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Abstract

Positional information is a central concept in developmental biology. In developing
organs, positional information can be idealized as a local coordinate system that 
arises from morphogen gradients controlled by organizers at key locations. This 
offers a plausible mechanism for the integration of the molecular networks 
operating in individual cells into the spatially-coordinated multicellular responses 
necessary for the organization of emergent forms. Understanding how positional 
cues guide morphogenesis requires the quantification of gene expression and 
growth dynamics in the context of their underlying coordinate systems. Here we 
present recent advances in the MorphoGraphX software (Barbier de Reuille et al. 
eLife 2015;4:e05864) that implement a generalized framework to annotate 
developing organs with local coordinate systems. These coordinate systems 
introduce an organ-centric spatial context to microscopy data, allowing gene 
expression and growth to be quantified and compared in the context of the 
positional information thought to control them.

Introduction

Many aspect of animal morphogenesis are thought to be controlled by positional 
information (Wolpert, 1969), where cells can sense their position in a developing 
organ and respond accordingly. This phenomenon may be even more pervasive in 
plants, as cells cannot relocate within organs, and must decide their fate based on 
their location. For example, root morphogenesis appears to be controlled by an 
organizing center at the root tip that provides founder cells and positional 
information to the growing structure (Scheres et al., 2002). Ablation of cortical cell
initials in the root meristem causes the neighboring pericycle cells to divide and fill
the available space, subsequently adopting the fate associated to their new location 
(van den Berg et al., 1995). A similar effect his has been demonstrated for a variety
of cell types in the Arabidopsis root (Marhava et al., 2019). In leaves, development
is thought to be coordinated by polarity fields oriented from leaf base to tip 
(Kierzkowski et al., 2019; Kuchen et al., 2012). Over time organs can initiate new 
growth axes, such as when serrations or leaflets develop in more complex leaves 
(Barkoulas et al., 2008; Kierzkowski et al., 2019), or lateral roots emerge from the 
primary root (Scheres et al., 2002). In these cases information from several 
organizers must be integrated to direct cell response.
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To understand how positional information controls morphogenesis, it is necessary 
to quantify cell shape, gene expression and morphogen concentration changes over
time, preferably at the cellular level. This information then needs to be related to 
its position relative to the organizers controlling development within the organ. As 
computational power and imaging methods improve, new software packages for 
cell segmentation and lineage tracking are being developed (Sommer et al., 2011; 
Stegmaier et al., 2016), including many specialized for plants (Barbier de Reuille 
et al., 2015; Eschweiler et al., 2019; Fernandez et al., 2010; Schmidt et al., 2014; 
Wolny et al., 2020). This progress has enabled the segmentation of time-lapse data 
at increasingly higher resolution and throughput (Hervieux et al., 2016; 
Kierzkowski et al., 2019; Sapala et al., 2018; Willis et al., 2016)). Although this 
increase in data volume offers tremendous potential to understand how genes 
control form, the analysis of geometric data from thousands of cells is non trivial. 
Information about a cell’s shape, gene expression and growth directions is of 
limited value when the cell’s spatial context within the developing organ is 
unknown. 

MorphoGraphX is a computer software platform that is specialized for image 
processing on surface layers of cells (Barbier de Reuille et al., 2015). It has proven 
especially useful for the analysis of confocal microscopy images from time-lapse 
data in order to quantify the cellular level dynamics of growth, cell division and 
gene expression (e.g. Bringmann & Bergmann, 2017; Feng et al., 2018; Hervieux 
et al., 2016; Hong et al., 2016; Kierzkowski et al., 2019; Louveaux et al., 2016; 
Sapala et al., 2018; Scheuring et al., 2016; Tsugawa et al., 2017; Vlad et al., 2014; 
Zhang et al., 2020; Zhu et al., 2020). Key to the approach taken in the software is 
the representation of cell layers as curved, triangulated surface meshes that capture 
the overall 3D shape of organs, which retains much of the simplicity of 2D 
segmentation and lineage tracking. These “2.5D” images contain the geometry of 
the sample at two scales. The global shape of the organ is captured by the mesh's 
geometry, while a cellular-scale representation is obtained from the confocal signal
projected onto the mesh, which is segmented to extract the shape of individual 
cells on the surface (Fig. 1A-C). When combined with time-lapse data acquisition 
and cell lineage tracking, MorphoGraphX allows cell growth and its relationship to
gene expression to be quantified calculated (Fig. 1D,E; Kierzkowski et al., 2019; 
Sapala et al., 2018; Vlad et al., 2014). In addition to cell surface analysis, 
MorphoGraphX also supports the creation and analysis of full 3D meshes with 
volumetric cells (Fig. 1S1, Vijayan et al., 2021). Here we describe new methods 
we have developed in MorphoGraphX to understand these data by additionally 
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annotating cells with positional information. Not unlike the annotation of sequence
data, this allows cellular data to be given spatial context, and a frame of reference 
within the organ relative to its developmental axes and the organizers instructing 
morphogenesis.100
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Figure 1: Cellular segmentation and basic quantifications supported by MorphoGraphX 
demonstrated by using a time-lapse series of an A. thaliana flower meristem using 
MorphoGraphX. (A) Multi-channel confocal microscopy images with a cell wall signal (red) and
DR5 marker signal (green). Shown are the last 3 time points (T1-T3) of a 4-image series (T0-
T3). (B-C) Extracted surface mesh of T2. Cell wall signal near the surface was projected onto the
curved mesh to enable the creation of the cellular segmentation in (C). The segmented meshes 
provide the base for further analysis within MorphoGraphX as shown in (D) and (E). (D) Top: 
MorphoGraphX allows the quantification of cellular properties such as cell area and shape 
anisotropy (shown as heat maps). The white axes show the max and min axes of the cells. 
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Bottom: Heat map of the quantification of the DR5 marker signal (arbitrary units) projected onto 
the cell surface mesh. (E) When cell lineages are known, time-lapse data can be analyzed. Top: 
Heat maps of areal growth and growth anisotropy (computed from T1 to T2). The white lines 
inside the cells depict the principal directions of growth. Bottom: Visualization of the cell 
lineages from T0 to T2 and a heat map of cellular proliferation (number of daughter cells). Scale 
bars: (A) 50μm; (B - E) 20μm.
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Figure 1S1: Basic 3D analysis using MorphoGraphX demonstrated using an Arabidopsis ovule.
(A) Confocal microscopy image with cell wall staining. (B) Segmented mesh with volumetric 
cells. (C) The segmented mesh allows cellular geometry to be quantified. Shown is a heat map of
cell volumes. Scale bar: 50μm.

120

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456042
http://creativecommons.org/licenses/by/4.0/


Results

Defining directions within an organ

The simplest method to provide positional information for the cells in a sample is 
by aligning the sample with a set of 3D coordinate axes (Fig 2A). For example, a 
developing root meristem can be aligned and positioned such that the organizing 
quiescent center is at the origin with the Y-axis increasing in the longitudinal 
direction of the root. Provided the sample is reasonably straight, this allows 
cellular measures to be compared with their distance from the quiescent center (Fig
2B) (Schmidt et al., 2014).

However, for highly curved organs significant errors will occur, especially in more
distal regions, further from the origin. It is possible to overcome this problem by 
placing a curve along the central axis (Fig 2C, Montenegro-Johnson et al., 2015). 
For this curve, MorphoGraphX uses Bezier splines defined by control points. 
These points can be positioned to create an axis that conforms to the curvature of 
the organ, using either interactive manipulation of the control points, or 
automatically from a selected file of cells. Distance can then be calculated along 
the line, and transferred to cells in the cross section perpendicular to the line. 
MorphoGraphX also allows a 2D Bezier surface to be positioned next to or within 
a sample, enabling two directions to be aligned with the natural curvature of the 
sample.

An alternative method applicable to curved organs with more complex shape, is to 
select one or more cells at a reference position, and calculate the distance relative 
to the selection (Fig 2D, Movie 1). This offers an easy method to create a distance 
field, and greatly increases the variety of organs that can be accommodated. The 
distance is determined by computing the shortest path along cells through the 
tissue, causing it to naturally follow the curvature of the organ. As many organs 
have a layered cellular organization, a distance field normal to the sample's surface
can be calculated. The surface of the sample is extracted and is used to annotate a 
full 3D segmentation of the interior cells. Fig. 3A shows a shoot meristem with the 
cells colored by distance to the surface, which can be used to classify cells (Fig 
3C).
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Figure 2: Methods to define positional information and their application to data analysis in plant
organs. (A) Y-axis aligned A. thaliana root. The cells are colored according to the y-coordinate 
of their centroid position. (B) Plot of cell volumes of epidermis cells of the root in (A) along the 
y-axis with a fitted trend line. (C) Seedling of A. thaliana with a surface segmentation of the 
epidermis. A manually defined Bezier curve (white) allows the assignment of accurate cell 
coordinates along a curved organ axis. (D) Side and top view of an A. thaliana sepal with a 
proximal-distal (PD) axis heat coloring. The cell coordinates were assigned by computing the 
distance to manually selected cells (outlined in red) at the organ base. This method allows organ 
coordinates to be assigned in highly curved tissues. (E) Side and top view of (D) with a heat map
coloring based on cellular growth to the next time point. (F) Plot summarizing the growth data of
(E) using the PD-axis coordinates from (D). See Figure 2S1 for the analysis of the complete 
time-lapse series. Scale bars: (A) 20 μm;  (C) 100 μm;  (D, E) 50 μm.
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Figure 2S1: From cellular resolution heat maps to a global analysis of A. thaliana sepal 
development using organ-centric coordinates. (A-B) Heat maps of cell area extension (A) and 
cell proliferation (B) for each time point. (C) Plot of the heat map data from (A) vs the distance 
of cells to the base of the organ (see also Fig 2D). The distance of the maximum of the growth 
zone from the base or the organ is relatively constant. However, organ length is increases about 
10x between the first and last time points, making a comparison of the different curves difficult. 
(D-F) When plotting the same data with normalized cell distance values averaged using 20 bins 
along the PD-axis it becomes more apparent that the growth zone moves from the proximal to 
the distal regions over the course of development (D). The trend of lower and more proximal 
maxima (highlighted with arrows) is even clearer when proliferation is plotted in the same way 
(E). (F) Cell area data plotted as in (D) and (E). Average cell areas increase mainly at the distal 
end during later time points. Scale bars: (A, B) 100 μm.
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Combining directions

