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ABSTRACT

Epigenome-wide association studies (EWAS) aim to provide evidence that marks of DNA methylation
(DNAm) have downstream consequences that can result in the development of human diseases.
Although these methods have been successful in identifying DNAm patterns associated with disease
states, any further characterization of etiologic mechanisms underlying disease remains elusive. This
knowledge gap does not originate from a lack of DNAm-trait associations, but rather stems from
study design issues that affect the interpretability of EWAS results. Despite known limitations in
predicting the function of a particular CpG site, most EWAS maintain the broad assumption that
altered DNAm results in a concomitant change of transcription at the most proximal gene. This study
integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young
Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve
the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were
enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG
sites associated with trans GE were also enriched in areas of known regulatory significance, including
enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to
small genomic intervals and question the validity of assuming a canonical cis DNAm-GE pathway.
Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic
support and further research should identify genomic regions in which GE-associated DNAm is
overrepresented.

1 Introduction

Epigenome-wide association studies (EWAS), aiming to test the theory that marks of DNA methylation (DNAm)
are involved in the pathophysiology of disease, have successfully identified associations between complex traits and
DNAm." Specific DNAm patterning has been associated with environmental exposures,** as well as short- and
long-term health outcomes.>"” Several attributes of DNAm potentially link this epigenetic mark to the development or
progression of complex disease. Appropriate DNAm patterning is essential for normal development and aging, and
DNAm regulatory mechanisms are implicated in a multitude of molecular processes, such as cellular differentiation,
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X-inactivation, and genomic imprinting.®*'' As an epigenetic mark, DNAm is both dynamic and persistent; modifiable
by environmental exposures yet heritable during cell division, so that any alterations to DNAm patterns may be carried
through future populations of cells.'#"1%/ Importantly, altered DNAm has been linked to downstream functional changes,
particularly in the regulation of gene expression (GE). These properties suggest that DNAm may be contributing
to mechanisms in which previous exposures and genetic predispositions can have lasting effects on disease risk.
While EWAS methods are promising, their current utility beyond biomarker discovery is questionable due to study
design limitations that impact the interpretability of results, particularly those stemming from the omission of GE
measurements.>

The canonical mechanism describes DNAm as a repressor of proximal transcription, in which DNAm within promoter
regions is able to silence GE by either blocking the binding of essential transcriptional machinery or by recruiting
chromatin modifying proteins that transition the local DNA conformation to a more heterochromatic state.1%1% Despite
accumulating evidence that suggests this model is overly simplistic, many researchers rely on this paradigm to interpret
an association between DNAm and a disease of interest. In a typical EWAS, any significantly associated CpG sites (also
known as differentially methylated positions or DMPs) are each mapped to their most proximal gene and the biological
function of those genes is reported in the context of the tested phenotype. Given that this interpretation emphasizes the
functional relevance of specific genes to disease biology, an argument can be made that current EWAS are primarily
interested in examining a theory of DNAm-driven transcriptional regulation.!™ By inferring transcriptional activity from
DNAm-trait associations, this approach relies on assumptions without directly testing for functional evidence. Given
that accurately inferring the functional consequences of modified DNAm at any particular site is still very limited, this
practice may lead to inaccurate conclusions about disease biology.1Z

Accurately predicting the functional impacts of altered DNAm remains challenging, in part, due to the limited
characterization of genome-wide DNAm-GE relationships.'® DNAm often does not block transcription independently
but rather works in concert with other regulatory elements to coordinate GE. These regulatory mechanisms involve a
complex crosstalk between DNAm, higher-order chromatin modifiers, and other epigenetic marks, further contributing
to difficulties in determining the functional impact from DNAm measurements alone.'*"2l' Moreover, linking genes to
their putative regulatory regions is not always straightforward.2 DMPs are often located outside of proximal regulatory
elements, within intergenic or intronic regions with no known regulatory function. Since a frequently utilized approach
for interpreting these results involves linking all DMPs to their nearest gene, any features of the genomic landscape
beyond distance are disregarded. Even if CpG-GE pairs are identified, predicting the regulatory consequence of altered
DNAm remains difficult as exceptions to the canonical theory have accumulated. For example, increased DNAm,
particularly within the gene body, is frequently positively correlated with local transcription.2*"28 Although mechanisms
linking hypermethylation to increased GE are still unclear, a recent study identified more transcription factors which
preferred binding methylated sequences than those inhibited by DNAm.! These functional complexities suggest
that assumptions regarding transcriptional activity should not be inferred by DNAm patterns alone. Instead, if the
fundamental theory being explored is a mechanism of transcriptional regulation modulated by DNAm, measurements
of GE should be included in the analysis.">

Multi-omic studies integrating global DNAm and GE measurements can provide evidence for DNAm-driven tran-
scriptional regulatory mechanisms. Measuring GE alongside DNAm would allow for direct testing of the proposed
mechanism while avoiding assumptions regarding the regulatory function of DNAm that typically cloud the inter-
pretation of EWAS results. In order to model the proposed molecular mechanism, analyses testing DNAm-driven
transcriptional regulation should provide evidence for the mediating effect of GE on the phenotype of interest. Instead,
studies often discover differentially methylated and differentially expressed genes separately by performing both an
EWAS and transcriptome-wide association study, and any overlaps between DNAm-trait and GE-trait associations are
reported.??"3® While the addition of GE-trait associations provides more support for functional changes within the cell,
it is unclear what hypothesized biological mechanism this analysis is testing. Moreover, since the relationship between
DNAm and GE is never tested, this method still relies on assumptions that DMPs strictly influence expression of the
nearest transcript.

