6. Hypoxia-induced hyperventilation activates intralaminar thalamic neurons. 446 
(A) cFos immunohistochemistry in horizontal sections of the WAG/Rij rat. Dashed lines highlight 447 
the medial region of the thalamus containing the intralaminar nuclei. Solid lines demarcate regions 448 
containing elevated cFos expression and are expanded on right. Top images are collected from 449 
a rat exposed to 30 minutes of normoxia. Middle images are collected from a rat exposed to 30 450 
minutes of hypoxia. Bottom images are taken from Paxinos and Watson (Paxinos & Watson, 451 
2007) and show the structural landmarks in the top and middle images. The central median 452 
nucleus (CM, intralaminar thalamus) and ventrobasal complex (VB, first-order thalamus) are 453 
labeled. (B) cFos density plots show immunoreactivity in each of four rats exposed to either 454 
normoxia, hypoxia or hypoxia + CO2. Each black dot represents a cFos-positive cell, as identified 455 
with ImageJ (see Methods). Plots are aligned to expanded views in panel A. (C) Quantification of 456 
cFos labeled cells at different ImageJ thresholding values. (D) GCaMP7 was stereotaxically 457 
delivered to the intralaminar nuclei. Later, fluorescence changes were measured during 458 
extracellular alkaline challenges in acute slices containing the intralaminar nuclei. Individual ROIs 459 
show fluorescence changes during alkalosis (black traces). Mean responses from two animals 460 
are shown in green.  **p < 0.01, ***p < 0.001. See Table 5 for detailed statistics. Scale bars are 461 
500 µm (left) and 100 µm (right).   462 
 463 
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evoke an EEG pattern known as Hyperventilation-Induced, High-Amplitude Rhythmic Slowing 464 

(HIHARS) that is often associated with altered awareness (Barker et al., 2012; Lum et al., 2002). 465 

Electrographically, HIHARS is distinct from spike-wave seizures insofar the EEG lacks epilepsy-466 

associated spikes and resembles slow-wave sleep. Nonetheless, similarities between HIHARS 467 

and absence seizures exist. Both events are associated with children of the same age (Mattozzi 468 

et al., 2021). Behaviorally, eye opening/staring and fluttering, as well as oral automatisms, are 469 

observed during both events, albeit with different frequencies (Lum et al., 2002). Finally, the mean 470 

latencies from the onset of hyperventilation to the onset of electrographic HIHARS in healthy 471 

children, or spike-wave seizures in absence patients, are also similar (Lum et al., 2002; Mattozzi 472 

et al., 2021).  473 

Recent work suggests that spike-wave seizures may limit or preclude the generation of 474 

HIHARs in children with absence epilepsy, thereby supporting the hypothesis that HIHARS and 475 

spike-wave seizures borrow from similar neural circuit mechanisms (Mattozzi et al., 2021). In this 476 

model, hyperventilation engages brain structures that initiate and/or support widespread, 477 

synchronous cortical activity. However, the trajectory of this engagement ultimately bifurcates 478 

such that either HIHARS or a spike-wave seizure is produced, but not both. When viewed  479 

alongside work performed in the 1960s by Ira Sherwin (Sherwin, 1965, 1967), our results support 480 

this model. Sherwin demonstrated that hyperventilation evokes HIHARS in cats (Sherwin, 1965), 481 

and that the stereotyped EEG pattern requires an intact central lateral nucleus of the thalamus 482 

(Sherwin, 1967). Together with the central medial (CM) and paracentral thalamic nuclei, the 483 

central lateral nucleus belongs to the anterior group of the intralaminar nuclei (Saalmann, 2014), 484 

the location of cFos immunoreactivity associated with respiratory alkalosis and pH-sensitivity 485 

(Figure 6). Indeed, at the time Sherwin postulated that the intralaminar nuclei of the thalamus are 486 

both chemoreceptive and capable of engaging widespread cortical activity (Sherwin, 1967). We 487 

now postulate that these nuclei are also instrumental for provoking spike-wave seizures during 488 

