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Summary 20 

Human cells acquire somatic mutations throughout life, some of which can drive clonal 21 
expansion. Such expansions are frequent in the haematopoietic system of healthy individuals 22 
and have been termed clonal haematopoiesis (CH). While CH predisposes to myeloid 23 
neoplasia and other diseases, we have limited understanding of how and when CH develops, 24 
what factors govern its behaviour, how it interacts with ageing and how these variables relate 25 
to malignant progression. Here, we track 697 CH clones from 385 individuals aged 55 or 26 
older over a median of 13 years. We find that 92.4% of clones expanded at a stable 27 
exponential rate over the study period, with different mutations driving substantially different 28 
growth rates, ranging from 5% (DNMT3A, TP53) to over 50%/yr (SRSF2-P95H). Growth rates 29 
of clones with the same mutation differed by approximately +/-5%/yr, proportionately 30 
impacting “slow” drivers more substantially. By combining our time-series data with 31 
phylogenetic analysis of 1,731 whole genome-sequenced haematopoietic colonies from 7 32 
older individuals, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant 33 
clones preferentially expanded early in life and displayed slower growth in old age, in the 34 
context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene 35 
mutations only drove expansion later in life, while growth of TET2-mutant clones showed 36 
minimal age-dependency. Finally, we show that mutations driving faster clonal growth carry 37 
a higher risk of malignant progression. Our findings characterise the lifelong natural history 38 
of CH and give fundamental insights into the interactions between somatic mutation, ageing 39 
and clonal selection.  40 
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Introduction 41 

Human haematopoiesis produces hundreds of billions of specialized blood cells every day, 42 
through a hierarchy of progressively more differentiated and numerous cells originating from 43 
a pool of long-lived haematopoietic stem cells (HSCs). Haematopoiesis remains highly 44 
efficient for decades, but is inevitably challenged by the phthisic effects of ageing1–3 and the 45 
inexorable acquisition of somatic DNA mutations4. Mutations that augment HSC “fitness” can 46 
drive clonal expansion of a mutant HSC and its progeny, a phenomenon known as clonal 47 
haematopoiesis (CH)5–8. CH becomes ubiquitous with advancing age and is associated with 48 
an increased risk of myeloid leukaemias and some non-haematological diseases5–7,9–11. 49 

The observation that CH-associated mutations affect a very restricted set of genes that are 50 
also frequently mutated in leukaemia - most commonly those involved in epigenetic 51 
regulation (DNMT3A, TET2 and ASXL1), splicing (SF3B1 and SRSF2)  and apoptosis (TP53 52 
and PPM1D)5–8 - implies that these mutations inherently confer fitness to HSCs. In fact, recent 53 
evolutionary models propose that each specific mutation carries a fixed fitness advantage, 54 
and that this explains the relative proportions and clonal sizes of CH driven by different driver 55 
mutations12. However, several observations suggest that non-mutation factors are also 56 
influential. For example, a handful of CH cases studied at two time-points propose that the 57 
clones driven by the same or very similar mutations can behave differently between 58 
individuals11,13. Also, the relative prevalence of different CH-driver gene mutations changes 59 
significantly depending on context; for example, in aplastic anaemia CH is commonly driven 60 
by mutations that enhance immune evasion14–17, whereas genotoxic stress favours clones 61 
with mutations in DNA damage genes18–20. Furthermore, factors like inflammation21 and 62 
heritable genetic variation22–24 can affect CH emergence.  63 

A major limitation to our understanding of the determinants of CH behaviour/fate to date  has 64 
been its reliance on cross-sectional studies capturing CH at single time-points. Here, by 65 
tracking blood cell clones over long periods of time in a large cohort, and by reconstructing 66 
haematopoietic phylogenies, we uncover the lifelong dynamics and natural history of CH.   67 

Results 68 

The age-dependent mutational landscape of CH  69 

We analysed 1,593 blood DNA samples from 385 adults aged 54-93 years at the time of entry 70 
into the SardiNIA longitudinal study25. The participants, who had no history of haematological 71 
malignancy, were sampled up to 5 times (median 4) over 3.2-16 years (median 12.9 years) 72 
(Figure 1a, Extended Data Figure 1a-c). We performed deep targeted sequencing (mean 73 
1,065x) of 56 genes associated with CH and haematological malignancy (Supplementary 74 
Table 1) and identified somatic mutations in 52 genes (Supplementary Table 2). Using the 75 
dNdScv algorithm, an implementation of dN/dS that corrects for trinucleotide mutation rates, 76 
sequence composition, and variable mutation rates across genes, we identified positive 77 
selection of missense and/or truncating variants in 17 of these genes (dN/dS ratio>1 with 78 
q<0.1) (Supplementary Table 3, Extended Data Figs. 2,3)26. We focussed on these genes for 79 
further analysis. 80 
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 81 
Fig. 1: Experimental workflow and CH mutation characteristics. a, Study outline: 1,593 blood DNA samples 82 
were obtained from 385 elderly individuals sampled 2-5 times (median 4) over 3.2-16 years (median 12.9) and 83 
sequenced for mutations in 56 CH genes. Measured variant allele fractions (VAFs) were used to (i) fit observed 84 
clonal trajectories, and (ii) extrapolate the clonal dynamics prior to the period of observation. Additional blood 85 
samples from 3 selected individuals were used to generate 288 (3x96) whole-genome sequenced single cell-86 
derived colonies for phylogeny reconstructions. b, Age distribution of average VAF per individual. c, Age-stratified 87 
prevalence of the number of mutations per individual. d, Prevalence of mutations in driver genes: upper panel 88 
shows absolute prevalence in the cohort; lower panel shows average number of mutations per individual in 89 
DNMT3A, TET2 and splicing genes (SF3B1, SRSF2, U2AF1) at different ages. 90 

 91 

At least one somatic non-synonymous mutation was identified in 305 of 385 individuals 92 
(79.2%), with CH prevalence, average clone size and number of mutations per individual 93 
increasing with advancing age, and CH identified in >90% of those aged 85 years or older 94 
(Fig. 1b,c). Mutations were most common in epigenetic regulator genes TET2 and DNMT3A, 95 
and also frequent in ASXL1, TP53, PPM1D and spliceosome genes (Fig. 1d, upper panel). 96 
Interestingly, in this elderly cohort, advancing age impacted the prevalence of different driver 97 
mutations in a gene-dependent manner (Fig. 1d, lower panel). In particular, the prevalence of 98 
DNMT3A mutations showed no significant relationship with age overall (p=0.12, binomial 99 
regression of prevalence vs age, controlling for sex), whilst TET2 mutations showed a 100 
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consistent rise with age, averaging at 6.8%/yr (p=0.00037), as did mutations in splicing genes 101 
(U2AF1, SRSF2 and SF3B1), whose prevalence  increased by 5.4%/yr (p=0.025). 102 

 103 

Most clones expand steadily during older age 104 

To investigate clonal behaviour over time, we used serial Variant Allele Fraction (VAF; the 105 
fraction of sequencing reads reporting a mutation) measurements as a surrogate for clone 106 
size, and fitted a saturating (logistic) exponential curve with a constant growth rate over time 107 
to each clonal trajectory. Such logistic growth behaviour is supported by simulations of 108 
evolutionary dynamics using Wright-Fisher models with constant fitness (Extended Data Fig. 109 
4a-b)27. Remarkably, by assessing the fit between serial VAF measurements and the 110 
trajectories inferred by our model, we find that the great majority of clones (92.4%) expanded 111 
at a constant exponential rate over the study period (Fig. 2a,b, Extended Data Fig. 4c). The 112 
predominance of fixed-rate growth was particularly striking for genes like DNMT3A and TET2, 113 
for which 99% and 94.3% of clones, respectively, grew steadily over time. Nevertheless, 114 
some clones behaved unpredictably, with proportions varying by mutant gene. Most notable 115 
were JAK2-V617F-mutant clones, for which growth trajectories were particularly erratic, with 116 
only 58% displaying stable growth. The likelihood of mutant clones displaying non-constant 117 
growth at older age was not related to the number of mutations in the same individual 118 
(p=0.68; Extended Data Fig. 4d).  119 

We further assessed the consistency of clonal trajectories by testing our ability to predict 120 
future clonal growth. Using additional prospectively-obtained blood samples from 11 121 
individuals, we compared observed versus predicted VAFs (Extended Data Fig. 4e-g, 122 
Supplementary Table 4) and found good concordance (mean absolute error: 3.5%), 123 
corroborating our model and providing further evidence that fixed-rate growth is the norm in 124 
old age. 125 
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 126 
Fig. 2: The longitudinal dynamics of CH in older age. a, Examples of fitted exponential growth of clones with 127 
mutations at 6 common hotspots. Grey bands represent the 95% highest posterior density interval (HPDI). Each 128 
data point is represented by a dot if it conforms to our model of fixed-rate exponential growth and by a cross 129 
otherwise (outlier, defined as tail probability less than 2.5%). b, Proportion of clonal trajectories showing fixed-130 
rate exponential growth, ie. those with no outlying data-points as defined in (a), with 90% confidence intervals. c, 131 
Annual clonal growth associated with different driver mutations, for both whole genes and specific mutation sites. 132 
For gene-wise growth, truncating and missense mutations are modelled separately for genes where both are 133 
enriched. Sites are modelled separately to gene if mutated recurrently within our cohort. Point estimates for growth 134 
and 90% HDPI are represented for each site (dot and line, respectively, with dot size proportional recurrence) and 135 
each gene (horizontal line and rectangle, respectively). d, Relationship between clonal growth predicted by the 136 
identity of the driver mutation and actual observed growth, with 90% HDPI represented by vertical and horizontal 137 
lines, respectively. Vertical spread thereby captures differences in growth rate between clones bearing the same 138 
driver mutation. Clones growing faster than predicted lie above the dashed line, and slower clones lie below. e, 139 
Distribution of the unknown-cause effect for different genes. Each point represents a single clone and boxplots 140 
represent the distribution of these effects for each gene. The value of unknown-cause growth is positive for clones 141 
growing faster than expected by the identity of the driver mutation, and negative for clones growing slower than 142 
expected. 143 

