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Abstract

Improvements in crop resistance to pathogens can reduce yield losses and address global malnourishment
today. Gene-for-gene -type interactions can identify new sources of resistance but genetic resistance is often
short lived. Ultimately an understanding of how pathogens rapidly adapt will allow us to both increase
resistance gene durability and more effectively target chemical treatments. Until recently all agricultural
pathogens were living on wild hosts. To understand crop pathogen evolution, we compared genetic diversity
in agricultural and wild populations. Wild reservoirs may be the source of emergent pathogen lineages, but
here we outline a strategy for comparison of wild and agricultural pathogen populations to highlight genes
adapting to agriculture. To address this, we have selected and developed the beet rust system (Beta vulgaris,
Uromyces beticola, respectively) as our wild-agricultural model. Our hypothesis is that pathogen adaptation
to agricultural crops will be evident as divergence in comparisons of wild and agricultural plant pathogen
populations. We sampled isolates in both the wild and agriculture, sequenced and assembled and annotated
a large fungal genome and analysed genetic diversity in 42 re-sequenced rust isolates. We found population
differentiation between isolates in the wild compared to a predominantly agricultural group. Fungal effector
genes are co-evolving with host resistance and are important for successful colonisation. We predicted (and
found) that these exhibit a greater signal of diversification and adaptation and more importantly displayed
increased wild agricultural divergence. Finding a signal of adaptation in these genes highlights this as an
important strategy to identify genes which are key to pathogen success, that analysis of agricultural isolates
alone cannot.

Author Summary

As quickly as we develop new strategies for crop defence, pathogens evolve to circumvent them. Novel crop
pathogen strains emerge periodically and sweep through the agricultural system. However, because of the
(often) clonal nature of these crop pathogens it is difficult to identify the trait that is key to their success. In
other words, if there is a trait that is key for success in agriculture, all agricultural isolates will have it (or die
without it). What we need is a case and control system where we identify genes important to pathogen
success in agricultural by comparing them to pathogens that live in the wild. Here we exemplify this strategy
by focussing on genes already known to specifically adapt for the successful colonisation of the host, the
fungal effector genes. We find that these genes appear to be evolving quickly and that they are more
different between the wild and agriculture than other non-effector genes. These differences between wild
and agricultural pathogens suggest we are observing adaptation to agriculture. We do this work in the sugar
beet rust system because of its tractability to sample but this understanding about how to identify genetic
variation that is key to pathogen success in agriculture is applicable to crop systems where pathogen
reservoirs exist as well as other pathogen reservoir systems (e.g. zoonoses).
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Introduction

By 2050 we must feed nine billion people, yet two
billion people are currently malnourished and over
20% of agricultural crops are lost to disease annually
(1,2). Crop protection by genetic resistance is
characterised by short disease free periods, or a lag
before pathogens adapt (3,4). Once resistance is
broken, emergent diseases spread quickly through
the host population and new sources of resistance
are needed, which take several years to develop.
Wild crop progenitor species are currently being
explored as potential reservoirs of resistance gene
diversity (3,5). However, wild host species may also
be reservoirs for pathogens (6). On the one hand
genetic variation present in these wild pathogens
could be considered a source of novel genetic
variation pre-adapted to the next round of
resistance, on the other these wild pathogens
represent a unique resource that can also be used to
identify the characteristics important for pathogen
success in agriculture.  Wild and agricultural
environments are different on a number of levels,
primarily host genetic diversity and density but also
in terms of other abiotic factors such as water
availability, light levels and use of fertilisers and
chemical control agents (7). These measures are
expected to impact both host and pathogen directly.
Analyses of emergent agricultural pathogens that
omit genetic diversity present in pathogen
populations from wild crops relatives, are not
expected to identify the most important
characteristics for success in agriculture because this
critical polymorphism is likely fixed in agriculture.
Instead, what is needed is a comparison of
agricultural isolates to others that have not invaded
(a case and a control).

Agriculture is a relatively recent phenomenon, as
such, all agricultural pathogens recently lived on a
wild host and, since the invention of agriculture,
have either speciated, or are still exchanging genetic

variation with wild counterparts. Pathogen
reservoirs of genetic diversity represents a
continuum from one-off hybridisation and

introgression events, through to contemporary gene
flow between populations living in different
environments. Characterisation of one off
hybridisation events has been implicated in the
generation and success of plant pathogens such as
Dutch Elm Disease (8) and Zymoseptoria
pseudotritici (9) as well the human malaria pathogen
(10). At an intermediate level, in pathogens such as
Albugo candida (an oomycete which can infect over
200 plant species), each lineage apparently diverged
from other host specific lineages with the exception

of for rare recombination or introgression events
between lineages (11,12). At the other end of the
spectrum, invasion biology and population genetics
has been considering the importance of genetic
diversity, adaptive potential and invasion success
(13). However, these processes are inherently
difficult to study because they are rare, either they
are a single hybrid speciation event, or they are one
off invasion events (6,14). For example, the ash
dieback pathogen (Hymenoscyphus fraxineus) has
been a highly successful invader of Europe from Asia
(15). Population genetic analyses applied to the
invasive and source populations has shown that the
European invasion has fixed polymorphism in large
areas of the genome (16). This loss of genetic
diversity is consistent with a strong bottleneck, but
also with a selective sweep. Without independently
rerunning the invasion of Europe from Asia, it is
difficult to discriminate chance from selection.

Rust fungi are obligate biotrophic pathogens and
this intimate association with a living host makes
them ideal for the study of adaptation in agriculture
(17). Rusts also make up some of the most
devastating crop pathogens, infecting crops of global
significance, such as wheat (18), soybean (19) and
coffee (20). Rusts are known for their complex life
cycles with multiple stages, in agriculture the main
infection phase is clonal, where urediniospores are
found erupting from pustules on the surface of
leaves (Fig. 1A). Each spore contains two different
haploid nuclei (dikaryotic). This phase can continue
indefinitely on susceptible hosts but can also
alternate with a seasonal sexual stage (17). While
there are exceptions the general principle is that
mutation increases  polymorphism  between
dikaryotic content (and within the population) in the
clonal phase and recombination shuffles beneficial
variation in the sexual phase (17,18). The sexual
phase of these pathogens may be a key determinant
in their rate of adaptation. In most cases, the sexual
phase of the life cycle occurs on a different host
plant, termed heteroecious (as opposed to
autoecious). In the case of wheat stem rust this
alternate host is barberry which has been associated
with increased rust virulence in Europe and the US
for hundreds of years (21).

