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Summary

Human cells acquire somatic mutations throughout life, some of which can drive clonal
expansion. Such expansions are frequent in the haematopoietic system of healthy individuals
and have been termed clonal haematopoiesis (CH). While CH predisposes to myeloid
neoplasia and other diseases, we have limited understanding of how and when CH develops,
what factors govern its behaviour, how it interacts with ageing and how these variables relate
to malignant progression. Here, we track 697 CH clones from 385 individuals aged 55 or
older over a median of 13 years. We find that 92.4% of clones expanded at a stable
exponential rate over the study period, with different mutations driving substantially different
growth rates, ranging from 5% (DNMT3A, TP53) to over 50%/yr (SRSF2-P95H). Growth rates
of clones with the same mutation differed by approximately +/-5%/yr, proportionately
impacting “slow” drivers more substantially. By combining our time-series data with
phylogenetic analysis of 1,731 whole genome-sequenced haematopoietic colonies from 7
older individuals, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant
clones preferentially expanded early in life and displayed slower growth in old age, in the
context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene
mutations only drove expansion later in life, while growth of TET2-mutant clones showed
minimal age-dependency. Finally, we show that mutations driving faster clonal growth carry
a higher risk of malignant progression. Our findings characterise the lifelong natural history
of CH and give fundamental insights into the interactions between somatic mutation, ageing
and clonal selection.
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Introduction

Human haematopoiesis produces hundreds of billions of specialized blood cells every day,
through a hierarchy of progressively more differentiated and numerous cells originating from
a pool of long-lived haematopoietic stem cells (HSCs). Haematopoiesis remains highly
efficient for decades, but is inevitably challenged by the phthisic effects of ageing’ and the
inexorable acquisition of somatic DNA mutations®. Mutations that augment HSC “fitness” can
drive clonal expansion of a mutant HSC and its progeny, a phenomenon known as clonal
haematopoiesis (CH)*®. CH becomes ubiquitous with advancing age and is associated with
an increased risk of myeloid leukaemias and some non-haematological diseases®"*".

The observation that CH-associated mutations affect a very restricted set of genes that are
also frequently mutated in leukaemia - most commonly those involved in epigenetic
regulation (DNMT3A, TET2 and ASXL1), splicing (SF3B71 and SRSF2) and apoptosis (TP53
and PPM1D)>*® - implies that these mutations inherently confer fitness to HSCs. In fact, recent
evolutionary models propose that each specific mutation carries a fixed fithess advantage,
and that this explains the relative proportions and clonal sizes of CH driven by different driver
mutations'™. However, several observations suggest that non-mutation factors are also
influential. For example, a handful of CH cases studied at two time-points propose that the
clones driven by the same or very similar mutations can behave differently between
individuals'"™®. Also, the relative prevalence of different CH-driver gene mutations changes
significantly depending on context; for example, in aplastic anaemia CH is commonly driven
by mutations that enhance immune evasion'"", whereas genotoxic stress favours clones
with mutations in DNA damage genes'®*?°. Furthermore, factors like inflammation®' and
heritable genetic variation®** can affect CH emergence.

A major limitation to our understanding of the determinants of CH behaviour/fate to date has
been its reliance on cross-sectional studies capturing CH at single time-points. Here, by
tracking blood cell clones over long periods of time in a large cohort, and by reconstructing
haematopoietic phylogenies, we uncover the lifelong dynamics and natural history of CH.

Results

The age-dependent mutational landscape of CH

We analysed 1,593 blood DNA samples from 385 adults aged 54-93 years at the time of entry
into the SardiNIA longitudinal study®. The participants, who had no history of haematological
malignancy, were sampled up to 5 times (median 4) over 3.2-16 years (median 12.9 years)
(Figure 1a, Extended Data Figure 1a-c). We performed deep targeted sequencing (mean
1,065x) of 56 genes associated with CH and haematological malignancy (Supplementary
Table 1) and identified somatic mutations in 52 genes (Supplementary Table 2). Using the
dNdScyv algorithm, an implementation of dN/dS that corrects for trinucleotide mutation rates,
sequence composition, and variable mutation rates across genes, we identified positive
selection of missense and/or truncating variants in 17 of these genes (dN/dS ratio>1 with
g<0.1) (Supplementary Table 3, Extended Data Figs. 2,3)?°. We focussed on these genes for
further analysis.
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82 Fig. 1: Experimental workflow and CH mutation characteristics. a, Study outline: 1,593 blood DNA samples
83 were obtained from 385 elderly individuals sampled 2-5 times (median 4) over 3.2-16 years (median 12.9) and
84 sequenced for mutations in 56 CH genes. Measured variant allele fractions (VAFs) were used to (i) fit observed
85 clonal trajectories, and (i) extrapolate the clonal dynamics prior to the period of observation. Additional blood
86 samples from 3 selected individuals were used to generate 288 (3x96) whole-genome sequenced single cell-
87 derived colonies for phylogeny reconstructions. b, Age distribution of average VAF per individual. ¢, Age-stratified
88 prevalence of the number of mutations per individual. d, Prevalence of mutations in driver genes: upper panel
89 shows absolute prevalence in the cohort; lower panel shows average number of mutations per individual in
90 DNMT3A, TET2 and splicing genes (SF3B1, SRSF2, U2AF1) at different ages.

91

92 At least one somatic non-synonymous mutation was identified in 305 of 385 individuals
93 (79.2%), with CH prevalence, average clone size and number of mutations per individual
94  increasing with advancing age, and CH identified in >90% of those aged 85 years or older
95 (Fig. 1b,c). Mutations were most common in epigenetic regulator genes TET2 and DNMT3A,
96 and also frequent in ASXL1, TP53, PPM1D and spliceosome genes (Fig. 1d, upper panel).
97 Interestingly, in this elderly cohort, advancing age impacted the prevalence of different driver
98 mutations in a gene-dependent manner (Fig. 1d, lower panel). In particular, the prevalence of
99 DNMT3A mutations showed no significant relationship with age overall (p=0.12, binomial
100 regression of prevalence vs age, controlling for sex), whilst TET2 mutations showed a
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101  consistent rise with age, averaging at 6.8%/yr (p=0.00037), as did mutations in splicing genes
102  (U2AF1, SRSF2 and SF3BT1), whose prevalence increased by 5.4%/yr (p=0.025).

103
104  Most clones expand steadily during older age

105 To investigate clonal behaviour over time, we used serial Variant Allele Fraction (VAF; the
106 fraction of sequencing reads reporting a mutation) measurements as a surrogate for clone
107  size, and fitted a saturating (logistic) exponential curve with a constant growth rate over time
108 to each clonal trajectory. Such logistic growth behaviour is supported by simulations of
109  evolutionary dynamics using Wright-Fisher models with constant fitness (Extended Data Fig.
110  4a-b)*’. Remarkably, by assessing the fit between serial VAF measurements and the
111 trajectories inferred by our model, we find that the great majority of clones (92.4%) expanded
112  at a constant exponential rate over the study period (Fig. 2a,b, Extended Data Fig. 4c). The
113  predominance of fixed-rate growth was particularly striking for genes like DNMT3A and TET2,
114 for which 99% and 94.3% of clones, respectively, grew steadily over time. Nevertheless,
115  some clones behaved unpredictably, with proportions varying by mutant gene. Most notable
116 were JAK2-V617F-mutant clones, for which growth trajectories were particularly erratic, with
117  only 58% displaying stable growth. The likelihood of mutant clones displaying non-constant
118  growth at older age was not related to the number of mutations in the same individual
119  (p=0.68; Extended Data Fig. 4d).

120  We further assessed the consistency of clonal trajectories by testing our ability to predict
121  future clonal growth. Using additional prospectively-obtained blood samples from 11
122  individuals, we compared observed versus predicted VAFs (Extended Data Fig. 4e-g,
123  Supplementary Table 4) and found good concordance (mean absolute error: 3.5%),
124  corroborating our model and providing further evidence that fixed-rate growth is the norm in
125 old age.
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127 Fig. 2: The longitudinal dynamics of CH in older age. a, Examples of fitted exponential growth of clones with
128 mutations at 6 common hotspots. Grey bands represent the 95% highest posterior density interval (HPDI). Each
129 data point is represented by a dot if it conforms to our model of fixed-rate exponential growth and by a cross
130 otherwise (outlier, defined as tail probability less than 2.5%). b, Proportion of clonal trajectories showing fixed-
131 rate exponential growth, ie. those with no outlying data-points as defined in (a), with 90% confidence intervals. c,
132 Annual clonal growth associated with different driver mutations, for both whole genes and specific mutation sites.
133 For gene-wise growth, truncating and missense mutations are modelled separately for genes where both are
134 enriched. Sites are modelled separately to gene if mutated recurrently within our cohort. Point estimates for growth
135 and 90% HDPI are represented for each site (dot and line, respectively, with dot size proportional recurrence) and
136 each gene (horizontal line and rectangle, respectively). d, Relationship between clonal growth predicted by the
137 identity of the driver mutation and actual observed growth, with 90% HDPI represented by vertical and horizontal
138 lines, respectively. Vertical spread thereby captures differences in growth rate between clones bearing the same
139 driver mutation. Clones growing faster than predicted lie above the dashed line, and slower clones lie below. e,
140 Distribution of the unknown-cause effect for different genes. Each point represents a single clone and boxplots
141 represent the distribution of these effects for each gene. The value of unknown-cause growth is positive for clones
142 growing faster than expected by the identity of the driver mutation, and negative for clones growing slower than
143  expected.

