

1 The longitudinal dynamics and natural history of clonal haematopoiesis

2 Margarete A. Fabre^{1,2,3*}, José Guilherme de Almeida^{4*}, Edoardo Fiorillo⁵, Emily Mitchell^{1,2,3},
3 Aristi Damaskou^{2,3}, Justyna Rak^{2,3}, Valeria Orrù⁵, Michele Marongiu⁵, MS Vijayabaskar²,
4 Joanna Baxter⁶, Claire Hardy¹, Federico Abascal¹, Michael Spencer Chapman^{1,2,3}, Nicholas
5 Williams^{1,2}, Jyoti Nangalia^{1,2,3}, Iñigo Martincorena¹, Peter J. Campbell^{1,2}, Eoin F. McKinney⁷,
6 Francesco Cucca^{5,8}, Moritz Gerstung^{4†}, George S. Vassiliou^{1,2,3†}.

7 1. Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
8 2. Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
9 3. Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK.
10 4. European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
11 5. Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
12 6. Cambridge Blood and Stem Cell Biobank, Department of Haematology, University of Cambridge, Cambridge, CB2
13 OAW, UK
14 7. Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, CB2
15 OAW, UK
16 8. Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
17

18 * These authors contributed equally to the work

19 †Correspondence: gsv20@cam.ac.uk and moritz.gerstung@ebi.ac.uk

20 **Summary**

21 Human cells acquire somatic mutations throughout life, some of which can drive clonal
22 expansion. Such expansions are frequent in the haematopoietic system of healthy individuals
23 and have been termed clonal haematopoiesis (CH). While CH predisposes to myeloid
24 neoplasia and other diseases, we have limited understanding of how and when CH develops,
25 what factors govern its behaviour, how it interacts with ageing and how these variables relate
26 to malignant progression. Here, we track 697 CH clones from 385 individuals aged 55 or
27 older over a median of 13 years. We find that 92.4% of clones expanded at a stable
28 exponential rate over the study period, with different mutations driving substantially different
29 growth rates, ranging from 5% (*DNMT3A*, *TP53*) to over 50%/yr (*SRSF2-P95H*). Growth rates
30 of clones with the same mutation differed by approximately +/-5%/yr, proportionately
31 impacting “slow” drivers more substantially. By combining our time-series data with
32 phylogenetic analysis of 1,731 whole genome-sequenced haematopoietic colonies from 7
33 older individuals, we reveal distinct patterns of lifelong clonal behaviour. *DNMT3A*-mutant
34 clones preferentially expanded early in life and displayed slower growth in old age, in the
35 context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene
36 mutations only drove expansion later in life, while growth of *TET2*-mutant clones showed
37 minimal age-dependency. Finally, we show that mutations driving faster clonal growth carry
38 a higher risk of malignant progression. Our findings characterise the lifelong natural history
39 of CH and give fundamental insights into the interactions between somatic mutation, ageing
40 and clonal selection.

41 **Introduction**

42 Human haematopoiesis produces hundreds of billions of specialized blood cells every day,
43 through a hierarchy of progressively more differentiated and numerous cells originating from
44 a pool of long-lived haematopoietic stem cells (HSCs). Haematopoiesis remains highly
45 efficient for decades, but is inevitably challenged by the phthisic effects of ageing¹⁻³ and the
46 inexorable acquisition of somatic DNA mutations⁴. Mutations that augment HSC “fitness” can
47 drive clonal expansion of a mutant HSC and its progeny, a phenomenon known as clonal
48 haematopoiesis (CH)⁵⁻⁸. CH becomes ubiquitous with advancing age and is associated with
49 an increased risk of myeloid leukaemias and some non-haematological diseases^{5-7,9-11}.

50 The observation that CH-associated mutations affect a very restricted set of genes that are
51 also frequently mutated in leukaemia - most commonly those involved in epigenetic
52 regulation (*DNMT3A*, *TET2* and *ASXL1*), splicing (*SF3B1* and *SRSF2*) and apoptosis (*TP53*
53 and *PPM1D*)⁵⁻⁸ - implies that these mutations inherently confer fitness to HSCs. In fact, recent
54 evolutionary models propose that each specific mutation carries a fixed fitness advantage,
55 and that this explains the relative proportions and clonal sizes of CH driven by different driver
56 mutations¹². However, several observations suggest that non-mutation factors are also
57 influential. For example, a handful of CH cases studied at two time-points propose that the
58 clones driven by the same or very similar mutations can behave differently between
59 individuals^{11,13}. Also, the relative prevalence of different CH-driver gene mutations changes
60 significantly depending on context; for example, in aplastic anaemia CH is commonly driven
61 by mutations that enhance immune evasion¹⁴⁻¹⁷, whereas genotoxic stress favours clones
62 with mutations in DNA damage genes¹⁸⁻²⁰. Furthermore, factors like inflammation²¹ and
63 heritable genetic variation²²⁻²⁴ can affect CH emergence.

64 A major limitation to our understanding of the determinants of CH behaviour/fate to date has
65 been its reliance on cross-sectional studies capturing CH at single time-points. Here, by
66 tracking blood cell clones over long periods of time in a large cohort, and by reconstructing
67 haematopoietic phylogenies, we uncover the lifelong dynamics and natural history of CH.

68 **Results**

69 **The age-dependent mutational landscape of CH**

70 We analysed 1,593 blood DNA samples from 385 adults aged 54-93 years at the time of entry
71 into the SardiNIA longitudinal study²⁵. The participants, who had no history of haematological
72 malignancy, were sampled up to 5 times (median 4) over 3.2-16 years (median 12.9 years)
73 (Figure 1a, Extended Data Figure 1a-c). We performed deep targeted sequencing (mean
74 1,065x) of 56 genes associated with CH and haematological malignancy (Supplementary
75 Table 1) and identified somatic mutations in 52 genes (Supplementary Table 2). Using the
76 dNdScv algorithm, an implementation of dN/dS that corrects for trinucleotide mutation rates,
77 sequence composition, and variable mutation rates across genes, we identified positive
78 selection of missense and/or truncating variants in 17 of these genes (dN/dS ratio>1 with
79 q<0.1) (Supplementary Table 3, Extended Data Figs. 2,3)²⁶. We focussed on these genes for
80 further analysis.

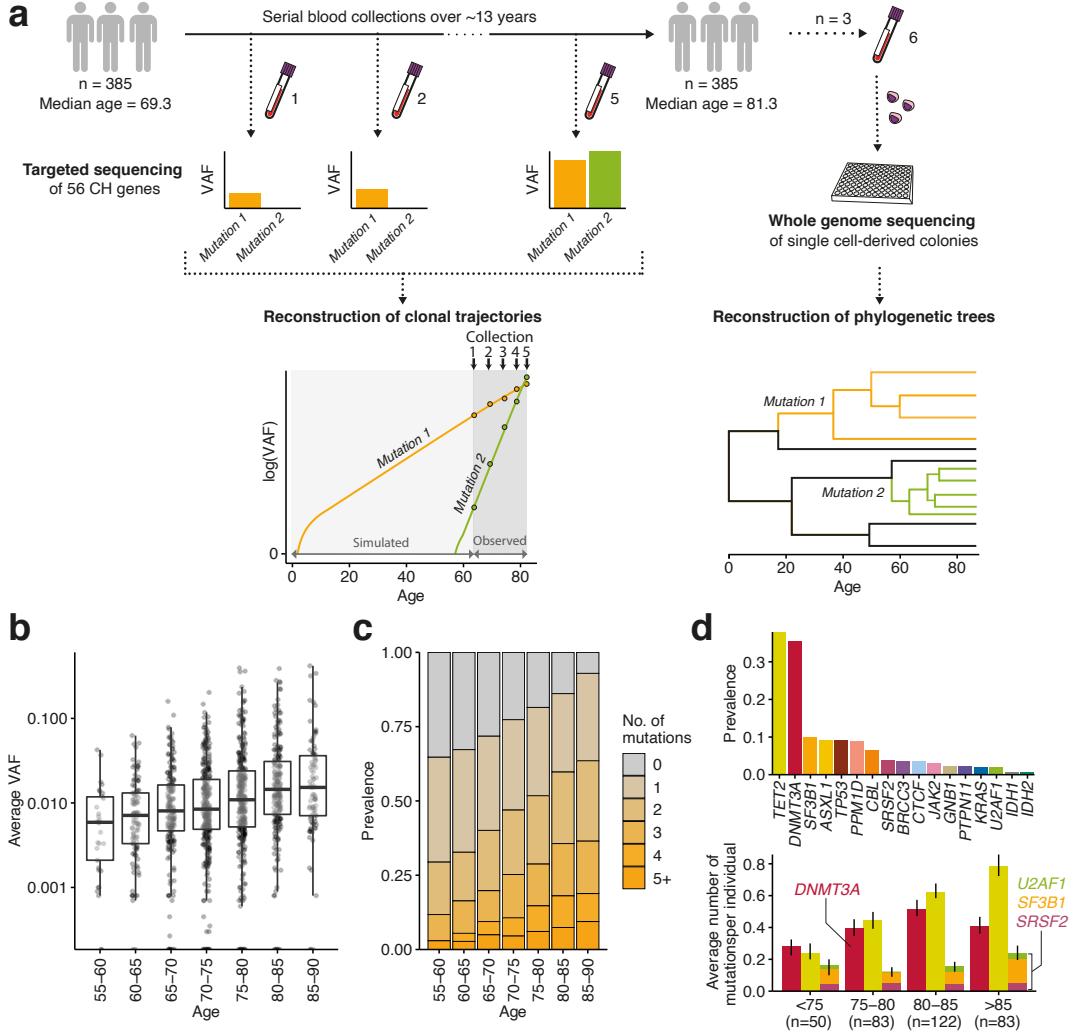


Fig. 1: Experimental workflow and CH mutation characteristics. **a**, Study outline: 1,593 blood DNA samples were obtained from 385 elderly individuals sampled 2-5 times (median 4) over 3.2-16 years (median 12.9) and sequenced for mutations in 56 CH genes. Measured variant allele fractions (VAFs) were used to (i) fit observed clonal trajectories, and (ii) extrapolate the clonal dynamics prior to the period of observation. Additional blood samples from 3 selected individuals were used to generate 288 (3x96) whole-genome sequenced single cell-derived colonies for phylogeny reconstructions. **b**, Age distribution of average VAF per individual. **c**, Age-stratified prevalence of the number of mutations per individual. **d**, Prevalence of mutations in driver genes: upper panel shows absolute prevalence in the cohort; lower panel shows average number of mutations per individual in *DNMT3A*, *TET2* and splicing genes (*SF3B1*, *SRSF2*, *U2AF1*) at different ages.

81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

At least one somatic non-synonymous mutation was identified in 305 of 385 individuals (79.2%), with CH prevalence, average clone size and number of mutations per individual increasing with advancing age, and CH identified in >90% of those aged 85 years or older (Fig. 1b,c). Mutations were most common in epigenetic regulator genes *TET2* and *DNMT3A*, and also frequent in *ASXL1*, *TP53*, *PPM1D* and spliceosome genes (Fig. 1d, upper panel). Interestingly, in this elderly cohort, advancing age impacted the prevalence of different driver mutations in a gene-dependent manner (Fig. 1d, lower panel). In particular, the prevalence of *DNMT3A* mutations showed no significant relationship with age overall ($p=0.12$, binomial regression of prevalence vs age, controlling for sex), whilst *TET2* mutations showed a

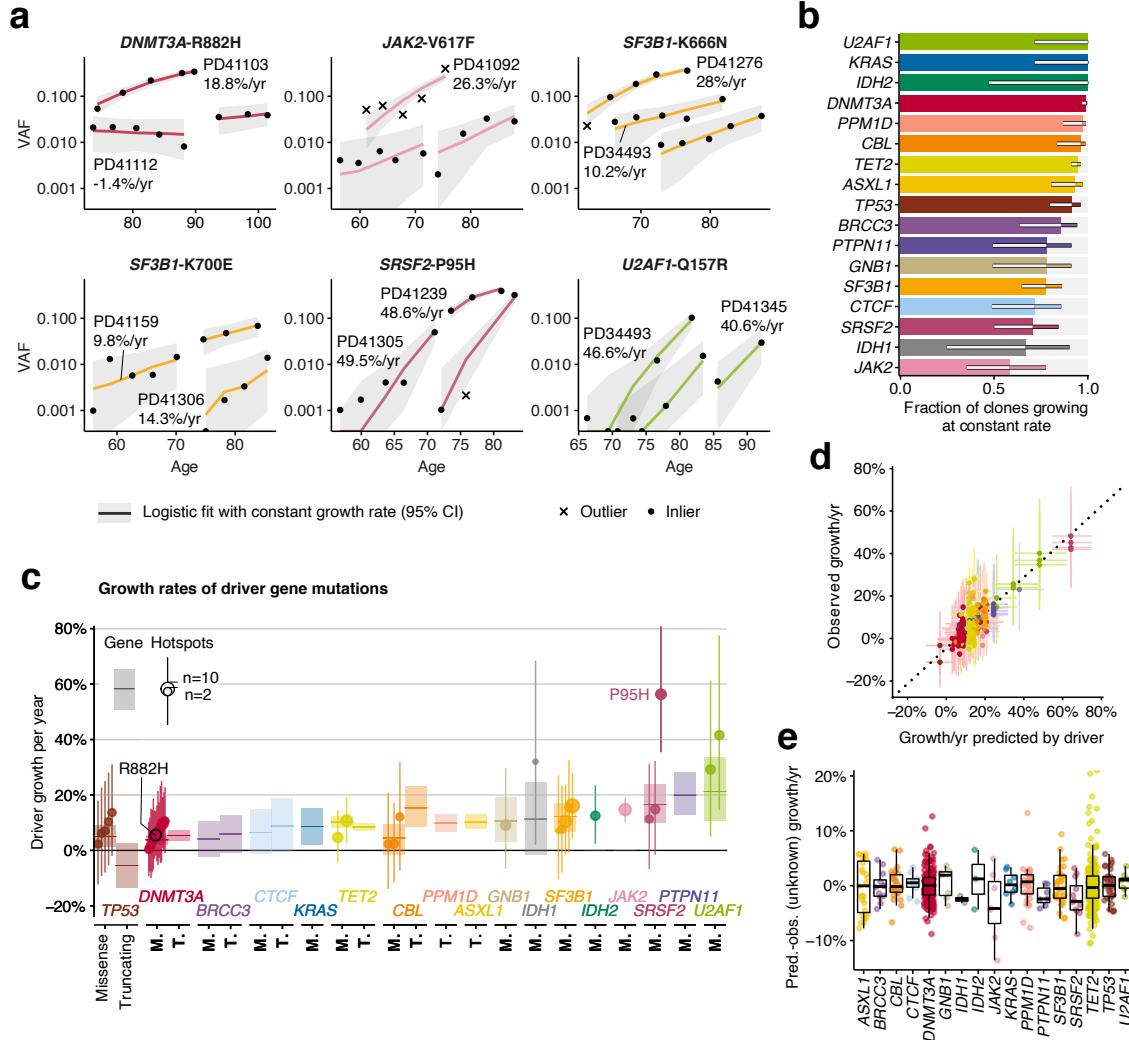
101 consistent rise with age, averaging at 6.8%/yr ($p=0.00037$), as did mutations in splicing genes
102 (*U2AF1*, *SRSF2* and *SF3B1*), whose prevalence increased by 5.4%/yr ($p=0.025$).

103

104 **Most clones expand steadily during older age**

105 To investigate clonal behaviour over time, we used serial Variant Allele Fraction (VAF; the
106 fraction of sequencing reads reporting a mutation) measurements as a surrogate for clone
107 size, and fitted a saturating (logistic) exponential curve with a constant growth rate over time
108 to each clonal trajectory. Such logistic growth behaviour is supported by simulations of
109 evolutionary dynamics using Wright-Fisher models with constant fitness (Extended Data Fig.
110 4a-b)²⁷. Remarkably, by assessing the fit between serial VAF measurements and the
111 trajectories inferred by our model, we find that the great majority of clones (92.4%) expanded
112 at a constant exponential rate over the study period (Fig. 2a,b, Extended Data Fig. 4c). The
113 predominance of fixed-rate growth was particularly striking for genes like *DNMT3A* and *TET2*,
114 for which 99% and 94.3% of clones, respectively, grew steadily over time. Nevertheless,
115 some clones behaved unpredictably, with proportions varying by mutant gene. Most notable
116 were *JAK2*-V617F-mutant clones, for which growth trajectories were particularly erratic, with
117 only 58% displaying stable growth. The likelihood of mutant clones displaying non-constant
118 growth at older age was not related to the number of mutations in the same individual
119 ($p=0.68$; Extended Data Fig. 4d).