In 2D or on 2.5D surfaces, local directions can be fully defined by a single distance
measure, by taking one direction aligned with the gradient of the distance field or a
Bezier curve, and the other perpendicular to the first. This is similar to methods 
used to specify directions in developmental modeling in plants (Green et al., 2010; 
Kennaway & Coen, 2019; Kierzkowski et al., 2019; Kuchen et al., 2012; 
Whitewoods et al., 2020), and thus facilitates direct comparison between models 
and experimentally observed patterns of growth and gene expression.

In 3D, a third direction must be defined (Kennaway & Coen, 2019; Whitewoods et 
al., 2020).  In MorphoGraphX this can be done by combining the directions 
defined by different distance measures. The 3D Cell Atlas add-on for 
MorphoGraphX (Montenegro-Johnson et al., 2015) combines several distance 
measures for radially symmetric structures such as root and hypocotyls. A Bezier 
curve is placed along the center in the longitudinal direction and combined with a 
surface mesh to obtain radial directions (Figure 3B). This also puts bounds on the 
radial direction (and also implicitly on the circumferential direction) which allows 
relative coordinates to be assigned to cells in addition to absolute values. For less 
regular organs, like the ovule, coordinates derived from a surface mesh (Fig 4A) 
can be combined with a Bezier curve along the surface (Fig 4C) to define a 
coordinate system for the region of interest in full 3D. In both of these cases, 
relative coordinates facilitate the classification of cells into layers. When 
annotating a root using the 3D Cell Atlas coordinate system, the relative radial 
coordinate will follow the layer as the organ narrows towards the tip. The use of 
relative coordinates also makes it possible to pool data from multiple samples 
(Vijayan et al., 2021; Zhang et al., 2020) and to compare data from different 
genotypes (Kierzkowski et al., 2019; Montenegro-Johnson et al., 2019).
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Figure 3: Methods to create organ coordinates for 3D meshes and to label different cell types. 
(A-D) Organ coordinates and cell types for volumetric meshes. (A) Heat map of the surface 
distance for cell centroids in an A. thaliana shoot apical meristem. (B) For volumetric tissues 
often a single direction is not enough to capture the geometry of the organ. Different methods 
can be combined such as a Bezier curve (white dashed line) with a surface mesh (grey) to create 
a heat map of the relative radial distance of cells in the A. thaliana root. (C-D) Organ coordinates
can be used to assign cell type labels as demonstrated in the 3D Cell Atlas plugin for meristem 
and root. See also Figure 3S1. (E-H) Different methods to create cell type labellings. (E) A. 
thaliana gynoecium (fruit epidermis) surface segmentation with a heat map of the length of the 
minor cell axis as obtained from a PCA on the cells’ triangles. The heat values can be 
thresholded to assign two cell types. (F) The same principle can be used on organ coordinates 
which results in a clean separation of replum (green) and valve tissue (blue). (G) We generalized 
the 2D clustering approach of 3D Cell Atlas (see Figure 3S1) so that it can be used for any 
measure pair and on subset selections of cells. Shown is a 2D plot of the minor axis length (x-
coord) and cell signal intensity (y-coord) on the valve tissue in (F). Manually assigning clusters 
can separate the stomata, which are typically smaller with higher signal values (yellow) and the 
remaining valve cells (blue) efficiently. See also Figure 3S1 for 2D plots of all cells. (H) The 
Support Vector Machine (SVM) classification is able to separate the 3 shown cell types in a 
higher dimensional space by using a variety of different measures and a relatively small training 
set. Scale bars: (A-D) 20 μm; (E-H) 50 μm.
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Figure 3S1: Cell type labeling methods and their use them in the data analysis. (A-C) Methods 
supported by the 3D Cell Atlas Add-on demonstrated on a A. thaliana root (Montenegro-Johnson
et al., 2015). (A) Longitudinal cross section with a heat map of circumferential cell size. The 
white dashed line is the manually defined central axis. (B) The 2D heat plot of radial distance 
(heat map: in Fig 3B) and circumferential cell size (heat map in (A)) reveals a distinct clustering 
and can be used directly to assign the different cell types (dashed ellipses). (C) Final result of the
cell type assignment. (D) The 3D cell atlas meristem (Montenegro-Johnson et al., 2019) allows 
the assignment of cell layers (as also seen in Figure 3C) and types in the meristem. (E-G) Cell 
type specific data analysis on the example of the A. thaliana gynoecium (Figure 3E-H). (E) 
Violin plot of the rectangularity of different cell types. Valve tissue cells are less rectangular and 
have higher variance compared to replum cells and stomata. (F-G) 2D scatter plots with fitting 
ellipses. Choosing different measures as x- or y-axis allows the separation of different cell types 
as demonstrated in Figure 3G. Scale bars: (A, C, D) 20μm.
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Figure 4: Quantification of volumetric cell sizes along organ axes in the outer layer of the outer 
integuement of an A. thaliana ovule. (A) Extraction of cell layer of interest (colored in green) 
using an organ surface mesh. (B) Selection of the central cell file (in red) with cell distance heat 
map to exclude lateral cells (heat values >40um). (C) The centroids of the selected cells from (B)
were used to specify a Bezier curve defining the highly curved organ axis from the proximal to 
the distal side. Heat coloring of the cells according to their coordinate along the Bezier. (D-F) 
Analysis of the cellular geometry in 3D. (D) Heat map of cell volume and the tensor of the three 
principal cell axes obtained from a Principal Component Analysis on the segmented stack. (E) 
Bezier directions and associated cell length. (F) Directions perpendicular to the surface and 
associated cell depth. (G) Plots of the various cellular parameters relative to the Bezier 
coordinate. Scale bars: 20μm.
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Using positional information for data analysis

Once cells have been annotated with positional information, it can be used to 
analyze cell-level data, such as growth, cell proliferation, cell shape and gene 
expression. Using the distance measure to define the proximal-distal axis (Fig 2D),
geometric measures can be plotted against the local coordinate system. In Fig 2F 
cell area extension was plotted against distance from the base of the sepal. On the 
full 7 day sepal time-lapse shown in Fig 2S1 (Hervieux et al., 2016), it can be seen 
that initially cell growth is more distal, with a band of high growth progressing 
towards the base of the sepal. By time point 6, the growth has slowed and become 
more uniform as the organ differentiates. Proliferation is initially more uniform, 
but otherwise follows a pattern similar to growth, progressing basally as the organ 
matures. The data can be indexed by position and visualized in graphs, showing 
how growth and proliferation vary along a developmental axis (Fig. 2S1C-F). This 
also makes it possible to group data collected from multiple samples and to 
compare different genotypes (Kierzkowski et al., 2019; Zhang et al., 2020).

In addition to scalar information such as areal growth rate or cell volume, 
MorphoGraphX can also quantify directional information, such as the Principal 
Directions of Growth (PDGs) that represent the maximal and minimal directions of
growth for each cell (Figure 5A-C). A common problem with the interpretation of 
such directional information is the tendency for directions to be locally 
heterogeneous when growth is nearly isotropic. This happens because the maximal 
and minimal growth amounts are almost the same, and the displayed directions 
become arbitrary, and heavily influenced by noise. This can make the comparison 
of growth directions between neighboring cells difficult. A more informative 
approach is to look at growth with respect to the directions of the developmental 
axes. This can be done by first setting up an axis defining the positional 
information for the leaf, for example by using a distance field (Fig 5B). The 
growth directions are then projected onto this developmental axis, and separated 
into components that are parallel (Fig. 5D) and perpendicular (Fig 5E) to the axis. 
In Fig 5D a gradient of growth along the proximal-distal axis can be seen, with an 
increase in lateral growth around the forming serration (Fig 5E). This is not 
immediately apparent in the original PDG visualization (Figure 5C). Another 
benefit of looking at PDGs in the context of a local coordinate system is that it can 
provide a more direct comparison to the outputs of computational simulations. 
Developmental models of emergent organ shape often use morphogens that are 
thought to specifically control growth in the different directions in relation to a 
developmental axis (Kierzkowski et al., 2019; Kuchen et al., 2012; Whitewoods et 
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al., 2020). By projecting the PDGs onto this axis, it is possibly to directly compare 
model growth rates in the different directions to experiments. Since 
MorphoGraphX can load a wide variety of mesh formats, this allows the direct 
comparison of similar quantifications made on templates extracted from model 
simulations from various sources.

