

1 **Conserved T-cell epitopes predicted by bioinformatics in SARS-COV-2 variants**

2

3 **Running title: Conserved T cell epitopes in SARS-Cov-2**

4

5 Feiyu Lu^{1,2}, Shengnan Wang³, Ying Wang¹, Yunpeng Yao¹, Yangeng Wang¹, Shujun Liu⁴,
6 Yangyang Wang¹, Yongli Yu^{*4}, Liying Wang^{*1}

7

8 ¹Department of Molecular Biology, College of Basic Medical Sciences and Institute of
9 Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun,
10 130021,China.

11 ²Department of Pediatric Endocrinology, The First Hospital of Jilin University, Jilin
12 University, Changchun, 130021, China

13 ³Institute of Antler Science and Product Technology, Changchun Sci-Tech University,
14 Changchun, 130000, China

15 ⁴Department of Immunology, College of Basic Medical Sciences, Jilin University,
16 Changchun, 130021, China

17

18 *Correspondence: Liying Wang or Yongli Yu, Department of Molecular Biology in
19 College of Basic Medical Sciences/Institute of Pediatrics in The First Hospital of Jilin

Conflict of interest: The authors have no conflict of interest to declare.

Funding Statement: This study is financially supported by the National Nature Scientific Foundation of China (31670937).

Correspondence: Liying Wang or Yongli Yu, Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University or Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China. Email: wangliy@jlu.edu.cn or ylyu@jlu.edu.cn

20 University or Department of Immunology in College of Basic Medical Sciences, Jilin

21 University. E-mail: wangliy@jlu.edu.cn or ylyu@jlu.edu.cn.

22

23 Word counts of the abstract: 193

24 Word counts of the text: 3358

25

26 **Abstract**

27

28 **Background:** Finding conservative T cell epitopes in the proteome of numerous variants
29 of SARS-CoV-2 is required to develop T cell activating SARS-CoV-2 capable of
30 inducing T cell responses against SARS-CoV-2 variants.

31 **Methods:** A computational workflow was performed to find HLA restricted CD8⁺ and
32 CD4⁺ T cell epitopes among conserved amino acid sequences across the proteome of
33 474727 SARS-CoV-2 strains.

34 **Results:** A batch of conserved regions in the amino acid sequences were found in the
35 proteome of the SARS-CoV-2 strains. 2852 and 847 peptides were predicted to have
36 high binding affinity to distinct HLA class I and class II molecules. Among them, 1456
37 and 484 peptides are antigenic. 392 and 111 of the antigenic peptides were found in the
38 conserved amino acid sequences. Among the antigenic-conserved peptides, 6 CD8⁺ T cell
39 epitopes and 7 CD4⁺ T cell epitopes were identified. The T cell epitopes could be
40 presented to T cells by high-affinity HLA molecules which are encoded by the HLA
41 alleles with high population coverage.

42 **Conclusions:** The T cell epitopes are conservative, antigenic and HLA presentable, and
43 could be constructed into SARS-CoV-2 vaccines for inducing protective T cell immunity
44 against SARS-CoV-2 and their variants.

45

46 **Key words:** SARS-CoV-2; T cell epitopes; Bioinformatic; vaccine; mutant-resistant;

47 population coverage.

48

49 **Background**

50

51 Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causing Coronavirus
52 disease 19 (COVID-19) (1, 2) has been epidemic in the world for more than 19 months,
53 with more than 191 million people infected and more than 4 million death, reported by
54 World Health Organization (WHO) on June 14, 2021. To fight this, a variety vaccines
55 against SARS-CoV-2 have been developed at unprecedented speed. Among them, 108
56 candidate vaccines are in clinical phase and 22 vaccines have been authorized for
57 emergency use(3, 4). Noticeably, these SARS-CoV-2 vaccines mainly target the spike (S)
58 protein which binds the receptor angiotensin-converting enzyme 2 (ACE2) of host cells
59 for the SARS-CoV-2 entry, and are believed to be able to induce the neutralizing
60 antibodies specific to the S protein, thereby providing immune protection in the
61 individuals who received the SARS-CoV-2 vaccines (5, 6). However, variants of
62 SARS-CoV-2 with S protein mutations have emerged around the world. Up to August 3rd,
63 2021, 1,009,273 varied SARS-CoV-2 genomes had been deposited into National Center
64 for Biotechnology Information (NCBI) Virus Database (7). Among them,
65 B.1.1.7 ,B.1.351, and P.1 were reported to be dominantly transmitted in the UK, South
66 Africa and Brazil, respectively, and have spread to several other countries. The
67 SARS-CoV-2 variants evolve as a result of mutation and natural selection for their
68 favorable traits, one of which is to evade the host immunity, such as neutralizing
69 antibodies, induced by infection or vaccines, raising concern on a growing number of

70 reinfection and a reduction in the effectiveness of SARS-CoV-2 vaccines in use (8-10).
71 Evidently, the sporadic reinfection of SARS-CoV-2 reported in USA, Belgium, Hong
72 Kong of China and Ecuador (11-15) could be correlated to the SARS-CoV-2 variants
73 because of the varied genomes of SARS-CoV-2 from first and second episodes of the
74 infections. Recent studies revealed that the B.1.351 variant dodged the neutralizing
75 antibodies induced by several SARS-CoV-2 vaccines, indicating that the mutations could
76 change the B cell epitopes in the S proteins (15-17) and thus calling for upgrading the
77 SARS-CoV-2 vaccines against the established and emerging variants.

78 Recently, vaccine-induced T cell responses have been noticed for up-grading
79 SARS-CoV-2 vaccines for resistant variants. Clinical studies showed that some cases of
80 asymptomatic SARS-CoV-2 exposure have been associated with cellular immune
81 response without seroconversion, indicating that SARS-CoV-2 specific T cells could be
82 relevant in disease control even in the absence of neutralizing antibodies. In COVID-19
83 patients, neutralizing antibody titers were not generally paralleled with reduced disease
84 severity, but SARS-CoV-2 specific CD4⁺ and CD8⁺ T cells are each associated with
85 milder disease (18-20). The data suggest that immunological memory of T cells, if
86 efficiently induced by the SARS-CoV-2 vaccines, could provide protection. Interestingly,
87 unlike B cells, which mainly target accessible proteins like S proteins or nucleocapsid
88 phosphoprotein (N proteins) in SARS-CoV-2, T cells can target all of viral proteins in
89 SARS-CoV-2 proteome. More importantly, the T cell responses could be less affected by
90 the mutations, and some of T cell epitopes distributed in the SARS-CoV-2 proteome

91 seem more stable than the B cell epitopes (21, 22). Therefore, SARS-CoV-2 vaccines
92 capable of activating both CD4⁺ and CD8⁺ T cells are likely to induce the protection of
93 SARS-CoV-2 variants. If so, it is required to develop the T cell vaccines, targeting the
94 mutation-resistant T cell epitopes in the SARS-CoV-2 proteome.

95 Here, we systemically compare and analyze T cell epitopes in the initially identified
96 SARS-CoV-2 and in the rapidly accumulated SARS-CoV-2 variants, with the aim of
97 locating some of conservative T cell epitopes in the SARS-CoV-2 proteome for
98 developing T cell vaccines to fight the SARS-CoV-2 variants.