Determinants of clonal growth rate  144 

To delineate the factors that determine each clone’s growth rate, our logistic regression 145 
model fits the following contributions of the driver mutation: i) mutated gene; ii) specific amino 146 
acid change (for recurrently mutated sites) and iii) mutation type (truncating versus non-147 
truncating) (Supplementary Table 5). An additional component in our model, measuring 148 
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variation not captured by (i-iii), was also used and termed “unknown-cause growth” 149 
(Extended Data Fig. 4h). 150 

We found that clones bearing mutations in different genes expanded at different rates, with 151 
mutations affecting DNMT3A and TP53 displaying the slowest average annual growth rates 152 
of ~5% (Fig. 2c, Supplementary Table 6). Clones with mutations in the other most common 153 
driver genes (TET2, ASXL1, PPM1D and SF3B1), expanded at roughly twice this rate, i.e. 154 
~10%/yr. The most rapidly expanding clones were those carrying mutations in SRSF2, 155 
PTPN11 and U2AF1, growing at over 15-20%/yr on average. The only specific mutation 156 
displaying distinctive behaviour was SRSF2-P95H, which was associated with significantly 157 
faster expansion compared to other SRSF2 mutations. By contrast, all other hotspot 158 
mutations drove growth at rates similar to mutations elsewhere in the same gene, including 159 
commonly mutated sites such as DNMT3A-R882, SF3B1-K666N and SF3B1-K700E. 160 

For most genes, truncating and missense mutations drove comparable rates of growth. 161 
Exceptions were TP53, where missense grew 10%/yr  (90% CI=[3-18%]) faster than 162 
truncating mutations (which usually did not expand or even contracted) and CBL, where 163 
missense grew 11%/yr (90% CI=[3-19%]) slower than truncating mutations (Fig. 2c, 164 
Extended Data Fig. 4i, Supplementary Table 6).  165 

To quantify the impact of factors other than driver mutations, we compared the observed 166 
growth rate of each clone with that predicted by the mutation (Fig. 2d). In Figure 2d, vertical 167 
spread thereby represents the variability in growth rate between distinct clones with the same 168 
driver mutation. On average, this unknown-cause growth contributed approximately +/- 169 
5%/yr to clonal expansion (Fig. 2e). Consequently, for fast-growing clones, including those 170 
associated with SRSF2-P95H or mutant U2AF1, this effect was proportionately small and 171 
there was relatively little inter-individual variability in growth rate. By contrast, the impact on 172 
“slow” drivers, such as DNMT3A, was more substantial, with some clones growing twice as 173 
fast as predicted by the mutation, and others showing negligible expansion. Clones 174 
harbouring JAK2-V617F mutations were an exception as they displayed an unusually high 175 
degree of inter-individual variability in relation to average growth rate (Fig. 2d,e, Extended 176 
Data Fig. 5a). In view of the well-described heritable contribution to myeloproliferative 177 
neoplasm (MPN) susceptibility22,23, we tested if JAK2-V617F-mutant clones grew faster in 178 
individuals with inherited MPN risk alleles, but found no such relationship (Extended Data Fig. 179 
5b, Supplementary Table 7). However, we also made the more general observation that 180 
certain individuals harboured more mutations in the same gene than would be expected by 181 
chance (Extended Data Fig. 5c), suggesting that non-mutation factors influencing clonal 182 
growth are both individual- and gene-specific. While we found no evidence that these non-183 
mutation factors include either sex or smoking history, since neither accounted for 184 
differences in clonal growth rate between individuals with the same mutant driver gene, age 185 
was a significant factor specifically for TET2-mutant clones, which grew faster in older 186 
individuals (Spearman’s rho=0.31; adj. p-value=2.33*10-6) (Extended Data Fig. 5d-f). 187 

 188 

Haematopoietic phylogenies give insights into the lifelong natural history of CH 189 

To contrast the longitudinal clonal behaviours we observed in older age with lifelong clonal 190 
dynamics, we began by deriving and whole-genome sequencing (WGS) 96 single-cell-191 
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derived colonies from each of three individuals with splicing gene mutations (Fig. 3a-c), 192 
particularly as previous reports suggested a possible interaction of these mutations with age8. 193 
We constructed phylogenetic trees using somatic mutations as lineage-tracing barcodes 194 
and, since HSCs accumulate mutations at a near constant rate, we used phylogenetic branch 195 
lengths to time the onset of clonal expansions (“clades”)28–31. In PD41276, the phylogeny was 196 
dominated by an SF3B1-K666N-mutant clone, beginning between 23-47 years of age, with 197 
only a single SF3B1-wild type colony, consistent with a near-complete clonal sweep (Fig. 3a). 198 
In PD34493, SF3B1-K666N was acquired prior to the age of 35 years, whilst U2AF1-Q157R 199 
initiated clonal growth later (age 41-61) in a previously expanded clade lacking recognisable 200 
drivers (Fig. 3b). Interestingly, an additional apparently driverless expansion - a phenomenon 201 
recognised in old age6,32 - was observed in this individual (Fig. 3b), and a further 3 such 202 
expansions in PD41305 (Fig. 3c). In PD41305, the SRSF2-P95H mutation was present in only 203 
one colony, preventing characterisation of its phylogeny beyond the observation that it was 204 
acquired after the age of 13 years (Fig. 3c).  205 

We next used the timing and density of clonal branchings (or “coalescences”) to reconstruct 206 
the entire growth trajectories of expanded clades using phylodynamic principles (Fig. 3d-207 
h)29,33,34. This revealed that the three clades with identified drivers (SF3B1-K666N and U2AF1-208 
Q157R in PD34493, and SF3B1-K666N in PD41276), expanded (Fig. 3d-f) at calculated rates 209 
similar to those observed in our time-series VAF measurements during older age (Fig. 3i, left 210 
panel). Of note, SF3B1-K666N was associated with a substantially different growth rate in 211 
PD41276, where it expanded at 28%/yr by serial VAFs (29%/yr by phylodynamic estimate), 212 
versus 10%/yr in PD34493 (17%/yr by phylodynamics) (Fig. 3i). Reasons for this difference 213 
are unclear, but it is notable that the faster-growing clone had antecedent Y loss  (Fig. 3a), 214 
an aberration seen in clades from all three individuals and associated with only modest clonal 215 
expansion when isolated (Fig. 3a-c). Interestingly, clones without known drivers began to 216 
expand within the first two decades of life and grew over their lifetimes at rates comparable 217 
to clones with known drivers (14-32%/yr) (Fig. 3g,h, Extended data Fig. 6).  218 
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 219 
Fig. 3: Haematopoietic phylogenetic trees. a-c, Haematopoietic phylogenies of participants PD41276 (a), 220 
PD34493 (b)  and PD41305 (c). Each tree tip is a single cell-derived colony and tips with shared mutations coalesce 221 
to an ancestral branch, from which all colonies in such a “clade” arose. Branch lengths are proportional to the 222 
number of somatic mutations, which accumulate linearly with age. Branches containing known driver mutations 223 
or chromosomal aberrations are annotated. Clonal expansions are coloured: SF3B1-K666N-mutant expansions 224 
in orange, U2AF1-Q157R-mutant expansions in green, and expansions without identified drivers (‘Unknown 225 
driver’ or ‘UD’) in black. d-h, Growth trajectories of each clonal expansion, as determined by (i) phylogenies 226 
(effective population size (Neff) estimated using phylodynamic methods), and (ii) time-series data (using serial VAF 227 
measurements and modelled historical growth, as illustrated in Fig. 2, if available). Phylogeny-derived age at clone 228 
onset range is represented as a horizontal coloured bar on the x-axis, with the limits of the bar corresponding to 229 
the age range of the phylogeny branch along which the corresponding driver mutation was acquired. i, 230 
Comparison of the ages at onset (right) and growth rate during study period (left) derived from phylogenetic trees 231 
and longitudinal data. 232 

Many clones decelerate before older age  233 

As the phylodynamic reconstruction of a clone goes back to its inception, we investigated 234 
whether clonal growth dynamics during earlier life deviate from the stable growth observed 235 
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during older age. To corroborate observations from the three individuals depicted in Fig. 3, 236 
we conducted additional phylodynamic analyses of trees derived from 1,461 whole-genome 237 
sequenced single cell-derived colonies from another four individuals aged 75-81yrs from the 238 
study by Mitchell et al.32. This revealed that, in many instances, the reconstructed effective 239 
population size (Neff) of any individual clone grew more slowly towards the sampling date, 240 
before it saturated the HSC compartment (Fig. 4a-b; Extended Data Fig. 7a-c). This 241 
characteristic deceleration was quantified by fitting a biphasic exponential growth model to 242 
early and late parts of the trajectories (Fig. 4c). In most cases, extrapolating early growth (a 243 
consistent estimator of the fitness advantage of a clone in Wright-Fisher simulations, 244 
Extended Data Fig. 7d, Extended Data Fig. 8) led to dramatic overestimations of clade size 245 
(median 35x; Fig. 4d, Extended Data Fig. 7e).  246 

