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Abstract

The subiculum is positioned at a critical juncture at the interface of the hippocampus with the
rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent
memory tasks remain largely unknown. One obstacle to make analytical comparisons of
neural firing patterns between the subiculum and hippocampal CAl is the broad firing fields
of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the
broad firing field of a subicular neuron into multiple subfields to find the unique functional
contribution of the subiculum while male rats performed a hippocampal-dependent visual
scene memory task. Some of the broad firing fields of the subicular neurons were
successfully divided into multiple subfields by using the theta-phase precession cycle. The
resulting phase-based fields in the subiculum were more similar to those in CA1 in terms of
the field size and phase-precession strength. The new method significantly improved the
detection of task-relevant information in subicular cells without affecting the information
content represented by CAL1 cells. Notably, multiple fields of a single subicular neuron,
unlike those in the CAL, could carry heterogeneous task-related information such as visual
context and choice response. Our findings suggest that the subicular cells integrate multiple

task-related factors by using theta rhythm to associate environmental context with action.
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Introduction

The hippocampal formation plays key roles in fundamental cognitive functions, including
spatial navigation and episodic memory (Scoville and Milner, 1@8Keefe and Nadel,
1978; Eichenbaum, 2000). The subiculum, a region withehippocampal formation, has
long been considered the area from which cortical outputs of the hippocampus emanate
(Amaral et al., 1991 Witter et al., 2000). However, viewing the subiculas an area that
passively transmits hippocampal information to cortical regions might be inappropriate,
because the subiculum is connected not only with the CA1 of the hippocampus but also with
other areas, including the medial prefrontal cortex, entorhinal cortex, retrosplenial cortex,
perirhinal cortex, postrhinal cortex, nucleus accumbens, basal amygdala and various
subcortical regions (Witter, 200€embrowski et al., 2018bylatsumoto et al., 2019).
Physiologically, it has been reported that the neural correlates of the subiculum are
significantly different from those of the CA1 during spatial navigation. Specifically, neurons
in the subiculum tend to exhibit broader place fields than those in the CA1 (Barnes et al.,
1990; Sharp and Green994; Kim et al., 2012b;Lee et al., 2018). Also, place cells in the
subiculum are more attuned to movement-related factors, such as direction and motion,
during navigation compared with CA1 place cells (Lever et al., 20090n et al., 2017,
Kitanishi et al., 2021;Ledergerber et al., 2021). A few studies have slgmested that the
subiculum is essential in remembering places and environmental contexts (Morris et al.,
1990; Potvin et al., 2007, 200%otvin et al., 2010Melo et al., 2020). However, the exact
roles of subicular neurons, especially in a goal-directed memory task, still remain largely

unknown. In our previous study, we reported that neurons in both the subiculum and CA1l

showed rate remapping according to task-related factors, specifically visual scene and choice
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response in a visual scene memory (VSM) task in which rats were required to make choices
in a T-maze using the visual scene stimulus presented around the maze (Lee et al., 2018).
Interestingly, place cells in the CA1 showed such firing properties while coding very specific
locations in space, whereas cells in the subiculum fired similarly while mapping broader
areas (e.g., stem or choice arm region), as if they represent the cognitive structure of the task
by schematically parsing the environment. On the basis of these results, we speculated that
position-linked environmental information in the hippocampus in the VSM task (Delcasso et
al., 2014; Lee and Lee, 2020) might be translated into contdxction-related information

that can be communicated with other brain regions.

One major obstacle that poses great difficulties for investigations of the neural
correlates of subicular neurons is their higher spontaneous firing rates and broader firing
fields in space compared with those of place cells in the hippocampus (Sharp and Green,
1994; Kim et al., 2012b;Lee et al., 2018). These firing characteristicsuidicular neurons
make it difficult to apply the conventional analytical techniques optimized for place cells
recorded from hippocampus, where place fields are more restricted to specific locations of the
environment with a higher signal-to-noise ratio compared with the subiculum. For example,
in our previous study (Lee et al., 2018), we sought to identify field boundaries of subicular
cells by finding local minima through statistical comparisons of trial-by-trial firing rates
between neighboring bins. However, such methods had shortcomings, such as defining some
subicular cells as having no fields and ignoring small subfields in the presence of a dominant
field with a very high firing peak.