An extended EWAS approach integrating both DNAm and GE measurements holds promise in uncovering biological
processes important to the development or progression of disease, however, a mechanistic interpretation requires prior
knowledge regarding specific DNAm-GE relationships across the genome, which has yet to be resolved. The objective
of this study was to catalogue the relationships between DNAm and both proximal and distal GE (i.e., cis and trans
relationships, respectively) in peripheral blood, a tissue commonly assayed in EWAS. To identify attributes that replicate
across disparate samples, analyses were conducted in two previously described cohorts, the Adolescent and Young Adult
Twin Study (AYATS),”” and the Pregnancy, Race, Environment, Genes Study (PREG).“8 An in-depth characterization
of GE-associated CpG sites could improve predictions of the downstream functional impact of altered DNAm and
inform best practices for interpreting DNAm-trait associations generated by EWAS.
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2 Methods

2.1 Study cohorts

Adolescent and Young Adult Twin Study (AYATS). The AYATS study was designed to examine genetic and
environmental contributions to internalizing pathways (e.g., depression and anxiety) during development. A sample
of monozygotic twins were chosen for their adherence to the study’s inclusion criteria (e.g., 15-20 years of age, no
current use of psychotropic medications).”? Peripheral blood collected from 141 participants at a single time point
was assayed for both DNAm and GE. An overview of study characteristics and further demographic information can be
accessed in the supplement (Supplementary Table S1).

Pregnancy, Race, Environment, Genes (PREG) study. The PREG Study is a prospective longitudinal study with
the purpose of identifying how environmental determinants of health and DNAm remodeling relate to racial health
disparities in perinatal health outcomes.”® Of the 240 women who enrolled in the study, 177 met all birth and pregnancy
inclusion criteria (e.g., mother and father self-identify as either both Caucasian or both African American) and no
exclusion criteria (e.g., preeclampsia, fetal congenital anomaly, placental anomaly, fewer than 3 study time points
completed). Peripheral blood samples were collected up to four times throughout pregnancy. Sample collection was
scheduled during gestational weeks 0-15, 10-25, 20-40, and 37-42. DNAm was assessed at all time points whereas
GE was measured once at the final collection during weeks 37-42. Only those DNAm measurements from specimen
simultaneously collected with GE were analyzed in this study. A total of 151 women had concomitant DNAm and GE
measured. An overview of study characteristics and further demographic information can be found in the supplement
(Supplementary Table S2).

2.2 DNAm measurement and data processing

In both samples, DNAm and GE was measured from peripheral blood. The Infinium 450k HumanMethylation
BeadChip assayed genome-wide DNAm and the Affymetrix HG-U133A 2.0 array measured GE. A description of
platform characteristics as well as the methods used for measurement and preprocessing can be found in the supplement.

2.3 Association analysis

The relationship between all pairwise combinations of measured DNAm and GE (Table [1)) was tested by linear
regression in the R statistical environment (version 3.5).%% Log-transformed expression values (dependent variable)
were regressed on DNAm M-values (independent variable), while covariates controlled for differences in cell type
heterogeneity. Cell type proportions were derived from the Houseman algorithm, which estimates proportions for
granulocytes, monocytes, CD8-positive T cells, CD4-positive T cells, B lymphocytes, and natural killer cells based
on cell type-specific DNAm profiles.*Y Granulocytes were selected to account for overall differences in cell type
proportions based on high correlations with other cell type estimates (absolute correlations ranged from 0.47 to 0.71),
and included as a covariate in all models. Natural killer proportions were included in AYATS models exclusively to
adjust for the atypical variation in this cellular fraction characteristic of depressed patients.”!

Additional covariates were selected to adjust for potential confounding influences specific to the characteristics of each
cohort, while also maintaining a similar analytical approach across the two studies. Since PREG is a racially diverse
sample (Table[I), ancestrally informative principal components were estimated from the DNAm data using the method
described in Barfield et al. The third principal component was highly correlated with self-reported race and included as
a covariate in the PREG cohort models.#? A linear mixed-model framework was used to account for twin structure in
the AYATS cohort.*? The 1imma Bioconductor package was used to estimate within-family correlations from 1,000
randomly sampled CpGs in order to appropriately adjust model standard errors and account for the non-independence
of twin pair DNAm observations.*?

Both DNAm and GE measurements were adjusted for technical artifacts prior to analysis (see supplement), so that
variables related to slide or row effects were not included as covariates in subsequent analyses.

