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ABSTRACT

Background

Schistosoma mansoni is a flatworm that causes a neglected tropical disease affecting millions
worldwide. Most flatworms are hermaphrodites but schistosomes have genotypically
determined male (ZZ) and female (ZW) sexes. Sex is essential for pathology and transmission,
however, the molecular determinants of sex remain unknown and is limited by poorly resolved

sex chromosomes in previous genome assemblies.

Results

We assembled the 391.4 Mb S. mansoni genome into individual, single-scaffold chromosomes,
including Z and W. Manual curation resulted in a vastly improved gene annotation, resolved
gene and repeat arrays, trans-splicing, and almost all UTRs. The sex chromosomes each
comprise pseudoautosomal regions and single sex-specific regions. The Z-specific region
contains 932 genes, but on W all but 29 of these genes have been lost and the presence of five
pseudogenes indicates that degeneration of W is ongoing. Synteny analysis reveals an ancient
chromosomal fusion corresponding to the oldest part of Z, where only a single gene—encoding
the large subunit of pre-mRNA splicing factor U2AF—has retained an intact copy on W. The

sex-specific copies of U2AF have divergent N-termini and show sex-biased gene expression.

Conclusion

Our assembly with fully resolved chromosomes provides evidence of an evolutionary path taken
to create the Z and W sex chromosomes of schistosomes. Sex-linked divergence of the single
U2AF gene, which has been present in the sex-specific regions longer than any other extant
gene with distinct male and female specific copies and expression, may have been a pivotal

step in the evolution of gonorchorism and genotypic sex determination of schistosomes.
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BACKGROUND

Schistosoma mansoni is one of three main schistosome species that causes schistosomiasis, a
neglected tropical disease that affects ~240 million people worldwide [1]. Within the Phylum
Platyhelminthes (flatworms), schistosomes are remarkable; while virtually all other flatworm
families are hermaphrodites, family schistosomatidae are gonochoristic (separate sexes) and
sexually dimorphic as adults. Sex is genetically determined with heterogametic females (2n=16,

ZW) and homogametic males (2n=16, ZZ).

Adult female worms reside within the gynecophoric canal of adult males and the paired worms
produce several hundred eggs a day. The eggs either traverse the intestinal wall to reach the
lumen and be excreted in faeces or become trapped in host tissues, mainly liver and intestine,
driving the pathology associated with schistosomiasis [2]. It has been postulated [3,4] that
dimorphism and gonochorism in schistosomes is an evolutionary adaptation to their residence
in the venous system, close to capillary beds of warm-blooded host species; a division of labor
between the sexes enables both a muscular male body to move against the blood flow of large
veins and a thin slender female body shape to deposit eggs in small venules, allowing their
efficient exit. However, the adaptions required to develop this dimorphism are unclear, limited
by a lack of understanding of sex-linked molecular mechanisms, including unresolved sex

chromosomes.

Despite major advances in the quality and quantity of published genome assemblies, sex
chromosomes that are limited to the heterogametic sex (W and Y) are underrepresented in the

growing list of whole genome assemblies. These sex-specific chromosomes are usually present
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at a lower copy number than autosomes, and the problem of assembling them is compounded
by difficult to resolve highly repetitive sequences and by genetic divergence between the sex
chromosomes, such that they can vary along their lengths [5]. There are exceptions—notably
the recent publication of the eel genome [6] included resolved centromeres, subtelomeric
sequences and the highly repetitiive Y chromosome short arm containing no gaps—but other
sex chromosome assemblies, such as the Drosophila Y chromosome [7] and Gallus gallus W
chromosome [8], are in fragmented states and even the reference human Y chromosome

assembly [9] lacks continuity between the heterochromatic and euchromatic regions.

Degeneration of sex-limited chromosomes (W or Y) often distinguishes them from the shared (Z
or X) chromosomes. Along the W chromosome of schistosomes, extensive
heterochromatinization and the accumulation of satellite repeats, has been described, including
a large satellite repeat SM-alpha [10]. Extensive gene loss, or pseudogene-formation is also
expected but without an adequate W assembly, it has not previously been possible to
comprehensively describe the W-specific gene and repeat content that may play an important

role in sex determination.

The S. mansoni genome was first published as a draft assembly [11], followed by a more
contiguous version (v5) three years later [12] that took advantage of high throughput short-read
sequencing technology. At that stage, as much as 80% of the genome had been assigned to
chromosomes but gaps were prolific and large regions remained unresolved. The Z and W
sequences were assembled together into merged scaffolds, with multiple Z-specific sequences
and almost no resolution of W-specific sequences. As part of a sustained commitment to
produce a complete genome sequence, in the present study, we have significantly improved
upon previous efforts using a combination of long-read sequencing technology, optical mapping
and manual curation to generate a highly contiguous chromosome-scale assembly that includes
a fully assembled Z chromosome and a contiguous representation of the highly repetitive W

chromosome. Our fully resolved reference genome is a key pre-requisite for understanding the
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evolution of sexual dimorphism in schistosomes and exposes sex-linked protein-coding and

non-coding genes tentatively involved in sex determination.

RESULTS

The chromosome-level genome of Schistosoma mansoni

Using a combination of PacBio long-read and Illlumina short-read sequencing, optical mapping,
fluorescent in situ hybridization (FISH), Hi-C, and manual curation, we have assembled
complete chromosomes from the 391.4 Mb genome of S. mansoni, including resolution of its Z
and W sex chromosomes. The assemblies of chromosomes 2, 5, 6 and 7 comprise single
scaffolds with telomeric repeats at either end; the remaining 5 chromosomes are also single
scaffolds with a telomere at one end and sub-telomeric sequence at the other (Figure 1a,b).

The number of gaps has decreased by 96% from 8,640 in the previous assembly to just 356

(Table 1).
Table 1.
v5 v9
Assembly size (Mb) 364.5 391.4
Gaps 8,640 356
Repeat Content (Mb) 191.8 213.2
Scaffolds
Number 885 9
N50 (Mb) 321 52.8
N90 (Mb) 0.547 25
Largest (Mb) 65.5 89.1
Gene statistics
Protein-coding genes 10,116 9,794
Novel genes* - 810
Deleted genes - 867
Pfam annotated 66.9% 70.3%
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Transcript statistics

Transcripts 11,075 14,031
Alternative splicing 6.9% 27.9%
Average exons per transcript 5.9 7.9

The total repeat content of the assembly is 213.2 Mb (Table S1), a 21.4 Mb increase compared
with the previously published version [12], reflecting the ability of PacBio long-read sequencing
to account for repetitive regions that were previously difficult to assemble. For instance, an
array of rRNA genes known as the nucleolar organizer region (NOR) of chromosome 3 (Figure
1) was highly collapsed in the earlier assembly and is now fully resolved. Newly resolved
repetitive regions also include arrays of tandemly duplicated protein-coding genes enabling us
to obtain a more accurate count for genes previously thought to be present as single copies.
Two striking examples are the major egg antigens IPSE (IL-4-inducing principle of S. mansoni
egg) and omega-1. These genes, specifically expressed in the eggs, have been intensely
studied due to their roles in immune-modulation, pathogenesis and mechanisms of egg
translocation to the intestinal lumen [13-16]. IPSE and omega-1 transcripts are encoded by
paralogous gene arrays of at least 13 and 7 gene copies, respectively. In fact, based on the
depth of coverage of aligned sequencing reads, these numbers are likely to be even higher and

may contain as many as 20 and 14 copies of IPSE and omega-1, respectively (Figure S2).

We extended the analysis to identify other clusters of genes with conserved functions. Across
the genome, there are 44 clusters of genes sharing similar predicted functions based on their
protein (Pfam) domains, more than twice the number of clusters and domain types as seen in
the previous v5 published genome version (Table S2). Clusters of S. mansoni Kunitz protease
inhibitors and elastases are striking. Eleven Kunitz protease inhibitors (PF00014) exist in a
cluster and 25 copies of elastase (PF00089; trypsin) are found across two clusters. The well-
studied SmKI-1 (Smp_147730 in v5; Smp_311660, Smp_311670, and Smp_337730 in v9), is
known to be involved in defense mechanisms of S. mansoni within the mammalian host [17].

The elastases are an expanded group of serine proteases originally noted for their role in host
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skin penetration, but are also expressed in intra-molluscan stages, where they likely facilitate

movement of the parasite through snail tissue [18,19].

Annotation improvements through manual curation

We have significantly improved upon previous gene annotations of the S. mansoni genome.
Using Augustus [20] and extensive RNA-seq evidence (Table S3) for gene prediction, followed
by extensive manual curation, the total number of genes has decreased from 10,116 to 9,794
(excluding genes on scaffolds that correspond to alternative haplotypes; Table S4), compared
to the v5 genome. This is the lowest number of genes for any sequenced platyhelminth; for
instance, the cestodes Echinococcus multilocularis [21] and Hymenolepis microstoma [22] have
10,663 and 10,139 genes, respectively. In spite of the modest net reduction in genes, a total of
3,610 updates to gene models from v5 to v9 have been made, including 810 new, 867 deleted,
344 merged, 189 multiple copies, 190 split, and 1,210 with large structural changes (defined as
>20% of coding region affected; Figure S3; Tables S5-S6). Using BUSCO v3.0.2 [23], the S.
mansoni protein set was estimated to be 95.3% complete based on the representation of

eukaryota orthologs (full genome-level BUSCO results at Table S7).