Notably, some previous studies attempted to parse the broad spatial firing field of a
subicular neuron into smaller fields using the phases of spikes in relation to theta rhythm
(Maurer et al., 2006Kim et al., 2012b). Here, inspired by these studiescompared the

traditional rate-based field-detection method with the theta phase-based field-detection
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method using the same physiological data recorded from the CA1 and subiculum in our
previous study (Lee et al., 2018). The current study showed that the phase-based analysis
could successfully parse subicular firing fields into multiple subfields and that these newly
parsed place fields in the subiculum better represented task-related information. Importantly,
some subicular cells represent multiplex information associated with the VSM task through
their phase-based subfields, possibly suggesting a unique role of the subiculum in integrating

environmental information with action.

Materials and Methods

Subjects

Male Long-Evans rats (n = 5) were used in the current study. Food was restricted to maintain
rats’ body weights at 350—-400 g (85% of free-feeding weight), and water was made available
ad libitum Rats were individually housed under a 12-h light/dark cycle. All protocols were

approved by the Institutional Animal Care and Use Committee of Seoul National University.

Behavioral task

Detailed descriptions of our experimental procedures, including the visual scene memory
(VSM) task and the apparatdsgure 1A), are available in our previous study (Lee et al.,

2018). Briefly, the rat was located in a start box before a trial began. The experimenter started
the trial by opening the door of the start box, which also triggered presentation of a patterned
visual stimulus (i.e., visual scene) in an array of three adjacent LCD monitors surrounding the
choice-arm region of the T-maze. The rat then entered and ran along the stem of the T-maze

(stem, 73 X8 cm; arms, 38 8 cm) and was required to turn left or right at the end of the
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92 stem €hoice poin}in association with the visual scene. The rat obtained a quarter piece of
93  cereal reward (Froot Loops, Kellogg’s) from the food well at the end of the correct arm, but
94  no reward was given if it entered the wrong arm. Four visual scenes (zebra, bamboo, pebbles,
95  mountains) were used. In all sessions, zebra stripes and bamboo patterns were associated with
9 the left arm, and pebbles and mountain patterns were associated with the righithaimna
97  session, the four visual scenes were presented in a pseudorandom sequence.
98 During the pre-surgical training period, the rat was initially trained with a pair of
99  scene stimuli (zebra vs. pebbles or bamboo vs. mountain, counterbalanced for rats) until it
100 reached the performance criterion for each pa*5% correct for each scene for two
101 consecutive days). Once the rat reached the performance criterion for both scene pairs, a
102 hyperdrive carrying twenty-four tetrodes (+3 reference electrodes) was surgically implanted
103 in the right hemisphere to cover 3.2-6.6 mm posterior to bregma and 1-4 mm lateral to the
104  midline. After 1 wk of recovery, the rat was retrained until it reached pre-surgical
105  performance leveldHgure 1B), during which time the tetrodes were lowered into the
106  subiculum and CAl by 40-160rudaily. Thereafter, the main recording session8 ¢1@
107 trials/session, mean = SEM) began, and the four scene stimuli were presented in an
108 intermixed fashion during sessions.
109
110  Electrophysiological recording and histological procedures
111 Single unit spiking activity and local field potentials (LFPs) were recorded from the dorsal
112 CA1 and subiculum. Neural signals were transmitted to the data acquisition system (Digital
113 Lynx SX; Neuralynx) through a headstage connected to thebB#d and tethered via a slip-
114 ring commutator on the ceiling. Neural signals from tetrodes were amplified 1,000-10,000
115  times and sampled at 32 kHz. Spiking data were acquired by filtering at 600-6,000 Hz. LFPs

116  were obtained by filtering the same signals at 0.1-1,000 Hz. After completion of all recording
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sessions, electrolytic lesions (18 agurrent for 10 s) were made to mark the tip posgiof
the tetrodes. Twenty-four hours after electrolytic lesioning, the rat was sacrificed by
inhalation of an overdose of G@nd perfused transcardially. Brain tissue was stained using
thionin or Timm’s method for Nissl substances (see details in Lee et al. {(Fijude 1C).