120 We further assessed the consistency of clonal trajectories by testing our ability to predict
121 future clonal growth. Using additional prospectively-obtained blood samples from 11
122 individuals, we compared observed versus predicted VAFs (Extended Data Fig. 4e-g,
123 Supplementary Table 4) and found good concordance (mean absolute error: 3.5%),
124 corroborating our model and providing further evidence that fixed-rate growth is the norm in
125 old age.



126
127 **Fig. 2: The longitudinal dynamics of CH in older age.** **a**, Examples of fitted exponential growth of clones with
128 mutations at 6 common hotspots. Grey bands represent the 95% highest posterior density interval (HPDI). Each
129 data point is represented by a dot if it conforms to our model of fixed-rate exponential growth and by a cross
130 otherwise (outlier, defined as tail probability less than 2.5%). **b**, Proportion of clonal trajectories showing fixed-
131 rate exponential growth, ie. those with no outlying data-points as defined in (a), with 90% confidence intervals. **c**,
132 Annual clonal growth associated with different driver mutations, for both whole genes and specific mutation sites.
133 For gene-wise growth, truncating and missense mutations are modelled separately for genes where both are
134 enriched. Sites are modelled separately to gene if mutated recurrently within our cohort. Point estimates for growth
135 and 90% HDPI are represented for each site (dot and line, respectively, with dot size proportional recurrence) and
136 each gene (horizontal line and rectangle, respectively). **d**, Relationship between clonal growth predicted by the
137 identity of the driver mutation and actual observed growth, with 90% HDPI represented by vertical and horizontal
138 lines, respectively. Vertical spread thereby captures differences in growth rate between clones bearing the same
139 driver mutation. Clones growing faster than predicted lie above the dashed line, and slower clones lie below. **e**,
140 Distribution of the unknown-cause effect for different genes. Each point represents a single clone and boxplots
141 represent the distribution of these effects for each gene. The value of unknown-cause growth is *positive* for clones
142 growing faster than expected by the identity of the driver mutation, and *negative* for clones growing slower than
143 expected.

144 Determinants of clonal growth rate

145 To delineate the factors that determine each clone's growth rate, our logistic regression
146 model fits the following contributions of the driver mutation: i) mutated gene; ii) specific amino
147 acid change (for recurrently mutated sites) and iii) mutation type (truncating versus non-
148 truncating) (Supplementary Table 5). An additional component in our model, measuring

149 variation not captured by (i-iii), was also used and termed “unknown-cause growth”
150 (Extended Data Fig. 4h).

151 We found that clones bearing mutations in different genes expanded at different rates, with
152 mutations affecting *DNMT3A* and *TP53* displaying the slowest average annual growth rates
153 of ~5% (Fig. 2c, Supplementary Table 6). Clones with mutations in the other most common
154 driver genes (*TET2*, *ASXL1*, *PPM1D* and *SF3B1*), expanded at roughly twice this rate, i.e.
155 ~10%/yr. The most rapidly expanding clones were those carrying mutations in *SRSF2*,
156 *PTPN11* and *U2AF1*, growing at over 15-20%/yr on average. The only specific mutation
157 displaying distinctive behaviour was *SRSF2*-P95H, which was associated with significantly
158 faster expansion compared to other *SRSF2* mutations. By contrast, all other hotspot
159 mutations drove growth at rates similar to mutations elsewhere in the same gene, including
160 commonly mutated sites such as *DNMT3A*-R882, *SF3B1*-K666N and *SF3B1*-K700E.

161 For most genes, truncating and missense mutations drove comparable rates of growth.
162 Exceptions were *TP53*, where missense grew 10%/yr (90% CI=[3-18%]) faster than
163 truncating mutations (which usually did not expand or even contracted) and *CBL*, where
164 missense grew 11%/yr (90% CI=[3-19%]) slower than truncating mutations (Fig. 2c,
165 Extended Data Fig. 4i, Supplementary Table 6).

166 To quantify the impact of factors other than driver mutations, we compared the observed
167 growth rate of each clone with that predicted by the mutation (Fig. 2d). In Figure 2d, vertical
168 spread thereby represents the variability in growth rate between distinct clones with the same
169 driver mutation. On average, this unknown-cause growth contributed approximately +/-
170 5%/yr to clonal expansion (Fig. 2e). Consequently, for fast-growing clones, including those
171 associated with *SRSF2*-P95H or mutant *U2AF1*, this effect was proportionately small and
172 there was relatively little inter-individual variability in growth rate. By contrast, the impact on
173 “slow” drivers, such as *DNMT3A*, was more substantial, with some clones growing twice as
174 fast as predicted by the mutation, and others showing negligible expansion. Clones
175 harbouring *JAK2*-V617F mutations were an exception as they displayed an unusually high
176 degree of inter-individual variability in relation to average growth rate (Fig. 2d,e, Extended
177 Data Fig. 5a). In view of the well-described heritable contribution to myeloproliferative
178 neoplasm (MPN) susceptibility^{22,23}, we tested if *JAK2*-V617F-mutant clones grew faster in
179 individuals with inherited MPN risk alleles, but found no such relationship (Extended Data Fig.
180 5b, Supplementary Table 7). However, we also made the more general observation that
181 certain individuals harboured more mutations in the same gene than would be expected by
182 chance (Extended Data Fig. 5c), suggesting that non-mutation factors influencing clonal
183 growth are both individual- and gene-specific. While we found no evidence that these non-
184 mutation factors include either sex or smoking history, since neither accounted for
185 differences in clonal growth rate between individuals with the same mutant driver gene, age
186 was a significant factor specifically for *TET2*-mutant clones, which grew faster in older
187 individuals (Spearman’s rho=0.31; adj. p-value=2.33*10⁻⁶) (Extended Data Fig. 5d-f).

188

189 **Haematopoietic phylogenies give insights into the lifelong natural history of CH**

190 To contrast the longitudinal clonal behaviours we observed in older age with lifelong clonal
191 dynamics, we began by deriving and whole-genome sequencing (WGS) 96 single-cell-

192 derived colonies from each of three individuals with splicing gene mutations (Fig. 3a-c),
193 particularly as previous reports suggested a possible interaction of these mutations with age⁸.
194 We constructed phylogenetic trees using somatic mutations as lineage-tracing barcodes
195 and, since HSCs accumulate mutations at a near constant rate, we used phylogenetic branch
196 lengths to time the onset of clonal expansions (“clades”)²⁸⁻³¹. In PD41276, the phylogeny was
197 dominated by an *SF3B1*-K666N-mutant clone, beginning between 23-47 years of age, with
198 only a single *SF3B1*-wild type colony, consistent with a near-complete clonal sweep (Fig. 3a).
199 In PD34493, *SF3B1*-K666N was acquired prior to the age of 35 years, whilst *U2AF1*-Q157R
200 initiated clonal growth later (age 41-61) in a previously expanded clade lacking recognisable
201 drivers (Fig. 3b). Interestingly, an additional apparently driverless expansion - a phenomenon
202 recognised in old age^{6,32} - was observed in this individual (Fig. 3b), and a further 3 such
203 expansions in PD41305 (Fig. 3c). In PD41305, the *SRSF2*-P95H mutation was present in only
204 one colony, preventing characterisation of its phylogeny beyond the observation that it was
205 acquired after the age of 13 years (Fig. 3c).

206 We next used the timing and density of clonal branchings (or “coalescences”) to reconstruct
207 the entire growth trajectories of expanded clades using phylodynamic principles (Fig. 3d-
208 h)^{29,33,34}. This revealed that the three clades with identified drivers (*SF3B1*-K666N and *U2AF1*-
209 Q157R in PD34493, and *SF3B1*-K666N in PD41276), expanded (Fig. 3d-f) at calculated rates
210 similar to those observed in our time-series VAF measurements during older age (Fig. 3i, left
211 panel). Of note, *SF3B1*-K666N was associated with a substantially different growth rate in
212 PD41276, where it expanded at 28%/yr by serial VAFs (29%/yr by phylodynamic estimate),
213 versus 10%/yr in PD34493 (17%/yr by phylodynamics) (Fig. 3i). Reasons for this difference
214 are unclear, but it is notable that the faster-growing clone had antecedent Y loss (Fig. 3a),
215 an aberration seen in clades from all three individuals and associated with only modest clonal
216 expansion when isolated (Fig. 3a-c). Interestingly, clones without known drivers began to
217 expand within the first two decades of life and grew over their lifetimes at rates comparable
218 to clones with known drivers (14-32%/yr) (Fig. 3g,h, Extended data Fig. 6).

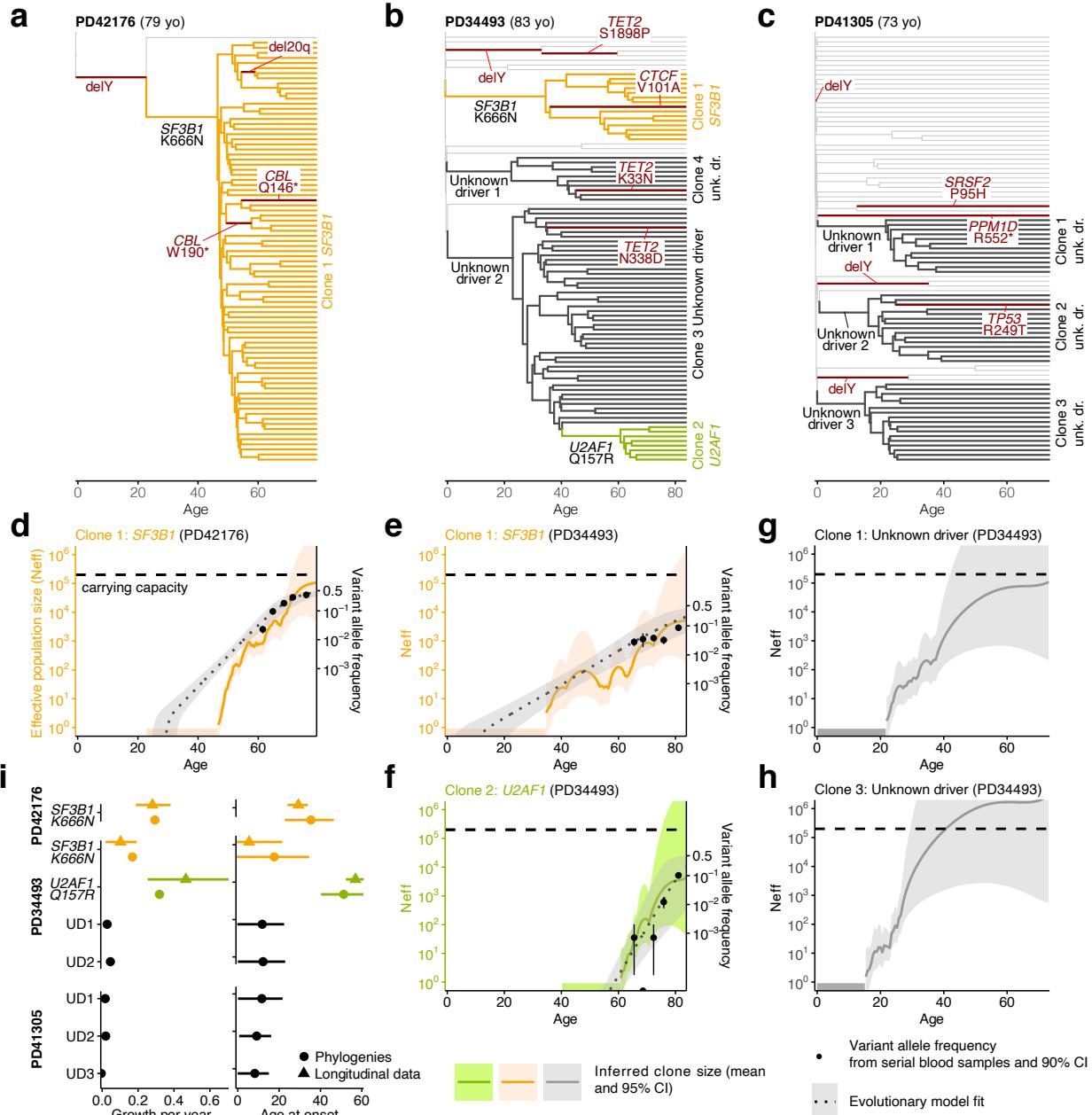


Fig. 3: Haematopoietic phylogenetic trees. **a-c**, Haematopoietic phylogenies of participants PD42176 (a), PD34493 (b) and PD41305 (c). Each tree tip is a single cell-derived colony and tips with shared mutations coalesce to an ancestral branch, from which all colonies in such a “clade” arose. Branch lengths are proportional to the number of somatic mutations, which accumulate linearly with age. Branches containing known driver mutations or chromosomal aberrations are annotated. Clonal expansions are coloured: *SF3B1*-K666N-mutant expansions in orange, *U2AF1*-Q157R-mutant expansions in green, and expansions without identified drivers ('Unknown driver' or 'UD') in black. **d-h**, Growth trajectories of each clonal expansion, as determined by (i) phylogenies (effective population size (Neff) estimated using phylodynamic methods), and (ii) time-series data (using serial VAF measurements and modelled historical growth, as illustrated in Fig. 2, if available). Phylogeny-derived age at clone onset range is represented as a horizontal coloured bar on the x-axis, with the limits of the bar corresponding to the age range of the phylogeny branch along which the corresponding driver mutation was acquired. **i**, Comparison of the ages at onset (right) and growth rate during study period (left) derived from phylogenetic trees and longitudinal data.

219

220
221
222
223
224
225
226
227
228
229
230
231
232

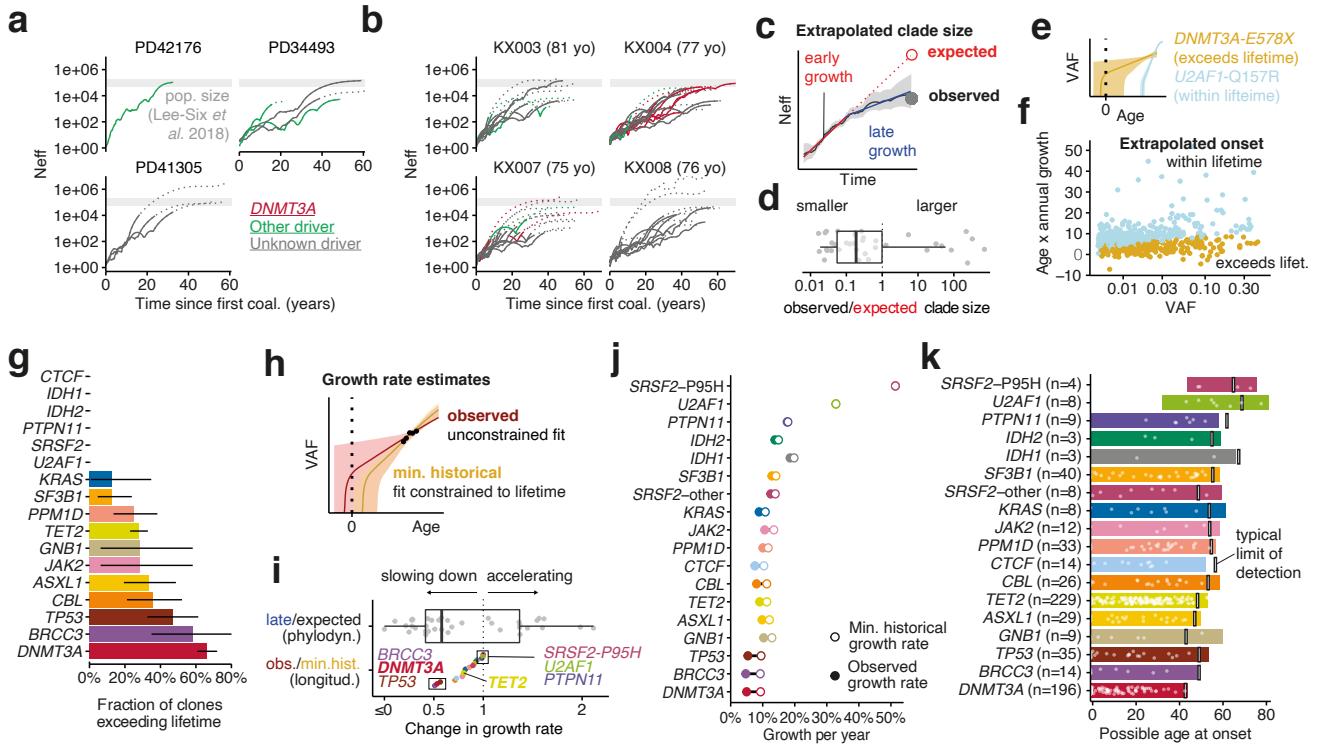
233 Many clones decelerate before older age

234 As the phylodynamic reconstruction of a clone goes back to its inception, we investigated
235 whether clonal growth dynamics during earlier life deviate from the stable growth observed

236 during older age. To corroborate observations from the three individuals depicted in Fig. 3,
237 we conducted additional phylodynamic analyses of trees derived from 1,461 whole-genome
238 sequenced single cell-derived colonies from another four individuals aged 75-81yrs from the
239 study by Mitchell *et al.*³². This revealed that, in many instances, the reconstructed effective
240 population size (Neff) of any individual clone grew more slowly towards the sampling date,
241 before it saturated the HSC compartment (Fig. 4a-b; Extended Data Fig. 7a-c). This
242 characteristic deceleration was quantified by fitting a biphasic exponential growth model to
243 early and late parts of the trajectories (Fig. 4c). In most cases, extrapolating early growth (a
244 consistent estimator of the fitness advantage of a clone in Wright-Fisher simulations,
245 Extended Data Fig. 7d, Extended Data Fig. 8) led to dramatic overestimations of clade size
246 (median 35x; Fig. 4d, Extended Data Fig. 7e).