Figure 5F-K shows a similar growth quantification for the tomato meristem, where 
suitable local organ coordinates were created using cell distance measures around 
each emerging leaf primordium with directions pointing towards (radial) and 
around (circumferential) their respective center. Additionally, the signal intensity 
of the auxin reporter DR5 was quantified in the same sample. For both primordia 
we found radial growth to have a high negative correlation with DR5 signal 
intensity, whereas circumferential growth was more or less constant. The DR5 
maximum tends to be on the adaxial side of the initiating leaf, whereas growth is 
much higher on the opposing abaxial side. This suggests that auxin acts as a trigger
for primordium initiation, rather than via controlling growth rates directly.

The mature ovule in Arabidopsis shows a more complicated structure than a root or
sepal, with four layers of integument cells encapsulating the nucellus that contains 
the embryo sac (Schneitz et al., 1995; Vijayan et al., 2021, Fig1S1, Fig4). After 
segmentation and 3D mesh extraction in MorphoGraphX, directions normal to the 
surface (Fig. 4A) were combined with a Bezier curve computed from a user-
selected cell file, and used to construct a coordinate system for the outermost cell 
layer (Fig. 4B,C). The Bezier curve defined the longitudinal direction whereas the 
surface directions obtained from the organ surface mesh were used to compute 
perpendicular width and depth axes and distances. Cell volume and geometry 
acquired from 3D segmentation and mesh extraction (Fig 1S1) were calculated 
along the various directions of the organ axes and analyzed (Fig. 4D-G).

Measuring the length, width and depth of cells along the cell layer and surface 
directions revealed the underlying cause for differences in cell volume between 
different proximal-distal regions of the outermost integuement layer. Moving along
the proximal-distal axis, we found variations in cell volume with a clear minimum 
at around 100 μm and a steady increase towards the distal end (Fig. 4G). Cell 
length at the proximal and distal ends showed substantial differences, not seen in 
cell width and cell depth. The increase in cell length at the distal end was 
accompanied by enhanced cell anisotropy. These findings suggest that the overall 
steady rise in cell volume at the distal end is mainly due to differential cell length 
(Fig. 4G).
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Figure 5: Examples of data analyses using organ coordinate directions. (A-E) Quantification of 
cellular growth along organ axes in a young A. thaliana leaf. (A) Segmented meshes of the leaf 
primordium at 3 and 6 days after initiation shown with cell labels and lineages of the earlier time 
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point (3 days). (B) Earlier time point of (A) with proximal-distal (PD) axis coordinates (heat 
map) and directions (white lines) computed from selected cells at the leaf base. (C) Area 
extension (heat map) and Principal Directions of Growth (PDGs, white lines) between the time 
points of (A). PDG axes are computed per cell and can point in different directions. (D-E) 
Computation of the growth component of (C) that is directed along the PD and the orthogonal 
medial-lateral (ML) axis. (F-K) Quantification of locally directed growth in leaf primordium and 
initiation site of a tomato meristem. (F) Smoothed heat map of cell curvature. Local maxima in 
this heat map (green & cyan cells) were selected as meristem center (M), primordium center (P) 
and initiation site (I) as shown in (G). (H) To analyze the data we defined a circumferential 
coordinate system with its axes directions (white lines) around the primordium and initiation 
center (not shown), and aligned them towards the meristem center. (I) Heat maps of cell distance,
area extension, radial and circumferential growth and normalized DR5 signal intensity of the 
aligned primordium and initiation site. (J) Plotting the data of (I) reveals a negative correlation of
the DR5 signal intensity and radial growth around the developing primordium. (K) Detailed plots
of radial (red) and circumferential growth (orange) as well as the normalized DR5 signal 
intensity of the primordium and initiation site. Scale bars: (A) 50 μm;  (B - H) 20 μm;  (I) 10 μm.
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Using positional information for automatic cell type classification

Plant organs typically emerge as primordia consisting of undifferentiated tissue. 
Cells subsequently differentiate, acquiring a unique identity that depends on their 
location within the organ, via genetic processes that integrate spatial and 
environmental cues. Although cell differentiation is ultimately controlled by 
differential gene expression, it is often the case that cell fate can be predicted by 
geometry, even at very early stages (Yoshida et al., 2014). It is rare that cells with 
different cell type have identical morphological features. Although most 
workflows in MorphoGraphX begin by segmenting 3D image stacks into cells, this
is primarily an initial step to enable further analysis. As such, recent method 
development for MorphoGraphX has largely focused on the downstream 
processing of segmented data. The software now supports a large variety of 
measures to quantify different features of cell morphology, including: simple 
geometric measures (area, volume, perimeter, surface area, min and max axis), 
shape quantifiers (convexity, circularity, lobeyness, largest empty circle, aspect 
ratio), neighborhood measures (number of neighbors, variability), gene expression 
(average, total, near boundary), and cell network measures (betweenness centrality,
betweenness current flow). Most measures can be used on time-lapse data to 
quantify changes over time (growth rates, gene expression changes, cell 
proliferation). For a complete list of the measures implemented in MorphoGraphX,
see Supplemental tables 1, 2. The modular architecture of MorphoGraphX also 
allows custom measures tailored to specific problems to be easily added through its
plug-in interface. More sophisticated calculations, for example the averaging of 
data over multiple samples, can be calculated externally in packages such as R and 
imported back into MorphoGraphX for visualization on segmented meshes. Here, 
the development of more complex data-flows is enabled by the use of a 
standardized attribute system to store and visualize cell data, for both scalar values 
and tensor (directional) information.

During the segmentation process MorphoGraphX assigns a unique label to each 
cell. A secondary cell label is provided (parent label), which is often used for 
lineage tracking. Other secondary labelings are also possible, for example cell 
type, cell layer, or zones within an organ. MorphoGraphX has several methods to 
assign these labels to classify cell types and layers. These labels can be assigned 
manually by interactively selecting cells, or by employing a number of processes 
that use heat map measure data to assign secondary labels (Fig. 3E-H). Positional 
information from the distance measures can be combined with measures of cell 
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morphology and gene expression, where a secondary labeling can be used to 
provide additional context.

Since cells of a common biological cell type have similarities in one or more 
geometrical, positional or gene expression attributes, the values of these attributes 
will often form a cluster, facilitating their automatic classification. An example can
be seen in the 3D Cell Atlas addon for MorphoGraphX (Fig. 3S1 A-C; T. D. 
Montenegro-Johnson et al., 2015) that clusters cells by relative radial distance and 
cell size to classify the cell layers of the root, hypocotyl, mature embryo, or other 
radially symmetric plant organs. To aid in optimizing cell clustering, 
MorphoGraphX offers a two dimensional interactive heat map, where information 
from two independent measures can be visualized, and clusters selected (Figure 
3S1 B, 3G). These methods can be used repeatedly on sub-sets of cells to enable a 
classification of cells that differ across more than 2 features.

Multi-feature classifications tasks can be solved automatically by machine learning
approaches (Cortes & Vapnik, 1995) when provided with sufficient training data. 
Of particular relevance are Support Vector Machines (SVMs) which have been 
used to classify cell types based on geometrical features of plant cells (de Reuille 
& Ragni, 2017; Sankar et al., 2014) . MorphoGraphX provides a simple interface 
to the libSVM support vector machines library (Chang & Lin, 2011). Cells can be 
selected and classified into different cell types for use as training data (Fig. 3H, 
Movie 2). Any cell attribute or measure that can be quantified in MorphoGraphX 
can be used by the classifier. These include all the morphological and gene 
expression measures, time-lapse measures, the positional information created via 
distance maps or other coordinate systems, and even custom measures created via 
plugins or calculated externally with R or MATLAB. Once trained on a small 
group of cells with the desired measures, the classifier can be used to classify all 
the cells in a sample (Fig. 3H). After manual curation, the classification can then 
be used as additional training data, improving the power of the classifier. Figure 
3G,H and 3S1 F-G shows the cell types of the Arabidopsis gynoecium, with 
stomata homogeneously distributed within the valve, consistent with the uniform 
growth and differentiation of this tissue (Eldridge et al., 2016; Ripoll et al., 2019).
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Figure 6: Deformation functions in MorphoGraphX. (A) Deformation functions allow a direct 
mapping of arbitrary points (blue) between two meshes. They require the definition of common 
landmarks (red stars). (B-C) Semi-automatic parent labelling using deformation functions. (B) 
Two consecutive time points of an A. thaliana leaf primordium segmented into cells. (C) The 
automatic parent labelling function requires the definition of a few manually labelled cells as 
initial landmarks. From this sparse correspondence, a mapping between the meshes can be 
created and new cell associations between the two meshes are added and checked for 
plausibility. With more cells found, the mapping between the meshes is improved for the next 
iteration. (D-E) Comparison of the classic Principal Directions of Growth (PDGs) in (D) with the
gradient of a deformation function computed using the cell junctions from a complete cell 
lineage in (E) on an A. thaliana sepal. The classic PDGs compute a deformation for each cell 
individually and are shown with a heat map of areal extension for each cell. In contrast, the 
deformation function is a continuous function on the entire mesh. Here heat values are derived 
by multiplying the amount of max and min growth. Using the deformation function gradient 
reveals subcellular growth patterns that were previously hidden, such as differential growth 
within a single giant cell. Scale bars: (B, D, E) 50μm; (C & zoomed regions in D & E) 20μm. 
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Figure 6S1: Deformation functions allow the interpolation of intermediate steps which can be 
turned into a continuous sequence or animation. (A) Animation of the early leaf development of 
A. thaliana created from T2 and T5 of Figure 5, shown with the lineages of T2. (B) Intermediate 
points of the animation of the sepal growth of A. thaliana. For the actual timepoints see Figure 
2S1. Scale bars: 100μm.
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Mapping positional information through time