In wheat yellow (stripe) rust the centre of genetic
diversity and recombination occur in Nepal, Pakistan
and China and vyet their clonally sustained
populations expand to every continent except
antarctica (22). So, despite the knowledge that
centres of diversity and recombination are
important, these processes are difficult to study
either because the locations of wild hosts are
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difficult to identify and sample and/or these centres
of diversity are linked to the centre of domestication
of the crop and difficult regions to access. In the
present study, we selected a system specifically to
investigate wild-agricultural adaptation with a
requirement for an obligate biotrophic pathogen
that lives on a wild crop relative. Sea beet (Beta
vulgaris subsp. maritima) is a (largely self-
incompatible) host found permanently along the
western coastlines of Europe (23,24; Fig 1B) and is
the wild progenitor of sugar beet (B. vulgaris). Sugar
beet is one of the most recently domesticated crop
species (circa 200 years, 25), it is grown for sugar
production throughout Europe, where vyield is
impacted by its autoecious rust pathogen, Uromyces
beticola (26).

This system is being developed to understand the
nature and strength of the selective constraints
arising from the wild and agricultural environments.
Natural selection is expected to operate to
distinguish genetic variation between wild and
agricultural pathogen populations and that this
should be more pronounced in genes important for
success in these environments. Therefore, in rusts
living on wild and agricultural hosts we should expect
to see (1) population differentiation between
isolates from the wild and agriculture and (2) within
the genome, signals of diversification should be
greatest at genes important for niche adaptation. To
investigate whether the impact of adaptation to the
agricultural environment is present in the genome of
a fungal pathogen, we first assembled and
annotated the U. beticola genome and characterised
population genetic diversity in isolates sampled from
sea and sugar beets across England. To facilitate
genetic studies, we develop a method of peeling U.
beticola spores from the surface of a leaf, allowing us
to re-sequence and analyse variation across 1.87
million SNPs among 42 rust isolates from 24 sugar
beets and 18 sea beets. Wild sea beets were
sampled along approximately 370 km of coastline as
were sugar beets (inland as the crow flies, ~200 km).
Despite sea and sugar beet fungal samples
sometimes being 10 km apart, we find evidence for
two populations, split between an exclusively wild
set of isolates and a group of predominantly
agricultural isolates. Importantly, we find a signal of
adaptive evolution in genes that putatively interact
with the host (effectors) as well as a signal of
increased levels of genetic variation at these
effectors.

Results

A genome assembly for population genetics of U.
beticola

In order to test our hypothesis, that adaptation to
agricultural crops is evident in comparisons of wild
and agricultural plant pathogen populations, we
assembled a large rust genome (588 Mbp) into
19,690 contigs with a genome N50 of 74 Kbp, the
largest contig is 554 Kbp . Rust genomes are often
problematic to assemble because of the dikaryotic
(n+n) content of the uredospore life stage which is
sampled (26,27). Divergent haplotypic content
would be evident as a double peak in the k-mer
distribution of the reads (e.g. see Fig. 1inref 19). We
do not observe this signal characteristic of divergent
haplotypic content and instead our spectra plots
suggest we have a genome with relatively low
heterozygosity, misassembles or frame shifts (28;
Fig. 1F).

We wanted to assess completeness of our U.
beticola assembly and annotation so we used core
gene presence in comparison to a range of other rust
assemblies of smaller and equivalent size (20,29,30;
Fig. 1G). BUSCO genome completeness places U.
beticola (85.1% of the complete BUSCOs; 84.0%
single copy) within the level of other rust assemblies.
In addition, the level of duplicated BUSCOs is low in
comparison to other rust assemblies where
divergent dikaryotic content may be more
problematic (Fig. 1G).

The U. beticola genome annotation identified
9,148 genes (17,591 transcripts) with an average
transcript length of 2,057.7 bp (6.4 exons per gene)
at a mean coding sequence (CDS, spliced from
transcript in the annotation) length of 1240.9 bp (see
also Supporting Information 1 & 2). A large
proportion of genes were annotated as Transposable
Elements (TEs, 41.4%, taking the total up to 15,612)
within this repeat rich genome in which combined
low complexity and interspersed repeats represent
89.96% of the genome. Our reassessment of
published rust genomes shows that this level of
repeat content is consistent with such a large rust
genome (Supporting Information 3). Signal peptide
information was used to define the secretome and
then 225 effectors were identified using
EFFECTORP2.0.

In the UK rust is differentiated into two populations
We sampled and sequenced 46 individuals and after
quality control 42 were used in population analyses.
To assess population level diversity and divergence,
we identified 1.87 million SNPs across the 588 Mbp
genome from 42 individuals sampled from either a
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Figure 1. Beet rust, isolated from wild and agricultural hosts, peeled and sequenced. (A) U. beticola
pustules (2-4mm approximately). (B) Sea beet found along an estuary, from which leaves are clipped and
brought back into the lab. (C) Pustules are covered with 5ul peel solution which sets and is peeled off for
library preparation and sequencing (D). (E) An electron micrograph image of a rust pustule (artificially
coloured), individual urediniospores are visible. (F) Rust genome k-mer spectra is a histogram
demonstrating the number of k-mers (in the reads) found at a given multiplicity (or depth). K-mers
present in the reads but absent in the assembly are plotted in black, present once in the assembly in red,
then purple for twice. Importantly, rare k-mers (suspected errors) are not found in the main distribution
of the assembly which centres around the sequencing depth (~50x). Content falls largely within this 50x
peak (homozygous) with a slight heterozygous shoulder (~25x). The inset plot shows the k-mer
distribution where all contigs without a blast hit are removed. The black peak in the main distribution
suggests that this is real U. beticola content and should remain in the assembly. (G) BUSCO completeness
scores are highlighted for Hemileia vastatrix (541.2 Mbp), Puccinia graminis (81.5 Mbp), P. striiformis f.
sp. Tritici (61.4 Mbp), P. triticinia (106.6 Mbp), U. beticola (588.0 Mbp) and Uromyces viciae-fabae (209.5
Mbp). Colours indicate Missing, Fragmented, Complete and Duplicated and Complete and Single copy
BUSCOs. Genome sizes are represented as grey bars that boarder BUSCO scores and are a percentage
relative to the largest, U. beticola. The U. beticola genome while large has comparatively middle to low
levels of missing, fragmented and duplicated BUSCO content.