144  Determinants of clonal growth rate

145 To delineate the factors that determine each clone’s growth rate, our logistic regression
146  model fits the following contributions of the driver mutation: i) mutated gene; ii) specific amino
147  acid change (for recurrently mutated sites) and iii) mutation type (truncating versus non-
148  truncating) (Supplementary Table 5). An additional component in our model, measuring
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149  variation not captured by (i-ii), was also used and termed “unknown-cause growth”
150 (Extended Data Fig. 4h).

151  We found that clones bearing mutations in different genes expanded at different rates, with
152  mutations affecting DNMT3A and TP53 displaying the slowest average annual growth rates
153  of ~56% (Fig. 2c, Supplementary Table 6). Clones with mutations in the other most common
154  driver genes (TET2, ASXL1, PPM1D and SF3BT1), expanded at roughly twice this rate, i.e.
155  ~10%/yr. The most rapidly expanding clones were those carrying mutations in SRSF2,
156  PTPN11 and U2AF1, growing at over 15-20%/yr on average. The only specific mutation
157  displaying distinctive behaviour was SRSF2-P95H, which was associated with significantly
158 faster expansion compared to other SRSF2 mutations. By contrast, all other hotspot
159  mutations drove growth at rates similar to mutations elsewhere in the same gene, including
160 commonly mutated sites such as DNMT3A-R882, SF3B71-K666N and SF3B7-K700E.

161 For most genes, truncating and missense mutations drove comparable rates of growth.
162  Exceptions were TP53, where missense grew 10%/yr (90% CI=[3-18%]) faster than
163  truncating mutations (which usually did not expand or even contracted) and CBL, where
164  missense grew 11%/yr (90% CI=[3-19%]) slower than truncating mutations (Fig. 2c,
165  Extended Data Fig. 4i, Supplementary Table 6).

166  To quantify the impact of factors other than driver mutations, we compared the observed
167  growth rate of each clone with that predicted by the mutation (Fig. 2d). In Figure 2d, vertical
168  spread thereby represents the variability in growth rate between distinct clones with the same
169  driver mutation. On average, this unknown-cause growth contributed approximately +/-
170  5%/yr to clonal expansion (Fig. 2e). Consequently, for fast-growing clones, including those
171 associated with SRSF2-P95H or mutant U2AF1, this effect was proportionately small and
172  there was relatively little inter-individual variability in growth rate. By contrast, the impact on
173  “slow” drivers, such as DNMT3A, was more substantial, with some clones growing twice as
174  fast as predicted by the mutation, and others showing negligible expansion. Clones
175  harbouring JAK2-V617F mutations were an exception as they displayed an unusually high
176  degree of inter-individual variability in relation to average growth rate (Fig. 2d,e, Extended
177 Data Fig. 5a). In view of the well-described heritable contribution to myeloproliferative
178  neoplasm (MPN) susceptibility?*?*, we tested if JAK2-V617F-mutant clones grew faster in
179 individuals with inherited MPN risk alleles, but found no such relationship (Extended Data Fig.
180 5b, Supplementary Table 7). However, we also made the more general observation that
181 certain individuals harboured more mutations in the same gene than would be expected by
182 chance (Extended Data Fig. 5c), suggesting that non-mutation factors influencing clonal
183  growth are both individual- and gene-specific. While we found no evidence that these non-
184  mutation factors include either sex or smoking history, since neither accounted for
185  differences in clonal growth rate between individuals with the same mutant driver gene, age
186  was a significant factor specifically for TET2-mutant clones, which grew faster in older
187  individuals (Spearman’s rho=0.31; adj. p-value=2.33*10°) (Extended Data Fig. 5d-f).

188
189 Haematopoietic phylogenies give insights into the lifelong natural history of CH

190 To contrast the longitudinal clonal behaviours we observed in older age with lifelong clonal
191  dynamics, we began by deriving and whole-genome sequencing (WGS) 96 single-cell-
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192  derived colonies from each of three individuals with splicing gene mutations (Fig. 3a-c),
193  particularly as previous reports suggested a possible interaction of these mutations with age®.
194  We constructed phylogenetic trees using somatic mutations as lineage-tracing barcodes
195 and, since HSCs accumulate mutations at a near constant rate, we used phylogenetic branch
196  lengths to time the onset of clonal expansions (“clades”)**'. In PD41276, the phylogeny was
197  dominated by an SF3B7-K666N-mutant clone, beginning between 23-47 years of age, with
198 only a single SF3B17-wild type colony, consistent with a near-complete clonal sweep (Fig. 3a).
199 In PD34493, SF3B1-K666N was acquired prior to the age of 35 years, whilst U2AF7-Q157R
200 initiated clonal growth later (age 41-61) in a previously expanded clade lacking recognisable
201 drivers (Fig. 3b). Interestingly, an additional apparently driverless expansion - a phenomenon
202  recognised in old age®* - was observed in this individual (Fig. 3b), and a further 3 such
203  expansions in PD41305 (Fig. 3c). In PD41305, the SRSF2-P95H mutation was present in only
204 one colony, preventing characterisation of its phylogeny beyond the observation that it was
205 acquired after the age of 13 years (Fig. 3c).

206  We next used the timing and density of clonal branchings (or “coalescences”) to reconstruct
207  the entire growth trajectories of expanded clades using phylodynamic principles (Fig. 3d-
208  h)***** This revealed that the three clades with identified drivers (SF3B7-K666N and U2AF1-
209 Q157Rin PD34493, and SF3B7-K666N in PD41276), expanded (Fig. 3d-f) at calculated rates
210  similar to those observed in our time-series VAF measurements during older age (Fig. 3i, left
211 panel). Of note, SF3B7-K666N was associated with a substantially different growth rate in
212  PD41276, where it expanded at 28%/yr by serial VAFs (29%/yr by phylodynamic estimate),
213  versus 10%/yr in PD34493 (17%/yr by phylodynamics) (Fig. 3i). Reasons for this difference
214  are unclear, but it is notable that the faster-growing clone had antecedent Y loss (Fig. 3a),
215  anaberration seen in clades from all three individuals and associated with only modest clonal
216  expansion when isolated (Fig. 3a-c). Interestingly, clones without known drivers began to
217  expand within the first two decades of life and grew over their lifetimes at rates comparable
218  to clones with known drivers (14-32%/yr) (Fig. 3g,h, Extended data Fig. 6).
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220 Fig. 3: Haematopoietic phylogenetic trees. a-c, Haematopoietic phylogenies of participants PD41276 (a),
221 PD34493 (b) and PD41305 (c). Each tree tip is a single cell-derived colony and tips with shared mutations coalesce
222 to an ancestral branch, from which all colonies in such a “clade” arose. Branch lengths are proportional to the
223 number of somatic mutations, which accumulate linearly with age. Branches containing known driver mutations
224 or chromosomal aberrations are annotated. Clonal expansions are coloured: SF3B7-K666N-mutant expansions
225 in orange, U2AF1-Q157R-mutant expansions in green, and expansions without identified drivers (‘Unknown
226 driver’ or ‘UD’) in black. d-h, Growth trajectories of each clonal expansion, as determined by (i) phylogenies
227 (effective population size (Neff) estimated using phylodynamic methods), and (i) time-series data (using serial VAF
228 measurements and modelled historical growth, as illustrated in Fig. 2, if available). Phylogeny-derived age at clone
229 onset range is represented as a horizontal coloured bar on the x-axis, with the limits of the bar corresponding to
230 the age range of the phylogeny branch along which the corresponding driver mutation was acquired. i,
231 Comparison of the ages at onset (right) and growth rate during study period (left) derived from phylogenetic trees
232  and longitudinal data.

233  Many clones decelerate before older age

234  As the phylodynamic reconstruction of a clone goes back to its inception, we investigated
235  whether clonal growth dynamics during earlier life deviate from the stable growth observed
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236  during older age. To corroborate observations from the three individuals depicted in Fig. 3,
237  we conducted additional phylodynamic analyses of trees derived from 1,461 whole-genome
238  sequenced single cell-derived colonies from another four individuals aged 75-81yrs from the
239  study by Mitchell et al.*?. This revealed that, in many instances, the reconstructed effective
240 population size (Neff) of any individual clone grew more slowly towards the sampling date,
241 before it saturated the HSC compartment (Fig. 4a-b; Extended Data Fig. 7a-c). This
242  characteristic deceleration was quantified by fitting a biphasic exponential growth model to
243  early and late parts of the trajectories (Fig. 4c). In most cases, extrapolating early growth (a
244 consistent estimator of the fitness advantage of a clone in Wright-Fisher simulations,
245  Extended Data Fig. 7d, Extended Data Fig. 8) led to dramatic overestimations of clade size
246  (median 35x; Fig. 4d, Extended Data Fig. 7e).

