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Abstract 
Improvements in crop resistance to pathogens can reduce yield losses and address global malnourishment 
today.  Gene-for-gene -type interactions can identify new sources of resistance but genetic resistance is often 
short lived.  Ultimately an understanding of how pathogens rapidly adapt will allow us to both increase 
resistance gene durability and more effectively target chemical treatments.  Until recently all agricultural 
pathogens were living on wild hosts.  To understand crop pathogen evolution, we compared genetic diversity 
in agricultural and wild populations.  Wild reservoirs may be the source of emergent pathogen lineages, but 
here we outline a strategy for comparison of wild and agricultural pathogen populations to highlight genes 
adapting to agriculture.  To address this, we have selected and developed the beet rust system (Beta vulgaris, 
Uromyces beticola, respectively) as our wild-agricultural model.  Our hypothesis is that pathogen adaptation 
to agricultural crops will be evident as divergence in comparisons of wild and agricultural plant pathogen 
populations.  We sampled isolates in both the wild and agriculture, sequenced and assembled and annotated 
a large fungal genome and analysed genetic diversity in 42 re-sequenced rust isolates.  We found population 
differentiation between isolates in the wild compared to a predominantly agricultural group.  Fungal effector 
genes are co-evolving with host resistance and are important for successful colonisation.  We predicted (and 
found) that these exhibit a greater signal of diversification and adaptation and more importantly displayed 
increased wild agricultural divergence.  Finding a signal of adaptation in these genes highlights this as an 
important strategy to identify genes which are key to pathogen success, that analysis of agricultural isolates 
alone cannot. 
 
Author Summary 
As quickly as we develop new strategies for crop defence, pathogens evolve to circumvent them.  Novel crop 
pathogen strains emerge periodically and sweep through the agricultural system.  However, because of the 
(often) clonal nature of these crop pathogens it is difficult to identify the trait that is key to their success.  In 
other words, if there is a trait that is key for success in agriculture, all agricultural isolates will have it (or die 
without it).  What we need is a case and control system where we identify genes important to pathogen 
success in agricultural by comparing them to pathogens that live in the wild.  Here we exemplify this strategy 
by focussing on genes already known to specifically adapt for the successful colonisation of the host, the 
fungal effector genes.  We find that these genes appear to be evolving quickly and that they are more 
different between the wild and agriculture than other non-effector genes.  These differences between wild 
and agricultural pathogens suggest we are observing adaptation to agriculture.  We do this work in the sugar 
beet rust system because of its tractability to sample but this understanding about how to identify genetic 
variation that is key to pathogen success in agriculture is applicable to crop systems where pathogen 
reservoirs exist as well as other pathogen reservoir systems (e.g. zoonoses). 
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Introduction 
By 2050 we must feed nine billion people, yet two 
billion people are currently malnourished and over 
20% of agricultural crops are lost to disease annually 
(1,2).  Crop protection by genetic resistance is 
characterised by short disease free periods, or a lag 
before pathogens adapt (3,4).  Once resistance is 
broken, emergent diseases spread quickly through 
the host population and new sources of resistance 
are needed, which take several years to develop.  
Wild crop progenitor species are currently being 
explored as potential reservoirs of resistance gene 
diversity (3,5).  However, wild host species may also 
be reservoirs for pathogens (6).  On the one hand 
genetic variation present in these wild pathogens 
could be considered a source of novel genetic 
variation pre-adapted to the next round of 
resistance, on the other these wild pathogens 
represent a unique resource that can also be used to 
identify the characteristics important for pathogen 
success in agriculture.  Wild and agricultural 
environments are different on a number of levels, 
primarily host genetic diversity and density but also 
in terms of other abiotic factors such as water 
availability, light levels and use of fertilisers and 
chemical control agents (7).  These measures are 
expected to impact both host and pathogen directly.  
Analyses of emergent agricultural pathogens that 
omit genetic diversity present in pathogen 
populations from wild crops relatives, are not 
expected to identify the most important 
characteristics for success in agriculture because this 
critical polymorphism is likely fixed in agriculture.  
Instead, what is needed is a comparison of 
agricultural isolates to others that have not invaded 
(a case and a control). 

Agriculture is a relatively recent phenomenon, as 
such, all agricultural pathogens recently lived on a 
wild host and, since the invention of agriculture, 
have either speciated, or are still exchanging genetic 
variation with wild counterparts.  Pathogen 
reservoirs of genetic diversity represents a 
continuum from one-off hybridisation and 
introgression events, through to contemporary gene 
flow between populations living in different 
environments.  Characterisation of one off 
hybridisation events has been implicated in the 
generation and success of plant pathogens such as 
Dutch Elm Disease (8) and Zymoseptoria 
pseudotritici (9) as well the human malaria pathogen 
(10).  At an intermediate level, in pathogens such as 
Albugo candida (an oomycete which can infect over 
200 plant species), each lineage apparently diverged 
from other host specific lineages with the exception 

of for rare recombination or introgression events 
between lineages (11,12).  At the other end of the 
spectrum, invasion biology and population genetics 
has been considering the importance of genetic 
diversity, adaptive potential and invasion success 
(13).  However, these processes are inherently 
difficult to study because they are rare, either they 
are a single hybrid speciation event, or they are one 
off invasion events (6,14).  For example, the ash 
dieback pathogen (Hymenoscyphus fraxineus) has 
been a highly successful invader of Europe from Asia 
(15).  Population genetic analyses applied to the 
invasive and source populations has shown that the 
European invasion has fixed polymorphism in large 
areas of the genome (16).  This loss of genetic 
diversity is consistent with a strong bottleneck, but 
also with a selective sweep.  Without independently 
rerunning the invasion of Europe from Asia, it is 
difficult to discriminate chance from selection. 

Rust fungi are obligate biotrophic pathogens and 
this intimate association with a living host makes 
them ideal for the study of adaptation in agriculture 
(17).  Rusts also make up some of the most 
devastating crop pathogens, infecting crops of global 
significance, such as wheat (18), soybean (19) and 
coffee (20).  Rusts are known for their complex life 
cycles with multiple stages, in agriculture the main 
infection phase is clonal, where urediniospores are 
found erupting from pustules on the surface of 
leaves (Fig. 1A).  Each spore contains two different 
haploid nuclei (dikaryotic).  This phase can continue 
indefinitely on susceptible hosts but can also 
alternate with a seasonal sexual stage (17).  While 
there are exceptions the general principle is that 
mutation increases polymorphism between 
dikaryotic content (and within the population) in the 
clonal phase and recombination shuffles beneficial 
variation in the sexual phase (17,18).  The sexual 
phase of these pathogens may be a key determinant 
in their rate of adaptation.  In most cases, the sexual 
phase of the life cycle occurs on a different host 
plant, termed heteroecious (as opposed to 
autoecious).  In the case of wheat stem rust this 
alternate host is barberry which has been associated 
with increased rust virulence in Europe and the US 
for hundreds of years (21). 