Although measurements were generated using the same technology in both cohorts, differing numbers of probes
remained after quality control procedures (Table [T). A within-study Bonferroni correction was used to adjust for
multiple testing at an alpha threshold of 0.05. While estimates of genomic inflation are typically used to identify
spurious associations driven by artefacts in genome-wide association studies (GWAS), it has been recently suggested
that inflated test statistics should be similarly reviewed in epigenetic studies.** To mitigate the presence of false positives,
genomic inflation was assessed using the method described in Kennedy et al.?* Briefly, genomic inflation factors were
calculated for each transcript, across all CpG associations, as the median (T-statistic)?/0.4549. Appropriate thresholds
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for test statistic inflation are not as well established in the epigenetics field. To facilitate cross-study comparisons, any
transcript with an inflation factor > 2 was flagged for removal.?*

Every pairwise relationship between measured DNAm and GE was modeled and classified as either cis or trans, since
molecular mechanisms linking proximal DNAm may differ from more long-range interactions. DNAm-GE pairs were
in cis if the CpG site was located within a gene or 2,500 base pairs upstream. This extension is expected to capture
important transcript-specific regulatory regions, given that many promoters are located up to 1 kilobase upstream of the
transcriptional start site (TSS).*> CpG-transcript pairs located outside this range were categorized as trans relationships,
with the rationale that more distal regulatory features (e.g., enhancers) may be responsible for the relationship between
CpG methylation and transcript expression.

2.4 Characterization of results

CpG sites were mapped to biologically relevant annotations to test for feature enrichment among sites significantly
associated with GE. Annotation selection was based on evidence that local CpG density, gene feature location, and
proximity to regulatory elements are important characteristics that may impact the functional consequences of DNAm. 1
Transcription factor activity is regulated by DNAm, and a history of transcription factor binding also appears to
influence the susceptibility of CpG methylation in specific locations.2045 Moreover, processes involving transcription
factors were previously enriched among CpGs associated with GE.“*##? Similarly, non-coding RNAs are regulated by
methylation patterning, while also contributing to the regulatory activity of DNAm.*>! Chromatin states are accurately
able to distinguish variable transcriptional activity by describing the specific patterns of histone modifications that
impact the regulation of GE.2>3 Histone modifications are intricately linked to both DNAm and GE, potentially serving
to mediate the influence of methylation on transcription.19>2

Selected features described local CpG densities (UCSC CpG island classifiers and HIL annotations),>*>> genomic
regions, chromatin states (ENCODE 15-state ChromHMM),>? transcription factor binding (ENCODE TF ChIP-seq),>*
non-coding RNAs (GENCODE version 37),2Z and other annotations related to regulatory activity (i.e., FANTOMS-
defined enhancer and ENCODE-defined insulator regions).>% All cell type-specific annotations (e.g., chromatin states,
enhancer regions, etc.) were defined in the lymphoblastoid cell line GM12878.

Enrichment analyses were performed separately for cis and trans groups. The proportion of significant findings
annotated to each category was compared to the proportion of total number of tested CpG sites using Fisher’s exact test.
A Bonferroni correction for 20 enrichment tests was used to adjust for unique annotation categories examined (e.g.,
CpG density classifiers, chromatin states, transcription factor binding, etc.)

3 Results

3.1 Participant demographics and initial findings

After performing the preprocessing procedures described in the supplementary methods, all 137 of the remaining GE
measurements also had corresponding DNAm of sufficient quality in AYATS. In PREG, 131 samples had both DNAm
and GE that passed quality control. While the tissue and platforms were consistent across studies, these cohorts differed
in other characteristics (Table[T). PREG was an older (aged 18-40 years) and more racially diverse sample, with 49%
of participants reporting African American ancestry (Supplementary Table S2). Notably, all participants in the PREG
sample were pregnant women, while the AYATS sample consisted of both male (29%) and female (71%) adolescents
(aged 15-20 years; Supplementary Table S1).

Genome-wide methylomic and transcriptomic data was generated using the Illumina HumanMethylation 450k BeadChip
and Affymetrix HG-U133A 2.0 array, respectively. After performing quality control procedures separately in both
cohorts, a differing number of probes were identified as poor quality. In AYATS, 40,392 DNAm probes and 10,809 GE
probe sets were removed during preprocessing, while 63,783 DNAm and 9,473 GE measurements were removed in
PREG (Table[T).

3.2 Associations between DNA methylation and gene expression

3.2.1 Opverall findings

An overview of significant DNAm-GE relationships is presented in Table [2] (see the Open Science Framework project
page athttps://osf.io/dk3cg/|for full lists of associations with summary statistics). Due to the differing number
of measurements surviving quality control, associations with p-values < 9.68 x 10712 (0.05 alpha corrected for
5,165,758,521 total tests) in PREG and p-values < 1.03 X 1011 (0.05 alpha corrected for 4,857,594,560 tests) in
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AYATS were considered significant (Table E]) A total of 903 associations were identified in the AYATS cohort, 169 of
which were in cis (4.72 x 107%! < p < 1.01 x 107!!) and 734 in trans (2.64 x 10751 < p < 1.03 x 10~1). Within
the PREG sample, 379 DNAm-GE associations were statistically significant, of which 121 were cis (5.15 x 10758
<p <850 x 10712) and 258 trans (2.86 x 107°% < p < 9.51 x 107'2). Since GE probe sets measuring expression
of the same gene were retained, some transcripts and CpG sites are represented more than once in the results. A
total of 340 unique CpG sites and 105 unique genes comprised the 903 significant associations identified in AYATS,
while 228 CpGs and 69 genes were unique in PREG across both cis and trans relationships (total n = 379). Across
all categories (i.e., AYATS/PREG cis/trans), many significant relationships occurred between one transcript and one
CpG site (Supplementary Figures S1 and S2), although instances in which a single CpG site was associated with
multiple transcripts, and vice versa, were also common. Both positive and negative relationships were identified,
although the majority of significant associations had negative coefficients (49% to 78% negative across tested categories;
Table 2] and Figure[T). Effect sizes were relatively large throughout (adjusted R-squared range = 0.23-0.90), with cis
DNAm explaining more GE variability on average (mean adjusted R-squared = 0.58 and 0.46 for AYATS and PREG,
respectively) when compared to trans (mean adjusted R-squared = 0.48 and 0.40 for AYATS and PREG, respectively).