247 We used our longitudinal cohort to orthogonally test the lifelong stability of clonal growth by
248 extrapolating the observed (fitted) trajectory of each clone backwards in time to infer the age
249 at clonal onset. To account for stochastic drift, which can lead to faster growth of small
250 clones, and the finite carrying capacity of the HSC population, which naturally limits/slow
251 large clones, we derived and used an approximation to a Wright-Fisher process (Extended
252 Data Fig. 4a,b). While estimates of age at clonal onset agreed with phylogenetic estimates
253 for the fast-growing splice factor mutations (Fig. 3i), for many other clones, constant lifelong
254 growth at the rate we observed during old age would be too slow to explain the observed
255 VAFs (Fig. 4e,f,g), proposing that clonal expansion was faster in earlier life. These
256 observations reveal that, at least for some clones/genes, the dynamics observed in later life
257 are not representative of those that prevail earlier.

258 We then assessed the minimum lifetime rate at which clones must have grown in order to
259 reach the observed VAFs in our longitudinal data, henceforth termed ‘historical growth’, by
260 restricting fits/solutions to growth rates that would place the age of clonal onset within
261 individuals’ lifetimes (Fig. 4h, Supplementary Table 8). Expectedly, this minimal historical
262 growth rate was typically higher than the growth rate observed during the study period (i.e.
263 in older age; Fig. 4i, Extended Data Fig. 7f). Moreover, the fold-changes between historical
264 and observed growth rates derived from longitudinal data were qualitatively in good
265 agreement with the fold-changes between late growth and expected growth (the latter
266 assuming growth is constant through life and carrying capacity is fixed) derived from
267 phylodynamic data (Fig. 4c,i, Extended Data Fig. 7f). Taken together it thus emerges that
268 many clones grew more rapidly early in life compared with the rate in old age.



269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Fig. 4: Evidence for clonal deceleration from single-cell phylogenies and longitudinal data. a,b. Effective population size (Neff) trajectories inferred from single cell phylogenies in this paper (a) and in Mitchell et al³² (b). Dotted lines represent parts of the trajectory with high variance ($\log(\text{var}(\text{Neff})) > 5$). **c.** Representation of biphasic fit to Neff estimates and extrapolation from early growth (observed clone size is calculated as the clonal fraction in the phylogeny scaled by an Neff of 200,000 HSC x yr; comparison with 1,000,000 HSC x yr in Extended Data Fig. 7e). **d.** Ratio between observed and expected (extrapolated from early growth) clone size from phylogenies. **e.** Representation of extrapolated trajectories derived from longitudinal data, assuming stable lifelong growth at the same fixed rate we observed during older age; some projections are not feasible (i.e. exceeding lifetime, with onset pre-conception). **f.** Relationship between age and the observed growth rate of clones and VAF (longitudinal data; light blue represents clones with projected onset within lifetime and golden represents those exceeding lifetime). **g.** Quantification of unfeasible clones (exceeding lifetime) per gene (longitudinal data). **h.** Representation of the calculation of minimum historical growth. **i.** Quantification of the ratios between observed and historical (longitudinal data) and between late and expected (phylogenetic data) growth. **j.** Differences between the median observed and historical growth per year for each gene. **k.** Projected ages at onset for all clones, assuming stable lifelong growth at the same fixed rate we observed during older age.

285

Driver-specific differences in lifetime clonal behaviour

286
287
288
289
290
291
292
293
294
295
296

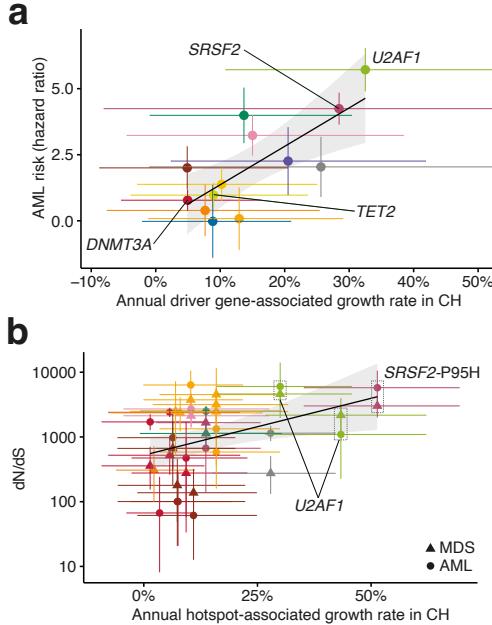
The effect of deceleration was most marked for clones bearing mutations in *DNMT3A*, *BRCC3* and *TP53*, whose early growth was at least twice as fast as that measured during old age (Fig. 4i,j). Conversely, we observed almost no deceleration of fast-growing clones harbouring *U2AF1*, *SRSF2-P95H*, *PTPN11* or *IDH1* mutations (Fig. 4i,j). It is particularly notable that the *TET2*-mutant clones were much less susceptible to deceleration than *DNMT3A*-mutant clones (Fig. 4i-j). This is consistent with the observation that the prevalence of *TET2*-mutant CH rises at older ages and eventually exceeds that of *DNMT3A*-mutant CH, which is more prevalent at younger ages (Fig. 1d). A declining relative advantage of *DNMT3A* mutations in older age was also suggested by the much lower proportion of *DNMT3A* mutant-clones reaching detectable limits during our study period compared to clones bearing mutations in other genes (“incipient clones”, Extended Data Fig. 9a).

297 To derive representative ranges for age at clone onset for each driver gene, we capped
298 individual estimates at conception, thus avoiding estimates that projected beyond
299 individuals' lifetimes (Fig. 4k, Extended Data Fig. 9b,c). We also validate this method using
300 simulations and confirm that these ranges are not affected by changes in Neff or generation
301 time (Extended Data Fig. 9d,e). We estimated that the average latency between clone
302 foundation and detection in peripheral blood at VAF \geq 0.2% (Supplementary Note 1) was 30
303 years across all clones, with considerable variability between mutant genes, ranging from 38
304 years for *DNMT3A*-mutant clones to 12 years for *U2AF1*-mutant clones. Most drivers were
305 projected to initiate expansions of clones throughout life, compatible with the notion that
306 somatic mutations occur at a constant rate^{28,29,35}. However, solutions for *DNMT3A*-mutant
307 clones concentrated earlier in life, consistent with early initiation and rapid expansion
308 followed by marked deceleration then slow growth, as discussed earlier. Of note, capping
309 onset at conception is arbitrary and it remains possible that some clones start later and
310 exhibit faster initial growth followed by even stronger deceleration, a scenario that would be
311 more consistent with published fitness estimates of 11-19%/yr based on cross-sectional VAF
312 measurements¹². In contrast, *SRSF2*-P95H and *U2AF1* mutations initiated clonal expansion
313 always after 30 years of age and with a median age at onset of 58 and 57 years, respectively
314 (Fig. 4k). This indicates that the reported rarity of these mutant clones in people aged <60
315 years^{5,6,8} is not due to slow growth over decades, but rather due to their late onset followed
316 by rapid expansion and also provides a plausible explanation for the high risk of leukaemic
317 progression associated with these mutations^{9,36}.

318 **CH dynamics and malignant progression**

319 To investigate the links between mutation fitness and malignant progression, we built on our
320 previous study of AML risk prediction⁹ and revealed that among CH driver genes a faster
321 growth rate was associated with a higher AML risk (adjusted R²=0.55, p=0.0037, Fig. 5a). For
322 example, genes driving fast CH growth like *SRSF2* and *U2AF1* were associated with the
323 highest risks of leukaemogenesis, while slow-growing clones such as those bearing *DNMT3A*
324 mutations, conferred a lower risk. To confirm our findings in larger studies and include
325 myeloid malignancies other than AML, we analysed large published datasets of AML
326 (n=1540)³⁷ and myelodysplastic syndromes (MDS, n=738)³⁸ using a site-specific extension of
327 the dNdScv algorithm to formally quantify the extent to which individual hotspots are under
328 the influence of positive selection in these cancers (Supplementary Tables 9,10)²⁵. This
329 analysis revealed a positive correlation between each hotspot's growth coefficient in CH and
330 its selection strength in myeloid cancer (Fig. 5b; adjusted R²=0.19, p=0.0016), corroborating
331 the AML risk analysis. Nevertheless, the observation that the same CH driver gene can
332 progress to either AML or MDS, with variable predilections as quantified by gene-level dN/dS
333 comparison (Extended Data Fig. 10; Supplementary Table 10), suggests that factors other
334 than growth rate can also influence a mutation's malignant potential.

335



336
337
338
339
340
341

Fig. 5: CH dynamics and progression to myeloid disease. a, Relationship between the growth rate associated with each driver gene in CH, and the risk of AML progression associated with that driver gene. b, Relationship between the growth rate associated with each recurrent mutation in CH, and the strength of selection of that mutation in AML (circles) and MDS (triangles). In a and b genes/hotspots mentioned in the main text are highlighted.

342 Discussion

343 The phenomenon of CH has served as an exemplar in the developing understanding of
344 somatic mutation, clonal selection and oncogenesis in human tissues^{4,39}. However, the nature
345 of these interrelated processes can change over time and their consequences develop only
346 slowly, making them difficult to investigate. Here, we studied the longitudinal behaviour of
347 CH over long periods (median 13 years) and combined this with lifelong phylodynamic
348 analyses of haematopoiesis to derive new insights into these fundamental biological
349 processes.

350 First, we found that most clones (92%) display stable exponential growth dynamics in older
351 age, at rates influenced by their driver mutations. This allowed us to predict future clonal
352 growth trajectories, a finding with potentially useful implications for clinical practice
353 (Extended Data Fig. 4e-g). Surprisingly, mutations in *DNMT3A*, reportedly the most common
354 CH driver gene⁵⁻⁷, were associated with slower clonal expansion than most other CH genes.
355 Also, *DNMT3A* hotspot mutations (e.g. at codon R882) were not associated with faster
356 growth than other *DNMT3A* mutations (Figure 2c). By contrast, *TET2*-mutant clones
357 expanded significantly faster over the study period (Fig. 2c) and, reflecting this, also reached
358 detectable levels much more frequently on-study than *DNMT3A*-mutant clones (Extended
359 Data Fig. 9a). This resulted in *TET2* becoming the most prevalent CH driver after the age of
360 75 years (Figure 1d).

361 These initial findings suggested that, while clonal growth is remarkably stable in old age,
362 dynamics in earlier life may deviate from this behaviour, challenging the premise that mutation
363 fitness is constant over the human lifespan¹². To test this, we first attempted to derive when
364 individual CH clones were founded, using simple retrograde extrapolation of observed
365 trajectories. This led to projected ages at clonal foundation that preceded conception for a

366 large number of clones (Fig. 4f,g), implying that their early growth must have been faster than
367 that we observed during old age. This was most striking for *DNMT3A*, for which more than
368 two thirds of projections were implausible (ie. onset pre-conception), but less common for
369 *TET2* and very uncommon for splicing factor genes (Fig. 4g).

370 To further investigate lifelong clonal behaviour, we analysed haematopoietic phylogenies
371 from healthy old individuals and found that aged haematopoiesis was dominated by a small
372 number of expanded HSC clones, some of which lacked recognisable drivers³². Using
373 phylodynamic approaches to track clonal growth rates through life, in conjunction with
374 findings from our longitudinal cohort, we reveal widespread clonal deceleration prior to the
375 period of stable growth during old age, in the context of an increasingly competitive
376 oligoclonal HSC compartment (Fig. 4i). *DNMT3A*-mutant clones, as well as those bearing
377 mutations in *TP53* and *BRCA3* and also apparently driverless clones, were among those
378 displaying the most marked degree of deceleration (Fig. 4i). In contrast, *TET2* mutations
379 appeared to drive more stable lifelong growth (Fig. 4h-j), which may underlie their apparent
380 ability to initiate clonal expansion fairly uniformly through life (Fig. 4k) and the fact that *TET2*
381 “overtakes” *DNMT3A* as the most common CH driver after the age of 75 years (Fig. 1d).

382 In diametric contrast to *DNMT3A* and unlike other genes, CH driven by mutant *U2AF1* and
383 *SRSF2-P95H* only initiated late in life (Fig. 4k) and exhibited some of the fastest expansion
384 dynamics (Fig. 2c). These data were corroborated by phylogenetic analyses (Fig. 3b,f) and
385 tally with the sharp increase in prevalence of splice factor-mutant CH⁸, MDS^{38,40,41} and
386 AML^{37,42} in old age and the high risk of progression to myeloid cancers associated with these
387 mutations⁹. The particular behaviour of these clones proposes a specific interaction with
388 ageing, which could relate to cell-intrinsic factors or to cell-extrinsic changes in the aging
389 haematopoietic niche that make it more suitable for HSCs harbouring splice factor
390 mutations^{43,44}.

391 Finally, we explored the relationship between clonal growth rate in CH and the development
392 of myeloid cancers. We find that mutations associated with faster CH growth are also those
393 associated with higher risk of progression to AML (Fig. 5a) and are under the strongest
394 selective pressure in AML and MDS (Fig. 5b). Indeed, we show that the average annual
395 growth per gene explains over 50% of the variance in AML risk progression. This shows that
396 an improved understanding of growth dynamics in CH can help identify those at risk of
397 myeloid malignancies.

398 Collectively, our work gives new insights into the lifelong clonal dynamics of different
399 subtypes of CH, the impact of ageing on haematopoiesis, and the processes linking somatic
400 mutation, clonal expansion and malignant progression.

401

402 **Methods**

403 **Study participants**

404 Ethical permission for this study was granted by The East of England (Essex) Research Ethics
405 Committee (REC reference 15/EE/0327). The SardiNIA longitudinal study recruited individuals
406 from four towns in the Lanusei Valley in Sardinia, capturing 5 phases of sample and data

407 collection over more than 20 years²⁵. We analysed serial samples from 385 individuals in the
408 SardiNIA project.

409 **Targeted sequencing and variant-calling**

410 Target enrichment of genomic DNA was performed using a custom RNA bait set (Agilent
411 SureSelect ELID 3156971), designed complementary to 56 genes implicated in CH and
412 haematological malignancies (Supplementary Table 1). Libraries were sequenced on Illumina
413 HiSeq 2000 and variant-calling was performed as we described previously^{9,45}. Briefly, somatic
414 single-nucleotide variants and small indels were called using Shearwater (v.1.21.5), an
415 algorithm designed to detect subclonal mutations in deep sequencing experiments⁴⁶. Two
416 additional variant-calling algorithms were applied to complement this approach: CaVEMan
417 (v.1.11.2) for single-nucleotide variants, and Pindel (v.2.2) for small indels^{47,48}. VAF correction
418 was performed using an in-house script (<https://github.com/cancerit/vafCorrect>). Finally,
419 allele counts at recurrent mutation hotspots were verified using an in-house script
420 (github.com/cancerit/allelecount). Variants were filtered as we described previously^{9,45}, but
421 were not curated with regard to existing notions of oncogenicity, ie. all somatic variants
422 passing quality filters were retained for analysis.

423 If a variant was identified in an individual at any time-point in the study, this site was re-
424 queried in the same individual at all other time-points, using an in-house script (cgpVAF) to
425 provide pileup (SNV) and Exonerate (indel) output (<https://github.com/cancerit/vafCorrect>).
426 No additional filters were applied to these back-called variants.

427 **Selection analyses (dN/dS)**

428 To quantify selection, we used the dNdScv algorithm, a maximum-likelihood implementation
429 of dN/dS, which measures the ratio of non-synonymous (N) to synonymous (S) mutations,
430 while controlling for gene sequence composition and variable substitution rates²⁶. We first
431 applied this method to the mutation calls from the longitudinal SardiNIA cohort in order to
432 identify which genes are under positive selection in the context of CH. For this analysis, any
433 mutation that was present in a single individual at multiple time-points was counted only
434 once.

