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Abstract 1 

 2 

The subiculum is positioned at a critical juncture at the interface of the hippocampus with the 3 

rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent 4 

memory tasks remain largely unknown. One obstacle to make analytical comparisons of 5 

neural firing patterns between the subiculum and hippocampal CA1 is the broad firing fields 6 

of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the 7 

broad firing field of a subicular neuron into multiple subfields to find the unique functional 8 

contribution of the subiculum while male rats performed a hippocampal-dependent visual 9 

scene memory task. Some of the broad firing fields of the subicular neurons were 10 

successfully divided into multiple subfields by using the theta-phase precession cycle. The 11 

resulting phase-based fields in the subiculum were more similar to those in CA1 in terms of 12 

the field size and phase-precession strength. The new method significantly improved the 13 

detection of task-relevant information in subicular cells without affecting the information 14 

content represented by CA1 cells. Notably, multiple fields of a single subicular neuron, 15 

unlike those in the CA1, could carry heterogeneous task-related information such as visual 16 

context and choice response. Our findings suggest that the subicular cells integrate multiple 17 

task-related factors by using theta rhythm to associate environmental context with action. 18 
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3 

Introduction 19 

 20 

The hippocampal formation plays key roles in fundamental cognitive functions, including 21 

spatial navigation and episodic memory (Scoville and Milner, 1957; O'Keefe and Nadel, 22 

1978; Eichenbaum, 2000). The subiculum, a region within the hippocampal formation, has 23 

long been considered the area from which cortical outputs of the hippocampus emanate 24 

(Amaral et al., 1991; Witter et al., 2000). However, viewing the subiculum as an area that 25 

passively transmits hippocampal information to cortical regions might be inappropriate, 26 

because the subiculum is connected not only with the CA1 of the hippocampus but also with 27 

other areas, including the medial prefrontal cortex, entorhinal cortex, retrosplenial cortex, 28 

perirhinal cortex, postrhinal cortex, nucleus accumbens, basal amygdala and various 29 

subcortical regions (Witter, 2006; Cembrowski et al., 2018b; Matsumoto et al., 2019). 30 

Physiologically, it has been reported that the neural correlates of the subiculum are 31 

significantly different from those of the CA1 during spatial navigation. Specifically, neurons 32 

in the subiculum tend to exhibit broader place fields than those in the CA1 (Barnes et al., 33 

1990; Sharp and Green, 1994; Kim et al., 2012b; Lee et al., 2018). Also, place cells in the 34 

subiculum are more attuned to movement-related factors, such as direction and motion, 35 

during navigation compared with CA1 place cells (Lever et al., 2009; Olson et al., 2017; 36 

Kitanishi et al., 2021; Ledergerber et al., 2021). A few studies have also suggested that the 37 

subiculum is essential in remembering places and environmental contexts (Morris et al., 38 

1990; Potvin et al., 2007, 2009; Potvin et al., 2010; Melo et al., 2020). However, the exact 39 

roles of subicular neurons, especially in a goal-directed memory task, still remain largely 40 

unknown. In our previous study, we reported that neurons in both the subiculum and CA1 41 

showed rate remapping according to task-related factors, specifically visual scene and choice 42 
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4 

response in a visual scene memory (VSM) task in which rats were required to make choices 43 

in a T-maze using the visual scene stimulus presented around the maze (Lee et al., 2018). 44 

Interestingly, place cells in the CA1 showed such firing properties while coding very specific 45 

locations in space, whereas cells in the subiculum fired similarly while mapping broader 46 

areas (e.g., stem or choice arm region), as if they represent the cognitive structure of the task 47 

by schematically parsing the environment. On the basis of these results, we speculated that 48 

position-linked environmental information in the hippocampus in the VSM task (Delcasso et 49 

al., 2014; Lee and Lee, 2020) might be translated into contextual action-related information 50 

that can be communicated with other brain regions. 51 

One major obstacle that poses great difficulties for investigations of the neural 52 

correlates of subicular neurons is their higher spontaneous firing rates and broader firing 53 

fields in space compared with those of place cells in the hippocampus (Sharp and Green, 54 

1994; Kim et al., 2012b; Lee et al., 2018). These firing characteristics of subicular neurons 55 

make it difficult to apply the conventional analytical techniques optimized for place cells 56 

recorded from hippocampus, where place fields are more restricted to specific locations of the 57 

environment with a higher signal-to-noise ratio compared with the subiculum. For example, 58 

in our previous study (Lee et al., 2018), we sought to identify field boundaries of subicular 59 

cells by finding local minima through statistical comparisons of trial-by-trial firing rates 60 

between neighboring bins. However, such methods had shortcomings, such as defining some 61 

subicular cells as having no fields and ignoring small subfields in the presence of a dominant 62 

field with a very high firing peak.  63 

Notably, some previous studies attempted to parse the broad spatial firing field of a 64 

subicular neuron into smaller fields using the phases of spikes in relation to theta rhythm 65 

(Maurer et al., 2006; Kim et al., 2012b). Here, inspired by these studies, we compared the 66 

traditional rate-based field-detection method with the theta phase-based field-detection 67 
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method using the same physiological data recorded from the CA1 and subiculum in our 68 

previous study (Lee et al., 2018). The current study showed that the phase-based analysis 69 

could successfully parse subicular firing fields into multiple subfields and that these newly 70 

parsed place fields in the subiculum better represented task-related information. Importantly, 71 

some subicular cells represent multiplex information associated with the VSM task through 72 

their phase-based subfields, possibly suggesting a unique role of the subiculum in integrating 73 

environmental information with action.      74 

 75 

Materials and Methods 76 

 77 

Subjects 78 

Male Long-Evans rats (n = 5) were used in the current study. Food was restricted to maintain 79 

rats’ body weights at 350–400 g (85% of free-feeding weight), and water was made available 80 

ad libitum. Rats were individually housed under a 12-h light/dark cycle. All protocols were 81 

approved by the Institutional Animal Care and Use Committee of Seoul National University. 82 

 83 

Behavioral task 84 

Detailed descriptions of our experimental procedures, including the visual scene memory 85 

(VSM) task and the apparatus (Figure 1A), are available in our previous study (Lee et al., 86 

2018). Briefly, the rat was located in a start box before a trial began. The experimenter started 87 

the trial by opening the door of the start box, which also triggered presentation of a patterned 88 

visual stimulus (i.e., visual scene) in an array of three adjacent LCD monitors surrounding the 89 

choice-arm region of the T-maze. The rat then entered and ran along the stem of the T-maze 90 

(stem, 73 × 8 cm; arms, 38 × 8 cm) and was required to turn left or right at the end of the 91 
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stem (choice point) in association with the visual scene. The rat obtained a quarter piece of 92 

cereal reward (Froot Loops, Kellogg’s) from the food well at the end of the correct arm, but 93 

no reward was given if it entered the wrong arm. Four visual scenes (zebra, bamboo, pebbles, 94 

mountains) were used. In all sessions, zebra stripes and bamboo patterns were associated with 95 

the left arm, and pebbles and mountain patterns were associated with the right arm; within a 96 

session, the four visual scenes were presented in a pseudorandom sequence.  97 

 During the pre-surgical training period, the rat was initially trained with a pair of 98 

scene stimuli (zebra vs. pebbles or bamboo vs. mountain, counterbalanced for rats) until it 99 

reached the performance criterion for each pair (≥ 75% correct for each scene for two 100 

consecutive days). Once the rat reached the performance criterion for both scene pairs, a 101 

hyperdrive carrying twenty-four tetrodes (+3 reference electrodes) was surgically implanted 102 

in the right hemisphere to cover 3.2-6.6 mm posterior to bregma and 1-4 mm lateral to the 103 

midline. After 1 wk of recovery, the rat was retrained until it reached pre-surgical 104 

performance levels (Figure 1B), during which time the tetrodes were lowered into the 105 

subiculum and CA1 by 40–160 μm daily. Thereafter, the main recording sessions (123 ± 6 106 

trials/session, mean ± SEM) began, and the four scene stimuli were presented in an 107 

intermixed fashion during sessions. 108 

 109 

Electrophysiological recording and histological procedures 110 

Single unit spiking activity and local field potentials (LFPs) were recorded from the dorsal 111 