In wheat yellow (stripe) rust the centre of genetic 
diversity and recombination occur in Nepal, Pakistan 
and China and yet their clonally sustained 
populations expand to every continent except 
antarctica (22).   So, despite the knowledge that 
centres of diversity and recombination are 
important, these processes are difficult to study 
either because the locations of wild hosts are 
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difficult to identify and sample and/or these centres 
of diversity are linked to the centre of domestication 
of the crop and difficult regions to access.  In the 
present study, we selected a system specifically to 
investigate wild-agricultural adaptation with a 
requirement for an obligate biotrophic pathogen 
that lives on a wild crop relative.  Sea beet (Beta 
vulgaris subsp. maritima) is a (largely self-
incompatible) host found permanently along the 
western coastlines of Europe (23,24; Fig 1B) and is 
the wild progenitor of sugar beet (B. vulgaris).  Sugar 
beet is one of the most recently domesticated crop 
species (circa 200 years, 25), it is grown for sugar 
production throughout Europe, where yield is 
impacted by its autoecious rust pathogen, Uromyces 
beticola (26). 

This system is being developed to understand the 
nature and strength of the selective constraints 
arising from the wild and agricultural environments. 
Natural selection is expected to operate to 
distinguish genetic variation between wild and 
agricultural pathogen populations and that this 
should be more pronounced in genes important for 
success in these environments.  Therefore, in rusts 
living on wild and agricultural hosts we should expect 
to see (1) population differentiation between 
isolates from the wild and agriculture and (2) within 
the genome, signals of diversification should be 
greatest at genes important for niche adaptation.  To 
investigate whether the impact of adaptation to the 
agricultural environment is present in the genome of 
a fungal pathogen, we first assembled and 
annotated the U. beticola genome and characterised 
population genetic diversity in isolates sampled from 
sea and sugar beets across England.  To facilitate 
genetic studies, we develop a method of peeling U. 
beticola spores from the surface of a leaf, allowing us 
to re-sequence and analyse variation across 1.87 
million SNPs among 42 rust isolates from 24 sugar 
beets and 18 sea beets.  Wild sea beets were 
sampled along approximately 370 km of coastline as 
were sugar beets (inland as the crow flies, ~200 km).  
Despite sea and sugar beet fungal samples 
sometimes being 10 km apart, we find evidence for 
two populations, split between an exclusively wild 
set of isolates and a group of predominantly 
agricultural isolates.  Importantly, we find a signal of 
adaptive evolution in genes that putatively interact 
with the host (effectors) as well as a signal of 
increased levels of genetic variation at these 
effectors. 
 
 
 

Results 
A genome assembly for population genetics of U. 
beticola 
In order to test our hypothesis, that adaptation to 
agricultural crops is evident in comparisons of wild 
and agricultural plant pathogen populations, we 
assembled a large rust genome (588 Mbp) into 
19,690 contigs with a genome N50 of 74 Kbp, the 
largest contig is 554 Kbp .  Rust genomes are often 
problematic to assemble because of the dikaryotic 
(n+n) content of the uredospore life stage which is 
sampled (26,27).  Divergent haplotypic content 
would be evident as a double peak in the k-mer 
distribution of the reads (e.g. see Fig. 1 in ref 19).  We 
do not observe this signal characteristic of divergent 
haplotypic content and instead our spectra plots 
suggest we have a genome with relatively low 
heterozygosity, misassembles or frame shifts (28; 
Fig. 1F). 

We wanted to assess completeness of our U. 
beticola assembly and annotation so we used core 
gene presence in comparison to a range of other rust 
assemblies of smaller and equivalent size (20,29,30; 
Fig. 1G).  BUSCO genome completeness places U. 
beticola (85.1% of the complete BUSCOs; 84.0% 
single copy) within the level of other rust assemblies.  
In addition, the level of duplicated BUSCOs is low in 
comparison to other rust assemblies where 
divergent dikaryotic content may be more 
problematic (Fig. 1G). 

The U. beticola genome annotation identified 
9,148 genes (17,591 transcripts) with an average 
transcript length of 2,057.7 bp (6.4 exons per gene) 
at a mean coding sequence (CDS, spliced from 
transcript in the annotation) length of 1240.9 bp (see 
also  Supporting Information 1 & 2).  A large 
proportion of genes were annotated as Transposable 
Elements (TEs, 41.4%, taking the total up to 15,612) 
within this repeat rich genome in which combined 
low complexity and interspersed repeats represent 
89.96% of the genome.  Our reassessment of 
published rust genomes shows that this level of 
repeat content is consistent with such a large rust 
genome (Supporting Information 3). Signal peptide 
information was used to define the secretome and 
then 225 effectors were identified using 
EFFECTORP2.0. 
 
In the UK rust is differentiated into two populations 
We sampled and sequenced 46 individuals and after 
quality control 42 were used in population analyses.  
To assess population level diversity and divergence, 
we identified 1.87 million SNPs across the 588 Mbp 
genome from 42 individuals sampled from either a 
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wild sea beet (n=18) or an agricultural sugar beet 
(n=24; Fig. 2A).  Genetic diversity was used at two 
levels, using gene CDS regions for plotting a 
Neighbour-Net network and also using all SNPs to 
examine population subdivision based 
on discriminant analysis of principal components 
(DAPC; 31).  The Neighbour-Net network showed 
differentiation of an exclusively wild group of 
individuals from three sites in the south-east of 
England (Fig. 2B; Table 1).  Isolates in this wild clade 
were sampled from sites spanning approximately 
80km, yet isolates from agricultural beets, sampled 
just 10km away, are found in the predominantly 
agricultural clade (Table 1, Orford).  Despite these 
wild and agricultural isolates being found in close 
proximity this predominantly agricultural population 
extends across all agricultural sites, and also 
encompasses the two northern most wild sites (Fig 