Spliced leader (SL) trans-splicing is an mMRNA maturation process where an independently
transcribed SL exon is transferred to a pre-mRNA. SL sequences originate from SL genes 613
bp in length, consisting of a 36 bp exon sequence (position 144—-181 bp) flanked by an
upstream precursor sequence (1-143 bp) and a downstream intron (182-613 bp) (Figure S1).
A ~1 Mb tandem array containing 41 full-length spliced-leader (SL) RNA genes has been
resolved on chromosome 6 (Figure S1), together with an additional 109 partial gene sequences
that contain the exon sequence only in the same array. On most other chromosomes, 1-4 SL
gene fragments containing the exon sequence can also be found. Using RNA-seq data from all
life cycle stages with an improved gene set (Table S3), we located SL receptor sequences in
the transcripts of 6,641 genes in the primary assembly (i.e. no haplotypes), indicating that the

majority of genes (66.3%) encode at least one trans-spliced isoform compared to 6.9% reported


https://doi.org/10.1101/2021.08.13.456314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.13.456314; this version posted August 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

154  in the previous assembly (Table S8). This number is similar to the nematode Caenorhabditis

155  elegans where ~70% are identified as being trans-spliced [24].

156  The complexity of gene structures has increased substantially; the average number of exons
157  per gene has increased from 5.9 to 7.9 (Table 1) and 97.7% of transcripts have both 5’ and 3’
158 untranslated regions (UTRs) annotated (Table S9). Further, the proportion of genes with

159  alternative splicing to generate distinct transcribed isoforms has increased from 6.9% to 27.9%.
160  Systematic improvements to gene finding and gene structural changes have enabled a richer
161  set of putative functions to be ascribed to the S. mansoni proteome, reflected in the 47 new
162  protein (Pfam) domains to S. mansoni from new genes and 79 new Pfams domains annotated

163  in genes with improved gene structure (Table S10).

164 Centromere motif conservation and divergence

165 S. mansoni chromosomes are monocentric [25], each with a cytologically distinguishable

166  primary constriction (Figure 1a). The centromeric sequences are large repeat arrays that, on all
167  chromosomes except 4 and Z, are highly conserved within a centromeric array and are

168  between 93.1-98.5% similar to a 123 bp centromeric repeat proposed by Melters et al. [26]
169  (Figure S4; Table S11). Between the centromeres of different chromosomes, the sequence
170  conservation is more variable: 56% identity between the two most divergent centromere

171 monomers (chromosomes Z and 6) and 100% identity between the centromeres of

172  chromosomes 2 and 3 (Figure S4). The unit size is typical of the centromeric repeats of many
173  other species [26], including the platyhelminth Hymenolepis microstoma [22]. The centromeric
174  repeats for chromosomes 4 and Z have diverged from each other and from those of other

175 chromosomes (Figure S4); their respective repeat units are 107 and 175 bp, and they are only
176 82 and 59% identical to the consensus from Melters et al. Centromeric repeats were previously
177  estimated to comprise 0.48% of the genome (1.9 Mb) [26], but after including the divergent

178  centromeres and estimating the degree to which all centromeric repeats were under-

179  represented in the assembly based on mapped sequence coverage (from three PCR-free
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lllumina libraries), we estimate that centromeres make up at least 1.15% (4.5 Mb) of the

genome.

Architecture of the Z chromosome

Our new assembly includes a full-length 88 Mb Z chromosome that includes defined,
recombining pseudoautosomal regions 1 (10.7 Mb) and 2 (42.9 Mb) and a non-recombining
33.1 Mb Z-specific region. In contrast to the previously published v5 assembly [12], where the Z
chromosome was only partially resolved, the new sequence is 27.2 Mb larger with
misassemblies corrected along its length, aided by the new long-range information that has
been incorporated (Figure 2). In particular, the sequence that is unique to the Z chromosome
(i.e., the Z-specific region, or ZSR), is clearly visible based on the lower depth of coverage of
resequencing reads mapped from heterogametic females. The ZSR is flanked by two regions

that are common to both sex chromosomes, termed pseudoautosomal region (PAR) 1 and 2.

Based on the earlier assembly (v5), it was previously shown [27] that the Z chromosome
comprises different sub-regions or strata that have evolved differentially in the African and
Asian Schistosoma lineages from a common ‘Ancestral’ stratum that is common to both
lineages. Using the v9 assembly as a reference, where the ZSR is now resolved as a 33.2 Mb
continuous sequence (Figure 2; Table S12), we plotted coverage of mapped sequencing reads
across Z chromosome orthologs from four schistosome species (S. mansoni, S. rodhaini, S.
haematobium, S. japonicum) and the hermaphroditic trematode Echinostoma caproni. In
contrast to the relatively uniform mapped coverage for E. caproni, the ZSRs for the
Schistosoma species are clearly visible, with a 19.1 Mb Ancestral shared region (ZSR2; ZSR
coordinates 13,993,393-33,063,208) that has extended more recently in different directions
amongst the African (S. haematobium, S. rodhaini, S. mansoni) and Asian species (S.
Japonicum). It also appears that in the Asian S. japonicum, two inversions have resulted in
orthologues changing position and, therefore, creating coverage anomalies near the ZSR

boundaries. The more recent 14 Mb African stratum (ZSR1; ZSR coordinates 1 - 13,993,392)
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206 extends beyond the centromere but is shorter than the Ancestral stratum (ZSR2). In contrast to
207  the single, contiguous Z-specific region in the v9 assembly, the v5 assembly contained two

208 blocks of what we now know to be PAR fragments which were incorrectly located inside the
209 sex-specific region. It was previously reported that blocks of sequence shared by Z and W are
210 located in the large region of recombination repression (i.e. the ZSR) [28]; based on this

21 observation, Hirai, Hirai, and LoVerde [29] proposed three inversions in homologous Z/W

212 regions from Z to W occurred before heterochromatinization, followed by at least one more

213 inversion. These conclusions do not hold true in v9 and can now be attributed to misassemblies

214 in vb.

215  To gain further insight into the evolutionary origins of the ZSR, we looked at the relationship
216  between the Z chromosome and the chromosomal sequences of distantly related tapeworms.
217  We have previously shown that flatworm genome structure can be defined based on conserved
218  chromosome synteny blocks [30] (Figure 3b). When orthologs of S. mansoni and tapeworms
219  are compared, synteny is largely preserved between these blocks, even though collinearity is
220  disrupted. It is evident that one end of the Z chromosome is highly related to chromosome 3 of
221 Echinococcus multilocularis and the other end is highly related to chromosome 5. When taken
222  inisolation, the orthology evidence equally supports an ancient fusion in the schistosome

223 lineage or an ancient fission in the tapeworm lineage. However, the position of the junction
224  between the chromosome synteny blocks coincides with the position of the Ancient stratum
225  (Figure 3a), suggesting that a fusion in the schistosome lineage is likely to have played a role,

226  resulting in suppressed recombination.

227  For neutral positions in the genome, the genetic diversity present is expected to reflect the

228 number of copies of that region in the genome [31]. For the ZSR, the relative number of copies
229 is 0.75 relative to autosomes (1.0), thus the diversity is expected to be lower than that of

230 autosomes. Along the ZSR, we identified 352 genes in the African stratum and 580 in the

231 Ancient stratum, which are flanked by 229 and 1,071 protein-coding genes in PAR1 and PAR2,

232  respectively. We calculated the median nucleotide diversity (11) across the protein-coding genes

10
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of the autosomes and PARs and Z-specific regions (Figure 4; Table S13) using published
genome variation data [32]. Across 50 kb windows, the autosomes have a median 1 range of
0.0026 to 0.0039. The PARs have a similar median 1 range to that of the autosomes at 0.0027
to 0.0032 in females and 0.0027 to 0.0034 in males suggesting that recombination between ZW
and ZZ bivalents in the PARSs is similar to that of the autosomal chromosomes. Also, the median
1 of the ZSR is significantly lower than that of the PARs for both males and females (p<0.001;
Mann-Whitney test). We observed significantly lower 1 values in the Z African stratum when
compared to the Z Ancestral stratum in both male and female samples (p<0.001; Mann-Whitney
test), consistent with the effective population size of the Ancestral stratum being smaller for
longer. The 1 values of the Z chromosome are close to that which would be expected in a
neutral equilibrium with equal and constant male and female populations sizes

(TTZ/TTAutosomes=0.75; [31] Wlth TTZ/TTAutosomes=0.71 |n ma|eS and TTZ/TTAutosomes=0.70 |n fema|eS

Assembling the W Chromosome

The W chromosome shares >50 Mb of sequence with the Z chromosome in the
pseudoautosomal regions, PAR1 and PARZ2, that flank a highly repetitive W-specific region
(WSR) (Figure 5; Table S12). In the v5 assembly, the highly repetitive W-specific region could
not be resolved beyond ~100 small and unordered contigs (1.1 Mb); by sequencing clonal
females on multiple sequencing platforms, we resolved 22 repeat-rich W-specific scaffolds
totalling 3.7 Mb (Figure S5). In many cases, the long reads used in our assembly were
insufficient to fully span the arrays of repeats in the W chromosome. As a result, unique
sequences are represented but the number of repeat units in many of the repeat arrays is vastly
underestimated. After manual curation of the major repeat blocks, the W-specific assembly
scaffolds were further ordered, oriented and linked by identifying as few as one, long PacBio
subreads that spanned two consecutive blocks (Table S14). Metaphase FISH was also used to
localize and orient three W-specific scaffolds that could not be placed through computational

assembly methods (Figure S5).