435 To characterise patterns of selection in AML and MDS, we applied dNdScv to two published
436 data sets. The AML set was derived from 1540 patients enrolled in three prospective trials of
437 intensive therapy³⁷. The MDS set included 738 patients with MDS or closely related
438 neoplasms such as chronic myelomonocytic leukaemia³⁸. Both used deep targeted
439 sequencing of 111 cancer genes, which overlapped with 13 of the 17 genes of interest in our
440 longitudinal CH study (*PPM1D*, *CTCF*, *GNB1* and *BRCC3* were not sequenced in the
441 AML/MDS studies). We called and filtered variants in the 13 overlapping genes using the
442 strategy described above (under ‘Targeted sequencing and variant-calling’). Variants were
443 identified in all 13 genes in both AML and MDS datasets (Supplementary Table 10). We
444 calculated dN/dS values both at the level of individual genes, and at single-site level for
445 hotspots, the latter using the sitednds function in the dNdScv R package.

446 **Hierarchical modelling of clone trajectories through time**

447 We use Bayesian hierarchical modelling to model clonal trajectories. Since we are unable to
448 phase different mutations into specific clones and given that individual CH clones typically

449 harbour a single mutation⁴⁹, we assume that each mutation is heterozygous and its VAF is
450 representative of the prevalence of a single clone. Accordingly, for a given individual j and
451 mutation i , we have a mutant clone c_{ij} . We model the counts $counts_{c_{ij}}$ for c_{ij} at age t as a
452 binomial distribution, such that $counts_{c_{ij}}(t) \sim Bin(cov_{ij}(t), p_{ij}(t))$, with cov_{ij} as the
453 coverage of this mutation at age t and $p_{ij}(t) \sim Beta(\alpha(t), \beta)$ as the expected proportion of
454 mutant allele copies. As such, $counts_{c_{ij}}(t) \sim BB(cov_{ij}(t), \alpha(t), \beta)$. Here, $\beta \sim N(\mu_{od}, \sigma_{od})$ is
455 the technical overdispersion whose parameters are estimated using replicate data (details
456 below) and $\alpha(t) = \frac{\beta q(t)}{1-q(t)}$, where $q(t) = ilogit((b_{gene_i} + b_{site_i} + b_{c_{ij}}) * t + u_{ij})$. We use this
457 parameterization to guarantee that $E[counts_{c_{ij}}] = p_{ij} cov_{ij}$. $b_{gene_i} \sim N(0, 0.1)$ and $b_{site_i} \sim$
458 $N(0, 0.1)$ are the gene and site growth effects for mutation i , respectively. $b_{c_{ij}} \sim N(0, 0.05)$ is
459 the growth effect associated exclusively with mutation i in individual j - i.e. of mutant clone
460 c_{ij} - and u_{ij} is the offset accounting for the onset of different clones at different points in time.
461 We also define the growth effect of c_{ij} as $b_{total_{ij}} = (b_{gene_i} + b_{site_i} + b_{c_{ij}})$. Along this work we
462 will refer to $b_{gene_i} + b_{site_i}$ as the *driver (growth) effect* and to $b_{c_{ij}}$ as the *unknown-cause*
463 *(growth) effect* - the fraction of growth that is quantifiable but not explained by either gene or
464 site.

465 *Preventing identifiability issues and reducing uninformed estimates.* To address possible
466 identifiability issues in our model, when a gene has a single mutation (*JAK2*-V617F and *IDH2*-
467 R140Q), the effect is considered to occur only at the site level. To avoid estimating the
468 dynamics of a site from a single individual, we only model b_{site_i} when two or more individuals
469 have a missense mutation on site i - we refer to these sites as “recurrent sites”. Overall, we
470 consider a total of 17 genes and 39 recurrent sites (Supplementary Table 5).

471 *Estimating and validating growth parameters.* Using the model described above, we use
472 Markov Chain Monte Carlo (MCMC) with a Hamiltonian Monte Carlo (HMC) sampler with 150-
473 300 leapfrog steps as implemented in *greta*⁵⁰. We sample for 5,000 iterations and discard the
474 initial 2,500 to get estimates for the distribution of our parameters. As such, our estimates for
475 each parameter are obtained considering their mean, median and 95% highest density
476 posterior interval for 2,500 samples.

477 We assess the goodness-of-fit using the number of outliers detected in any trajectory and
478 consider only trajectories with no outliers as being explained by our model and, as such,
479 growing at constant rate. Outliers are assessed by calculating the tail probabilities of the
480 counts under our model with a hard cut-off at 2.5%. As such, $P_{outlier} = 1$ if
481 $P(counts | b_{gene_i}, b_{site_i}, b_{c_{ij}}, u_{ij}, t) < 0.025 | P(counts | b_{gene_i}, b_{site_i}, b_{c_{ij}}, u_{ij}, t) > 0.975$ and
482 $P_{outlier} = 0$ otherwise. We validate this approach using Wright-Fisher simulations
483 (Supplementary Methods). We additionally assess the predictive power of this model on an
484 additional time-point that was available for a subset of individuals and that was not used in
485 the inference of parameters in our model (Supplementary Methods).

486 *Estimating the technical overdispersion parameter.* Technical VAF overdispersion used two
487 distinct sets of data:

488 (1) Horizon Tru-Q-1 was serially diluted to VAFs of 0.05, 0.02, 0.01, 0.005 and 0 using
489 Horizon Tru-Q-0 (verified wild-type at these variant sites), then sequenced in duplicate
490 or triplicate;
491 (2) 19 SardiNIA samples with mutations across 15 genes at a range of VAFs, were
492 sequenced in triplicate.

493 Sample processing and analysis was performed as described in the “Targeted Sequencing
494 and Variant-calling” section. Replicate samples were picked from the same stock of DNA,
495 then library preparation and sequencing steps were performed in parallel. Variant calls for
496 these replicate samples are in Supplementary Table 11.

497 For (1), we model the distribution over the expected *VAF* as a beta distribution such that
498 $VAF \sim Beta(\alpha, \beta)$ and for (2) we adopt a model identical to the one described earlier in this
499 section but use only gene growth effects ($counts_{c_{ij}}(t) \sim BB(cov_{ij}(t), \alpha(t), \beta)$, $\alpha(t) = \frac{\beta q(t)}{1-q(t)}$,
500 $q(t) = ilogit(b_{gene_i} * t + u_{ij})$). Here, we model $\beta \sim exp(r)$ with r as a variable with no prior.
501 We use MCMC with HMC sampling with 400–500 leapfrog-steps as implemented in greta⁵⁰
502 to estimate the mean and standard deviation of β . For this estimate we use 1,000 samples
503 from the posterior distribution.

504 **Analysis of non-mutation factors as determinants of clonal growth rate**

505 *Inherited polymorphisms and JAK2-mutant clonal growth.* The SardiNIA cohort had
506 previously been characterised using two Illumina custom arrays: the Cardio-MetaboChip and
507 the ImmunoChip²⁵. Inherited genotypes at 12 loci previously associated with MPN risk were
508 extracted for the 12 individuals with JAK2-V617F mutation^{22,23}. The relationship between each
509 individual’s total number of inherited risk alleles and JAK2-mutant clonal growth rate was
510 assessed by Pearson’s correlation. The 46/1 haplotype, which harbours 4 SNPs in complete
511 linkage disequilibrium, was considered as a single risk allele.

512 *Age, sex and smoking experience.* We assess the association between unknown-cause
513 growth and age through the calculation of a Pearson correlation considering all genes, both
514 together and separately while controlling for multiple testing. We also assess the association
515 between unknown-cause growth and sex and smoking history using a multivariate regression
516 where unknown-cause growth is the dependent variable and sex and previous smoking
517 experience are the covariates, while also controlling for age.

518 **Determining the expected age at beginning of clone onset**

519 We consider that HSC clones grow according to a Wright-Fisher model. According to this,
520 for an initial population of HSC $n/2$, we can consider two scenarios - that of a single growth
521 process where the time at which the cell first starts growing t_0 is described as $t_0 = \frac{\log(\frac{1}{n}) - u}{b_{total}}$,
522 or that of a two step growth process, where $t_0 adjusted = t_0 + \frac{\log(g/b_{total})}{b_{total}} - \frac{1}{b_{total}}$, where g is
523 the number of generations per year. The latter scenario is the one chosen, due to its strong
524 theoretical foundation and previous application to mathematical modelling of cancer
525 evolution⁵¹. The two regimes that describe it are an initial stochastic growth regime and, once
526 the clone reaches a sufficient population size, a deterministic growth regime. The adjustment
527 made to t_0 in $t_0 adjusted$ can be interpreted as first estimating the age at which the clone

528 reached the deterministic growth phase ($t_0 + \frac{\log(g/b_{total})}{b_{total}}$) followed by subtracting the
529 expected time for a clone to overcome its stochastic growth phase ($\frac{1}{b_{total}}$). For both n and g
530 we use the estimates based on ²⁹ - $n = 50,000$ and $g = 2$. We validate this approach using
531 simulations (Supplementary Methods) and test the approach against our serial VAF data and
532 verify that changes in n and g do not have a dramatic impact on age at onset estimates by
533 considering a range of values ($n = \{10,000; 50,000; 100,000; 200,000; 600,000\}$ and $g =$
534 $\{1; 2; 5; 10; 13; 20\}$).

535 **Derivation of blood colonies and phylogenetic tree construction**

536 *Sample preparation and sequencing.* We selected 3 individuals with splicing gene mutations
537 from the SardiNIA cohort for detailed blood phylogenetic analysis. Peripheral blood samples
538 were drawn into Lithium-heparin tubes (vacutest, kima, 9ml) and buccal samples were taken
539 (Orangene DNA OG-250). Peripheral blood mononuclear cells were isolated from blood and
540 plated at 50,000 cells per ml in MethoCult 4034 (Stemcell Technologies). After 14 days in
541 culture, 96 single haematopoietic colonies were plucked per individual (total 288 colonies)
542 and lysed in 50µl of RLT lysis buffer (Qiagen).

543 Library preparation for whole genome sequencing (WGS) was performed using our low-input
544 pipeline as previously described^{52,53}. 150bp paired-end sequencing reads were generated
545 using the NovaSeq® 6000 platform to a mean sequencing depth of 15x per sample. Reads
546 were aligned to the human reference genome (NCBI build37) using BWA-MEM.

547 *Variant-calling and filtering.* Single-nucleotide variants (SNVs) and small indels were called
548 against an unmatched reference genome using the in-house pipelines CaVEMan and Pindel,
549 respectively^{47,48}. ‘Normal contamination of tumour’ was set to 0.05; otherwise standard
550 settings and filters were applied. For all mutations passing quality filters in at least one
551 sample, in-house software (cgpVAF, <https://github.com/cancerit/vafCorrect>) was used to
552 produce matrices of variant and normal reads at each mutant site for all colonies from that
553 individual. Copy-number aberrations and structural variants were identified using matched-
554 normal ASCAT⁵⁴ and BRASS (<https://github.com/cancerit/BRASS>). Low-coverage samples
555 (mean <4x) were excluded from downstream analysis (n=1, PD41305). Samples in which the
556 peak density of somatic mutation VAFs was lower than expected for heterozygous changes
557 (in practice VAF<0.4) were suspected to be contaminated or mixed colonies, and were also
558 excluded from further analysis (n=3, PD41305; n=9, PD41276; n=3, PD34493).

559 Multiple post-hoc filtering steps were then applied to remove germline mutations, recurrent
560 library prep / sequencing artefacts, and in vitro mutations, as described previously⁵⁵ and
561 detailed in custom R scripts (https://github.com/margaretefabre/Clonal_dynamics). Buccal
562 samples were used as an additional filter; mutations were removed if the variant:normal count
563 in the buccal sample was consistent with that expected for a germline mutation (0.5 for
564 autosomes and 0.95 for XY chromosomes, binomial probability >0.01), and were retained if
565 (i) the variant:normal count in the buccal sample was *not* consistent with germline (binomial
566 probability <1x10⁻⁴) and (ii) the mutation was not present in either of 2 large SNP databases
567 (1000 Genomes Project and Kaviar) with MAF > 0.001.

568 *Phylogenetic tree construction and assignment of mutations back to the tree.* These steps
569 were also performed as described previously⁵⁵ and are detailed here:

570 https://github.com/margaretefabre/Clonal_dynamics. Briefly, samples were assigned a
571 genotype for each mutation site passing filtering steps ('present' = ≥ 2 variant reads and
572 probability > 0.05 that counts came from a somatic distribution; 'absent' = 0 variant reads and
573 depth ≥ 6 ; 'unknown' = neither 'absent' nor 'present' criteria met). A genotype matrix of shared
574 mutations was fed into the MPBoot program⁵⁶, which constructs a maximum parsimony
575 phylogenetic tree with bootstrap approximation. The in-house-developed R package treemut
576 (<https://github.com/NickWilliamsSanger/treemut>), which uses original count data and a
577 maximum likelihood approach, was then utilised to assign mutations back to individual
578 branches on the tree. Since individual edge length is influenced by the sensitivity of variant-
579 calling, lengths were scaled by 1/sensitivity, where sensitivity was estimated using the
580 proportion of germline variants called.

581 *Reconstruction of population trajectories.* Phylogenies were made ultrametric (branch lengths
582 normalised) using a bespoke R function (make.tree.ultrametric,
583 https://github.com/margaretefabre/Clonal_dynamics/my_functions). Assuming a constant
584 rate of mutation acquisition^{28,29,35}, the time axis was scaled linearly, where the root of the tree
585 represents conception, and the tips represent age at sampling. We then analysed population
586 size trajectories by fitting Bayesian nonparametric phylodynamic reconstructions (BNPR) as
587 implemented in the phylodyn R package^{33,34} to clades - sets of samples in a phylogenetic tree
588 sharing a most recent common ancestor (MRCA) - defined by either having a driver mutation
589 on the MRCA or a MRCA branch length that spans more than 10% of the tree depth and with
590 5 tips or more. We also estimated the lower and upper bounds for age at onset of clonal
591 expansion to be the limits of the branch containing the most recent common ancestor.

592 **Deceleration in phylogenies and longitudinal data**

593 We detect deceleration using two different approaches - the ratio between expected and
594 observed clone size using phylodynamic estimates and the ratios between observed and
595 historical (from longitudinal data) and between late and expected (from phylogenetic data),
596 respectively. To obtain the late growth rate we fit a biphasic log-linear model to our
597 phylodynamic estimation of Neff - this enables us to obtain an *early* and a *late* growth rate
598 (details in the Supplementary Methods).

599 *Expected and observed clone size.* The expected clone size is calculated by extrapolating
600 the early growth rate until the age of sampling; having this we can calculate the ratio between
601 expected and observed growth. The ratio between these quantities is then used as a measure
602 of deceleration (details in the Supplementary Methods).

603 *Growth ratio in phylogenetic data.* The late growth rate is defined as the late growth rate
604 defined in the previous section of the methods. The expected growth rate for the phylogenies
605 is calculated as the growth coefficient for a sigmoidal regression that assumes a population
606 size of 200,000 HSC as the carrying capacity. We then use the ratio between these quantities
607 as a measure of deceleration (1 implies no deceleration; < 1 implies deceleration).

608 *Growth ratio in longitudinal data.* The observed growth rate is defined as the growth rate
609 inferred directly from the data. The minimal historical growth is the growth rate estimate
610 obtained by restricting clone initiation to a time after conception (age at onset > -1).

611 **Associations between CH dynamics and (i) AML progression and (ii) selection in**
612 **MDS and AML**

613 To calculate the association between CH dynamics and AML we used the risk coefficients
614 from our previous work in predicting the onset of AML⁹, which were calculated by fitting a
615 Cox-proportional hazards model that calculated the risk of AML onset associated with each
616 gene while controlling for age, sex and cohort, and estimate the coefficient of correlation
617 between the expected value of the annual growth for the posterior distribution of each gene
618 (considering gene, site and unknown-cause effects) and the AML progression risk.

619 The association between CH dynamics and selection in MDS and AML use the dN/dS values
620 calculated with dNdScv as previously described in the methods, using two distinct cohorts
621 from previous studies^{37,38}. dN/dS values were calculated for all hotspots and their coefficient
622 of correlation with the expected value of the annual growth for the posterior distribution of
623 each hotspot (also considering gene, site and unknown-cause effects) was calculated.

624 **Statistical analyses**

625 All statistical analyses were conducted using the R software⁵⁷ - MCMC models were fitted
626 using gret⁵⁰ and hypothesis testing, generalised linear models and maximum likelihood fits
627 were performed in base R.