AYATS Associations. The distribution of significant cis and frans connections is shown in Figure[2a] On average, each
significant cis CpG site was associated with 1.58 transcripts (median = 1, range = 1-4; Supplementary Figure S1). Trans
CpGs were more likely to associate with multiple transcripts than cis (mean = 2.75, median = 1, range = 1-22). Effect
sizes, defined by adjusted R-squared values, ranged from 0.23 to 0.90. Cis DNAm explained more variation in GE on
average (Welch’s t-test p = 2.2 x 10~!6). DNAm-GE relationships were predominantly negative (65% of cis and 78%
of trans relationships; Table 2] and Figure|T).

PREG Associations. The distribution of significant cis and trans connections is shown on Figure On average,
each significant cis CpG site associated with 1.39 transcripts (median = 1, range = 1-4; Supplementary Figure S1).
Significant trans CpGs were more likely to associate with multiple transcripts (mean = 1.65, median = 1, range = 1-11).
Effect sizes ranged from 0.31 to 0.86, with cis DNAm explaining more variation in GE on average (Welch’s t-test p =
5.10 x 10798). Cis DNAm-GE relationships were predominantly negative (79%) while trans relationships were split
almost equally between positive and negative associations (Table[2).

3.2.2 Between study comparison

A total of 86 individual DNAm-transcript pairs replicated across cohorts (57 cis and 29 trans). In cis, 34% of significant
CpG-GE pairs identified in AYATS were replicated, and 47% of those found in PREG overlapped with AYATS. In trans,
only 4% of AYATS and 11% of PREG connections were replicated.

3.2.3 Location relative to transcriptional start sites

Previous research has suggested that DNAm adjacent to the gene TSS has a stronger role in regulating proximal
GE.2##959 T explore this topic further, CpG sites associated with GE in cis were mapped to their associated TSS, as
defined by annotations from the UCSC hg19 build knownGene track.®” The location of cis CpG sites relative to the
TSS of their associated gene is shown in Figure[3] Although many significant sites were located near the 5” end of
gene boundaries, these areas are also overrepresented in the 450k microarray. Overall, the relative proportion ([number
GE-associated CpGs within 2500bp / total number GE-associated CpGs] / [number microarray CpGs within 2500bp
/ total number microarray CpGs]) of CpGs was higher in the GE-associated CpG sites compared to the microarray
background. Interestingly, this observation was driven by CpG sites located downstream of the TSS. The relative
proportion of CpG sites 2500bp upstream of the TSS was lower in GE-associated CpGs than was present on the
microarray, while the opposite relationship was observed immediately downstream of the TSS (relative proportion
upstream= 0.58 and 0.65 ; relative proportion downstream= 1.59 and 2.21 in AYATS and PREG, respectively).

3.3 Enrichment analyses

CpG sites were annotated by genomic regions, local CpG densities, chromatin states, bound transcription factors, and
other related regulatory regions (e.g., insulator regions, regulatory RNAs). Enrichment tests were then performed within
annotation type. An overview of results from enrichment analyses is outlined in Tables [3] (AYATS) and 4] (PREG).
Annotation categories with p-values < 0.0025 exhibited significant depletion or enrichment, while p-values < 0.05 were
considered suggestive. A number of depleted and enriched categories overlapped between the two cohorts (underlined
in Tables 3] and [d). Overall, regions of high CpG density were depleted across all groups (Supplementary Table S3 and
Supplementary Figures S3 - S4) while annotations indicative of regulatory activity (e.g., transcription factor binding,
enhancers) were enriched among GE-associated CpGs (Tables [3] - [).
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3.3.1 Characterization of cis connections

South shore regions (i.e., shore regions located downstream from a CpG island) were significantly (p < 0.0025) or
suggestively (p < 0.05) enriched across all groups (Figure[d). CpG islands are often associated with promoters, and both
of these annotations were depleted in AYATS but were neither significantly enriched or depleted in PREG (Figures 4] and
[3). Transcription factor binding sites, defined by significant peaks identified in ChIP-seq analyses of 134 transcription
factors in lymphoblastoid cells,® were enriched in both cohorts (Figure E]) Chromatin state characteristics, which
assign a function to genomic regions based on the presence of specific histone methylation marks, also showed some
concordance between the two studies (Figure[7). Specifically, zinc-finger genes and repeats were consistently found to
be enriched, whereas areas of strong transcription were consistently depleted. Regions flanking active transcription
were more variably assigned, with one category found to be enriched in AYATS (areas flanking strong transcription)
and another depleted in PREG (areas flanking active TSS).