In the analysis of morphogenesis, many key quantifications such as growth depend 
on the ability to track samples through time. In MorphoGraphX this can be done 
following cell segmentation by manually assigning parent labels to the second time
point, a process that has been highly streamlined in the user interface for 2.5D 
surfaces. However for full 3D samples, or large 2.5D samples with multiple time 
points, this method can be cumbersome. One method to address this problem is to 
find a non-linear coordinate transformation or deformation that maps all the points 
from one time point onto the next. Parent labeling can then be determined by 
mapping cell centers of the later time point to an earlier one, allowing the cell they 
came from to be identified. This can be used to directly assign lineage, or to seed 
algorithms that use more involved methods, such as the minimization of the total 
distances between the mapped cells (Fernandez et al., 2010). In MorphoGraphX, to
define a mapping between the meshes of two successive time points (Fig 6A) we 
have implemented a 3D deformation function based on scattered data point 
interpolation (using cubic radial-basis functions; Duchon, 1977; Turk & O’Brien, 
1999). An initial transformation is computed based on a few preassigned 
landmarks, by matching several cells with their parents in the previous time point 
(Fig 6C). A deformation field is then calculated which provides a mapping for all 
points in 3D. This is then used to assign parent labels in the second time point 
based on their closest match in the previous time point. Close to the landmark 
points, this mapping will be very accurate, with accuracy decreasing with distance 
from the landmarks. The decrease in accuracy away from landmarks is larger if the
deformation between the time points is highly non-uniform. After assigning all the 
cells their closest parent, the mapping is then verified by checking the 
correspondence of neighborhoods between each cell and its parent. The labeling 
for cells which do not match is cleared, and the process is repeated. This causes 
correctly labeled regions to “grow” out from the initially placed landmarks, until 
the entire sample is correctly labeled (Fig 6C, Movie 3). At each step, only 
correctly labeled cells remain. Sometimes the iterative cell-labeling process can get
stuck in highly proliferative areas where cells have divided repeatedly between 
time points.  In this case a few additional landmarks can be manually added at 
trouble spots. One significant advantage of the method is that incorrect cells 
remain unlabeled, making manual curation straightforward. Once all of the parents 
are assigned and have passed the neighborhood correspondence check, one can be 
assured that both the lineage and the underlying segmentations are correct.
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Deformation functions can also be used to create animations of organ development
from 2.5D or 3D time-lapse data. This requires two or more time points of a 
segmented mesh with corresponding cell lineages. The cell centers and/or junctions
are used as the landmarks defining the deformation function that maps one mesh 
onto the other. Interpolating mesh vertices between stages creates a smooth 
animation with as many intermediary steps as desired (Fig. 6S1, Movie 4). 
MorphoGraphX has a user-friendly pipeline to record animations directly from the 
GUI with options to adjust the camera angle and to visualize cell lineages, heat 
maps and cell outlines during the animation. Temporal smoothing of morphing 
animations created from more than two time points is achieved using Catmull-Rom
splines to interpolate the position of mesh vertices over time (Catmull & Rom, 
1974). Heat and signal values in the mesh, such as cell area, growth rates or gene 
expression can also be interpolated along with vertex positions.

In large cells, growth can vary significantly within the same cell (Armour et al., 
2015; Elsner et al., 2018). As the deformation function provides a smooth mapping
between time-points, its gradient can be used to create a continuous growth map at 
any point on a mesh. This enables the approximation of areal expansion and PDGs 
at a sub-cellular level, where the quality of the approximation is limited by the 
number and placement of landmarks (junctions). It is also possible to apply the 
process to subcellular landmarks, such as those obtained by tracking microbeads, 
as done previously for 2D images (Armour et al., 2015; Elsner et al., 2018). Our 
3D implementation of this method has been used to compute growth directions on 
curved surface meshes (Fig 6E) and volumetric meshes (Fig 7I).

A comparison of the areal growth and PDGs calculated with deformation functions
vs the cell-based method is shown in Figure 6D, E. The deformation function 
captures differences in growth within single cells, as is often apparent in larger 
cells that straddle areas of fast and slow growth. Figure 7A-I shows a 3D time-
lapse of the Arabidopsis root where the deformation functions have been used to 
perform lineage tracking in 3D. It can be seen in Fig 7D that the 4 tissue types, 
epidermis, cortex, endodermis and pericyle all show a similar growth pattern, with 
slow growth in the meristem and faster growth near the transition zone. When the 
growth is displayed as a function of the distance from the root tip (Fig 7 E-H), 
again it can be seen that the layers are almost the same, reflecting the almost 
completely anisotropic growth of this system.

480

485

490

495

500

505

510

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456042
http://creativecommons.org/licenses/by/4.0/


Figure 7: Time-lapse analysis and visualization of 3D meshes. (A) Cross section of the confocal 
stack of the first time point of a live imaged A. thaliana root.  (B-C) The 3D segmentations of 
two time points imaged 6 hours appart. Shown are the cell lineages which were generated using 
the semi-automatic procedure following a manual correction. (D) Exploded view of the second 
timepoint with cells separated by cell types (see also Figure 4D). Cells are heat colored by their 
volume increase between the two time points. (E-H) Quantification of cellular growth along 
different directions within the organ. (E) Plot of the heat map data of (D). The cellular data was 
binned based on the distance of cells from the QC. Shown are mean values and standard 
deviations per bin. (F-H) Similarly binned data plots of the change in cell length (F), width (G) 
and depth (H). It can be seen that the majority of growth results from an increase in cell length. 
See Figure 7S1 for a detailed analysis of the cells in the endodermis. (I) Different ways to 
visualize 3D growth demonstrated using a single cortex cell: PDGs averaged over the cell 
volume (left), PDGs averaged over the cell walls projected onto the walls (top right), subcellular 
vertex level PDGs projected onto the cell walls (bottom right). Scale bars: (A-D) 20 μm;  (I) 5 
μm.
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Figure 7S1: Time-lapse analysis of cellular geometry in the A. thaliana root endodermis. (A) 
Cross section of the confocal image of time point 1. (B) Segmentation with extended cell type 
labelling in the endodermis. The root cell type labelling of Fig. 3D was extended by identifying 
the xylem cells (light purple) in the stele (cyan), their adjacent pericycle cells (blue) and assigned
the endodermis cells neighboring those pericycle cells as xylem file cells (X, red). Then the 
endodermis cells at right angles to the xylem files were assigned phloem file (P, purple) and the 
remaining endodermis cells (E, yellow). (C) Side view of one cell file of each cell type. As the 
cell types do not change along the cell file, it was possible to automatically assign the cell files 
based on their circumferential coordinate. (D) Cell files of (G) with a heat map of cell length 
indicating smaller cells in the xylem pole. (E-J) Quantifications of cell geometry and 
development in the endodermis cell types. Cellular data was binned according to their distance 
from the QC (E,F,G,I). Shown are mean values and standard deviations per bin (E,F,G,I) or cell 
type (H,J). P cells showed a larger volume (E), which was caused by a greater cell length (F), an 
observation which has been made before by (Andersen et al., 2018). In contrast, X and E cells 
were smaller in volume due to different reasons: While X cells were the shortest (E), E cells 
showed a lower cell width with increasing distance from the QC (G). The time-lapse analysis 
confirmed above observations: While volume change was similar across the cell type (I), P cells 
showed a lower proliferation rate (H), whereas E cells showed the smallest extension of cell 
width (J).Scale bars: (A, B) 20 μm;  (C, D) 50 μm.
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Advanced geometric analysis

While MorphoGraphX was created to work with 2.5D surface projections, it now 
supports a complete set of tools for full 3D image processing, and in many samples
advantages can be gained from combining both techniques. Additional tools, such 
as the automated cell lineage tracking on surfaces, have also been extended to 3D 
to facilitate growth analysis in full 3D. This is a much harder task than the analysis 
of surface images, as 3D cellular meshes lack the relatively easy to identify 
junctions that serve as material points for surfaces. However in many cases entire 
organs are well defined by their surfaces meshes, allowing landmarks on the 
surface to be used to construct a 3D deformation function to aid lineage tracking in
full 3D. Surface landmarks can also be combined with 3D cell centers and/or the 
face centers as material points to improve the internal resolution of the deformation
functions for full 3D samples. These techniques allow the methods used to 
calculate growth rates and PDGs in 2.5D to be extended to full 3D (Fig. 7I). Cell 
proliferation and most of the other measures can also be quantified from 3D time-
lapse data (Fig 7S1). In addition to the automated tools, improved manual 3D 
parent labeling and the ability to relabel cells so that adjacent cells are always a 
different color, aid in the manual curation of 3D lineage maps.