628 **Acknowledgements**

629 This work was funded by a joint grant from the Leukemia and Lymphoma Society (RTF6006-
630 19) and the Rising Tide Foundation for Clinical Cancer Research (CCR-18-500) and by the
631 Wellcome Trust (WT098051). M.F. is funded by a Wellcome Clinical Research Fellowship
632 (WT098051). J.G.A. is supported by the NIHR Cambridge BRC and their opinions are not
633 necessarily those of the NHS, the NIHR or the Department of Health and Social Care. G.S.V.
634 is funded by a Cancer Research UK Senior Cancer Fellowship (C22324/A23015) and work in
635 his lab is also funded by the European Research Council, Kay Kendall Leukaemia Fund, Blood
636 Cancer UK and the Wellcome Trust. E.F.M. is supported by the Wellcome Trust and Beit
637 Foundation (104064/Z/14/Z) and by the EC H2020. The collection of samples and data from
638 the SardiNIA longitudinal cohort study was supported by the Intramural Research Program
639 of the NIH, National Institute on Aging (NIA) of the National Institute of Health (NIH) with
640 contracts N01-AG-1- 2109 and HHSN271201100005C; and by the European Union's
641 Horizon 2020 Research and Innovation Programme under grant agreement 633964
642 (ImmunoAgeing).

643 **Data availability**

644 The data files necessary to run the analysis in https://github.com/josegcpa/clonal_dynamics
645 are freely available at <https://doi.org/10.6084/m9.figshare.15029118>. All sequencing data
646 have been deposited in the European Genome-phenome Archive (EGA)
647 (<https://www.ebi.ac.uk/ega/>). Targeted sequencing data have been deposited with EGA
648 accession numbers EGAD00001007682 and EGAD00001007683; WGS data have been
649 deposited with accession number EGAD00001007684. Data from the EGA are accessible for
650 research use only to all bona fide researchers, as assessed by the Data Access Committee

651 (<https://www.ebi.ac.uk/ega/about/access>). Data can be accessed by registering for an EGA
652 account and contacting the Data Access Committee.

653 **Code availability**

654 All analyses reported in this study used the statistical software R (v.3.6.3). All R files used for
655 the longitudinal and phylodynamic modelling and validation are publicly available at
656 https://github.com/josegcpa/clonal_dynamics. All files used for the construction of
657 phylogenetic trees are publicly available at
658 https://github.com/margaretefabre/Clonal_dynamics.

659 **Author contributions**

660 GV and MG conceived and supervised the study. MF, JGA, MSV carried out analyses and
661 generated data figures. MG and JGA developed and implemented the statistical modelling of
662 clonal dynamics. VO, EF, MM and FC oversaw the SardiNIA cohort. VO, EF, MM, EMcK and
663 FC provided samples and data from the Immunoageing study. AD, JR, CH, JB, MF and GV
664 processed participant samples and performed assays. FA, NW, JN and IM generated
665 computational code used in this paper. EM, MC and PC provided single-cell-derived colony
666 WGS data and helped with data analysis/interpretation.

667 **Competing interests**

668 G.S.V. is a consultant for AstraZeneca and STRM.BIO. The other authors declare no
669 competing interests.

670

671 References

- 672 1. Lipschitz, D. A., Udupa, K. B., Milton, K. Y. & Thompson, C. O. Effect of age on
673 hematopoiesis in man. *Blood* **63**, 502–509 (1984).
- 674 2. de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. *Blood* **131**, 479–487
675 (2018).
- 676 3. Mohrin, M. *et al.* Hematopoietic stem cell quiescence promotes error-prone DNA repair
677 and mutagenesis. *Cell Stem Cell* **7**, 174–185 (2010).
- 678 4. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. *Science*
679 **366**, (2019).
- 680 5. Jaiswal, S. *et al.* Age-related clonal hematopoiesis associated with adverse outcomes.
681 *N. Engl. J. Med.* **371**, 2488–2498 (2014).
- 682 6. Genovese, G. *et al.* Clonal hematopoiesis and blood-cancer risk inferred from blood
683 DNA sequence. *N. Engl. J. Med.* **371**, 2477–2487 (2014).
- 684 7. Xie, M. *et al.* Age-related mutations associated with clonal hematopoietic expansion
685 and malignancies. *Nat. Med.* **20**, 1472–1478 (2014).
- 686 8. McKerrell, T. *et al.* Leukemia-associated somatic mutations drive distinct patterns of
687 age-related clonal hemopoiesis. *Cell Rep.* **10**, 1239–1245 (2015).
- 688 9. Abelson, S. *et al.* Prediction of acute myeloid leukaemia risk in healthy individuals.
689 *Nature* **559**, 400–404 (2018).
- 690 10. Desai, P. *et al.* Somatic mutations precede acute myeloid leukemia years before
691 diagnosis. *Nat. Med.* **24**, 1015–1023 (2018).
- 692 11. Young, A. L., Challen, G. A., Birnmann, B. M. & Druley, T. E. Clonal haematopoiesis
693 harbouring AML-associated mutations is ubiquitous in healthy adults. *Nat. Commun.* **7**,
694 12484 (2016).
- 695 12. Watson, C. J. *et al.* The evolutionary dynamics and fitness landscape of clonal
696 hematopoiesis. *Science* (2020) doi:10.1126/science.aay9333.

697 13. McKerrell, T. *et al.* JAK2 V617F hematopoietic clones are present several years prior to
698 MPN diagnosis and follow different expansion kinetics. *Blood Adv* **1**, 968–971 (2017).

699 14. Heuser, M. *et al.* Genetic characterization of acquired aplastic anemia by targeted
700 sequencing. *Haematologica* **99**, e165–7 (2014).

701 15. Kulasekararaj, A. G. *et al.* Somatic mutations identify a subgroup of aplastic anemia
702 patients who progress to myelodysplastic syndrome. *Blood* **124**, 2698–2704 (2014).

703 16. Lane, A. A. *et al.* Low frequency clonal mutations recoverable by deep sequencing in
704 patients with aplastic anemia. *Leukemia* **27**, 968–971 (2013).

705 17. Yoshizato, T. *et al.* Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.
706 *N. Engl. J. Med.* **373**, 35–47 (2015).

707 18. Coombs, C. C. *et al.* Therapy-Related Clonal Hematopoiesis in Patients with Non-
708 hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. *Cell*
709 *Stem Cell* **21**, 374–382.e4 (2017).

710 19. Gibson, C. J. *et al.* Clonal Hematopoiesis Associated With Adverse Outcomes After
711 Autologous Stem-Cell Transplantation for Lymphoma. *J. Clin. Oncol.* **35**, 1598–1605
712 (2017).

713 20. Wong, T. N. *et al.* Role of TP53 mutations in the origin and evolution of therapy-related
714 acute myeloid leukaemia. *Nature* **518**, 552–555 (2015).

715 21. Meisel, M. *et al.* Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-
716 deficient host. *Nature* vol. 557 580–584 (2018).

717 22. Bick, A. G. *et al.* Inherited causes of clonal haematopoiesis in 97,691 whole genomes.
718 *Nature* **586**, 763–768 (2020).

719 23. Hinds, D. A. *et al.* Germ line variants predispose to both JAK2 V617F clonal
720 hematopoiesis and myeloproliferative neoplasms. *Blood* **128**, 1121–1128 (2016).

721 24. Zink, F. *et al.* Clonal hematopoiesis, with and without candidate driver mutations, is
722 common in the elderly. *Blood* **130**, 742–752 (2017).

723 25. Orrù, V. *et al.* Genetic variants regulating immune cell levels in health and disease. *Cell*
724 **155**, 242–256 (2013).

725 26. Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues.
726 *Cell* **171**, 1029–1041.e21 (2017).

727 27. Beerenwinkel, N. *et al.* Genetic progression and the waiting time to cancer. *PLoS*
728 *Comput. Biol.* **3**, e225 (2007).

729 28. Blokzijl, F. *et al.* Tissue-specific mutation accumulation in human adult stem cells
730 during life. *Nature* **538**, 260–264 (2016).

731 29. Lee-Six, H. *et al.* Population dynamics of normal human blood inferred from somatic
732 mutations. *Nature* **561**, 473–478 (2018).

733 30. Baron, C. S. & van Oudenaarden, A. Unravelling cellular relationships during
734 development and regeneration using genetic lineage tracing. *Nat. Rev. Mol. Cell Biol.*
735 **20**, 753–765 (2019).

736 31. Abascal, F. *et al.* Somatic mutation landscapes at single-molecule resolution. *Nature*
737 **593**, 405–410 (2021).

738 32. Mitchell, E. *et al.* Clonal dynamics of normal haematopoiesis with human ageing.
739 (*submitted as companion manuscript*) (2021).

740 33. Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for
741 phylodynamic simulation and inference. *Mol. Ecol. Resour.* **17**, 96–100 (2017).

742 34. Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient Bayesian
743 inference framework for coalescent-based nonparametric phylodynamics.
744 *Bioinformatics* **31**, 3282–3289 (2015).

745 35. Osorio, F. G., Huber, A. R., Oka, R., Verheul, M. & Patel, S. H. Somatic mutations reveal
746 lineage relationships and age-related mutagenesis in human hematopoiesis. *Cell Rep.*
747 (2018).

748 36. Desai, P. *et al.* Somatic mutations precede acute myeloid leukemia years before

749 diagnosis. *Nature Medicine* vol. 24 1015–1023 (2018).

750 37. Papaemmanuil, E. *et al.* Genomic Classification and Prognosis in Acute Myeloid
751 Leukemia. *N. Engl. J. Med.* **374**, 2209–2221 (2016).

752 38. Papaemmanuil, E. *et al.* Clinical and biological implications of driver mutations in
753 myelodysplastic syndromes. *Blood* **122**, 3616–27; quiz 3699 (2013).

754 39. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells.
755 *Science* **349**, 1483–1489 (2015).

756 40. Haferlach, T. *et al.* Landscape of genetic lesions in 944 patients with myelodysplastic
757 syndromes. *Leukemia* **28**, 241–247 (2014).

758 41. Schwartz, J. R. *et al.* The genomic landscape of pediatric myelodysplastic syndromes.
759 *Nat. Commun.* **8**, 1557 (2017).

760 42. Takita, J. *et al.* Novel splicing-factor mutations in juvenile myelomonocytic leukemia.
761 *Leukemia* **26**, 1879–1881 (2012).

762 43. Latchney, S. E. & Calvi, L. M. The aging hematopoietic stem cell niche: Phenotypic and
763 functional changes and mechanisms that contribute to hematopoietic aging. *Semin.*
764 *Hematol.* **54**, 25–32 (2017).

765 44. Griffith, J. F. Age-Related Changes in the Bone Marrow. *Current Radiology Reports* **5**,
766 24 (2017).

767 45. Fabre, M. A. *et al.* Concordance for clonal hematopoiesis is limited in elderly twins.
768 *Blood* **135**, 269–273 (2020).

769 46. Gerstung, M., Papaemmanuil, E. & Campbell, P. J. Subclonal variant calling with
770 multiple samples and prior knowledge. *Bioinformatics* vol. 30 1198–1204 (2014).

771 47. Jones, D. *et al.* cgPcaVEManWrapper: Simple Execution of CaVEMan in Order to
772 Detect Somatic Single Nucleotide Variants in NGS Data. *Curr. Protoc. Bioinformatics*
773 **56**, 15.10.1–15.10.18 (2016).

774 48. Raine, K. M. *et al.* cgPindel: Identifying Somatically Acquired Insertion and Deletion

775 Events from Paired End Sequencing. *Curr. Protoc. Bioinformatics* **52**, 15.7.1–15.7.12

776 (2015).

777 49. Miles, L. A. *et al.* Single-cell mutation analysis of clonal evolution in myeloid

778 malignancies. *Nature* **587**, 477–482 (2020).

779 50. Golding, N. greta: simple and scalable statistical modelling in R. *Journal of Open*

780 *Source Software* **4**, 1601 (2019).

781 51. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Cancer evolution:

782 mathematical models and computational inference. *Syst. Biol.* **64**, e1–25 (2015).

783 52. Ellis, P. *et al.* Reliable detection of somatic mutations in solid tissues by laser-capture

784 microdissection and low-input DNA sequencing. *Nat. Protoc.* **16**, 841–871 (2021).

785 53. Moore, L. *et al.* The mutational landscape of normal human endometrial epithelium.

786 *Nature* **580**, 640–646 (2020).

787 54. Van Loo, P. *et al.* Allele-specific copy number analysis of tumors. *Proc. Natl. Acad. Sci.*

788 *U. S. A.* **107**, 16910–16915 (2010).

789 55. Spencer Chapman, M. *et al.* Lineage tracing of human development through somatic

790 mutations. *Nature* **595**, 85–90 (2021).

791 56. Hoang, D. T. *et al.* MPBoot: fast phylogenetic maximum parsimony tree inference and

792 bootstrap approximation. *BMC Evol. Biol.* **18**, 11 (2018).

793 57. R Core Team. R: A Language and Environment for Statistical Computing. (2020).