3.3.2 Characterization of trans connections

Like cis CpG-GE pairings, CpGs associated with GE in trans were overall depleted in areas of high CpG density (i.e.,
within CpG islands) and within the promoter regions of genes, while South shore regions were enriched (Tables [3]- ]
and Figures[§]-[0). Again, GE-associated CpG sites were overrepresented in areas of known regulatory importance, such
as sites of transcription factor binding and enhancer regions (Figure[I0). With the exception of IncRNAs, which were
depleted in AYATS, noncoding RNAs were neither over- or underrepresented. The chromatin state analysis highlighted
distinct differences between cis and trans results. Chromatin states reflecting enhancer regions were enriched in both
AYATS and PREG, as were areas flanking sites of active transcription. Repressed states, including heterochromatic
regions and polycomb-repressed regions, were consistently depleted (Figure [TT).

3.3.3 Functional enrichment analysis

The Gene Ontology (GO) Consortium and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to assess
overrepresented gene functions and pathways within significant cis results (see supplement for more information).
Terms with a false discovery rate (FDR) < 0.05 were deemed significant.®' Common themes were uncovered in both
cohorts (Supplementary Tables S4 - S11), and include functions related to the activation and regulation of immune
response and cellular detoxification. A total of 33 significantly enriched GO terms overlapped between the two cohorts,
and all significant KEGG pathways identified in AYATS (n = 31) were also found in PREG (n = 39). However, these
consistences were supported by relatively few genes.

4 Discussion

Although genome-wide epigenetic studies aim to uncover the role of DNAm in disease development and progression,
they often do not utilize an experimental framework that provides evidence for a mechanistic relationship. Most
EWAS operate under the assumption that DNAm influences proximal gene transcription. However, the absence of
measured GE makes relying on this interpretation difficult, especially as mounting evidence suggests that DNAm does
not always follow a canonical cis relationship.">"1 Given the complicated network of interactions between DNAm, GE,
higher-order chromatin modifiers, and other regulatory elements, it is challenging to draw accurate conclusions about
the downstream functional effects of altered DNAm without, at minimum, integrating concomitant measurements of
GE.1216206 Tg investigate the relationship between DNAm and GE further, this study tested genome-wide associations
between DNAm and GE in peripheral blood collected from two cohorts. Both canonical and non-canonical relationships
were identified, highlighting potential inaccuracies in the current functional interpretation of trait-associated CpG sites
within the frequently adopted EWAS framework.

Across cohorts, DNAm was significantly associated with both proximal (cis) and distal (trans) GE. The primary findings
of this study align with other reports of long-range DNAm-GE relationships, adding to the growing body of literature
questioning the accuracy of current EWAS interpretations.72492 The effect sizes detected among DNAm-GE pairs
were relatively large, with DNAm predicting 42-50% percent of GE variability on average. Although this result is
likely influenced by a lack of statistical power to detect more attenuated relationships, it reiterates that while DNAm
may not be an appropriate proxy for changes in GE, strong links between the two measurements exist. Approximately
23% of connections identified in PREG were also significant in the AYATS cohort, suggesting a consistent program of
gene regulation even among the disparate cohorts tested. While this proportion is similar to DNAm-GE connections
identified in peripheral blood and isolated monocytes,?* discrepancies between the two cohorts could be related to
differences in statistical power or differences in demographic and clinical features (i.e., genetic ancestry, developmental
stage, etc.). On average, cis connections were more likely to replicate between studies and account for larger proportion
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of GE variability when compared to within-cohort trans associations. Larger samples are likely necessary to detect more
subtle cis and trans CpG-GE pairings and provide a balanced assessment of the expected replication across samples.

Interpreting DNAm-disease relationships is hindered not only by limitations in identifying DNAm-GE pairs, but also
by challenges in predicting the precise functional impact of altered DNAm on an associated gene’s expression. Both
negative and positive relationships between cis and frans DNAm-GE pairs were identified (Figure|[I). Although DNAm
is usually considered a repressive mark, inhibiting GE by either blocking transcription factor binding or by promoting a
more condensed DNA conformation,® positive DNAm-GE relationships could be explained by several mechanisms.
Within genomic regulatory elements, transcription factors with repressive, rather than activating properties, may bind
unmethylated sequences.’ Furthermore, many transcription factors actually exhibit an increased affinity for heavily
methylated sites.*!' Besides influencing the binding affinity of regulatory proteins, DNAm patterns may also reflect a
history of transcription factor binding, a phenomenon that cannot be separately identified by a classic EWAS design.©
In recent years, speculation has emerged regarding potential alternative roles of DNAm in the cell, including theories
that DNAm may serve to direct splicing regulation or in maintaining genomic stability within specific regions. 247
Although this study found that the associations were predominantly negative across the majority of gene regions (Figure
, these findings agree with other reports that strong positive DNAm-GE relationships exist. 242242