 489 
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 490 

 491 

 492 

 493 

 494 

 495 

 496 
 497 
 498 
 499 
Figure 7. Working model. A. Spike-wave seizures only occur if initiating activity from S1 500 
somatosensory cortex successfully overcomes a threshold, consistent with the cortical focus 501 
theory (H. K. M. Meeren et al., 2002). Hyperventilation-associated alkalosis reduces spike-wave 502 
seizure (SWS) threshold. B. S1 initiating activity is proposed to overcome a seizure node formed 503 
by circuits in reticular thalamus to generate an spike-wave seizure (Paz & Huguenard, 2015). We 504 
propose that hyperventilation-evoked respiratory alkalosis activates the intralaminar nuclei (ILM) 505 
to reduce the threshold for S1 activity required to evoke a spike-wave seizure. 506 
 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 
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hyperventilation. If true, then resolving how and where the mechanisms that produce HIHARS 520 

diverge from those that produce spike-wave seizures becomes a central goal. 521 

 522 

Thalamocortical circuit involvement in spike-wave seizures 523 

 Decades of work have culminated in a canonical model wherein interconnected circuits 524 

between the cortex and thalamus support the initiation and maintenance of generalized spike-525 

wave seizures (Avoli, 2012; Beenhakker & Huguenard, 2009; Huguenard & McCormick, 2007; 526 

McCafferty et al., 2018; McCormick & Contreras, 2001; Meeren et al., 2002). By recording from 527 

multiple sites in the WAG/Rij rat, Meeren et al. (Meeren et al., 2002) concluded that the peri-oral 528 

region of somatosensory cortex provides the bout of hypersynchronous activity that initiates a 529 

spike-wave seizure. This activity then rapidly recruits additional somatosensory cortices and the 530 

lateral dorsal thalamus, a higher-order thalamic nucleus involved in spatial learning and memory 531 

(Bezdudnaya & Keller, 2008). Finally, first-order thalamic nuclei that encode somatosensory 532 

information (i.e., the ventrobasal complex) are recruited. This stereotyped succession of events 533 

occurs within the first 500 milliseconds of the spike-wave seizure, after which the temporal 534 

relationships among cortical and thalamic structures are more unpredictable (Meeren et al., 535 

2002). Additional studies support the hypothesis that cortical hyperactivity initiates spike-wave 536 

seizures (Pinault, 2003; Pinault et al., 1998) and have motivated what is generally referred to as 537 

the cortical focus theory for spike-wave seizure initiation (Meeren et al., 2005).  538 

While resolving how seizures initiate and propagate through brain structures is of critical 539 

importance, this understanding does not necessarily address the mechanisms that drive the 540 

highly rhythmic and hypersynchronous activity associated with ongoing spike-wave seizures.  541 

Extensive work on acute brain slice preparations clearly demonstrates that circuits between first-542 

order thalamic nuclei and the reticular thalamic nucleus are sufficient to sustain rhythmic network 543 

activities, including those comparable to absence seizures (Bal et al., 1995; Bal & McCormick, 544 

1993; McCormick & Contreras, 2001; von Krosigk et al., 1993). In this model, feedforward 545 
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inhibition provided by reticular neurons evokes robust, hypersynchronous post-inhibitory rebound 546 

bursts among thalamocortical neurons that then relay activity back to reticular thalamus and to 547 

cortex. Reticular neuron-mediated feedforward inhibition of thalamocortical neurons, coupled with 548 

reciprocal excitation from thalamocortical neurons to reticular neurons, forms the basis of a 549 

rhythmogenic circuit that is proposed to maintain spike-wave seizures.  While this model very 550 

likely accounts for rhythmicity in the acute brain slice preparation, it is becoming less clear how 551 

first-order thalamocortical neurons actively contribute to the maintenance of spike-wave seizures 552 

recorded in vivo (Huguenard, 2019; McCafferty et al., 2018). Moreover, most current models of 553 

spike-wave initiation and maintenance neglect the potential contribution of the intralaminar nuclei 554 

to seizure initiation and maintenance despite several observations to the contrary. 555 

 In an effort to resolve structures capable of evoking spike-wave seizures, Jasper and 556 

colleagues electrically stimulated several thalamic nuclei in cats while recording EEG. By doing 557 

so in both lightly anesthetized (Jasper & Droogleever-Fortuyn, 1947) and unanesthetized (Hunter 558 

& Jasper, 1949) animals, the authors concluded that stimulation of the anterior intralaminar nuclei 559 