One of the more advanced quantifications from time-lapse data is the analysis of 
cell division. As plant cells cannot move, cell division and growth are the main 
determinants of morphogenesis. MorphoGraphX has processes to identify dividing 
cells from time-lapse data, and quantify the orientation of the division wall in both 
2.5D and 3D (Fig 8A-I, Fig. 8S1). In 2.5D the best fit line to the division wall is 
calculated (Fig 8A,D), whereas in 3D the best fit plane is used (Fig 8B,C,G). There
are also measures to determine the asymmetry of the daughter cells. The use of 
positional information to give organ context is even more important for directional 
information. For instance, quantifying the orientation of the division plane is of 
little use without knowing how it relates to the developmental axes. If the organ 
shape is simple and aligned with one of the axes, then cell division orientations can
be used directly (Fig 8S1A). When more complex shapes are involved, orientations
can be computed with respect to the axes of a local coordinate system defined for 
the organ, along with its associated positional information (Fig. 8E,I). It is also 
possible to quantify how close cell divisions are to common division rules 
proposed in the literature, such as the shortest wall through the center of the cell 
including local minima (Fig 8H; Besson & Dumais, 2011), along the principal 
directions of growth (Hejnowicz, 1984), or rules based on network measures 
(Jackson et al., 2019). 
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The organization of cells in organs may be analyzed through the extraction of cell 
connectivity networks from 2.5D or 3D segmented data. The physical associations 
between cells (cell-cell wall areas) can be extracted and converted into networks 
where they are analyzed using network measures (Fig. 8J-K). Local measures such 
as the number of immediate neighbors (degree) can be calculated, along with more 
global measures, such as betweenness centrality based on the number of shortest 
paths cells lie upon, or random walk centrality (Fig. 8K). These global measures 
are central to understanding how information flows within tissues (Jackson et al., 
2017, 2019). The use of these measures uncovered the presence of a global prop-
erty in cellular organization within the Arabidopsis SAM (Jackson et al., 2019). 
Namely, the length of paths between cells is maximized, whereby cells which lie 
upon more shortest paths have a great propensity to divide, and the orientation of 
this division tends to leave the two daughter cells on the fewest number of shortest 
paths. Using this approach, the local geometric properties of cells can be related to 
the emergent global organization of cellular arrangements. Perturbation of cell 
shape in the katanin1 mutant led to alterations in path length in the SAM, which 
correlated with defects in phyllotaxis (Jackson et al., 2019).

Reporter signals, such as proteins tagged with fluorescent proteins, can also be 
quantified in MorphoGraphX. After segmenting a surface into cells by using a cell 
wall stain or marker line, a signal collected in a second channel can be projected 
onto the surface mesh, and the abundance, orientation and polarity of signals can 
be computed. Examples are the PIN-FORMED (PIN) auxin transporter report line 
(Benková et al., 2003) or the GFP:MBD (Van Bruaene et al., 2004) line that tags 
microtubules (MTs), (Figure 8L-N, 8S2). For the quantification of cell polarity the 
projected signal along the cell border is binned based on its position in relation to 
the the cell center to obtain its predominant direction and its intensity. Figure 8L 
shows an example of the PIN1 polarity quantification at the cell wall of surface 
segmented cells in the SAM. A similar quantification can be performed for 3D 
meshes as shown in Figure 8N and Figure 8S2A,B where we computed the PIN2 
polarity in epidermis and cortex cells of an Arabidopsis root. Again, this 
directional information can be combined with the organ coordinates to compute the
angle between cell polarity and the organ axis (Figure 8S2C). Another example is 
the quantification of MT alignment using an implementation of Fibril tool 
(Boudaoud et al., 2014) that has been adapted for processing on surfaces. After 
projecting the MT signal onto the surface, the alignment direction and strength of 
the signal can be quantified at the sub-cellular level (Figure 8M) or for entire cells 
(Figure 8S2E). Again, this information can be interpreted using organ coordinates, 
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as we demonstrate on cells of a SAM which tend to have their MTs aligned 
circumferentially from the meristem center (Figure 8S2E).
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Figure 8: Advanced data analysis and visualization tools. (A) Division analysis of a cell from a 
surface segmentationl of an A. thaliana sepal. A planar approximation of the actual plane is 
shown in red and other potential division planes in white/blue. The actual wall is very close to 
the globally shortest plane. (B-C) Top and side view of a recently divided 3D segmented cell. 
The daughter cells are colored yellow and cyan. The red circle depicts the flat approximation 
plane of the actual division wall. The two white rings depict the two smallest area division planes
found by simulating divisions through the cell centroid of the mother cell (i.e. the combined 
daughter cells). (D) Visualization of the actual planes (white lines) between cells that divided 
into 2 daughter cells in the A. thaliana sepal. (E) Density distribution and median (dashed line) 
of the angle between the division plane and the primary organ axis in sepal (see D) and root (see 
Figure 8S1A). The division in sepals are less aligned with the organ axis. (F) Half of an A. 
thaliana wild type embryo in the 16 cell stage. This view shows that the divisions leading to this 
stage are precisely regulated to form 2 distinct layers in the embryo. (G) A visualization of the 
actual planes (red circles) and the shortest planes (white circles) in the wild type. Cells are 
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colored according to the label of the mother cells. (H-I) Violin plots of quantifications of the 
planes show that the wild type does not follow the shortest wall rule, unlike the auxin insensitive 
inducible bdl line RPS5A>>bdl. The bdl divisions are almost orthogonal to the organ surface 
(see Figure 8S1 B,D,E), whereas the wild type divides parallel to the surface. Consequently, the  
bdl fails to form a distinct inner layer. (J-K) Cellular connectivity network analysis. (J) Cell 
connectivity network analysis on a young A.thaliana leaf. Cells are heat colored based on the 
number of neighbors. (L) Heat map of betweenness centrality. The betweenness reveals 
pathways which might be of importance for informtaion flow, potentially via the transport of 
auxin. (L-N) Cell based signal analysis. (L) Analysis of cell polarization on a surface mesh. (M) 
Microtubule signal analysis on a surface mesh. (N) Top and side view of a cell polarization 
analysis on a volumetric mesh (root epidermis PIN2, see Figure 8S2A-D for details). Scale bars: 
(A,B,C,L,M) 2 μm;  (D) 50 μm;  (F,G,J,N) 5 μm; (K) 100 μm.

645

650

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456042
http://creativecommons.org/licenses/by/4.0/


Figure 8S1: Details of the cell division analysis examples from Figure 8. (A) Second time point 
of an A. thaliana root (see Figure 7C) that was used for the division plane analysis in Figure 8E. 
Cells are shown semi-transparently (grey) with their longitudinal organ axis (cyan) obtained 
from the analysis using 3D Cell Atlas in Figure 4B. Planar approximations of the division planes 
between cells that divided between the 2 time points are shown as red circles. Consistent with the
quantitative analysis in Figure 8E most planes are aligned with the organ axis. (B-C) Wild type 
embryo at the 16-cell stage segmented into volumetric cells shown with an organ surface mesh 
(grey, semi-transparent, B) and shown in an exploded view (C) to enable the visualization and 
access of inner layers. (D-E) Corresponding panels to Figure 8F-G for bdl embryo. Scale bars: 
(A,B,C) 10 μm; (D,E) 5 μm.
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Figure 8S2: Example analyses of cell polarity and microtubule signals of the data shown in 
Figure 8M-N. (A-D) Quantification of PIN2 polarity in volumetric cells. (A-B) Heat map of 
PIN2 concentration on epidermis and cortex of an A. thaliana root. Green lines depict 
directionality and strength of the PIN2 concentration. (C-D) Violin plots of the orientation data 
for division planes and PIN2 polarity for epidermis and cortex cells. Epidermis cells show 
considerably stronger polarity (D) and are more aligned with the (longitudinal) organ axis (C). 
(E-F) Microtubule analysis on a SAM of A. thaliana. (E) The cells on the SAM were binned 
according to their distance to the SAM center. Cells are heat colored according to their bin. 
Yellow lines show the direction and strength of the microtubule orientation. (F) Boxplot of the 
angular difference between microtubule orientation and the circumferential direction around the 
center of the SAM (similar to Figure 5H). Scale bars: (A,B) 20 μm; (E) 10 μm.

670

675

680

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456042
http://creativecommons.org/licenses/by/4.0/


3D visualization and interactive tools

MorphoGraphX has a flexible rendering engine that can handle meshes containing 
millions of triangles. It supports the independent rotation and translation of 
different stacks and meshes in the same world space and the ability to render both 
voxel and geometric data together with blending and transparency. It has 
adjustable clipping plane pairs and a bendable Bezier cutting surface that can be 
used to look inside 3D samples, and an interface to support the creation of 
animations (Movie 5). However, visualizing and interacting with 3D data on a 2D 
computer screen still remains a challenge. A particular problem is the validation 
and correction of 3D segmentations of organs, as internal cells are obscured by 
outer layers. Exploded views are a commonly used method to visualize the internal
structure of multi-component 3D objects (Fig 8S1 C; Li et al., 2008), which can be 
used on mesh data in MorphoGraphX. To add biological meaning to the exploded 
visualization, cells can be bundled by their parent or cell type label to visualize key
aspects of biological data sets such as cell divisions or to separate organs into cell 
layers or by cell type (Fig 7D, 8S1C). These processes can also aid user 
interactions, making cell selection and annotation more straightforward when users
are curating 3D cellular segmentations and lineage maps.