99

100 **Methods**

101

102 **Data retrieval**

103 The complete sequence of SARS-CoV-2 isolate Wuhan-Hu-1 was retrieved from the
104 nucleotide database available at NCBI with the accession number NC_045512.2 (23). It
105 encodes 9860 amino acids translating into several non-structural proteins (NSP) like
106 NSP1-16 and accessory proteins like open reading frame (ORF) 3a, 6, 7a, 7b, 8, 10, along
107 with structural proteins including S protein, envelope (E) protein, membrane glycoprotein
108 (M protein), and N protein. The accession number in the NCBI of these proteins are
109 shown in Table S1.

110

111 **Selection of human leukocyte antigen (HLA) class I and HLA class II alleles**

112 HLA class I and II alleles were selected on the basis of their occurrence worldwide. The
113 worldwide most frequent 27 HLA class I and 26 HLA class II alleles (24, 25), which
114 accounting for the population coverage > 97% and >99% worldwide, respectively. As
115 shown in Table S2.

116

117 **Alignments of SARS-CoV-2 strains**

118 474727 strains of SARS-CoV-2 sequences depositing to the Global Initiative of Sharing
119 All Influenza Data (GISAID) database (26, 27) with the presenting date ranging from
120 January 27th, 2021 to April 27th, 2021 on the date of April 27th 2021, were collected.
121 Using the server of COVID-19 CoV Genetics (COVID CG) (27), the amino acid
122 sequences of each protein of repertoire to the corresponding amino acid sequences of
123 hCoV-19/Wuhan/WIV04/2019 (MN996528.1), which sharing 100% homology with the
124 reference sequence NC_045512.2 (23) were aligned. High frequency variations were
125 defined as the ratio of occurring counts of amino acid mutations to 474727 greater than
126 10^{-3} (28).

127

128 **Prediction of SARS-CoV-2-derived CD8⁺ T cell and CD4⁺ T cell epitopes**

129 The sequences of 26 proteins encoded by the SARS-CoV-2 genome were split into 9
130 amino acid-long peptides for CD8⁺ T cell epitopes and 15 amino acid-long peptides for
131 CD4⁺ T cell epitopes covering the complete proteome of the SARS-CoV-2. The
132 NetMHCpan 4.1(29) server was utilized to screen the 9-mer peptides across the proteome

133 of the SARS-COV-2 (NC_045512.2) for their binding affinity with distinct HLA class I
134 molecules encoded by selected 27 HLA class I alleles. The prediction of binding affinity
135 was based on more than 850,000 quantitative binding affinity and mass-spectrometry
136 eluted ligands peptides. The NetMHCpan 4.1 server analysis resulted in the evaluation
137 about the binding affinity and the binding strength between 9-mer peptides and selected
138 HLA class I molecules, expressed by cores of nanomolar IC50 and percentile rank
139 respectively. Thresholds for high binding affinity were set ≤ 500 nM and strong binding
140 strength were set at top 0.5%. The NetMHCIIIPan 4.0 server (29) was used to predict the
141 binding affinity and binding strength of the peptides (15 mer) across the proteome of the
142 SARS-COV-2 (NC_045512.2) to the selected HLA class II molecules (Table S2).
143 Thresholds for high binding affinity were set ≤ 500 nM and strong binding strength were
144 set at top 1%. The antigenicity of screened peptides to both HLA class I and class II
145 molecules was predicted using Vaxijen-2.0 (30, 31), which analyzed higher order
146 interactions positions of protein sequence and exploiting the physicochemical properties
147 (hydrophobicity, molecular size, polarity) of amino acids. Each of the peptides was
148 scored for selecting. The peptides with the scores above 0.4 were determined antigenicity.
149 Exclude the peptides located at the mutated positions based on the alignment of 474727
150 strains deposited to the GISAID database. The peptides presented by more HLA alleles
151 (≥ 3 alleles) were rescreened with the hypothesis that increased HLA binding promiscuity
152 meant broader population (32). The fraction of individuals capable of responding to each
153 of the candidate T cell epitopes was calculated by IEDB population Coverage (33) based

154 on the coresponding HLA genotypic frequencies.

155

156 **Molecular docking of HLA molecules to CD8⁺ T cell epitopes and CD4⁺ T cell**
157 **epitopes**

158 The spacial structure of HLA molecules were downloaded from pHLa database (34).

159 Docking simulations between predicted CD8⁺ T cell epitopes or CD4⁺ T cell epitopes and
160 presented HLA molecules were performed using the GalaxyPepDock server (35), which
161 enables prediction of 3D protein-peptide complex structure interactions from input
162 protein structure and peptide sequence using similar interactions found in the structure
163 database and energy-based optimization. The approaches of graphing are python and
164 Graphpad.

165

166 **Results**

167

168 **Alignment of sequences of proteins encoded by SARS-COV-2 strains**

169 To develop T cell vaccines, targeting the mutation-resistant T cell epitopes in the
170 SARS-CoV-2 proteome, we tried to screen universal T cell epitopes in the coserved
171 amino acid sequences across SARS-COV-2 proteome. Firstly, we collected and
172 comprehensively screened all of the 474727 SARS-COV-2 sequences with the presenting
173 date ranging from January 27th, 2021 to April 27th, 2021, deposited to GISAID database
174 (26, 27). These strains were isolated from the Asia (9403/474727), Africa (961/474727),

175 Europe (315833/474727), Oceania (1225/474727), North America (144760/474727) and
176 South America (2545/474727). To find the conserved amino acid sequences in the
177 repertoire of the SARS-CoV-2, using the server of COVID CG (27), we aligned the
178 proteome of all these submitted sequences with the sequence of
179 hCoV-19/Wuhan/WIV04/2019 (MN996528.1) (36) which shares 100% homology with
180 the reference sequence NC_045512.2 (23). The alignment revealed that the amino acid
181 mutations were widely distributed in the proteins across the SARS-CoV-2 proteome,
182 ranging from 2.12×10^{-6} to 9.96×10^{-1} in occurring frequency. The frequency higher than
183 10^{-3} was defined as relatively high frequency mutations (28). With this cut-off, we
184 identified 899 amino acid substitutions and 20 amino acid deletions as relatively high
185 frequency variations at 816 positions in the SARS-CoV-2 proteome (Figure 1A). As for
186 the positions, 117 are in the S protein, a target for inducing neutralizing antibodies; 153 in
187 NSP3; 66 in NSP6 and ORF3a; 53 in NSP2 and 1 to 42 in the other proteins encoded by
188 the SARS-CoV-2 genome. However, nevertheless, we identified a batch of positions
189 which are conserved in the proteome of SARS-CoV-2 (Figure 1B). Specifically, 1156 are
190 in the S protein; 1792 and 903 in the NSP3 and NSP12 proteins, 12 to 585 in the rest
191 proteins of SARS-CoV-2 proteome.