11
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Previous karyotype measurements from 22 female metaphase cells [33] showed the W
chromosome to be approximately 14% longer than the Z chromosome, a figure we confirmed
with our own measurements of 14.7% using 6 female metaphase cells (Table S15; Figure S6).
In particular, a long repetitive region in the short (p) arm of the W chromosome accounts for
much of this size difference and is responsible for the p-arm being ~40% of the W-chromosome
length. Assuming a uniform density along the chromosome, relative measured lengths of other
chromosomes with known assembly sizes (Figure S6), and genomic coverage of W-specific
repeats (Table S16), we estimate the size of the W-specific region (WSR) to be ~46 Mb.
However, given that this region is heterochromatic and, therefore, more densely packed, its true
size could be much longer. We attempted to estimate the degree to which repetitive regions
remain collapsed within the assembly by mapping high-coverage Illumina sequencing reads
from adult females. Extrapolating the read depth across repetitive regions (Table S16; see next
section for results on W repeats) and comparing it with the median coverage for the genome
(Table S17; ERS039722), we estimate a length of 17.6 Mb for the W-specific region. Clearly the
mapping approach is inaccurate for estimating the true size of these collapsed regions. In fact,
there are many regions of repetitive sequence in W where very few lllumina reads are mapped,
indicating that certain repeat motifs are underrepresented in the sequence data. So-called
“dark” and “camouflaged” regions of genomes have previously been reported, where specific
sequencing technologies perform poorly (e.g. short tandem repeats, duplicated regions, regions

with high GC content, non-random fragmentation) [34,35].

Repeat classification and heterochromatinization of the W

chromosome

Like the human Y chromosome, the S. mansoni W chromosome is largely heterochromatic with
a large proportion of its length composed of satellite repeats. There are just three bands of
euchromatin on the W chromosome (chevrons in Figure 5) [10,33]. Because some individual

PacBio reads contained tandem arrays of the same repeat unit, we were able to assemble
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285  complete repeat units. Within the WSR constitutive heterochromatin, we characterized 36
286  unique repeats, named smw01-smw36 (Figure 5; Table S16). The 36 W-specific repeats

287  comprise >95% of the assembled length of the W-specific region.

288  Of the 36 repeats, five (smw07, smw20, smw21, smw25, smw29) are related to the previously
289  described 337 bp retrotransposable element SMat-2 [36,37]. Although a variant of SMat-2 has
290 been previously published as female-specific (SMAIphafem-1; NCBI accession U12442), we
291  found one complete copy (coordinates: 23,37,004-23,936,670; 92.3% identity, 99.7%

292  coverage, e-value 9.07e-133) and 38 partial copies (>75.0% identity; >95.0% coverage) on the
293  Z chromosome. Metaphase FISH has shown striking fluorescence of a SMat-2-related probe
294  hybridizing near the short arm euchromatic gap [33,37]. However, across the v9 genome, we
295 found SMat-2 repeats sporadically distributed on all autosomes and both sex chromosomes
296  [38], but only as a large tandem array on the W chromosome, corresponding to the smwQ07

297  repeat found near the euchromatic band of the short arm [33].

298 Interestingly, 21 of the repeats can be grouped into five distinct families, where members within
299 each family share at least 75.0% nucleotide identity, suggesting they may have evolved from a
300 common ancestor including an SMa(aka SM-alpha and SMAIpha-fem) retrotransposon repeat

301  family (smw03, 07, 20, 21, 29) (Table S16).

302 Gametologues and their possible role in schistosome sex

303 determination

304 The ZSR contains a total of 932 protein-coding genes. Of these, only 33 have clear

305 homologous copies (termed gametologues) on the W chromosome, all within the WSR (Table
306  S18). Although there is some positional clustering, extensive rearrangements by inversions,
307 repeat expansions and transposable elements have largely disrupted collinearity between the
308 WSR and the ZSR. The more recent African stratum contains 31 of the gametologues. For two

309 of these, the corresponding W-copies have duplicated; there are three copies of genes
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encoding DnaJ domain proteins (heat shock protein 40 member B6) and two copies encoding a
hypothetical protein with no discernible conserved features. At least five of the gametologues in

the African stratum have degenerated into pseudogenes on W that have not yet been lost.

Considering the longest transcript for each gene, the W gametologues have an average of 55
amino acids less per protein sequence than the Z gametologues (Table S19). Only three W
gametologues (spliceosome-associated protein, Smp_310950; ENTH domain-containing
protein, Smp_303540; splicing factor U2AF 35 kDa small subunit, Smp_348830) are longer
than their Z counterparts. Most Z and W gametologues are highly similar with average amino
acid identities of >80% across their entire lengths using the Needle Wunsch algorithm in the
EMBOSS package [39]. Excluding the five W pseudogenes and their Z gametologues, the
gametologue pair with the greatest divergence was Smp_348820 on W and Smp_031310on Z
(encoding 40S ribosomal subunit S26) with only 47.6% identity. However, as with other low-
similarity pairs, it was not possible, even through manual curation, to rule out gene finding

inaccuracies due to a lack of isoform-specific transcript data.

We used previously published sex- and stage-specific RNA-seq [40,41] to analyse differences
in expression between the Z and W gametologue pairs (Figure 6). As expected, using unique
mapping reads only for analysis, very few male reads mapped to the W gametologues. There
were slight differences in the levels of expression between male and female samples for the Z
gametologues, although RNA-seq coverage and replicate number from some of these samples
were inadequate to enable robust analysis and interpretation. It has been shown one
gametologue pair, encoding DnaJ homolog subfamily B member 4, have diel expression in
males and females with the Z gametologue (Smp_336770) with the the Z gametologue cycling
in adult females, males, and male heads, and the W gametologue (Smp_020920) cycling in
females [42]. Expression of several W gametologues in female samples indicates possible
stage-specific activity (such as Smp_317860, DnaJ heat shock protein family member B6) that

is expressed in female larval cercariae and pre-dimorphic mammalian-stage schistosomula but
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not in adults; however, the Z gametologue to this gene, Smp_022330, shows consistent

expression values across all stages.

There is an almost complete lack of gametologues in the Ancestral stratum, which is consistent
with this part of the chromosome having become sexually differentiated earlier and
degenerative processes thus having been underway for longer. Within this long tract of
degenerated sequence, two gametologues are clear exceptions. The first of these is a long
multi-exon gene on Z, encoding a protein with ankyrin repeats and helicase domains. The
corresponding gametologue on W is a pseudogene with several frameshifts and missing exons
(Figure S7a). The second gametologue is predicted to encode the large subunit of splicing
factor U2 snRNP auxiliary factor (Smp_019690 on Z and Smp_348790 on W). Strikingly, the
sequences are almost identical (>95%) for most of their lengths but have divergent N-terminal
sequences. After correcting for an artifactual frameshift in the W chromosome consensus
sequence (based on aligned RNA-seq reads; Figure S7b), the copy on W shares the single-

exon structure but the first 125 aa share only 45% identity.

DISCUSSION

Our chromosome-scale assembly and curated annotation significantly extends the genetic
resources for S. mansoni, and provides a more robust scaffold for genome-wide and functional
genomic approaches for this important but neglected pathogen. It has enabled a greatly
improved definition of the gene content, with the sequences of more than 25% of genes
changed with >20% of coding region affected, and better resolution of those presentin
repetitive arrays, such as those encoding spliced leader RNA and stage-specific gene families.
Amongst the gene families, many are known to encode highly abundant products —such as
IPSE, omega-1, elastases, Kunitz protease inhibitors—that are important in host-parasite
interactions. Major egg antigens omega-1 and IPSE are associated with a Th2 immune

response in the host resulting in granulomatous inflammation around trapped parasite eggs

15


https://doi.org/10.1101/2021.08.13.456314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.13.456314; this version posted August 13, 2021. The copyright holder for this preprint

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

[43]. Given the critical role of the intestinal granuloma for the egg translocation from the blood
vessels to the intestinal lumen [44], genome expansions of these genes might have

represented a selective advantage.