We used our longitudinal cohort to orthogonally test the lifelong stability of clonal growth by 247 
extrapolating the observed (fitted) trajectory of each clone backwards in time to infer the age 248 
at clonal onset. To account for stochastic drift, which can lead to faster growth of small 249 
clones, and the finite carrying capacity of the HSC population, which naturally limits/slows 250 
large clones, we derived and used an approximation to a Wright-Fisher process (Extended 251 
Data Fig. 4a,b). While estimates of age at clonal onset agreed with phylogenetic estimates 252 
for the fast-growing splice factor mutations (Fig. 3i), for many other clones, constant lifelong 253 
growth at the rate we observed during old age would be too slow to explain the observed 254 
VAFs (Fig. 4e,f,g), proposing that clonal expansion was faster in earlier life. These 255 
observations reveal that, at least for some clones/genes, the dynamics observed in later life 256 
are not representative of those that prevail earlier.  257 

We then assessed the minimum lifetime rate at which clones must have grown in order to 258 
reach the observed VAFs in our longitudinal data, henceforth termed ‘historical growth’, by 259 
restricting fits/solutions to growth rates that would place the age of clonal onset within 260 
individuals’ lifetimes (Fig. 4h, Supplementary Table 8).  Expectedly, this minimal historical 261 
growth rate was typically higher than the growth rate observed during the study period (i.e. 262 
in older age; Fig. 4i, Extended Data Fig. 7f). Moreover, the fold-changes between historical 263 
and observed growth rates derived from longitudinal data were qualitatively in good 264 
agreement with the fold-changes between late growth and expected growth (the latter 265 
assuming growth is constant through life and carrying capacity is fixed) derived from 266 
phylodynamic data  (Fig. 4c,i, Extended Data Fig. 7f). Taken together it thus emerges that 267 
many clones grew more rapidly early in life compared with the rate in old age. 268 
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 269 
Fig. 4: Evidence for clonal deceleration from single-cell phylogenies and longitudinal data. a,b. Effective 270 
population size (Neff) trajectories inferred from single cell phylogenies in this paper (a) and in Mitchell et al32 (b). 271 
Dotted lines represent parts of the trajectory with high variance (log(var(Neff)) > 5). c. Representation of biphasic 272 
fit to Neff estimates and extrapolation from early growth (observed clone size is calculated as the clonal fraction 273 
in the phylogeny scaled by an Neff of 200,000 HSC x yr; comparison with 1,000,000 HSC x yr in Extended Data 274 
Fig. 7e). d. Ratio between observed and expected (extrapolated from early growth) clone size from phylogenies. 275 
e. Representation of extrapolated trajectories derived from longitudinal data, assuming stable lifelong growth at 276 
the same fixed rate we observed during older age; some projections are not feasible (ie. exceeding lifetime, with 277 
onset pre-conception). f. Relationship between age and the observed growth rate of clones and VAF 278 
(longitudinal data; light blue represents clones with projected onset within lifetime and golden represents those 279 
exceeding lifetime). g. Quantification of unfeasible clones (exceeding lifetime) per gene (longitudinal data). h. 280 
Representation of the calculation of minimum historical growth. i. Quantification of the ratios between observed 281 
and historical (longitudinal data) and between late and expected (phylogenetic data) growth. j. Differences 282 
between the median observed and historical growth per year for each gene. k. Projected ages at onset for all 283 
clones, assuming stable lifelong growth at the same fixed rate we observed during older age. 284 

Driver-specific differences in lifetime clonal behaviour 285 

The effect of deceleration was most marked for clones bearing mutations in DNMT3A, 286 
BRCC3 and TP53, whose early growth was at least twice as fast as that measured during old 287 
age (Fig. 4i,j). Conversely,  we observed almost no deceleration of  fast-growing clones 288 
harbouring U2AF1, SRSF2-P95H, PTPN11 or IDH1 mutations (Fig. 4i,j).  It is particularly 289 
notable that the TET2-mutant clones were much less susceptible to deceleration than 290 
DNMT3A-mutant clones (Fig. 4i-j). This is consistent with the observation that the prevalence 291 
of TET2-mutant CH rises at older ages and eventually exceeds that of DNMT3A-mutant CH, 292 
which is more prevalent at younger ages (Fig. 1d). A declining relative advantage of DNMT3A 293 
mutations in older age was also suggested by the much lower proportion of DNMT3A mutant-294 
clones reaching detectable limits during our study period compared to clones bearing 295 
mutations in other genes (“incipient clones”, Extended Data Fig. 9a).  296 
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To derive representative ranges for age at clone onset for each driver gene, we capped 297 
individual estimates at conception, thus avoiding estimates that projected beyond 298 
individuals’ lifetimes  (Fig. 4k, Extended Data Fig. 9b,c). We also validate this method using 299 
simulations and confirm that these ranges are not affected by changes in Neff or generation 300 
time (Extended Data Fig. 9d,e). !"# "$%&'(%")# %*(%# %*"# (+",(-"# .(%"/01# 2"%3""/# 0.4/"#301 

546/)(%&4/#(/)#)"%"0%&4/#&/#7",&7*",(.#2.44)#(%#89:;<=>?#@A677."'"/%(,1#B4%"#CD#3($#E<#302 

1"(,$#(0,4$$#(..#0.4/"$F#3&%*#04/$&)",(2."#+(,&(2&.&%1#2"%3""/#'6%(/%#-"/"$F#,(/-&/-#5,4'#EG#303 

1"(,$#54,#DNMT3A-mutant clones to 12 years for U2AF1-mutant clones. Most drivers were 304 

projected to initiate expansions of clones throughout life, compatible with the notion that 305 
somatic mutations occur at a constant rate28,29,35. However, solutions for DNMT3A-mutant 306 
clones concentrated earlier in life, consistent with early initiation and rapid expansion 307 
followed by marked deceleration then slow growth, as discussed earlier. Of note, capping 308 
onset at conception is arbitrary and it remains possible that some clones start later and 309 
exhibit faster initial growth followed by even stronger deceleration, a scenario that would be 310 
more consistent with published fitness estimates of 11-19%/yr based on cross-sectional VAF 311 
measurements12. In contrast, SRSF2-P95H and U2AF1 mutations initiated clonal expansion 312 
always after 30 years of age and with a median age at onset of 58 and 57 years, respectively 313 
(Fig. 4k). This indicates that the reported rarity of these mutant clones in people aged <60 314 
years5,6,8 is not due to slow growth over decades, but rather due to their late onset followed 315 
by rapid expansion and also provides a plausible explanation for the high risk of leukaemic 316 
progression associated with these mutations9,36.  317 

CH dynamics and malignant progression  318 

To investigate the links between mutation fitness and malignant progression, we built on our 319 
previous study of AML risk prediction9 and revealed that among CH driver genes a faster 320 
growth rate was associated with a higher AML risk (adjusted R2=0.55, p=0.0037, Fig. 5a). For 321 
example, genes driving fast CH growth like SRSF2 and U2AF1 were associated with the 322 
highest risks of leukaemogenesis, while slow-growing clones such as those bearing DNMT3A 323 
mutations, conferred a lower risk. To confirm our findings in larger studies and include 324 
myeloid malignancies other than AML, we analysed large published datasets of AML 325 
(n=1540)37 and myelodysplastic syndromes (MDS, n=738)38 using a site-specific extension of 326 
the dNdScv algorithm to formally quantify the extent to which individual hotspots are under 327 
the influence of positive selection in these cancers (Supplementary Tables 9,10)25. This 328 
analysis revealed a positive correlation between each hotspot’s growth coefficient in CH and 329 
its selection strength in myeloid cancer (Fig. 5b; adjusted  R2=0.19, p=0.0016), corroborating 330 
the AML risk analysis. Nevertheless, the observation that the same CH driver gene can 331 
progress to either AML or MDS, with variable predilections as quantified by gene-level dN/dS 332 
comparison (Extended Data Fig. 10; Supplementary Table 10), suggests that factors other 333 
than growth rate can also influence a mutation’s malignant potential.  334 

 335 
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 336 
Fig. 5: CH dynamics and progression to myeloid disease. a, Relationship between the growth rate associated 337 
with each driver gene in CH, and the risk of AML progression associated with that driver gene. b, Relationship 338 
between the growth rate associated with each recurrent mutation in CH, and the strength of selection of that 339 
mutation in AML (circles) and MDS (triangles). In a and b genes/hotspots mentioned in the main text are 340 
highlighted. 341 

Discussion 342 

The phenomenon of CH has served as an exemplar in the developing understanding of 343 
somatic mutation, clonal selection and oncogenesis in human tissues4,39. However, the nature 344 
of these interrelated processes can change over time and their consequences develop only 345 
slowly, making them difficult to investigate. Here, we studied the longitudinal behaviour of 346 
CH over long periods (median 13 years) and combined this with lifelong phylodynamic 347 
analyses of haematopoiesis to derive new insights into these fundamental biological 348 
processes. 349 