2A).  Using all 1.87 million SNPs we used DAPC to 
assess population subdivision.  All 41 PCs were 
retained initially to determine that there were two 
clusters or populations (find.clusters: 2-20) and then 
15 PCs, accounting for 68.7% of the conserved 
variance, were used in the DAPC analysis (Fig. 2C).  
Individuals were sorted into two clusters which 
represent the southeast wild only group (n=13) and 
the majority agricultural group as identified by the 
network analysis of gene coding regions (n=29; see 
Fig. 2B, Table 1).  The overall level of genetic 
differentiation (FST) between these two populations 
is 0.113 (Fig. 2C) and given the proximity (and 
spread) of wild and agricultural populations the 
processes driving this divergence may be 
reproductive or based on natural selection. 
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Figure 1.  Beet rust, isolated from wild and agricultural hosts, peeled and sequenced.  (A) U. beticola 
pustules (2-4mm approximately).  (B) Sea beet found along an estuary, from which leaves are clipped and 
brought back into the lab.  (C) Pustules are covered with 5µl peel solution which sets and is peeled off for 
library preparation and sequencing (D).  (E) An electron micrograph image of a rust pustule (artificially 
coloured), individual urediniospores are visible.  (F) Rust genome k-mer spectra is a histogram 
demonstrating the number of k-mers (in the reads) found at a given multiplicity (or depth).  K-mers 
present in the reads but absent in the assembly are plotted in black, present once in the assembly in red, 
then purple for twice.  Importantly, rare k-mers (suspected errors) are not found in the main distribution 
of the assembly which centres around the sequencing depth (~50x).  Content falls largely within this 50x 
peak (homozygous) with a slight heterozygous shoulder (~25x).  The inset plot shows the k-mer 
distribution where all contigs without a blast hit are removed.  The black peak in the main distribution 
suggests that this is real U. beticola content and should remain in the assembly.  (G) BUSCO completeness 
scores are highlighted for Hemileia vastatrix (541.2 Mbp), Puccinia graminis (81.5 Mbp), P. striiformis f. 
sp. Tritici (61.4 Mbp), P. triticinia (106.6 Mbp), U. beticola (588.0 Mbp) and Uromyces viciae-fabae (209.5 
Mbp).  Colours indicate Missing, Fragmented, Complete and Duplicated and Complete and Single copy 
BUSCOs.  Genome sizes are represented as grey bars that boarder BUSCO scores and are a percentage 
relative to the largest, U. beticola.  The U. beticola genome while large has comparatively middle to low 
levels of missing, fragmented and duplicated BUSCO content. 
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Reproduction may be partitioned differently in wild 
and agricultural populations 
In order to understand whether the relative levels of 
sexual and asexual reproduction are different 
between wild and agricultural populations we 
assessed the level of inbreeding.  The inbreeding 
coefficient, FIS, describes the proportion of genetic 
variation contained within an individual relative to 
its subpopulation.  The measure of FIS most often 
scales between zero and one and indicates random 
mating and inbreeding, respectively.  In the present 
data, while we do not observe a significant 
difference in the level of heterozygosity per 
individual, we see that FIS is negative in all 
agricultural individuals (Fig. 3A & 3B).  A negative 
value of FIS suggests excess heterozygosity and a role 
for the preservation of polymorphism via some 
clonal reproduction. Although the wild population 
also contains individuals with negative FIS values, in 
general, the wild population have higher FIS values 
that are closer to and above zero (Fig. 3B).  The wide 

distribution of FIS values in the wild suggests the 
occurrence of both clonal and sexual reproduction. 

In order to specifically investigate whether the 
heterozygosity associated with the inbreeding 
coefficient could have been caused by other 
processes we looked for an association with other 
features of the genome.  As well as clonal 
reproduction, excess heterozygosity can also be 
caused by processes such as genome organisation 
and repeat content driving erroneous heterozygosity 
via read miss-mapping.  Blocks of excess 
heterozygosity (at the 5% significance level based on 
Hardy-Weinberg Equilibrium test) impact 
agricultural and wild populations to different 
extents.  We find that the agricultural population has 
approximately 22 thousand blocks (two or more 
excess heterozygosity sites) where the wild has just 
less than ten thousand blocks (mean block length: 
Agri=227.7 bp, wild=124.0 bp; mean No. excess 
heterozygous sites: agri=5.1, wild=5.9).   While the 
agricultural population has been impacted by excess 
heterozygosity to a greater extent, we found no 
association of these regions of excess heterozygosity 
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Figure 2.  Population differentiation separates an entirely wild population from all agricultural and 
remaining wild individuals.  (A) Map of the UK shows samples collected from wild (blue crosses) and 
agricultural (orange crosses) hosts.  Overlapping crosses hide wild samples which can be distinguished 
using Table 1.  Norther wild samples belong to the Agricultural group and are accompanies by an asterisk.  
Diamonds indicate beet factories.  (B) SplitsTree network generated using the CDS regions of 15,473 
genes (15.2 Mbp) shows a clear differentiation of the wild only population.  Heterozygous sites coded 
using IUPAC ambiguities.  From here onwards when referring to populations we refer to the grouping 
observed in this network & by DAPC.  (C, left to right) The optimal number of clusters was two based on 
the lowest associated BIC and, given just two clusters, the blue-orange distribution shows how individuals 
cluster across the single discriminant function.  The genome wide genetic differentiation between 
clusters, FST=0.113. However, the red distribution shows genetic differentiation in 10 Kbp windows across 
the genome and emphasises that differentiation can vary.  Selection against polymorphism moving from 
the wild to agriculture (or vice versa) would drive genes towards an increasing FST. 
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with repeat or genic regions and so it is difficult to 
discriminate between effects of genome structure 
from mode of reproduction.   
 
Effector genes provide evidence for adaptation to 
agriculture 
We have identified a wild-only population of isolates 
as distinct from another population that infects all 
agricultural hosts sampled, plus five northern wild 
hosts.  Despite the presence of some wild infecting 
isolates in our ‘agricultural’ group, potentially 
dampening these effects, we set out to identify 
signals of adaptive variation in CDS regions and 
divergence in effector genes between these wild and 
agricultural groups.   

Natural selection operates on variation already 
present in a population and so here we measure 
levels of nucleotide diversity (π). Our first 
observation is that a combination of short CDS 
regions and the level of polymorphism in genes 
results in less than half of all gene CDS regions being 

polymorphic (43.4%; Fig. 4A).  At the genome scale 
(10 Kbp windows), levels of nucleotide diversity in 
the wild population are marginally (but significantly) 
higher than those of the agricultural population (Fig. 
4B).  For those effectors and non-effector genes that 
contain polymorphism within their CDS region, we 
observe first, that genetic diversity in non-effector 
genes is higher in the wild than in agriculture, 
second, that effectors are more polymorphic than 
non-effectors in both populations and third, that 
effector diversity in the wild is greater than that 
present in agriculture (Fig. 4C; Supporting 
Information 4). 