Using all 1.87 million SNPs we used DAPC to
All 41 PCs were

wild sea beet (n=18) or an agricultural sugar beet 2A).
(n=24; Fig. 2A). Genetic diversity was used at two assess population subdivision.

levels, using gene CDS regions for plotting a
Neighbour-Net network and also using all SNPs to
examine population subdivision based
on discriminant analysis of principal components
(DAPC; 31). The Neighbour-Net network showed
differentiation of an exclusively wild group of
individuals from three sites in the south-east of
England (Fig. 2B; Table 1). Isolates in this wild clade
were sampled from sites spanning approximately
80km, yet isolates from agricultural beets, sampled
just 10km away, are found in the predominantly
agricultural clade (Table 1, Orford). Despite these
wild and agricultural isolates being found in close
proximity this predominantly agricultural population
extends across all agricultural sites, and also
encompasses the two northern most wild sites (Fig

retained initially to determine that there were two
clusters or populations (find.clusters: 2-20) and then
15 PCs, accounting for 68.7% of the conserved
variance, were used in the DAPC analysis (Fig. 2C).
Individuals were sorted into two clusters which
represent the southeast wild only group (n=13) and
the majority agricultural group as identified by the
network analysis of gene coding regions (n=29; see
Fig. 2B, Table 1). The overall level of genetic
differentiation (Fsr) between these two populations
is 0.113 (Fig. 2C) and given the proximity (and
spread) of wild and agricultural populations the
processes driving this divergence may be
reproductive or based on natural selection.
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Figure 2. Population differentiation separates an entirely wild population from all agricultural and
remaining wild individuals. (A) Map of the UK shows samples collected from wild (blue crosses) and
agricultural (orange crosses) hosts. Overlapping crosses hide wild samples which can be distinguished
using Table 1. Norther wild samples belong to the Agricultural group and are accompanies by an asterisk.
Diamonds indicate beet factories. (B) SplitsTree network generated using the CDS regions of 15,473
genes (15.2 Mbp) shows a clear differentiation of the wild only population. Heterozygous sites coded
using IUPAC ambiguities. From here onwards when referring to populations we refer to the grouping
observed in this network & by DAPC. (C, left to right) The optimal number of clusters was two based on
the lowest associated BIC and, given just two clusters, the blue-orange distribution shows how individuals
cluster across the single discriminant function. The genome wide genetic differentiation between
clusters, Fs7=0.113. However, the red distribution shows genetic differentiation in 10 Kbp windows across
the genome and emphasises that differentiation can vary. Selection against polymorphism moving from
the wild to agriculture (or vice versa) would drive genes towards an increasing Fsr.

Reproduction may be partitioned differently in wild
and agricultural populations

In order to understand whether the relative levels of
sexual and asexual reproduction are different
between wild and agricultural populations we
assessed the level of inbreeding. The inbreeding
coefficient, Fis, describes the proportion of genetic
variation contained within an individual relative to
its subpopulation. The measure of Fs most often
scales between zero and one and indicates random
mating and inbreeding, respectively. In the present
data, while we do not observe a significant
difference in the level of heterozygosity per
individual, we see that F;s is negative in all
agricultural individuals (Fig. 3A & 3B). A negative
value of Fis suggests excess heterozygosity and a role
for the preservation of polymorphism via some
clonal reproduction. Although the wild population
also contains individuals with negative F;s values, in
general, the wild population have higher F;s values
that are closer to and above zero (Fig. 3B). The wide

distribution of F;s values in the wild suggests the
occurrence of both clonal and sexual reproduction.
In order to specifically investigate whether the
heterozygosity associated with the inbreeding
coefficient could have been caused by other
processes we looked for an association with other
features of the genome. As well as clonal
reproduction, excess heterozygosity can also be
caused by processes such as genome organisation
and repeat content driving erroneous heterozygosity
via read miss-mapping. Blocks of excess
heterozygosity (at the 5% significance level based on
Hardy-Weinberg Equilibrium test) impact
agricultural and wild populations to different
extents. We find that the agricultural population has
approximately 22 thousand blocks (two or more
excess heterozygosity sites) where the wild has just
less than ten thousand blocks (mean block length:
Agri=227.7 bp, wild=124.0 bp; mean No. excess
heterozygous sites: agri=5.1, wild=5.9). While the
agricultural population has been impacted by excess
heterozygosity to a greater extent, we found no
association of these regions of excess heterozygosity
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Figure 3. Individual level polymorphism is different between agricultural and wild populations. (A)
There is no significant difference between the number of heterozygous sites in agricultural and wild
individuals (median heterozygous site No.: Agri=326,246, Wild= 321,031; Wilcoxon W=225, p=0.332) and
(B) wild rust isolates have fewer SNPs (within population) and broadly distributed F;s values that tend
more towards zero and above on average. Agricultural isolates have larger numbers of SNPs and Fis
values that are more negative on average. There is a significant difference in the F;s values of agricultural
and wild populations (Median Fis: Agri=-0.21802, Wild=-0.07371; W.ilcoxon W=92, p-
value=0.008). Negative F;s values are indicative of an excess in heterozygous sites and consistent with
clonal modes of reproduction, as are accumulation of mutations at the individual level. (C) Numbers of
homozygous and heterozygous SNPs per individual. Individuals represented by a single bar where
homozygous sites coloured by population (orange agri and blue wild). Grey represents the number of
heterozygous sites per individual with red tips indicating the proportion of those heterozygous sites that
are in regions of excess heterozygosity. The vertical black line separates population total values (left,
reaching 1.87 million SNPs) from individual values (right). (D) Individuals observed with fewer SNPs
within population (compare B x-axis) are not less divergent overall, plotted against mean Neighbour-Net

distance (see Fig. 2B).

with repeat or genic regions and so it is difficult to
discriminate between effects of genome structure
from mode of reproduction.

Effector genes provide evidence for adaptation to
agriculture

We have identified a wild-only population of isolates
as distinct from another population that infects all
agricultural hosts sampled, plus five northern wild
hosts. Despite the presence of some wild infecting
isolates in our ‘agricultural’ group, potentially
dampening these effects, we set out to identify
signals of adaptive variation in CDS regions and
divergence in effector genes between these wild and
agricultural groups.