First, we found that most clones (92%) display stable exponential growth dynamics in older 350 
age, at rates influenced by their driver mutations. This allowed us to predict future clonal 351 
growth trajectories, a finding with potentially useful implications for clinical practice 352 
(Extended Data Fig. 4e-g). Surprisingly, mutations in DNMT3A, reportedly the most common 353 
CH driver gene5–7, were associated with slower clonal expansion than most other CH genes. 354 
Also, DNMT3A hotspot mutations (e.g. at codon R882) were not associated with faster 355 
growth than other DNMT3A mutations (Figure 2c). By contrast, TET2-mutant clones 356 
expanded significantly faster over the study period (Fig. 2c) and, reflecting this, also reached 357 
detectable levels much more frequently on-study than DNMT3A-mutant clones (Extended 358 
Data Fig. 9a). This resulted in TET2 becoming the most prevalent CH driver after the age of 359 
75 years (Figure 1d).  360 

These initial findings suggested that, while clonal growth is remarkably stable in old age, 361 
dynamics in earlier life may deviate from this behaviour, challenging the premise that mutation 362 
fitness is constant over the human lifespan12. To test this, we first attempted to derive when 363 
individual CH clones were founded, using simple retrograde extrapolation of observed 364 
trajectories. This led to projected ages at clonal foundation that preceded conception for a 365 
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large number of clones (Fig. 4f,g), implying that their early growth must have been faster than 366 
that we observed during old age. This was most striking for DNMT3A, for which more than 367 
two thirds of projections were implausible (ie. onset pre-conception), but less common for 368 
TET2 and very uncommon for splicing factor genes (Fig. 4g).  369 

To further investigate lifelong clonal behaviour, we analysed haematopoietic phylogenies 370 
from healthy old individuals and found that aged haematopoiesis was dominated by a small 371 
number of expanded HSC clones, some of which lacked recognisable drivers32. Using 372 
phylodynamic approaches to track clonal growth rates through life, in conjunction with 373 
findings from our longitudinal cohort, we reveal widespread clonal deceleration prior to the 374 
period of stable growth during old age, in the context of an increasingly competitive 375 
oligoclonal HSC compartment (Fig. 4i). DNMT3A-mutant clones, as well as those bearing 376 
mutations in TP53 and BRCC3 and also apparently driverless clones, were among those 377 
displaying the most marked degree of deceleration (Fig. 4i). In contrast, TET2 mutations 378 
appeared to drive more stable lifelong growth (Fig. 4h-j), which may underlie their apparent 379 
ability to initiate clonal expansion fairly uniformly through life (Fig. 4k) and the fact that TET2 380 
“overtakes” DNMT3A as the most common CH driver after the age of 75 years (Fig. 1d).  381 

In diametric contrast to DNMT3A and unlike other genes, CH driven by mutant U2AF1 and 382 
SRSF2-P95H only initiated late in life (Fig. 4k) and exhibited some of the fastest expansion 383 
dynamics (Fig. 2c). These data were corroborated by phylogenetic analyses (Fig. 3b,f) and 384 
tally with the sharp increase in prevalence of splice factor-mutant CH8, MDS38,40,41 and 385 
AML37,42 in old age and the high risk of progression to myeloid cancers associated with these 386 
mutations9. The particular behaviour of these clones proposes a specific interaction with 387 
ageing, which could relate to cell-intrinsic factors or to cell-extrinsic changes in the aging 388 
haematopoietic niche that make it more suitable for HSCs harbouring splice factor 389 
mutations43,44. 390 

Finally, we explored the relationship between clonal growth rate in CH and the development 391 
of myeloid cancers. We find that mutations associated with faster CH growth are also those 392 
associated with higher risk of progression to AML (Fig. 5a) and are under the strongest 393 
selective pressure in AML and MDS (Fig. 5b). Indeed, we show that the average annual 394 
growth per gene explains over 50% of the variance in AML risk progression. This shows that 395 
an improved understanding of growth dynamics in CH can help identify those at risk of 396 
myeloid malignancies. 397 

Collectively, our work gives new insights into the lifelong clonal dynamics of different 398 
subtypes of CH, the impact of ageing on haematopoiesis, and the processes linking somatic 399 
mutation, clonal expansion and malignant progression. 400 

 401 

Methods 402 

Study participants 403 

Ethical permission for this study was granted by The East of England (Essex) Research Ethics 404 
Committee (REC reference 15/EE/0327). The SardiNIA longitudinal study recruited individuals 405 
from four towns in the Lanusei Valley in Sardinia, capturing 5 phases of sample and data 406 
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collection over more than 20 years25. We analysed serial samples from 385 individuals in the 407 
SardiNIA project. 408 

Targeted sequencing and variant-calling 409 

Target enrichment of genomic DNA was performed using a custom RNA bait set (Agilent 410 
SureSelect ELID 3156971), designed complementary to 56 genes implicated in CH and 411 
haematological malignancies (Supplementary Table 1). Libraries were sequenced on Illumina 412 
HiSeq 2000 and variant-calling was performed as we described previously9,45. Briefly, somatic 413 
single-nucleotide variants and small indels were called using Shearwater (v.1.21.5), an 414 
algorithm designed to detect subclonal mutations in deep sequencing experiments46. Two 415 
additional variant-calling algorithms were applied to complement this approach: CaVEMan 416 
(v.1.11.2) for single-nucleotide variants, and Pindel (v.2.2) for small indels47,48. VAF correction 417 
was performed using an in-house script (https://github.com/cancerit/vafCorrect). Finally, 418 
allele counts at recurrent mutation hotspots were verified using an in-house script 419 
(github.com/cancerit/allelecount). Variants were filtered as we described previously9,45, but 420 
were not curated with regard to existing notions of oncogenicity, ie. all somatic variants 421 
passing quality filters were retained for analysis. 422 

If a variant was identified in an individual at any time-point in the study, this site was re-423 
queried in the same individual at all other time-points, using an in-house script (cgpVAF) to 424 
provide pileup (SNV) and Exonerate (indel) output (https://github.com/cancerit/vafCorrect). 425 
No additional filters were applied to these back-called variants. 426 

Selection analyses (dN/dS) 427 

To quantify selection, we used the dNdScv algorithm, a maximum-likelihood implementation 428 
of dN/dS, which measures the ratio of non-synonymous (N) to synonymous (S) mutations, 429 
while controlling for gene sequence composition and variable substitution rates26. We first 430 
applied this method to the mutation calls from the longitudinal SardiNIA cohort in order to 431 
identify which genes are under positive selection in the context of CH. For this analysis, any 432 
mutation that was present in a single individual at multiple time-points was counted only 433 
once.  434 

To characterise patterns of selection in AML and MDS, we applied dNdScv to two published 435 
data sets. The AML set was derived from 1540 patients enrolled in three prospective trials of 436 
intensive therapy37. The MDS set included 738 patients with MDS or closely related 437 
neoplasms such as chronic myelomonocytic leukaemia38. Both used deep targeted 438 
sequencing of 111 cancer genes, which overlapped with 13 of the 17 genes of interest in our 439 
longitudinal CH study (PPM1D, CTCF, GNB1 and BRCC3 were not sequenced in the 440 
AML/MDS studies). We called and filtered variants in the 13 overlapping genes using the 441 
strategy described above (under ‘Targeted sequencing and variant-calling’). Variants were 442 
identified in all 13 genes in both AML and MDS datasets (Supplementary Table 10). We 443 
calculated dN/dS values both at the level of individual genes, and at single-site level for 444 
hotspots, the latter using the sitednds function in the dNdScv R package. 445 

Hierarchical modelling of clone trajectories through time 446 

We use Bayesian hierarchical modelling to model clonal trajectories. Since we are unable to 447 
phase different mutations into specific clones and given that individual CH clones typically 448 
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harbour a single mutation49, we assume that each mutation is heterozygous and its VAF is 449 
representative of the prevalence of a single clone. Accordingly, for a given individual ! and 450 
mutation ", we have a mutant clone #!". We model the counts #$%&'(#!"for #!" at age ' as a 451 
binomial distribution, such that #$%&'(#!"(') 	∼ -"&(#$.!"('), 0!"(')), with #$.!" as the 452 
coverage of this mutation at age ' and 0!"(') ∼ -1'2(3('), 4) as the expected proportion of 453 
mutant allele copies. As such, #$%&'(#!"(') ∼ --(#$.!"('), 3('), 4). Here, 4 ∼ 5(6$% , 7$%) is 454 
the technical overdispersion whose parameters are estimated using replicate data (details 455 
below) and 3(') = &'())

+,'()), where 9(') = ":$;"'((<-./.! + <0!).!+ <#!") ∗ '	 +	%!"). We use this 456 

parameterization to guarantee that ?[#$%&'(#!"] = 0!"#$.!". <-./.! ∼ 5(0,0.1) and <0!).! ∼457 
5(0,0.1) are the gene and site growth effects for mutation ", respectively. <#!" ∼ 5(0,0.05)	is 458 
the growth effect associated exclusively with mutation " in individual ! - i.e. of mutant clone 459 
#!" - and %!" is the offset accounting for the onset of different clones at different points in time. 460 
We also define the growth effect of #!"as <)$)12!" = (<-./.! + <0!).! + <3#!"). Along this work we 461 
will refer to <-./.! + <0!).! as the driver (growth) effect and to <#!" as the unknown-cause 462 
(growth) effect - the fraction of growth that is quantifiable but not explained by either gene or 463 
site. 464 

Preventing identifiability issues and reducing uninformed estimates. To address possible 465 
identifiability issues in our model, when a gene has a single mutation (JAK2-V617F and IDH2-466 
R140Q), the effect is considered to occur only at the site level. To avoid estimating the 467 
dynamics of a site from a single individual, we only model <0!).! when two or more individuals 468 
have a missense mutation on site " - we refer to these sites as “recurrent sites”. Overall, we 469 
consider a total of 17 genes and 39 recurrent sites (Supplementary Table 5). 470 