794

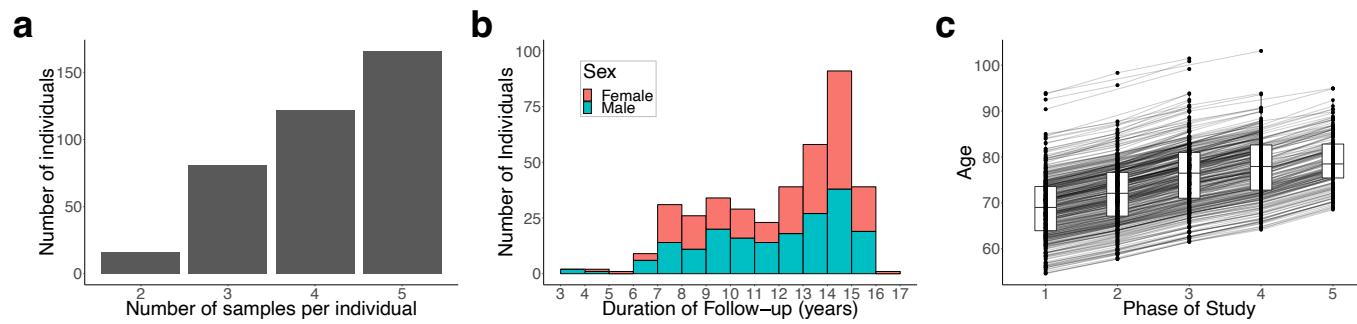
795

Extended data figures

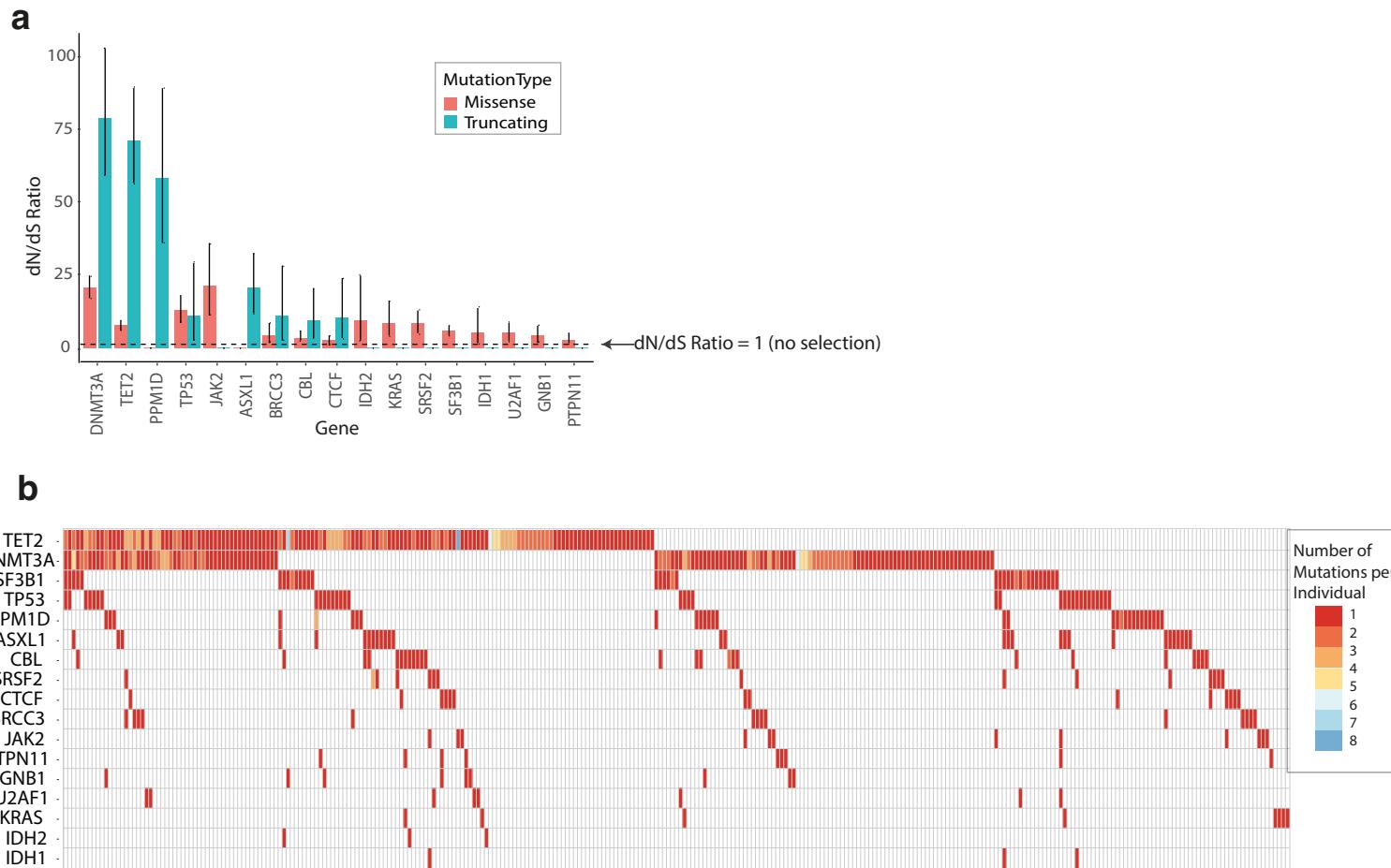
796

797

798

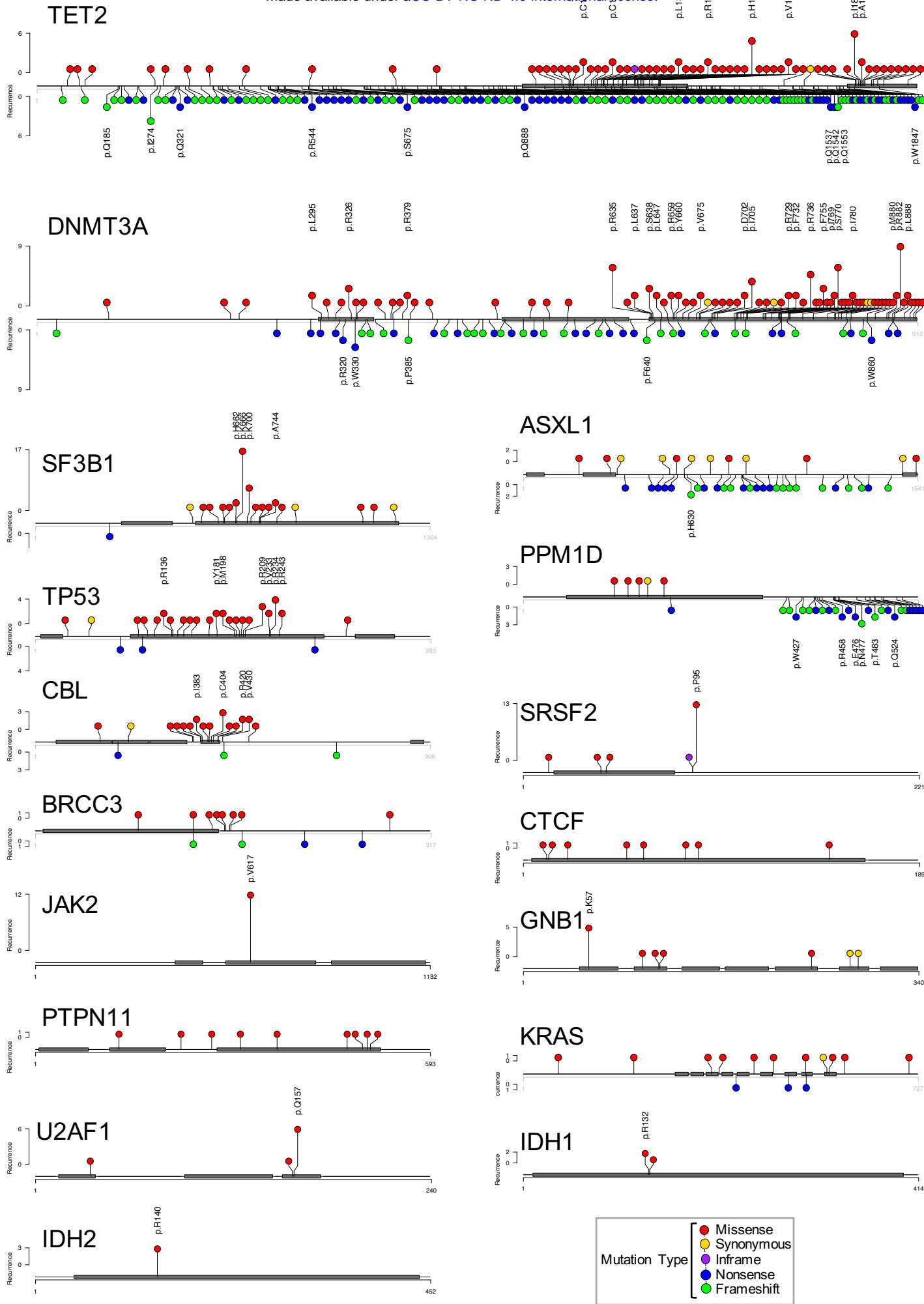


Extended Data Fig. 1: Longitudinal cohort characteristics. **a**, Distribution of the number of serial samples obtained per individual. **b**, Duration of follow-up per individual. **c**, Distribution of participants' ages at each of the five sampling phases of the SardiNIA study.



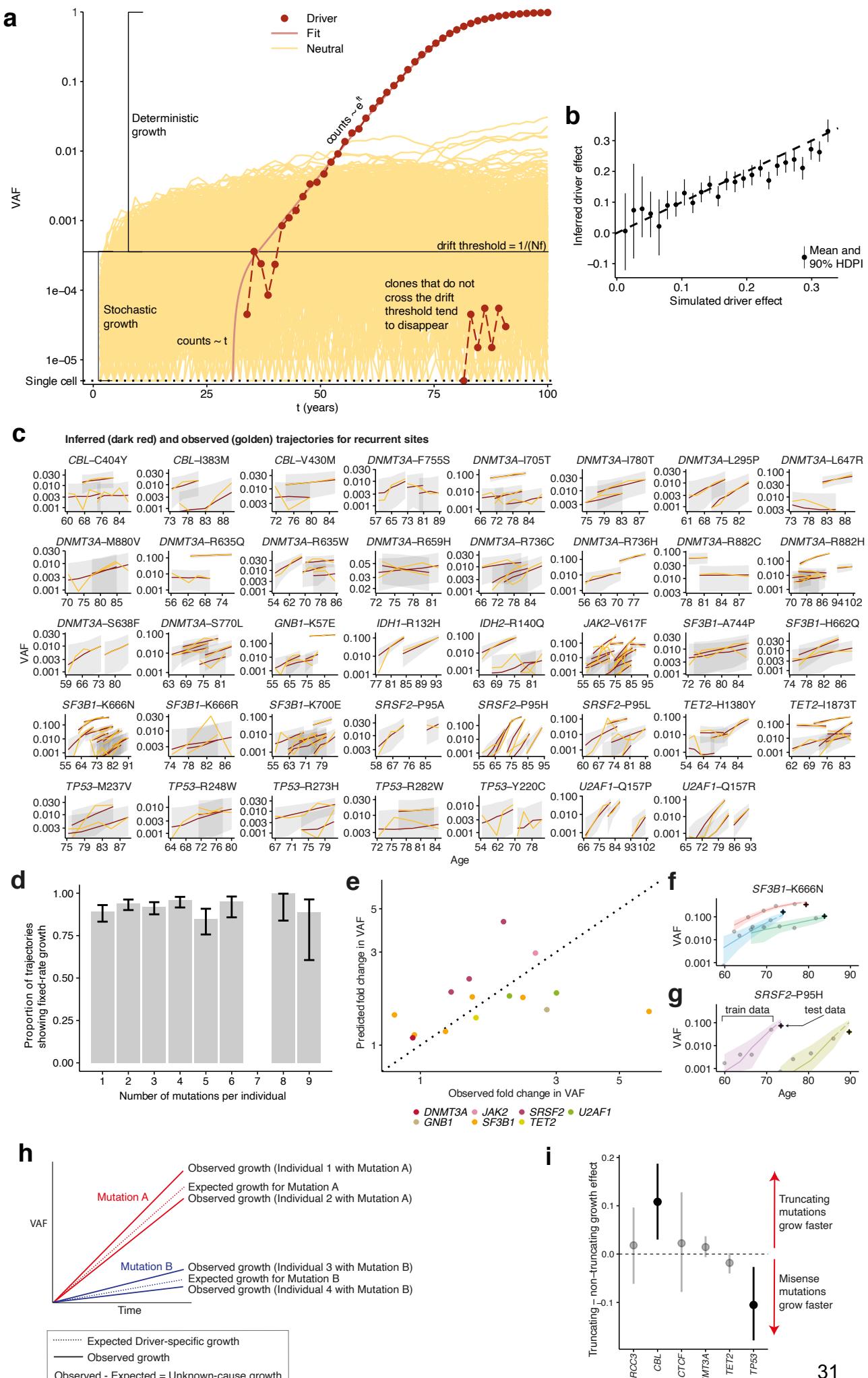
799
800
801
802
803
804

Extended Data Fig. 2: Mutation prevalence and selection in different genes. **a**, Observed-to-expected (dN/dS) ratios for the 17 genes with missense and/or truncating mutations under positive selection (with $q < 0.1$). The dashed line indicates a dN/dS value of 1, which represents neutrality (no selection). **b**, Waterfall plot showing the number and distribution of mutations among participants. Each column represents 1 individual, and each row 1 gene. Coloured squares indicate the presence of a mutation with the specific colour indicating the number of distinct mutations in that gene identified in that individual. For individuals with the same mutation identified at multiple serial time-points, the serially-observed mutation is counted only once.



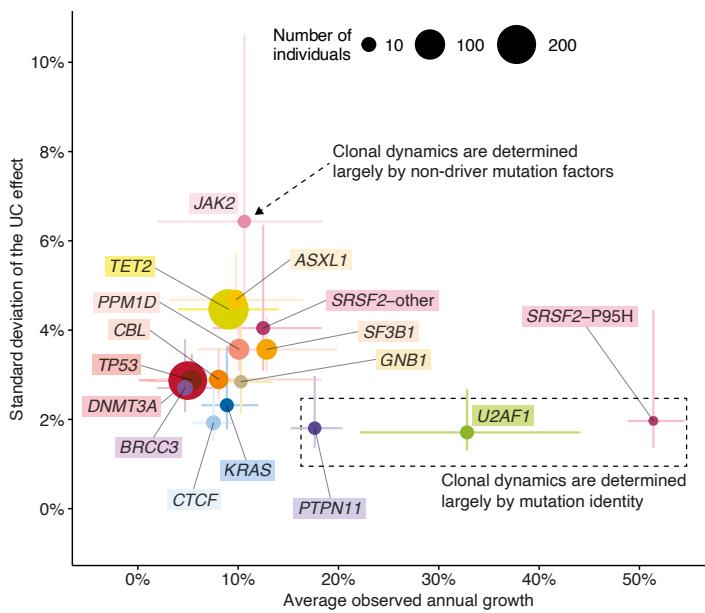
806
807
808
809
810
811
812
813

Extended Data Fig. 3: Distribution of somatic mutations within driver genes (previous page). Lollipop plots show the longest protein isoform of each gene, with protein domains depicted by grey rectangles. Each circle represents a somatic mutation. The vertical distance of the circle from the protein cartoon indicates its recurrence in the cohort (quantified on the y-axis). Amino acid codons recurrently mutated (ie. observed in more than one individual) in our cohort are explicitly labelled. Circle colours indicate the mutation type as per key. Non-truncating mutations (missense, inframe, synonymous) are depicted above and truncating mutations (nonsense, frameshift) below the protein cartoon.

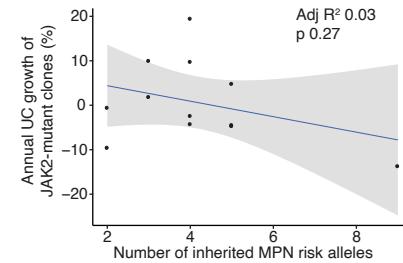


815 **Extended Data Fig. 4: Modelling CH dynamics in older age using time-series VAF data (previous page).** **a,**
816 Representation of a Wright-Fisher simulation, showing two phases of clonal growth. The likelihood of a clone
817 transitioning from stochastic to deterministic growth is inversely proportional to the product of its fitness (f) and
818 the total number of stem cells (N). Clones with no fitness advantage (depicted in yellow) are unlikely to exceed
819 their drift thresholds and tend to disappear or remain undetectable. Fitter clones (depicted in red) are more likely
820 to reach deterministic growth. **b,** Association between the driver mutation effect used in the Wright-Fisher
821 simulations and the driver effect inferred using our model ($R^2 = 0.92$). **c,** Comparison of observed (golden) and
822 inferred (red) trajectories for all recurrently mutated sites. Grey bands represent 95% highest posterior density
823 intervals. **d,** Relationship between the number of mutations co-occurring within an individual and the proportion
824 of clones growing at a fixed rate over time. **e,** Association between VAF predicted by our model, and VAF observed
825 in additional prospectively-collected samples from 11 individuals with 15 CH driver mutations, not used to infer
826 clonal growth rate in our model. The dotted line is along the diagonal, depicting theoretical perfect agreement
827 between predicted and observed VAF. **f,g,** Example trajectories of clones with *SF3B1-K666N* (f) and *SRSF2-P95H*
828 (g) mutations. Points represent VAFs used in our model to fit the growth curve (train), and crosses represent
829 prospectively tested VAFs used (test), showing good agreement between predicted and observed VAFs. **h,**
830 Illustration of the determinants of growth in our model. Each mutant gene and/or site drives an expected rate of
831 clonal growth. In this example, Mutation A is expected to drive faster growth than Mutation B. The growth rates
832 of different clones bearing the same mutation, either in different individuals or in distinct clones within the same
833 individual, can differ. Some grow faster than expected from the identity of the driver mutation (eg. Individual 1
834 with Mutation A), and some grow slower (eg. Individual 2 with Mutation A). The residual term in our model, the
835 difference between observed and expected growth rate, is referred to as “unknown-cause growth”. **i,** Comparison
836 of growth rate associated with truncating vs non-truncating mutations in genes with both driver types. Points
837 above the dashed line show faster growth of truncating mutations, and points below show faster non-truncating
838 mutations.