247  We used our longitudinal cohort to orthogonally test the lifelong stability of clonal growth by
248  extrapolating the observed (fitted) trajectory of each clone backwards in time to infer the age
249  at clonal onset. To account for stochastic drift, which can lead to faster growth of small
250 clones, and the finite carrying capacity of the HSC population, which naturally limits/slows
251 large clones, we derived and used an approximation to a Wright-Fisher process (Extended
252  Data Fig. 4a,b). While estimates of age at clonal onset agreed with phylogenetic estimates
253  for the fast-growing splice factor mutations (Fig. 3i), for many other clones, constant lifelong
254  growth at the rate we observed during old age would be too slow to explain the observed
255 VAFs (Fig. 4e,,g), proposing that clonal expansion was faster in earlier life. These
256  observations reveal that, at least for some clones/genes, the dynamics observed in later life
257  are not representative of those that prevail earlier.

258  We then assessed the minimum lifetime rate at which clones must have grown in order to
259 reach the observed VAFs in our longitudinal data, henceforth termed ‘historical growth’, by
260 restricting fits/solutions to growth rates that would place the age of clonal onset within
261 individuals’ lifetimes (Fig. 4h, Supplementary Table 8). Expectedly, this minimal historical
262  growth rate was typically higher than the growth rate observed during the study period (i.e.
263 in older age; Fig. 4i, Extended Data Fig. 7f). Moreover, the fold-changes between historical
264 and observed growth rates derived from longitudinal data were qualitatively in good
265 agreement with the fold-changes between late growth and expected growth (the latter
266 assuming growth is constant through life and carrying capacity is fixed) derived from
267 phylodynamic data (Fig. 4c,i, Extended Data Fig. 7f). Taken together it thus emerges that
268 many clones grew more rapidly early in life compared with the rate in old age.
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270 Fig. 4: Evidence for clonal deceleration from single-cell phylogenies and longitudinal data. a,b. Effective
271 population size (Neff) trajectories inferred from single cell phylogenies in this paper (a) and in Mitchell et al*? (b).

272 Dotted lines represent parts of the trajectory with high variance (log(var(Neff)) > 5). c. Representation of biphasic
273 fit to Neff estimates and extrapolation from early growth (observed clone size is calculated as the clonal fraction
274 in the phylogeny scaled by an Neff of 200,000 HSC x yr; comparison with 1,000,000 HSC x yr in Extended Data
275 Fig. 7e). d. Ratio between observed and expected (extrapolated from early growth) clone size from phylogenies.
276 e. Representation of extrapolated trajectories derived from longitudinal data, assuming stable lifelong growth at
277 the same fixed rate we observed during older age; some projections are not feasible (ie. exceeding lifetime, with
278 onset pre-conception). f. Relationship between age and the observed growth rate of clones and VAF

279 (longitudinal data; light blue represents clones with projected onset within lifetime and golden represents those
280 exceeding lifetime). g. Quantification of unfeasible clones (exceeding lifetime) per gene (longitudinal data). h.
281 Representation of the calculation of minimum historical growth. i. Quantification of the ratios between observed
282 and historical (longitudinal data) and between late and expected (phylogenetic data) growth. j. Differences

283 between the median observed and historical growth per year for each gene. k. Projected ages at onset for all
284 clones, assuming stable lifelong growth at the same fixed rate we observed during older age.

285  Driver-specific differences in lifetime clonal behaviour

286 The effect of deceleration was most marked for clones bearing mutations in DNMT3A,
287 BRCC3 and TP53, whose early growth was at least twice as fast as that measured during old
288 age (Fig. 4i,j). Conversely, we observed almost no deceleration of fast-growing clones
289  harbouring U2AF1, SRSF2-P95H, PTPN11 or IDH1 mutations (Fig. 4i,). It is particularly
290 notable that the TET2-mutant clones were much less susceptible to deceleration than
291  DNMT3A-mutant clones (Fig. 4i-j). This is consistent with the observation that the prevalence
292  of TET2-mutant CH rises at older ages and eventually exceeds that of DNMT3A-mutant CH,
293  which is more prevalent at younger ages (Fig. 1d). A declining relative advantage of DNMT3A
294  mutations in older age was also suggested by the much lower proportion of DNMT3A mutant-
295 clones reaching detectable limits during our study period compared to clones bearing
296  mutations in other genes (“incipient clones”, Extended Data Fig. 9a).
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297 To derive representative ranges for age at clone onset for each driver gene, we capped
298 individual estimates at conception, thus avoiding estimates that projected beyond
299 individuals’ lifetimes (Fig. 4k, Extended Data Fig. 9b,c). We also validate this method using
300 simulations and confirm that these ranges are not affected by changes in Neff or generation

301 time (Extended Data Fig. 9d,e). We estimated that the average latency between clone
302 foundation and detection in peripheral blood at VAF=0.2% (Supplementary Note 1) was 30
303 years across all clones, with considerable variability between mutant genes, ranging from 38

304  years for DNMT3A-mutant clones to 12 years for U2AF7-mutant clones. Most drivers were

305 projected to initiate expansions of clones throughout life, compatible with the notion that
306 somatic mutations occur at a constant rate*®**%®, However, solutions for DNMT3A-mutant
307 clones concentrated earlier in life, consistent with early initiation and rapid expansion
308 followed by marked deceleration then slow growth, as discussed earlier. Of note, capping
309 onset at conception is arbitrary and it remains possible that some clones start later and
310  exhibit faster initial growth followed by even stronger deceleration, a scenario that would be
311 more consistent with published fitness estimates of 11-19%/yr based on cross-sectional VAF
312  measurements'?. In contrast, SRSF2-P95H and U2AF1 mutations initiated clonal expansion
313  always after 30 years of age and with a median age at onset of 58 and 57 years, respectively
314  (Fig. 4k). This indicates that the reported rarity of these mutant clones in people aged <60
315  years®®®is not due to slow growth over decades, but rather due to their late onset followed
316 by rapid expansion and also provides a plausible explanation for the high risk of leukaemic
317  progression associated with these mutations®*°.

318 CH dynamics and malignant progression

319  To investigate the links between mutation fithess and malignant progression, we built on our
320  previous study of AML risk prediction® and revealed that among CH driver genes a faster
321 growth rate was associated with a higher AML risk (adjusted R?=0.55, p=0.0037, Fig. 5a). For
322 example, genes driving fast CH growth like SRSF2 and U2AF1 were associated with the
323  highestrisks of leukaemogenesis, while slow-growing clones such as those bearing DNMT3A
324  mutations, conferred a lower risk. To confirm our findings in larger studies and include
325 myeloid malignancies other than AML, we analysed large published datasets of AML
326 (n=1540)*" and myelodysplastic syndromes (MDS, n=738)* using a site-specific extension of
327  the dNdScv algorithm to formally quantify the extent to which individual hotspots are under
328 the influence of positive selection in these cancers (Supplementary Tables 9,10)*. This
329 analysis revealed a positive correlation between each hotspot’s growth coefficient in CH and
330 its selection strength in myeloid cancer (Fig. 5b; adjusted R?=0.19, p=0.0016), corroborating
331 the AML risk analysis. Nevertheless, the observation that the same CH driver gene can
332  progress to either AML or MDS, with variable predilections as quantified by gene-level dN/dS
333  comparison (Extended Data Fig. 10; Supplementary Table 10), suggests that factors other
334  than growth rate can also influence a mutation’s malignant potential.

335
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336
337 Fig. 5: CH dynamics and progression to myeloid disease. a, Relationship between the growth rate associated
338 with each driver gene in CH, and the risk of AML progression associated with that driver gene. b, Relationship
339 between the growth rate associated with each recurrent mutation in CH, and the strength of selection of that
340 mutation in AML (circles) and MDS (triangles). In a and b genes/hotspots mentioned in the main text are
341 highlighted.

342 Discussion

343  The phenomenon of CH has served as an exemplar in the developing understanding of
344  somatic mutation, clonal selection and oncogenesis in human tissues**°. However, the nature
345  of these interrelated processes can change over time and their consequences develop only
346  slowly, making them difficult to investigate. Here, we studied the longitudinal behaviour of
347 CH over long periods (median 13 years) and combined this with lifelong phylodynamic
348 analyses of haematopoiesis to derive new insights into these fundamental biological
349  processes.

