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Abstract

Our current understanding of the regulation of gene expression in the early Drosophila
melanogaster embryo comes from observations of a few genes at a time, as with in situ
hybridizations, or observation of gene expression levels without regards to patterning, as with
RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new
insights into the regulation of gene expression for many genes at once while simultaneously
retaining information regarding the position of each nucleus prior to dissociation based on
patterned gene expression. In order to establish the practicality of single-nucleus RNA
sequencing in the context of a real biological question, here we look at the difference in gene
expression between control and an insulator protein, dCTCF, maternal null embryos during
zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be
grouped into distinct clusters according to gene expression. From both virtual and published in
situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo.
Lastly, we present multiple examples of differential gene expression between control and
maternal CTCF null nuclei in one or more clusters, but not in bulk when grouping expression
across all nuclei. These results highlight the potential for single-nucleus RNA-sequencing to
reveal new insights into the regulation of gene expression in the early Drosophila melanogaster
embryo.

Introduction

Early animal development is largely driven by maternally-deposited RNAs and proteins. In
Drosophila melanogaster, zygotic gene expression is detected as early as the 10th nuclear cycle;
however, zygotic genome activation primarily occurs during the 14th nuclear cycle while
maternal RNAs are degraded and cellularization begins[1,2]. Much of the difficulty in
understanding the regulation of early embryonic gene expression lies in our ability to
simultaneously capture expression level and patterning. Classic examples of patterned gene
expression and regulation originate from in situ hybridizations[3–6], however the nature of in
situ hybridizations does not allow for the study of many genes at once. In order to fully
understand the regulation of gene expression across the genome, it is imperative that we establish
new methods to examine changes in spatially-patterned genes.

Prior work from our lab demonstrated the use of RNA sequencing in patterning mutants
following cryosectioning embryos across the anterior-posterior axis[7]. This work benefits from
knowledge of the origin of each slice during analysis; however, with this method we cannot truly
resolve from where the RNAs originated as many nuclei will contribute to expression within
each slice. Recent work from Karaiskos, Whale, et al (2017) demonstrated the use of single-cell
RNA-sequencing in the early Drosophila embryo and the ability to construct virtual in situ
hybridizations from prior knowledge of patterned gene expression[8]. Others have used
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single-cell RNA-sequencing in dorsoventral mutant embryos and showed depletion of an entire
subset of cells[9]. These studies demonstrate the potential for single-cell RNA-sequencing to
answer questions relating to pattern and body axis formation in the early Drosophila embryo;
however, cellular measurements may not necessarily reflect zygotic gene expression due to the
presence of maternal and cytoplasmic RNAs in cells. Additionally, to understand the
establishment of gene expression prior to zygotic genome activation and cellularization, we need
the ability to conduct single-nucleus RNA-sequencing instead.

To establish the use of single-nucleus RNA-sequencing in the early Drosophila embryo, we
decided to examine changes in gene expression in maternal null dCTCF embryonic nuclei,
subsequently referred to as dCTCFmat-/-. Insulator elements were first described for their
enhancer-blocking activity[10–12], and have since been shown to affect genome and
chromosome structure as well[13–18]. Interestingly, mammalian CTCF serves as the only
insulator protein in mammals; however, Drosophila and other arthropods have evolved several
insulator proteins[19,20]. The redundancy of Drosophila insulator proteins allows us to
understand the many functions of insulators without causing cell lethality. Intriguingly however,
dCTCF is not actually required for embryonic viability[21]. Previous reports indicate that loss of
individual Drosophila insulator proteins yields minimal changes in gene expression[19,22–25],
but others show that dCTCF is required for correct expression of certain genes observed by in
situ hybridizations in embryos and larvae[26,27]. The observed changes are slight however,
which may explain why similar observations have not been found via sequencing.

Using 10x Genomics, we assayed gene expression across over 8,000 nuclei from control and
dCTCFmat-/- embryos. Overall, the nuclei tend to cluster according to expression of
spatially-patterned genes, indicating that the nuclei retain information regarding their position in
the embryo prior to dissociation. This allows us to understand differential expression in spatial
regions by sequencing, which was previously only possible by mechanical manipulation. As
expected considering the viability of dCTCFmat-/- embryos, we found fewer differentially
expressed genes in bulk than in individual clusters. We also found several examples of patterned
genes that are differentially expressed in certain clusters but not in bulk. Our analyses are
available in a reproducible and usable format (see Code Availability) allowing others to explore
our data analysis as well as analyze other genes of interest not explored here. Altogether this
work encompasses a resource to explore the effect of dCTCF on gene expression, as well as
establishes the use of single-nucleus RNA-sequencing in the early Drosophila embryo.