Next we used a measure of the average number 
of non-synonymous to synonymous polymorphism 
(pN:pS) within non-effector genes and effectors as a 
whole.  However, as mentioned above, many CDS 
regions contain zero SNPs and many others contain 
just a single SNP.  A single SNP makes calculating 
adaptive diversity difficult in cases where genes have 
a single non-synonymous polymorphism (pN), as the 
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Figure 3.  Individual level polymorphism is different between agricultural and wild populations.  (A) 
There is no significant difference between the number of heterozygous sites in agricultural and wild 
individuals (median heterozygous site No.: Agri=326,246, Wild= 321,031; Wilcoxon W=225, p=0.332) and 
(B) wild rust isolates have fewer SNPs (within population) and broadly distributed FIS values that tend 
more towards zero and above on average.  Agricultural isolates have larger numbers of SNPs and FIS 
values that are more negative on average.  There is a significant difference in the FIS values of agricultural 
and wild populations (Median FIS: Agri=-0.21802, Wild=-0.07371; Wilcoxon W=92, p-
value=0.008).  Negative FIS values are indicative of an excess in heterozygous sites and consistent with 
clonal modes of reproduction, as are accumulation of mutations at the individual level.  (C) Numbers of 
homozygous and heterozygous SNPs per individual.  Individuals represented by a single bar where 
homozygous sites coloured by population (orange agri and blue wild).  Grey represents the number of 
heterozygous sites per individual with red tips indicating the proportion of those heterozygous sites that 
are in regions of excess heterozygosity.  The vertical black line separates population total values (left, 
reaching 1.87 million SNPs) from individual values (right).  (D) Individuals observed with fewer SNPs 
within population (compare B x-axis) are not less divergent overall, plotted against mean Neighbour-Net 
distance (see Fig. 2B). 
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ratio of non-synonymous polymorphisms (to 
synonymous, PS) is infinity.  This process has the 
potential to impact effectors to a greater extent as 
these tend to be shorter on average than non-
effector genes (Fig. 4D).  In order to account for this, 
we used a concatenation and bootstrapping 
approach to compare adaptive diversity between 
effector and non-effector genes.  This approach 
involved concatenating all 225 effectors to measure 
a single pN:pS value (averaged pairwise among 
alleles).  Not only does this solve the problem of 

single PN polymorphisms but it also utilises regions of 
zero polymorphism in other genes CDS regions.  This 
process was then repeated (×1000 with 
replacement) for size matched non-effector genes.  
This demonstrated that the signal of adaptive 
diversity was greater in Effectors than non-effector 
genes of the same size (Fig. 4E). 

After demonstrating that diversity is greater in 
the wild and that effectors carry an increased signal 
of adaptive diversity we next wanted to test whether 
effectors were more different between wild and 
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Figure 4.  Wild effector genes maintain a signal of adaptive diversity.  (A) Histogram of genes with a 
given number of SNPs in their CDS region (between 0-7 SNPs).  8808 genes have zero SNPs within their 
CDS region and 6744 have one or more SNPs.  (B & C) Genome wide levels of nucleotide variation (π) are 
higher in the wild papulation (B, median π 10 Kbp windows: Agri=0.251×10-3, Wild=0.269×10-3; 
Wilcoxon(π) W=2440369930, p<0.001).  Considering polymorphic genes, this pattern of wild maintenance 
of diversity is also observed where, Agricultural non-effector genes have significantly less diversity than 
Wild non-effector genes (C, median π non-effector genes: Agri=0.161×10-3, Wild=0.245×10-3; Wilcoxon(π) 
W=9454106, p<0.001).  Despite low numbers of effectors with polymorphism in the CDS (see gene n under 
boxplot in C) maintenance of polymorphism in these host interaction genes is significantly higher than 
that of non-effectors within both agricultural and wild populations (C, median π effectors: Agri=0.236×10-

3, Wilcoxon(π) W=93488, p=0.038; Wild=0.583×10-3, Wilcoxon(π) W=69958, p<0.001).  Finally, wild 
effectors are significantly more polymorphic than agricultural effectors (Wilcoxon(π) W= 638, p<0.001).  
(D) Histogram of observed effector and non-effector gene CDS lengths (between 1-3000 bp) shows counts 
and percentages (insert) per gene type.  Vertical black lines indicate the effector size range, and the insert 
shows the distribution of sizes within that range (median CDS length: non-effector gene= 678, effector= 
522; Wilcoxon(bp) W=2094583, p<0.001).  (E) Point and error bars show the Length and pN:pS values after 
concatenating effectors (observed, in red), or size matched non-effector genes (bootstrapped, in 
turquoise).  Size matched non-effector genes are no longer than effectors (effector Length=116 Kbp; non-
effector gene median (5-95%CI) Length=112 Kbp (107 Kbp – 118 Kbp); randomisation test p=0.148).  
However, size matched non-effector genes have significantly lower levels of adaptive diversity than 
effectors (effector pN:pS=2.71; non-effector gene median (5-95%CI) pN:pS=1.029 (0.533 - 2.443); 
randomisation test p=0.043). 
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agricultural populations than other genes.  We 
predicted that host genetic diversity is one of the 
largest discriminating factors between the wild and 
agricultural environment and therefore we expect to 
observe it in the genes that putatively interact with 
the host, the effectors.  Here we measured the 
genetic differentiation at all genes which included 5 
Kbp flanking each gene and found indeed that 
effectors were significantly more diverged than non-
effector genes (Fig. 5). 
 
Discussion 
A genome for population genetics using peel 
sequencing 
Based on our wild-agricultural adaptation hypothesis 
we predicted that we would observe genetic 
differentiation between wild and agricultural 
populations.  We set out to establish this using peel-
sequencing, a method developed to allow us to paint 
on and peel off (and genome sequence) rust pustules 
from the surface of a leaf.  Our peel method reduces 
the level of sequencing resource devoted to the host 
and our preliminary results were generated prior to 
sequencing our draft genome and instead, we 
assembled and mapped to a peel genome.  This 
preliminary genome was approximately one third 
the size of our draft but it allowed us to estimate the 

genome size and sequencing effort required for 
resequencing as well as highlighting the main signal 
of our analyses (without a draft reference genome; 
data not shown).  However, we subsequently 
generated a reference assembly and annotation 
using DNA and RNA from U. beticola spores 
combined from multiple pustules on a leaf.  The U. 
beticola genome at ~600 Mbp, is large for a fungus 
but not for a rust (19).  The rusts have dikaryotic 
haploid nuclei and in many rusts this produces a 
scenario (Meselson effect) in which extended 
periods of clonal reproduction (without 
recombination) increase the divergence of 
homologous content (18,32).  However, many 
agronomically important rusts also have an alternate 
host which is used by the fungus to enter its sexual 
phase (27).  In the case of the wheat rusts, hundreds 
of years before a causative link was established, 
superstition drove the removal of its alternative 
host, Berberis, from cereal growing regions (21).  U. 
beticola reproduces on wild sea beet and, the 
permanent proximate availability this host offers a 
(post hoc) explanation as to why we have not 
observed divergence of karyon (reduced 
heterozygosity) in U. beticola. 