Given the large effect size distribution of detected associations and the modest number of participants in each cohort, it
was expected that only a small proportion of DNAm-GE connections would reach statistical significance. Instead of
only focusing on individual connections, this study sought to outline genome-wide trends by identifying attributes of
GE-associated CpG sites. Despite the modest number of DNAm-GE pairs overlapping across cohorts, GE-associated
CpG sites displayed similar annotation characteristics (Tables [3|and ). Annotations uniquely characterized attributes of
cis and trans GE-associated CpGs, indicating that separate paradigms may exist for proximal and distal connections.
In general, DNAm within intermediate CpG density regions were more likely to be associated with GE. Regions of
intermediate CG density are more variable compared with low- or high-density regions, and appear more dynamic
across tissues and developmental stages.%8® Conversely, CpG sites in high density regions, which are most often
associated with CpG islands and promoter regions, were consistently depleted. Interestingly, both transcription factor
binding and chromatin states in regions near active TSS were enriched, with those regions directly downstream of the
TSS particularly characterized by a high proportion of GE-associated CpGs (Figure [3). Other studies have noted a
similar relationship with DNAm located in the first intron, while also observing high transcription factor activity typical
of intronic enhancers within these areas.”? %/l Although mechanisms of DNAm transcriptional inactivation usually
focus on the hypermethylation of CpG sites within promoter and island regions, these results agree with other studies
showing enrichment for "off-island" DNAm among GE-associated CpG sites.#68

The traditional DNAm regulatory paradigm suggests the importance of DNAm in promoter regions, but results from
this study instead reiterate the significance of DNAm within enhancer regions.?**” Multiple enhancer definitions (i.e.,
enhancer-like chromatin states and enhancer annotations generated from cap analysis of gene expression [CAGE]) were
enriched within trans results. Enhancers have an established role in long-range gene regulation,”? often looping over
more proximal genes to interact with those farther away.”> Enhancer regions are often characterized by intermediate
DNAm and chromatin accessibility, demonstrate greater DNAm variability than promoters,?2%8 and exhibit ongoing de
novo methylation and demethylation activity.*® The high rate of DNAm remodeling within enhancers, coupled with the
strong DNAm-GE relationships found within these regions, align with hypotheses that suggest environmental exposures
can influence complex disease risk through epigenetic mechanisms of transcriptional dysregulation. While mapping
enhancers to their putative genes is a fundamental aim in identifying transcriptional regulatory networks, current
methods are still under development,”? adding to the uncertainty in predicting the downstream functional effects of
DNAm within these distal regulatory regions. Further challenges arise from evidence that many genes actually interact
with multiple enhancers, and that these compounded interactions can result in additive effects on target GE.”* However,
the relationships between DNAm outside of proximal regulatory elements and GE again question the generalizability
of the canonical DNAm regulatory mechanism and suggests that EWAS should transition away from relying on this
paradigm to interpret underlying disease biology.

This study serves to improve understanding of the relationships between DNAm and GE across the genome and adds
to the growing body of literature which cautions against misconstruing modified DNAm as changes in proximal GE.
Overall, these results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and
question the validity of assuming a canonical cis DNAm-GE pathway when investigating epigenetic mechanisms. The
results from this study underscore concerns in predicting the biological mechanisms underlying disease from DNAm
measurements alone. EWAS relying on a canonical DNAm-mediated transcriptional regulatory mechanism to interpret
DNAm-trait associations may reach inaccurate conclusions about disease pathoetiology. Even modified EWAS that
incorporate GE information by performing a transcriptome-wide association study alongside testing for DNAm-disease
associations should interpret findings with care, since in this study design a priori assumptions link CpG sites to putative
genes and DNAm-GE relationships remain uninvestigated.
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Based on these results, epigenetic research should continue moving towards multi-omic approaches that integrate DNAm
with other levels of data (e.g., GE, genotypes, transcription factor binding) to study complex traits. Although DNAm-
GE relationships are highly complex, the integration of DNAm with data outlining regional chromatin architecture
and transcription factor activity may assist in predicting the functional impact of altered DNAm.?*7* However, as
an emerging and heterogeneous field, several obstacles can interfere with the implementation and interpretation of
multi-omic studies.”>"’® Standardized analytical pipelines have yet to be developed, leading to difficulties in cross-study
comparisons and in assessing rigor.”” Currently, only a handful of studies have tested genome-wide associations
between GE and DNAm, 240268280 ¢t variability in the methodologies used has lead to difficulties in determining the
replicability and generalizability of identified relationships. Although cross-study comparisons are challenging, several
consistent themes have emerged from this modest body of literature. This study replicates the overrepresentation of
GE-associated CpGs within enhancers and at transcription factor binding sites, as well as the depletion within islands
and promoter regions.“* Moving forward, continued examination of DNAm-GE relationships in large, diverse cohorts
should be prioritized to advance our understanding of the role of DNAm within the cell and disease biology.

5 Strengths and Limitations

To our knowledge, this was the first study to assess the global relationship between peripheral blood DNAm and
GE in both a primary and replication sample. However, results of this study should be considered in the context
of the following limitations. First, both DNAm and GE were measured by microarray technologies that provided
coverage within well-characterized locations, but were unable to assay the full extent of RNA and CpG sites in the
genome.®l' Second, only relationships of relatively large effect size were detected in this study (adjusted R-squared
range = 0.23-0.90). Especially given that a conservative multiple testing correction was applied, it is assumed that many
more DNAm-GE connections exist but were undetected in this study, which could influence the results of the feature
enrichment tests. Third, both cohorts were analyzed cross-sectionally, a study design that is unable to provide evidence
for causation or directionality.'>*2 Mechanisms of reverse causation, in which changes to DNAm occur in response
to modified GE, have been observed.®® Therefore, it is unknown whether changes to DNAm are actually proceeding
changes in GE as described in the canonical mechanism. Fourth, some annotations were derived from experiments
conducted on a well-described lymphoblastoid cell line (GM12787), which was selected based on data that supports the
genetic and functional similarity to mature blood cells (i.e., T cells and B cells).®* One benefit of using this approach is
that annotations were kept consistent across the different functional enrichment categories (e.g., chromatin landscapes,
enhancer definitions, etc.). It remains important to consider that this study focused on the association between DNAm at
individual CpG sites and GE. In actuality, regional changes in DNAm may also be co-regulating GE together.9%8Y While
correlations between proximal GE-associated CpG sites did not suggest a predictable method in which to aggregate
measured sites, future studies can examine how regions of CpGs work in concert to regulate GE.%2 Finally, this study
only investigated DNAm and GE in the peripheral blood and may not generalize to other tissues.>” Future analyses with
more comprehensive measurements in alternative tissues will be crucial for characterizing genome-wide trends across
cell types.
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6.5 Abbreviations