Methods

CRISPR

CTCF nulls were created by using CRISPR mutagenesis to insert a dsRed protein followed by
two consecutive stop codons immediately upstream of the CTCF open reading frame. The
homologous replacement template plasmid was constructed using a pUC19 backbone and ~1 kb
homology arms generated by PCR (5’ homology arm primers:
CCACAAAGAAACGTTAGCTAGTTCC and TCCTATGGACAAATTGGATTTGTTTTGG, 3’
homology arm primers: CCAAGGAGGACAAAAAAGGACGAG and
CGTGAGTGGCGCGTGATC). Repair template was coinjected into Cas9-expressing embryos
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(Rainbow Transgenic Flies, Camarillo, California),  along with two guide RNAs
(ATTTGTCCATAGGAATGCCA, TGTCCATAGGAATGCCAAGG) expressed from a U6:3
promoter on a modified version of the pCFD3 plasmid[28]). Resulting flies were crossed to flies
containing chromosome 3 balancer chromosomes, and screened by genotyping PCR. Putative
hits were further screened by PCR and sequencing of the entire locus using primers outside the
homology arms (CATTAGAATTCAAGGGCCATCAG and CACTTGAAGGATGGCTCG). A
successful insertion line was recombined with an FRT site on chromosome 3L at cytosite 80B1
(Bloomington stock # BL1997).

Fly husbandry

All stocks were fed standard Bloomington food from LabExpress and maintained at room
temperature unless otherwise noted. We used the FLP-DFS (dominant female sterile)
technique[29] to generate dCTCFmat-/- embryos. First, we crossed virgin hsFLP, w*;; Gl*/TM3
females to w*;; ovoD, FRT2A(mw)/TM3 males (Bloomington Drosophila Stock Center ID: 2139).
From this cross, we selected hsFLP,w*;; ovoD, FRT2A(mw)/TM3 males and crossed them to
virgin CTCF*,FRT2A/TM3 females. Larvae from this cross were heat-shocked on days 4, 5, and
6 for at least two hours in a water bath at 37°C. Upon hatching, virgin hsFLP, w*/+ ;; CTCF*,
FRT2A(mw)/CTCF*, FRT2A(mw) females were placed into a small cage with their male siblings.
Flies were fed every day with yeast paste (dry yeast pellets and water) spread onto apple juice
agar plates. These crosses were conducted simultaneously with another insulator protein, and
control embryos were collected from the ovoD line used to generate those germline clones
(Bloomington Drosophila stock Center ID: 2149).

Western blots

Flies laid on grape-agar plates for two hours and embryos were either aged two hours at room
temperature or taken directly after collection. Embryos were dechorionated with bleach, rinsed,
and frozen in aliquots of ~25 embryos at -80 C. Embryos were homogenized in 25 µl RIPA
buffer (Sigma cat # R0278) supplemented with 1 mM DTT and protease inhibitors (Sigma cat #
4693116001) using a plastic pestle. After homogenization, samples were mixed with 25 µl 2x
Laemmli buffer (Bio-Rad # 1610737EDU), boiled for 3 minutes, and spun at 21,000 x g for 1
minute. Samples were loaded onto Bio-Rad mini Protean TGX 4-20% gels (# 4561096) and run
at 200V for 30 minutes. Protein was transferred at 350 mA for one hour to Immobilon PVDF
membrane (Millipore-Sigma # IPVH00010). Blots were blocked for one hour in PBST (1x PBS
with 0.1% Tween) with 5% nonfat milk, and stained with primary antibodies (courtesy of Maria
Cristina Gambetta[27], 1:1000 in PBST with 3% BSA) for one hour. Blots were then washed 3
times for 3 minutes rotating in PBST and probed with an HRP-conjugated anti-Rabbit secondary
antibody (Rockland Trueblot, # 18-8816-33, 1:1000 in PBST with 5% milk) for one hour. After
extensive washing with PBST, blots were developed with Clarity ECL reagents (Bio-Rad #
1705060) and imaged. Validation of the loss of maternal dCTCF is shown in Supplementary
Figure 1.