192

193 **Prediction of CD8⁺ T cell and CD4⁺ T cell epitopes in the conserved amino acid**
194 **sequences across SARS-CoV-2 proteome**

195 Next, we screened and predicted T cell epitopes in the repertoire of the SARS-CoV-2

196 proteome. As for the CD8⁺ T cell epitopes, using NetMHCpan 4.1 server (29), we
197 screened the 9-mer peptides across the proteome of the SARS-COV-2 (NC_045512.2) for
198 their binding affinity with distinct HLA class I molecules encoded by 27 HLA class I
199 alleles (Table S2). The alleles account for the population coverage > 97% worldwide (24).
200 Based on more than 850,000 quantitative binding affinity and mass-spectrometry eluted
201 ligands peptides, the NetMHCpan 4.1 server analysis resulted in the evaluation about the
202 binding affinity and the binding strength between 9-mer peptides and selected HLA class
203 I molecules, expressed by scores of nanomolar IC50 and percentile rank respectively.
204 Thresholds for high binding affinity were set \leq 500 nM and strong binding strength were
205 set at top 0.5%. Eventually, 2852 of the peptides with high affinity to the distinct class I
206 molecule were selected for further analysis. As for the CD4⁺ T cell epitopes, using the
207 NetMHCIIIPan 4.0 server (29), we predicted the binding affinity and binding strength of
208 the peptides (15 mer) across the proteome of the SARS-COV-2 (NC_045512.2) to the
209 HLA class II molecules (Table S2) encoded by the alleles which account for the
210 population coverage >99% (25). Resultantly, 847 candidate HLA class II binding
211 peptides from the SARS-COV-2 proteome were predicted to have high binding affinity (\leq
212 500 nM) and strong binding strength (percentile rank \leq 1%).

213 Furthermore, we predicted whether these candidate peptides paired with distinct
214 HLA molecules could efficiently bind T cell receptors (TCR) by analysing
215 hydrophobicity, molecular size, polarity of amino acids of the peptides, using Vaxijen-2.0
216 (30, 31). Each of the peptides was scored by the server. The peptides scored above 0.4

217 were selected as the antigenic ones which turned out to be 1456 peptides and 484 of
218 peptides, restricted by the selected HLA class I and class II molecules, respectively.
219 Based on the above screening, we tried to locate T cell epitopes in the conserved amino
220 acid sequences across the proteome of SARS-CoV-2 by aligning the sequences of the
221 selected T cell epitopes with the SARS-CoV-2 sequences deposited to the GISAID
222 database from January 27th, 2021 to April 27th, 2021. As shown in the Figure 2A, 392 T
223 cell epitopes restricted to the selected HLA class I molecules were found. Specifically, 82
224 are in the NSP3, 69 in the NSP12, 43 in the S protein, 30 in the NSP13, 21 in the NSP4,
225 20 in the M protein, 18 in the NSP15, 17 in the NSP2 and NSP16, 14, 13 and 11 in the
226 NSP14, NSP6 and N protein, 8 and 7 in the NSP5 and NSP8, 1 to 5 are in the ORF6,
227 NSP10, ORF3a, NSP7, E protein, NSP1 and NSP9. And 111 candidate T cell epitopes
228 restricted to selected HLA class II molecules were found. Among them, 34 are in the
229 NSP3, 16 in the S protein, 15 in the NSP12, 13 in the NSP13, 11 in the NSP15, 1 to 4 in
230 the NSP1-2, NSP4-8, NSP10, NSP14, NSP16, N and M proteins.

231 To find the universal T cell epitopes, we further assessed the HLA binding
232 promiscuity of the selected T cell epitopes. Firstly, the T cell epitopes presented by one or
233 two HLA molecules were excluded. As shown in the Figure 2B, 88 or 14 T cell epitopes
234 restricted by more than two HLA class I or II molecules were selected as the candidate
235 CD8⁺ T cell epitopes or CD4⁺ T cell epitopes, respectively. Then, based on the
236 corresponding HLA genotypic frequencies, the fraction of individuals capable of
237 responding to each of the candidate T cell epitopes was calculated by IEDB population

238 Coverage (33). The results showed that the potential coverage in populations was ranging
239 from 5.38% to 52.34% for the 88 CD8⁺ T cell epitopes, and 27.96% to 97.48% for 14
240 CD4⁺ T cell epitopes (Figure 2B). 6 of CD8+ and 7 of CD4+ epitopes were selected
241 finally, with the population coverage > 45% for CD8⁺ T cell epitopes and > 90% for
242 CD4⁺ T cell epitopes respectively.

243

244 **The interactions between predicted T cell epitopes and presented HLA molecules**

245 Ultimately, we identified 6 CD8⁺ T cell epitopes, designated as S 691-699, NSP3 950-958,
246 NSP4 420-428, NSP12 123-131, NSP12 647-655 and NSP13 209-217, and 7 CD4⁺ T cell
247 epitopes, designated as S 310-324, NSP3 1134-1148, NSP12 778-792, NSP13 177-191,
248 NSP13 413-427, NSP13 538-552, and NSP14 232-246, respectively. Specifically, among
249 the CD8⁺ T cell epitopes, 4, 3 or 2 can be presented by the HLA class I proteins
250 encoded by the alleles of HLA A*02:01, A*02:03 and A*32:01, of HLA A*02:06 and
251 B*08:01, or of HLA A*68:02; A*03:01, A*11:01, A*30:02, B*15:01 and B*35:01
252 (Figure 3A), respectively. All of the CD4⁺ T cell epitopes can be presented by the HLA
253 class II proteins encoded by the alleles of HLA DPA10103-DPB10401,
254 DPA10201-DPB10101 and DPA10301-DPB10402. Also, among the CD4⁺ T cell epitopes,
255 5 or 1 can be presented by HLA class II proteins encoded by the alleles of
256 DPA10103-DPB10201 or DPA10201-DPB10501, respectively (Figure 3B).

257 At last, we conducted the docking simulations between the selected T cell epitopes
258 and the HLA molecules using the GalaxyPepDock (35), a server which enables prediction

259 of 3D protein-peptide complex structure interactions from input protein structure and
260 peptide sequence using similar interactions found in the structure database and
261 energy-based optimization. Ten models of each epitope-HLA complex were generated on
262 the basis of minimized energy scores. The scores of estimated accuracy represent the
263 estimated fraction of correctly predicted binding site residues. We docked each of the
264 selected CD8⁺ T cell epitopes or CD4⁺ T cell epitopes with the corresponding HLA
265 molecules and scored the pairs. As shown in Table 1, all of the pairs between the 6
266 selected CD8⁺ T cell epitopes and the distinct HLA class I molecules scored with
267 estimated accuracy 1. The pairs between the 7 selected CD4⁺ T cell epitopes and the
268 distinct HLA class II molecules scored with estimated accuracy in a range from 0.792 to
269 0.852, which presents high grade 3D fits of the pairs. The results were further supporting
270 that these epitopes should be strong binders to presented HLA molecules and promising
271 candidates for vaccine development studies.