CA1 and subiculum. Neural signals were transmitted to the data acquisition system (Digital 112 

Lynx SX; Neuralynx) through a headstage connected to the EIB board and tethered via a slip-113 

ring commutator on the ceiling. Neural signals from tetrodes were amplified 1,000–10,000 114 

times and sampled at 32 kHz. Spiking data were acquired by filtering at 600–6,000 Hz. LFPs 115 

were obtained by filtering the same signals at 0.1–1,000 Hz. After completion of all recording 116 
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sessions, electrolytic lesions (10 μA current for 10 s) were made to mark the tip positions of 117 

the tetrodes. Twenty-four hours after electrolytic lesioning, the rat was sacrificed by 118 

inhalation of an overdose of CO2 and perfused transcardially. Brain tissue was stained using 119 

thionin or Timm’s method for Nissl substances (see details in Lee et al. (2018); Figure 1C).  120 

The anatomical boundaries of the CA1 and subiculum were determined based on the 121 

rat brain atlas (Paxinos and Watson, 2009). Tetrodes located in the transition area between the 122 

CA1 and subiculum were excluded. To quantitatively describe the proximodistal positions of 123 

the recording tetrodes, we measured the linearized length of the cell layer in the CA1 and 124 

subiculum—specifically, the distance between the most distal to the proximal end along the 125 

curved pyramidal cell layer in a given section—using image processing software (ImageJ; 126 

NIH). Recording positions across rats were normalized by selecting a median value among 127 

the linearized lengths of the pyramidal cell layers of the CA1 and subiculum in all rats, and 128 

the ratio between the CA1 and subiculum was obtained (subiculum:CA1 = 0.36:0.64). The 129 

relative positions of tetrode tips within each region were then calculated (Figure 1D).  130 

 131 

Extraction of outbound running epochs 132 

Before proceeding with a set of analyses based on spiking data in relation to their theta 133 

phases, we extracted only those epochs associated with outbound journeys (from the start box 134 

to either left or right food well). To facilitate theta rhythm-related analyses, we calculated the 135 

instantaneous running speed so as to include epochs in which rats ran at a reasonable speed. 136 

To this end, we interpolated linearized position data to compensate for vacancies caused by 137 

rat head movements and/or tether interference. Next, outlier data points were suppressed 138 

using a locally weighted robust regression. Then, the instantaneous running speed, calculated 139 

by dividing the length of three consecutive data points by the duration of time, was assigned 140 

to the middle point of the three. The average running speed was 35.3 cm/s in all sessions for 141 
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all rats. Spikes that occurred when running speed was greater than 20 cm/s were used in this 142 

study. If the latency from the start box to the food well was longer than 6 s, that trial was 143 

discarded. 144 

 145 

Spiking data analysis 146 

Unit isolation 147 

Single units were isolated manually using both commercial software (SpikeSort3D; 148 

Neuralynx) and a custom-written program (WinClust) based on the waveform parameters, 149 

peak amplitude, energy, and peak-to-valley latencies. The same criteria from our previous 150 

study (Lee et al., 2018) were used to evaluate unit-isolation quality, with the additional 151 

criterion that the number of spikes during running epochs of outbound journeys on the track 152 

should be greater than 50 (subiculum, n = 208 units; CA1, n = 327 units).  153 

 154 

Detection of firing rate-based place fields 155 

Position data acquired during outbound running epochs were first linearized by scaling down 156 

using 2-cm spatial bins. The choice point—that is, the point where the rat’s position data 157 

diverged between left and right choice trials—was determined by detecting the spatial bin 158 

with a statistical difference between left and right position traces (two-sample t-test). Then, a 159 

linearized firing rate map was constructed by dividing the number of spikes by the number of 160 

position data points in individual spatial bins. Boundaries of a firing field were defined as the 161 

first spatial bin at which the firing rate dropped below 33% of the peak firing rate for two 162 

consecutive bins. If a local peak exceeding 50% of the maximum peak firing rate was found 163 

outside the predetermined firing field, it was considered as the peak of a possible subfield, 164 

and the boundaries of the subfield were found using the same algorithm. After defining the 165 

field boundaries, a firing field was identified as a place field when the peak firing rate within 166 
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the field exceed 1 Hz and the spatial information score of the field was greater than 0.5. The 167 

spatial information score was computed according to the definition of Skaggs et al. (1993) as 168 

follows: 169 

Spatial information score = ∑ �� ���� ���	 ��
� (bits/spike), 170 

where 
 denotes the spatial bin, �
 is the occupancy rate in the 
th bin, �
 is the mean firing 171 

rate in the 
th bin, and � is the overall mean firing rate. The mean firing rate and peak firing 172 

rate were obtained from the raw rate maps. For display, the rate maps were smoothed using 173 

the adaptive binning method. 174 

 175 

LFP analysis 176 

Tetrode selection  177 

To align baseline offsets, we down-sampled LFPs from 32 kHz to 2 kHz and filtered them at 178 

3–300 Hz using a zero-phase bandpass filter (3rd-order Butterworth filter with the filtfilt 179 

function in MATLAB). LFP traces from running epochs were then visually inspected to 180 

exclude tetrodes whose voltage traces exceeded the maximum value (3,000 μV) of the 181 

analog-digital converter or artifacts such as bumping noises. Spiking phases in relation to 182 

theta rhythm were analyzed by obtaining a power spectral density (PSD) function using a 183 

multi-taper method (Chronux ToolBox; MATLAB) and then selecting reference tetrodes with 184 

the strongest power in the high theta band (7-12 Hz) for individual sessions and regions. The 185 

frequency range of the theta band was set so as to include the most prominent peak at 8 Hz in 186 

the mean power spectral density function during the outbound journey and to minimize 187 

bumping noises that usually occurred at less than 7 Hz. LFPs recorded from the CA1 and 188 

subiculum were used for spiking phase analyses of single units in the corresponding regions.  189 

 190 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.456028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Spiking theta phases 191 

LFPs from reference tetrodes were filtered in the theta range (7-12 Hz) using a zero-phase 192 

bandpass filter, followed by application of a Hilbert transform to decompose filtered LFPs 193 

into amplitude and phase information. Spiking-phase relationships were examined by plotting 194 

instantaneous theta phases and rat’s linearized positions at time points when spikes occurred 195 

in a 2-dimensional space (phase-position plot). 196 

 197 

Identification of theta phase-based place fields using DBSCAN 198 

To define a cluster of spikes that shared the same spiking-phase relationships, we adopted a 199 

well-known clustering algorithm called the Density-Based Spatial Clustering of Applications 200 

with Noise (DBSCAN) suggested by Ester et al. (1996). DBSCAN is a density-based, 201 

nonparametric algorithm that gathers data points in close proximity while excluding distant or 202 

sparsely located points as noise. In DBSCAN, it is not necessary to specify the number of 203 

clusters in advance. Still, some parameters must be predetermined to run the algorithm, such 204 

as the distance (ε) and the minimum number of points within a distance (Nmin). Specifically, if 205 

the number of data points at a distance ε from a point is greater than Nmin, including itself, the 206 

point is defined as a core point of a cluster. If another point contains the core point within 207 

distance ε but does not satisfy Nmin, it is defined as a border point. If there is no core point 208 

and Nmin is not satisfied, the point is defined as a noise point. In our study, clusters on the 209 

position-phase plot were captured by the DBSCAN algorithm to find theta phase-based place 210 

fields (TP-based place fields). To avoid detecting spurious sparse clusters, we restricted 211 