AYATS Adolescent and Young Adult Twin Study
DMPs  Differentially methylated positions

DNAm DNA methylation

EWAS  Epigenome-wide association study

FDR False discovery rate

GE Gene expression

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
PREG Pregnancy, Race, Environment, Genes study
TSS Transcriptional start site

UTRs Untranslated regions
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7 Tables and Figures

Table 1: Study Characteristics

AYATS PREG
N 137 131
Study Phenotype Internalizing disorders Perinatal health outcomes
(e.g., early-onset major depression) (e.g., preterm birth)
Age 16.96 (1.28) 29.06 (4.99)
Sex (% female) 97 (711%) 131 (100%)
Ethnicity (% Caucasian) 132 (97%) 67 (51%)
Methylation Probes Tested 445120 421729
Expression Probes Tested 10913 12249

Study characteristics were assessed after preprocessing and removal of poor quality samples.

Mean (standard deviation) or N (%)
Abbreviations. AYATS = Adolescent and Young Adult Twin Study, PREG = Pregnancy, Race,

Environment, Genes cohort.
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Table 2: Overview of Pairwise DNAm-GE Association Results
Significant  Direction of 4+ Mean adjusted

Study associations'  relationship Unique CpGs  Unique transcripts R-squared’
AYATS?
cis 169 65% negative 107 42 0.58 (0.11)
trans 734 78% negative 266 96 0.48 (0.10)
PREG®
cis 121 79% negative 87 31 0.46 (0.10)
trans 258 49% negative 156 43 0.40 (0.08)

! After Bonferroni adjustment for total number of tests performed within cohort

2 P-val < 1.03 x 10711

3 P-val < 9.68 x 10712

4 Defined as unique by Entrez identifier

5 Mean (standard deviation)
Abbreviations. AYATS = Adolescent and Young Adult Twin Study, PREG = Pregnancy, Race,
Environment, Genes cohort.
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Figure 1: Percent negative CpG-GE associations by gene region. With the exception of 3’ untranslated regions
(UTRs), the majority of cis CpG-GE relationships were negative across gene regions in both the AYATS (red) and
PREG (blue) cohorts. Promoters and 5° UTRs had the highest fraction of negative associations, aligning with canonical
descriptions of promoter DNAm as a repressor of local gene transcription.
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Figure 2: Distribution of significant connections between DNA methylation and transcript expression across the genome in the AYATS (2a) and PREG (2b)

cohorts. The location of significant cis (red track) and trans relationships (blue track) across the genome (ideogram of human chromosomes, outer track) is shown.

Bar graphs show the direction of the relationship (positive relationships are shown in the darker color) and the relative magnitude of the effect (height of bars; defined
by adjusted R-squared values). Trans CpG-GE relationships often spanned chromosomes (location of associated CpG-GE pairs shown by center grey links).
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Table 3: Results of AYATS Enrichment Analyses'

Annotation | cis trans
‘ enriched depleted enriched depleted
Chromatin States’> | TxFInk (3), Tx (4), TssAFInk(2), TssA (1),
ZNF/Rpts (8) TxWKk (5), TxFInk (3), Het (9),
Quies (15) TxWK (5), TssBiv (10),
EnhG (6), BivFInk (11),
Enh (7) ReprPC (13),
ReprPCWk (14)

CpG Classifiers South Shore North shore, South shore, = North shelf,

Island Open sea North shore,
Island
Gene Regions 5’ UTRs, Introns 5" UTRs,
Promoters Promoters
Other® Enhancers, IncRNAs Enhancers IncRNAs,
TF binding Insulators

Abbreviations. UTR= untranslated region, TF= transcription factor, IncRNAs= long
non-coding RNAs
Bolded items. P-val < 0.0025 (Bonferroni corrected for 20 tests)
Underlined items. Concordance across both the AYATS and PREG study.

' P-val < 0.05

2 ENCODE ChromHMM 15-state model; 1= Active transcriptional start site (TSS), 2=
Flanking active TSS, 3= Flanking strong transcription, 4= Strong transcription, 5= Weak
transcription, 6= Genic enhancer, 7= Active enhancer, 8= Zinc-finger genes & repeats,
9= Heterochromatin, 10= Bivalent/poised TSS, 11= Flanking bivalent TSS, 12= Bivalent
Enhancers, 13= Polycomb-repressed, 14= Weak Repressed Polycomb, 15= Quiescent

3 FANTOMS5-defined enhancers, transcription factor binding sites derived from ENCODE
TF ChIP-seq, GENCODE long non-coding RNAs
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Table 4: Results of PREG Enrichment Analyses!