Natural selection operates on variation already
present in a population and so here we measure
levels of nucleotide diversity (m). Our first
observation is that a combination of short CDS
regions and the level of polymorphism in genes
results in less than half of all gene CDS regions being

polymorphic (43.4%; Fig. 4A). At the genome scale
(10 Kbp windows), levels of nucleotide diversity in
the wild population are marginally (but significantly)
higher than those of the agricultural population (Fig.
4B). For those effectors and non-effector genes that
contain polymorphism within their CDS region, we
observe first, that genetic diversity in non-effector
genes is higher in the wild than in agriculture,
second, that effectors are more polymorphic than
non-effectors in both populations and third, that
effector diversity in the wild is greater than that
present in agriculture (Fig. 4C; Supporting
Information 4).

Next we used a measure of the average number
of non-synonymous to synonymous polymorphism
(pn:ps) within non-effector genes and effectors as a
whole. However, as mentioned above, many CDS
regions contain zero SNPs and many others contain
just a single SNP. A single SNP makes calculating
adaptive diversity difficult in cases where genes have
a single non-synonymous polymorphism (px), as the
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Figure 4. Wild effector genes maintain a signal of adaptive diversity. (A) Histogram of genes with a
given number of SNPs in their CDS region (between 0-7 SNPs). 8808 genes have zero SNPs within their
CDS region and 6744 have one or more SNPs. (B & C) Genome wide levels of nucleotide variation () are
higher in the wild papulation (B, median m 10 Kbp windows: Agri=0.251x103, Wild=0.269x1073;
Wilcoxon(rr) W=2440369930, p<0.001). Considering polymorphic genes, this pattern of wild maintenance
of diversity is also observed where, Agricultural non-effector genes have significantly less diversity than
Wild non-effector genes (C, median i non-effector genes: Agri=0.161x1073, Wild=0.245x103; Wilcoxon(r)
W=9454106, p<0.001). Despite low numbers of effectors with polymorphismin the CDS (see gene n under
boxplot in C) maintenance of polymorphism in these host interaction genes is significantly higher than
that of non-effectors within both agricultural and wild populations (C, median mt effectors: Agri=0.236x10°
3, Wilcoxon(rr) W=93488, p=0.038; Wild=0.583x103, Wilcoxon(rr) W=69958, p<0.001). Finally, wild
effectors are significantly more polymorphic than agricultural effectors (Wilcoxon(m) W= 638, p<0.001).
(D) Histogram of observed effector and non-effector gene CDS lengths (between 1-3000 bp) shows counts
and percentages (insert) per gene type. Vertical black lines indicate the effector size range, and the insert
shows the distribution of sizes within that range (median CDS length: non-effector gene= 678, effector=
522; Wilcoxon(bp) W=2094583, p<0.001). (E) Point and error bars show the Length and pu:ps values after
concatenating effectors (observed, in red), or size matched non-effector genes (bootstrapped, in
turquoise). Size matched non-effector genes are no longer than effectors (effector Length=116 Kbp; non-
effector gene median (5-95%Cl) Length=112 Kbp (107 Kbp — 118 Kbp); randomisation test p=0.148).
However, size matched non-effector genes have significantly lower levels of adaptive diversity than
effectors (effector pn:ps=2.71; non-effector gene median (5-95%Cl) pn:ps=1.029 (0.533 - 2.443);
randomisation test p=0.043).

ratio of non-synonymous polymorphisms (to single Py polymorphisms but it also utilises regions of

synonymous, Ps) is infinity. This process has the
potential to impact effectors to a greater extent as
these tend to be shorter on average than non-
effector genes (Fig. 4D). In order to account for this,
we used a concatenation and bootstrapping
approach to compare adaptive diversity between
effector and non-effector genes. This approach
involved concatenating all 225 effectors to measure
a single pw:ps value (averaged pairwise among
alleles). Not only does this solve the problem of

zero polymorphism in other genes CDS regions. This
process was then repeated (x1000 with
replacement) for size matched non-effector genes.
This demonstrated that the signal of adaptive
diversity was greater in Effectors than non-effector
genes of the same size (Fig. 4E).

After demonstrating that diversity is greater in
the wild and that effectors carry an increased signal
of adaptive diversity we next wanted to test whether
effectors were more different between wild and
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Figure 5. Evidence for adaptation to agriculture
(and the wild) is present in effector diversity.
Levels of genetic differentiation between the
agricultural and wild populations non-effector
genes and effectors. effectors are significantly
more differentiated between populations than
non-effector genes (median Fsr: non-effector
genes= 0.089, effectors= 0.100, Wilcoxon(rr) W=
1515702, p=0.005).

agricultural populations than other genes. We
predicted that host genetic diversity is one of the
largest discriminating factors between the wild and
agricultural environment and therefore we expect to
observe it in the genes that putatively interact with
the host, the effectors. Here we measured the
genetic differentiation at all genes which included 5
Kbp flanking each gene and found indeed that
effectors were significantly more diverged than non-
effector genes (Fig. 5).

Discussion

A genome for population genetics using peel
sequencing

Based on our wild-agricultural adaptation hypothesis
we predicted that we would observe genetic
differentiation between wild and agricultural
populations. We set out to establish this using peel-
sequencing, a method developed to allow us to paint
on and peel off (and genome sequence) rust pustules
from the surface of a leaf. Our peel method reduces
the level of sequencing resource devoted to the host
and our preliminary results were generated prior to
sequencing our draft genome and instead, we
assembled and mapped to a peel genome. This
preliminary genome was approximately one third
the size of our draft but it allowed us to estimate the

genome size and sequencing effort required for
resequencing as well as highlighting the main signal
of our analyses (without a draft reference genome;
data not shown). However, we subsequently
generated a reference assembly and annotation
using DNA and RNA from U. beticola spores
combined from multiple pustules on a leaf. The U.
beticola genome at ~600 Mbp, is large for a fungus
but not for a rust (19). The rusts have dikaryotic
haploid nuclei and in many rusts this produces a
scenario (Meselson effect) in which extended
periods of clonal reproduction (without
recombination) increase the divergence of
homologous content (18,32). However, many
agronomically important rusts also have an alternate
host which is used by the fungus to enter its sexual
phase (27). In the case of the wheat rusts, hundreds
of years before a causative link was established,
superstition drove the removal of its alternative
host, Berberis, from cereal growing regions (21). U.
beticola reproduces on wild sea beet and, the
permanent proximate availability this host offers a
(post hoc) explanation as to why we have not