DBSCAN parameters to the following ranges: distance (ε) < 8 cm; Nmin ≥ 10; and total 212 

number of spikes in a cluster ≥ 30. The parameters were determined manually in those ranges 213 

so that the number of clusters in a cell was greater than the number of local maxima in 214 

linearized firing rate maps. Biased clustering caused by experimenter subjectivity was 215 
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prevented by performing cross-validation with three additional experimenters who did not 216 

participate in analyses of the current data sets. After cross-validation, cells with invalid 217 

clustering were excluded from the analysis based on the following: (1) DBSCAN parameters 218 

not satisfied (subiculum, n = 21; CA1, n = 24), (2) insufficient spikes (subiculum, n = 17; 219 

CA1, n = 30), or (3) irregular cluster shape (subiculum, n = 16; CA1, n = 6). 220 

 221 

Quantification of theta phase precession 222 

After identification of individual place fields using theta phases, the slopes of theta 223 

precession were measured by fitting individual spike clusters to circular-linear regression 224 

lines (Kempter et al., 2012). A circular-linear correlation was also applied to determine if the 225 

phase shift was significant (Toolbox for circular statistics with MATLAB; Berens, 2009). 226 

Theta-phase precession of a place field was considered significant if the following criteria 227 

were met: (1) range of phase shift ≥ 180°, (2) slope of regression line < 0, and (3) p-value of 228 

circular-linear correlation ≤ 0.05. 229 

 230 

Analysis of rate remapping 231 

To measure the amount of rate modulation between firing rate maps associated with different 232 

trial conditions (i.e., scene stimulus or choice response), we obtained a rate difference index 233 

(RDI) by calculating an absolute value of Cohen’s d:  234 

Rate difference index = �
���������
��������
�������,����

�, 235 

where ��� and ��	 denote the in-field firing rates of individual trials associated with 236 

different conditions. Cohen’s d measure was adopted because it includes a term for standard 237 

deviation in its denominator, which was expected to control for the confounding effect 238 

induced by the variability in intrinsic firing between the CA1 and subiculum. With respect to 239 
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RDI for scene stimuli, two RDI values were obtained from two pairs of scenes associated 240 

with the left or right choice arm (RDISCN-L and RDISCN-R, respectively), then a maximum 241 

value was chosen as a representative scene-based RDI of a cell (RDISCN). RDI for choice 242 

response (RDICHC) was measured by calculating the difference in firing rates between left and 243 

right choice trials. For calculation of RDICHC, only firing rate maps based on the areas ahead 244 

of the choice point were used because the rat’s actual positions on the maze were different 245 

after the choice point. Since RDISCN was originally calculated from firing rate maps 246 

associated with the same choice arm, all spiking activities after the choice point were used. 247 

However, if a spatial bin with a firing rate less than 75% of the peak firing rate was located in 248 

one arm of the maze, the field was considered an arm field and was excluded from the RDI 249 

analysis. For joint comparisons of changes in RDISCN and RDICHC, a weighted rose plot was 250 

constructed using the angles and lengths of vectors representing individual neurons, after 251 

which a statistical test was performed in each angular bin. For analysis of the orthogonality of 252 

RDI values, the angles between the diagonal line and the vectors of fields with maximum 253 

RDISCN or RDICHC were obtained. Then, the product of their sine values, defined as the 254 

strength of RDI orthogonality, was obtained. This measurement was adopted because it had 255 

the characteristic that its value approached zero as any one of the fields came close to the 256 

diagonal line. 257 

 258 

Statistical analysis 259 

Both the behavioral and neural data were analyzed using nonparametric statistical tests with 260 

the level of statistical significance set at α = 0.05 unless noted otherwise. Testing for 261 

statistical significance was two-sided, except when testing significance against a specific 262 

known value. For example, a one-sample Wilcoxon signed rank test was used to compare the 263 

behavioral performance for different scene stimuli against our performance criterion of 75% 264 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.456028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

and to test whether the differences in RDISCN or RDICHC between field identification methods 265 

were significantly above zero. The proportional differences in cell types between two regions 266 

or two methods were tested using a Chi-square test. Comparisons of basic firing properties 267 

including mean firing rates, spatial information score and field width were conducted using a 268 

Wilcoxon rank sum test. The differences in slope and strength of theta phase precession were 269 

examined by 2-way mixed ANOVA with region as a between-subject and method as a within-270 

subject factor, but an unpaired two-sample t test with Bonferroni correction was used for post 271 

hoc test because the number of observations for the within-subject factor was different across 272 

cells. Comparisons of ∆RDISCN, ∆RDICHC and RDI orthogonality strength between the CA1 273 

and subiculum were performed using the Wilcoxon rank sum test. In addition, the Wilcoxon 274 

rank sum test was also used for joint comparison of ∆RDISCN and ∆RDICHC in the vector-275 

length-weighted rose plot to test regional differences in mean vector length within individual 276 

angular bins. Differences in RDISCN and RDICHC among cell types (i.e., MF ortho, MF non-277 

ortho and SF) were assessed using a Kruskal-Wallis test, with the application of the 278 

Bonferroni-corrected Wilcoxon rank sum test for post hoc comparisons. 279 

 280 

Results 281 

 282 

Electrophysiological recording in the subiculum and CA1 in the VSM task 283 

In the VSM task, rats (n = 5) learned to associate each scene stimulus with either a left or 284 

right turn response on the T-maze (Figure 1A). During recording sessions, rats performed the 285 

VSM task well above performance criterion (75%) for all stimuli (p-values < 0.0004 for all 286 

scenes, one-sample Wilcoxon signed-rank test; Figure 1B). Tetrodes located at the 287 

boundaries of either the CA1 or subiculum (including the border between them) were 288 

excluded from the analysis (Figure 1C). To quantify the anatomical distributions of recording 289 
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locations for the CA1 and subiculum along the proximodistal axis, we measured the relative 290 

positions from which individual cells were recorded and normalized them across rats (Figure 291 

1D). Only cells satisfying our unit-filtering criteria (CA1, n = 270; subiculum, n = 151) were 292 

used for analysis. Subicular cells were found along the entire proximodistal axis, whereas 293 

CA1 cells were mainly recorded from intermediate to proximal portions of the CA1. More 294 

details can be found in our previous study (Lee et al., 2018). 295 

  296 

Limitations of the firing rate-based method in detecting place fields in the subiculum 297 

Prior studies (Barnes et al., 1990; Sharp and Green, 1994; Kim et al., 2012b; Lee et al., 2018) 298 

reported that cells in the subiculum fire at higher rates with lower spatial selectivity than 299 

those in the CA1, a finding also confirmed in our study. That is, cells recorded from the CA1 300 

fired at focal and restricted locations along the T-maze (Figure 2A), whereas cells recorded 301 

from the subiculum tended to show broad and continuous firing fields (Figure 2B), making it 302 

challenging to identify a place field using the conventional field-detection method based on 303 

spatial firing rates. Specifically, although some subicular cells exhibited spatially tuned place 304 

fields similar to CA1 place fields (cells 234-4-1-5 and 232-5-4-8 in Figure 2B), some 305 

background spiking activity continued to occur outside their place fields. Furthermore, some 306 

subicular cells fired continuously across the entire track (cells 232-4-17-1 and 232-5-20-1 in 307 

Figure 2B), complicating efforts to define the field boundaries for these cells. These 308 

differences in field characteristics between the CA1 and subiculum can be more clearly 309 

observed in population rate maps constructed by stacking the rate maps of individual cells 310 

(Figure 2A and 2B).  311 

 To quantitatively compare differential firing patterns between the two regions, we 312 

first classified cells according to the number of place fields: no place field, a single field, or 313 

multiple fields. A spatial firing distribution was considered a place field if its peak firing rate 314 
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exceeded 1 Hz and its spatial information content (bits/spike) exceeded 0.5. Field boundaries 315 

were set at spatial bins in which the associated firing rates dropped below 33% of the peak 316 

firing rate (see Methods). Of cells that were active during the rat’s outbound journey on the 317 