272

273 **Discussion**

274

275 Using the bioinformatic tools, we screened and identified 6 CD8⁺ T cell epitopes and 7
276 CD4⁺ T cell epitopes in the conserved amino acid sequences among the 474727
277 SARS-CoV-2 strains whose sequences are deposited to the GISAID. Notably, the
278 inter-individual variation in the SARS-CoV-2 sequences is low, compared to many other
279 RNA viruses (37, 38), in part because coronaviruses encode a 3'-5' exonuclease activity

280 (NSP14), which provides a proofreading function that enhances replication fidelity and
281 limits viral sequence diversification (39). Thus, it is virtually possible to find T cell
282 epitopes in the repertoire of the SARS-CoV-2 proteins. Primarily, these T cell epitopes
283 exist at the the essential amino acid sequences which are crutial for the SARS-CoV-2
284 life-cycle in the host cell. As shown in Fig 2B, two conserved T cell epitopes were
285 identified in S proteins among the 474727 SARS-CoV-2 strains. One is a CD4⁺ T cell
286 epitope (S310-324) which is partially overlapped with the receptor binding domain (RBD)
287 of the S1 subunit (S319-541), and another is a CD8⁺ T cell epitope (S691-699) which
288 locates in the S1/S2 cleavage region (S690-709). The SARS-CoV-2 with mutations in the
289 epitopes (S310-324, S691-699) may hamper the cell entry of the SARS-CoV-2. Two T
290 cell epitopes were identified in the NSP3, a papain-like protease which is critical for the
291 SARS-CoV-2 to yield mature functional proteins from a polyprotein (40, 41). One is
292 CD8⁺ T cell epitope (NSP3 950-958) which locates in the crutial domain of the
293 papain-like protease. Another is CD4⁺ T cell epitope (NSP3 1134-1148) which locates in
294 a nucleic acid-binding domain (NAR). The SARS-CoV-2 with mutations in the epitopes
295 (NSP3 950-958, NSP3 1134-1148) may lose its capacity to generate functional proteins.
296 Two CD8⁺ T cell epitops (NSP12 123-131; NSP12 647-655) and one CD4⁺ T cell epitope
297 (NSP12 778-792) are in the NSP12 protein, a RNA-dependent RNA polymerase (RdRp)
298 which is required for generating SARS-CoV-2 RNAs (42). Three CD4⁺ T cell epitopes
299 (NSP13 177-191; NSP13 413-427; NSP13 538-552) and one CD8⁺ T cell epitope
300 (NSP13 209-217) is in the NSP13 protein, a helicase which can unwind DNA or RNA in

301 an nucleotide triphosphate (NTP)-dependent manner with a 5'>3' polarity (43), a process
302 critical for SARS-CoV-2 replication-transcription. One CD4⁺ T cell epitope (NSP14
303 232-246) is in the NSP14 protein, a 3'-5' exonuclease which provides a proofreading
304 function that enhances replication fidelity and limits viral sequence diversification (44);
305 One CD8⁺ T cell epitope (NSP4 420-428) is identified in the NSP4 protein, a
306 membrane-spanning protein containing transmembrane domain 2 which helps the
307 SARS-CoV-2 to modify endoplasmic reticulum (ER) membrane in the host cell (45).
308 Obviously, the 6 CD 8⁺ T cell epitopes and 7 CD4⁺ T cell epitopes identified in this study
309 are all located in the key proteins for SARS-CoV-2 life-cycle and therefore could be the
310 universal T cell epitopes which are conservatively retained in all SARS-CoV-2 strains.

311 Hopefully, the conserved T cell epitopes presented here could be constructed into
312 SARS-CoV-2 vaccines to induce more universal T cell responses against the
313 SARS-CoV-2. Accumulating evidence showed that the T cell immunity, if being induced
314 by the SARS-CoV-2 vaccines contained the T cell epitopes, could be beneficial to the
315 patients infected with SARS-CoV-2. As reported, circulating SARS-CoV-2-specific CD8⁺
316 T cells and CD4⁺ T cells were identified in ~70% and 100% of COVID-19 convalescent
317 patients , they are associated with the better outcomes of the COVID-19 patients (18, 46).
318 Importantly, the protective specific T cell responses against the SARS-CoV-2, after being
319 induced, could be more sustained compared to the neutralizing humoral responses (47).
320 Functional SARS-CoV-2-specific T cell responses are retained at 6 months following
321 infection (48). In contrast, SARS-CoV-2-specific antibody responses were waned after 1

322 month after symptom onset (49). Furthermore, SARS-CoV-2-specific memory CD4⁺ T
323 cells, if being induced prior to the natural infection, will help the SARS-CoV-2-specific B
324 cell to launch rapid and robust antibody responses (46). Interestingly, the SARS-CoV-2
325 needs to maintain the T cell epitopes revealed in this study for its life-cycle, even facing
326 the evolution pressures caused by the acquired specific immunity induced by the natural
327 infection of vaccination. Thus, the SARS-CoV-2 vaccines constructed with the T cell
328 epitopes identified in this study could induce more universal T cell responses against the
329 SARS-CoV-2 variants. Lastly, the revealed T cell epitopes, due to their capacity of being
330 presented by the HLA molecules encoded by widely distributed HLA alleles, could be
331 ideal targets for developing novel SARS-CoV-2 vaccines which induce the protective T
332 cell immunity in large populations worldwide.

333

334 **Acknowledgments**

335

336 The authors would like to thank Zhengang Jiao for his help in the application of
337 informatics software, as well as Mengyuan Kou, Wenting Lu, and Cuiyun Cui for their
338 help to the authors in other aspects.

339

340 **Funding Statement**

341

342 This study is financially supported by the National Nature Scientific Foundation of China

343 (31670937).

344

345 **Conflict of interest**

346

347 The authors have no conflict of interest to declare.

348

349 **References**

350

351 1. Anonymous. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying
352 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol* 5:536-544.

353 2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X,
354 Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A Novel Coronavirus from Patients with Pneumonia in
355 China, 2019. *N Engl J Med* 382:727-733.

356 3. WHO. 2021. COVID-19 vaccine tracker and landscape.

357 <https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines>.

358 Accessed

359 4. Anonymous. 2021. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process.

360 5. Krammer F. 2020. SARS-CoV-2 vaccines in development. *Nature* 586:516-527.

361 6. The Lancet Respiratory M. 2021. Realising the potential of SARS-CoV-2 vaccines-a long shot?
362 *Lancet Respir Med* 9:117.

363 7. Hatcher EL, Zhdanov SA, Bao Y, Blinkova O, Nawrocki EP, Ostapchuk Y, Schäffer AA, Brister JR.

364 2017. Virus Variation Resource - improved response to emergent viral outbreaks. *Nucleic Acids*
365 *Res* 45:D482-d490.

366 8. Callaway E. 2021. Fast-spreading COVID variant can elude immune responses. *Nature*
367 589:500-501.

368 9. Callaway E, Ledford H. 2021. How to redesign COVID vaccines so they protect against variants.
369 *Nature* 590:15-16.

370 10. Cohen J. 2021. South Africa suspends use of AstraZeneca's COVID-19 vaccine after it fails to
371 clearly stop virus variant. *Science* doi:10.1126/science.abg9559.

372 11. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, Laverdure C, Verma SC,
373 Rossetto CC, Jackson D, Farrell MJ, Van Hooser S, Pandori M. 2021. Genomic evidence for
374 reinfection with SARS-CoV-2: a case study. *Lancet Infect Dis* 21:52-58.