Estimating and validating growth parameters. Using the model described above, we use 471 
Markov Chain Monte Carlo (MCMC) with a Hamiltonian Monte Carlo (HMC) sampler with 150-472 
300 leapfrog steps as implemented in greta50. We sample for 5,000 iterations and discard the 473 
initial 2,500 to get estimates for the distribution of our parameters. As such, our estimates for 474 
each parameter are obtained considering their mean, median and 95% highest density 475 
posterior interval for 2,500 samples.  476 

We assess the goodness-of-fit using the number of outliers detected in any trajectory and 477 
consider only trajectories with no outliers as being explained by our model and, as such, 478 
growing at constant rate. Outliers are assessed by calculating the tail probabilities of the 479 
counts under our model with a hard cut-off at 2.5%. As such, F$3)2!.4 = 1	if 480 
F(#$%&'(	|	<-./.! , <0!).! , <#!" , %!" , ') < 0.025	|	F(#$%&'(	|	<-./.! , <0!).! , <#!" , %!" , ') > 0.975 and 481 
F$3)2!.4 = 0 otherwise. We validate this approach using Wright-Fisher simulations 482 
(Supplementary Methods). We additionally assess the predictive power of this model on an 483 
additional time-point that was available for a subset of individuals and that was not used in 484 
the inference of parameters in our model (Supplementary Methods). 485 

Estimating the technical overdispersion parameter. Technical VAF overdispersion used two 486 
distinct sets of data:  487 
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(1) Horizon Tru-Q-1 was serially diluted to VAFs of 0.05, 0.02, 0.01, 0.005 and 0 using 488 
Horizon Tru-Q-0 (verified wild-type at these variant sites), then sequenced in duplicate 489 
or triplicate;  490 

(2) 19 SardiNIA samples with mutations across 15 genes at a range of VAFs, were 491 
sequenced in triplicate. 492 

Sample processing and analysis was performed as described in the “Targeted Sequencing 493 
and Variant-calling” section. Replicate samples were picked from the same stock of DNA, 494 
then library preparation and sequencing steps were performed in parallel. Variant calls for 495 
these replicate samples are in Supplementary Table 11. 496 

For (1), we model the distribution over the expected MNO as a beta distribution such that 497 
MNO ∼ -1'2(3, 4) and for (2) we adopt a model identical to the one described earlier in this 498 
section but use only gene growth effects (#$%&'(#!"(') ∼ --(#$.!"('), 3('), 4), 3(') =

&'())
1,'()), 499 

9(') = ":$;"'(<-./.! ∗ '	 +	%!")). Here, we model 4 ∼ 1P0(Q) with Q as a variable with no prior. 500 
We use MCMC with HMC sampling with 400-500 leapfrog-steps as implemented in greta50 501 
to estimate the mean and standard deviation of 4. For this estimate we use 1,000 samples 502 
from the posterior distribution. 503 

Analysis of non-mutation factors as determinants of clonal growth rate 504 

Inherited polymorphisms and JAK2-mutant clonal growth. The SardiNIA cohort had 505 
previously been characterised using two Illumina custom arrays: the Cardio-MetaboChip and 506 
the ImmunoChip25. Inherited genotypes at 12 loci previously associated with MPN risk were 507 
extracted for the 12 individuals with JAK2-V617F mutation22,23. The relationship between each 508 
individual’s total number of inherited risk alleles and JAK2-mutant clonal growth rate was 509 
assessed by Pearson’s correlation. The 46/1 haplotype, which harbours 4 SNPs in complete 510 
linkage disequilibrium, was considered as a single risk allele. 511 

Age, sex and smoking experience. We assess the association between unknown-cause 512 
growth and age through the calculation of a Pearson correlation considering all genes, both 513 
together and separately while controlling for multiple testing. We also assess the association 514 
between unknown-cause growth and sex and smoking history using a multivariate regression 515 
where unknown-cause growth is the dependent variable and sex and previous smoking 516 
experience are the covariates, while also controlling for age. 517 

Determining the expected age at beginning of clone onset 518 

We consider that HSC clones grow according to a Wright-Fisher model. According to this, 519 
for an initial population of HSC &/2, we can consider two scenarios - that of a single growth 520 

process where the time at which the cell first starts growing '0is described as '0 =
2$-51#6,3	
8$%$&'

, 521 

or that of a two step growth process, where '92S!%('1S = '0 +
2$-(-/8$%$&')

8$%$&'
− 1

8$%$&'
, where ; is 522 

the number of generations per year. The latter scenario is the one chosen, due to its strong 523 
theoretical foundation and previous application to mathematical modelling of cancer 524 
evolution51. The two regimes that describe it are an initial stochastic growth regime and, once 525 
the clone reaches a sufficient population size, a deterministic growth regime. The adjustment 526 
made to '0 in '02S!%('1S can be interpreted as first estimating the age at which the clone 527 
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reached the deterministic growth phase ('0 +
2$-(-/8$%$&')

8$%$&'
) followed by subtracting the 528 

expected time for a clone to overcome its stochastic growth phase ( 1
8$%$&'

). For both & and ; 529 

we use the estimates based on 29 - & = 50,000 and ; = 2. We validate this approach using 530 
simulations (Supplementary Methods) and test the approach against our serial VAF data and 531 
verify that changes in & and ; do not have a dramatic impact on age at onset estimates by 532 
considering a range of values (& = {10,000;50,000;100,000;200,000;600,000} and ; =533 
{1;2;5;10;13;20}). 534 

Derivation of blood colonies and phylogenetic tree construction 535 

Sample preparation and sequencing. We selected 3 individuals with splicing gene mutations 536 
from the SardiNIA cohort for detailed blood phylogenetic analysis. Peripheral blood samples 537 
were drawn into Lithium-heparin tubes (vacutest, kima, 9ml) and buccal samples were taken 538 
(Orangene DNA OG-250). Peripheral blood mononuclear cells were isolated from blood and 539 
plated at 50,000 cells per ml in MethoCult 4034 (Stemcell Technologies). After 14 days in 540 
culture, 96 single haematopoietic colonies were plucked per individual (total 288 colonies) 541 
and lysed in 50μl of RLT lysis buffer (Qiagen).  542 

Library preparation for whole genome sequencing (WGS) was performed using our low-input 543 
pipeline as previously described52,53. 150bp paired-end sequencing reads were generated 544 
using the NovaSeq® 6000 platform to a mean sequencing depth of 15x per sample. Reads 545 
were aligned to the human reference genome (NCBI build37) using BWA-MEM. 546 

Variant-calling and filtering. Single-nucleotide variants (SNVs) and small indels were called 547 
against an unmatched reference genome using the in-house pipelines CaVEMan and Pindel, 548 
respectively47,48. ‘Normal contamination of tumour’ was set to 0.05; otherwise standard 549 
settings and filters were applied. For all mutations passing quality filters in at least one 550 
sample, in-house software (cgpVAF, https://github.com/cancerit/vafCorrect) was used to 551 
produce matrices of variant and normal reads at each mutant site for all colonies from that 552 
individual. Copy-number aberrations and structural variants were identified using matched-553 
normal ASCAT54 and BRASS (https://github.com/cancerit/BRASS). Low-coverage samples 554 
(mean <4x) were excluded from downstream analysis (n=1, PD41305). Samples in which the 555 
peak density of somatic mutation VAFs was lower than expected for heterozygous changes 556 
(in practice VAF<0.4) were suspected to be contaminated or mixed colonies, and were also 557 
excluded from further analysis (n=3, PD41305; n=9, PD41276; n=3, PD34493).  558 

Multiple post-hoc filtering steps were then applied to remove germline mutations, recurrent 559 
library prep / sequencing artefacts, and in vitro mutations, as described previously55 and 560 
detailed in custom R scripts (https://github.com/margaretefabre/Clonal_dynamics). Buccal 561 
samples were used as an additional filter; mutations were removed if the variant:normal count 562 
in the buccal sample was consistent with that expected for a germline mutation (0.5 for 563 
autosomes and 0.95 for XY chromosomes, binomial probability >0.01), and were retained if 564 
(i) the variant:normal count in the buccal sample was not consistent with germline (binomial 565 
probability <1x10-4) and (ii) the mutation was not present in either of 2 large SNP databases 566 
(1000 Genomes Project and Kaviar) with MAF > 0.001.  567 

Phylogenetic tree construction and assignment of mutations back to the tree. These steps 568 
were also performed as described previously55 and are detailed here: 569 
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https://github.com/margaretefabre/Clonal_dynamics.# H,&"5.1F# $('7."$# 3","# ($$&-/")# (#570 

-"/4%17"# 54,# "(0*# '6%(%&4/# $&%"# 7($$&/-# 5&.%",&/-# $%"7$# @I7,"$"/%J# K# ;># +(,&(/%# ,"()$# (/)#571 

7,42(2&.&%1#L#<=<M#%*(%#046/%$#0('"#5,4'#(#$4'(%&0#)&$%,&26%&4/N#I(2$"/%J#K#<#+(,&(/%#,"()$#(/)#572 

)"7%*#;ON#I6/P/43/J#K#/"&%*",#I(2$"/%J#/4,#I7,"$"/%J#0,&%",&(#'"%D=#9#-"/4%17"#'(%,&Q#45#$*(,")#573 

'6%(%&4/$# 3($# 5")# &/%4# %*"# RSH44%# 7,4-,('56, which constructs a maximum parsimony 574 

phylogenetic tree with bootstrap approximation. The in-house-developed R package treemut 575 
(https://github.com/NickWilliamsSanger/treemut), which uses original count data and a 576 
maximum likelihood approach, was then utilised to assign mutations back to individual 577 
branches on the tree. Since individual edge length is influenced by the sensitivity of variant-578 
calling, lengths were scaled by 1/sensitivity, where sensitivity was estimated using the 579 
proportion of germline variants called. 580 