observed divergence of karyon (reduced
heterozygosity) in U. beticola.
Agriculture provides the largest annually

replicated plant pathogen experiment on Earth.
Replicated genotypes are put out annually and
pathogens must invade from a reservoir and adapt.
Natural selection acts upon genetic variation that is
already present in a population and the idea that
pathogens evolve in reservoirs and then reinvade
new populations or species is neither new nor
limited to plants and fungi, viral zoonoses are
particularly pertinent to human health (e.g. HIV,
SARS-CoV2, 33). Farming is a relatively recent
phenomenon (by humans, 34) which means that
plant pathogens must either still be sharing genetic
variation with pathogens on progenitor hosts or,
they are reproductively isolated from them and
specialising. Either way, we can use the signals of
differentiation and divergence to understand the
genes important for adaptation to agriculture and
perhaps more importantly, the processes underlying
adaptation. Here we investigate these processes by
developing the wild-agricultural beet rust system
(Beta vulgaris subsp. maritima, B. vulgaris and
Uromyces beticola, respectively). Consistent with
predictions that come from our hypothesis on how
wild-agricultural pathogens evolve, we show that the
signal of adaptation is found to a larger degree in
fungal genes that putatively interact with the host.
By assembling a draft genome and developing a
peel sequencing method that allows preferential
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sequencing of pathogen to host material, we first
identify two genetic clusters of rust in England, a
population found solely on wild host plants as well as
a population found predominantly on agricultural
hosts. Levels of genetic diversity are marginally
higher in the wild population although agricultural
individuals tend to carry greater individual level
polymorphism.  Rust pathogens can reproduce
clonally or sexually and despite not identifying any
direct clones in our clone correction analysis we
observed a signal of increased levels of heterozygote
excess. This finding is consistent with an increase in
clonality in agriculture. Next, we established that
genes predicted to interact with the host, effectors,
carry an increased level of amino acid changing
polymorphisms compared to non-effector genes.
Finally, we identify that on average these effector
genes are more differentiated between wild and
agricultural populations than non-effector genes.
This finding is important for all crop pathogen
systems in identification of genes important for the
adaptation of pathogens to agriculture but more
generally, also provides a framework for
identification of agriculturally adapted genes as well
as a means to go on to identify the mechanisms that
facilitate that adaptation.

Genetic divergence between agricultural* and wild
populations

To assess the genetic differentiation between wild
and agricultural isolates, we chose a mix of isolates
sampled from wild and agricultural hosts. Wild
samples were spread latitudinally along the regions
from which we received agricultural samples from
growers. Discriminant Analysis of Principal
Components highlighted two distinct clusters of
isolates in England, a group that lives exclusively on
wild hosts and a group that lives predominantly on
agricultural hosts (24 out of 29 isolates). The wild
population was found at three sites in the east of
England (distributed across ~80 km). The isolates
identified within the agricultural clade spanned the
wild populations and came within 10km at the
nearest wild sampling site. This predominantly
agricultural clade was identified for all isolates found
in agriculture, plus five isolates found on wild hosts
in two more northern sites. We can’t yet account for
these wild infecting agricultural isolates and we go
on to analyse the genetic diversity and divergence of
these two populations (wild and agricultural
compatible) with an aim to address the role of host
genetic diversity and broader metapopulation
dynamics in our observation.

Investment in clonal or sexual reproduction can
vary with environmental heterogeneity, where the
advantages of sex for rapid adaptation diminish to
fecundity as environmental heterogeneity declines
(35,36). This drives the prediction that agricultural
pathogen populations may increase the relative rate
of clonal to sexual reproduction to rapidly infect
hosts before cropping (or chemical treatment) and
not pay the cost of reduced rate of adaptation
because hosts are genetically more similar than wild
hosts (22). Indeed, we do observe, using an
inbreeding statistic (Fis), that the agricultural
population has an increased signal of clonality (37).
This is a consequence of excess heterozygosity which
is more prevalent across the agricultural genome. In
wheat stripe rust, bouts of clonality spanning
decades were used to account for increased levels of
heterozygosity and is believed to be driven by the

lack of a sexual host (18). We see excess
heterozygosity not increased heterozygosity,
although our power to detect increased

heterozygosity in the agricultural population may be
impacted by the low numbers of individuals assigned
to our wild clade.

Excess heterozygosity could also have been
caused by assembly and mapping errors, particularly
in this repeat rich genome. The agricultural
population has both a greater number of regions
impacted by excess heterozygosity as well as a larger
overall proportion of the genome found to be in
heterozygote excess. However, blocks of
heterozygosity appear no more associated with
repeat regions as they do with genic regions. It is
worth adding that the reference genome was
generated from an agricultural isolate and this
perhaps reduces the chances of heterozygosity
caused by repeat differences and mapping errors. A
long-read assembly, spanning repeat regions, would
allow us to convincingly address the impact of
repeats and delineate, differential agricultural
genome structure, from clonal reproduction in the
agricultural population.

Effector genes carry a signal of adaptation to
Agriculture

Effector proteins must both avoid detection by the
host immune system as well as target host gene
products (which are also evolving) and so they must
continually adapt in order to avoid detection and
remain effective (38,39). In the present study we
categorised those gene products that are secreted
outside of the fungal cell and used machine learning
to classify 225 genes with effector properties. We
use those genes as a group with the expectation that
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their evolution will allow us test our hypothesis: that
natural selection should operate to further
distinguish genes important for success among wild
and agricultural environments.

We set out to first, establish the presence of
signals of adaptation in effectors as compared to
non-effector genes. Consistent with predictions of
linkage to loci operating under balancing selection
(40), nucleotide diversity is significantly higher in
effectors than in non-effector genes of the same
population. Moreover, the diversity of polymorphic
wild effectors is twice that of other gene categories
or the genome average. These diversity analyses are
all done on CDS regions and it is worth pointing out
here that of the 225 effectors identified only 44 and
48 (Agri and Wild, respectively) contain
polymorphism in this region. Despite these reduced
numbers of polymorphic CDS regions we retain
enough power to show that differences between
effectors and non-effector genes are statistically
significant. It is because of these low numbers of
polymorphic CDS regions that for analysis of
adaptive diversity, which can only use synonymous
and non-synonymous polymorphism (pn:ps in the
CDS), we compared observed mean py:ps of all
effectors concatenated, to bootstrapped (size
matched) non-effector genes. We found that
effectors contained a greater level of adaptive
diversity than expected based on that of non-
effector genes. Therefore, in addition to diversity in
general, adaptive diversity is higher in these host
interaction genes.