The anatomical boundaries of the CA1 and subiculum were determined based on the
rat brain atlas (Paxinos and Watson, 2009). Tetrodes located in the transition area between the
CAL1 and subiculum were excluded. To quantitatively describe the proximodistal positions of
the recording tetrodes, we measured the linearized length of the cell layer in the CAl1 and
subiculum—specifically, the distance between the most distal to the proximal end along the
curved pyramidal cell layer in a given section—using image processing sofiwageJ;

NIH). Recording positions across rats were normalized by selecting a median value among
the linearized lengths of the pyramidal cell layers of the CA1 and subiculum in all rats, and
the ratio between the CA1 and subiculum was obtained (subiculum:CA1 = 0.36:0.64). The

relative positions of tetrode tips within each region were then calcukatpa¢ 1D).

Extraction of outbound running epochs

Before proceeding with a set of analyses based on spiking data in relation to their theta
phases, we extracted only those epochs associated with outbound journeys (from the start box
to either left or right food well). To facilitate theta rhythm-related analyses, we calculated the
instantaneous running speed so as to include epochs in which rats ran at a reasonable speed.
To this end, we interpolated linearized position data to compensate for vacancies caused by
rat head movements and/or tether interference. Next, outlier data points were suppressed
using a locally weighted robust regression. Then, the instantaneous running speed, calculated
by dividing the length of three consecutive data points by the duration of time, was assigned

to the middle point of the three. The average running speed was 35.3 cm/s in all sessions for


https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.456028; this version posted August 12, 2021. The copyright holder for this preprint

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

all rats. Spikes that occurred when running speed was greater than 20 cm/s were used in this
study. If the latency from the start box to the food well was longer than 6 s, that trial was

discarded.

Spiking data analysis

Unit isolation

Single units were isolated manually using both commercial software (SpikeSort3D;
Neuralynx) and a custom-written program (WinClust) based on the waveform parameters,
peak amplitude, energy, and peak-to-valley latencies. The same criteria from our previous
study (Lee et al., 2018) were used to evaluate unit-isolation quality, with the additional
criterion that the number of spikes during running epochs of outbound journeys on the track

should be greater than 50 (subiculum, n = 208 u@i&i, n = 327 units).

Detection of firing rate-based place fields

Position data acquired during outbound running epochs were first linearized by scaling down
using 2-cm spatial bins. The choice point—that is, the point where the rat’s position data
diverged between left and right choice trials—was determined by detecting the spatial bin
with a statistical difference between left and right position traces (two-sample t-test). Then, a
linearized firing rate map was constructed by dividing the number of spikes by the number of
position data points in individual spatial bins. Boundaries of a firing field were defined as the
first spatial bin at which the firing rate dropped below 33% of the peak firing rate for two
consecutive bins. If a local peak exceeding 50% of the maximum peak firing rate was found
outside the predetermined firing field, it was considered as the peak of a possible subfield,
and the boundaries of the subfield were found using the same algorithm. After defining the

field boundaries, a firing field was identified as a place field when the peak firing rate within
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167  the field exceed 1 Hz and the spatial information score of the field was greater than 0.5. The
168  spatial information score was computed according to the definition of Skaggs et al. (1993) as

169  follows:

Aq

Aigp: :
,1 log, I(blts/splke),

170 Spatial information score 3,; p;

171 where i denotes the spatial bin, is the occupancy rate in thé bin, A; is the mean firing

172 rate in thei' bin, and A is the overall mean firing rate. The mean firing rate and peak firing
173 rate were obtained from the raw rate maps. For display, the rate maps were smoothed using
174  the adaptive binning method.

175

176  LFP analysis

177  Tetrode selection

178  To align baseline offsets, we down-sampled LFPs from 32 kHz to 2 kHz and filtered them at
179 3-300 Hz using a zero-phase bandpass filtéog8ler Butterworth filter with the filtfilt

180  function in MATLAB). LFP traces from running epochs were then visually inspected to

181  exclude tetrodes whose voltage traces exceeded the maximum value {3,000he

182  analog-digital converter or artifacts such as bumping noises. Spiking phases in relation to
183  theta rhythm were analyzed by obtaining a power spectral density (PSD) function using a
184  multi-taper method (ChronukoolBox; MATLAB) and then selecting reference tetrodes with

185  the strongest power in the high theta band (7-12 Hz) for individual sessions and regions. The
186  frequency range of the theta band was set so as to include the most prominent peak at 8 Hz in
187  the mean power spectral density function during the outbound journey and to minimize

188  bumping noises that usually occurred at less than 7 Hz. LFPs recorded from the CA1 and
189  subiculum were used for spiking phase analyses of single units in the corresponding regions.