(i.e., central lateral, central medial and paracentral nuclei) was sufficient to evoke spike-wave 560 

seizures that outlasted the stimulus; stimulation also produced behavioral repertoires associated 561 

with absence seizures. However, stimulation of first-order thalamic nuclei did not evoke spike-562 

wave seizures, nor did it evoke seizure-like behaviors. Consistent with these observations, lesions 563 

to the intralaminar nuclei abolish pharmacologically-induced spike-wave seizures in Sprague-564 

Dawley rats (Banerjee & Snead, 1994); seizures persist following lesions to first-order nuclei. 565 

More recently, an EEG-fMRI study in human patients also implicates the intralaminar nuclei in the 566 

initiation of spontaneous spike-wave seizures (Tyvaert et al., 2009). Regrettably, Meeren et al. 567 

(Meeren et al., 2002) did not include intralaminar thalamic recordings during their study of spike-568 

wave seizure propagation in the WAG/Rij rat. Nonetheless, proposing the hypothesis that the 569 

intralaminar nuclei, not cortical structures, initiate spike-wave seizures, including those occurring 570 

spontaneously (i.e., not during hyperventilation), seems premature. Indeed, the possibility that 571 
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activation of cortically projecting intralaminar neurons during hyperventilation recruits cortical 572 

structures to, in turn, initiate spike-wave seizures is equally plausible (see Figure 7).  573 

  574 

Thalamic pH sensitivity  575 

 First-order thalamic neurons express several pH-sensitive ion channels and receptors.  576 

TASK-1 and TASK-3, two TWIK-related acid-sensitive potassium channels, with the 577 

hyperpolarization-activated cyclic nucleotide–gated (HCN) ion channel, collectively play a critical 578 

role in stabilizing the resting membrane potential of first-order thalamic neurons (Meuth et al., 579 

2003, 2006). When activated, TASK channels hyperpolarize the membrane potential of 580 

thalamocortical neurons. In contrast, HCN channels depolarize thalamocortical neuron 581 

membrane potential. As extracellular acidification inhibits the activity of both channels, the 582 

opposing actions of TASK and HCN channels are simultaneously downregulated to yield no net 583 

effect on thalamocortical neuron membrane potential (Meuth et al., 2006), thereby stabilizing the 584 

membrane potential during acidic conditions. While not yet directly tested, the opposing actions 585 

of TASK and HCN channels also presumably stabilize thalamocortical membrane potential during 586 

alkaline conditions. Thus, while first-order thalamocortical neurons express pH-sensitive ion 587 

channels, these neurons are presumed to maintain stable membrane potentials during 588 

extracellular pH fluctuations. If true, then first-order thalamic nuclei are unlikely to support an 589 

active role in initiating hyperventilation-provoked spike-wave seizures. The extent to which higher-590 

order thalamic nuclei express TASK and HCH channels remains unknown.  591 

 Importantly, intralaminar neurons recruited during hyperventilation-mediated alkalosis 592 

may not reflect intrinsic pH sensitivity. Instead, activation of intralaminar neurons during alkalosis 593 

may result from increased excitatory synaptic input. Intralaminar neurons receive significant, 594 

monosynaptic excitation from the midbrain reticular formation (Ropert & Steriade, 1981; Steriade 595 

& Glenn, 1982); first-order thalamic nuclei only do so negligibly (Edwards & de Olmos, 1976).   596 

Several reticular nuclei are critically important for respiration (Guyenet & Bayliss, 2015; Smith et 597 
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al., 2013) and therefore provide clear rationale for testing the hypothesis that reticular-mediated 598 

excitation of the intralaminar nuclei drive hyperventilation-associated cFos expression (i.e., Figure 599 

6). Notably, cFos expression was only observed during respiratory alkalosis (i.e., hypoxia) and 600 

not during hyperventilation associated with a normalized arterial pH (i.e., hypoxia-hypercapnia; 601 

c.f. Figures 3H and 6B). Thus, if reticular-mediated excitation of intralaminar neurons plays a role 602 

in hyperventilation-provoked spike-wave seizures, then it does so only during conditions of 603 

respiratory alkalosis. Finally, the possibility that the synaptic terminals of intralaminar-projecting 604 

afferents are pH-sensitive also warrants examination. Notably, solute carrier family transporters 605 