Reconstruction of population trajectories. Phylogenies were made ultrametric (branch lengths 581 
normalised) using a bespoke R function (make.tree.ultrametric, 582 
https://github.com/margaretefabre/Clonal_dynamics/my_functions). Assuming a constant 583 
rate of mutation acquisition28,29,35, the time axis was scaled linearly, where the root of the tree 584 
represents conception, and the tips represent age at sampling. We then analysed population 585 
size trajectories by fitting Bayesian nonparametric phylodynamic reconstructions (BNPR) as 586 
implemented in the phylodyn R package33,34 to clades - sets of samples in a phylogenetic tree 587 
sharing a most recent common ancestor (MRCA) - defined by either having a driver mutation 588 
on the MRCA or a MRCA branch length that spans more than 10% of the tree depth and with 589 
5 tips or more. We also estimated the lower and upper bounds for age at onset of clonal 590 
expansion to be the limits of the branch containing the most recent common ancestor.  591 

Deceleration in phylogenies and longitudinal data 592 

We detect deceleration using two different approaches - the ratio between expected and 593 
observed clone size using phylodynamic estimates and the ratios between observed and 594 
historical (from longitudinal data) and between late and expected (from phylogenetic data), 595 
respectively. To obtain the late growth rate we fit a biphasic log-linear model to our 596 
phylodynamic estimation of Neff - this enables us to obtain an early and a late growth rate 597 
(details in the Supplementary Methods). 598 

Expected and observed clone size. The expected clone size is calculated by extrapolating 599 
the early growth rate until the age of sampling; having this we can calculate the ratio between 600 
expected and observed growth. The ratio between these quantities is then used as a measure 601 
of deceleration (details in the Supplementary Methods). 602 

Growth ratio in phylogenetic data. The late growth rate is defined as the late growth rate 603 
defined in the previous section of the methods. The expected growth rate for the phylogenies 604 
is calculated as the growth coefficient for a sigmoidal regression that assumes a population 605 
size of 200,000 HSC as the carrying capacity. We then use the ratio between these quantities 606 
as a measure of deceleration (1 implies no deceleration; <1 implies deceleration). 607 

Growth ratio in longitudinal data. The observed growth rate is defined as the growth rate 608 
inferred directly from the data. The minimal historical growth is the growth rate estimate 609 
obtained by restricting clone initiation to a time after conception (age at at onset > -1).  610 
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Associations between CH dynamics and (i) AML progression and (ii) selection in 611 
MDS and AML 612 

To calculate the association between CH dynamics and AML we used the risk coefficients 613 
from our previous work in predicting the onset of AML9, which were calculated by fitting a 614 
Cox-proportional hazards model that calculated the risk of AML onset associated with each 615 
gene while controlling for age, sex and cohort, and estimate the coefficient of correlation 616 
between the expected value of the annual growth for the posterior distribution of each gene 617 
(considering gene, site and unknown-cause effects) and the AML progression risk.  618 

The association between CH dynamics and selection in MDS and AML use the dN/dS values 619 
calculated with dNdScv as previously described in the methods, using two distinct cohorts 620 
from previous studies37,38. dN/dS values were calculated for all hotspots and their coefficient 621 
of correlation with the expected value of the annual growth for the posterior distribution of 622 
each hotspot (also considering gene, site and unknown-cause effects) was calculated. 623 

Statistical analyses 624 

All statistical analyses were conducted using the R software57 - MCMC models were fitted 625 
using gret50 and hypothesis testing, generalised linear models and maximum likelihood fits 626 
were performed in base R. 627 
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Extended data figures 795 

 796 
Extended Data Fig. 1: Longitudinal cohort characteristics. a, Distribution of the number of serial samples obtained per individual. b, Duration of follow-up per individual. c, 797 
Distribution of participants’ ages at each of the five sampling phases of the SardiNIA study.  798 
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 799 
Extended Data Fig. 2: Mutation prevalence and selection in different genes. a, Observed-to-expected (dN/dS) ratios for the 17 genes with missense and/or truncating 800 
mutations under positive selection (with q<0.1). The dashed line indicates a dN/dS value of 1, which represents neutrality (no selection). b, Waterfall plot showing the number 801 
and distribution of mutations among participants. Each column represents 1 individual, and each row 1 gene. Coloured squares indicate the presence of a mutation with the 802 
specific colour indicating the number of distinct mutations in that gene identified in that individual. For individuals with the same mutation identified at multiple serial time-803 
points, the serially-observed mutation is counted only once.  804 
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 30 

 806 
Extended Data Fig. 3: Distribution of somatic mutations within driver genes (previous page). Lolliplots show 807 
the longest protein isoform of each gene, with protein domains depicted by grey rectangles. Each circle represents 808 
a somatic mutation. The vertical distance of the circle from the protein cartoon indicates its recurrence in the 809 
cohort (quantified on the y-axis). Amino acid codons recurrently mutated (ie. observed in more than one individual) 810 
in our cohort are explicitly labelled. Circle colours indicate the mutation type as per key. Non-truncating mutations 811 
(missense, inframe, synonymous) are depicted above and truncating mutations (nonsense, frameshift) below the 812 
protein cartoon.  813 
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Extended Data Fig. 4: Modelling CH dynamics in older age using time-series VAF data (previous page). a, 815 
Representation of a Wright-Fisher simulation, showing two phases of clonal growth. The likelihood of a clone 816 
transitioning from stochastic to deterministic growth is inversely proportional to the product of its fitness (f) and 817 
the total number of stem cells (N). Clones with no fitness advantage (depicted in yellow) are unlikely to exceed 818 
their drift thresholds and tend to disappear or remain undetectable. Fitter clones (depicted in red) are more likely 819 
to reach deterministic growth. b, Association between the driver mutation effect used in the Wright-Fisher 820 
simulations and the driver effect inferred using our model (R2 = 0.92). c, Comparison of observed (golden) and 821 
inferred (red) trajectories for all recurrently mutated sites. Grey bands represent 95% highest posterior density 822 
intervals. d, Relationship between the number of mutations co-occurring within an individual and the proportion 823 
of clones growing at a fixed rate over time. e, Association between VAF predicted by our model, and VAF observed 824 
in additional prospectively-collected samples from 11 individuals with 15 CH driver mutations, not used to infer 825 
clonal growth rate in our model. The dotted line is along the diagonal, depicting theoretical perfect agreement 826 
between predicted and observed VAF. f,g, Example trajectories of clones with SF3B1-K666N (f) and SRSF2-P95H 827 
(g) mutations. Points represent VAFs used in our model to fit the growth curve (train), and crosses represent 828 
prospectively tested VAFs used (test), showing good agreement between predicted and observed VAFs. h, 829 
Illustration of the determinants of growth in our model. Each mutant gene and/or site drives an expected rate of 830 
clonal growth. In this example, Mutation A is expected to drive faster growth than Mutation B. The growth rates 831 
of different clones bearing the same mutation, either in different individuals or in distinct clones within the same 832 
individual, can differ. Some grow faster than expected from the identity of the driver mutation (eg. Individual 1 833 
with Mutation A), and some grow slower (eg. Individual 2 with Mutation A). The residual term in our model, the 834 
difference between observed and expected growth rate, is referred to as “unknown-cause growth”. i, Comparison 835 
of growth rate associated with truncating vs non-truncating mutations in genes with both driver types. Points 836 
above the dashed line show faster growth of truncating mutations, and points below show faster non-truncating 837 
mutations.  838 
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 839 
Extended Data Fig. 5: Differences in growth rate between individuals/clones with the same driver. a, For 840 
each gene, we contrast the mean annual growth rate among individuals/clones bearing a mutation in that gene, 841 
with the spread in this rate (defined here as the standard deviation of the unknown-cause (UC) growth). Circles 842 
represent point estimates, with circle size indicating the number of clones bearing a mutation in that gene, and 843 
lines representing the 90% confidence interval (CI). For the standard deviation, the 90% CI was calculated 844 
assuming that ("#1)%

2

&2 ∼ "ℎ$%&(( − 1), with ( being the sample size, % the standard deviation estimate and !2the 845 
true population variance. SRSF2-P95H mutations are plotted separately to other SRSF2 mutations, as they are 846 
associated with significantly different growth dynamics. b, Relationship between number of inherited MPN risk 847 
alleles and JAK2-mutant clonal growth rate. c, The number of mutations per individual in each gene is plotted. 848 
Each data-point is a pie-chart, the size of which reflects the number of individuals. For each gene, given the 849 
observed mutation prevalence in our cohort, the pie is fully light grey if the number of individuals we observed 850 
with a specific number of mutations is the same as the number of individuals we expected by chance. The 851 
presence of a white segment indicates that we found fewer individuals with that number of mutations, compared 852 
to expected. The presence of a dark grey segment indicates that we found an excess of individuals with that 853 
number of mutations. We estimate the expected number of mutations in each gene in each individual through 854 
Monte Carlo estimation; assuming the prevalence of mutations in the cohort is uniform for each gene across 855 
individuals, we simulate 1,000 scenarios where we randomly distribute these mutations given the number of 856 
mutations in each individual. d, Association between sex and smoking history and the average UC effect for each 857 
individual (n.s.). e, Association between age at study entry and the average UC effect for each individual (n.s.). f, 858 
Association between age at mutation detection and UC effect for each TET2-mutant clone (Spearman’s rho = 859 
0.31; p-value=2.33*10-6).   860 