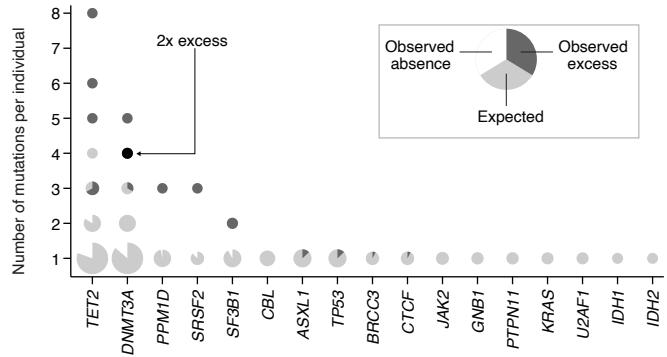
a



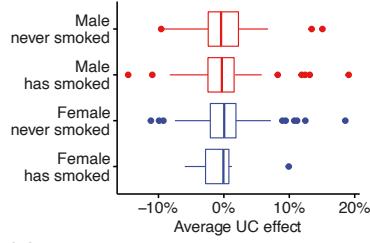
b



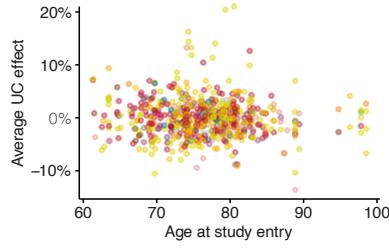
c



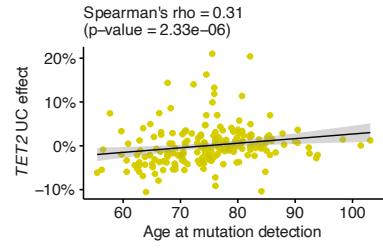
d



e

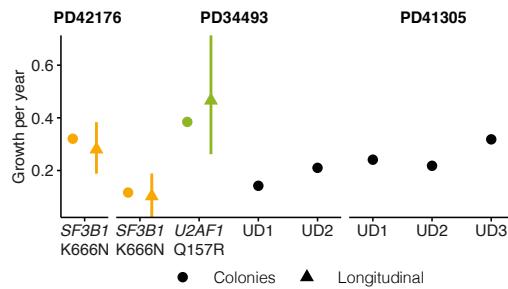


f



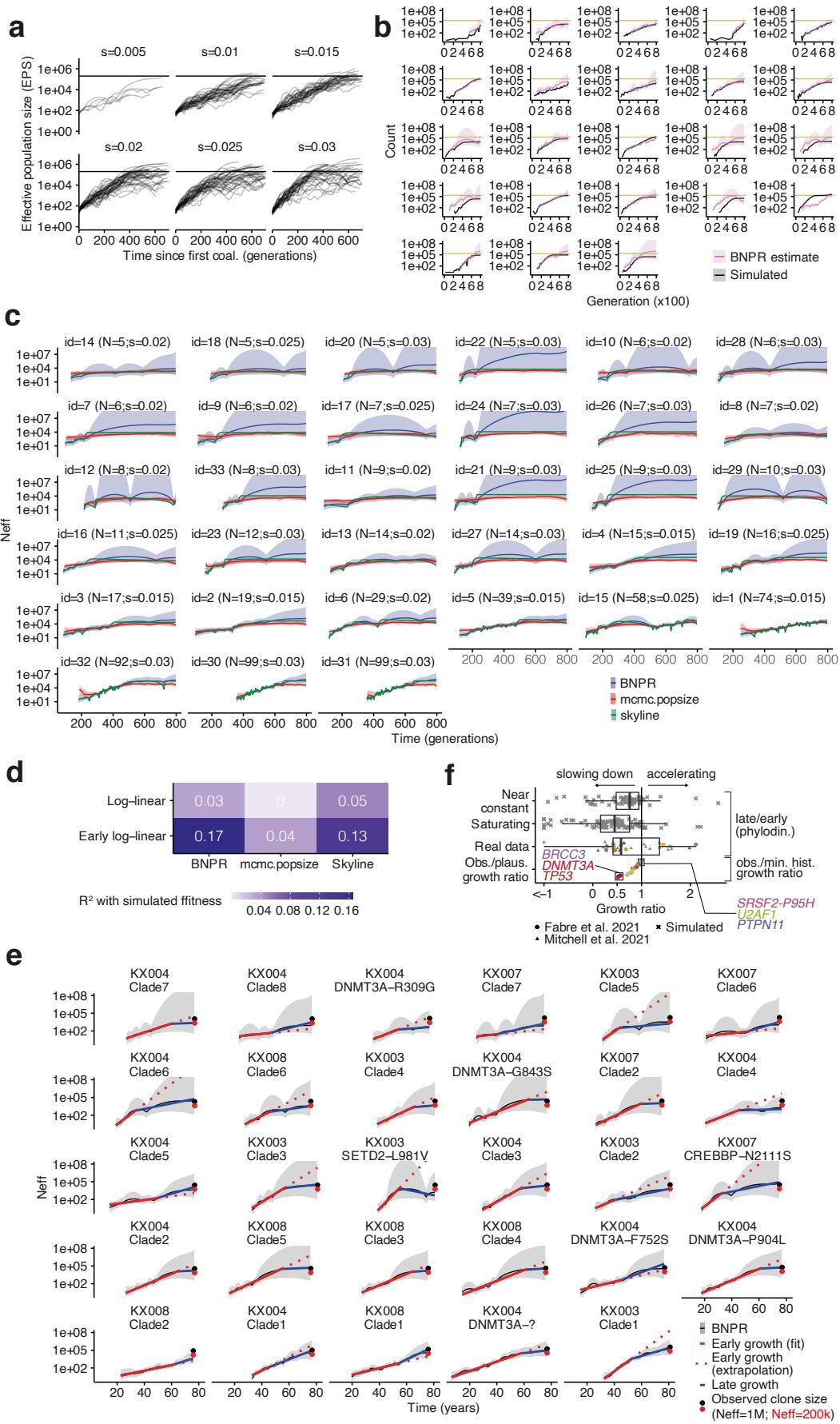
839

840 **Extended Data Fig. 5: Differences in growth rate between individuals/clones with the same driver.** a, For
 841 each gene, we contrast the mean annual growth rate among individuals/clones bearing a mutation in that gene,
 842 with the spread in this rate (defined here as the standard deviation of the unknown-cause (UC) growth). Circles
 843 represent point estimates, with circle size indicating the number of clones bearing a mutation in that gene, and
 844 lines representing the 90% confidence interval (CI). For the standard deviation, the 90% CI was calculated
 845 assuming that $\frac{(n-1)s^2}{\sigma^2} \sim \text{Chisq}(n-1)$, with n being the sample size, s the standard deviation estimate and σ^2 the
 846 true population variance. SRSF2-P95H mutations are plotted separately to other SRSF2 mutations, as they are
 847 associated with significantly different growth dynamics. b, Relationship between number of inherited MPN risk
 848 alleles and JAK2-mutant clonal growth rate. c, The number of mutations per individual in each gene is plotted.
 849 Each data-point is a pie-chart, the size of which reflects the number of individuals. For each gene, given the
 850 observed mutation prevalence in our cohort, the pie is fully light grey if the number of individuals we observed
 851 with a specific number of mutations is the same as the number of individuals we expected by chance. The
 852 presence of a white segment indicates that we found fewer individuals with that number of mutations, compared
 853 to expected. The presence of a dark grey segment indicates that we found an excess of individuals with that
 854 number of mutations. We estimate the expected number of mutations in each gene in each individual through
 855 Monte Carlo estimation; assuming the prevalence of mutations in the cohort is uniform for each gene across
 856 individuals, we simulate 1,000 scenarios where we randomly distribute these mutations given the number of
 857 mutations in each individual. d, Association between sex and smoking history and the average UC effect for each
 858 individual (n.s.). e, Association between age at study entry and the average UC effect for each individual (n.s.). f,
 859 Association between age at mutation detection and UC effect for each TET2-mutant clone (Spearman's rho =
 860 0.31; p-value=2.33*10⁻⁶).



861
862
863
864

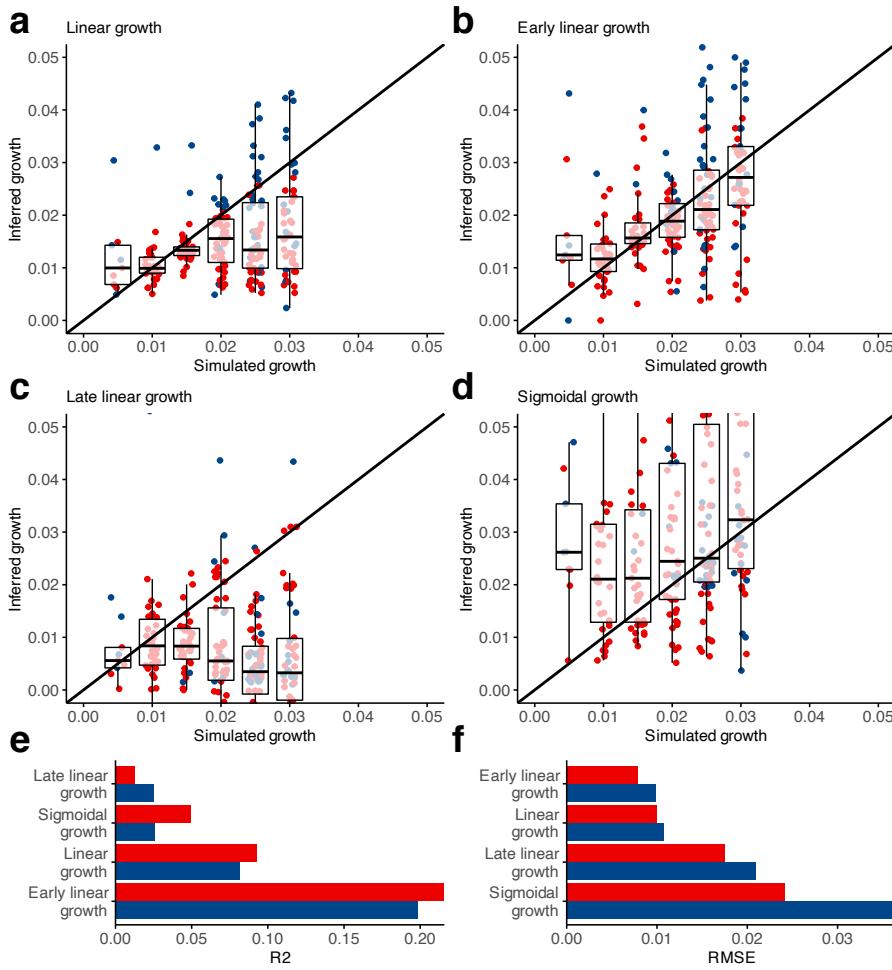
Extended Data Fig. 6: Lifelong growth in phylogenetic trees. Comparison between annual growth derived from phylogenies and growth observed in longitudinal data. For the phylogenies this was obtained by fitting an exponential growth curve to the entire phylodynamic trajectory.



865
866
867
868
869
870
871

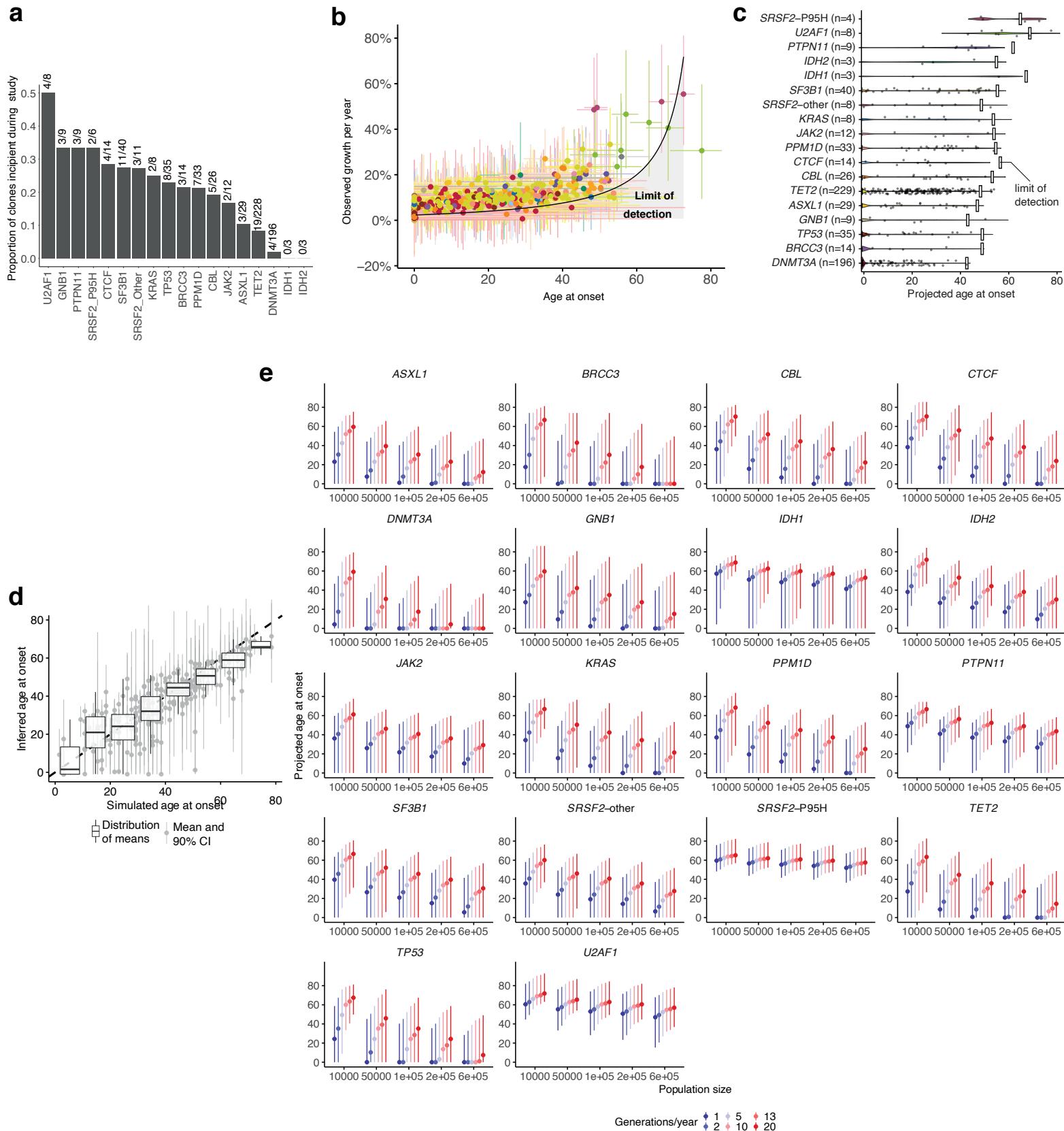
Extended data Fig. 7: Examples and consistency of clonal deceleration from simulations and real data. **a**, Simulated BNPR trajectories from Wright-Fisher simulations with a fixed population size across 800 generations for a range of fitness effects (0.005, 0.010, 0.015, 0.020, 0.025, 0.030). **b**, Comparison between Wright-Fisher simulations (grey) and BNPR estimates from phylogenies obtained from these simulations (pink). The horizontal golden line in each plot represents the HSC population carrying capacity (200,000). **c**, Representation of effective population size (Neff) trajectories using three distinct methods (BNPR, mcmc.popsize and skyline; details in the

872 Supplementary Methods) for their estimation across a range of clade sizes and fitness effects. **d**, Quantification
873 of the association between true fitness values and inferred fitness values for three distinct methods of Neff
874 estimation. **e**, Schematic representation of all trajectories from Mitchell et al. and how extrapolating from the initial
875 growth rate leads to the overestimation of the observed clone size (here the observed clone size is obtained by
876 scaling the proportion of tips in a clade by a total Neff of either 200,000 or 1,000,000 HSC x yr). **f**, Quantification
877 of the deceleration effect from real data and simulations.



878
879
880
881
882
883
884
885

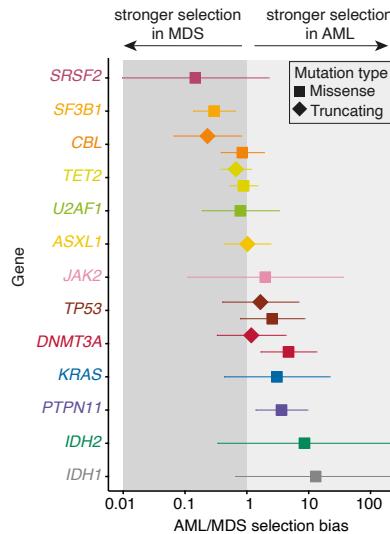
Extended Data Fig. 8: Estimation of the true clone fitness from phylodynamic estimation. Three fits were tested to estimate the true clone fitness from phylodynamic estimation of the population size and these estimates were plotted as a function of the true fitness size (0.005, 0.010, 0.015, 0.020, 0.025 or 0.030). **a**, A log-linear fit; **b-c**, A biphasic fit that estimates an early and a late growth rate and a change-point between both and **d**, a sigmoidal fit. **e**, Coefficient of correlation (R^2) for all four inferred coefficients. **f**, Root mean squared error (RMSE) for all four inferred coefficients. In this figure red represents “low variance trajectories” (the average estimated variance for the logarithm of the trajectory is under 5) and blue represents “all trajectories”.



886
887
888
889
890
891
892
893
894
895

Extended Data Fig. 9: Age at clone detection and onset. **a**, Proportion of clones driven by different driver mutations that were incipient on-study, ie. undetectable at time-point 1 and detectable by the end-of-study. Absolute numbers are given above each bar. **b**, Relationship between age at onset and observed annual growth rate, with 90% highest posterior density intervals (HPDI). The black line and grey shaded area represent the theoretical limit of detection at 80 years of age. **c**, Violin plot showing the distribution of projected ages at onset for all clones, assuming stable lifelong growth at the same fixed rate we observed during older age. **d**, Association between the age at which clones appeared in the simulations and the age at clone foundation inferred using our time-series data ($R^2 = 0.75$). Boxplots show that, while these estimates may have high variance, the distribution of expected values is close to the true value. **e**, Sensitivity analysis depicting the median (dot) and the 95%

896 confidence interval of the ages at onset for each gene when considering different population sizes (10e3, 50e3,
897 100e3, 200e3 and 600e3) and numbers of generations per year (1, 2, 5, 10, 13, 20).



898
899
900
901
902

Extended data Fig. 10: Selection in myeloid malignancies. a, Ratio between AML dN/dS and MDS dN/dS for different genes and mutation types (missense, truncating). If this ratio is >1 there is a bias towards AML, if it is <1 there is a bias towards MDS. Confidence intervals for the ratios were calculated under the assumption that dN/dS estimates are normally distributed.

903 **Supplementary Methods**

904 **Assessing the predictive performance of clonal growth predictions**

905 Using an additional time-point (phase 6) available for 11 individuals with mutations in *CBL*
906 (c.2434+1G>A), *DNMT3A* (P385fs, R882H, W330X), *GNB1* (K57E), *JAK2* (V617F), *PPM1D*
907 (Q524X), *SF3B1* (K666N, K700E, R625L), *SRSF2* (P95H, P95L), *TET2* (Q1542X) and *U2AF1*
908 (Q157P, Q157R). Using the model described in the “Hierarchical modelling of clone
909 trajectories through time” section of the Methods and conditioning on the previous
910 timepoints, we predict the additional time-point and assess the predictive performance
911 through the mean absolute error (MAE) to the true VAF value.