(SLC) shuttle H+
 and HCO3

+ across neuronal membranes and are proposed to regulate seizures, 606 

including spike-wave seizures (Cox et al., 1997; Sander et al., 2002; Sinning & Hübner, 2013). 607 

Alkaline conditions enhance excitatory synaptic transmission, an effect attributed to Slc4a8, a 608 

Na+-Driven Cl-/Bicarbonate Exchanger (Sinning et al., 2011; Sinning & Hübner, 2013), that is 609 

expressed in the presynaptic terminals of excitatory neurons, including those in the thalamus (Lein 610 

et al., 2007). Thus, the potentiation of intralaminar neuron excitation remains a plausible 611 

candidate mechanism to explain the observed cFos expression during respiratory alkalosis.  612 

 613 

Conclusion 614 

 In aggregate, our data support the hypothesis that spike-wave seizures are yoked to 615 

arterial pH. The observation that respiratory alkalosis activates intralaminar thalamic neurons, 616 

and that such neurons are activated by alkaline conditions, reignites a 70-year-old hypothesis 617 

wherein intralaminar neurons actively participate in the initiation and maintenance of spike-wave 618 

seizures.  619 

 620 

Material and Methods 621 

Study Design 622 
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 The goal of this study was to parameterize the effect of blood gases on spike-wave 623 

seizures. To do so, we adapted a clinically observed human phenomenon in absence epilepsy 624 

patients to a rodent model of spike-wave seizures. We demonstrate that spike-wave seizure 625 

occurrence correlates with rising or falling values of PaCO2 and pH. Significantly, we show that 626 

neurons of the midline thalamus become activated after brief exposure to low PaCO2 conditions. 627 

We propose that activity among pH-sensitive neurons in the thalamus, responsive to 628 

hyperventilation-induced hypocapnia, trigger spike-wave seizures. All physiology and ECoG/EMG 629 

recordings were performed in freely behaving WAG/Rij or Wistar rats. To reduce the number of 630 

animals, rats were exposed to multiple conditions. Experimenters were blinded to the condition 631 

for all respiration and ECoG/EMG data analysis. Group and sample size were indicated in the 632 

results section.  633 

 634 

Animals 635 

 All procedures conformed to the National Institutes of Health Guide for Care and Use of 636 

Laboratory Animals and were approved by the University of Virginia Animal Care and Use 637 

Committee (Charlottesville, VA, USA). Unless otherwise stated, animals were housed at 23-25°C 638 

under an artificial 12 h light-dark cycle with food and water ad libitum. A colony of Wistar Albino 639 

Glaxo/from Rijswik (WAG/Rij rats) were kindly provided by Dr. Edward Bertram, University of 640 

Virginia) and maintained in the animal facilities at The University of Virginia Medical Center. Male 641 

Wistar IGS Rats were purchased from Charles River (Strain Code: #003). Plethysmography, 642 

EEG, blood gas measurements and c-Fos immunohistochemistry experiments were performed in 643 

100+-day old WAG/Rij and Wistar rats as these ages correspond to when spike-wave seizures 644 

become robust in the WAG/Rij rat.  Male and female rats were used in all experiments – no 645 

noticeable differences were observed. Of note, only male rats were used in optogenetic 646 

manipulations, as female rats were less likely to recover from surgery. 647 

 648 
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Animal Preparation 649 

 All surgical procedures were conducted under aseptic conditions. Body temperature was 650 

maintained at 37°C. Animals were anesthetized with 1-3% isoflurane or a mixture of ketamine (75 651 

mg/kg), xylazine (5 mg/kg) and acepromazine (1 mg/kg) administered intra-muscularly. Depth of 652 

anesthesia was monitored by lack of reflex response to a firm toe and tail pinch. Additional 653 

anesthetic was administered during surgery (25% of original dose) if warranted. All surgeries, 654 

except the arterial catheter implantation, were performed on a stereotaxic frame (David Kopf 655 

Instruments, Tujunga, CA, USA). Post-operative antibiotic (ampicillin, 125 mg/kg) and analgesia 656 

(ketoprofen, 3-5 mg/kg, subcutaneously) were administered and as needed for 3 days. Animals 657 

recovered for 1-4 weeks before experimentation. 658 

 659 

Electrocorticogram (ECoG) and electromyography (EMG) electrode implantation 660 

 Commercially available rat recording devices were purchased from Plastics One 661 