In addition to mesh editing tools, MorphoGraphX has several tools to edit voxel 
data. The simplest is an eraser tool which can be used to remove portions of the 
stack that would otherwise interfere with processing. An example is the digital 
deletion of the peripodial membrane overlying the Drosophila wing disc, which 
needs to be removed to allow for the extraction of the organ’s surface (Aegerter-
Wilmsen et al., 2012). A typical workflow for 3D segmentation starts with a 3D 
image of a cell boundary marker. This is then pre-processed with operations such 
as blurring to reduce noise or background removal filters, before segmentation 
with algorithms such as the ITK (www.itk.org) morphological watershed. More 
recently, deep learning methods with convolutional neural networks (CNN) have 
been developed to predict cell boundaries, such as the 3D U-Net model (Çiçek et 
al., 2016), that can improve the stacks for downstream segmentation. The modular 
structure of MorphoGraphX has allowed us to interface an implementation of the 
3D U-Net model developed by Eschweiler et al. (2019). This enables the 
interactive use of the CNN boundary prediction tool from within MorphoGraphX 
(Movie 6), and simplifies experimentation with different networks or downstream 
segmentation strategies. It also avoids the requirement to set up a full Python 
environment, and the associated installation issues. Although some tools have 
packaged 3D U-Net prediction with a choice of several segmentation algorithms 
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(Wolny et al., 2020), the tools are typically written as pipelines without 
intermediate visualization of the data, making it cumbersome to experiment with 
the different methods and parameters of the individual data processing steps in the 
pipeline. 

Once the data is segmented, it often requires some manual correction before it is 
ready for final analysis in a chosen coordinate system. MorphoGraphX has 
interactive tools that operate on voxel data both to combine and split labels (cells), 
although typically it is easier to over-segment and combine, rather than under-
segment and split (Movie 6). This can be used to correct segmentations, which can 
then be used to help train deep learning networks to further improve automatic 
segmentation (Vijayan et al., 2021). In this context MorphoGraphX has been used 
to segment and curate Arabidopsis ovule data to create ground truth for confocal 
prediction networks (Wolny et al., 2020). 

Conclusion

Similar to sequencing data, geometric data on the shape and sizes of hundreds or 
thousands of cells is of limited value without annotation. For many developmental 
questions, the spatial context for information on cell shape, division and gene 
expression is paramount. However it is not enough to know the 3D position of 
cells, but rather their position in a coordinate system relative to the developing 
tissue or organism. These coordinates would typically reflect the developmental 
axes of the organism or tissue, allowing the direct comparison of cell and organ 
shape changes with the gene expression controlling their morphology. In addition 
to putting data in a mechanistic context, organ-centric relative coordinates can be 
used to compare samples with different morphologies (Thompson, 1942), such as 
different mutants, or even in different species (Kierzkowski et al., 2019). This also 
applies to changes in morphology over time, where organ coordinate systems can 
be used to determine the correspondence of cells at different stages of 
development. Several tools have been used to successfully harness organ-centric 
coordinates for specific problems (Montenegro-Johnson et al., 2015, 2019; 
Schmidt et al., 2014), and MorphoGraphX provides a generalized framework to 
make coordinate systems customized to the particular organ or organism of 
interest.

In addition to annotation with organ-centric positional information, 
MorphoGraphX has a comprehensive toolkit for cell shape analysis, growth 

720

725

730

735

740

745

750

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456042
http://creativecommons.org/licenses/by/4.0/


tracking, cell division, and the quantification of polarity markers, both on 2.5D 
image meshes, and for full 3D. All of these measures can be calculated and stored 
within the mesh, or exported to files for further processing with other software. 
Custom measures can also be calculated and imported for visualization within 
MorphoGraphX. Cell shape measures in combination with positional information 
provide a powerful framework for cell type classification, both with machine 
learning methods (Fig 3G-H) as well as clustering techniques (Montenegro-
Johnson et al., 2019). 

A key strength of MorphoGraphX is that it offers both manual and automatic tools 
for segmentation, lineage tracking and data analysis. Although fully automated 
methods are improving, streamlined methods for manual and semi-automatic 
segmentation and analysis provide a path to completion for many samples where 
the automatic methods are "almost" good enough. For example, the automatic 
lineage tracking now available benefits from the streamlined tools we developed 
previously to do the process manually, as these are now used to correct and fill in 
missing portions when the automatic segmentation is incomplete. This reflects the 
interactive nature of MorphoGraphX and its focus on low-throughput but high-
quality data sets. Nevertheless, portions of a workflow can be fully automated by 
using python scripts to process many files. Furthermore, operations performed in 
MorphoGraphX are written to a python log file, allowing easy cut-paste script 
creation.

The internal architecture of MorphoGraphX has been designed to make it easily 
extendable, while retaining the speed of the fully compiled, statically typed 
language C++. The relatively small visualization and data management core is 
augmented with processes that are loaded dynamically at startup and provide 
almost all of the software's functionality. MorphoGraphX has grown to provide a 
wealth of custom processes for 2.5D image processing and coordinate system 
creation. Additionally, it has become a platform to integrate published tools and 
methods that have no visual interface to the data of their own, which increases their
accessibility and ease of exploration for biologists. Examples include the 
previously mentioned CNN process, and the interface to the XPIWIT software 
(Bartschat et al., 2016) which provides a tool to develop ITK image processing 
pipelines interactively without any C++ programming required. These pipelines 
can be packaged into plugins and called directly from MorphoGraphX, allowing 
the exploration of different ITK filters. One XPIWIT pipeline we have pre-
packaged in a process is for the TWANG method (Stegmaier et al., 2014), a fast 
parallel algorithm for nuclear segmentation. Another example of software 
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integration is the processes we have developed to interface with R (Movie 7) that 
provides plots for basic statistical analysis on attributes created in MorphoGraphX,
including positional information provided by organ-centric coordinate systems. 
This simplifies the creation of the most commonly used plots without the need for 
export files.

As more and more imaging datasets are becoming available for community use, 
their annotation with positional information and gene expression data will be 
critical to help understand how the cell-level action of different genes and genetic 
networks is translated into the 3D forms of tissues and organs of different species.  
In this context MorphoGraphX provides a tool set to help maximize the attainable 
information from these datasets, in an accessible platform tailored to the 
experimental biologist.
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Material and Methods

Software Availability

MorphoGraphX is available for Linux and Windows, although we recommend 
Linux as some add-ons are only available for Linux, and some, such at the CNN 
add-on require Cuda. For Linux we provide a Cuda version for machines with a 
compatible nVidia graphics card, and a non-Cuda version for those without. 
Currently there is only a non-Cuda version for Windows. Although there is no Mac
version, some have had success running it in a virtual machine. The software and 
documentation are available at www.MorphoGraphX.org.

Data Acquisition

Arabidopsis Flower meristem (Fig1)

pUBQ10::acyl:TDT  (Segonzac  et  al.,  2012) and  DR5v2::n3eGFP  (Liao  et  al.,
2015)  were  crossed.  F3 double  homozygote  line  was  used  for  imaging.  Floral
meristems were dissected from 2 weeks old plants grown on soil under the long-
day condition (16 h light/ 8h dark), at 20°C ± 2°C using injection needle. Dissected
samples were cultivated in 1/2 Murashige and Skoog medium with 1% sucrose
supplemented with 0.1% plant protective medium under the long-day condition (16
h light/  8h dark),  at  20°C ± 2°C.  Confocal  imaging was performed with Zeiss
LSM800  with  a  40×  long-distance  water  immersion  objective  (1  NA,
Apochromat). Excitation was performed using a diode laser with 488 nm for GFP
and  561  nm  for  TDT.  Signal  was  collected  at  500-550  and  600-660  nm,
respectively. Images of 3 replicates were obtained every 24 hours for 4 days.

Arabidopsis Ovule (Fig1S1, Fig4A-F)

Data previously published in (Vijayan et al., 2021).

Arabidopsis Root (Fig2A, Fig 3B,D, Fig3S1A,C, Fig7A-D,I, Fig7S1A-D, 
Fig8S1A)

Root imaging: pUBIQ10::H2B-RFP pUBQ10::YFP-PIP1;4 was described 
previously (von Wangenheim et al. 2016). The seeds were stratified for 1 day at 
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4°C, grown on 1/2 Murashige and Skoog medium with 1% sucrose under the long-
day condition (16 h light/ 8h dark) at 20°C ± 2°C. Confocal imaging was 
performed with Zeiss LSM780 with two-photon laser (excitation 960nm) with a 
band pass filter 500/550nm for YFP. Images of 3 replicates were obtained.

Arabidopsis Mature Embryo (Fig2C)

Arabidopsis thaliana Col-0 seeds were sterilized in 70% ethanol with Tween20 for 
two minutes, replaced with 95% ethanol for 1 minute and left until dry. Seeds were
placed on the Petri plates containing 1/2 MS medium including vitamins (at pH 
5.6) with 1.5% agar and stratified at 4°C for 3 days in darkness. Next, seeds were 
imbibed for 3 hours, and the mature seed embryo was isolated from the seed coat. 
For live imaging, the embryos were stained with propidium iodide 0.1% (Sigma-
Aldrich) for 3 minutes and imaged with Leica SP8 laser scanning confocal 
microscope with a water immersion objective (x20). Excitation wavelengths and 
emission windows were 535 nm and 617 nm. Confocal stacks were acquired at 
1024x1024 resolution, with 0.5-μm distance in Z-dimension. Images were acquired
at 48 hours intervals and samples were kept in a growth chamber under long-day 
condition (22°C, with 16 h of light per day) between imaging. From more than 10 
replicates a sample with curved overall shape was selected for the demonstration of
the organ coordinates using a Bezier curve. To quantify the cell area, change and 
anisotropy, the fluorescence signal was segmented, and cells were parent labeled 
manually between two successive time points. Heat-maps are displayed on the later
time-point (after 48 hours of growth). Scale bars are displayed on the image.