A major advance is in the analysis of schistosome sex chromosome evolution. Our previous
analysis of orthologue synteny across the flatworms showed that the S. mansoni Z
chromosome corresponds to two or more chromosomes in tapeworms [30]. From those data
alone, it was not possible to determine whether a chromosome fusion had occurred in the
schistosome lineage or whether it was a fission in tapeworms. However, in several other taxa,
including filarial nematodes and several lepidotera, a chromosomal fusion has underpinned the
genesis of sex chromosomes [45,46]. We therefore speculate that a fusion has similarly
occurred in the ancestral schistosome, creating a new pre-sex autosomal chromosome. The
fusion event could have resulted in an isolated sex-determining locus that was advantageous to
females and/or antagonistic to hermaphrodite worms. Consistent with this hypothesis, we show
that the position of the putative fusion is within the oldest part of the Z-specific region of the
chromosome and, within it, there is a single protein-coding ancestral gene (U2AF; splicing
factor U2AF 65 kDa subunit) and a single pseudogene that are common to all African and Asian
schistosomes. The alternative hypothesis to explain the observed synteny would require a
fission at that position somewhere in the tapeworm lineage. This would have occurred prior to

the formation of a sex determining region and the fission would, therefore, have played no role.

As one of two genomes found in the earliest-diverging part of the sex chromosomes, we identify
the W gametologue encoding the pre-mRNA splicing factor U2AF 65 kDa subunit
(Smp_348790) as a leading candidate gene for involvement in schistosome sex-determination.
U2AF has been studied extensively in Drosophila for its association with the master sex-
determining protein Sex-lethal (Sxl) [51] that is expressed exclusively in female flies. SxI
competes with U2AF binding to inhibit the splicing and translation of the ms/-2 gene (male-
specific-lethal-2) [52,53]. Considering that sex is determined by inhibiton of U2AF binding to

pre-mRNA in Drosophila, it is tempting to speculate that the S. mansoni female-specific W copy
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of U2AF may antagonise the activity of the Z copy to inhibit the splicing of one or more genes.
Further implicating U2AF in sex determination, the sex-specific regions also contain a homolog
of the U2AF 35kDa subunit. In many taxa, U2AF is a heterodimer composed of large and small
subunits that are required for spliceosome assembly in order to remove intron sequences from
pre-mRNAs. U2AF binds to the 3' splice site and polypyrimidine tract of introns in a complex
with several other small nucleolar ribonucleoproteins (snRNPs) bound to the 5’ splice donor,
commiting pre-mRNA to splicing (see review [50]). Our identification of U2AF2 is independently
validated by Elkrewi et al. [49], who show using a search strategy based on the differential

distribution of k-mers, that U2AF2 is the only intact gene in the ancient stratum of the ZSR.

How has sexual dimorphism evolved in schistosomatidae? The characterization of
chromosomal fusions resulting the sex chromsomes, distinct evolutionary strata among closely
related species, and the identification of U2AF allows us to propose a model of a model of the
evolution of the schistosome sex chromosomes (Figure 8). At some point during the evolution
of the Z and W sex chromosomes, the centromeric repeats diverged. It is not possible to know
whether the centromere divergence occurred simply as a result of recombination or whether it
played a more pivotal role in driving the suppression of recombination. Given the location of the
centromere towards the far end of the more recent African stratum of the ZSR, the centromere
divergence could have enabled a large expansion of the ZSR in the common ancestor of the
African lineage of parasites. The high homology in amino acid sequence along with the
conservation of functional domains between the gametologues suggests function has not
changed between the gametologue pairs. Analysis of existing RNA-seq revealed sex- and
stage-specific expression of the Z and W gametologues that could play a role in female-specific
development. The duplication and triplication of two Z gametologues on W may be important in
maintaining gene dosage or specialized female expression for those genes and is worthy of

future study.

Although sexual dimorphism needs not rely on the existence of sex chromosomes and not all

sexually dimorphic traits need to be linked to sex chromosomes [55], there must have been
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selective pressure to isolate sexually antagonistic and/or advantageous loci on non-
recombining regions of sex chromosomes [56,57]. Unlike many species in which a master sex-
determining gene triggers male or female development, the absence of a W chromosome-
specific genes suggests that multiple sex-determining loci were isolated on the sex
chromosomes to produce separate sexes. With this in mind, we hypothesize that the W-copy of
U2AF is regulating other gametologues or even genes located on the autosomes to control the
suppression of male or female function. Identifying downstream interactions of U2AF with other
genes is a critical next step for uncovering the mechanisms involved in schistosome sex
determination. For example, do posttranslational modifications or splicing of W gametologues
by U2AF directly inhibit the activity of a male-promoting product or create a male-lethal product?
Future studies are needed to understand the functional role the gametologues like U2AF play in

schistosome sex biology.

CONCLUSIONS

S. mansoni is the most studied trematode and an accurate genome sequence underpins
research into this important pathogen as well as enabling it to serve as a model for other
trematodes. As the first species with completely assembled Z and W sex chromosomes, the S.
mansoni genome provides a novel resource for studying other ZW organisms and is a crucial
resource for future investigation into the sexual biology of schistosomes. The results presented
provide a signfiicant advance toward understanding the evolution of sex chromosomes among
the Schistosomatidae. As the agent of a prominent neglected tropical disease, understanding
the evolutionary origins and molecular mechanism of sex determination in schistosomes may
reveal new vulnerabilities to combat these parasites. The identification of the W-copy of U2AF
as a candidate sex determining factor is clearly a major first step. This new assembly and
annotation has already assisted in a broad range of studies on schistosomiasis including
monitoring genetic diversity in field strains [32,58], the discovery of alleles under selection for

resistance to the antihelmintic praziquantel [59], and the analysis of stage- and sex-specific
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epigenetic changes [60—62]. Future studies using this resource will undoubtedly continue to
reveal novel biological insights into schistosome development, infection, host-parasite

interactions, and pathogenicity.

METHODS

Parasite material

Schistosoma mansoni developmental stages

A summary of the parasite material for genome and transcriptome sequencing can be found in
Table S17 and Table S3, respectively. Unless otherwise specified, the different S. mansoni
developmental stages were collected following described protocols [63,64]. Unless otherwise
noted, samples for RNA extraction were resuspended in 1 ml of TRIzol and stored at -80°C until
a standard TRIzol RNA extraction method was performed. Genomic DNA was extracted using a

standard phenol:.chloroform DNA extraction method.

Sporocysts

Sporocysts were collected from Brazilian B. glabrata snails (BgBre) infected with 10 miracidia of
their sympatric Brazilian S. mansoni (SmBre) strain. Secondary (daughter) sporocysts were
dissected from 20 snails at 15 days and 4.5 weeks after infection. Following RNA extraction,
DNA was removed with the Ambion® DNA-free™ Kit following the standard procedure and

purified with the RNeasy® Mini Kit (QIAGEN).

Cercariae

At 4.5 weeks post exposure to 15-30 miracidia each, snails were washed, transferred to a

beaker containing ~50 ml conditioned water, and placed under light to induce cercarial
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462  shedding. Cercariae were collected and water was replaced every 30 minutes for 2 hours.
463  Cercariae were incubated on ice for 30 minutes and concentrated by centrifugation at 1500 x g

464  for 30 minutes at 4°C.

465  Snails exposed to single miracidium each were tested for patent infection after 5 weeks by
466  exposure to light to collect genomic DNA from pooled male and pooled female cercariae. Snails
467  with patent infection were kept and exposed to light every three days. Cercariae collected from

468 each snail were stored for DNA extraction. Sex of the cercariae was identified by PCR [65].

469  Schistosomula and adult worms

470  Briefly, water containing cercariae was filtered, cercariae were washed, and tails were sheared
471  off by ~20 passes through a 22-G emulsifying needle. Schistosomula bodies were separated
472  from the sheared tails by Percoll gradient centrifugation, washed, and cultured at 37°C under

473 5% COs..

474  Adult worms were collected by portal perfusion from experimentally-infected mice at 6, 13, 17,
475 21, 28 and 35 days post infection following methods previously described [66]. Clonal female or
476  male adult worms were collected from mice infected with PCR-confirmed female or male

477  cercariae, respectively, shed from single monomiracium-infected snails.