(Roanoke, VA, USA). Recording electrodes were fabricated by soldering insulated stainless-steel 662 

wire (A-M system, Sequim, WA, USA) to stainless-steel screws (Plastics One) and gold pins 663 

(Plastics One). On the day of surgery, a small longitudinal incision was made along the scalp. 664 

Small burr holes were drilled in the skill and ECoG recording electrodes were implanted bilaterally 665 

in the cortex. Reference electrodes were placed in the cerebellum. A twisted-looped stainless-666 

steel wire was sutured to the superficial neck muscles for EMG recordings. The recording device 667 

was secured to the skull with dental cement and incisions were closed with absorbable sutures 668 

and/or steel clips.  669 

 670 

PRSX-8 lentivirus preparation 671 

 The lentivirus, PRSX8-hCHR2(H134R)-mCherry, was designed and prepared as 672 

described previously (Abbott et al., 2009). Lentivirus vectors were produced by the Salk Institute 673 

Viral Vector Core. The titer for the PRSX8-hCHR2(H134R)-mCherry lentivirus was diluted to a 674 
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working concentration of 1.5 x 1010
 TU/mL. The same batch of virus was used for all experiments 675 

included in this study. 676 

 677 

Virus injection and fiber optic ferrule implantation 678 

 Borosilicate glass pipettes were pulled to an external tip diameter of 25 m and backfilled 679 

with the lentivirus, PRSX8-hCHR2(H134R)-mCherry. Unilateral virus injections in the RTN were 680 

made under electrophysiological guidance of the antidromic potential of the facial nucleus (see 681 

Abbott et al., 2009; Souza et al., 2018). A total of 400 nL was delivered at three rostro caudal 682 

sites separated by 200 or 300 m in the RTN. Illumination of the RTN was performed by placing 683 

a 200-m-diameter fiber optic (Thor Labs, #BFL37-200; Newton, NJ, USA) and ferrule (Thor Labs, 684 

#CFX128-10) vertically through the cerebellum between 300-1000 m dorsal to RTN ChR2-685 

expressing neurons. These animals were also implanted with ECoG/EMG recording electrodes, 686 

as detailed above. All hardware was secured to the skill with dental cement. Animals recovered 687 

for 4 weeks, as this provided sufficient time for lentivirus expression in the RTN. Virus injection 688 

location was verified post-hoc. Only animals that responded to optical stimulation, demonstrated 689 

by an increase in respiratory frequency, were included in the results. 690 

 691 

Physiology experiments in freely behaving rats 692 

 All experiments were performed during the dark cycle (hours 0-4) at ambient room 693 

temperature of 27°C-28°C. Rats were habituated to experimental conditions for a minimum of 4 694 

hours, 1-2 d before experiment start. On the day of recordings, rats were briefly anesthetized with 695 

3% isoflurane for < 5min to connect the ECoG/EMG recording head stage to a recording cable 696 

and, when necessary, to connect the fiber optic ferrule to a fiber optic cord (multimode 200m 697 

core, 0.39 nA) attached to a 473 nm blue laser (CrystaLaser model BC-273-060-M, Reno, NV, 698 

USA). Laser power was set to 14mW measured at the junction between the connecting fiber and 699 
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the rat. Rats were then placed immediately into a whole-body plethysmography chamber (5L, 700 

EMKA Technologies, Falls Church, VA, USA). Recordings began after 1 h of habituation. The 701 

plethysmography chamber was continuously perfused with room air or protocols cycling through 702 

specific gas mixtures of O2, N2 and CO2 (total flow: 1.5 L/min). Mass flow controllers, operated by 703 

a custom-written Python script, regulated gas exchange. Respiratory flow was recorded with a 704 

differential pressure transducer. The respiratory signal was filtered and amplified at 0.1-100 Hz, 705 

X 500 (EMKA Technologies). Respiratory signals were digitized at 200 Hz (CED Instruments, 706 

Power1401, Cambridge, England). ECoG and EMG signals were amplified (X1000, Harvard 707 

Apparatus, Holliston, MA, USA; Model 1700 Differential Amplifier, A-M Systems), bandpass 708 

filtered (ECoG: 0.1-100 Hz; EMG: 100-300 Hz) and digitized at 200 Hz. Respiratory flow, 709 