Marchantia time-lapse (Movie 3)

Marchantia polymorpha gemmaling Cam-1 PM::GFP reporter line (Shani et al., 
2010) were transferred on a Petri plate containing 1/2 Gamborg’s B5 medium 
including vitamins (pH 5.5) with 1.2% agar and grown for 24 hours. For live 
imaging, the gemmaling were imaged with Leica SP5 laser scanning confocal 
microscope with a water immersion objective (x25/0.95). Excitation wavelengths 
and emission windows were 488 nm and 510 nm. Confocal stacks were acquired at
1024x1024 resolution, with 0.5-μm distance in Z-dimension. Images were acquired
at 24 hours intervals and samples were kept in a growth chamber under constant 
light between imaging. For the move we selected a representative sample from 6 
total replicates. To quantify the cell area, change and anisotropy, the fluorescence 
signal was segmented and semi-automated parent labelling as performed to couple 
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the cells at two successive time points. Heat-maps are displayed on the later time-
point (after 24 hours of growth). Scale bars are displayed on the image.

Arabidopsis Sepal (Fig2D,E, Fig2S1A,B, Fig6D,E, Fig6S1B, Fig8A,D)

Data previously published in (Hervieux et al., 2016).

Arabidopsis Leaf (Fig5A-E, Fig6S1A, Fig8J,K)

Data previously published in (Kierzkowski et al., 2019).

Tomato SAM (Fig5F-I)

Data previously published in (Kierzkowski et al., 2012).

Arabidopsis SAM (Fig3A,C, Fig3S1D)

Data previously published in (Montenegro-Johnson et al., 2019).

Arabidopsis Gynoecium (Fig3E-H) and Leaf (Fig 6B,C)

pUBQ10::acyl:YFP has been described previously (Willis et al., 2016). Plants were
cultivated on soil under the long-day condition (16 h light/ 8h dark), and 20°C ± 
2°C. Flowers at post-anthesis stage from 5 weeks-old plants were dissected with 
fine tweezers to remove sepals and stamens to expose gynoecium and mounted on 
the 60 mm plastic dish filled with 1.5% agar. Confocal imaging was performed 
with a Zeiss LSM800 upright confocal microscope, equipped with a long working-
distance water immersion objective 40X (1 NA, Apochromat). Excitation was 
performed using a diode laser with 488 nm for YFP and the signal was collected 
between 500 and 600 nm. For both organs images of 3 replicates each were 
obtained.

Arabidopsis Embryo (Fig8B,C,F,G, Fig8S1B-E)
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Data previously published in (Yoshida et al., 2014).

Arabidopsis Meristems for PIN1 and MT (Fig8L,M, Fig8S2A-C)

pUBQ10::acyl:TDT (Segonzac et al., 2012) and GFP:MBD (Van Bruaene et al., 
2004) were crossed. F3 double homozygote line was used for imaging. 

Floral organs were removed with fine tweezers about 21 days after germination to 
expose inflorescence meristem. Meristems were mounted on the 60 mm plastic 
dish filled with 1.5% agar and imaged with a Zeiss LSM800 upright confocal 
microscope, equipped with a long working-distance water immersion objective 
60X (1 NA, Apochromat). Excitation was performed using a diode laser with 488 
nm for GFP and 561 nm for TDT. Signal was collected at 500-550 and 600-660 
nm, respectively. Images of 3 replicates were obtained.

Arabidopsis Root for PIN2 in 3D (Fig8N-O, Fig8S2E)

pPIN2::PIN2:GFP was previously described (Xu & Scheres, 2005). The seeds 
were stratified for 2 days at 4°C, grown on 1/2 Murashige and Skoog medium with
1% sucrose under the long-day condition (16 h light/ 8h dark) at 20C° ± 2°C. The 
roots were stained by 10mM propidium iodide (Sigma-Aldrich), and observed by 
Zeiss LSM780 with two-photon laser (excitation 990nm) with a band pass filter 
500/550nm for GFP and 575-600nm for PI. Images of 3 replicates were obtained.

Data Analysis

For the data analysis examples in the paper we computed all necessary cellular data
within MorphoGraphX and exported them as csv files. Those files were imported 
to RStudio for further processing or directly plotted using ggplot2 (R Core Team, 
2020; RStudio Team, 2020; Wickham, 2016).

Arabidopsis Flower meristem (Fig. 1)

We selected one sample for segmentation and further analysis. The segmentation, 
cell lineages and heat maps were generated following the standard workflow as 
described in (Strauss et al., 2019) and in the MGX user guide.
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Arabidopsis Ovule (Figures 1S1, Fig. 4)

Segmentation was obtained by back blending the raw images to CNN boundary 
predictions (Wolny et al., 2020) as described in (Vijayan et al., 2021).

For the analysis in Fig. 4 we selected one sample of the published data.The 
trimmed surface mesh was used to extract the outermost layer using the method 
described in (Montenegro-Johnson et al., 2019). The organ axis was defined by a 
Bezier curve obtained from a manually selected central cell file using the processes
“Misc/Bezier/Bezier From Cell File” and “Mesh/Cell Axis 3D/Custom/Create 
Bezier Grid Directions”. Moreover, for each cell the direction towards the surface 
and the orthogonal direction of the Bezier and surface direction was computed 
(“Create Surface Direction”; “Create Orthogonal Direction”), resulting in 3 
orthogonal organ axes. The cell sizes were quantified by first doing a PCA on the 
voxels of cells on the segmented stack (“Mesh/Cell Axis 3D/Shape Analysis 
/Compute Shape Analysis 3D”) and finally computing the component of the PCA’s
tensor aligned with the axes of interest (“Mesh/Cell Axis 3D/Shape 
Analysis/Display Shape Axis 3D” with the appropriate “Custom” heat option), 
with the Bezier direction corresponding to cell length, the surface direction to 
depth and the orthogonal direction to width.

Shape Anisotropy was defined using the equation: (max - 0.5*min - 
0.5*min)/(max+mid+min), with max, mid and min defined by the length of the 
PCA axes.

To create the plots, cells with a distance >40μm from the central cell file were 
ignored. The data of the remaining 213 cells was plotted.

Arabidopsis Root (Figures 2A, 4B,D, 4S1A,C, 7A-D,I, 7S1A-D, 8S1A)

From the 3 replicates we selected the sample with the best segmentation quality for
further analysis. The two time points of the analyzed root data sample were 
segmented using ITK segmentation processes in MGX (see also (Stamm et al., 
2017) and the MGX user guide). From the segmented stack a surface mesh and 
volumetric cell mesh were obtained.  For the axis alignment analysis (Fig 2A), the 
organ was manually aligned with the y-axis and the coordinates of the cell 
centroids were computed. In Fig 2B the cell volume of the 304 epidermis cells was
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plotted. The 3D Cell Atlas pipeline (Montenegro-Johnson et al., 2015; Stamm et 
al., 2017) was used to compute cell coordinates, sizes and cell types (Fig4B, D; 
Fig4S1A-C).

For the time-lapse analysis (Fig 7A-I, Fig 7S1) the cell lineages were determined 
semi-automatically using the pipeline introduced in this paper (Fig 6) followed by 
a manual error correction. PDGs in 3D were derived from the deformation function
mapping the first onto the second time point using parent labelled cell centroids 
and cell wall centers.

For the analysis of the cell types in the endodermis (Fig 7S1), xylem cells in the 
stele and their neighboring pericycle cells were automatically identified by their 
circumferential coordinate. Endodermis cells touching two xylem-associated 
pericycle cells were determined as xylem pole. The two phloem poles in the 
endodermis were shifted by 90 degrees (or 2 cells) from the xylem pole. In total, 
we used 26 xylem pole, 21 phloem pole and 43 rest endodermis cells for the 
analysis.

For the analysis in Fig 8E and Fig 8S1A only the second time point was used. We 
computed the proliferation to the previous time point, extracted the vertices on 
each division plane between cells that have divided exactly once (proliferation = 2,
n=249 mother cells that divided) and computed a PCA on each set of division 
plane vertices to extract the normals of the planes. Then we computed the angle 
between the longitudinal axis of the organ as extracted by 3D Cell Atlas and the 
division planes and exported to data.

Arabidopsis Sepal (Figures 2D,E, 2S1A,B, 6D,E, 6S1B, 8A,D)

For the sepal analysis one replicate of the data from (Hervieux et al., 
2016) consisting of 7 time points was used (see Fig 2S1A,B).

For the analysis in Fig 2D-F and Fig2S1 for each time point we manually 
determined the organ base based on the cell lineages from the first time point. Cells
at the organ base were selected and used to compute the Euclidean cell distance 
measure. Finally, cell distances, growth, proliferation and cell sizes were exported.