375 12. Molina LP, Chow SK, Nickel A, Love JE. 2020. Prolonged Detection of Severe Acute Respiratory
376 Syndrome Coronavirus 2 (SARS-CoV-2) RNA in an Obstetric Patient With Antibody Seroconversion.
377 *Obstet Gynecol* 136:838-841.

378 13. Van Elslande J, Vermeersch P, Vandervoort K, Wawina-Bokalanga T, Vanmechelen B, Wollants E,
379 Laenen L, André E, Van Ranst M, Lagrou K, Maes P. 2020. Symptomatic SARS-CoV-2 reinfection by
380 a phylogenetically distinct strain. *Clin Infect Dis* doi:10.1093/cid/ciaa1330.

381 14. To KK, Hung IF, Ip JD, Chu AW, Chan WM, Tam AR, Fong CH, Yuan S, Tsoi HW, Ng AC, Lee LL, Wan P,
382 Tso E, To WK, Tsang D, Chan KH, Huang JD, Kok KH, Cheng VC, Yuen KY. 2020. COVID-19
383 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome
384 sequencing. *Clin Infect Dis* doi:10.1093/cid/ciaa1275.

385 15. Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, Marquez S, Gutierrez B, Rojas-Silva P, Grunauer M,
386 Trueba G, Barragan V, Cardenas P. COVID-19 Re-Infection by a Phylogenetically Distinct
387 SARS-CoV-2 Variant, First Confirmed Event in South America. Social Science Electronic Publishing.

388 16. Overbaugh J. 2020. Understanding protection from SARS-CoV-2 by studying reinfection. *Nat Med*
389 26:1680-1681.

390 17. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M,
391 Gaebler C, Lieberman JA, Oliveira TY, Yang Z, Abernathy ME, Huey-Tubman KE, Hurley A, Turroja
392 M, West KA, Gordon K, Millard KG, Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J,
393 Unson-O'Brien C, Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R, Hatzioannou T,
394 Bieniasz PD, Nussenzweig MC. 2021. mRNA vaccine-elicited antibodies to SARS-CoV-2 and
395 circulating variants. *Nature* doi:10.1038/s41586-021-03324-6.

396 18. Rydznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S,
397 Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric
398 R, Peters B, Greenbaum J, Ollmann Saphire E, Smith DM, Sette A, Crotty S. 2020. Antigen-Specific
399 Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease
400 Severity. *Cell* 183:996-1012.e19.

401 19. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C,
402 Lopez-Camacho C, Slon-Campos J, Zhao Y, Stuart D, Paeson G, Grimes J, Antson F, Bayfield OW,
403 Hawkins DE, Ker DS, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P,
404 de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P,
405 Kessler B, Fry JW, Schwabe NF, Semple MG, Baillie KJ, Moore S, Openshaw PJ, Ansari A, Dunachie

406 S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, et al. 2020. Broad and strong memory CD4 (+)
407 and CD8 (+) T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients. bioRxiv
408 doi:10.1101/2020.06.05.134551.

409 20. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A,
410 Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF, Greenbaum JA, Peters B,
411 Krammer F, Smith DM, Crotty S, Sette A. 2020. Targets of T Cell Responses to SARS-CoV-2
412 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell
413 181:1489-1501.e15.

414 21. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM,
415 Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R,
416 Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A,
417 Weiskopf D. 2020. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans.
418 Science 370:89-94.

419 22. Jain N, Shankar U, Majee P, Kumar A. 2021. Scrutinizing the SARS-CoV-2 protein information for
420 designing an effective vaccine encompassing both the T-cell and B-cell epitopes. Infect Genet Evol
421 87:104648.

422 23. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL,
423 Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A new coronavirus associated
424 with human respiratory disease in China. Nature 579:265-269.

425 24. Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN, Broadwater A,
426 Kolla RV, De Silva AD, de Silva AM, Mattia KA, Doranz BJ, Grey HM, Shresta S, Peters B, Sette A.

427 2013. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked

428 protective role for CD8+ T cells. *Proc Natl Acad Sci U S A* 110:E2046-53.

429 25. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. 2011. Functional classification of

430 class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a

431 surprising degree of repertoire sharing across supertypes. *Immunogenetics* 63:325-35.

432 26. Elbe S, Buckland-Merrett G. 2017. Data, disease and diplomacy: GISAID's innovative contribution

433 to global health. *Glob Chall* 1:33-46.

434 27. Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza data - from vision to

435 reality. *Euro Surveill* 22.

436 28. Xu W, Wang M, Yu D, Zhang X. 2020. Variations in SARS-CoV-2 Spike Protein Cell Epitopes and

437 Glycosylation Profiles During Global Transmission Course of COVID-19. *Front Immunol* 11:565278.

438 29. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and NetMHCIIpan-4.0:

439 improved predictions of MHC antigen presentation by concurrent motif deconvolution and

440 integration of MS MHC eluted ligand data. *Nucleic Acids Res* 48:W449-w454.

441 30. Doytchinova IA, Flower DR. 2007. VaxiJen: a server for prediction of protective antigens, tumour

442 antigens and subunit vaccines. *BMC Bioinformatics* 8:4.

443 31. Doytchinova IA, Flower DR. 2007. Identifying candidate subunit vaccines using an

444 alignment-independent method based on principal amino acid properties. *Vaccine* 25:856-66.

445 32. Crooke SN, Ovsyannikova IG, Kennedy RB, Poland GA. 2020. Immunoinformatic identification of B

446 cell and T cell epitopes in the SARS-CoV-2 proteome. *Sci Rep* 10:14179.

447 33. Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. 2006. Predicting population

448 coverage of T-cell epitope-based diagnostics and vaccines. *BMC Bioinformatics* 7:153.

449 34. Menezes Teles EOD, Melo Santos de Serpa Brandão R, Claudio Demes da Mata Sousa L, das

450 Chagas Alves Lima F, Jamil Hadad do Monte S, Sérgio Coelho Marroquim M, Vanildo de Sousa

451 Lima A, Gilberto Borges Coelho A, Matheus Sousa Costa J, Martins Ramos R, Socorro da Silva A.

452 2019. pHLA3D: An online database of predicted three-dimensional structures of HLA molecules.

453 *Hum Immunol* 80:834-841.

454 35. Ko J, Park H, Heo L, Seok C. 2012. GalaxyWEB server for protein structure prediction and

455 refinement. *Nucleic Acids Res* 40:W294-7.

456 36. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J,

457 Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu

458 LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new

459 coronavirus of probable bat origin. *Nature* 579:270-273.

460 37. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CCS, Boshier

461 FAT, Ortiz AT, Balloux F. 2020. Emergence of genomic diversity and recurrent mutations in

462 SARS-CoV-2. *Infect Genet Evol* 83:104351.

463 38. Rausch JW, Capoferri AA, Katusiime MG, Patro SC, Kearney MF. 2020. Low genetic diversity may

464 be an Achilles heel of SARS-CoV-2. *Proc Natl Acad Sci U S A* 117:24614-24616.

465 39. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. 2011. Coronaviruses: an RNA

466 proofreading machine regulates replication fidelity and diversity. *RNA Biol* 8:270-9.

467 40. Báez-Santos YM, St John SE, Mesecar AD. 2015. The SARS-coronavirus papain-like protease:

468 structure, function and inhibition by designed antiviral compounds. *Antiviral Res* 115:21-38.