Finally, with effector genes carrying a signal
consistent with their evolution and adaptation to
host resistance, we test for a signal of specificity to
the wild and agricultural environments and indeed
we find that genetic differentiation in effectors is
significantly higher than that of non-effector genes.
Again, from the proximate sugar beet rust invasion
perspective, those effectors that are more highly
divergent between wild and agricultural populations
represent those agriculturally adapted variants
whose mode of action is most important to
elucidate. However, more broadly these analyses
provide a framework by which we may identify
genes that are adaptively divergent between the
wild and agricultural populations and are therefore,
important agricultural adaptation genes.

In the present study we identified the presence of
signals consistent with agricultural pathogen
adaptation to agricultural hosts. This finding has
implications in the beet rust system but, more
importantly also for the way we understand and

analyse pathogen evolution. We intend to use this
system to further explore wild-agricultural plant
pathogen evolution. This first look at population
genetic diversity raises questions on the role of
broader metapopulation dynamics as well as
whether this signal is replicated across other wild-
agricultural boundaries, in Germany and France for
example. The present work also raises questions
about the role of linkage, repetitive elements and
genome organisation in local adaptation. The rusts
are a problematic lineage of crop pathogens with
intricate and complicated haploid, diploid and
dikaryotic life stages (27,41). Many other fungal and
insect systems partition their reproduction and
favour alternative hosts for sexual reproduction and
this strategy may be particularly advantageous in a
system where the crop host is not present year-
round. Clonal reproduction suits a boom-and-bust
invasion lifestyle, but a bit of sex goes a long way,
and it is perhaps this ability to partition these modes
of reproduction on different hosts that has made
them so adept at capitalising the crop system.
Ultimately, this study offers a beginning to
understand multi -host -pathogen systems that
might one day help predict sources of adaptation in
reservoir systems and inform targeted treatment of
agriculture to reduce adaptive introgression and
increase the durability of the resistance already in
the system.

Materials & Methods

In order to test our hypothesis, that pathogen
adaptation to agricultural crops will be evident in
comparisons of wild and agricultural plant pathogen
populations, we identified a plant pathogen, a rust
fungus (Uromyces beticola) that is an obligate
biotroph found in the UK living on both wild sea beet
and agricultural sugar beet. We sampled isolates in
both the wild and agriculture, sequenced and
assembled a large (agricultural) fungal genome,
sequenced expressed genes for genome annotation
and then re-sequenced 46 wild and agricultural rust
isolates for population genetic analysis, of which 42
made it through quality control.

Genome Assembly and annotation of U. beticola

A rust infected sugar beet plant from Norfolk was
brought into the lab to allow the infection to
progress in the absence of agitation by wind and
rain. Multiple pustules from a heavily infected single
leaf (Fig. 1) were broken and spores collected in
order to extract DNA (see below for CTAB details) for
DISCOVAR PCR free library preparation and
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sequencing (42). A HiSeq2500 was used to sequence
43.8 Gbp of data which was estimated to be 73x
coverage based on genome size estimates of ~600
Mbp from earlier tests of peel sequencing. Post
assembly, contigs less than 1 Kbp were removed as
they don’t represent a real-terms increase in the
span of a single read pair. We used ABYSSv2.0.2 (43),

KATv2.3.4 (28), BLoBTOOLS v0.9.19 (44) and
BUSCOV4.0 (45; against basidiomycota_odb10) to
assess  genome content, contiguity  and

completeness. BLOBTOOLS was used to retain contigs
with BLAST hits to Basidiomycetes as well as those
without a hit.

To generate genome annotation, RNA was
extracted from rust infected sugar beet leaves
collected in the field. Using a soft bristled
toothbrush, pustules were lifted/brushed from each
leaf into a 2ml microfuge tube with the aim of
combining 100mg of material (x10 tubes). Spores
were then flash frozen in liquid nitrogen in
preparation for RNA extraction (10 samples). In
addition, leaf punches were also taken; punches
were positioned at pustules away from vascular
elements of the leaf in order to capture fungal
expression in planta (2 samples). RNA was extracted
using the Qiagen AllPrep Fungal DNA/RNA/Protein
Kit and stranded libraries were prepared using the
NEBNext Ultra Il Directional with poly-A selection.
Libraries were sequenced on one lane of the
NovaSeq 6000, SP flow cell with the 300 cycle kit
(150 bp PE) with vl chemistry and reads were quality
controlled using CENTRIFUGE (46).

Gene models were annotated using a workflow
which incorporated repeat identification, RNA-Seq
mapping and assembly, and alignment of protein
sequences from related species (Supporting
Information 1). Alternative reference guided
assembly methods were employed (Scallop, 47,
StringTie2, 48) to assemble transcripts for each
sample. From these a filtered set of non-redundant
transcripts were derived using Mikado (49). Gene
models were classified based on alignment to
protein sequences, identifying the subset of gene
models with likely full-length ORFs. The classified
models together with aligned proteins and repeat
annotation are provided as hints to AUGUSTUS (50).
Three alternative AUGUSTUS gene builds were
generated using different evidence inputs or
weightings. These together with the gene models
derived from the Mikado transcript selection stage
were consolidated into a single set of gene models
using Minos (49). The Minos pipeline scores
alternative models based on the level of supporting
evidence (protein homology, transcriptome data)

and gene structure characteristics (e.g. CDS, UTR
features) to select a representative gene model and
alternative splice variants.

In plant pathogenic fungi, gene products that are
secreted outside of the fungal cell and into the host
are considered candidate host interaction genes,
potentially facilitating infection. These putative
effectors are identified here using signal peptide
information, genes with the presence of a signal
peptide using SIGNALP v3.0: (-s notm -u 0.34; ,51) and
the absence of transmembrane or mitochondrial
localization signals using TMHMM v2.0 and TARGETP-
2.0 Server (52) were finally assessed for sequence
similarity to known effectors using EFFECTORP2.0
(53). Assessment of putative effector (henceforth,
effector) density was done using the method
of Raffaele et al. (54).