For the cell division analysis in Fig 8A,B we analyzed the divisions that occurred 
between the time point T4 and T5 (n=84). We computed the proliferation between 
these time points, extracted the vertices on each division plane between cells that 
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have divided exactly once (proliferation = 2) and computed a PCA on each set of 
division plane vertices to extract the normals of the planes. Next, we computed the 
PD-axis direction of the organ using the Euclidean cell distance from the base. 
Finally we computed the angle between PD-axis and the division planes and 
exported to data. 

For the growth analysis in Fig 6D we computed the PDGs from time point T4 to 
time point T5, visualized on the earlier time point. Fig 6E shows the same time 
point, but here growth was computed using the gradient of the deformation 
function obtained from the cells’ junctions.

Arabidopsis Shoot Apical Meristem (Figures 3A,C, 3S1D)

We selected one sample of the published data for analysis. Cell type labels were 
determined using the methods described in 3D Cell Atlas Meristem (Montenegro-
Johnson et al., 2019).

Arabidopsis Leaf (Figures 5A-E, 6S1A, 8J-K)

The Arabidopsis leaf data was previously published in (Kierzkowski et al., 2019). 
One replicate of a time-lapse series consisting of 7 time points was selected for 
analysis, but only time points T2 and T5 were used. The cell distance was 
computed similar to the Sepal example (Fig 2D) as distance from the organ base. 
Additionally we computed the heat map gradient of the cell distance heat map  
(“Mesh/Cell Axis/Custom/Create Heatmap Directions”) to obtain custom direction 
along the proximal distal (PD) axis and orthogonal to that the medial-lateral (ML) 
axis of the organ for each cell. PDGs were computed and used to determine the 
amount of growth along the previously computed PD and ML-axis.

For the cell network analysis in Fig 8J-K we computed the cell connectivity 
network of all cells in T5 weighted by the inverse of the length of the cell walls to 
determine the betweenness centrality (“Mesh/Heat 
Map/Measures/Network/Betweenness Centrality”), (Jackson et al., 2019).

Tomato Shoot Apical Meristem (Figure 5F-I)
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For the growth and DR5 signal analysis on the shoot apical meristem we used one 
replicate of the previously published data of (Kierzkowski et al., 2012). To 
objectively find the center of the meristem, the primoridium and the initiation site 
the curvature of the cells was computed. The resulting heat map was smoothed 
across neighboring cells for two rounds and resulting local maxima were identified
as centers. Meshes were manually aligned along the x-axis with respect to the 
meristem center to compute circumferential coordinates  (“Mesh/Heat 
Map/Measures/Location/Polar Coord”) around primordium and initiation center. 
For the analysis only cells in the vicinity of the primordium and initiation centers 
were considered. These cells were determined using a threshold in the cell distance
measure from those centers. Furthermore, the gradients of the Euclidean cell 
distance heat maps from both centers were used to compute custom directions 
along the heat (=radial) and orthogonal to the heat (=circumferential). Now the 
growth analysis was done similar to the leaf with computing PDGs and growth 
along the custom axis.

Arabidopsis Shoot Apical Meristems (Figures 8L,M, 8S2E,F)

For the MT analysis we selected one sample for segmentation and analysis. We 
determined the center of organ based on a smoothed curvature heat map. The 
center cell was selected and the Euclidean cell distance to the remaining cells was 
computed. The circumferential direction around the cell center was obtained from 
the orthogonal direction of the heat map directions. Cells were then binned by their
Euclidean distance to the center.

Arabidopsis Embryo (Figures 8F,G, 8S1B-E)

The data for the 3D division analysis in A. thaliana embryos was previously 
published in (Yoshida et al., 2014). From this data set we chose one wild-type and 
one inducible bdl (pRPS5a>>bdl) sample at the 16 cell stage.

A surface mesh was generated from the cells in the embryo and the cells were 
parent labelled according to their predicted mother cell. Then the process 
“Mesh/Division Analysis/Analysis 3D/Division Analysis Multi” performed the 
following steps on all of the parent labelled cells (n=16 cells or 8 divisions in each 
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genotype): First a planar approximation of the actual division plane was computed 
by performing a PCA on the vertex positions of the shared wall between the two 
daughter cells. Then 1000 equally distributed division planes were simulated on 
the combined mother cell and different measures were quantified. The actual and 
the best planes were visualized using “Mesh/Division Analysis/Display and Filter 
Planes”.

Arabidopsis Root PIN2 in 3D (Figures 8N, 8S2A,B)

For the analysis of the PIN directions in the A. thaliana root we selected one 
sample for segmentation. Next, we defined the main organ axis using a Bezier 
curve through the center of the organ. Then we computed the PIN2 polarity 
direction and determined the angle between the polarity direction and the Bezier 
line.
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MorphoGraphX 2.0 Supplemental Materials

Supplemental Table 1: Measures for cells on surface projections (2.5D).

Measure Unit Description

Geometry

Area um2 Area of the Cell (sum of its triangle area)

Aspect Ratio - Ratio of Length Major Axis and Length Minor Axis (see below)

Average Radius um Average distance from the center of gravity of a cell to its border

Junction Distance um Max or min distance between neighboring junctions of a cell

Length Major Axis um
Length of the major axis of the 2D Shape Analysis: (Computes a PCA on the 
triangle positions weighted by their area)

Length Minor Axis um
Length of the minor axis of the 2D Shape Analysis: (Computes a PCA on the 
triangle positions weighted by their area)

Maximum Radius um Maximum distance from the cell center to its border

Minimum Radius um Minimum distance from the cell center to its border

Perimeter um Sum of the length of the border segments of a cell

Lobeyness

Circularity - Perimeter^2/(4*PI*Area)

Lobeyness - Ratio of cell perimeter and convex hull perimeter. 1 for convex shapes

Rectangularity -
Ratio of cell area and the area of the minimum rectangle that can contain the 
cell. 1 for rectangular shapes, lower values for irregular shapes.

Soldarity -
Ratio of the convex hull area and the cell area. 1 for convex shapes, higher 
values for complicated shapes.

Visibility Pavement - Simply 1-Visibility(Stomata)

Visibility Stomata -
Estimate of visibility in the cell. Returns 1 for convex shapes, and decreases 
with the complexity of the contour.

Location

Bezier Coord um Associated Bezier coordinate of a cell. Requires a Bezier grid.

Bezier Line Coord um Associated Bezier coordinate of a cell. Requires a Bezier curve.

Cell Coordinate um Cartesian coordinate of a cell

Cell Distance
um/
cells

Distance to the nearest selected cell (finds the shortest path to a selected cell, 
different distance measures: euclidean, cell number or 1/wall area)

Distance to Bezier um Euclidean distance to the Bezier curve or grid

Distance to Mesh um Euclidean distance to the nearest vertex in the other mesh

Major Axis Theta ° Angle between the long axis of the cell and a reference direction
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Polar Coord °/um Polar coordinate around a specified Cartesian axis

Network

Neighbors count Number of neighbors of a cell

Betweenness Centrality -
Computes the betweenness centrality of the cell connectivity graph. Edges can 
be weighted by the length of the shared wall between neighboring cells

Betweenness Current 
Flow

-
Computes the betweenness current flow of the cell connectivity graph. Edges 
can be weighted by the length of the shared wall between neighboring cells

Signal

Signal Border Average amount of border signal in a cell

Signal Interior Average amount of interior signal in a cell

Signal Parameters
Advanced and general process which allows the setting of parameters to 
compute different kinds of signal quantifications

Signal Total Average amount of total (=border + interior) signal in a cell

Other Measure 
processes

Mesh/Lineage 
Tracking/Heat Map 
Proliferation

cells Proliferation

Mesh/Cell 
Axis/Custom/Custom 
Direction Angle

° Angle between a Cell Axis and a Custom Axis

Mesh/Division 
Analysis/Compute 
Division Plane Angles

° Angle between division planes and/or cell axes
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Supplemental Table 2: Measures for meshes with volumetric (3D) cells

Measure Unit Description

Cell Atlas

Cell Length 
(Circumferential, Radial, 
Longitudinal)

um
Cell length as determined by 3D Cell Atlas Root (Shoot rays from the cell 
center to the side walls to measure cell size along organ-centric directions)

Coord (Circumferential, 
Radial, Longitudinal)

3D organ coordinates as determined by 3D Cell Atlas Root

Geometry

Cell Length (Custom, X, 
Y, Z)

um
Cell length along the specified direction (cell size is measured as in 3D Cell 
Atlas Root (see above))

Cell Wall Area um2 Total area of the cell wall

Cell Volume um3 Volume of the cell

Outside Wall Area um2 Cell wall area that is not shared with another neighboring cell

Outside Wall Area Ratio % Proportion of Cell Wall Area that is not shared with a neighbor cell

Location

Bezier Coord um Associated Bezier coordinate of a cell. Requires a Bezier curve or grid.

Cell Coordinate um Cartesian coordinate of a cell

Cell Distance um/cells
Distance to the nearest selected cell (finds the shortest path to a selected cell, 
different distance measures: euclidean, cell number or 1/wall area)

Distance to Bezier um Euclidean distance to the Bezier curve or grid

Mesh Distance um Euclidean distance to the nearest vertex in the other mesh

Network

Neighbors count Number of neighbors of a cell

Betweenness Centrality -
Computes the betweenness centrality of the cell connectivity graph. Edges can
be weighted by the length of the shared wall between neighboring cells

Betweenness Current Flow -
Computes the betweenness current flow of the cell connectivity graph. Edges 
can be weighted by the length of the shared wall between neighboring cells
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