350 First, we found that most clones (92%) display stable exponential growth dynamics in older
351 age, at rates influenced by their driver mutations. This allowed us to predict future clonal
352 growth trajectories, a finding with potentially useful implications for clinical practice
353  (Extended Data Fig. 4e-g). Surprisingly, mutations in DNMT3A, reportedly the most common
354  CH driver gene®”’, were associated with slower clonal expansion than most other CH genes.
355 Also, DNMT3A hotspot mutations (e.g. at codon R882) were not associated with faster
356  growth than other DNMT3A mutations (Figure 2c). By contrast, TET2-mutant clones
357  expanded significantly faster over the study period (Fig. 2c) and, reflecting this, also reached
358  detectable levels much more frequently on-study than DNMT3A-mutant clones (Extended
359  Data Fig. 9a). This resulted in TET2 becoming the most prevalent CH driver after the age of
360 75 years (Figure 1d).

361  These initial findings suggested that, while clonal growth is remarkably stable in old age,
362  dynamics in earlier life may deviate from this behaviour, challenging the premise that mutation
363 fitness is constant over the human lifespan'™. To test this, we first attempted to derive when
364 individual CH clones were founded, using simple retrograde extrapolation of observed
365 trajectories. This led to projected ages at clonal foundation that preceded conception for a
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366 large number of clones (Fig. 4f,g), implying that their early growth must have been faster than
367 that we observed during old age. This was most striking for DNMT3A, for which more than
368 two thirds of projections were implausible (ie. onset pre-conception), but less common for
369  TET2 and very uncommon for splicing factor genes (Fig. 4g).

370 To further investigate lifelong clonal behaviour, we analysed haematopoietic phylogenies
371 from healthy old individuals and found that aged haematopoiesis was dominated by a small
372  number of expanded HSC clones, some of which lacked recognisable drivers®. Using
373  phylodynamic approaches to track clonal growth rates through life, in conjunction with
374  findings from our longitudinal cohort, we reveal widespread clonal deceleration prior to the
375 period of stable growth during old age, in the context of an increasingly competitive
376  oligoclonal HSC compartment (Fig. 4i). DNMT3A-mutant clones, as well as those bearing
377  mutations in TP53 and BRCC3 and also apparently driverless clones, were among those
378 displaying the most marked degree of deceleration (Fig. 4i). In contrast, TET2 mutations
379  appeared to drive more stable lifelong growth (Fig. 4h-j), which may underlie their apparent
380 ability to initiate clonal expansion fairly uniformly through life (Fig. 4k) and the fact that TET2
381  “overtakes” DNMT3A as the most common CH driver after the age of 75 years (Fig. 1d).

382  In diametric contrast to DNMT3A and unlike other genes, CH driven by mutant U2AF7 and
383  SRSF2-P95H only initiated late in life (Fig. 4k) and exhibited some of the fastest expansion
384 dynamics (Fig. 2c). These data were corroborated by phylogenetic analyses (Fig. 3b,f) and
385 tally with the sharp increase in prevalence of splice factor-mutant CH?, MDS**“*'" and
386 AML**?in old age and the high risk of progression to myeloid cancers associated with these
387  mutations®. The particular behaviour of these clones proposes a specific interaction with
388  ageing, which could relate to cell-intrinsic factors or to cell-extrinsic changes in the aging
389 haematopoietic niche that make it more suitable for HSCs harbouring splice factor
390 mutations**,

391 Finally, we explored the relationship between clonal growth rate in CH and the development
392  of myeloid cancers. We find that mutations associated with faster CH growth are also those
393 associated with higher risk of progression to AML (Fig. 5a) and are under the strongest
394  selective pressure in AML and MDS (Fig. 5b). Indeed, we show that the average annual
395  growth per gene explains over 50% of the variance in AML risk progression. This shows that
396 an improved understanding of growth dynamics in CH can help identify those at risk of
397  myeloid malignancies.

398  Collectively, our work gives new insights into the lifelong clonal dynamics of different
399  subtypes of CH, the impact of ageing on haematopoiesis, and the processes linking somatic
400 mutation, clonal expansion and malignant progression.

401

402 Methods

403 Study participants

404  Ethical permission for this study was granted by The East of England (Essex) Research Ethics
405 Committee (REC reference 15/EE/0327). The SardiNIA longitudinal study recruited individuals
406 from four towns in the Lanusei Valley in Sardinia, capturing 5 phases of sample and data
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407  collection over more than 20 years®. We analysed serial samples from 385 individuals in the
408  SardiNIA project.

409 Targeted sequencing and variant-calling

410  Target enrichment of genomic DNA was performed using a custom RNA bait set (Agilent
411  SureSelect ELID 3156971), designed complementary to 56 genes implicated in CH and
412  haematological malignancies (Supplementary Table 1). Libraries were sequenced on lllumina
413  HiSeq 2000 and variant-calling was performed as we described previously®*. Briefly, somatic
414  single-nucleotide variants and small indels were called using Shearwater (v.1.21.5), an
415  algorithm designed to detect subclonal mutations in deep sequencing experiments*. Two
416  additional variant-calling algorithms were applied to complement this approach: CaVEMan
417  (v.1.11.2) for single-nucleotide variants, and Pindel (v.2.2) for small indels*"*®. VAF correction
418 was performed using an in-house script (https://github.com/cancerit/vafCorrect). Finally,
419 allele counts at recurrent mutation hotspots were verified using an in-house script
420 (github.com/cancerit/allelecount). Variants were filtered as we described previously®*, but
421  were not curated with regard to existing notions of oncogenicity, ie. all somatic variants
422  passing quality filters were retained for analysis.

423 If a variant was identified in an individual at any time-point in the study, this site was re-
424  queried in the same individual at all other time-points, using an in-house script (cgpVAF) to
425  provide pileup (SNV) and Exonerate (indel) output (https://github.com/cancerit/vafCorrect).
426  No additional filters were applied to these back-called variants.

427  Selection analyses (dN/dS)

428  To quantify selection, we used the dNdScv algorithm, a maximum-likelihood implementation
429  of dN/dS, which measures the ratio of non-synonymous (N) to synonymous (S) mutations,
430  while controlling for gene sequence composition and variable substitution rates?®. We first
431 applied this method to the mutation calls from the longitudinal SardiNIA cohort in order to
432 identify which genes are under positive selection in the context of CH. For this analysis, any
433 mutation that was present in a single individual at multiple time-points was counted only
434  once.

435 To characterise patterns of selection in AML and MDS, we applied dNdScv to two published
436  data sets. The AML set was derived from 1540 patients enrolled in three prospective trials of
437  intensive therapy®. The MDS set included 738 patients with MDS or closely related
438 neoplasms such as chronic myelomonocytic leukaemia®. Both used deep targeted
439  sequencing of 111 cancer genes, which overlapped with 13 of the 17 genes of interest in our
440 longitudinal CH study (PPM1D, CTCF, GNB1 and BRCC3 were not sequenced in the
441  AML/MDS studies). We called and filtered variants in the 13 overlapping genes using the
442  strategy described above (under ‘Targeted sequencing and variant-calling’). Variants were
443 identified in all 13 genes in both AML and MDS datasets (Supplementary Table 10). We
444  calculated dN/dS values both at the level of individual genes, and at single-site level for
445  hotspots, the latter using the sitednds function in the dNdScv R package.

446  Hierarchical modelling of clone trajectories through time

447  We use Bayesian hierarchical modelling to model clonal trajectories. Since we are unable to
448 phase different mutations into specific clones and given that individual CH clones typically
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449  harbour a single mutation*®, we assume that each mutation is heterozygous and its VAF is
450 representative of the prevalence of a single clone. Accordingly, for a given individual j and
451 mutation i, we have a mutant clone c;;. We model the counts countscijfor c;jatagetasa
452  binomial distribution, such that countscij(t) ~ Bin(cov;(t),p;;(t)), with cov;; as the
453  coverage of this mutation at age ¢t and p;;(t) ~ Beta(a(t), B) as the expected proportion of
454  mutant allele copies. As such, countscij(t) ~ BB(cov;;(t), a(t), B). Here, B ~ N(uoa, 0pq) IS
455  the technical overdispersion whose parameters are estimated using replicate data (details
456  below) and a(t) = f—qT((?)’ where q(t) = ilogit((bgene; + bsite;+ be;;) xt + u;j). We use this
457  parameterization to guarantee that E[countsci].] = PijcoVij. bgene, ~ N(0,0.1) and bgjre, ~

Cij

458  N(0,0.1) are the gene and site growth effects for mutation i, respectively. bci]. ~ N(0,0.05) is

459 the growth effect associated exclusively with mutation i in individual j - i.e. of mutant clone
460 ¢ - and uyjis the offset accounting for the onset of different clones at different points in time.
461 We also define the growth effect of ¢;;as btotalij = (bgene; * bsite; + bucij)- Along this work we
462 will refer to byene, + bsite; @s the driver (growth) effect and to bci,- as the unknown-cause

463  (growth) effect - the fraction of growth that is quantifiable but not explained by either gene or
464  site.