478  For RNA preparation, samples were thawed on ice and transferred to MagNA Lyser Green

479 Beads (Roche Molecular Systems, Inc). The samples were homogenized using the FastPrep-24
480 instrument (MB Biomedicals, UK) for two 20 second pulses with a speed setting of 6. A

481  standard TRIzol RNA extraction followed and RNA was concentrated using RNA Clean and

482  Concentrator Kit (Zymo Research) according to the manufacturer’'s recommendations. RNA
483  quality was assessed on the Bioanalyzer (Agilent) and samples with the highest quality were

484  chosen for reverse transcription.
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Miracidia

Livers were removed from hamsters 49 days post-infection with cercariae of the Liberian strain
of S. mansoni and homogenised in PBS. The homogenate was centrifuged for 10 minutes at
5,500 x g at 4°C and the supernatant was discarded. The pellet was washed twice by
resuspension in 0.9% NaCl followed by centrifugation as above. The pellet was resuspended in
fresh conditioned water, exposed to light, and miracidia were collected. Miracidia were
centrifuged for 30 minutes at 15,000 rpm at 4°C. Pelleted miracidia were resuspended in 100 ul
TriFast (Peglab) before storage at -80°C. The miracidia were allowed to thaw at room
temperature before homogenisation with a polypropylene pestle, and snap frozen in liquid
nitrogen. This was repeated twice more before TriFast was added to 500 ul. RNA was then
extracted according to the manufacturer's instructions. Extracted RNA was quantified using a
BioPhotometer plus (Eppendorf). RNA quality was assessed with the Bioanalyzer RNA 600

Pico Kit (Agilent).

lllumina and PacBio genome sequencing

Clonal male and female mate pair libraries (3 kb fragment size) were prepared from cercariae
genomic DNA, following a modified SOLID 5500 protocol adapted for lllumina sequencing [67].
Additionally, genomic DNA from clonal male and clonal female adult material was used to make
separate PCR-free 400-550 bp lllumina libraries following previously described protocols [68],
with the exception of using Agencourt AMPure XP beads for sample clean-up and size
selection. Genomic DNA was precipitated onto beads after each enzymatic stage with an equal
volume of 20% polyethylene glycol 6000 and 2.5 M sodium chloride solution. Beads were not
separated from the sample throughout the process until after the adapter ligation stage. Fresh
beads were then used for final size selection. lllumina libraries were sequenced on either a

HiSeq 2000 or 2500 (Table S17).
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Genomic DNA from S. mansoni clonal female adults was used to prepare a SMRTbell library
following the Pacific Biosciences protocol ‘20 kb Template Preparation Using BluePippin Size-
selection System’. The resulting library was used to produce 40 SMRT cells on the Pacific
Biosciences RSl platform. We also prepared a PacBio library using genomic DNA from a pool
of male cercariae from a snail monomiracidium-infection producing 28 SMRT cells on the

Pacific Biosciences RSII platform (Table S17).

Optical mapping for genome assembly corrections and increased

resolution

Female clonal cercariae were used to make agarose plugs using the CHEF Genomic DNA Plug
Kit (Bio-Rad) following methods previously described [69]. High molecular weight S. mansoni
genomic DNA was prepared by proteinase K lysis of trypsin-digested adults mixed with molten
agarose set in plugs. DNA molecules were stretched and immobilized along microfluidic
channels before digestion with the restriction endonucleases BamHI and Nhel, yielding a set of

ordered restriction fragments in the order that they occur within the genome.

The optical data was generated and analysed using the Argus Optical Mapping System from
OpGen and associated MapManager and MapSolver software tools. As the S. mansoni

genome is significantly larger than the 100 Mb cut-off suggested by OpGen for de novo

assembly, OpGen’s GenomeBuilder software was used to generate targeted local optical map
assemblies from the sequence contigs to provide additional mapping information. The median
coverage of fluorescently-labelled molecules in the optical contigs from which consensus
sequences were built was 30x. The raw data for each optical map contig were manually
scrutinized using OpGen’s AssemblyViewer software, allowing us to validate accuracy (i.e.

consistent coverage of 220x). Contigs with a visible dip in raw molecular coverage were
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discarded as assembly errors. This resulted in a set of manually curated, non-redundant optical

contig consensus sequences that were generated near remaining scaffold gaps, rather than

being generated to cover the whole genome, due to finite computational and analytical

resources. Comparison of sequence contigs with validated optical contig consensus sequences

allowed further scaffolding of the genome assembly and resolution of misassemblies as

necessary in Gap5.

de novo assemblies and manual curation

We combined existing short read data [11,12] with additional lllumina data, long PacBio reads
(Table S17), optical contigs, and genetic markers [70], to construct an intermediary genome
assembly (version 7; GCA_000237925.3) that could be used by the public immediately while
time-intensive manual curation took place. Misassemblies were corrected using long-read
evidence, as well as optical map data and genetic markers [70]. Remaining gaps were filled
using gap-filling software [71,72]. Genetic markers [70] and an updated genetic linkage
map(unpublished data, Chevalier et al) were used to assign further scaffolds to chromosomes,
and to aid improvement and validation of the rest of the assembly. Version 7 contains 10
chromosomal scaffolds (8 chromosomes plus two scaffolds whose coordinates are known in the
W chromosome; 95.91% of scaffolded bases), 13 scaffolds assigned to an autosome with
known coordinates (11 of these are primarily repetitive scaffolds), 20 W-specific scaffolds
without chromosomal coordinates, 17 scaffolds not assigned to a chromosome, and one

mitochondrial scaffold.

Following the v7 assembly submission, we further improved the assembly, particularly in
assembling all W-specific contigs and in creating individual chromosomal scaffolds for both Z

and W sex chromosomes. To assemble the W chromosome, we first produced separate de
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novo assemblies for lllumina and then used Spades [73]) and CANU [74]) to assemble PacBio
genomic reads that did not map to the v7 assembly with >500bp of soft-clipping. Second, the de
novo assemblies were screened against the NCBI NR database in order to screen out any non-
S. mansoni sequences. New contigs were examined in Gap5 [75] for absence of mapped reads
from a male lllumina library (PCR-free pooled male cercariae) and presence of mapped reads
from the PCR-free pooled female cercariae lllumina library (Table S17). Manual improvement
was performed in Gap5 [75]. Putative new W-specific contigs were examined for sequence
similarity to the 22 existing W-specific scaffolds in v7 to determine unique W-specific contigs. All
genomic reads (Table S17) were re-mapped to the new assembly and concordant soft-clipped
sequences were extended. This process was continued iteratively until no further progress
could be made, by which point all contigs terminated in tandem repeats. At this point, the
PacBio subreads were surveyed to find long read evidence linking the W chromosome tandem
repeats together (Table S16). This elucidated the order of the repeats and W-specific regions to

construct a single W chromosome scaffold.

Z and W-specific chromosomal regions were determined from mapping coverage of PCR-free
female lllumina libraries (Table S17) with ~22x coverage in the ZSR and ~44x coverage in the
PARs, as expected in ZW females. Female-only libraries were used to manually identify

gametologues on the W chromosome.

We resolved the haplotypic diversity that typically exists in genome assemblies by sequencing
clonal parasites derived from single miracidium-infected snails. Haplotype genes were
determined in Gap5 [75] by identifying genes with half coverage, and localisation to a single
scaffold that is also half coverage, as compared to non-haplotype scaffolds. An erroneously
classified W chromosome scaffold (SM_V7_W019) from v7 was re-classified as a chromosome
1 haplotype. Haplotypes are represented in 259 scaffolds (2.74% of scaffolded bases) (Table

S4; DOI:10.5281/zen0do.5149023).
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Metaphase fluorescent in situ hybridization (FISH) to confirm order of W-

specific scaffolds

S. mansoni NMRI strain daughter sporocysts from B. glabrata snails were dissected at 29 days
post exposure. Sporocysts were placed in 0.05% (0.5mg/ml) colchicine (Sigma-Aldrich) and
titurated ~20 times using an 18G blunt-end needle. This single cell suspension was incubated
at room temperature for 2-4 hrs to arrest cell division. Cells were spun at 500 x g for 5 min,
incubated in nuclease-free water for 20 min at room temperature, and then preserved in ice-

cold 3:1 methanol:acetic acid fixative.

Several primer sets were designed to amplify 15 kb-30 kb fragments using the 22 W-specific
scaffolds identified post-v7. Fragments were amplified using either PrimeSTAR GXL
polymerase (TaKaRa Bio) or LA Taq Hot Start Version Polymerase (TaKaRa Bio) per the
manufacturer's instructions. The PCR products were run on an agarose gel and bands of the
targeted size were cut and isolated using the QIAEX Il Gel Extraction Kit (Qiagen). We
successfully amplified sufficient DNA for labelling for scaffolds W005, W002, and W014 to
confirm their order in the v9 assembly (Figure S5). Multiplex metaphase FISH and karyotyping

were done following the procedures previously described [76].

Arima-HiC data to validate the S. mansoni v9 assembly

The Arima-HiC Kit for Animal Tissues (Arima Genomics; Material Part Numbers: A510008
Document Part Number: A160140 vOO Release Date: November 2018) was used following the
manufacturer’s instructions with ~100 fresh female S. mansoni worms as input. An Illlumina
library was made using the Swift Biosciences Accel-NGSO 2S Plus DNA Library Kit, with the
modified Arima Genomics protocol. The library was sequenced on the lllumina HiSeq X Ten
platform resulting in high resolution with >260x coverage of the genome (Table S17). Arima-HiC
data was aligned to the v7 assembly using BWA [77]; version 0.7.17). The HiC contact map

was made with PretextMap (https://github.com/wtsi-hpag/PretextMap) and viewed in
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PretextView (https://github.com/wtsi-hpag/PretextView) (Figure 1). Minor misassemblies and

placement of previously 31 unplaced scaffolds were done manually in Gap5 [75].

lllumina RNA-seq and PacBio IsoSeq transcriptome

sequencing across S. mansoni developmental stages

lllumina RNA-seq libraries were prepared with the TruSeq RNA Library Prep Kit following the
manufacturer’s protocol. The Smart-seq2 protocol [78] was followed as described to synthesize
full length cDNA from 1 ug total RNA for PacBio IsoSeq full-length transcript sequencing. cDNA
was amplified in 12 cycles PCR and size fractionated in SageELF electrophoresis system
(Sage Science). One or more cDNA size fractions were pooled for the library preparation. For
some samples, libraries were produced from more of the size fractions obtained from the

SageELF, with the aim of reducing size bias in the PacBio RSIl sequencing reads (Table S3).