Nuclear isolation and sequencing
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Nuclei were isolated from early to mid-nuclear cycle 14 embryos (stage 5) according to several
previously published works[30–32]. Control nuclei were collected from embryos  First, the cages
were cleared for 30 minutes to 1 hour to remove embryos retained by the mothers overnight,
followed by a 2 hour collection and 2 hour aging. Then, the embryos were dechorionated in
100% bleach for 1 minute, or until most of the embryos were floating, with regular agitation by a
paintbrush. The embryos were transferred to a collection basket made of a 50 mL conical and
mesh. After the embryos were rinsed with water, the embryos were transferred into an eppendorf
tube containing 0.5% PBS-Tween. From this point forward, samples were kept on ice to prevent
further aging of embryos.

A minimum of 9 early to mid-nuclear cycle 14 embryos were sorted using an inverted compound
light microscope and transferred to a 2 mL dounce containing 600 uL of lysis buffer (10 mM 10
mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% Bovine Serum Albumin, 1% RNase
Inhibitor (Enzymatics, Part Num. Y9240L)) + 0.1% IGEPAL. The embryos were homogenized
20 times with a loose pestle and 10 times with a tight pestle. Pestles were rinsed with 100 uL
lysis buffer + 0.1% IGEPAL after use. The resulting 800 uL of buffer and nuclei were transferred
into an eppendorf tube, filtered with a 40 uM filter. Nuclei were pelleted by spinning for 5
minutes at 900 g and 4°C, washed in 500 uL lysis buffer (without 0.1% IGEPAL), and pelleted
again before resuspending the nuclei in 20 uL lysis buffer (without 0.1% IGEPAL). Nuclei
concentration was then adjusted to 1000 uL nuclei per uL, then nuclei were barcoded with the
10X Chromium Single Cell 3’ Gene Expression Kit (v3). Control and dCTCFmat-/- nuclei were
processed on separate days, then sequenced together with the Illumina NovaSeq (SP flow cell).

Data processing and analysis

We used kallisto-bustools[33] to generate a custom reference index and generate a nucleus x
gene matrix. The data were analyzed in both Python and R, using primarily scVI via
scvi-tools[34,35], scanpy[36], and custom scripts for analysis.

Control and dCTCFmat-/- nuclei were filtered separately as follows: (1) nuclei were ranked by the
number of UMIs detected and nuclei ranked below the to the expected number of nuclei (10,000)
were removed; (2) nuclei with fewer than 200 expressed genes were removed; (3) nuclei with
greater than 5% mitochondrial expression were removed; (4) nuclei with greater than 50,000
UMI counts were removed; (5) genes expressed in fewer than 3 nuclei were removed.

Prior to batch correction, the data were subset to the 6000 most highly variable genes using
scanpy’s dCTCFmat-/- based on log1p normalized expression. We ran scVI with gene_likelihood =
‘nb’ to correct for batch effects.

The nuclei were clustered using the Leiden algorithm[37] within scanpy and visualized on a 2D
UMAP[38]. Prior to batch correction, nuclei were clustered on log1p normalized gene
expression. After batch correction, nuclei were clustered on the latent space derived from the
scVI model. Marker genes representing each cluster were found using the
sc.tl.rank_genes_groups function from scanpy with the Wilcoxon signed-rank test. In situ
hybridizations of representative marker genes were obtained from the Berkeley Drosophila
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Genome Project[39–41]. Colors representing Leiden clusters were projected onto a virtual
embryo using novoSpaRc[42,43].

Log2 fold change and associated p-values were obtained for each gene using diffxpy
(https://diffxpy.readthedocs.io/). Significantly differentially expressed genes were determined
following Bonferroni correction of the p-values and filtered for adjusted p-value less than 0.05
and absolute value of log2 fold change greater than or equal to 1.5. Intersecting sets of
differentially expressed genes were found and visualized with an UpSet plot[44,45], following
correction of adjusted p-values for the number of comparisons (multiplied by 11; 10 for the total
number of clusters + 1 to include bulk differential expression).