Uromyces beticola isolate collection and
sequencing
Samples were collected over the period of

September to December in 2015 and 2016. Wild sea
beet rust samples were collected from UK east coast
sites between Southminster and Hull (~¥370km of
coastline) and agricultural sugar beet rust samples
were posted to the Earlham Institute (via the British
Beet Research Organisation, BBRO) by beet growers
covering approximately the same latitudes
(~200km). DNA extraction from single rust pustules
was carried out at the Earlham Institute (El) using the
peel extraction method. This method involves
pipetting 5ul cellulose acetate onto a rust pustule,
allowing one or two minutes to air dry and then
peeling the fungus away from the leaf (Fig. 1C,D) and
depositing the peel into a tube for storage (-80°C)
prior to agitation and modified phenol-chloroform
DNA extraction. This method maximises pathogen
to host DNA in the extraction and avoids using excess
sequencing resource on the host genome.

Peels were ground using one 4 mm and five 1mm
stainless steel ball bearings in a TissuelLyser (Qiagen,
Valencia, CA) for 60 seconds at a frequency of 22 Hz.
Fragmented peels were then incubated at 50°C for 1
hour in 500ul extraction buffer (2%
cetyltrimethylammonium bromide, 1.4 M NaCl, 20
mM EDTA (pH 8), 100 mM Tris-HCI (pH 8), 0.2% B-
mercaptoethanol, 1 mgml? proteinase K (55).
Phenol:Chloroform:Isoamyl Alcohol 25:24:1,
saturated with 10mM Tris, pH 8.0, 1mM EDTA (500
ul) was added to each sample and vortexed before
centrifugation at 14,000g for 5 min. The aqueous
(upper) phase (~450 pl) was harvested into a fresh
microcentrifuge tube. To this 100% (v/v) of
Agencourt AMPure XP (Beckman Coulter™) or a
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homemade mix Sera-Mag Speed-beads (Fisher
Scientific, cat. #65152105050250) in a PEG/NaCl
buffer beads (Rohland and Reich 2012) magnetic
beads was added, samples were vortexed for 20s
and incubated for 10 minutes at room temperature.
The tubes were placed on a magnetic stand, and
supernatant removed and discarded after all of the
beads had been drawn to the magnet (~2 min). The
beads were washed three times with 1 ml of 80%
EtOH. After the last wash, the EtOH was removed
and the beads allowed to air dry for 5 minutes.
Magnetic beads were then resuspended in 55ul of EB
buffer (10 mM Tris-HCI) and tubes incubated at 37°C
for 10 minutes (vortexing every 2 min). To the eluate
1 pl of 10% (v/v) RNase A (100 mgml™?) was added
before incubating at 37°C for 30 minutes. Magnetic
beads (50ul) were added to each sample, vortexed
and incubated at room temperature for 10 minutes.
Sample tubes were then placed onto a magnetic rack
for 2 minutes and the supernatant discarded. Beads
were washed twice with 200ul of 80% EtOH. Ethanol
was removed and the beads left to air dry for 5 min
before resuspending in 55 pl of TLE buffer (Tris low
EDTA — 10 mM Tris-HCI, 0.1 mM EDTA). The tubes
were incubated at 37°C for 10 minutes (vortexing
every 2 min). The tubes were again placed onto a
magnetic rack for 2 min and the cleared eluate was
harvested and stored at —20°C.

Libraries were prepared using the LITE method
(56) and 46 isolates were genome sequenced at the
Earlham Institute on nine lanes of an Illumina
HiSeq4000 (150PE) generating ~750 Gbp of read
data and an estimated mean depth of 27.5x per
individual.

Mapping and SNP calling

Reads were quality trimmed (minimum length 90,
quality 30, --paired; TRIM_GALORE v0.4.0; Babraham
Institute, Cambridgeshire, UK). BWA mem (57) was
used to map reads and SAMTOOLS v1.5 (58) and
BCFTOOLS v1.3.1 were used to sort and remove
duplicate reads and mpileup (-t DP) to call variants
(bcftools call -c). VCFTooLs v0.1.13 (59) was used to
filter SNPs to an individual minimum depth of five,
maximum depth of 1.8 x mean depth per individual
and a minimum genotype quality of 30. SNP sites
with more than two alleles were excluded as
probable errors. Finally, sites that were missing in
30% or more individuals were also removed. Four
individuals were removed from further analysis
because their average depth was less than 10x
leaving 42 individuals for population analyses.

SNP diversity and divergence analysis

Population differentiation was determined using
Discriminant Analysis of Principal Components
(DAPC, Adegenet; ,31,vcfR v1.12.0; ,60) based on all
1.87 million SNPs. Initially, the find.clusters function
was used with all 41 principal components in order
to identify two genetic clusters based on the
lowest Bayesian information criterion (BIC). DAPC
was then run using 15 principal components
accounting for 68.7% of the conserved variance.
Clone correction (mlg.filter) was conducted using a
filtered SNP dataset using 1 SNP per 100 Kbp (1.1%
of the total) and no clonal genotypes were
condensed in the dataset regardless of the threshold
used from filter_stats (farthest, average or nearest).
All 42 individuals were retained for further analysis
and plotted on the map of the UK using
rnaturalearth.

VCFTOOLS was used for window analyses (10 Kbp
windows), Fsr analyses of gene regions was based 5
Kbp up- and down-stream of gene boundaries.
DNAsP v6.12.01 (61) was wused to calculate
population genetic statistics per CDS after two levels
of phasing, first using phase informative reads and
then using linked homozygous SNPs to infer
haplotypes from population data (SHAPEIT v2.20:
assemble --states 1000 --burn 60 --prune 60 --main
300 --effective-size 88000 --window 0.5, 62). The
effective population size estimate (6=4Neu) for
SHAPEIT was calculated using mean m from 50kb
windows from across the genome (r = 0.000352393)
using an assumed mutation rate, u = 1x10° (63). Ten
contigs (19 genes) failed the phasing step and were
removed from further analysis. Fasta conversion
from vcf (GATK v3.5.0 -
FastaAlternateReferenceMaker, 64) was done for
spliced CDS regions (Cufflinks v2.2.1 -gffread, 65) per
individual for all genes with read coverage greater
than 60%. Analyses and plotting were done in R
v3.6.3.