ECoG/EMG recordings, O2 flow and the laser pulse protocol were captured using Spike2, 7.03 710 

software (CED Instruments). Spike-wave seizure occurrence before and during specific 711 

conditions is shown as a peri-stimulus time histogram aligned at time = 0 at gas exchange onset 712 

or laser-on for optogenetic stimulations. Spike-wave seizure counts were quantified in 3 bins 713 

beginning +/- 15 minutes of gas exchange or laser onset. Total spike-wave seizure counts were 714 

obtained by summing the number of spike-wave seizures between -15 and 0 minutes (control) 715 

and 0 and +15 minutes (manipulation). Respiratory frequency (fR, in breaths/minute) was derived 716 

from the respiration trace. The respiration trace was divided into individual windows, each 10 717 

seconds in duration, and a fast Fourier transform (FFT) was computed on each discrete window. 718 

The respiratory rate for each window was defined by the FFT frequency with the maximal power 719 

density. Once derived for each window, we then applied a 30-second moving average to smooth 720 

the trace. RTN neurons were optically stimulated with 10 ms pulses delivered at 20 Hz for 2 721 

seconds, followed by 2 seconds rest. This stimulation protocol was repeated for 20 minutes. 722 

 723 

Femoral artery catheterization, blood gases and pH measurements. 724 
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 Arterial blood samples for blood gas measurements through an arterial catheter during 725 

physiological experiments. One day prior to the experiments, rats anesthetized with isoflurane 726 

(2% in pure O2) and a polyethylene catheter (P-10 to P-50, Clay Adams, Parsippany, NJ, USA) 727 

was introduced into the femoral artery by a small skin incision towards the abdominal aorta. The 728 

catheter was then tunneled under the skin and exteriorized between the scapulae with two inches 729 

of exposed tubing anchored with a suture. On the day of the experiment, animals were briefly 730 

anesthetized with 1-2% isoflurane to attach tubing for blood collection before placement into the 731 

plethysmography recording chamber. Arterial blood gases and pH were measured using a hand-732 

held iStat configured with CG8+ cartridges (Abbott Instruments, Lake Bluff, USA).   733 

 734 

cFos Histology 735 

 After exposing WAG/Rij rats to 30 minutes of hypoxia (10% O2; 90% N2) or 736 

hypoxia/hypercapnia (10% O2; 5% CO2; 75% N2) rats were deeply anesthetized and perfused 737 

transcardially with 4% paraformaldehyde (pH 7.4). Brains were removed and post-fixed for 12-16 738 

h at 4 °C. 40μm horizontal sections of the thalamus (D/V depth -5.3 mm to 6.0 mm) were obtained 739 

using a Leica VT 1000S microtome (Leica Biostystems, Buffalo Grove, IL, USA) and collected in 740 

0.1 M phosphate buffer (PB) with 0.1% sodium azide (Millipore-Sigma, St. Louis, MO, USA). 741 

Sections were then transferred to a 0.1M PB solution containing 20% sucrose for 1hr, snap-frozen 742 

and transferred to 0.1% sodium borohydride for 15 minutes. Slices were washed 2x in phosphate 743 

buffered saline (PBS). All blocking and antibody solutions were prepared in an incubation buffer 744 

of 0.1% sodium azide, 0.5% Triton X-100 and 2% normal goat serum. Sections were blocked for 745 

4hrs at room temperature or overnight at 4°C in incubation buffer. Sections were washed 3x with 746 

PBS between primary and secondary antibody solutions. Primary antibody solutions containing 747 

rabbit anti-cFos (1:2000; Cell Signaling Technology Cat# 2250, RRID: AB_2247211, Danvers, 748 

MA, USA) and biotin (1:200, Jackson ImmunoResearch, West Grove, PA; RRID: AB_2340595) 749 

were prepared in incubation buffer and incubated overnight at 4°C. Sections were then incubated 750 
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overnight in secondary antibody solutions containing donkey strepavidin-Cy3 (1:1000, Jackson 751 

ImmunoResearch; RRID: AB_2337244). Immunohistochemical controls were run in parallel on 752 

spare sections by omitting the primary antisera and/or the secondary antisera. Sections from each 753 

well were mounted and air-dried overnight. Slides were cover-slipped with VectaShield 754 