465  Preventing identifiability issues and reducing uninformed estimates. To address possible
466 identifiability issues in our model, when a gene has a single mutation (JAK2-V617F and IDH2-
467 R140Q), the effect is considered to occur only at the site level. To avoid estimating the
468  dynamics of a site from a single individual, we only model b;;., when two or more individuals
469 have a missense mutation on site i - we refer to these sites as “recurrent sites”. Overall, we
470 consider a total of 17 genes and 39 recurrent sites (Supplementary Table 5).

471  Estimating and validating growth parameters. Using the model described above, we use
472  Markov Chain Monte Carlo (MCMC) with a Hamiltonian Monte Carlo (HMC) sampler with 150-
473 300 leapfrog steps as implemented in greta®. We sample for 5,000 iterations and discard the
474  initial 2,500 to get estimates for the distribution of our parameters. As such, our estimates for
475 each parameter are obtained considering their mean, median and 95% highest density
476  posterior interval for 2,500 samples.

477  We assess the goodness-of-fit using the number of outliers detected in any trajectory and
478  consider only trajectories with no outliers as being explained by our model and, as such,
479 growing at constant rate. Outliers are assessed by calculating the tail probabilities of the
480 counts under our model with a hard cut-off at 2.5%. As such, Pyuier =11if
481 P(counts | bgene;» bsitey be;p Uij, t) < 0.025 | P(counts | bgene;, bsite; be,;;» uij, t) > 0.975 and
482  P,,uier = 0 otherwise. We validate this approach using Wright-Fisher simulations
483  (Supplementary Methods). We additionally assess the predictive power of this model on an
484  additional time-point that was available for a subset of individuals and that was not used in
485  the inference of parameters in our model (Supplementary Methods).

Cij Cij

486  Estimating the technical overdispersion parameter. Technical VAF overdispersion used two
487  distinct sets of data:
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488 (1) Horizon Tru-Q-1 was serially diluted to VAFs of 0.05, 0.02, 0.01, 0.005 and 0 using
489 Horizon Tru-Q-0 (verified wild-type at these variant sites), then sequenced in duplicate
490 or triplicate;

491 (2) 19 SardiNIA samples with mutations across 15 genes at a range of VAFs, were
492 sequenced in triplicate.

493  Sample processing and analysis was performed as described in the “Targeted Sequencing
494  and Variant-calling” section. Replicate samples were picked from the same stock of DNA,
495  then library preparation and sequencing steps were performed in parallel. Variant calls for
496  these replicate samples are in Supplementary Table 11.

497  For (1), we model the distribution over the expected VAF as a beta distribution such that

498 VAF ~ Beta(a, B) and for (2) we adopt a model identical to the one described earlier in this

499  section but use only gene growth effects (countscij(t) ~ BB(cov;j(t),a(t),p), a(t) = f_qT((?),

500  q(t) = ilogit(bgene, *t + u;j)). Here, we model g ~ exp(r) with r as a variable with no prior.
501  We use MCMC with HMC sampling with 400-500 leapfrog-steps as implemented in greta®
502 to estimate the mean and standard deviation of 8. For this estimate we use 1,000 samples
503 from the posterior distribution.

504  Analysis of non-mutation factors as determinants of clonal growth rate

505 Inherited polymorphisms and JAK2-mutant clonal growth. The SardiNIA cohort had
506  previously been characterised using two lllumina custom arrays: the Cardio-MetaboChip and
507  the ImmunoChip®. Inherited genotypes at 12 loci previously associated with MPN risk were
508 extracted for the 12 individuals with JAK2-V617F mutation®®®. The relationship between each
509 individual’s total number of inherited risk alleles and JAK2-mutant clonal growth rate was
510 assessed by Pearson’s correlation. The 46/1 haplotype, which harbours 4 SNPs in complete
511 linkage disequilibrium, was considered as a single risk allele.

512  Age, sex and smoking experience. We assess the association between unknown-cause
513 growth and age through the calculation of a Pearson correlation considering all genes, both
514  together and separately while controlling for multiple testing. We also assess the association
515  between unknown-cause growth and sex and smoking history using a multivariate regression
516  where unknown-cause growth is the dependent variable and sex and previous smoking
517  experience are the covariates, while also controlling for age.

518 Determining the expected age at beginning of clone onset

519  We consider that HSC clones grow according to a Wright-Fisher model. According to this,
520 for an initial population of HSC n/2, we can consider two scenarios - that of a single growth

1
1 —)-
521 process where the time at which the cell first starts growing tyis described as ty = %,
total
522  orthat of a two step growth process, where tyadjusted = ty + 100 /brocar) _ , Where g is

btotal btotal
523 the number of generations per year. The latter scenario is the one chosen, due to its strong

524  theoretical foundation and previous application to mathematical modelling of cancer
525  evolution®'. The two regimes that describe it are an initial stochastic growth regime and, once
526 the clone reaches a sufficient population size, a deterministic growth regime. The adjustment
527 made to ty in tpadjusted can be interpreted as first estimating the age at which the clone
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lOg(g/btotal))
total

528 reached the deterministic growth phase (tp+ followed by subtracting the

1
btotal
530  we use the estimates based on ?° - n = 50,000 and g = 2. We validate this approach using

531 simulations (Supplementary Methods) and test the approach against our serial VAF data and
532  verify that changes in n and g do not have a dramatic impact on age at onset estimates by
533 considering a range of values (n = {70,000;50,000; 100,000; 200,000; 600,000} and g =
534 {1;2;5;10;13;20}).

529  expected time for a clone to overcome its stochastic growth phase ( ). For bothn and g

535 Derivation of blood colonies and phylogenetic tree construction

536  Sample preparation and sequencing. We selected 3 individuals with splicing gene mutations
537  from the SardiNIA cohort for detailed blood phylogenetic analysis. Peripheral blood samples
538  were drawn into Lithium-heparin tubes (vacutest, kima, 9ml) and buccal samples were taken
539 (Orangene DNA OG-250). Peripheral blood mononuclear cells were isolated from blood and
540 plated at 50,000 cells per ml in MethoCult 4034 (Stemcell Technologies). After 14 days in
541 culture, 96 single haematopoietic colonies were plucked per individual (total 288 colonies)
542  and lysed in 50pl of RLT lysis buffer (Qiagen).

543  Library preparation for whole genome sequencing (WGS) was performed using our low-input
544  pipeline as previously described®*. 150bp paired-end sequencing reads were generated
545  using the NovaSeq® 6000 platform to a mean sequencing depth of 15x per sample. Reads
546  were aligned to the human reference genome (NCBI build37) using BWA-MEM.

547  Variant-calling and filtering. Single-nucleotide variants (SNVs) and small indels were called
548  against an unmatched reference genome using the in-house pipelines CaVEMan and Pindel,
549  respectively*”*®, ‘Normal contamination of tumour’ was set to 0.05; otherwise standard
550 settings and filters were applied. For all mutations passing quality filters in at least one
551  sample, in-house software (cgpVAF, https://github.com/cancerit/vafCorrect) was used to
552  produce matrices of variant and normal reads at each mutant site for all colonies from that
553 individual. Copy-number aberrations and structural variants were identified using matched-
554  normal ASCAT** and BRASS (https://github.com/cancerit/BRASS). Low-coverage samples
555  (mean <4x) were excluded from downstream analysis (n=1, PD41305). Samples in which the
556  peak density of somatic mutation VAFs was lower than expected for heterozygous changes
557  (in practice VAF<0.4) were suspected to be contaminated or mixed colonies, and were also
558 excluded from further analysis (n=3, PD41305; n=9, PD41276; n=3, PD34493).

559  Multiple post-hoc filtering steps were then applied to remove germline mutations, recurrent
560 library prep / sequencing artefacts, and in vitro mutations, as described previously® and
561  detailed in custom R scripts (https://github.com/margaretefabre/Clonal_dynamics). Buccal
562 samples were used as an additional filter; mutations were removed if the variant:normal count
563 in the buccal sample was consistent with that expected for a germline mutation (0.5 for
564  autosomes and 0.95 for XY chromosomes, binomial probability >0.01), and were retained if
565 (i) the variant:normal count in the buccal sample was not consistent with germline (binomial
566  probability <1x10™) and (i) the mutation was not present in either of 2 large SNP databases
567 (1000 Genomes Project and Kaviar) with MAF > 0.001.