Heterozygosity in Z and W sex chromosomes and nucleotide diversity in

the Z chromosome

Genome-wide SNP calling was performed using GATK HaplotypeCaller with PCR-free lllumina
genomic libraries (Table S17) and 7 previously published samples (12663_1_4, 12663_2 4,

7164_6,7164_7,7307_7, 7307_8, 8040_3) [32].

To calculate nucleotide diversity (11), median and mean autosomal coverage was calculated for
all samples in the Crellen et al. data set [32]. Individuals with >10x median and mean coverage
on Z and W chromosomes were retained (54 male and 61 female). Of these, the ZSR:PAR ratio
was calculated. Individuals with >0.70 ZSR:PAR ratio and a PAR/ZSR <1.5 were designated as
males and individuals with <0.70 ZSR:PAR ratio and a PAR/ZSR >1.5 were designated as
females. This resulted in a data set consisting of 54 males and 61 females. We used PIXY

(v.0.95.01) [79] to calculate T in 50 kb sliding, non-overlapping windows across each
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chromosome separately for male and female populations for the autosomes. Nucleotide
diversity for the ZSR and PARs was calculated in 5 kb sliding, non-overlapping windows. We
then calculated the bootstrapped (95%) confidence intervals for each population median using
1000 bootstrap samples of genomic windows for each population using previously published
methods [58] (
https://github.com/duncanberger/PZQ_POPGEN/blob/master/Figures/figure_2.md). We
compared nucleotide diversity between ZSR and the PARs for male individuals testing for

significance using an unpaired t-test.

W-repeat classification and quantification

Dot plots were generated for each repeat array on the W chromosome contigs to ensure that a
representative repeat unit was selected from each visually distinct section of each repeat array.
This process yielded 36 unique repeat unit sequences subsequently named smw01-smw36.
The 36 repeat units were compared, pairwise, using blastn with a word size of 6 and dust off.
For each comparison with an e-value <0.01, the percentage identity and bit score was recorded
and plotted in a matrix plot to reveal similarities between repeat units that define repeat unit

families (i.e. Sm-a).

An attempt was made to computationally quantify the W-repeats. Using female PCR-free
lllumina data (sample 6520_5; Table S17), gDNA reads were mapped to 19 known single and
multi-copy genes (e.g. SmVAL, omega-1) and to all 36 identified W-repeat sequences. Using
bedtools coverage on 50 bp windows from the resulting bam file, the single-copy genes had a
median coverage of 67 with a range of 54 to 72 and a median of median coverages of 67.
SmVAL had double this (151x) and omega-1 had 10 times this (671x) as expected. Taking
normal coverage to be 67x, W coverage should be half that at 33.5x. From this we calculated

an estimated expected size for our W-repeats (Table S16).

Gene finding
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Protein-coding genes

A new protein-coding gene set was produced for the v9 assembly from evidence-based
predictions from Augustus [20] with lllumina and PacBio transcriptome reads (Table S3),
followed by manual curation. Repeat Modeller v2.0.1 [80] and Repeat Masker v4.1.2 on
sensitive mode [81] were run to identify, classify, and mask repetitive elements, including low-
complexity sequences and interspersed repeats. The masked genome was then used for gene
finding with Augustus v3.2.2 [82] with the following parameters designed to predict one or more
splice-forms per gene: --species=schistosomaZ2 --UTR=1 --alternative-from-evidence=1. To
predict better gene models and alternative splicing, we used extrinsic information as evidence
(i.e. ‘exonpart’ and ‘intron’ hints in Augustus) based on lllumina short reads of all life stages
except egg (set priority = 4 in the hints file), and PacBio Iso-seq reads of three life stages (male,

female and schistosomula; priority = 40) (Table S3).

To facilitate the comparison of gene sets between assemblies, we also transferred the latest
gene models from v5 (based on GeneDB in July 2017) to v7 using RATT [83] with the PacBio
setting. The transferred gene models were then compared to those from de novo predictions
using gffcompare v0.9.9d [84], to determine consensus or novel transcripts (blastn hit of <94%
coverage or nucleotide identity <78% between the two assembly versions). When changes
occurred compared to a previous gene model, namely an amino acid sequence had changed
>20% in either identity or coverage as determined by blastp, or the gene was merged with
another gene, or split into several new genes, a new identifier (starting with Smp_3) was
assigned and the old Smp number(s) was kept as a previous systematic id (PSID). Otherwise,
the previous v5 Smp identifier was transferred to the v7 gene model. Genes that were related to
retrotransposons in v5, or not transferred by RATT to the v7 assembly, were not kept in the new
gene set. From v7 to v9, gene models were transferred using Liftoff [85]. For gene models with
structural changes compared to the v5 gene set, or potentially novel genes predicted by
Augustus in the v7 and v9 assemblies, we have carefully inspected them and curated them in

Web Apollo [86] (Tables S5, S6).
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For functional annotation, blastp v2.7.0 against SwissProt was used to predict product
information, and InterproScan v5.25 [87]) to predict product protein domains and Gene
Ontology terms. For some genes their product information was preserved from the v5 gene set

(taken from GeneDB) if the evidence code was not “Inferred from Electronic Annotation”.

Coverage of UTRs in the genome sequence was calculated as following: first we extract the 5’-
and 3’- UTR annotations from the dff file, adding up the total UTR length for each transcript, and
then for each gene, we took the transcript with longest UTR as a representative. Finally, all
UTRs were summed up for calculating the coverage. Other feature statistics were calculated

using Eval v2.2.8 [88].

To recover possible additional novel genes from Boroni et al [89], the CDS/transcript sequences
were obtained directly from the authors and aligned to the v9 gene set using blast, where genes
with hits were considered as existing. For those without hits to current gene models, their
sequences were aligned to the whole genome using blastn and PROmer [90]. Genes with hits
to multiple scaffolds were discarded. For genes hitting to the same scaffold the overlapping hit
regions were merged using “bedtools merge” and set as “exon” in a gff. All possible models
were manually inspected in Apollo using the same RNA-seq tracks as in the publication. We

found evidence for 8 of the 759 putative novel genes reported by Boroni et al. [89]) (Table S20).

We initially assessed genome completeness using BUSCO v3.0.2 [23]. Although only 85.8%
complete eukaryota orthologs were found in the genome sequence (using “--mode genome”;
Table S7), representation is expected to be considerably less than 100% in platyhelminths due
to their phylogenetic distance from other species in the BUSCO databases [22]. It is known that
BUSCO applied to genomic sequences underestimates the completeness of assemblies due to
the difficulty of detecting complete genes in the assembly [91] providing further explanation for
missing orthologs. As an alternative, we tested the completeness of our predicted gene models

using BUSCO (“--mode proteins”) and recovered 95.3% complete eukaryota orthologs.
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Transfer RNAs (tRNAs)

tRNAscan v.1.3.1 [92], was used to identify transfer RNAs (tRNAs) in the S. mansoni v9

assembly. The algorithm was run with default parameters except for “--forceow --cove”.

Long intergenic non-coding RNAs (lincRNAs)

In order to locate long intergenic non-coding RNAs in v9 of the S. mansoni genome assembly,
we used RATT [83] to migrate previously generated annotation [93] from v5 to v9. To this end,
we downloaded the published annotation as a GFF file, transformed it to EMBL file (as required
by RATT) and proceeded to migrate the annotations using the “PacBio” setting of RATT. From
a total of 7,029 lincRNAs annotated in v5, 6,876 transfers were made (6,874 unique, two

duplications) and 273 lincRNAs were not transferred.

Spliced-leader RNAs (SL RNAs)

Using RNA-seq data (Table S3), we have located SL (spliced leader) sequences in 6,497
genes (Table S8) or 66.3% of all annotated genes in the primary assembly. SL sequences were
identified using the canonical S. mansoni SL sequence
AACCGTCACGGTTTTACTCTTGTGATTTGTTGCATG (Genbank M34074.1 [94]) and a custom
in-house spliced leader detection script [95]
(https://github.com/stephenrdoyle/hcontortus_genome/blob/5543173b7ee83b903d976931813d
85f96f7a6e13/03_code/hcontortus_genome.section5_workbook.md). The script first trims a
predefined SL sequence from the 5' end of RNA-seq reads allowing for a minimum length
match with an allowed error rate of 10% using Cutadapt [96]. The trimmed sequences are
extracted, sorted, and counted, making a sequence logo. The trimmed reads are mapped to the
genome using HiSat2 [97] and a BAM file of the mapped trimmed reads is generated for
visualisation. A BED file is also made of the splice site coordinates along with a WebLogo [98]

of 20 bp surrounding the splice site. Finally, the script determines the coverage of splice sites
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with transcript starts, (200 bp upstream and 30 bp downstream of the annotated start codon)

and internal CDSs, accounting for both misannotated and internal splice variants.