1

2

3

4

5

6

7

8

TE
T2

D
N
M
T3
A

PP
M
1D

SR
SF

2

SF
3B
1

C
BL

AS
XL
1

TP
53

BR
C
C
3

C
TC

F

JA
K2

G
N
B1

PT
PN

11

KR
AS

U
2A
F1

ID
H
1

ID
H
2

2x excess

Expected

Observed
absence

Observed 
excess

TET2

DNMT3A

PPM1D

TP53

SF3B1

ASXL1

CBL

BRCC3

CTCF
KRAS

SRSF2−other

U2AF1

GNB1

JAK2

PTPN11

SRSF2−P95H

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50%
Average observed annual growth

St
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

U
C

 e
ffe

ct

Number of
individuals 10 100 200

Clonal dynamics are determined
largely by mutation identity

Clonal dynamics are determined
largely by non-driver mutation factors  

a

c

b

N
um

be
r o

f m
ut

at
io

ns
 p

er
 in

di
vi

du
al

●

●

●

●

●
● ●

●●

●

●

●

●

−20

−10

0

10

20

2 4 6 8
Number of inherited MPN risk alleles

An
nu

al
 U

C
 g

ro
w

th
 o

f
JA

K2
-m

ut
an

t c
lo

ne
s 

(%
) Adj R2 0.03

p 0.27

Female
has smoked

Female
never smoked

Male
has smoked

Male
never smoked

−10% 0% 10% 20%
Average UC effect

d e f

−10%

0%

10%

20%

60 70 80 90 100
Age at mutation detection

TE
T2

 U
C

 e
ffe

ct

Spearman's rho = 0.31
(p−value = 2.33e−06)

−10%

0%

10%

20%

60 70 80 90 100
Age at study entry

Av
er

ag
e 

U
C

 e
ffe

ct

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.12.455048doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 861 
Extended Data Fig. 6: Lifelong growth in phylogenetic trees. Comparison between annual growth derived from 862 
phylogenies and growth observed in longitudinal data. For the phylogenies this was obtained by fitting an 863 
exponential growth curve to the entire phylodynamic trajectory. 864 
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 865 
Extended data Fig. 7: Examples and consistency of clonal deceleration from simulations and real data. a, 866 
Simulated BNPR trajectories from Wright-Fisher simulations with a fixed population size across 800 generations 867 
for a range of fitness effects (0.005, 0.010, 0.015, 0.020, 0.025, 0.030). b, Comparison between Wright-Fisher 868 
simulations (grey) and BNPR estimates from phylogenies obtained from these simulations (pink). The horizontal 869 
golden line in each plot represents the HSC population carrying capacity (200,000). c, Representation of effective 870 
population size (Neff) trajectories using three distinct methods (BNPR, mcmc.popsize and skyline; details in the 871 
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Supplementary Methods) for their estimation across a range of clade sizes and fitness effects. d, Quantification 872 
of the association between true fitness values and inferred fitness values for three distinct methods of Neff 873 
estimation. e, Schematic representation of all trajectories from Mitchell et al. and how extrapolating from the initial 874 
growth rate leads to the overestimation of the observed clone size (here the observed clone size is obtained by 875 
scaling the proportion of tips in a clade by a total Neff of either 200,000 or 1,000,000 HSC x yr). f, Quantification 876 
of the deceleration effect from real data and simulations.   877 
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 878 
Extended Data Fig. 8: Estimation of the true clone fitness from phylodynamic estimation. Three fits were 879 
tested to estimate the true clone fitness from phylodynamic estimation of the population size and these estimates 880 
were plotted as a function of the true fitness size (0.005, 0.010, 0.015, 0.020, 0.025 or 0.030). a, A log-linear fit; 881 
b-c, A biphasic fit that estimates an early and a late growth rate and a change-point between both and d, a 882 
sigmoidal fit. e, Coefficient of correlation (R2) for all four inferred coefficients. f, Root mean squared error (RMSE) 883 
for all four inferred coefficients. In this figure red represents “low variance trajectories” (the average estimated 884 
variance for the logarithm of the trajectory is under 5) and blue represents “all trajectories”.  885 
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 886 
Extended Data Fig. 9: Age at clone detection and onset. a, Proportion of clones driven by different driver 887 
mutations that were incipient on-study, ie. undetectable at time-point 1 and detectable by the end-of-study. 888 
Absolute numbers are given above each bar. b, Relationship between age at onset and observed annual growth 889 
rate, with 90% highest posterior density intervals (HPDI). The black line and grey shaded area represent the 890 
theoretical limit of detection at 80 years of age. c, Violin plot showing the distribution of projected ages at onset 891 
for all clones, assuming stable lifelong growth at the same fixed rate we observed during older age. d, Association 892 
between the age at which clones appeared in the simulations and the age at clone foundation inferred using our 893 
time-series data (R2 = 0.75). Boxplots show that, while these estimates may have high variance, the distribution 894 
of expected values is close to the true value. e, Sensitivity analysis depicting the median (dot) and the 95% 895 
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confidence interval of the ages at onset for each gene when considering different population sizes (10e3, 50e3, 896 
100e3, 200e3 and 600e3) and numbers of generations per year (1, 2, 5, 10, 13, 20).  897 
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 898 
Extended data Fig. 10: Selection in myeloid malignancies. a, Ratio between AML dN/dS and MDS dN/dS for 899 
different genes and mutation types (missense, truncating). If this ratio is >1 there is a bias towards AML, if it is <1 900 
there is a bias towards MDS. Confidence intervals for the ratios were calculated under the assumption that dN/dS 901 
estimates are normally distributed.  902 
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Supplementary Methods 903 

Assessing the predictive performance of clonal growth predictions 904 

Using an additional time-point (phase 6) available for 11 individuals with mutations in CBL 905 
(c.2434+1G>A), DNMT3A (P385fs, R882H, W330X), GNB1 (K57E), JAK2 (V617F), PPM1D 906 
(Q524X), SF3B1 (K666N, K700E, R625L), SRSF2 (P95H, P95L), TET2 (Q1542X) and U2AF1 907 
(Q157P, Q157R). Using the model described in the “Hierarchical modelling of clone 908 
trajectories through time” section of the Methods and conditioning on the previous 909 
timepoints, we predict the additional time-point and assess the predictive performance 910 
through the mean absolute error (MAE) to the true VAF value. 911 

Validating the dynamic coefficient and age at onset inference with Wright-Fisher 912 
simulations 913 

We use Wright-Fisher simulations1-3 with a fixed population of 200,000 cells and 50 possible 914 
drivers, a range of fitness advantages (0.001− 0.030) and a range of mutation rates (1.0 ∗915 
10 !10 − 4.0 ∗ 10 !9). These ranges were estimated to cover the values inferred and 916 
mentioned in considering that one should expect there to be approximately 13 generations 917 
of HSC per year and a population size of 200,000 HSC 4.  918 

To simulate the conditions under which the experimental data was obtained, we fit Gamma 919 
distributions to the observed coverage and observed age at first time-point truncated at the 920 
minimum and maximum values for each. For each simulation we sample from these 921 
distributions the first timepoint, a random number of subsequent timepoints (between 2 and 922 
4) from a uniform distribution and the coverage for each driver at each timepoint. We simulate 923 
the sequencing process as drawing samples from a beta-binomial distribution parameterized 924 
similarly to the one described in the “Hierarchical modelling of clone trajectories through 925 
time” section of the Methods, where the probability is the proportion of cells from a specific 926 
clone present at a given time-point. More concretely, %&'()* ∼ ,,( "#1!" , /, %&0), where 2 is 927 

the allele frequency of a mutation, /is the technical overdispersion parameter and %&0 is the 928 
coverage which is sampled from the coverage distribution as inferred from our data. 929 

To infer coefficients under this setting we converted generations to years (13 generations per 930 
year) and used the framework described in the previous sections to infer these coefficients. 931 
Since the nature of these mutations does not consider different levels of genetic resolution, 932 

we had to modify the driver coefficient to 345064	6886%) ∼ 9(0, :2 ∗ 0.12)so that the 933 
distribution from which this coefficient is being drawn has the one we consider for the driver 934 
effect considering a gene, domain and site effect. The observed coefficients are converted 935 
to year as %&6885%56()* = (1+ 85)(6**)$ − 1, where = is the number of generations per year, 936 
and we assess the fit between inferred and observed coefficients considering these values. 937 
We additionally calculate the age at clone foundation for the inferred coefficients and, using 938 
these simulations which allow us to know the true age at clone foundation, we assess the fit 939 
between inferred and observed ages at clone foundation. 940 

To better understand the impact that population size and generation times have on these 941 
simulations, we conduct the same analysis considering two additional scenarios: a 942 
population size of 100,000 HSC and 5 generations per year, and a population size of 50,000 943 
HSC and 1 generation per year. 944 

Finally, we also calculate the age at onset as specified in the “Determining the expected age 945 
at beginning of clone onset”. To do this, we assume that these clones follow a Wright-Fisher 946 
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process, where growth can be separated into two distinct phases which depend on the size 947 
of the clone - a stochastic phase, where the clone is too small and during which growth 948 
happens linearly, and a deterministic phase, during which growth is approximately 949 
exponential (Extended Data Fig. 4a). According to this growth regime, the age at onset can 950 

be calculated as )0 >3?'*)63 = )0 +
%&$($/)'(')* )