568  Phylogenetic tree construction and assignment of mutations back to the tree. These steps
569 were also performed as described previously”® and are detailed here:

18


https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.455048; this version posted August 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

570 https://github.com/margaretefabre/Clonal_dynamics. Briefly, samples were assigned a
571  genotype for each mutation site passing filtering steps (‘present’ = 22 variant reads and
572  probability > 0.05 that counts came from a somatic distribution; ‘absent’ = 0 variant reads and
573  depth =6; ‘unknown’ = neither ‘absent’ nor ‘present’ criteria met). A genotype matrix of shared

574  mutations was fed into the MPBoot program®®, which constructs a maximum parsimony

575  phylogenetic tree with bootstrap approximation. The in-house-developed R package treemut
576  (https://github.com/NickWilliamsSanger/treemut), which uses original count data and a
577 maximum likelihood approach, was then utilised to assign mutations back to individual
578  branches on the tree. Since individual edge length is influenced by the sensitivity of variant-
579 calling, lengths were scaled by 1/sensitivity, where sensitivity was estimated using the
580  proportion of germline variants called.

581 Reconstruction of population trajectories. Phylogenies were made ultrametric (branch lengths
582  normalised) using a bespoke R function (make.tree.ultrametric,
583  https://github.com/margaretefabre/Clonal_dynamics/my_functions). Assuming a constant
584  rate of mutation acquisition®®*%%, the time axis was scaled linearly, where the root of the tree
585 represents conception, and the tips represent age at sampling. We then analysed population
586  size trajectories by fitting Bayesian nonparametric phylodynamic reconstructions (BNPR) as
587  implemented in the phylodyn R package®* to clades - sets of samples in a phylogenetic tree
588  sharing a most recent common ancestor (MRCA) - defined by either having a driver mutation
589  onthe MRCA or a MRCA branch length that spans more than 10% of the tree depth and with
590 5 tips or more. We also estimated the lower and upper bounds for age at onset of clonal
591  expansion to be the limits of the branch containing the most recent common ancestor.

592 Deceleration in phylogenies and longitudinal data

593  We detect deceleration using two different approaches - the ratio between expected and
594  observed clone size using phylodynamic estimates and the ratios between observed and
595 historical (from longitudinal data) and between late and expected (from phylogenetic data),
596 respectively. To obtain the late growth rate we fit a biphasic log-linear model to our
597  phylodynamic estimation of Neff - this enables us to obtain an early and a late growth rate
598 (details in the Supplementary Methods).

599  Expected and observed clone size. The expected clone size is calculated by extrapolating
600 the early growth rate until the age of sampling; having this we can calculate the ratio between
601  expected and observed growth. The ratio between these quantities is then used as a measure
602  of deceleration (details in the Supplementary Methods).

603  Growth ratio in phylogenetic data. The late growth rate is defined as the late growth rate
604  defined in the previous section of the methods. The expected growth rate for the phylogenies
605 s calculated as the growth coefficient for a sigmoidal regression that assumes a population
606  size of 200,000 HSC as the carrying capacity. We then use the ratio between these quantities
607 as a measure of deceleration (1 implies no deceleration; <1 implies deceleration).

608  Growth ratio in longitudinal data. The observed growth rate is defined as the growth rate
609 inferred directly from the data. The minimal historical growth is the growth rate estimate
610  obtained by restricting clone initiation to a time after conception (age at at onset > -1).
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611  Associations between CH dynamics and (i) AML progression and (ii) selection in
612 MDS and AML

613  To calculate the association between CH dynamics and AML we used the risk coefficients
614  from our previous work in predicting the onset of AML®, which were calculated by fitting a
615  Cox-proportional hazards model that calculated the risk of AML onset associated with each
616  gene while controlling for age, sex and cohort, and estimate the coefficient of correlation
617  between the expected value of the annual growth for the posterior distribution of each gene
618  (considering gene, site and unknown-cause effects) and the AML progression risk.

619  The association between CH dynamics and selection in MDS and AML use the dN/dS values
620 calculated with dNdScv as previously described in the methods, using two distinct cohorts
621  from previous studies®*%. dN/dS values were calculated for all hotspots and their coefficient
622  of correlation with the expected value of the annual growth for the posterior distribution of
623 each hotspot (also considering gene, site and unknown-cause effects) was calculated.

624 Statistical analyses

625  All statistical analyses were conducted using the R software®” - MCMC models were fitted
626  using gret® and hypothesis testing, generalised linear models and maximum likelihood fits
627  were performed in base R.
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Extended Data Fig. 2: Mutation prevalence and selection in different genes. a, Observed-to-expected (dN/dS) ratios for the 17 genes with missense and/or truncating
mutations under positive selection (with g<0.1). The dashed line indicates a dN/dS value of 1, which represents neutrality (no selection). b, Waterfall plot showing the number
and distribution of mutations among participants. Each column represents 1 individual, and each row 1 gene. Coloured squares indicate the presence of a mutation with the
specific colour indicating the number of distinct mutations in that gene identified in that individual. For individuals with the same mutation identified at multiple serial time-
points, the serially-observed mutation is counted only once.

28


https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.455048; this version posted August 12, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv allcense to display tt;,e prepgnt |n,perpetU|ty Lgls

made available under aCC-BY-NC-ND 4.0 Internau&nalgjcense

TET?2

SJ n

p.V14

c.\.

D.

} 1y iR f ?\\\M\ e
- ' vo teslmestse 29 @W et
e s o oo 411‘3\.#1 éfbo“u\o$“ besde e [0oe de 00 e o 00, oo

6;
p.A744

SF3B1

—® <
©o > DNT
o >= o>

2
8

g

e

3

8

4

33

91

12

8

e

9]

3

8

2

< o
r

JAK2

urrence

PTPN%1

3 A

1es

1 U2AF1

| ©®
~——e paQis7

IDH2

@ DpRI140

N

13]
0
r

ASXL1

U .V LA & S i

. VAR /A =N TN WA
PPM1D )

: 22979

y S s

SRSF2
Vi

CTCF

53

1t 11

A

. GNB1,

———® pK57

1o

p.R132

?

@® Missense

O Synonymous
@® Inframe

@ Nonsense

O Frameshift

Mutation Type

29


https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.455048; this version posted August 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
806 made available under aCC-BY-NC-ND 4.0 International license.

807 Extended Data Fig. 3: Distribution of somatic mutations within driver genes (previous page). Lolliplots show
808 the longest protein isoform of each gene, with protein domains depicted by grey rectangles. Each circle represents
809 a somatic mutation. The vertical distance of the circle from the protein cartoon indicates its recurrence in the
810 cohort (quantified on the y-axis). Amino acid codons recurrently mutated (ie. observed in more than one individual)
811 in our cohort are explicitly labelled. Circle colours indicate the mutation type as per key. Non-truncating mutations
812 (missense, inframe, synonymous) are depicted above and truncating mutations (nonsense, frameshift) below the
813  protein cartoon.
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815 Extended Data Fig. 4: MocTealﬁng 8‘3 d%/namgcs :':n older age usﬁ]g t?me-ser{aes ?IAF data (previous page). a,

816 Representation of a Wright-Fisher simulation, showing two phases of clonal growth. The likelihood of a clone
817 transitioning from stochastic to deterministic growth is inversely proportional to the product of its fitness (f) and
818 the total number of stem cells (N). Clones with no fithess advantage (depicted in yellow) are unlikely to exceed
819 their drift thresholds and tend to disappear or remain undetectable. Fitter clones (depicted in red) are more likely
820 to reach deterministic growth. b, Association between the driver mutation effect used in the Wright-Fisher

821 simulations and the driver effect inferred using our model (R?= 0.92). ¢, Comparison of observed (golden) and
822 inferred (red) trajectories for all recurrently mutated sites. Grey bands represent 95% highest posterior density
823 intervals. d, Relationship between the number of mutations co-occurring within an individual and the proportion
824 of clones growing at a fixed rate over time. e, Association between VAF predicted by our model, and VAF observed
825 in additional prospectively-collected samples from 11 individuals with 15 CH driver mutations, not used to infer

826 clonal growth rate in our model. The dotted line is along the diagonal, depicting theoretical perfect agreement
827 between predicted and observed VAF. f,g, Example trajectories of clones with SF3B7-K666N (f) and SRSF2-P95H
828 (g) mutations. Points represent VAFs used in our model to fit the growth curve (train), and crosses represent
829 prospectively tested VAFs used (test), showing good agreement between predicted and observed VAFs. h,

830 lllustration of the determinants of growth in our model. Each mutant gene and/or site drives an expected rate of
831 clonal growth. In this example, Mutation A is expected to drive faster growth than Mutation B. The growth rates
832 of different clones bearing the same mutation, either in different individuals or in distinct clones within the same
833 individual, can differ. Some grow faster than expected from the identity of the driver mutation (eg. Individual 1

834 with Mutation A), and some grow slower (eg. Individual 2 with Mutation A). The residual term in our model, the
835 difference between observed and expected growth rate, is referred to as “unknown-cause growth”. i, Comparison
836 of growth rate associated with truncating vs non-truncating mutations in genes with both driver types. Points
837 above the dashed line show faster growth of truncating mutations, and points below show faster non-truncating
838  mutations.
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840 Extended Data Fig. 5: Differences in growth rate between individuals/clones with the same driver. a, For
841 each gene, we contrast the mean annual growth rate among individuals/clones bearing a mutation in that gene,