(VectorLabs, Burlingame, CA) with the addition of a DAPI counterstain. All images were captured 755 

with a Z1 Axioimager (Zeiss Microscopy, Thornwood, NY, USA) with computer-driven stage 756 

(Neurolucida, software version 10; MicroBrightfield, Inc., Colchester, VT, USA). Immunological 757 

sections were examined with a 10x objective under epifluorescence (Cy3).  All sections were 758 

captured with similar exposure settings. Images were stored in TIFF format and imported into 759 

ImageJ (NIH). Images were adjusted for brightness and contrast to reflect the true rendering as 760 

much as possible.  761 

 762 

Calcium Imaging 763 

pGP-AAV-syn-jGCaMP7s-WPRE (Addgene #104487-AAV9) was stereotaxically delivered to the 764 

central median thalamic nucleus in P20-30 rats with sterile microliter calibrated glass pipettes. A 765 

picospritzer (Picospritzer III, Parker Hannifin) was used to deliver 100-200 nl of virus. Three weeks 766 

later, animals were sacrificed and their brains harvested for acute brain slice preparation. Animals 767 

were deeply anesthetized with pentobarbital and then transcardially perfused with an ice-cold 768 

protective recovery solution containing the following (in mm): 92 NMDG, 26 NaHCO3, 25 glucose, 769 

20 HEPES, 10 MgSO4, 5 Na-ascorbate, 3 Na-pyruvate, 2.5 KCl, 2 thiourea, 1.25 NaH2PO4, 0.5 770 

CaCl2, titrated to a pH of 7.3–7.4 with HCl (Ting et al., 2014). Horizontal slices (250 μm) containing 771 

the intralaminar thalamic nuclei were cut in ice-cold protective recovery solution using a vibratome 772 

(VT1200, Leica Biosystems) and then transferred to protective recovery solution maintained at 773 

32–34°C for 12 min. Brain slices were kept in room temperature artificial cerebrospinal fluid 774 

(ACSF) containing (in mm): 3 KCl, 140 NaCl, 10 HEPES, 10 Glucose, 2 MgCl2, 2 CaCl2. The 775 

solution was bubbled with 100% O2 and the pH was set by adding varied amounts KOH. 776 
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Fluorescence signals were measured with a spinning disk confocal microscope outfitted with an 777 

sCMOS camera (ORCA-Flash4.0, Hamamatsu).  778 

 779 

Data analysis and statistics 780 

 Statistical analyses were performed in GraphPad Prism v7 (San Diego, CA, USA). All data 781 

were tested for normality before additional statistical testing. Statistical details, including sample 782 

size, are found in the results section and corresponding supplemental tables. Either parametric 783 

or non-parametric statistical analyses were performed. A significance level was set at 0.05. Data 784 

are expressed as mean  SEM.  785 
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Table 1. Spike-wave seizure count. 1130 
 1131 
 1132 
 1133 
 1134 
 1135 
 1136 
 1137 
 1138 
 1139 
 1140 
 1141 
 1142 
 1143 
 1144 
 1145 
 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

Table 2. Respiratory Rate. 1152 
 1153 

 1154 

 1155 

 1156 

 1157 

 1158 
 1159 
 1160 
 1161 
 1162 
 1163 
 1164 
 1165 

 1166 
 1167 
 1168 
 1169 
 1170 
 1171 
 1172 

Figure Comparison 
Bin Count 

(Mean ± S.E.) 
n 

p value 
 

1D 
Normoxia  0.89 ± 0.12 

15 4.5 x 10‐7 
Hypoxia  1.73 ± 0.13 

3C 
Normoxia 0.99 ± 0.18 

9 1.76 x 10‐6 
Hypoxia 1.82 ± 0.14 

3F 
Normoxia 1.09 ± 0.22 

9 0.18 
Hypoxia + CO2 0.84 ± 0.13 

4C 
Normoxia 1.36 ± 0.17 

8 0.0028 
Normoxia + CO2 0.95 ± 0.10 

5D 
Normoxia 1.17 ± 0.38 

10 0.002 
Normoxia + Photostim. 2.27 ± 0.63 

5G 
Normoxia 1.04 ± 0.32 

6 0.86 
Normoxia + Photostim.+ CO2 1.01 ± 0.30 

Figure Comparison 
Resp. Rate (Hz) 
(Mean ± S.E.) 

n 
p value 

 