YNOO (PAML v4.9, 66) was used to calculate the
average pairwise  pn:ps ratio per  gene
(nonsynonymous polymorphism, bn and
synonymous, ps). A gene concatenation and
bootstrapping procedure was also used in order to
recover a measure for genes with low diversity. The
pn:ps ratio can’t operate on genes with a single non-
synonymous mutation and this scenario tends to
impact short genes. To address this, we
concatenated all effectors per individual and
measured a single mean observed effector py:ps. We
then ran a bootstrap sampling regime in which we
first, sampled effectors (with replacement) and
binned them into length categories of 50 bp
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intervals. Second, we sampled from the non-
effector gene set (with replacement) into the
effector size bin frequency distribution. We
concatenated those genes, measured their length
and mean the pn:ps ratio. This procedure was
replicated this 1000 times in order to generate null
distributions for concatenated pn:ps ratio and length
for non-effector genes.

CDS gene diversity data for 15,612 genes from
DNAsp & PAML are combined into a single table
(Supporting Information 4) and individual diversity is
represented using default parameters SPLITSTREE v4
(67; genes present in all individuals, 15.2 Mbp).

Data availiblity

[llumina MP read data for the U. beticola genome
and 46 re-sequenced individuals as well as 12 RNA-
seq libraries used for annotation have been
submitted to the European Nucleotide Archive
(under projects xxx pending project numbers). The
genome and annotation is available at the Earlham
Institute Open Data site (pending xxx).
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Tables

Table 1. Isolate sampling data listed north to south including information on whether isolation was from a
wild or agricultural beet (W-Ag_host) and how isolates clustered after DAPC analysis of genotypes (W-
Ag_path-DAPC). Local abbreviation and colour (W-Ag_host) is used in samples names in Figure 1.

Individual ID W-Ag_host W-Ag_path-DAPC Date Locality Local_abbrv
ub-w_170_hfs_15dec 09-Dec-15 | Hessle Foreshore hfs
ub-w_174 hfs_15dec 09-Dec-15 | Hessle Foreshore hfs
ub-a_053_hfs_15sep 04-Sep-15 | Hessle Foreshore hfs
ub-a_527_hsw_15sep 18-Sep-15 | Hibaldstow hsw
ub-a_207_hsw_15sep 18-Sep-15 | Hibaldstow hsw
ub-a_518_hsw_15sep 25-Sep-15 | Hibaldstow hsw
ub-a_096_hfs_15sep 03-Sep-15 | Hessle Foreshore hfs
ub-a_400_lcn_15sep 14-Sep-15 | Lincoln Icn
ub-a_382_lcn_15sep 14-Sep-15 | Lincoln Icn
ub-a_383_lcn_15sep 14-Sep-15 | Lincoln Icn
ub-a_411_bnm_15sep 14-Sep-15 | Bingham bnm
ub-a_290_kin_15sep 18-Sep-15 | King's Lynn kin
ub-w_451 kin_150ct 27-0ct-15 | King's Lynn kin
ub-a_372_kin_15sep 14-Sep-15 | King's Lynn kin
ub-w_142 kin_150ct 27-0ct-15 | King's Lynn kin
ub-w_418 kin_150ct 27-0ct-15 | King's Lynn kin
ub-a_263_wxm_15sep 14-Sep-15 | Waxham wxm
ub-a_338_wxm_15sep 15-Sep-15 | Waxham wxm
ub-a_331_wxm_15sep 15-Sep-15 | Waxham wxm
ub-a_509_kin_15oct 23-0ct-15 | King's Lynn kin
ub-a_313_gbm_15sep 15-Sep-15 | Garboldisham gbm
ub-a_292_gbm_15sep 15-Sep-15 | Garboldisham gbm
ub-a_245_gbm_15sep 15-Sep-15 | Garboldisham gbm
ub-w_419 swd_15oct 14-Oct-15 | Southwold swd
ub-w_228 swd_16nov 08-Nov-16 | Southwold swd
ub-w_229 swd_16nov 08-Nov-16 | Southwold swd
ub-w_109_swd_15oct 14-Oct-15 | Southwold swd
ub-w_052_swd_16nov 08-Nov-16 | Southwold swd
ub-w_097_swd_15oct 14-Oct-15 | Southwold swd
ub-a_037_ofd_15sep 07-Sep-15 | Orford ofd
ub-a_519_ofd_15oct 01-Oct-15 | Orford ofd
ub-a_491_ofd_15oct 01-Oct-15 | Orford ofd
ub-w_145_ofd_15oct 14-Oct-15 | Orford ofd
ub-w_075_ofd_15nov 08-Nov-15 | Orford ofd
ub-w_090_ofd_16nov 08-Nov-16 | Orford ofd
ub-w_077_ofd_15nov 08-Nov-15 | Orford ofd
ub-w_204_ofd_16nov 08-Nov-16 | Orford ofd
ub-a_236_bos_15sep 18-Sep-15 | Bradwell-on-Sea bos
ub-a_278_bos_15sep 16-Sep-15 | Bradwell-on-Sea bos
ub-a_360_bos_15sep 14-Sep-15 | Bradwell-on-Sea bos
ub-w_470_bos_15nov 18-Nov-15 | Bradwell-on-Sea bos
ub-w_458 bos_15nov 18-Nov-15 | Bradwell-on-Sea bos
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Supporting information captions

Supporting Information 1 — Annotation of Uromyces beticola (beet rust). Detailed methods and data
organisation for the beet rust annotation.

Supporting Information 2 — Tables referenced in Supporting Information 1.

Genome — Assembly quality metrics such as N50

Reads Alignment — Mapping quality for the 12 RNA-Seq PE read libraries that were aligned to the genome
Transcript Assemblies — Transcript assembly metrics for two assembly methods

Repeats — Repeat masked regions for protein alignments and the gene build

Protein Alignments — Protein alighment summary from 26 representatives (including references)

Mikado Transcript — Mikado transcript assembly integration gene model statistics

Augustus Training — Augustus training results based on Mikado Gold transcripts

Augustus — Gene model statistics from three Augustus runs using different levels of evidence

Minos Release — Final gene model statistics after selection using Minos-Mikado

Supporting Information 3 — Rust repeat annotation and comparison. Reanalysis of repeat content of five
published genomes (plus U. beticola).

Supporting Information 4 — Beet rust SNP diversity and divergence data.
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