842 with the spread in this rate (defined here as the standard deviation of the unknown-cause (UC) growth). Circles
843 represent point estimates, with circle size indicating the number of clones bearing a mutation in that gene, and
844 lines representing the 90% confidence interval (Cl). For the standard deviation, the 90% CI was calculated

— 2
845  assuming that % ~ Chisq(n — 1), with n being the sample size, s the standard deviation estimate and g?the

846 true population variance. SRSF2-P95H mutations are plotted separately to other SRSF2 mutations, as they are
847 associated with significantly different growth dynamics. b, Relationship between number of inherited MPN risk
848 alleles and JAK2-mutant clonal growth rate. ¢, The number of mutations per individual in each gene is plotted.
849 Each data-point is a pie-chart, the size of which reflects the number of individuals. For each gene, given the
850 observed mutation prevalence in our cohort, the pie is fully light grey if the number of individuals we observed
851 with a specific number of mutations is the same as the number of individuals we expected by chance. The
852 presence of a white segment indicates that we found fewer individuals with that number of mutations, compared
853 to expected. The presence of a dark grey segment indicates that we found an excess of individuals with that
854 number of mutations. We estimate the expected number of mutations in each gene in each individual through
855 Monte Carlo estimation; assuming the prevalence of mutations in the cohort is uniform for each gene across

856 individuals, we simulate 1,000 scenarios where we randomly distribute these mutations given the number of
857 mutations in each individual. d, Association between sex and smoking history and the average UC effect for each
858 individual (n.s.). e, Association between age at study entry and the average UC effect for each individual (n.s.). f,

859 Association between age at mutation detection and UC effect for each TET2-mutant clone (Spearman’s rho =
860  0.31; p-value=2.33*10%).
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Extended data Fig. 7: Examples and consistency of clonal deceleration from simulations and real data. a,
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872 Supplementary Methods) for tﬁelr Sstimation across a range of c'ac?e Sizes and titriess effects. d, Quantification

873 of the association between true fitness values and inferred fitness values for three distinct methods of Neff
874 estimation. e, Schematic representation of all trajectories from Mitchell et al. and how extrapolating from the initial
875 growth rate leads to the overestimation of the observed clone size (here the observed clone size is obtained by
876 scaling the proportion of tips in a clade by a total Neff of either 200,000 or 1,000,000 HSC x yr). f, Quantification
877  of the deceleration effect from real data and simulations.
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Extended Data Fig. 8: Estimation of the true clone fithess from phylodynamic estimation. Three fits were
tested to estimate the true clone fitness from phylodynamic estimation of the population size and these estimates
were plotted as a function of the true fitness size (0.005, 0.010, 0.015, 0.020, 0.025 or 0.030). a, A log-linear fit;
b-c, A biphasic fit that estimates an early and a late growth rate and a change-point between both and d, a
sigmoidal fit. e, Coefficient of correlation (R2) for all four inferred coefficients. f, Root mean squared error (RMSE)
for all four inferred coefficients. In this figure red represents “low variance trajectories” (the average estimated
variance for the logarithm of the trajectory is under 5) and blue represents “all trajectories”.
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Extended Data Fig. 9: Age at clone detection and onset. a, Proportion of clones driven by different driver
mutations that were incipient on-study, ie. undetectable at time-point 1 and detectable by the end-of-study.
Absolute numbers are given above each bar. b, Relationship between age at onset and observed annual growth
rate, with 90% highest posterior density intervals (HPDI). The black line and grey shaded area represent the
theoretical limit of detection at 80 years of age. ¢, Violin plot showing the distribution of projected ages at onset
for all clones, assuming stable lifelong growth at the same fixed rate we observed during older age. d, Association
between the age at which clones appeared in the simulations and the age at clone foundation inferred using our
time-series data (R® = 0.75). Boxplots show that, while these estimates may have high variance, the distribution
of expected values is close to the true value. e, Sensitivity analysis depicting the median (dot) and the 95%
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899 Extended data Fig. 10: Selection in myeloid malignancies. a, Ratio between AML dN/dS and MDS dN/dS for

900 different genes and mutation types (missense, truncating). If this ratio is >1 there is a bias towards AML, if it is <1
901 there is a bias towards MDS. Confidence intervals for the ratios were calculated under the assumption that dN/dS
902  estimates are normally distributed.
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903 Supplementary Methods

904 Assessing the predictive performance of clonal growth predictions

905 Using an additional time-point (phase 6) available for 11 individuals with mutations in CBL
906 (c.2434+1G>A), DNMT3A (P385fs, R882H, W330X), GNB1 (K57E), JAK2 (V617F), PPM1D
907 (Q524X), SF3B1 (K666N, K700E, R625L), SRSF2 (P95H, P95L), TET2 (Q1542X) and U2AF1
908 (Q157P, Q157R). Using the model described in the “Hierarchical modelling of clone
909 trajectories through time” section of the Methods and conditioning on the previous
910 timepoints, we predict the additional time-point and assess the predictive performance
911  through the mean absolute error (MAE) to the true VAF value.

912 Validating the dynamic coefficient and age at onset inference with Wright-Fisher
913 simulations

914  We use Wright-Fisher simulations'? with a fixed population of 200,000 cells and 50 possible
915  drivers, a range of fitness advantages (0.007 — 0.030) and a range of mutation rates (7.0 *
916 10 ~9-4.0+10 ~9). These ranges were estimated to cover the values inferred and
917  mentioned in considering that one should expect there to be approximately 13 generations
918  of HSC per year and a population size of 200,000 HSC “.

919  To simulate the conditions under which the experimental data was obtained, we fit Gamma
920  distributions to the observed coverage and observed age at first time-point truncated at the
921 minimum and maximum values for each. For each simulation we sample from these
922  distributions the first timepoint, a random number of subsequent timepoints (between 2 and
923  4)from a uniform distribution and the coverage for each driver at each timepoint. We simulate
924  the sequencing process as drawing samples from a beta-binomial distribution parameterized
925 similarly to the one described in the “Hierarchical modelling of clone trajectories through
926 time” section of the Methods, where the probability is the proportion of cells from a specific

927  clone present at a given time-point. More concretely, counts ~ BB(%,/_?, cov), where p is

928 the allele frequency of a mutation, Sis the technical overdispersion parameter and cov is the
929 coverage which is sampled from the coverage distribution as inferred from our data.

930 To infer coefficients under this setting we converted generations to years (13 generations per
931 year) and used the framework described in the previous sections to infer these coefficients.
932 Since the nature of these mutations does not consider different levels of genetic resolution,

933 we had to modify the driver coefficient to driver effect ~ N(0,Y2*0.1%)so that the
934  distribution from which this coefficient is being drawn has the one we consider for the driver
935 effect considering a gene, domain and site effect. The observed coefficients are converted
936 toyear as coefficients = (1 + fitness)Jd — 1, where g is the number of generations per year,
937 and we assess the fit between inferred and observed coefficients considering these values.
938 We additionally calculate the age at clone foundation for the inferred coefficients and, using
939 these simulations which allow us to know the true age at clone foundation, we assess the fit
940 between inferred and observed ages at clone foundation.

941  To better understand the impact that population size and generation times have on these
942  simulations, we conduct the same analysis considering two additional scenarios: a
943  population size of 100,000 HSC and 5 generations per year, and a population size of 50,000
944  HSC and 1 generation per year.

945  Finally, we also calculate the age at onset as specified in the “Determining the expected age
946  at beginning of clone onset”. To do this, we assume that these clones follow a Wright-Fisher
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947  process, where growth can be separated into two distinct phases which depend on the size

948  of the clone - a stochastic phase, where the clone is too small and during which growth
949  happens linearly, and a deterministic phase, during which growth is approximately

950 exponential (Extended Data Fig. 4a). According to this growth regime, the age at onset can
log(g/btotal ) 1

btotal btotal

951 be calculated as t; adjusted =ty + , Where t, is the age at onset if the

log(g/btotar ) .
— IS

952  clone grew exponentially (as opposed to following a Wright-Fisher process), 5
total

1

953 the time at which the clone started to grow deterministically and is the expected time

btotai

954  the clone spends following a stochastic growth regime. We assess the validity of this
955  approach by calculating the coefficient of correlation between inferred and true ages at onset
956 from the simulations.