Annotation | cis trans
‘ enriched depleted enriched depleted
Chromatin States® | TssA (1), TssAFInk (2), TssAFInk(2), TxWKk (5),
ZNF/Rpts (8) Tx (4) TxFInk (3), Het (9),
Enh (7), ReprPCWk (14),

EnhBiv (12)  Quies (15)

CpG Classifiers South Shore North shore, Island
South shore

Gene Regions Exons Promoters,
3° UTRs
Other® TF binding Enhancers,
TF binding

Abbreviations. UTR= untranslated region, TF= transcription factor, IncRNAs= long non-
coding RNAs
Bolded items. P-val < 0.0025 (Bonferroni corrected for 20 tests)
Underlined items. Concordance across both the AYATS and PREG study.

' P-val < 0.05

2 ENCODE ChromHMM 15-state model; 1= Active transcriptional start site (TSS), 2= Flank-
ing active TSS, 3= Flanking strong transcription, 4= Strong transcription, 5= Weak tran-
scription, 6= Genic enhancer, 7= Active enhancer, 8= Zinc-finger genes & repeats, 9=
Heterochromatin, 10= Bivalent/poised TSS, 11= Flanking bivalent TSS, 12= Bivalent En-
hancers, 13= Polycomb-repressed, 14= Weak Repressed Polycomb, 15= Quiescent

3 FANTOMS5-defined enhancers, transcription factor binding sites derived from ENCODE TF
ChIP-seq, GENCODE long non-coding RNAs
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Figure 4: Enrichment for CpG classifiers in cis CpG-transcript relationships. CpG classifiers based on the
distribution around CpG island regions were defined by the UCSC hg19 knownGene track. Islands and regions directly
upstream from islands were depleted in AYATS. However, downstream regions bordering islands (South shores), were
significantly enriched in both cohorts (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
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Figure 5: Enrichment for gene regions in cis CpG-transcript relationships. Gene regions were annotated based on

the UCSC hg19 knownGene track. GE-associated CpG sites were depleted in 5° untranslated regions (UTRs) and in
promoters in the AYATS cohort only. (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
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Figure 6: Enrichment for additional regulatory annotations in cis CpG-transcript relationships. Sites of tran-

scription factor binding, as defined by ENCODE TF ChIP-seq annotations, were significantly enriched across cohorts.
FANTOMS enhancers were enriched in AYATS (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
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Chromatin States

Figure 7: Enrichment for ENCODE chromatin states in cis CpG-transcript relationships. The 15-state
ChromHMM model was used to determine regional chromatin states. Overall, GE-associated CpGs were depleted in
transcriptionally active regions but enriched at zinc-finger binding sites (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
Abbreviations: 1= Active transcriptional start site (T'SS), 2= Flanking active TSS, 3= Flanking strong transcription, 4=
Strong transcription, 5= Weak transcription, 6= Genic enhancer, 7= Active enhancer, 8= Zinc-finger genes & repeats,
9= Heterochromatin, 10= Bivalent/poised TSS, 11= Flanking bivalent TSS, 12= Bivalent Enhancers, 13=
Polycomb-repressed, 14= Weak Repressed Polycomb, 15= Quiescent
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Figure 8: Enrichment for CpG classifiers in frans CpG-transcript relationships. CpG classifiers based on the
distribution around CpG island regions were defined by the UCSC hg19 knownGene track. Islands were depleted while
downstream regions bordering islands were significantly enriched in both cohorts. The North shore region directly
upstream of CpG islands was more variable, with significant CpGs showing depletion in AYATS and enrichment in
PREG (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
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Figure 9: Enrichment for gene regions in trans CpG-transcript relationships. Gene regions were annotated based
on the UCSC hg19 knownGene track. GE-associated CpG sites were depleted in 3’ untranslated regions (PREG), 5’
untranslated regions (AYATS), and in promoters (AYATS and PREG). Exons and introns were enriched in PREG and
AYATS, respectively (*** = p < 0.0005; ** = p < 0.005; * = p < 0.05).
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Figure 10: Enrichment for additional regulatory annotations in trans CpG-transcript relationships. Sites of
transcription factor binding, as determined by ENCODE TF ChIP-seq, were significantly enriched in the PREG cohort.
Enhancers were enriched across cohorts, and insulator regions were depleted in AYATS (¥** = p < 0.0005; ** =p <
0.005; * = p < 0.05).
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Figure 11: Enrichment for ENCODE chromatin states in frans CpG-transcript relationships. The 15-state
ChromHMM model was used to determine regional chromatin states. Overall, GE-associated CpGs were depleted in
repressive states but enriched at enhancers and areas flanking actively transcribed genes (*** = p < 0.0005; ** =p <
0.005; * = p < 0.05). Abbreviations: 1= Active transcriptional start site (TSS), 2= Flanking active TSS, 3= Flanking
strong transcription, 4= Strong transcription, 5= Weak transcription, 6= Genic enhancer, 7= Active enhancer, 8=
Zinc-finger genes & repeats, 9= Heterochromatin, 10= Bivalent/poised TSS, 11= Flanking bivalent TSS, 12= Bivalent
Enhancers, 13= Polycomb-repressed, 14= Weak Repressed Polycomb, 15= Quiescent
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