T-maze, approximately 90% were single-field cells in the CA1, while only about half of cells 318 

exhibited either single- or multiple-field in the subiculum (��1�2  = 122.96, p < 0.0001; Chi-319 

square test; Figure 2C). With respect to basic firing properties, cells in the CA1 showed 320 

lower firing rates (Figure 2D) with higher spatial information (Figure 2E) compared with 321 

those in the subiculum (firing rate, Z = 5.14, p < 0.0001; spatial information, Z = 14.2317, p 322 

< 0.0001; Wilcoxon rank-sum test). In addition, field width was larger in subicular place cells 323 

than in CA1 place cells (Z = 5.96, p < 0.0001; Wilcoxon rank-sum test) for both single-field 324 

and multiple-field cells (Figure 2F). Overall, these spatial firing pattern characteristics made 325 

it difficult to define place fields for individual neurons in the subiculum compared with those 326 

in the CA1. 327 

 328 

  329 

Identification of latent place fields based on theta phase precession of spiking 330 

Our findings show that the fundamental differences in spatial firing characteristics between 331 

the CA1 and subiculum make it difficult to use conventional approaches commonly 332 

employed for analyzing place fields in both regions because these approaches have mostly 333 

been developed for place fields of cells in the hippocampus and not for those in the 334 

subiculum. In fact, a large number of subicular cells that would have been defined as no-field 335 

cells by conventional field-detection methods did fire more vigorously at particular locations 336 

of the track (Figure 2B, cells 232-4-17-1 and 232-5-20-1), but the conventional field-337 

detection algorithm was unable to detect such spatial firing patterns because of the higher 338 

spontaneous firing activities throughout the track in subicular cells compared with CA1 339 
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neurons. Our previous study (Lee et al., 2018) tried to locate field boundaries in these cells by 340 

adjusting the threshold for detecting field boundaries or by finding local minima through 341 

statistical comparisons of trial-by-trial firing rates between neighboring bins. However, such 342 

methods still defined some subicular cells as having no fields. Furthermore, the conventional 343 

field-detection algorithm tended to ignore a small subfield if there was one dominant field 344 

with a very high firing peak. 345 

 To overcome such limitations, we explored the possibility of defining place fields 346 

using theta phase precession, a well-known phenomenon in which theta-related phases of 347 

spikes of a neuron gradually shift to earlier phases as the rat repeatedly passes through the 348 

cell’s place field (O'Keefe and Recce, 1993; Skaggs et al., 1996). In particular, we examined 349 

whether the broad firing field of a subicular neuron could be divided into multiple subfields if 350 

it were defined by theta phases of spikes. As shown in Figure 3, theta phase precession 351 

occurred robustly within the identified unitary place field in both the CA1 and subiculum as 352 

the rat ran along the track (CA1 single-field cells 234-2-12-2 and 561-2-3-1 in Figure 3A; 353 

subicular single-field cells 232-5-4-8 and 234-4-1-5 in Figure 3B). Importantly, those cells 354 

classified as having no place field exhibited multiple cycles of robust theta phase precessions 355 

(subicular non-place field cells 232-7-17-1 and 232-4-17-1 in Figure 3C). 356 

 To identify a spike cluster that belonged to a single theta-precession cycle in the 357 

phase-position plot, we used the DBSCAN (density-based spatial clustering with applications 358 

of noise) algorithm suggested by Ester et al. (1996) (see Methods for details). We compared 359 

the results of two different methods for detecting place fields: a firing rate-based method that 360 

finds a rate-based field, and the theta phase precession-based DBSCAN method, which finds 361 

a phase-based field. Both algorithms produced the same results in some cells in both the CA1 362 

and subiculum (Figure 4A). However, we were also able to find new place fields for other 363 

cells based on the phase-based method. Specifically, some cells that were originally classified 364 
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as single-field cells were converted into multiple-field cells by application of the phase-based 365 

algorithm (Figure 4B to 4D). That is, in some cells, existing rate-based fields were 366 

subdivided into more than two phase-based fields (Figure 4B). In other cells, additional place 367 

fields that might not have been detectable by rate-based method (mostly owing to low firing 368 

peaks) were revealed by the phase-based clustering (Figure 4C). In a final group of cells, the 369 

phase-based method separated an existing field and simultaneously added a new field. 370 

(Figure 4D).  371 

 The proportions of cells showing different numbers of place fields changed using the 372 

phase-based clustering method compared with the rate-based method. Specifically, phase-373 

based clustering classified 20% of CA1 cells and 62% of subicular cells as multiple-field 374 

cells and only 9% of subicular cells as having no fields (��1�2  = 106.70, p < 0.0001; Chi-375 

square test; Figure 5A). When the categorical changes were examined for each cell group, it 376 

turned out that three-quarters of the rate-based non-place cells in the CA1 and subiculum 377 

exhibited multiple phase-based place fields (Figure 5B). In addition, some rate-based single-378 

field cells in the CA1 (14%) and subiculum (45%) were converted to multiple-field cells by 379 

the phase-based clustering. We also found that some rate-based multiple-field cells in the 380 

subiculum exhibited additional phase-based fields after applying the phase-based protocol 381 

(MF-added in Figure 5B). Phase-based place fields in the CA1 and subiculum still seemed to 382 

display some fundamental differences. For example, the widths of phase-based place fields 383 

remained significantly larger in the subiculum than in the CA1 (Z = 4.08, p < 0.0001; 384 

Wilcoxon rank-sum test; Figure 5C) compared with widths of rate-based fields.  385 

 We next examined the robustness of theta phase precession of place cells in the 386 

subiculum compared with that in the CA1 using circular statistics (linear regression and 387 

linear correlation) for each spike cluster (Kempter et al., 2012). We found that the slope of 388 

theta phase precession was significantly different between the two regions (F(1,435) = 4.43, p = 389 
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0.036), but it was not affected by the field-identification method (F(1,613) = 0.59, p = 0.44, 390 

two-way mixed ANOVA with region as the between-subject factor and the field-identification 391 

method as the within subject factor; Figure 5D). There was no interaction between the region 392 

and field-detection method (F(1,613) = 0.52, p = 0.47), mostly attributable to the reduced 393 

regional difference when the phase-precession slope was calculated based on the phase-based 394 

fields compared to the rate-based fields. The precession slope of rate-based fields tended to 395 

be steeper in the CA1 than in the subiculum (t(805) = 2.01, p = 0.045 for Bonferroni-corrected 396 

unpaired two-sample t-test; corrected α = 0.0125), an outcome that could be expected based 397 

on the larger field width of subicular place cells. However, the regional difference in slope 398 

diminished when using the phase-based method (t(496) = 1.64, p = 0.102). The slope of theta 399 

phase precession was not affected by the field-detection method within each region (CA1, 400 

t(555) = 1.39, p =0.16; SUB, t(637) = 0.03, p =0.98). On the other hand, the strength of theta 401 

phase precession of place cells evaluated by circular-linear correlation coefficient was 402 

significantly different between the CA1 and subiculum (F(1,445) = 31.57, p < 0.0001) and 403 

between the two field-detection methods (F(1,655) = 50.25, p < 0.0001; two-way mixed 404 

ANOVA ; Figure 5E). The interaction between the region and method was not significant 405 

(F(1,655) = 3.68, p = 0.055). Post-hoc tests revealed that the phase-precession strength 406 

increased in phase-based fields compared with rate-based fields in both regions (CA1, t(565) = 407 

4.77, p < 0.0001; subiculum, t(695) = 5.36, p < 0.0001; unpaired two-sample t test with 408 