Following published methods [30], we looked for alternative SL sequences using a custom
python script to identify reads that (a) aligned to annotated genes, or within 500 bp upstream,
and (b) were soft-clipped by more than 5 bp at the 5" end relative to the annotated gene. Soft-
clipped sequences were clustered using CD-HIT-EST v4.7 [99] and only one prominent cluster
was identified. Thus, the S. mansoni SL sequence appears to be highly conserved within the
genome, and there is only one sequence with the abundance of the known SL sequence,

occurring in around 10% of the randomly chosen RNA reads.

Gene clusters and gene density in the S. mansoni genome

To explore whether there are particular gene functions overrepresented on some
chromosomes, we searched for genomically adjacent genes (>=3) with the same Pfam
annotations. To investigate whether gene families that had been incorrectly collapsed in the v5
assembly and are now expanded in the v9 assembly, this analysis was performed for both v5
and v9 using Pfam annotations from InterproScan (see “Protein coding genes” section above).
For clusters with at least 5 genes, the start coordinates of the first and last genes as well as the

number of genes were indicated (Table S2).

IPSE and omega-1 were found to be multi-copy genes clustered in two tandem repeat regions.
In order to compare how many bases of curated IPSE and omega-1 genes could be mapped to
the v5 and v7 assemblies, we ran Exonerate with a max intron size of 1,500 bp for both IPSE
and omega. The IPSE gene Smp_112110 was used in Exonerate, but for omega-1, the mRNA
sequence was used because the omega-1 gene has a long and complex gene structure. GFF
files were produced of mapped features for IPSE and omega-1 which served to illustrate how

many copies of these genes could be annotated.
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The IPSE v9 sequence is 199,167 bp with the equivalent v5 sequence is 86,067 bp. The gap in
v9 is approximately 29 kb larger than the total of the gaps in v5 in this region. There are
approximately 84 additional kilobases in v9 in this region mostly due to expansion of repeat
sequence to give a closer representation of reality (Figure S2). Likewise, the omega-1 v9
sequence is 155,103 bp and the v5 sequence is 105,726 bp. There is a 29,982 bp increase due
to a large gap in v9, leaving 19,395 bp of additional sequence mainly due to expansion of the

repeat array.

Gene expression across different S. mansoni life stages and sexes

To explore gene transcript levels across different life stages and between males and females,
previously published RNA-seq data [40,41] was used. Briefly, reads were mapped to S.
mansoni v9 genome using STAR v2.4.2a [100]. Counts per gene and TPMs were summarised
with StringTie v2.1.4 [101]. Mean TPM values were calculated for samples of the same life
stage and sex and log-transformed. For gametologue expression, only unique mapping reads

were used for quantification.

In comparing gene expression of gametologues on WSR and ZSR regions, the ACT genome
browser [102] was used with PROmer version 3.07 [103] to show sequence similarity. A
transposon inserted into the Smp_318710 pseudogenes was annotated based on PROmer
sequence similarity to other transposons on ZSR. For Figure 7, bm_1, bm_2, bm_3 male

libraries and bf_1, bf 2, bf 3 female libraries were used [104]. For Figure S7b, bf_1 was used.

Identification of centromeres and telomeres

A 123 bp tandem repeat motif was identified in S. mansoni by Melters et al [26] due to its high
abundance (~1% of the genomic reads), relative to all other tandem repeats in the genome. The
original consensus was derived from multiple chromosomes and an almost identical motif is

present in chromosomes 1-3, 5-7, and W (Table S11). On both chromosome 4 and Z, single
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candidate tandem repeats were identified with broadly similar repeat lengths and sequences to

previously described consensus motif [26].

We examined repeats in Gap5 [75], taking only the portion of the repeat with the centromere
tandem repeat motif. Centromere size estimates (Table S11) were based on lllumina genomic
sequencing from female clonally-derived cercariae (sample ERS039722 from Table S17)
mapped to 1 representative repeat unit of each of the 8 centromere repeats. As a control, reads
were also mapped to the 1st 121 bp of the genomic sequence covered by 12 known single copy
genes. These 12 genes gave us a median coverage of 15x. From this we were able to

extrapolate sizes for each of the 8 centromeric repeats which totalled 2.25 Mb.

A MAFFT/Jalview alignment was created from all centromere motif sequences [105] and a
neighbor-joining tree was constructed using the ETE Toolkit Phylogenetic tree viewer [106]
(Table S11). Centromere motif sequence similarity was assessed using the alignment tool
PRSS with the Smith-Waterman algorithm (https://embnet.vital-it.ch/software/PRSS_form.html

[107,108].

Hirai and LoVerde [109] determined the sequence motif of schistosome telomeres (CCCTAA
repeat) through FISH detection. In African schistosomes, the telomeric repeat sequence can be
found in the heterochromatin and centromere of the W chromosome. Because it is theorized
that Schistosoma originated in Asia (see review [110]), the African schistosomes experienced
more gene shuffling than the Asian schistosomes, accounting for the presence of telomeric

repeats outside the ends of the chromosomes [111].

Abbreviations

PAR: pseudoautosomal region
WSR: W-specific region
ZSR: Z-specific region
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802 BUSCO: Benchmarking Universal Single Copy Orthologs
803  Mb: megabase

804  Kb: kilobase

805  bp: base pair

806  aa: amino acid

807  tRNA: transfer RNA

808 lincRNA: long intergenic non-coding

809  SL.: spliced leader

810  SLTS: spliced leader trans-splicing

811  NOR: nucleolar organizer region; rDNA

s12 Declarations

813 Ethics approval

814  To propagate the life cycle of the Schistosoma mansoni NMRI strain (Puerto Rican) and obtain
815  different developmental stages of the parasite, BALB/c mice and susceptible BB02 strain

816  Biomphalaria glabrata snails are routinely infected with parasites at the Wellcome Sanger

817 Institute (WSI). The mouse infections were conducted under Home Office Project Licence No.
818  80/2596 and No. P77E8A062, and all protocols were presented and approved by the Animal
819  Welfare and Ethical Review Body (AWERB) of the WSI. The AWERSB is constituted as required
820 by the UK Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012. With the

821  exception of sporocysts and miracidia, all life cycle stages were collected at the WSI.
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Schistosoma mansoni SmBRE strain sporocysts dissected from infected BB02 B. glabrata
snails were collected at The University of Perpignan laboratory which has permission A 66040
from both the French Ministére de I'agriculture et de la péche and the French Ministére de
'Education Nationale de la Recherche et de la Technologie for experiments on animals and
certificate for animal experimentation (authorization 007083, decree 87-848 and 2012201-0008)
for the experimenters. Housing, breeding and animal care follow the national ethical

requirements.

Schistosoma mansoni NMRI strain miracidia were collected at Justus-Liebig-University Giessen
Institute for Parasitology. Animal experiments were approved by the Regional Council
(Regierungsprasidium), Giessen, Germany (V54-19 ¢ 20/15 ¢ Gl 18/10), which are in
accordance with the European Convention for the Protection of Vertebrate Animals used for

experimental and other scientific purposes (ETS No 123; revised Appendix A).
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in permanent links at WormBase ParaSite under BioProject PRUEA36577 and at Zenodo
DOI:10.5281/zen0d0.5149023. All other data generated or analyzed during this study are

included in this published article and its supplementary information files.
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se6  Figure and table legends

867  Figure 1: Ideograms of the S. mansoni chromosomes with HiC plots showing end-to-end
868 chromosomal resolution. (a) Representative ZZ (male) and ZW (female) S. mansoni

869 metaphase spreads, karyotypes, and ideograms. The yellow arrowheads point to the nucleolar
870  organizer region (NOR; rDNA). Grey regions are euchromatic DNA, black are constitutive

871 heterochromatin (C-band) regions, blue is confirmed telomeric sequence, and light blue bands
872  are confirmed sub-telomeric sequence. (b) HiC visualization plots from genome version 5 (left)

873  and version 9 (right) with the yellow arrowhead pointing to the NOR in chromosome 3.

874  Table 1: Genome-wide statistics for the S. mansoni haploid v9 assembly compared to the
875  previous v5 assembly. The v9 assembly size has grown considerably with the addition of 26.9
876  Mb. The number of gaps present between versions was reduced by 96%, the majority of which
877  are now only present in the collapsed repeat regions of the W chromosome. The chromosomes
878 are assembled into 9 scaffolds (autosomes 1-7, W, and Z). Characterization of SLTS (spliced
879 leader trans-splicing) in the transcripts has increased our previous estimates of only 7% of

880 transcripts being trans-spliced to over 72% in the current assembly. *Completely new,

881 previously partial, or previously unannotated.