Agriculture provides the largest annually 
replicated plant pathogen experiment on Earth.  
Replicated genotypes are put out annually and 
pathogens must invade from a reservoir and adapt.  
Natural selection acts upon genetic variation that is 
already present in a population and the idea that 
pathogens evolve in reservoirs and then reinvade 
new populations or species is neither new nor 
limited to plants and fungi, viral zoonoses are 
particularly pertinent to human health (e.g. HIV, 
SARS-CoV2, 33).  Farming is a relatively recent 
phenomenon (by humans, 34) which means that 
plant pathogens must either still be sharing genetic 
variation with pathogens on progenitor hosts or, 
they are reproductively isolated from them and 
specialising.  Either way, we can use the signals of 
differentiation and divergence to understand the 
genes important for adaptation to agriculture and 
perhaps more importantly, the processes underlying 
adaptation.  Here we investigate these processes by 
developing the wild-agricultural beet rust system 
(Beta vulgaris subsp. maritima, B. vulgaris and 
Uromyces beticola, respectively).  Consistent with 
predictions that come from our hypothesis on how 
wild-agricultural pathogens evolve, we show that the 
signal of adaptation is found to a larger degree in 
fungal genes that putatively interact with the host.   

By assembling a draft genome and developing a 
peel sequencing method that allows preferential 

Figure 5. Evidence for adaptation to agriculture 
(and the wild) is present in effector diversity.  
Levels of genetic differentiation between the 
agricultural and wild populations non-effector 
genes and effectors.  effectors are significantly 
more differentiated between populations than 
non-effector genes (median FST: non-effector 
genes= 0.089, effectors= 0.100, Wilcoxon(π) W= 
1515702, p=0.005). 
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sequencing of pathogen to host material, we first 
identify two genetic clusters of rust in England, a 
population found solely on wild host plants as well as 
a population found predominantly on agricultural 
hosts.  Levels of genetic diversity are marginally 
higher in the wild population although agricultural 
individuals tend to carry greater individual level 
polymorphism.  Rust pathogens can reproduce 
clonally or sexually and despite not identifying any 
direct clones in our clone correction analysis we 
observed a signal of increased levels of heterozygote 
excess.  This finding is consistent with an increase in 
clonality in agriculture.  Next, we established that 
genes predicted to interact with the host, effectors, 
carry an increased level of amino acid changing 
polymorphisms compared to non-effector genes.  
Finally, we identify that on average these effector 
genes are more differentiated between wild and 
agricultural populations than non-effector genes.  
This finding is important for all crop pathogen 
systems in identification of genes important for the 
adaptation of pathogens to agriculture but more 
generally, also provides a framework for 
identification of agriculturally adapted genes as well 
as a means to go on to identify the mechanisms that 
facilitate that adaptation. 
 
Genetic divergence between agricultural* and wild 
populations 
To assess the genetic differentiation between wild 
and agricultural isolates, we chose a mix of isolates 
sampled from wild and agricultural hosts.  Wild 
samples were spread latitudinally along the regions 
from which we received agricultural samples from 
growers.  Discriminant Analysis of Principal 
Components highlighted two distinct clusters of 
isolates in England, a group that lives exclusively on 
wild hosts and a group that lives predominantly on 
agricultural hosts (24 out of 29 isolates).  The wild 
population was found at three sites in the east of 
England (distributed across ~80 km).  The isolates 
identified within the agricultural clade spanned the 
wild populations and came within 10km at the 
nearest wild sampling site.  This predominantly 
agricultural clade was identified for all isolates found 
in agriculture, plus five isolates found on wild hosts 
in two more northern sites.  We can’t yet account for 
these wild infecting agricultural isolates and we go 
on to analyse the genetic diversity and divergence of 
these two populations (wild and agricultural 
compatible) with an aim to address the role of host 
genetic diversity and broader metapopulation 
dynamics in our observation.  

Investment in clonal or sexual reproduction can 
vary with environmental heterogeneity, where the 
advantages of sex for rapid adaptation diminish to 
fecundity as environmental heterogeneity declines 
(35,36).  This drives the prediction that agricultural 
pathogen populations may increase the relative rate 
of clonal to sexual reproduction to rapidly infect 
hosts before cropping (or chemical treatment) and 
not pay the cost of reduced rate of adaptation 
because hosts are genetically more similar than wild 
hosts (22).  Indeed, we do observe, using an 
inbreeding statistic (FIS), that the agricultural 
population has an increased signal of clonality (37).  
This is a consequence of excess heterozygosity which 
is more prevalent across the agricultural genome.  In 
wheat stripe rust, bouts of clonality spanning 
decades were used to account for increased levels of 
heterozygosity and is believed to be driven by the 
lack of a sexual host (18).  We see excess 
heterozygosity not increased heterozygosity, 
although our power to detect increased 
heterozygosity in the agricultural population may be 
impacted by the low numbers of individuals assigned 
to our wild clade. 

Excess heterozygosity could also have been 
caused by assembly and mapping errors, particularly 
in this repeat rich genome.  The agricultural 
population has both a greater number of regions 
impacted by excess heterozygosity as well as a larger 
overall proportion of the genome found to be in 
heterozygote excess.  However, blocks of 
heterozygosity appear no more associated with 
repeat regions as they do with genic regions.  It is 
worth adding that the reference genome was 
generated from an agricultural isolate and this 
perhaps reduces the chances of heterozygosity 
caused by repeat differences and mapping errors.  A 
long-read assembly, spanning repeat regions, would 
allow us to convincingly address the impact of 
repeats and delineate, differential agricultural 
genome structure, from clonal reproduction in the 
agricultural population.   
 
Effector genes carry a signal of adaptation to 
Agriculture  
Effector proteins must both avoid detection by the 
host immune system as well as target host gene 
products (which are also evolving) and so they must 
continually adapt in order to avoid detection and 
remain effective (38,39).  In the present study we 
categorised those gene products that are secreted 
outside of the fungal cell and used machine learning 
to classify 225 genes with effector properties.  We 
use those genes as a group with the expectation that 
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their evolution will allow us test our hypothesis: that 
natural selection should operate to further 
distinguish genes important for success among wild 
and agricultural environments. 

We set out to first, establish the presence of 
signals of adaptation in effectors as compared to 
non-effector genes.  Consistent with predictions of 
linkage to loci operating under balancing selection 
(40), nucleotide diversity is significantly higher in 
effectors than in non-effector genes of the same 
population.  Moreover, the diversity of polymorphic 
wild effectors is twice that of other gene categories 
or the genome average.  These diversity analyses are 
all done on CDS regions and it is worth pointing out 
here that of the 225 effectors identified only 44 and 
48 (Agri and Wild, respectively) contain 
polymorphism in this region.  Despite these reduced 
numbers of polymorphic CDS regions we retain 
enough power to show that differences between 
effectors and non-effector genes are statistically 
significant.  It is because of these low numbers of 
polymorphic CDS regions that for analysis of 
adaptive diversity, which can only use synonymous 
and non-synonymous polymorphism (pN:pS in the 
CDS), we compared observed mean pN:pS of all 
effectors concatenated, to bootstrapped (size 
matched) non-effector genes.  We found that 
effectors contained a greater level of adaptive 
diversity than expected based on that of non-
effector genes.  Therefore, in addition to diversity in 
general, adaptive diversity is higher in these host 
interaction genes. 