Bonferroni correction; corrected α = 0.0125). Although precession strength was significantly 409 

lower in the subiculum than in the CA1 even after phase-based field identification (rate-410 

based, t(896) = 5.08, p < 0.0001; phase-based, t(541) = 4.03, p < 0.0001), the precession strength 411 

in the subiculum increased closer to that of the CA1.  412 

We also tested whether the theta phase-based parsing of subicular broad firing fields 413 

changed the proportion of place cells with significant theta phase precession. A place cell was 414 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.456028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

classified as having significant theta phase precession as one of its subfields met the 415 

following criteria: range of phase shift is equal to or larger than 180°; slope of circular-linear 416 

regression line is lower than zero; and p-value of circular-linear correlation is equal to or 417 

lower than 0.05. Then, we obtained the proportion of place cells with or without significant 418 

theta phase precession and even non-place cells. The proportional changes between field 419 

identification methods were significant in the subiculum (��1�2  = 61.33, p < 0.0001; Chi-420 

square test; Figure 5F), but not in the CA1 (��1�2  = 4.95, p = 0.084). Taken together, based 421 

on the theta phase precession cycle, these findings indicate that the DBSCAN algorithm 422 

effectively identified the multiple subfields enveloped in the broad firing activities of the 423 

subicular cells. 424 

  425 

Increase in task-relevant information in phase-based fields of subicular neurons 426 

We previously reported that firing of neurons in the CA1 and subiculum was correlated with 427 

the visual scene stimulus and choice response in the VSM task in the form of rate remapping 428 

(Delcasso et al., 2014; Lee et al., 2018). Here, we examined whether scene- or choice-429 

dependent rate remapping also appeared in phase-based fields of neurons in the CA1 (n = 430 

211) and subiculum (n = 139). To quantify rate remapping, we obtained a rate difference 431 

index (RDI) for individual rate-based and phase-based fields using the firing rate maps 432 

associated with different task conditions (see Methods; Figure 6A). The RDI for choice 433 

response (RDICHC) was calculated using only the spiking activity recorded up to the choice 434 

point. In contrast, for the scene-based RDI (RDISCN), spiking activity associated with places 435 

beyond the choice point were also included because only the scenes associated with the same 436 

choice arm were compared. Place fields representing only arm areas were excluded from the 437 

RDI analysis.  438 
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 We found that the phase-based field identification method extracted task-relevant 439 

information more clearly than the rate-based method, especially in the subiculum. It also 440 

revealed new information that went undetected by the conventional rate-based method. For 441 

example, the phase-based method identified two fields for a subicular cell shown in Figure 442 

6A on the stem of the maze that were unidentifiable by the conventional rate-based method. 443 

One of the phase-based fields (red in Figure 6A) showed a larger amount of scene 444 

information than the rate-based field (0.32 > 0.06 for RDISCN-L and 0.43 > 0.25 for RDISCN-R). 445 

The other phase-based field (green in Figure 6A) showed minimal information on the visual 446 

scene but carried more information on the choice response compared with the rate-based field 447 

(0.26 > 0.08 for RDICHC). As illustrated by the neuronal examples in Figure 6B, some phase-448 

based fields showed stronger rate remapping for scenes than for choices (cell 234-1-13-5 in 449 

CA1, cells 415-13-18-1, 415-13-10-1 in the subiculum), whereas other phase-based fields 450 

exhibited the opposite pattern (cell 561-1-14-6 in CA1; cells 232-6-19-1 and 415-10-19-2 in 451 

the subiculum). Furthermore, scene and choice information increased to a similar degree in 452 

some phase-based fields (Figure 6B, cell 234-3-19-6 in CA1; cells 415-11-19-1 and 232-4-453 

18-3 in the subiculum).  454 

 We next investigated the extent to which task-related information carried by a single 455 

unit changed when the field identification protocol was changed from the rate-based to the 456 

phase-based method. For this purpose, if one cell showed multiple fields, the maximum RDI 457 

value was selected as the representative RDI of the cell (closed black dot in Figure 6C). 458 

Then, we calculated the difference in RDI (∆RDI) by subtracting the representative RDI value 459 

of the rate-based protocol from the representative RDI value of the phase-based protocol for 460 

scene (∆RDISCN) and choice (∆RDICHC) information, respectively. Both RDISCN and RDICHC 461 

increased remarkably in the subiculum after theta phase-based field identification (T = 1582, 462 

p = 0.0002 for ∆RDISCN; T = 2415, p < 0.0001 for ∆RDICHC; one-sample Wilcoxon signed 463 
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rank test), but no significant increase was found in the CA1 (T = 365, p = 0.68 for ∆RDISCN; 464 

T = 645, p = 0.47 for ∆RDICHC; Figure 6D). The RDI increases for subicular neurons were 465 

significantly higher than those for CA1 neurons for both visual scenes (Z = 3.26, p = 0.0011 466 

for ∆RDISCN) and choices (Z = 5.44, p < 0.0001 for ∆RDICHC; Wilcoxon rank-sum test).  467 

 For joint comparisons of changes in scene- and choice-based rate remapping, the 468 

differences in RDISCN and RDICHC of each cell were marked as dots on a scatter plot (Figure 469 

6E). As shown in the first and second quadrants of the scatter plot, RDISCN and RDICHC 470 

values increased jointly after the phase-based field identification method in the subiculum 471 

compared with the CA1, where there was no such trend. Furthermore, RDICHC values were 472 

enhanced in some cells irrespective of RDISCN values. To statistically compare the regional 473 

differences visible in the scatter plot, we first divided the quadrant into equally spaced 474 

angular bins (30º) and drew the mean vectors for each bin in a vector-length–weighted rose 475 

plot. As shown in Figure 6F, the stronger RDI enhancement in the subiculum compared with 476 

the CA1 was clearly visible in the first and second quadrants (bin 30º-60º, p = 0.006; bin 90º-477 

120º, p = 0.014; bin 120º-150º, p = 0.005; Wilcoxon rank-sum test). Taken together, these 478 

results indicate that the theta phase-based field detection method is capable of identifying 479 

task-relevant information that would otherwise have been unidentifiable using the traditional 480 

rate-based field-detection protocol. 481 

 482 

Neurons in the subiculum represent scene and choice information more orthogonally in 483 

their multiple phased-based fields than CA1 cells  484 

We further examined the functional significance of amplified task-related information (i.e., 485 

scene and choice) discovered by the phase-based method in subicular neurons compared with 486 

CA1 cells in our VSM task. If a place field showed the same amount of rate modulation for 487 

both scene and choice factors, the corresponding data point on the RDI scatter plot should be 488 
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located on the diagonal (e.g., field 1 in Figure 7A). In contrast, if the amount of field 489 

remapping was influenced to a greater degree by one of the task-related factors, the data point 490 

should be located farther away from the diagonal (e.g., field 2 in Figure 7A). If a cell had 491 

multiple phase-based fields and each field represented either scene or choice information 492 

more strongly than the other, the cell was considered as orthogonalizing scene and choice 493 

information (Figure 7B).  494 

 A significantly larger portion of subicular neurons exhibited orthogonal 495 

representations of task-related variables than CA1 neurons (��1�2  = 18.65, p < 0.0001; Chi-496 

square test; Figure 7C). To test whether the orthogonal representation occurred more strongly 497 

in subicular cells, we measured the angle between the diagonal and the vector of each phase-498 

based field (θSCN and θCHC; Figure 7D), then calculated orthogonality strength by multiplying 499 

the sine values of the angles. RDI orthogonality was significantly stronger in the subiculum 500 

than in the CA1 (Z = 3.3, p = 0.001, Wilcoxon rank-sum test; Figure 7E). 501 

Finally, we tested whether the amount of rate remapping differed between the 502 

following cell groups: multiple-field cells with orthogonal representations (MF ortho), 503 

multiple-field cells without such representations (MF non-ortho), and single-field cells (SF). 504 

Since the number of CA1 cells showing orthogonal representations was too small (n = 10) to 505 

obtain sufficient statistical power, tests were performed only within the subiculum. There 506 

were significant differences in both scene (��	�	  = 7.79, p = 0.02, Kruskal-Wallis test; Figure 507 