469 41. Korn SM, Dhamotharan K, Fürtig B, Hengesbach M, Löhr F, Qureshi NS, Richter C, Saxena K,
470 Schwalbe H, Tants JN, Weigand JE, Wöhnert J, Schlundt A. 2020. (1)H, (13)C, and (15)N backbone
471 chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural
472 protein 3e. *Biomol NMR Assign* 14:329-333.

473 42. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y,
474 Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q,
475 Lou Z, Rao Z. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus.
476 *Science* 368:779-782.

477 43. Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET,
478 Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. 2020. Structural Basis for
479 Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. *Cell*
480 182:1560-1573.e13.

481 44. Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng WL. 2020. Coronavirus RNA
482 Proofreading: Molecular Basis and Therapeutic Targeting. *Mol Cell* 79:710-727.

483 45. Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y, Kamitani W. 2017. Two-amino acids change in
484 the nsp4 of SARS coronavirus abolishes viral replication. *Virology* 510:165-174.

485 46. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C,
486 López-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield
487 OW, Hawkins D, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J,
488 Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W,
489 Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM,

490 Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, et al. 2020. Broad and strong

491 memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals

492 following COVID-19. *Nat Immunol* 21:1336-1345.

493 47. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M,

494 Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low JG, Tan YJ, Bertoletti A. 2020.

495 SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.

496 *Nature* 584:457-462.

497 48. Zuo J, Dowell AC, Pearce H, Verma K, Long HM, Begum J, Aiano F, Amin-Chowdhury Z, Hoschler K,

498 Brooks T, Taylor S, Hewson J, Hallis B, Stapley L, Borrow R, Linley E, Ahmad S, Parker B, Horsley A,

499 Amirthalingam G, Brown K, Ramsay ME, Ladhani S, Moss P. 2021. Robust SARS-CoV-2-specific T

500 cell immunity is maintained at 6 months following primary infection. *Nat Immunol* 22:620-626.

501 49. Kim JY, Kwon JS, Bae S, Cha HH, Lim JS, Kim MC, Chung JW, Park SY, Lee MJ, Kim BN, Jung J, Kim

502 MJ, Shin EC, Kim SH. 2021. SARS-CoV-2-Specific Antibody and T Cell Response Kinetics According

503 to Symptom Severity. *Am J Trop Med Hyg* doi:10.4269/ajtmh.20-1594.

504

505

506 **Figure legends**

507

508 **Figure 1. Mutated and conserved amino acid sequences of SARS-COV-2.** Frequency
509 of mutation and homology plot based on the full-length proteome sequence of
510 SARS-CoV-2. Proteome sequences of 474727 SARS-CoV-2 strains deposited to the
511 GISAID database with the presenting date ranging from January 27th, 2021 to April 27th,
512 2021 were aligned with hCoV-19/Wuhan/WIV04/2019 (accession number MN996528.1),
513 which shares 100% homology with the reference sequence Wuhan-Hu-1(NC_045512.2).
514 Mutations with occurring frequency greater than 10^{-3} were recruited. 899 amino acid
515 substitutions and 20 amino acid deletions were found across the proteome of
516 SARS-COV-2. **(A)** Dots represent the amino acid of mutations. **(B)** Lines represent the
517 amino acid of mutations. The percentage of homology 100% represent the conserved
518 amino acid sequences. S (spike protein), E (envelope protein), M (membrane
519 glycoprotein), N (nucleocapsid phosphoprotein). NSP (nonstructural protein). ORF
520 (open reading frame).

521

522 **Figure 2. The predicted conserved and universal T cell epitopes.** 9-mer peptides (in
523 blue) derived from SARS-CoV-2 (NC_045512.2) presented by selected HLA class I
524 molecules with high binding affinity ($IC50 \leq 500$ nM, percentile rank $< 0.5\%$) and
525 antigenicity predicted by the NetMHCpan 4.1 and Vaxijen-2.0 server. 15-mer Peptides (in
526 yellow) across the proteome of the SARS-COV-2 (NC_045512.2) presented by the

527 selected HLA class II molecules with high binding affinity ($IC50 \leq 500$ nM, percentile
528 rank < 1%) and antigenicity predicted by the NetMHCIIIPan 4.0 and Vaxijen-2.0 server.

529 (A) Squares represent the predicted peptides located at the conserved amino acid
530 sequences.(B) The vertical lines represent the peptides loacting at conserved amino acid
531 sequences presented by more alleles of HLA molecules (≥ 3 alleles). The population
532 coverage was calculated by IEDB population Coverage server. Transverse lines represent
533 the cut-off of population coverage 45% or 90%, respectively. S (spike protein), E
534 (envelope protein), M (membrane glycoprotein), N (nucleocapsid phosphoprotein). NSP
535 (nonstructural protein). ORF (open reading frame).

536

537 **Figure 3. The selected conservative and universal T cell epitopes and the presented**
538 **HLA molecules.** The selected conservative and universal T cell epitopes with
539 antigenicity and high binding affinity to presented HLA molecules illustrated by dots. (A)
540 CD8⁺ T cell epitopes. (B) CD4⁺ T cell epitopes.

Table 1 Docking simulations between the selected T cell epitopes and the presented HLA molecules by GalaxyPepDock