Finally, with effector genes carrying a signal 
consistent with their evolution and adaptation to 
host resistance, we test for a signal of specificity to 
the wild and agricultural environments and indeed 
we find that genetic differentiation in effectors is 
significantly higher than that of non-effector genes.  
Again, from the proximate sugar beet rust invasion 
perspective, those effectors that are more highly 
divergent between wild and agricultural populations 
represent those agriculturally adapted variants 
whose mode of action is most important to 
elucidate.  However, more broadly these analyses 
provide a framework by which we may identify 
genes that are adaptively divergent between the 
wild and agricultural populations and are therefore, 
important agricultural adaptation genes. 
 
In the present study we identified the presence of 
signals consistent with agricultural pathogen 
adaptation to agricultural hosts.  This finding has 
implications in the beet rust system but, more 
importantly also for the way we understand and 

analyse pathogen evolution.  We intend to use this 
system to further explore wild-agricultural plant 
pathogen evolution.  This first look at population 
genetic diversity raises questions on the role of 
broader metapopulation dynamics as well as 
whether this signal is replicated across other wild-
agricultural boundaries, in Germany and France for 
example.  The present work also raises questions 
about the role of linkage, repetitive elements and 
genome organisation in local adaptation.  The rusts 
are a problematic lineage of crop pathogens with 
intricate and complicated haploid, diploid and 
dikaryotic life stages (27,41).  Many other fungal and 
insect systems partition their reproduction and 
favour alternative hosts for sexual reproduction and 
this strategy may be particularly advantageous in a 
system where the crop host is not present year-
round.  Clonal reproduction suits a boom-and-bust 
invasion lifestyle, but a bit of sex goes a long way, 
and it is perhaps this ability to partition these modes 
of reproduction on different hosts that has made 
them so adept at capitalising the crop system.    
Ultimately, this study offers a beginning to 
understand multi -host -pathogen systems that 
might one day help predict sources of adaptation in 
reservoir systems and inform targeted treatment of 
agriculture to reduce adaptive introgression and 
increase the durability of the resistance already in 
the system. 
 
Materials & Methods 
In order to test our hypothesis, that pathogen 
adaptation to agricultural crops will be evident in 
comparisons of wild and agricultural plant pathogen 
populations, we identified a plant pathogen, a rust 
fungus (Uromyces beticola) that is an obligate 
biotroph found in the UK living on both wild sea beet 
and agricultural sugar beet.  We sampled isolates in 
both the wild and agriculture, sequenced and 
assembled a large (agricultural) fungal genome, 
sequenced expressed genes for genome annotation 
and then re-sequenced 46 wild and agricultural rust 
isolates for population genetic analysis, of which 42 
made it through quality control. 
 
 
Genome Assembly and annotation of U. beticola 
A rust infected sugar beet plant from Norfolk was 
brought into the lab to allow the infection to 
progress in the absence of agitation by wind and 
rain.  Multiple pustules from a heavily infected single 
leaf (Fig. 1) were broken and spores collected in 
order to extract DNA (see below for CTAB details) for 
DISCOVAR PCR free library preparation and 
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sequencing (42).  A HiSeq2500 was used to sequence 
43.8 Gbp of data which was estimated to be 73x 
coverage based on genome size estimates of ~600 
Mbp from earlier tests of peel sequencing.  Post 
assembly, contigs less than 1 Kbp were removed as 
they don’t represent a real-terms increase in the 
span of a single read pair.  We used ABYSSv2.0.2 (43), 
KATv2.3.4 (28), BLOBTOOLS v0.9.19 (44) and 
BUSCOV4.0 (45; against basidiomycota_odb10) to 
assess genome content, contiguity and 
completeness.  BLOBTOOLS was used to retain contigs 
with BLAST hits to Basidiomycetes as well as those 
without a hit. 

To generate genome annotation, RNA was 
extracted from rust infected sugar beet leaves 
collected in the field.   Using a soft bristled 
toothbrush, pustules were lifted/brushed from each 
leaf into a 2ml microfuge tube with the aim of 
combining 100mg of material (x10 tubes).  Spores 
were then flash frozen in liquid nitrogen in 
preparation for RNA extraction (10 samples).  In 
addition, leaf punches were also taken; punches 
were positioned at pustules away from vascular 
elements of the leaf in order to capture fungal 
expression in planta (2 samples).  RNA was extracted 
using the Qiagen AllPrep Fungal DNA/RNA/Protein 
Kit and stranded libraries were prepared using the 
NEBNext Ultra II Directional with poly-A selection.  
Libraries were sequenced on one lane of the 
NovaSeq 6000, SP flow cell with the 300 cycle kit 
(150 bp PE) with v1 chemistry and reads were quality 
controlled using CENTRIFUGE (46). 

Gene models were annotated using a workflow 
which incorporated repeat identification, RNA-Seq 
mapping and assembly, and alignment of protein 
sequences from related species (Supporting 
Information 1). Alternative reference guided 
assembly methods were employed (Scallop, 47, 
StringTie2, 48) to assemble transcripts for each 
sample.  From these a filtered set of non-redundant 
transcripts were derived using Mikado (49). Gene 
models were classified based on alignment to 
protein sequences, identifying the subset of gene 
models with likely full-length ORFs. The classified 
models together with aligned proteins and repeat 
annotation are provided as hints to AUGUSTUS (50). 
Three alternative AUGUSTUS gene builds were 
generated using different evidence inputs or 
weightings. These together with the gene models 
derived from the Mikado transcript selection stage 
were consolidated into a single set of gene models 
using Minos (49). The Minos pipeline scores 
alternative models based on the level of supporting 
evidence (protein homology, transcriptome data) 

and gene structure characteristics (e.g. CDS, UTR 
features) to select a representative gene model and 
alternative splice variants. 

In plant pathogenic fungi, gene products that are 
secreted outside of the fungal cell and into the host 
are considered candidate host interaction genes, 
potentially facilitating infection.  These putative 
effectors are identified here using signal peptide 
information, genes with the presence of a signal 
peptide using SIGNALP v3.0: (-s notm -u 0.34; ,51) and 
the absence of transmembrane or mitochondrial 
localization signals using TMHMM v2.0 and TARGETP-
2.0 Server (52) were finally assessed for sequence 
similarity to known effectors using EFFECTORP2.0 
(53).  Assessment of putative effector (henceforth, 
effector) density was done using the method 
of Raffaele et al. (54). 
 