882  Figure 2: Improvements in the Z-specific region of the Z chromosome between the

883  previous v5 S.mansoni genome assembly and current v9 assembly. Assemblies were

884  compared using PROmer and visualized in ACT. The v5 assembly contained a partially

885 resolved Z chromosome with misassemblies and between the Z-specific region (ZSR) and

886  pseudoautosomal regions (PARs). Corrected inversions from v5 to v9 are shown in lighter blue.
887  Coverage of mapped sequencing reads from female-only sequencing libraries highlight the ZSR

888  as aregion with approximately half the depth of coverage as pseudoautosomal regions.

889  Figure 3: Z-specific regions of African and Asian Schistosoma spp. evolved differentially

890 from an ancestral region that coincides with a likely fusion between chromosomes. (a)
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891 Evolutionary strata are defined through log> genome coverage on the x-axis of one-to-one

892  orthologs in four schistosomes and the hermaphroditic platyhelminth Echinostoma caproni. The
893  African-specific stratum in dark purple defines Z-specific region 1 (ZSR1) of S. mansoni where
894  approximately half coverage is seen in the African schistosomes S. mansoni, S. rodhaini, and
895  S. haematobium. The Asian-specific stratum in green has reduced coverage specific only to S.
896  japonicum with two possible inversions shown in green brackets. The ancestral Schistosoma
897  stratum represents the schistosome orthologs ancestrally isolated to the Z sex chromosome
898  between all schistosome species. (b) Tapeworm orthologs and chromosome synteny blocks
899  show evidence of the fusion in the schistosome lineage between chromosomes 3 and 5 of the

900 tapeworm Echinococcus multilocularis. Figure 3b adapted from Olson et al [30].

901 Figure 4: Median nucleotide diversity (1r; pi) across the protein-coding genes of the

902 autosomes, PARs, and Z-specific regions using published genome variation data [32].
903 Median nucleotide diversity (17; pi) was calculated separately for males (left) and females (right)
904 in 50 kb windows (a,b) or 5 kb windows (c-f) across all protein-coding genes. Pi is shown for the

905 autosomes (a,b), PARs and ZSRs (c,d) and combined autosomal regions and ZSRs (e,f).

906  Figure 5: Detailed, annotated idiograms of the Z and W sex chromosomes. (a) The true
907  size of the W chromosome is approximately 14% larger than Z which can be accounted for in
908 the large expansion of repeats in the WSR. All but 36 genes have been lost on the WSR with 5
909 of those being pseudogenes and 2 present in triplicate and duplicate. Chevrons mark the

910  approximate location of 3 euchromatin bands in the WSR. (b) The assembled size of the WSR
911 is ~6 Mb, less than its true size of ~46 Mb because of 36 collapsed repeats. (c) C-banding

912  shows the alternating AT- and GC-rich DNA repeats present in the WSR.

913  Figure 6: lllumina RNA-seq expression of the W and Z gametologues in adult paired and
914  naive male and female S. mansoni worms. Unique mapping of RNA-seq to the gametologues
915  reveals relatively similar expression of the Z gametologues between males and females for

916  most gametologues. As expected, the W gametologues show expression limited to the female
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917  samples. Lines connect gametologue pairs between Z and W. In two cases, the W
918  gametologue exists in triplicate or duplicate (see W gametologues Smp_317860, Smp_317870,

919 Smp_348710 and Smp_318680, Smp_318860).

920 Figure 7: A comparison of U2AF 65 kDa subunit gametologues on the Z and W

921 chromosomes. The gametologues of the large, 65 kDa subunit of U2AF (Z: Smp_019690; W:
922  Smp_348790) are shown on ZSR (top) and WSR (bottom). Predicted transcript sequences in
923  yellow. Sequence similarity was determined using PROmer and shows that the N-terminal
924  region of the coding sequence (blue) is more diverse. The black arrow head highlights the
925  position of a likely sequencing error on WSR which causes a frameshift, but which has been
926  corrected in the gene model. Unnormalised coverage of RNA-seq reads is shown for female
927  (bf_1, bf_2, bf_3) and male samples (bm_1, bm_2, bm_3). This highlights male expression on
928 only the ZSR, with lower female coverage on ZSR and WSR as expected. Numbers above
929 gene models indicate position on the contigs, numbers above RNA-seq coverage indicate

930 maximum read depth.

931 Figure 8: Hypothetical illustration of the schistosome Z and W sex chromosome

932  evolution. A chromosomal fusion between two ancestral schistosome autosomes occurred
933 near the ZSR stratum boundary (see Figure 3) creating a new set of autosomes. Followed by,
934  orin conjunction with, this fusion event, a male antagonistic and/or female advantageous locus
935 was isolated on the pre-sex chromsomes (see Figure 6; potentially pre-mRNA splicing factor
936  U2AF). The need to isolate the phenotypic effects of the gene(s) in this locus on the pre-W
937 chromosome required recombination suppression (see Figure 4). Isolation of additional loci with
938  sex-specific effects and elimination and/or pseudogenization of non-sex-specific coding loci is
939 evidenced in Fig 5. Following initial recombination suppression, extensive

940 heterochromatinization of W ensured long-term recombination suppression between W and Z
941  sex-specific regions and resulted in the huge expansion of repeats in the W-specific region

942  (Figure 5; Table S16)
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Additional Files

Additional file 1: Supplementary Tables S1 to S20

Supplementary Figures Titles and Legends

Figure S1: Array of spliced-leader RNA genes on chromosome 6 of the S. mansoni
genome. On chromosome six, a 62.6 kb locus exists containing 41 full-length spliced leader
RNA genes (top track). An additional 109 partial gene sequences that contain the spliced leader

exon sequence only exist in the same array (bottom track).

Figure S2: Resolving the repetitive IPSE and omega-1 loci. Genes in the (a) IPSE loci and
(b) Omega-1 locus shown in v9 through gene model annotations (top tracks) and genomic
coverage mapping (bottom tracks) with yellow boxes to connect gene annotations to genomic
coverage. The annotations show the v9 gene models, some of which coincide with elevated
read coverage. The histogram in the coverage plots show depth of read coverage and
compared with the flanking regions, the depth is elevated in the IPSE and omega-1 loci

suggesting these gene arrays are smaller in this assembly than their true size.

Figure S3: Gene changes from genome v5 to v9 of S. mansoni. There have been a total of
3,610 gene changes represented by 810 new, 867 deleted, 344 merged, 189 multiple copies,
190 split, and 1,210 structurally changed. The bar graph shows totals of different protein-coding

gene changes in the primary assembly (i.e. no gene fragments, haplotypes, or pseudogenes).

Figure S4: Alignment of the centromeric repeat sequences relatedness between all S.
mansoni chromosomes. MAFFT/Jalview alignment of a single centromeric repeat unit from
each chromosome shows high similarity between chromosomes 1-3, 5-7, and W.

Chromosomes 1-3, 5-7, and W are 93.1-98.5% identical to a 123bp centromeric repeat
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proposed by Melters et al [26]. The centromeric repeats for chromosomes 4 and Z are diverged

from the other chromosomes.

Figure S5: Validation of the assembly and placement of W-specific scaffolds using
metaphase FISH. Twenty-two W-specific scaffolds existed after computational and manual
assembly. Scaffold WO07 contained the junction from PAR1 into the WSR and scaffold W016
spanned the WSR into PAR2. The centromeric repeat for the W chromosome was in scaffold
WO002 (7.65-7.75 Mb) with the orientation of this contig inferred from alignment of centromere
sequence in this scaffold. The remaining 8 scaffolds with gametologues (purple) and 11
scaffolds without gametologues (black), whose positions and orientations could not be

determined using sequence data alone, were placed using metaphase FISH.

Figure S6: Measurements of Z and W chromosomes from 6 female metaphase cells. The
W chromosome is approximately 14.7% larger than the Z chromosome based on
measurements taken of the chromosomes from the metaphase figures shown. Measurements
were taken using the measurement tool in Inkscape. This figure is consistent with previously

published measurements from 22 female metaphase cells [33].

Figure S7: Comparisons of ancestral region gametologues between ZSR and WSR. (a)
The Z gametologue Smp_158310 is clearly expressed in males (red RNA-seq coverage) and
females (blue RNA-seq coverage), but the W gametologue Smp_318710 is not. Furthermore,
the gene model is incomplete on WSR and there is a transposon inserted within the gene (red
bar), resulting in a pseudogene. The genes are inverted between ZSR and WSR, indicated by
the overlapping sequence similarity bars. (b) The genome sequence for the WSR gametologue
of U2AF 65kDa (Smp_348790) subunit contains a single base insertion, suggesting a possible
frameshift mutation. However, RNA-seq reads show that this is a sequencing error and the
corrected gene model based on this data results in an N-terminal amino acid sequence more

similar to, although still somewhat divergent from, the Z gametologue (Smp_019690).
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AGGCGTGACGTG’ CGCCGAAGTAGAGGATGACCGATGACGAGAATGGTGTCGTCTAGA TGTTCCCFAmCTRCGATCACGACGTCGACTTCTACTACGTCGCCGACGGTCA f
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AGGCGTGACGTGTTCG AGA’ GT \CGATCACGACGTCGACTT \CTAC GGTCACGA( GTGACCGTCGTTCGCGCTTCT U-\CTGCGACTT
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