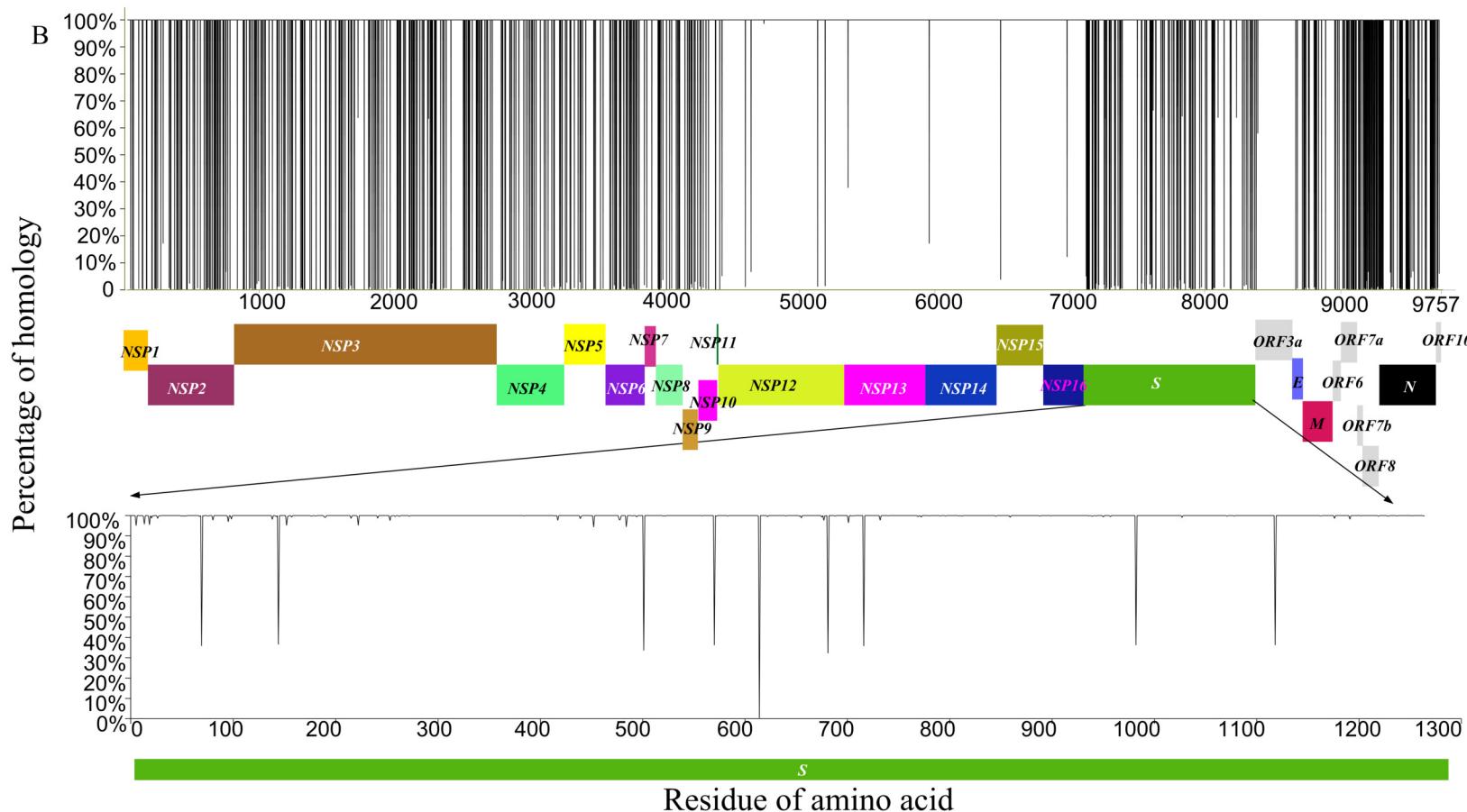
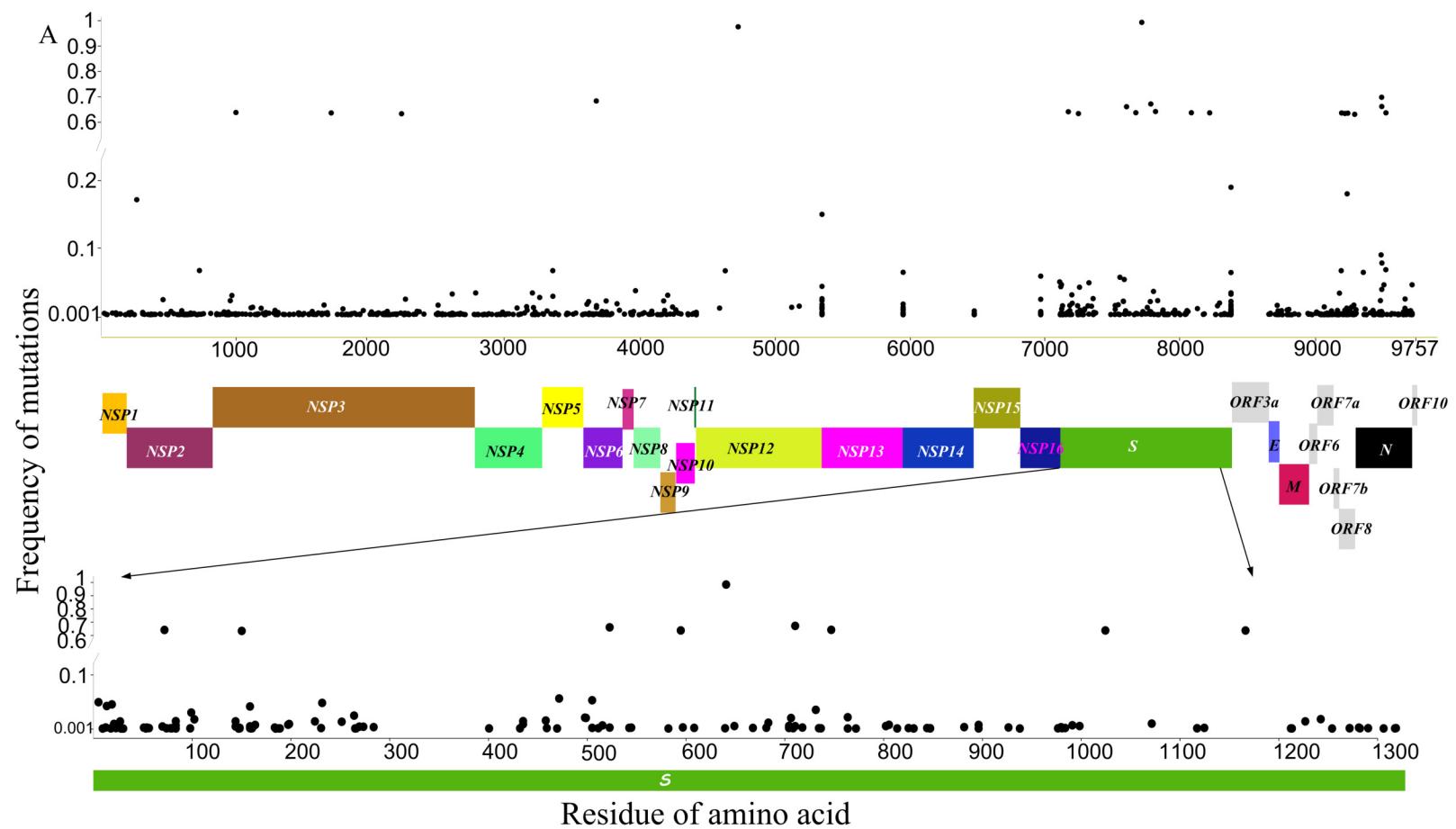
Epitope	Sequence of epitope	Alleles of HLA molecules	PDB ID of	Protein	Interaction	Estimated accuracy ⁴
			HLA molecules ¹	structure similarity ²	similarity score ³	
S691-699	SIIAYTMSL	HLA-A*02:01	3UTQ:A	0.988	241	1
		HLA-A*02:03	3OX8:A	0.989	226	1
		HLA-A*02:06	3BH9:A	0.98	238	1
		HLA-A*32:01	5E00:A	0.983	205	1
		HLA-A*68:02	4HX1:A	0.977	231	1
		HLA-B*08:01	4QRU:A	0.994	208	1
NSP4 420-428	FLLNKEMYL	HLA-A*02:01	3UTQ:A	0.988	268	1
		HLA-A*02:03	3OX8:A	0.989	244	1
		HLA-A*02:06	3BH9:A	0.98	265	1