912 **Validating the dynamic coefficient and age at onset inference with Wright-Fisher 913 simulations**

914 We use Wright-Fisher simulations¹⁻³ with a fixed population of 200,000 cells and 50 possible
915 drivers, a range of fitness advantages (0.001 – 0.030) and a range of mutation rates (1.0 *
916 10^{-10} – $4.0 * 10^{-9}$). These ranges were estimated to cover the values inferred and
917 mentioned in considering that one should expect there to be approximately 13 generations
918 of HSC per year and a population size of 200,000 HSC⁴.

919 To simulate the conditions under which the experimental data was obtained, we fit Gamma
920 distributions to the observed coverage and observed age at first time-point truncated at the
921 minimum and maximum values for each. For each simulation we sample from these
922 distributions the first timepoint, a random number of subsequent timepoints (between 2 and
923 4) from a uniform distribution and the coverage for each driver at each timepoint. We simulate
924 the sequencing process as drawing samples from a beta-binomial distribution parameterized
925 similarly to the one described in the “Hierarchical modelling of clone trajectories through
926 time” section of the Methods, where the probability is the proportion of cells from a specific
927 clone present at a given time-point. More concretely, $counts \sim BB(\frac{p\beta}{1-p}, \beta, cov)$, where p is
928 the allele frequency of a mutation, β is the technical overdispersion parameter and cov is the
929 coverage which is sampled from the coverage distribution as inferred from our data.

930 To infer coefficients under this setting we converted generations to years (13 generations per
931 year) and used the framework described in the previous sections to infer these coefficients.
932 Since the nature of these mutations does not consider different levels of genetic resolution,
933 we had to modify the driver coefficient to $driver\ effect \sim N(0, \sqrt{2 * 0.1^2})$ so that the
934 distribution from which this coefficient is being drawn has the one we consider for the driver
935 effect considering a gene, domain and site effect. The observed coefficients are converted
936 to year as $coefficients = (1 + fitness)^g - 1$, where g is the number of generations per year,
937 and we assess the fit between inferred and observed coefficients considering these values.
938 We additionally calculate the age at clone foundation for the inferred coefficients and, using
939 these simulations which allow us to know the true age at clone foundation, we assess the fit
940 between inferred and observed ages at clone foundation.

941 To better understand the impact that population size and generation times have on these
942 simulations, we conduct the same analysis considering two additional scenarios: a
943 population size of 100,000 HSC and 5 generations per year, and a population size of 50,000
944 HSC and 1 generation per year.

945 Finally, we also calculate the age at onset as specified in the “Determining the expected age
946 at beginning of clone onset”. To do this, we assume that these clones follow a Wright-Fisher

947 process, where growth can be separated into two distinct phases which depend on the size
948 of the clone - a stochastic phase, where the clone is too small and during which growth
949 happens linearly, and a deterministic phase, during which growth is approximately
950 exponential (Extended Data Fig. 4a). According to this growth regime, the age at onset can
951 be calculated as $t_0 \text{ adjusted} = t_0 + \frac{\log(g/b_{total})}{b_{total}} - \frac{1}{b_{total}}$, where t_0 is the age at onset if the
952 clone grew exponentially (as opposed to following a Wright-Fisher process), $\frac{\log(g/b_{total})}{b_{total}}$ is
953 the time at which the clone started to grow deterministically and $\frac{1}{b_{total}}$ is the expected time
954 the clone spends following a stochastic growth regime. We assess the validity of this
955 approach by calculating the coefficient of correlation between inferred and true ages at onset
956 from the simulations.

957 **Validating annual growth rate inferences from single-cell phylogenies with** 958 **Wright-Fisher simulations**

959 We use Wright-Fisher simulations ^{2,3} with 50 possible drivers and test a range of different
960 fitness advantages ([0.005,0.010,0.015,0.020,0.025,0.030]) over 800 generations at a fixed
961 population size of 200,000 HSC. For each fitness effect we define a driver mutation rate
962 ($[200 * 10^{-9}, 50 * 10^{-9}, 20 * 10^{-9}, 15 * 10^{-9}, 8 * 10^{-9}, 5 * 10^{-9}]$, respectively) that
963 guarantees that at least a few simulations lead to clones which expand to sufficient sizes and
964 avoid many competing expansions and keep the passenger mutation rate constant ($2 * 10^{-5}$). For each simulation we infer phylogenetic trees by sampling 100 representative
965 clones from our population and using a neighbour-joining algorithm based on mutation
966 presence. The representative sampling is done by defining for each clone a probability of
967 being sampled that is equivalent to its proportion in the population. We then detect the clades
968 that contain drivers, isolate them and infer their effective population size (Neff) trajectory using
969 BNPR ^{5,6}.

971 We fit different models to the inferred Neff trajectories, namely:

- 972 1. A log-linear fit (assumes exponential growth);
- 973 2. A scaled and shifted sigmoidal fit (assumes that growth saturates based on the Neff
974 trajectory);
- 975 3. A shifted sigmoidal fit (assumes that growth saturates at 1 and that the most recent
976 Neff estimate corresponds to the proportion of tips in the clade);
- 977 4. A biphasic log-linear fit (assumes that growth is exponential and has two distinct
978 coefficients corresponding to early and late growth; the boundary between early and
979 late growth - otherwise referred to as the changepoint between both - is also fitted
980 with the other parameters and is constrained to lie in the central part of the trajectory:
981 for the time t over which the clone expands, the changepoint cannot be inferior to
982 $\min(t) + 0.25 * \text{range}(t)$ nor superior to $\max(t) - 0.25 * \text{range}(t)$, where $\text{range}(t) =$
983 $\max(t) - \min(t)$. This constraint prevents fits that are too close to the clonal inception
984 or to the clone at later stages).

985 We compare these models by assessing how closely they are able to recapitulate the original
986 fitness in the simulations. To do so, we calculate their coefficient of determination and root
987 mean squared error. We also visually assess how similar these trajectories are to the true
988 driver trajectories as reconstructed from simulations - to match clones from a Wright-Fisher
989 simulation to an expansion in a phylogenetic tree we assign each clone from the Wright-

990 Fisher simulation to its nearest clone in a phylogenetic tree using the Hamming distance
991 between the mutations in each clone.

992 We additionally estimate the effective population size using two other methods for validation
993 - mcmc.popsize and skyline from the ape package ⁷ in R . This allows us to confirm our
994 observations that stem from phylodynamic estimations and that concern, mostly, a prevalent
995 effect of clonal deceleration which is detailed in the main text and in the following section.

996 **Detecting deceleration in single-cell phylogenies and longitudinal data**

997 We infer the presence of deceleration in both single-cell phylogenies and longitudinal data.
998 To do this, we use two distinct methods: calculating the ratio between the expected and
999 observed VAF and calculating deceleration using growth rates.

1000 For the first method - calculating the ratio between expected and observed VAF - we use the
1001 value for the early growth from the changepoint log-linear fit described in “Validating annual
1002 growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” and
1003 extrapolate the Neff to the age at sampling. By doing so we get the expected clone fraction
1004 if growth had not changed during the Neff trajectory. We also calculated the observed clone
1005 fraction as the fraction of tips in the clade. To get the expected clone fraction from Neff we
1006 divide Neff by the inferred population size in Lee-Six et. al (200,000 HSC) ⁸. We then calculate
1007 the ratio between the expected and observed clone size - if this ratio is close to 1 this implies
1008 little to no changes in dynamics, whereas a ratio above 1 implies deceleration and a ratio
1009 below 1 implies acceleration.

1010 For the second method - calculating deceleration using growth rates - we define two distinct
1011 quantities for both single-cell phylogenies/longitudinal data - expected/observed growth,
1012 corresponding to the growth rate of each clone during observation at old age, and
1013 early/minimal historical growth, corresponding to the growth rate of each clone at an earlier
1014 stage of clonal dynamics - and calculate the ratio between them.

1015 As such, for phylogenies we first calculate the Neff trajectory for each clade using BNPR ³³.
1016 Next, and using their Neff trajectory, we calculate their expected growth rate by assuming a
1017 sigmoidal growth. We additionally assume that the final Neff (Neff at sampling) estimate
1018 corresponds to the fraction of tips in the clade and we scale our data accordingly such that
1019 1 corresponds to the maximum Neff and the fraction of tips in the clade corresponds to Neff
1020 at sampling. Thirdly and using the changepoint log-linear fit described in “Validating annual
1021 growth rate inferences from single-cell phylogenies with Wright-Fisher simulations” we derive
1022 the value for early growth. Finally, as a measure of deceleration, we calculate the ratio
1023 between expected and early growth - a value close to 1 for this ratio implies an absence of
1024 deceleration whereas smaller values imply deceleration.

1025 For the longitudinal data we use the observed growth for each clone as described in
1026 “Hierarchical modelling of clone trajectories through time”. Next, we calculate the (minimal)
1027 historical growth as the growth that excludes all posterior samples that would lead to age at
1028 onset estimates exceeding lifetime (ages at onset for clones below -1, a heuristic value
1029 chosen to represent developmental onset of clones). Finally and as a measure of
1030 deceleration, we calculate the ratio between observed and historical growth. The
1031 interpretation for this ratio is similar to that defined in the previous paragraph for phylogenetic
1032 data - a value of 1 implies an absence of detectable deceleration, whereas smaller values
1033 represent the minimal amount of deceleration. This method has, however a caveat - due to
1034 the nature of this calculation (excluding posterior samples which are too slow to provide
1035 solutions within lifetime), values above 1 (indicating acceleration) are technically impossible.

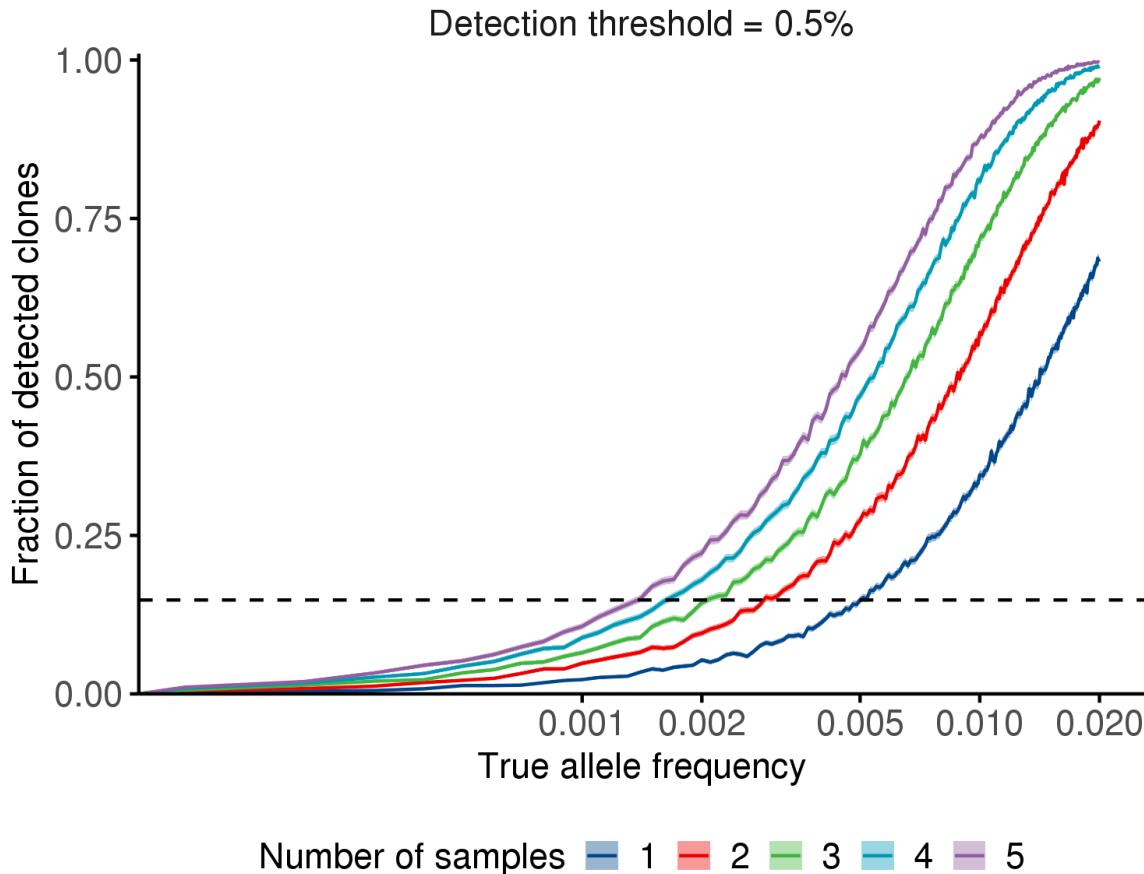
1036 **Supplementary Notes**

1037 **Supplementary Note 1 - Determining the effect of repeated sampling** 1038 **on the theoretical limit of detection**

1039 Across this work we sequence individuals a median of three times across their lifetime. We
1040 define a detection threshold of 0.5% VAF as the minimum clone size for detection on
1041 individual timepoints, but the repeated sampling leads to 0.5% VAF being an
1042 overestimation of the actual limit of detection (LOD) - the size at which clones become
1043 detectable.

1044 To show this, we simulate the repeated sampling of variants existing at a true clone
1045 proportion between 0 and 2%. We use this proportion p as the probability parameter in a
1046 beta binomial distribution, the overdispersion β calculated using technical replicates as the
1047 overdispersion in the same beta binomial distribution and a coverage of 1000. Having fully
1048 parameterized this distribution ($\text{counts} \sim BB(\frac{p\beta}{1-p}, \beta, 1000)$) we sample counts from it
1049 between 1 to 5 times. For each combination of clone size and number of samples we
1050 perform 1,000 realisations and calculate the number of detected clones at a threshold of
1051 0.5%. This allows us to assess the fraction of clones with a specific size which are detected
1052 if we sample them multiple times - in other words, are able to assess the detection rate for
1053 different clone sizes and different numbers of samples.

1054 With this, we show that, at a threshold of 0.5% and sampling only once, we detect 14.8%
1055 of all clones existing at 0.5% (Supplementary Notes Fig. 1). However, repeating this
1056 sampling 3 and 5 times leads to the detection of approximately 37.7% and 54.3% of all
1057 clones existing at 0.5%, respectively. As such, under regular conditions - a single sample -
1058 we would detect 13.5% of all clones present at 0.5% with a detection threshold of 0.5%.
1059 The question we should now ask is: what is the smallest possible clone size we detect at
1060 the same rate of detection - 13.5% - if we increase the number of samples? Using the
1061 same set of simulations, we can calculate the likely minimal size of the detected clones,
1062 summarised in Supplementary Notes Table 1, with clones as small as 0.21% and 0.14%
1063 being detected with 3 and 5 samples, respectively, using the same detection rate. As such,
1064 when considering the theoretical LOD used in Figure 4k, we avoided using 0.5% which, as
1065 we show, would be at least twice as high as the theoretical LOD obtained from simulations.



1066
1067
1068

Supplementary Notes Fig. 1 - Fraction of detected clones upon repeated samples/timepoints at a detection threshold of 0.5%.

1069
1070
1071

Supplementary Notes Table 1 - The minimal size of detected clones using a 0.5% threshold and assuming that we are interested in detecting the same fraction of clones we would detect with a single sample at a detection threshold of 0.5%.

Number of samples	Minimal size of detected clones at 15.08%
1	0.50%
2	0.30%
3	0.21%
4	0.16%
5	0.14%

1072

1073

Supplementary references

1074
1075
1076
1077
1078
1079
1080
1081

1. Gillespie, John H. Population Genetics: a Concise Guide. Baltimore, Md: The Johns Hopkins University Press (1998).
2. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225 (2007).
3. Beerenwinkel, N. & Gerstung, M. clonex. (Github). <https://github.com/gerstung-lab/clonex>
4. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science (2020) doi:10.1126/science.aay9333.

1082 5. Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. *phylodyn*: an R package for
1083 phylodynamic simulation and inference. *Mol. Ecol. Resour.* 17, 96–100 (2017).

1084 6. Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient
1085 Bayesian inference framework for coalescent-based nonparametric phylodynamics.
1086 *Bioinformatics* 31, 3282–3289 (2015).

1087 7. Paradis, E. & Schliep, K. *ape* 5.0: an environment for modern phylogenetics and
1088 evolutionary analyses in R. *Bioinformatics* 35, 526–528 (2019).

1089 8. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic
1090 mutations. *Nature* 561, 473–478 (2018).