1E 
Normoxia  1.03 ± 0.02 

15 1.67 x 10‐5 
Hypoxia  1.33 ± 0.05 

3D 
Normoxia 1.00 ± 0.02 

9 6.59 x 10‐4 
Hypoxia 1.28 ± 0.05 

3G 
Normoxia 1.06 ± 0.03 

9 2.71 x 10‐4 
Hypoxia + CO2 1.88 ± 0.15 

4D 
Normoxia 0.99 ± 0.03 

9 3.78 x 10‐5 
Normoxia + CO2 1.78 ± 0.10 

5E 
Normoxia 1.02 ± 0.03 

10 0.019 
Normoxia + Photostim. 1.24 ± 0.08 

5H 
Normoxia 1.01 ± 0.03 

6 0.031 
Normoxia + Photostim.+ CO2 1.84 ± 0.08 
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Table 3. Arterial measurements in Wistar rats. 1173 

 1174 
 1175 
 1176 
 1177 
 1178 
 1179 
 1180 
 1181 
Table 4. Arterial measurements in WAG/Rij rats. 1182 
 1183 

 1184 
 1185 
 1186 
 1187 
 1188 
 1189 
 1190 
 1191 

Figure Parameter Comparison Value n 
p value 

 

3H1 PaO2 

Normoxia 84.93 ± 1.82 
6 6.0 x 10‐6 

Hypoxia 34.50 ± 0.56 

Normoxia 84.93 ± 0.02 
6 0.000134 

Hypoxia +CO2 55.83 ± 0.87 

3H2 PaCO2 

Normoxia 43.48 ± 0.47 
6 2.1 x 10‐6 

Hypoxia 25.83 ± 0.65 

Normoxia 
Hypoxia +CO2 

43.48 ± 0.47 
6 0.42 

44.60 ± 0.55 

3H3 pH 

Normoxia 7.45 ± 0.01 
6 7.0 x 10‐6 

Hypoxia  7.61 ± 0.01 

Normoxia 7.45 ± 0.01 
6 0.008 

Hypoxia +CO2 7.43 ± 0.01 

4E1 PaO2 
Normoxia 84.93 ± 1.82 

6 0.00019 
5% CO2 34.50 ± 0.56 

4E2 PaCO2 
Normoxia 43.48 ± 0.47 

6 0.022 
5% CO2 25.83 ± 0.65 

4E3 pH 
Normoxia 7.45 ± 0.01 

6 0.00063 
5% CO2 7.42 ± 0.01 

Figure Parameter Comparison Value n 
p value 

 

2C1 PaO2 
Normoxia  83.25 ± 2.32 

4 0.0002 
Hypoxia  32.25 ± 1.25 

2C2 PaCO2 
Normoxia 37.0 ± 0.59 

4 6.6 x 10‐5 
Hypoxia 22.33 ± 0.16 

2C3 pH 
Normoxia 7.47 ± 0.01 

4 4.5 x 10‐5 
Hypoxia 7.63 ± 0.01 
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Table 5. cFos-positive cells in WAG/Rij rats. 1192 
 1193 

 1194 

 1195 
Figure  

Threshold 
Comparison Counts  

(Mean ± S.E.) 
n 

p value 

6C 

3 

Normoxia  282 ± 148.2 
4 1.5 x 10‐7 

Hypoxia 1370 ± 137 

Normoxia 282 ± 148.2 
4 0.55 

Hypoxia + CO2 385.5 ± 78.7 

Hypoxia 
Hypoxia + CO2 

1370 ± 137 
385.5 ± 78.7 

4 4.3 x 10‐7 

5 

Normoxia  112.3 ± 57.1 
4 0.0005 

Hypoxia 595.3 ± 85.0 

Normoxia 112.3 ± 57.1 
4 0.045 

Hypoxia + CO2 348 ± 68.9 

Hypoxia 
Hypoxia + CO2 

595.3 ± 85.0 
348 ± 68.9 

4 0.061 

7 

Normoxia  57.3 ± 29.2 
4 0.021 

Hypoxia 349 ± 75.0 

Normoxia 57.3 ± 29.2 
4 0.036 

Hypoxia + CO2 319.5 ± 63.1 

Hypoxia 
Hypoxia + CO2 

349 ± 75.0 
319.5 ± 63.1 

4 0.95 
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