Uromyces beticola isolate collection and 
sequencing  
Samples were collected over the period of 
September to December in 2015 and 2016.  Wild sea 
beet rust samples were collected from UK east coast 
sites between Southminster and Hull (~370km of 
coastline) and agricultural sugar beet rust samples 
were posted to the Earlham Institute (via the British 
Beet Research Organisation, BBRO) by beet growers 
covering approximately the same latitudes 
(~200km).  DNA extraction from single rust pustules 
was carried out at the Earlham Institute (EI) using the 
peel extraction method.  This method involves 
pipetting 5µl cellulose acetate onto a rust pustule, 
allowing one or two minutes to air dry and then 
peeling the fungus away from the leaf (Fig. 1C,D) and 
depositing the peel into a tube for storage (-80°C) 
prior to agitation and modified phenol-chloroform 
DNA extraction.  This method maximises pathogen 
to host DNA in the extraction and avoids using excess 
sequencing resource on the host genome.   

Peels were ground using one 4 mm and five 1mm 
stainless steel ball bearings in a TissueLyser (Qiagen, 
Valencia, CA) for 60 seconds at a frequency of 22 Hz. 
Fragmented peels were then incubated at 50°C for 1 
hour in 500µl extraction buffer (2% 
cetyltrimethylammonium bromide, 1.4 M NaCl, 20 
mM EDTA (pH 8), 100 mM Tris-HCl (pH 8), 0.2% β-
mercaptoethanol, 1 mgml-1 proteinase K (55). 
Phenol:Chloroform:Isoamyl Alcohol 25:24:1, 
saturated with 10mM Tris, pH 8.0, 1mM EDTA (500 
µl) was added to each sample and vortexed before 
centrifugation at 14,000g for 5 min. The aqueous 
(upper) phase (~450 µl) was harvested into a fresh 
microcentrifuge tube. To this 100% (v/v) of 
Agencourt AMPure XP (Beckman Coulter™) or a 
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homemade mix Sera-Mag Speed-beads (Fisher 
Scientific, cat. #65152105050250) in a PEG/NaCl 
buffer beads (Rohland and Reich 2012) magnetic 
beads was added, samples were vortexed for 20s 
and incubated for 10 minutes at room temperature. 
The tubes were placed on a magnetic stand, and 
supernatant removed and discarded after all of the 
beads had been drawn to the magnet (∼2 min). The 
beads were washed three times with 1 ml of 80% 
EtOH. After the last wash, the EtOH was removed 
and the beads allowed to air dry for 5 minutes. 
Magnetic beads were then resuspended in 55µl of EB 
buffer (10 mM Tris-HCl) and tubes incubated at 37°C 
for 10 minutes (vortexing every 2 min). To the eluate 
1 µl of 10% (v/v) RNase A (100 mgml-1) was added 
before incubating at 37°C for 30 minutes. Magnetic 
beads (50µl) were added to each sample, vortexed 
and incubated at room temperature for 10 minutes. 
Sample tubes were then placed onto a magnetic rack 
for 2 minutes and the supernatant discarded. Beads 
were washed twice with 200µl of 80% EtOH. Ethanol 
was removed and the beads left to air dry for 5 min 
before resuspending in 55 µl of TLE buffer (Tris low 
EDTA – 10 mM Tris-HCl, 0.1 mM EDTA). The tubes 
were incubated at 37°C for 10 minutes (vortexing 
every 2 min). The tubes were again placed onto a 
magnetic rack for 2 min and the cleared eluate was 
harvested and stored at –20°C. 

Libraries were prepared using the LITE method 
(56) and 46 isolates were genome sequenced at the 
Earlham Institute on nine lanes of an Illumina  
HiSeq4000 (150PE) generating ~750 Gbp of read 
data and an estimated mean depth of 27.5x per 
individual. 
 
Mapping and SNP calling 
Reads were quality trimmed (minimum length 90, 
quality 30, --paired; TRIM_GALORE v0.4.0; Babraham 
Institute, Cambridgeshire, UK).  BWA mem (57) was 
used to map reads and  SAMTOOLS v1.5 (58) and 
BCFTOOLS v1.3.1 were used to sort and remove 
duplicate reads and mpileup (-t DP) to call variants 
(bcftools call -c). VCFTOOLS v0.1.13 (59) was used to 
filter SNPs to an individual minimum depth of five, 
maximum depth of 1.8 × mean depth per individual 
and a minimum genotype quality of 30. SNP sites 
with more than two alleles were excluded as 
probable errors. Finally, sites that were missing in 
30% or more individuals were also removed.  Four 
individuals were removed from further analysis 
because their average depth was less than 10x 
leaving 42 individuals for population analyses. 
 
 

SNP diversity and divergence analysis  
Population differentiation was determined using 
Discriminant Analysis of Principal Components 
(DAPC, Adegenet; ,31,vcfR v1.12.0; ,60) based on all 
1.87 million SNPs.  Initially, the find.clusters function 
was used with all 41 principal components in order 
to identify two genetic clusters based on the 
lowest Bayesian information criterion (BIC).  DAPC 
was then run using 15 principal components 
accounting for 68.7% of the conserved variance.  
Clone correction (mlg.filter) was conducted using a 
filtered SNP dataset using 1 SNP per 100 Kbp (1.1% 
of the total) and no clonal genotypes were 
condensed in the dataset regardless of the threshold 
used from filter_stats (farthest, average or nearest).  
All 42 individuals were retained for further analysis 
and plotted on the map of the UK using 
rnaturalearth. 

VCFTOOLS was used for window analyses (10 Kbp 
windows), FST analyses of gene regions was based 5 
Kbp up- and down-stream of gene boundaries.  
DNASP v6.12.01 (61) was used to calculate 
population genetic statistics per CDS after two levels 
of phasing, first using phase informative reads and 
then using linked homozygous SNPs to infer 
haplotypes from population data (SHAPEIT v2.20: 
assemble --states 1000 --burn 60 --prune 60 --main 
300 --effective-size 88000 --window 0.5, 62).  The 
effective population size estimate  (ϑ=4Neμ) for 
SHAPEIT was calculated using mean π from 50kb 
windows from across the genome (π = 0.000352393) 
using an assumed mutation rate, µ = 1x10-9 (63).  Ten 
contigs (19 genes) failed the phasing step and were 
removed from further analysis.  Fasta conversion 
from vcf (GATK v3.5.0 -
FastaAlternateReferenceMaker, 64) was done for 
spliced CDS regions (Cufflinks v2.2.1 -gffread, 65) per 
individual for all genes with read coverage greater 
than 60%.  Analyses and plotting were done in R 
v3.6.3. 