Data and code availability

Raw sequencing files have been submitted to Data Dryad and will be available here:
https://doi.org/10.6078/D13D9R

All code is available here: https://github.com/aralbright/2021_AAMSME

Results

To establish the use of single-nucleus RNA-sequencing for examining gene expression prior to
the onset of zygotic genome activation and cellularization, we hand-sorted 10 to 20 early to
mid-nuclear cycle 14 control and dCTCFmat-/- embryos and isolated nuclei for single-nucleus
RNA-sequencing using 10x Genomics 3’ Gene Expression. After filtering the data for high
quality nuclei and correcting for non-biological variability (Supplementary Figures 2-4), we used
Leiden clustering[37] to detect distinct groups of nuclei from control and dCTCFmat-/- embryos,
altogether resulting in 8,400 nuclei across 10 clusters (Figure 1a) composed of both control and
dCTCFmat-/- nuclei (Figure 1b). We also removed yolk and pole cell nuclei as these nuclei are not
informative for patterned gene expression; however, the fact that subsets of nuclei clustered on
marker gene expression for yolk or pole cell nuclei provided us with confidence that our data
accurately represent single-nucleus expression (Supplementary Figure 5). After removing groups
of nuclei as indicated, the nuclei no longer cluster according to expression of yolk or pole cell
markers, indicating that our data are of high quality (Supplementary Figure 6). Once we finalized
the dataset, we then asked whether gene expression in the clusters determined by the Leiden
algorithm are truly distinct.
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Figure 1. Single-nucleus RNA-sequencing analysis of pre-cellularization Drosophila
melanogaster embryos (a) two-dimensional UMAP embedding of nuclei shows 10
transcriptionally distinct clusters, as determined using the Leiden algorithm. Associated colors
are maintained throughout the manuscript. (b) two-dimensional UMAP embedding of nuclei
labeled by condition shows the overlap of control and dCTCFmat-/- nuclei in a reduced
dimensional space following correction for non-biological variability. Associated colors are
maintained throughout the manuscript. (c) Heatmap of scaled gene expression for top four
marker genes of each cluster, clusters are hierarchically ordered.

Given how well characterized patterned gene expression is in the early Drosophila embryo and
that we found several distinct clusters of nuclei, we suspected that the clusters may represent
different spatial regions within the embryo. Expression of the top marker genes representing each
cluster is certainly distinct, and we noticed that many of these genes are expressed in patterns,
namely fkh, tll, and htl (Figure 1c). To determine if single-nucleus RNA-sequencing in the early
embryo can be spatially resolved, we examined in situ hybridizations of top marker genes for
each cluster. We found that representative virtual and published in situ hybridizations of the top
20 marker genes (Supplementary Table 1) correspond to specific spatial regions within the
embryo for clusters 0-7 (Figure 2a-h and Figure 2a’-h’). The patterned expression patterns of
marker genes did not always correspond to future tissue types or cell fates, therefore we decided
to assign generic spatial regions to the nuclei instead. We also found by projecting our nuclei
onto a virtual embryo that the identities we assigned to each cluster correspond to the spatial
identities of these clusters (Figure 2i).
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Figure 2. Leiden clusters correspond to spatial regions within the embryo (a-h)
Representative virtual in situ hybridizations (top, a-h) for top marker genes representing each
cluster as labeled and the corresponding published in situ hybridizations (bottom, a’-h’) from the
Berkeley Drosophila Genome Project[39–41]. (i) Projection of nuclei onto a virtual embryo
labeled by the Leiden cluster as colored in Figure 1a. Virtual in situ hybridizations and projection
of clusters onto a virtual embryo were generated using novoSpaRc[42,43].