957 Validating annual growth rate inferences from single-cell phylogenies with
958  Wright-Fisher simulations

959  We use Wright-Fisher simulations ?* with 50 possible drivers and test a range of different
960 fitness advantages ([0.005,0.010,0.015,0.020,0.025,0.030]) over 800 generations at a fixed
961 population size of 200,000 HSC. For each fitness effect we define a driver mutation rate
962 (20010 —°50x10 220+10 ~°,15x10 98x10 95x10 ~°], respectively) that
963 guarantees that at least a few simulations lead to clones which expand to sufficient sizes and
964 avoid many competing expansions and keep the passenger mutation rate constant (2 *
965 10 ~°). For each simulation we infer phylogenetic trees by sampling 100 representative
966 clones from our population and using a neighbour-joining algorithm based on mutation
967 presence. The representative sampling is done by defining for each clone a probability of
968  being sampled that is equivalent to its proportion in the population. We then detect the clades
969 that contain drivers, isolate them and infer their effective population size (Neff) trajectory using
970 BNPR °®%

971 We fit different models to the inferred Neff trajectories, namely:

972 1. Alog-linear fit (assumes exponential growth);

973 2. A scaled and shifted sigmoidal fit (assumes that growth saturates based on the Neff
974 trajectory);

975 3. A shifted sigmoidal fit (assumes that growth saturates at 1 and that the most recent
976 Neff estimate corresponds to the proportion of tips in the clade);

977 4. A biphasic log-linear fit (assumes that growth is exponential and has two distinct
978 coefficients corresponding to early and late growth; the boundary between early and
979 late growth - otherwise referred to as the changepoint between both - is also fitted
980 with the other parameters and is constrained to lie in the central part of the trajectory:
981 for the time t over which the clone expands, the changepoint cannot be inferior to
982 min(t) + 0.25 * range(t) nor superior to max(t) — 0.25 * range(t), where range(t) =
983 max(t) — min(t). This constraint prevents fits that are too close to the clonal inception
984 or to the clone at later stages).

985 We compare these models by assessing how closely they are able to recapitulate the original
986 fitness in the simulations. To do so, we calculate their coefficient of determination and root
987 mean squared error. We also visually assess how similar these trajectories are to the true
988  driver trajectories as reconstructed from simulations - to match clones from a Wright-Fisher
989  simulation to an expansion in a phylogenetic tree we assign each clone from the Wright-
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990 Fisher simulation to its nearest clone in a phylogenetic tree using the Hamming distance

991 between the mutations in each clone.

992  We additionally estimate the effective population size using two other methods for validation
993 - mcmec.popsize and skyline from the ape package ” in R . This allows us to confirm our
994  observations that stem from phylodynamic estimations and that concern, mostly, a prevalent
995  effect of clonal deceleration which is detailed in the main text and in the following section.

996 Detecting deceleration in single-cell phylogenies and longitudinal data

997  We infer the presence of deceleration in both single-cell phylogenies and longitudinal data.
998 To do this, we use two distinct methods: calculating the ratio between the expected and
999  observed VAF and calculating deceleration using growth rates.

1000  For the first method - calculating the ratio between expected and observed VAF - we use the
1001  value for the early growth from the changepoint log-linear fit described in “Validating annual
1002 growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” and
1003 extrapolate the Neff to the age at sampling. By doing so we get the expected clone fraction
1004 if growth had not changed during the Neff trajectory. We also calculated the observed clone
1005 fraction as the fraction of tips in the clade. To get the expected clone fraction from Neff we
1006  divide Neff by the inferred population size in Lee-Six et. al (200,000 HSC) . We then calculate
1007  the ratio between the expected and observed clone size - if this ratio is close to 1 this implies
1008 little to no changes in dynamics, whereas a ratio above 1 implies deceleration and a ratio
1009  below 1 implies acceleration.

1010  For the second method - calculating deceleration using growth rates - we define two distinct
1011 quantities for both single-cell phylogenies/longitudinal data - expected/observed growth,
1012  corresponding to the growth rate of each clone during observation at old age, and
1013  early/minimal historical growth, corresponding to the growth rate of each clone at an earlier
1014  stage of clonal dynamics - and calculate the ratio between them.

1015  As such, for phylogenies we first calculate the Neff trajectory for each clade using BNPR *.
1016  Next, and using their Neff trajectory, we calculate their expected growth rate by assuming a
1017  sigmoidal growth. We additionally assume that the final Neff (Neff at sampling) estimate
1018  corresponds to the fraction of tips in the clade and we scale our data accordingly such that
1019 1 corresponds to the maximum Neff and the fraction of tips in the clade corresponds to Neff
1020 at sampling. Thirdly and using the changepoint log-linear fit described in “Validating annual
1021  growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” we derive
1022  the value for early growth. Finally, as a measure of deceleration, we calculate the ratio
1023  between expected and early growth - a value close to 1 for this ratio implies an absence of
1024  deceleration whereas smaller values imply deceleration.

1025  For the longitudinal data we use the observed growth for each clone as described in
1026  “Hierarchical modelling of clone trajectories through time”. Next, we calculate the (minimal)
1027  historical growth as the growth that excludes all posterior samples that would lead to age at
1028 onset estimates exceeding lifetime (ages at onset for clones below -1, a heuristic value
1029 chosen to represent developmental onset of clones). Finally and as a measure of
1030  deceleration, we calculate the ratio between observed and historical growth. The
1031 interpretation for this ratio is similar to that defined in the previous paragraph for phylogenetic
1032 data - a value of 1 implies an absence of detectable deceleration, whereas smaller values
1033  represent the minimal amount of deceleration. This method has, however a caveat - due to
1034 the nature of this calculation (excluding posterior samples which are too slow to provide
1035  solutions within lifetime), values above 1 (indicating acceleration) are technically impossible.
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Supplementary Notes

Supplementary Note 1 - Determining the effect of repeated sampling
on the theoretical limit of detection

Across this work we sequence individuals a median of three times across their lifetime. We
define a detection threshold of 0.5% VAF as the minimum clone size for detection on
individual timepoints, but the repeated sampling leads to 0.5% VAF being an
overestimation of the actual limit of detection (LOD) - the size at which clones become
detectable.

To show this, we simulate the repeated sampling of variants existing at a true clone
proportion between 0 and 2%. We use this proportion p as the probability parameter in a
beta binomial distribution, the overdispersion § calculated using technical replicates as the
overdispersion in the same beta binomial distribution and a coverage of 1000. Having fully

parameterized this distribution (counts ~ BB (%, B, 1000)) we sample counts from it

between 1 to 5 times. For each combination of clone size and number of samples we
perform 1,000 realisations and calculate the number of detected clones at a threshold of
0.5%. This allows us to assess the fraction of clones with a specific size which are detected
if we sample them multiple times - in other words, are able to assess the detection rate for
different clone sizes and different numbers of samples.

With this, we show that, at a threshold of 0.5% and sampling only once, we detect 14.8%
of all clones existing at 0.5% (Supplementary Notes Fig. 1). However, repeating this
sampling 3 and 5 times leads to the detection of approximately 37.7% and 54.3% of all
clones existing at 0.5%, respectively. As such, under regular conditions - a single sample -
we would detect 13.5% of all clones present at 0.5% with a detection threshold of 0.5%.
The question we should now ask is: what is the smallest possible clone size we detect at
the same rate of detection - 13.5% - if we increase the number of samples? Using the
same set of simulations, we can calculate the likely minimal size of the detected clones,
summarised in Supplementary Notes Table 1, with clones as small as 0.21% and 0.14%
being detected with 3 and 5 samples, respectively, using the same detection rate. As such,
when considering the theoretical LOD used in Figure 4k, we avoided using 0.5% which, as
we show, would be at least twice as high as the theoretical LOD obtained from simulations.
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1066
1067 Supplementary Notes Fig. 1 - Fraction of detected clones upon repeated samples/timepoints at a detection
1068  threshold of 0.5%.

1069  Supplementary Notes Table 1 - The minimal size of detected clones using a 0.5% threshold and assuming
1070 that we are interested in detecting the same fraction of clones we would detect with a single sample at a
1071 detection threshold of 0.5%.

Number of samples Minimal size of detected clones at 15.08%
1 0.50%
2 0.30%
3 0.21%
4 0.16%
5 0.14%

1072
1073 Supplementary references

1074 1. Gillespie, John H. Population Genetics: a Concise Guide. Baltimore, Md: The
1075 Johns Hopkins University Press (1998).

1076 2. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLoS
1077 Comput. Biol. 3, €225 (2007).

1078 3. Beerenwinkel, N. & Gerstung, M. clonex. (Github). https://github.com/gerstung-
1079 lab/clonex

1080 4. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal
1081 hematopoiesis. Science (2020) doi:10.1126/science.aay9333.

45


https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.455048; this version posted August 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

1082
1083
1084
1085
1086
1087
1088
1089
1090

5.

6.

made available under aCC-BY-NC-ND 4.0 International license.

Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for
phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96-100 (2017).

Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient
Bayesian inference framework for coalescent-based nonparametric phylodynamics.
Bioinformatics 31, 3282-3289 (2015).

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics 35, 526-528 (2019).

Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic
mutations. Nature 561, 473-478 (2018).

46


https://doi.org/10.1101/2021.08.12.455048
http://creativecommons.org/licenses/by-nc-nd/4.0/