YN00 (PAML v4.9, 66) was used to calculate the 
average pairwise pN:pS ratio per gene 
(nonsynonymous polymorphism, pN and 
synonymous, pS).  A gene concatenation and 
bootstrapping procedure was also used in order to 
recover a measure for genes with low diversity.  The 
pN:pS ratio can’t operate on genes with a single non-
synonymous mutation and this scenario tends to 
impact short genes.  To address this, we 
concatenated all effectors per individual and 
measured a single mean observed effector pN:pS.  We 
then ran a bootstrap sampling regime in which we 
first, sampled effectors (with replacement) and 
binned them into length categories of 50 bp 
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intervals.  Second, we sampled from the non-
effector gene set (with replacement) into the 
effector size bin frequency distribution.  We 
concatenated those genes, measured their length 
and mean the pN:pS ratio.  This procedure was 
replicated this 1000 times in order to generate null 
distributions for concatenated pN:pS ratio and length 
for non-effector genes. 

CDS gene diversity data for 15,612 genes from 
DNASP & PAML are combined into a single table 
(Supporting Information 4) and individual diversity is 
represented using default parameters SPLITSTREE v4 
(67; genes present in all individuals, 15.2 Mbp).   
 
Data availiblity 
Illumina MP read data for the U. beticola genome 
and 46 re-sequenced individuals as well as 12 RNA-
seq libraries used for annotation have been 
submitted to the European Nucleotide Archive 
(under projects xxx pending project numbers). The 
genome and annotation is available at the Earlham 
Institute Open Data site (pending xxx). 
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Tables 
Table 1.  Isolate sampling data listed north to south including information on whether isolation was from a 
wild or agricultural beet (W-Ag_host) and how isolates clustered after DAPC analysis of genotypes (W-
Ag_path-DAPC).  Local abbreviation and colour (W-Ag_host) is used in samples names in Figure 1. 
 

Individual ID W-Ag_host W-Ag_path-DAPC Date Locality Local_abbrv 
ub-w_170_hfs_15dec Wild Agri 09-Dec-15 Hessle Foreshore hfs 
ub-w_174_hfs_15dec Wild Agri 09-Dec-15 Hessle Foreshore hfs 
ub-a_053_hfs_15sep Agri Agri 04-Sep-15 Hessle Foreshore hfs 
ub-a_527_hsw_15sep Agri Agri 18-Sep-15 Hibaldstow hsw 
ub-a_207_hsw_15sep Agri Agri 18-Sep-15 Hibaldstow hsw 
ub-a_518_hsw_15sep Agri Agri 25-Sep-15 Hibaldstow hsw 
ub-a_096_hfs_15sep Agri Agri 03-Sep-15 Hessle Foreshore hfs 
ub-a_400_lcn_15sep Agri Agri 14-Sep-15 Lincoln lcn 
ub-a_382_lcn_15sep Agri Agri 14-Sep-15 Lincoln lcn 
ub-a_383_lcn_15sep Agri Agri 14-Sep-15 Lincoln lcn 
ub-a_411_bnm_15sep Agri Agri 14-Sep-15 Bingham bnm 
ub-a_290_kln_15sep Agri Agri 18-Sep-15 King's Lynn kln 
ub-w_451_kln_15oct Wild Agri 27-Oct-15 King's Lynn kln 
ub-a_372_kln_15sep Agri Agri 14-Sep-15 King's Lynn kln 
ub-w_142_kln_15oct Wild Agri 27-Oct-15 King's Lynn kln 
ub-w_418_kln_15oct Wild Agri 27-Oct-15 King's Lynn kln 
ub-a_263_wxm_15sep Agri Agri 14-Sep-15 Waxham wxm 
ub-a_338_wxm_15sep Agri Agri 15-Sep-15 Waxham wxm 
ub-a_331_wxm_15sep Agri Agri 15-Sep-15 Waxham wxm 
ub-a_509_kln_15oct Agri Agri 23-Oct-15 King's Lynn kln 
ub-a_313_gbm_15sep Agri Agri 15-Sep-15 Garboldisham gbm 
ub-a_292_gbm_15sep Agri Agri 15-Sep-15 Garboldisham gbm 
ub-a_245_gbm_15sep Agri Agri 15-Sep-15 Garboldisham gbm 
ub-w_419_swd_15oct Wild Wild 14-Oct-15 Southwold swd 
ub-w_228_swd_16nov Wild Wild 08-Nov-16 Southwold swd 
ub-w_229_swd_16nov Wild Wild 08-Nov-16 Southwold swd 
ub-w_109_swd_15oct Wild Wild 14-Oct-15 Southwold swd 
ub-w_052_swd_16nov Wild Wild 08-Nov-16 Southwold swd 
ub-w_097_swd_15oct Wild Wild 14-Oct-15 Southwold swd 
ub-a_037_ofd_15sep Agri Agri 07-Sep-15 Orford ofd 
ub-a_519_ofd_15oct Agri Agri 01-Oct-15 Orford ofd 
ub-a_491_ofd_15oct Agri Agri 01-Oct-15 Orford ofd 
ub-w_145_ofd_15oct Wild Wild 14-Oct-15 Orford ofd 
ub-w_075_ofd_15nov Wild Wild 08-Nov-15 Orford ofd 
ub-w_090_ofd_16nov Wild Wild 08-Nov-16 Orford ofd 
ub-w_077_ofd_15nov Wild Wild 08-Nov-15 Orford ofd 
ub-w_204_ofd_16nov Wild Wild 08-Nov-16 Orford ofd 
ub-a_236_bos_15sep Agri Agri 18-Sep-15 Bradwell-on-Sea bos 
ub-a_278_bos_15sep Agri Agri 16-Sep-15 Bradwell-on-Sea bos 
ub-a_360_bos_15sep Agri Agri 14-Sep-15 Bradwell-on-Sea bos 
ub-w_470_bos_15nov Wild Wild 18-Nov-15 Bradwell-on-Sea bos 
ub-w_458_bos_15nov Wild Wild 18-Nov-15 Bradwell-on-Sea bos 
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Supporting information captions 
Supporting Information 1 – Annotation of Uromyces beticola (beet rust).  Detailed methods and data 
organisation for the beet rust annotation. 
Supporting Information 2 – Tables referenced in Supporting Information 1. 
Genome – Assembly quality metrics such as N50 
Reads Alignment – Mapping quality for the 12 RNA-Seq PE read libraries that were aligned to the genome 
Transcript Assemblies – Transcript assembly metrics for two assembly methods 
Repeats – Repeat masked regions for protein alignments and the gene build 
Protein Alignments – Protein alignment summary from 26 representatives (including references) 
Mikado Transcript – Mikado transcript assembly integration gene model statistics 
Augustus Training – Augustus training results based on Mikado Gold transcripts 
Augustus – Gene model statistics from three Augustus runs using different levels of evidence 
Minos Release – Final gene model statistics after selection using Minos-Mikado 
Supporting Information 3 – Rust repeat annotation and comparison.  Reanalysis of repeat content of five 
published genomes (plus U. beticola). 
Supporting Information 4 – Beet rust SNP diversity and divergence data. 
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