7F) and choice (��	�	  = 19.44, p < 0.0001; Figure 7G) between the subgroups. Specifically, 508 

cells having multiple fields showed larger RDISCN values than those with single fields (MF 509 

ortho vs. SF: Z = 2.12, p = 0.034; MF non-ortho vs. SF: Z = 2.5, p = 0.013; MF ortho vs. MF 510 

non-ortho: Z = 0.37, p = 0.7; Wilcoxon rank-sum test with Bonferroni correction; corrected α 511 

= 0.016). Moreover, subicular cells with orthogonal representations exhibited significantly 512 
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larger RDICHC values than other groups (MF ortho vs. SF: Z = 4.51, p < 0.0001; MF non-513 

ortho vs. SF: Z = 2.16, p = 0.031; MF ortho vs. MF non-ortho: Z = 2.4, p = 0.016). These 514 

findings indicate that subicular multiple fields identified based on the relationships between 515 

spiking theta phase precessions did not uniformly represent task-relevant information. 516 

Instead, they carried heterogeneous task-related information in a more orthogonal fashion 517 

compared with CA1 cells. Furthermore, such subicular cells represented task-related 518 

information more strongly than CA1 cells in the VSM task. 519 

 520 

Discussion 521 

 522 

In the current study, we characterized the firing patterns of place cells in the CA1 and 523 

subiculum using both phase- and rate-coding methods. Our findings demonstrate that some of 524 

the broad place fields of subicular neurons can be parsed into multiple fields using the theta-525 

phase precession cycle. The newly discovered, phase-based place fields in the subiculum 526 

were more similar to those in CA1 in terms of field size and phase-precession strength. 527 

However, unlike the case in the CA1, the neural representational strength of task-relevant 528 

information was significantly improved in the subiculum by the phase-based field-detection 529 

method. Furthermore, our results suggest that firing for multiple fields by a single neuron 530 

may provide the subiculum with the unique function of representing different types of task-531 

related information in an orthogonal fashion compared with the CA1.  532 

 533 

Underlying mechanisms of multiple cycles of theta phase precession and their associated 534 

place fields in the subiculum 535 

One possible mechanism underlying the multiple cycles of theta phase precession and their 536 
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associated place fields in the subiculum is convergent inputs from multiple place cells in the 537 

CA1 to a subicular cell. To our knowledge, whether a single subicular neuron is innervated by 538 

multiple CA1 place cells is still largely unknown. However, it has been reported that axon 539 

branches extending from a single CA1 pyramidal cell diverge to a very wide region within 540 

the subiculum, covering approximately 2 mm along the septotemporal axis (Tamamaki et al., 541 

1987) and one-third of the subiculum along the proximodistal axis (Amaral et al., 1991). In 542 

addition, approximately 40% of CA1 pyramidal cells are known to send efferent projections 543 

to the subiculum (Roy et al., 2017). Based on these anatomical results, it is possible that a 544 

single subicular cell receives synaptic inputs from multiple CA1 pyramidal cells. If this is the 545 

case, a subicular place cell that receives inputs from multiple place cells in the CA1 whose 546 

firing peaks are located at distant locations may develop multiple place fields. Conversely, if 547 

multiple CA1 place cells sending projections to a single subicular place cell have overlapping 548 

place fields, then the subicular cell might exhibit a single broad firing field. Some prior 549 

studies may support these possibilities (Fernandez-Ruiz et al., 2017; Jaramillo and Kempter, 550 

2017).  551 

Another possibility is that the multiple fields of the subiculum might be based on 552 

inputs from cells in the medial entorhinal cortex, especially grid cells showing periodic firing 553 

fields and theta phase precession. Some models have shown that theta phase precession in the 554 

CA1 could be derived from grid cells in the medial entorhinal cortex (Molter and Yamaguchi, 555 

2008; Schlesiger et al., 2015). It has also been reported that temporal coding (including theta 556 

phase precession) in the CA1 is impaired by lesioning of the medial entorhinal cortex 557 

(Schlesiger et al., 2015). However, cells in layer 3 of the entorhinal cortex, which mainly 558 

project to the CA1 and subiculum, do not exhibit phase precession relative to theta rhythm 559 

(Hafting et al., 2008). Whether theta phase precession in the subiculum is inherited from grid 560 

cells in the medial entorhinal cortex remains to be investigated. 561 
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Lastly, there is the possibility that cells in the subiculum might be influenced by 562 

multiple sources of theta rhythm—one from an extracellular source and another generated 563 

intrinsically. Specifically, some previous studies have proposed an interference model as the 564 

mechanism for theta phase precession in the CA1 (O'Keefe and Recce, 1993; Burgess et al., 565 

1994; O'Keefe and Burgess, 2005). According to this model, there is an intrinsic theta 566 

oscillator within pyramidal cells that causes theta phase precession while maintaining a 567 

frequency that can be different from that of the extracellular theta rhythm. This model is 568 

supported by experimental evidence showing that pyramidal cells in the dorsal hippocampus 569 

show higher intrinsic oscillation frequencies than those in the ventral hippocampus, resulting 570 

in smaller place fields in the dorsal hippocampus (Maurer et al., 2005). Experimental 571 

evidence for the presence of an intrinsic theta oscillator in the subiculum has not been 572 

reported. However, because principal cells in the subiculum have denser recurrent 573 

connectivity than those in the CA1 (Harris and Stewart, 2001; Harris et al., 2001; Bohm et 574 

al., 2015), it is possible that cells in the subiculum can generate local rhythms intrinsically. 575 

Notably, a recent study reported that an atypical type of sharp-wave ripple occurs in the 576 

subiculum, independent of traditionally known CA3-originating sharp-wave ripples (Imbrosci 577 

et al., 2021), an observation that may support the possibility that subicular neurons 578 

intrinsically generate their own local oscillations.  579 

 580 

Clustering algorithm for identifying multiple cycles of theta phase precession and their 581 

associated place fields 582 

A previous study by Maurer et al. (2006) demonstrated that the partially overlapping place 583 

fields of a single cell in the CA1 could be segmented by manually drawing boundaries around 584 

the spikes belonging to individual cycles of theta phase precession on the position-phase 585 

scatter plot. Further improving this strategy, Kim et al. (2012b) developed an automated 586 
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algorithm that constructs a phase-position firing-rate map from normalized phase-position 587 

plots of rat occupancy and then defines place fields based on detection of local maxima. 588 

However, there were challenges to adopting this previous protocol in the current study. First, 589 

these authors used a behavioral paradigm in which rats ran along a track in the absence of 590 

environmental change or mnemonic task demand, whereas in the current study rats performed 591 

a mnemonic task in which they were required to associate different scenes with discrete 592 

behavioral choices. Our previous study showed that firing rates of subicular cells are 593 

modulated in relation to task-related information (i.e., scene and choice) (Lee et al., 2018). In 594 

that case, even if a field had a high firing rate in one condition, it might show a low firing rate 595 

in the other condition. Accordingly, in the overall firing rate map obtained by averaging the 596 

firing rates for all conditions, the high firing rate under one specific condition is likely to be 597 

canceled out by that under the other condition, making it difficult to definitively establish 598 

peak firing and field boundaries when defining a place field. Second, the length of the linear 599 

track used in the current study was relatively short, possibly resulting in more overlap 600 

between place fields and thus creating difficulties in setting an appropriate threshold for 601 

segmenting individual fields on the phase-position firing-rate map.  602 

Therefore, to eliminate the risk of being unable to find potential task-related firing 603 

fields, we adopted the clustering algorithm DBSCAN (Ester et al., 1996), which can be 604 

applied to the raw phase-position spiking plot without normalizing for occupancy. We chose 605 

this algorithm for several reasons. First, when sampled sufficiently, spikes tend to occur at the 606 

most preferred location within a place field with highest probability and then gradually 607 

diminish as the distance from the field center increases (i.e., Gaussian-like distribution). 608 