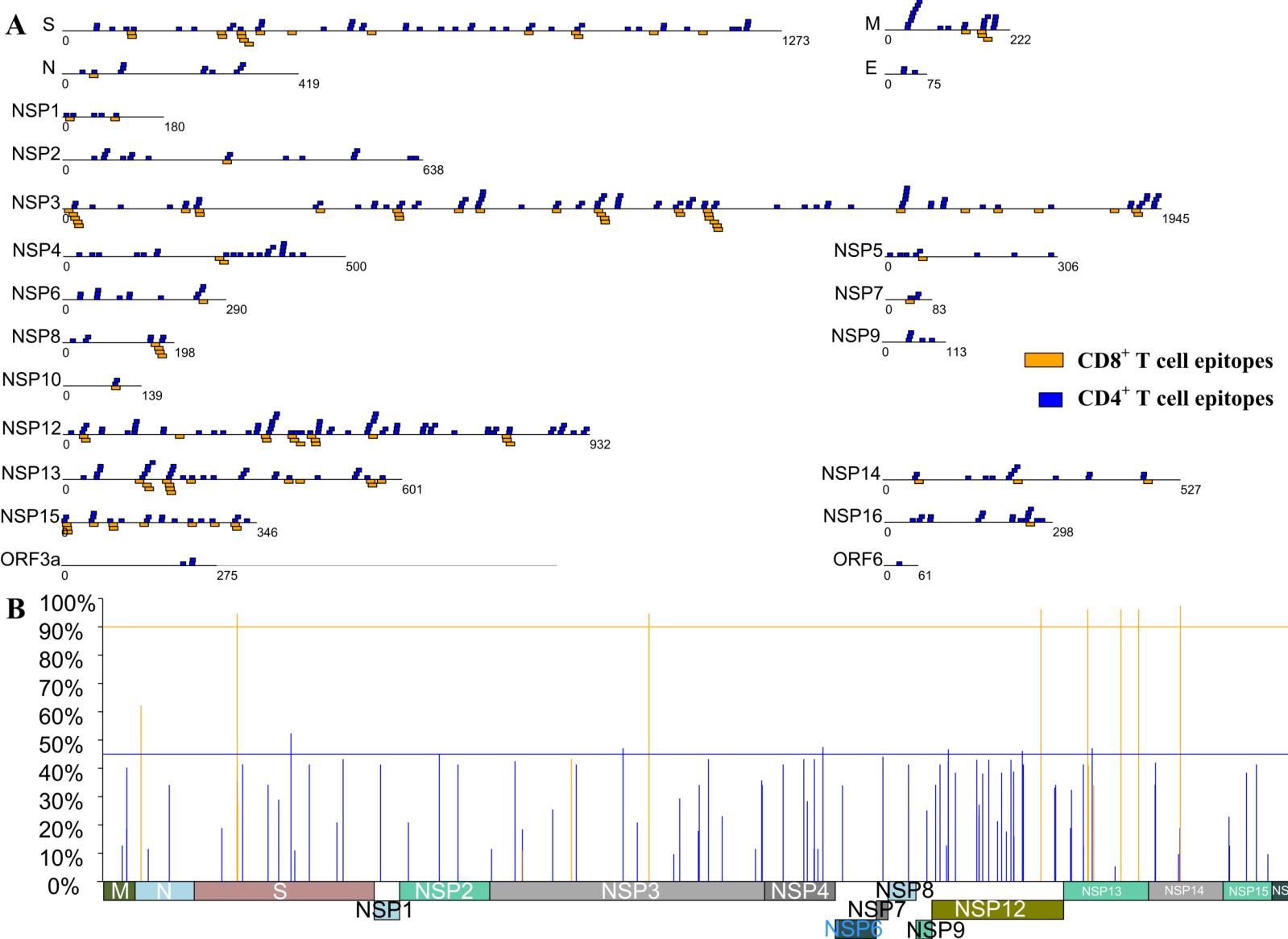
		HLA-B*08:01	4QRU:A	0.994	305	1
		HLA-A*02:01	3UTQ:A	0.986	239	1
		HLA-A*02:03	3OX8:A	0.988	227	1
NSP12 123-131	TMADLVYAL	HLA-A*02:06	3BH9:A	0.973	236	1
		HLA-A*32:01	5E00:A	0.979	206	1
		HLA-A*68:02	4HX1:A	0.979	221	1
		HLA-A*02:01	3UTQ:A	0.986	235	1
		HLA-A*02:03	3OX8:A	0.988	230	1
NSP12 647-655	SLSHRYFYRL	HLA-B*08:01	4QRU:A	0.994	264	1
		HLA-B*15:01	1XR9:A	0.986	212	1
		HLA-B*35:01	2CIK:A	0.991	226	1
		HLA-A*03:01	3RL1:A	0.989	190	1
		HLA-A*11:01	1X7Q:A	0.969	181	1
NSP13 209-217	VVYRGTTTY					

		HLA-A*30:02	1X7Q:A	0.973	181	1
		HLA-A*32:01	5E00:A	0.989	187	1
		HLA-A*03:01	3RL1:A	0.989	196	1
		HLA-A*11:01	1X7Q:A	0.99	186	1
		HLA-A*30:02	1X7Q:A	0.984	196	1
NSP3 950-958	VMYMGTLSY	HLA-A*32:01	5E00:A	0.979	199	1
		HLA-B*15:01	1XR9:A	0.986	219	1
		HLA-B*35:01	2CIK:A	0.991	234	1
		HLA-DPA10103-DPB10401	3WEX:A;			
S 310-324	KGIYQTSNFRVQPTE	HLA-DPA10201-DPB10101	3WEX:B	0.95	96	0.792
		HLA-DPA10301-DPB10402				
		HLA-DPA10103-DPB10401	3WEX:A;			
NSP12 778-792	SIKNFKSVLYYQNNV	HLA-DPA10201-DPB10101	3WEX:B	0.962	98	0.808

		HLA-DPA10301-DPB10402				
		HLA-DPA10103-DPB10201				
		HLA-DPA10103-DPB10201				
NSP13 177-191	NRNYVFTGYRVTKNS	HLA-DPA10201-DPB10101	3WEX:A;	0.95	106	0.814
		HLA-DPA10301-DPB10402	3WEX:B			
		HLA-DPA10103-DPB10401				
		HLA-DPA10103-DPB10401				
NSP13 413-427	TKGTLEPEYFNSVCR	HLA-DPA10103-DPB10201	3WEX:A;	0.95	106	0.814
		HLA-DPA10201-DPB10101	3WEX:B			
		HLA-DPA10301-DPB10402				
		HLA-DPA10103-DPB10401	3WEX:A;	0.95	116	0.837
NSP13 538-552	GSEYDYVIFTQTET	HLA-DPA10103-DPB10201	3WEX:B			
		HLA-DPA10201-DPB10101				

		HLA-DPA10301-DPB10402				
		HLA-DPA10103-DPB10201				
		HLA-DPA10201-DPB10101				
NSP14 232-246	GFDYVYNPFMIDVQQ	HLA-DPA10201-DPB10501	3WEX:A;	0.963	117	0.852
		HLA-DPA10301-DPB10402	3WEX:B			
		HLA-DPA10103-DPB10401				
NSP3		HLA-DPA10103-DPB10401	3WEX:A;			
1134-1148	SRELKVTFFPDNGD	HLA-DPA10201-DPB10101	3WEX:B	0.943	112	0.82
		HLA-DPA10301-DPB10402				



¹ PDB ID of the 3D structure used as template for the modeling derived from pHLA database .


²Similarity of the input protein structure to the selected template structure.

³Similarity of the amino acids of the target complex aligned to the contacting residues in the template structure to the template amino acids.

⁴The estimated fraction of correctly predicted binding site residues.