)'(')*
− 1

)'(')*
, where )0 is the age at onset if the 951 

clone grew exponentially (as opposed to following a Wright-Fisher process), 
%&$($/)'(')* )

)'(')*
 is 952 

the time at which the clone started to grow deterministically and 1
)'(')*

 is the expected time 953 

the clone spends following a stochastic growth regime. We assess the validity of this 954 
approach by calculating the coefficient of correlation between inferred and true ages at onset 955 
from the simulations. 956 

Validating annual growth rate inferences from single-cell phylogenies with 957 
Wright-Fisher simulations 958 

We use Wright-Fisher simulations 2,3 with 50 possible drivers and test a range of different 959 
fitness advantages ([0.005,0.010,0.015,0.020,0.025,0.030]) over 800 generations at a fixed 960 
population size of 200,000 HSC. For each fitness effect we define a driver mutation rate 961 
([200 ∗ 10 !9,50 ∗ 10 !9,20 ∗ 10 !9,15 ∗ 10 !9,8 ∗ 10 !9,5 ∗ 10 !9], respectively) that 962 
guarantees that at least a few simulations lead to clones which expand to sufficient sizes and 963 
avoid many competing expansions and keep the passenger mutation rate constant (2 ∗964 
10 !5). For each simulation we infer phylogenetic trees by sampling 100 representative 965 
clones from our population and using a neighbour-joining algorithm based on mutation 966 
presence. The representative sampling is done by defining for each clone a probability of 967 
being sampled that is equivalent to its proportion in the population. We then detect the clades 968 
that contain drivers, isolate them and infer their effective population size (Neff) trajectory using 969 
BNPR 5,6.  970 

We fit different models to the inferred Neff trajectories, namely: 971 

1. A log-linear fit (assumes exponential growth); 972 

2. A scaled and shifted sigmoidal fit (assumes that growth saturates based on the Neff 973 
trajectory); 974 

3. A shifted sigmoidal fit (assumes that growth saturates at 1 and that the most recent 975 
Neff estimate corresponds to the proportion of tips in the clade); 976 

4. A biphasic log-linear fit (assumes that growth is exponential and has two distinct 977 
coefficients corresponding to early and late growth; the boundary between early and 978 
late growth - otherwise referred to as the changepoint between both - is also fitted 979 
with the other parameters and is constrained to lie in the central part of the trajectory: 980 
for the time ) over which the clone expands, the changepoint cannot be inferior to 981 
@5(()) + 0.25 ∗ 4>(=6()) nor superior to @>A()) − 0.25 ∗ 4>(=6()), where 4>(=6()) =982 
@>A()) − @5(()). This constraint prevents fits that are too close to the clonal inception 983 
or to the clone at later stages). 984 

We compare these models by assessing how closely they are able to recapitulate the original 985 
fitness in the simulations. To do so, we calculate their coefficient of determination and root 986 
mean squared error. We also visually assess how similar these trajectories are to the true 987 
driver trajectories as reconstructed from simulations - to match clones from a Wright-Fisher 988 
simulation to an expansion in a phylogenetic tree we assign each clone from the Wright-989 
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Fisher simulation to its nearest clone in a phylogenetic tree using the Hamming distance 990 
between the mutations in each clone. 991 

We additionally estimate the effective population size using two other methods for validation 992 
- mcmc.popsize and skyline from the ape package 7 in R . This allows us to confirm our 993 
observations that stem from phylodynamic estimations and that concern, mostly, a prevalent 994 
effect of clonal deceleration which is detailed in the main text and in the following section. 995 

Detecting deceleration in single-cell phylogenies and longitudinal data 996 

We infer the presence of deceleration in both single-cell phylogenies and longitudinal data. 997 
To do this, we use two distinct methods: calculating the ratio between the expected and 998 
observed VAF and calculating deceleration using growth rates.  999 

For the first method - calculating the ratio between expected and observed VAF - we use the 1000 
value for the early growth from the changepoint log-linear fit described in “Validating annual 1001 
growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” and 1002 
extrapolate the Neff to the age at sampling. By doing so we get the expected clone fraction 1003 
if growth had not changed during the Neff trajectory. We also calculated the observed clone 1004 
fraction as the fraction of tips in the clade. To get the expected clone fraction from Neff we 1005 
divide Neff by the inferred population size in Lee-Six et. al (200,000 HSC) 8. We then calculate 1006 
the ratio between the expected and observed clone size - if this ratio is close to 1 this implies 1007 
little to no changes in dynamics, whereas a ratio above 1 implies deceleration and a ratio 1008 
below 1 implies acceleration. 1009 

For the second method - calculating deceleration using growth rates - we define two distinct 1010 
quantities for both single-cell phylogenies/longitudinal data - expected/observed growth, 1011 
corresponding to the growth rate of each clone during observation at old age, and 1012 
early/minimal historical growth, corresponding to the growth rate of each clone at an earlier 1013 
stage of clonal dynamics - and calculate the ratio between them. 1014 

As such, for phylogenies we first calculate the Neff trajectory for each clade using BNPR 33. 1015 
Next, and using their Neff trajectory, we calculate their expected growth rate by assuming a 1016 
sigmoidal growth. We additionally assume that the final Neff (Neff at sampling) estimate 1017 
corresponds to the fraction of tips in the clade and we scale our data accordingly such that 1018 
1 corresponds to the maximum Neff and the fraction of tips in the clade corresponds to Neff 1019 
at sampling. Thirdly and using the changepoint log-linear fit described in “Validating annual 1020 
growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” we derive 1021 
the value for early growth. Finally, as a measure of deceleration, we calculate the ratio 1022 
between expected and early growth - a value close to 1 for this ratio implies an absence of 1023 
deceleration whereas smaller values imply deceleration. 1024 

For the longitudinal data we use the observed growth for each clone as described in 1025 
“Hierarchical modelling of clone trajectories through time”. Next, we calculate the (minimal) 1026 
historical growth as the growth that excludes all posterior samples that would lead to age at 1027 
onset estimates exceeding lifetime (ages at onset for clones below -1, a heuristic value 1028 
chosen to represent developmental onset of clones). Finally and as a measure of 1029 
deceleration, we calculate the ratio between observed and historical growth. The 1030 
interpretation for this ratio is similar to that defined in the previous paragraph for phylogenetic 1031 
data - a value of 1 implies an absence of detectable deceleration, whereas smaller values 1032 
represent the minimal amount of deceleration. This method has, however a caveat - due to 1033 
the nature of this calculation (excluding posterior samples which are too slow to provide 1034 
solutions within lifetime), values above 1 (indicating acceleration) are technically impossible.   1035 
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Supplementary Notes 1036 

Supplementary Note 1 - Determining the effect of repeated sampling 1037 

on the theoretical limit of detection 1038 

Across this work we sequence individuals a median of three times across their lifetime. We 1039 
define a detection threshold of 0.5% VAF as the minimum clone size for detection on 1040 
individual timepoints, but the repeated sampling leads to 0.5% VAF being an 1041 
overestimation of the actual limit of detection (LOD) - the size at which clones become 1042 
detectable.  1043 

To show this, we simulate the repeated sampling of variants existing at a true clone 1044 
proportion between 0 and 2%. We use this proportion 2 as the probability parameter in a 1045 
beta binomial distribution, the overdispersion / calculated using technical replicates as the 1046 
overdispersion in the same beta binomial distribution and a coverage of 1000. Having fully 1047 
parameterized this distribution (%&'()* ∼ ,,( "#1!" , /,1000)) we sample counts from it 1048 

between 1 to 5 times. For each combination of clone size and number of samples we 1049 
perform 1,000 realisations and calculate the number of detected clones at a threshold of 1050 
0.5%. This allows us to assess the fraction of clones with a specific size which are detected 1051 
if we sample them multiple times - in other words, are able to assess the detection rate for 1052 
different clone sizes and different numbers of samples. 1053 

With this, we show that, at a threshold of 0.5% and sampling only once, we detect 14.8% 1054 
of all clones existing at 0.5% (Supplementary Notes Fig. 1). However, repeating this 1055 
sampling 3 and 5 times leads to the detection of approximately 37.7% and 54.3% of all 1056 
clones existing at 0.5%, respectively. As such, under regular conditions - a single sample - 1057 
we would detect 13.5% of all clones present at 0.5% with a detection threshold of 0.5%. 1058 
The question we should now ask is: what is the smallest possible clone size we detect at 1059 
the same rate of detection - 13.5% - if we increase the number of samples? Using the 1060 
same set of simulations, we can calculate the likely minimal size of the detected clones, 1061 
summarised in Supplementary Notes Table 1, with clones as small as 0.21% and 0.14% 1062 
being detected with 3 and 5 samples, respectively, using the same detection rate. As such, 1063 
when considering the theoretical LOD used in Figure 4k, we avoided using 0.5% which, as 1064 
we show, would be at least twice as high as the theoretical LOD obtained from simulations. 1065 
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 1066 
Supplementary Notes Fig. 1 - Fraction of detected clones upon repeated samples/timepoints at a detection 1067 
threshold of 0.5%.  1068 

Supplementary Notes Table 1 - The minimal size of detected clones using a 0.5% threshold and assuming 1069 
that we are interested in detecting the same fraction of clones we would detect with a single sample at a 1070 
detection threshold of 0.5%.  1071 

Number of samples Minimal size of detected clones at 15.08% 

1 0.50% 

2 0.30% 

3 0.21% 

4 0.16% 

5 0.14% 
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