Because of its density-based algorithmic nature, the DBSCAN algorithm is suitable for 609 

finding clusters when data points exhibit such distributions. Second, DBSCAN has the 610 

advantage of robustly detecting outliers, which enabled us to process continuous and 611 
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spontaneous firing activities of subicular fields. Furthermore, DBSCAN does not require an 612 

experimenter to predetermine the number of clusters. Finally, the DBSCAN algorithm does 613 

not limit cluster shape, so it can flexibly find clusters in a complex data set.  614 

 615 

Functional significance of the more orthogonal representation of scene and choice 616 

information in the subiculum than the CA1 617 

The spatial firing properties of subicular neurons are different from those of CA1 cells. This 618 

unique nature of the subiculum has been attributed to signals from outside the hippocampal 619 

formation, including those related to movement and head direction of the thalamic region 620 

(Frost et al., 2021). However, task-related information such as scene and choice information 621 

in the subiculum should also be influenced by inputs from the dorsal CA1, as demonstrated in 622 

our previous studies (Kim et al., 2012a; Delcasso et al., 2014). This possibility is supported 623 

by findings of the current study showing significantly enhanced rate modulation for task-624 

relevant information, as only the group of spikes constituting a single cycle of theta phase 625 

precession was extracted for measuring the representational strength of task-related 626 

information. 627 

The enhancement of task-related signals in the subiculum allowed us to investigate 628 

the functional roles of subicular cells in the VSM task compared with our previous study in 629 

which we relied on the traditional rate-based field-detection algorithm (Lee et al., 2018). 630 

Remarkably, some subicular neurons carried orthogonal scene and choice information in their 631 

subfields. This phenomenon could arise in a scenario in which different CA1 cells, each 632 

carrying one type of task-related information more strongly than the other, send their outputs 633 

to a single subicular neuron. Subicular neuron could then facilitate associative learning by 634 

representing different types of information concurrently so that downstream structures 635 

receive more associative information between the critical task variables. Note that a subicular 636 
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cell tends to represent different task-related information in separated fields associated with 637 

distant locations, but not conjunctively in one field. The different types of information 638 

represented by the separate fields of a subicular cell might then be transmitted into identical 639 

target regions nearly simultaneously with a certain phase relationship, potentially 640 

contributing to the formation and retention of hippocampal associative memory. 641 

 642 

Functional subclasses of neurons in the subiculum may play key roles in hippocampal-643 

dependent action in a visual contextual memory task 644 

Numerous studies have suggested the presence of anatomical and physiological 645 

subpopulations in the subiculum. Specifically, it has been reported that afferent and efferent 646 

projections of the subiculum are organized topographically along the proximodistal axis 647 

(Tamamaki et al., 1987; Amaral et al., 1991; Tamamaki and Nojyo, 1995; Naber and Witter, 648 

1998; Witter et al., 2000; Ishizuka, 2001; Witter, 2006; Cembrowski et al., 2018b; Kitanishi 649 

et al., 2021), as the proximal and distal parts of the subiculum are clearly divided according 650 

to gene expression in principal cells (Cembrowski et al., 2018b; Cembrowski et al., 2018a). 651 

In addition to these anatomical subdivisions, in vitro physiological studies have reported two 652 

types of intrinsic firing for subicular principal cells—bursting and regular-spiking (Stewart 653 

and Wong, 1993; Taube, 1993; Behr et al., 1996)—and shown that these cells exhibit a 654 

unique distribution gradient along the proximodistal axis (Harris et al., 2001; Jarsky et al., 655 

2008; Kim and Spruston, 2012). These two classes of cells are modulated differently by 656 

sharp-wave ripples of the CA1 and have different intrinsic connectivity (Bohm et al., 2015). 657 

Furthermore, a series of recent in vivo studies identified subpopulations in the subiculum with 658 

different spatial firing characteristics (Brotons-Mas et al., 2017; Roy et al., 2017; Simonnet 659 

and Brecht, 2019; Poulter et al., 2021). 660 

Our physiological results also suggest that there are functionally different subclasses 661 
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of neurons within the subiculum. In our previous paper, subicular cells with a single broad 662 

field showed a “schematic” firing pattern that depended on the cognitive structure of the task; 663 

we speculated that this firing pattern serves to mediate contextual behavior by representing 664 

the discrete region associated with critical epochs of the task (Lee et al., 2018). That is, cells 665 

in the CA1 and subiculum represent specific location information and an epoch-based region, 666 

respectively. On the other hand, subicular cells with multiple focal fields are thought to 667 

contribute to associative memory by subsequently—but almost concurrently—transmitting 668 

different types of task-relevant information to downstream structures where choice-related 669 

actions and decisions occur.  670 

Taken together, our findings indicate that the subiculum may support visual 671 

contextual behavior in space through two processes, each driven by a distinctive neuronal 672 

class. Information regarding context and future path leading to the goal location, separately 673 

recognized at focal and distant place fields of the CA1, could be integrated by subicular cells 674 

with multiple phase-based fields and transmitted to downstream areas. In particular, such 675 

information processing in the subiculum could be critical for converting contextual 676 

information into an action signal. At the same time, subicular cells with a broad single field 677 

may represent the area in which all locations are associated with a common task-related 678 

variable, such as a specific visual scene or choice response. A recent study showing that CA1-679 

projecting subicular cells receive direct inputs from the visual cortex and send their 680 

projections to some critical regions (e.g., perirhinal cortex, CA1) in the VSM task used in the 681 

current study may also support the functional significance of the subiculum in the visual 682 

contextual behavioral task (Sun et al., 2019).  683 
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Figure legends 834 

 835 

Figure 1. Behavioral task and histological verification of electrophysiological recordings. 836 

(A) VSM task. As a trial begins, the rat runs out onto the track of a T-maze from the start box 837 

(S), and one of four visual scene stimuli (Zebra, Z; Bamboo, B; Pebbles, P; Mountain, M) is 838 

presented on LCD monitors. Each scene stimulus is associated with either the left or right arm 839 

of the T-maze. The rat obtains a piece of cereal reward from the food well, located at the end 840 

of both arms, if it chooses the correctly associated side. (B) Behavioral performance during 841 

recording sessions (21 sessions from 5 rats). Each dot corresponds to the percent correct for 842 

each scene stimulus of a session and is color-coded for individual rats. Box plot indicates 843 

interquartile range and median value. The median values exceeded the performance criterion 844 

(dashed line, 75%) for all scenes. (C) Photomicrographs of Nissl-stained coronal brain sections 845 

with verified electrode tips (black arrows). Numbers above the arrows indicate normalized 846 

positions of marked recording sites along the proximodistal axis. Dashed lines represent the 847 

anatomical boundaries of the CA1 and subiculum. Upper and lower rows show recording sites 848 

from the subiculum and CA1, respectively. (D) Proportional distribution of cells recorded in 849 

the CA1 (blue) and subiculum (SUB; red) along the proximodistal axis (CA1, n = 270; SUB, 850 

n = 151). The positions are normalized to account for differences in relative length between 851 

two regions (see Methods). The dashed line at 0.36 indicates the boundary between two 852 

regions. 853 

 854 

Figure 2. Poorer spatial firing patterns in the subiculum than the CA1. (A, B) Firing rate 855 

maps of single cells (left) and cell populations (right) in the CA1 (A) and subiculum (B), plotted 856 

as a function of linearized position on the T-maze from the start box (st box) to the food wells 857 