The anterior, posterior, and ventral clusters are the most defined based on a projection of our
nuclei onto a virtual embryo, while clusters that represent the middle of the embryo in general
had less well defined borders (Figure 2i). Even so, our data shows that single-nucleus
RNA-sequencing in the early Drosophila embryo yields information related to the spatial
position of nuclei prior to dissociation. We should note however, that the virtual in situ
hybridizations shown above, as well as additional virtual in situ hybridizations that represent
each cluster, contain genes present in the list of reference genes used to generate the virtual
patterns (see Ilp4, htl, fkh in Figure 2, and Antp, NetA, disco in Supplementary Figure 7). As
such, we considered that the virtual in situ hybridizations may be biased in those cases; however,
we believe the presence of several other genes representing each cluster with similar patterning
validated with both virtual and published in situ hybridizations indicates that reference bias is not
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an issue. In the end, we were unable to determine a spatial identity for clusters 8 and 9; however,
we decided to include these clusters in subsequent analyses because the nuclei passed our quality
control filters. In an effort to understand the effect of the loss of maternal dCTCF on zygotic
gene expression, we then asked whether differential expression differs between clusters and in
bulk.
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Figure 3. Differential expression of genes detected in one or more clusters, but not in bulk
(a) UpSet plot for visualizing the top 40 shared sets of differentially expressed genes between
control and dCTCFmat-/- nuclei within each cluster and in bulk. Horizontal bar plot (a, left)
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represents the total number of differentially expressed genes within the corresponding row. The
vertical bar plot (a, top) represents the number of shared differentially expressed genes for the
conditions indicated below and is sorted from largest to smallest intersecting set. Connected dots
(black) represent the corresponding group of genes in the vertical bar plot above that are
differentially expressed in the filled in circles. Genes differentially expressed in a single cluster
are represented in blue. (b-d) log(scvi normalized expression) of (b) stumps, (c) bowl, (d) Esp in
each cluster (left) and bulk (right) for control (teal) and dCTCFmat-/- nuclei (pink). Asterisks
indicate significantly different expression (absolute value of expression >= 1.5 and Bonferroni
corrected p-value < 0.05).

In most clusters and in bulk, gene expression tends to be up-regulated upon loss of maternal
dCTCF (Supplementary Figure 8). We also found that differentially expressed genes shared
between all clusters and in bulk represent one of the largest shared sets (Figure 3a, left most
black bar). However, a substantial number of differentially expressed genes are differentially
expressed in single clusters (Figure 3a, blue bars). Many other genes are also differentially
expressed in groups of clusters, but not in bulk. Because we found many differentially expressed
genes, we considered that this may be due to low expression given the sparsity of single-nucleus
RNA-sequencing; however, we found that the mean expression of differentially expressed genes
in single or multiple clusters overall does not have a substantially different pattern from that of
non-differentially expressed genes (Supplementary Figure 9). Altogether, these results suggest
that loss of maternal dCTCF may differentially impact gene expression across physical space.

Local changes in gene expression are likely lost in bulk RNA-sequencing; however, we expect to
observe differential expression of patterned genes in specific clusters. Interestingly, stumps, a
ventrally-expressed gene is differentially expressed in one ventral cluster, but not the other
(Figure 3b). bowl, a gap gene primarily expressed in the anterior, appears to be upregulated in the
posterior-biased and one of the ventral clusters (Figure 3c). Finally, Esp, a posterior-striped gene
is differentially expressed in several clusters. Intriguingly, none of these examples are
differentially expressed in bulk. We cannot be certain whether or not these and many other genes
are truly differentially expressed spatially without further investigation; however, our results
highlight the possibility of local changes in gene expression upon perturbation in the early
embryo as revealed by single-nucleus RNA-sequencing.

Discussion

We conducted the above analyses in order to determine whether we could use single-nucleus
RNA-sequencing as a means of understanding the regulation of gene expression in the early
Drosophila embryo. First, we show that nuclei can be grouped into clusters represented by
distinct gene expression. Then, we show that representative marker genes from the majority of
the clusters recapitulate known patterns of expression. Importantly, we also describe examples of
differential expression of patterning genes in individual clusters upon loss of maternal dCTCF,
but not in bulk.

Prior to this work, studies towards our understanding of the regulation of patterned gene
expression in a spatial context included cytoplasmic RNAs in measures of expression. We must
acknowledge the caveat that we do not know the extent to which maternal RNAs enter the
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nucleus and some of our results may reflect the presence of both maternal and zygotic RNAs.
Nonetheless, we believe that single-nucleus RNA-sequencing is better suited to understand
changes in gene expression in pre-cellularization embryos upon the loss of important
developmental factors because of the ability to resolve local changes in expression. Supporting
this notion, single-cell RNA-sequencing has already shown to resolve the loss of an entire cell
fate in dorsoventral mutant embryos[9].

Whether or not the changes in gene expression that we observed have implications in embryonic
development related to the loss of dCTCF is unclear without further investigation, such as
single-molecule FISH to validate the observed changes in gene expression of particular RNAs.
Ultimately, using single-nucleus RNA-sequencing to examine changes in gene expression upon
the loss of important developmental factors has the potential to uncover perturbation responses
previously undetected by bulk RNA-sequencing.
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