(fw) in both arms. Red arrowheads indicate the choice point after which rats’ positions diverged 858 
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to the two arms. On the firing rate maps of single cells, verified place fields are overlaid with 859 

black lines, and non-place fields that did not pass the place field criteria are marked by black 860 

dotted lines. Serial numbers on the upper left corner are cell IDs. Indices on the right corner 861 

denote mean peak firing rates (Hz) and spatial information scores (bit/spike) of place and non-862 

place fields. Population firing rate maps are sorted according to peak firing rate of each cell on 863 

the T-maze. White dashed lines and red arrowheads indicate the choice points. (C) Proportional 864 

differences of place cells defined by the firing rate-based method. Cells are classified into three 865 

groups according to the number of place fields within a cell: ‘single-field (SF)’ for one field, 866 

‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)’ for zero field. 867 

***p < 0.0001. (D–F) Differences in mean firing rate (D), spatial information score (SI score; 868 

E), and place field width (F) of recorded cells between the CA1 and subiculum. Box plot 869 

indicates interquartile range and median value for each region. ***p < 0.0001.   870 

 871 

Figure 3. Robust and multiple theta phase precession in the subiculum. (A-C) 872 

Representative examples of theta phase precession in the CA1 single-field cells (A), subicular 873 

single-field cells (B), and subicular non-place field cells (C). The left column within each cell 874 

consists of linearized position (top), a raw trace of theta oscillation (middle), and spiking 875 

theta phases (bottom) in the temporal axis in a single trial. Spikes in the raw theta traces are 876 

marked by red circular dots. Scale bar, 250 μV. Spiking theta phases are plotted within a 877 

range of 360º, and the initial phase is adjusted for clear observation of theta phase precession. 878 

Serial numbers in the upper right corner are cell IDs. The right column displays a linearized 879 

firing rate map (top) and a position-phase plot (bottom) on the spatial axis across a session. 880 

Black solid lines overlaid on the firing rate maps indicate verified place fields, whereas black 881 

dotted lines are non-place fields. Numbers above firing rate maps denote peak firing rates 882 

(Hz) and spatial information scores (bit/spike) of place or non-place fields. Red arrowheads 883 
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and red dashed lines mark choice points. Note that subicular cells showed multiple cycles of 884 

theta phase precession, some of which were as robust as those of CA1 cells. 885 

 886 

Figure 4. Identification of place fields based on spiking theta phases in the CA1 and 887 

subiculum. (A–D) Each subplot for individual cells consists of a linearized firing rate map 888 

(top) and a position-phase plot (bottom) on the spatial axis across a session. Gray lines on the 889 

firing rate maps indicate averaged firing activity, solid black lines denote place fields defined 890 

by firing rates (rate-based place fields), and color-coded lines denote place fields based on theta 891 

phases (phase-based place fields). Serial numbers above the firing rate maps are cell IDs. Color-892 

coded numbers on the right corner indicate peak firing rate (Hz) and spatial information score 893 

(bit/spike) of individual phase-based place fields. Red arrowheads indicate choice points. Spike 894 

clusters in position-phase plots are color-coded with the same color used for the firing rate 895 

maps. Black straight lines on each spike cluster indicate the circular-linear regression line. The 896 

numbers and asterisks in the box with colored borders are circular-linear correlation 897 

coefficients; their significance for phase-based fields is indicated in the same color. 898 

***p < 0.0001. 899 

 900 

Figure 5. Advantages of spiking theta phase-based field identification. (A) Proportional 901 

differences of place cells defined using the theta phase-based method. Cells are classified into 902 

three groups according to the number of place fields within a cell as follows: ‘single-field 903 

(SF)’ for one field, ‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)' 904 

for zero field. ***p < 0.0001. (B) Categorical changes of cells within each rate-based cell 905 

group (NF, SF, and MF on the x-axis) as the field identification method was shifted to phase-906 

based. The bar graph shows what proportion of cells in each cell group classified by the rate-907 

based method was re-categorized after the phase-based method. (C) Regional differences in 908 
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place field width after phase-based field identification. ***p < 0.0001. (D, E) Cumulative 909 

distributions of theta phase precession (TPP) slope (D) and correlation coefficient (E) of 910 

place cells for each method (rate- and phase-based) and each region. Line graphs on the right 911 

side of each panel display mean values and standard errors for the same data. (F) Proportional 912 

changes in place cells with or without significant theta phase precession after the phase-based 913 

field identification within each region. ***p < 0.0001. 914 

 915 

Figure 6. Scene- and choice-dependent rate remapping is enhanced in the subiculum but 916 

not in the CA1 after phase-based field identification. (A) A representative subicular cell 917 

illustrating how difference indices for scene (RDISCN) and choice (RDICHC) are obtained. The 918 

linearized firing rate map in the left panel shows rate-based fields (black line) and phase-919 

based fields (color-coded lines) averaged across all trials. Middle panel shows firing rate 920 

maps associated with different task-relevant information. Rate-based fields are marked as 921 

black lines (upper row) and phase-based fields are color-coded (bottom row). Shaded areas 922 

overlaid on the fields are standard errors. Numbers above the fields indicate RDI values. 923 

Rightmost panel shows RDISCN and RDICHC values for individual fields marked as dots on the 924 

scatter plot; open black dots correspond to rate-based fields and color-coded dots denote 925 

phase-based fields. The dashed line shows the diagonal. (B) Example neurons in the CA1 and 926 

subiculum with their RDI values associated with the scene and choice information. Within 927 

each neuron, linearized firing rate map (left) and RDI scatter plot (right) are shown as in (A). 928 

Solid black lines on firing rate maps are firing rate (FR)-based firing fields and color-coded 929 

lines are theta phase (TP)-based place fields, with arm fields depicted in dotted lines. Serial 930 

numbers above the rate maps are cell IDs. Red arrowheads indicate choice points. (C) 931 

Illustration showing how RDI differences (i.e., ∆RDISCN and ∆RDICHC) are measured using 932 

the rate-based method (open black circle) and phase-based method (closed black circle). The 933 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.456028doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

closed black circle is a representative point for the phase-based method, marked by selecting 934 

maximum values among RDIs obtained from all phase-based fields. (D) Bar graphs 935 

comparing the magnitude of changes in RDISCN and RDICHC between regions. Data are 936 

presented as means ± standard error of the mean. ***p < 0.0001. (E) Scatter plot jointly 937 

displaying ∆RDISCN and ∆RDICHC for all neurons in the CA1 and subiculum. Note that 938 

subicular neurons are more dispersed in the first and second quadrant than CA1 neurons. (F) 939 

Weighted rose plot constructed using data from (E) for statistical comparison. **p < 0.01, 940 

*p < 0.05. 941 

 942 

Figure 7. Scene and choice information are orthogonally represented by multiple phase-943 

based fields of subicular neurons. (A) Illustration showing the different relationships 944 

between RDISCN and RDICHC of example fields on the RDI scatter plot. Field1 (red) near the 945 

diagonal line shows the same amount of rate modulation for scene and choice information, 946 

whereas field2 (green) located further away from the diagonal line had much stronger rate-947 

remapping for scene than choice information. (B) Four examples of orthogonal 948 

representations for scene and choice information for individual neurons. For each neuron, the 949 

left panel shows a linearized firing rate map (left) and the right panel shows an RDI scatter 950 

plot. Each phase-based field is color-coded. Serial numbers above the rate map indicate cell 951 

IDs. Numbers on the scatter plots indicate RDI orthogonality strength. (C) Proportion of cells 952 

for which phase-based fields have orthogonal representations for scene and choice 953 

information. ***p < 0.0001. (D) Illustration displaying how the strength of orthogonal 954 

representations for scene and choice information is quantified. θSCN and θCHC indicate the 955 

angles between the diagonal line and the vectors of the fields whose RDISCN or RDICHC is the 956 

maximum value. (E) Cumulative distribution of RDI orthogonality strength for each region. 957 

**p < 0.01. (F, G) Cumulative proportion of subicular cells for RDISCN (F) and RDICHC (G). 958 
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Bar graphs on the right side of each panel show RDI differences between subgroups within 959 

the subiculum. ***p < 0.0001, *p < 0.016. 960 
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