190
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Spiking theta phases

LFPs from reference tetrodes were filtered in the theta range (7-12 Hz) using a zero-phase
bandpass filter, followed by application of a Hilbert transform to decompose filtered LFPs

into amplitude and phase information. Spiking-phase relationships were examined by plotting
instantaneous theta phases and rat’s linearized positions at time points when spikes occurred

in a 2-dimensional space (phase-position plot).

Identification of theta phase-based place fields using DBSCAN

To define a cluster of spikes that shared the same spiking-phase relationships, we adopted a
well-known clustering algorithm called the Density-Based Spatial Clustering of Applications
with Noise (DBSCANJuggested by Ester et al. (1996). DBSCAN is a density-based,
nonparametric algorithm that gathers data points in close proximity while excluding distant or
sparsely located points as noise. In DBSCAN, it is not necessary to specify the number of
clusters in advance. Still, some parameters must be predetermined to run the algorithm, such
as the distance) and the minimum number of points within a dista(igin). Specifically, if

the number of data points at a distance & from a point is greater tham®luding itself, the

point is defined as a core point of a cluster. If another point contains the core point within
distance ¢ but does not satisfyiN it is defined as a border point. If there is no core point

and Nhin is not satisfied, the point is defined as a noise point. In our study, clusters on the
position-phase plot were captured by the DBSCAN algorithm to find theta phase-based place
fields (TP-based place fieldlsTo avoid detecting spurious sparse clusters, we restricted
DBSCAN parameters to the following ranges: distange& @ cm; Nmin > 10; and total

number of spikes in a cluster38. The parameters were determined manually irethensges

so that the number of clusters in a cell was greater than the number of local maxima in

linearized firing rate maps. Biased clustering caused by experimenter subjectivity was

10
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216 prevented by performing cross-validation with three additional experimenters who did not
217  participate in analyses of the current data sets. After cross-validation, cells with invalid

218  clustering were excluded from the analysis based on the following: (1) DBSCAN parameters
219 not satisfied (subiculum, n = 2CA1, n = 24), (2) insufficient spikes (subiculumsn7;

220 CA1, n=30), or (3) irregular cluster shape (subiculum, n K, n = 6).

221

222 Quantification of theta phase precession

223 After identification of individual place fields using theta phases, the slopes of theta

224  precession were measured by fitting individual spike clusters to circular-linear regression
225 lines (Kempter et al., 2012). A circular-linear correlation was also applied to determine if the
226  phase shift was significant (Toolbox for circular statistics with MATLB8ens, 2009).

227  Theta-phase precession of a place field was considered significant if the following criteria
228  were met: (1) range of phase shift80°, (2) slope of regression line < 0, and (3pfu& of

229  circular-linear correlation €.05.

230

231 Analysis of rate remapping

232  To measure the amount of rate modulation between firing rate maps associated with different
233 trial conditions (i.e., scene stimulus or choice response), we obtained a rate difference index

234  (RDI) by calculating an absolute value of Cohen’s d:

mean(FR1)—-mean(FR5)

235 Rate difference index
std(FRq,FR>)

236  where FR; and FR, denote the in-field firing rates of individual trials associated with
237  different conditions. Cohen’s d measure was adopted because it includes a term for standard
238  deviation in its denominator, which was expected to control for the confounding effect

239  induced by the variability in intrinsic firing between the CA1 and subiculum. With respect to

11
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RDI for scene stimuli, two RDI values were obtained from two pairs of scenes associated
with the left or right choice arm (RB4n.L and RDécn-r respectively), then a maximum

value was chosen as a representative scene-based RDI of a cegnjRRIDI for choice

response (RRkc) was measured by calculating the difference in firing rates between left and
right choice trials. For calculation of R, only firing rate maps based on the areas ahead

of the choice point were used because the rat’s actual positions on the maze were different
after the choice point. Since Rf2k was originally calculated from firing rate maps

associated with the same choice arm, all spiking activities after the choice point were used.
However, if a spatial bin with a firing rate less than 75% of the peak firing rate was located in
one arm of the maze, the field was considered an arm field and was excluded from the RDI
analysis. For joint comparisons of changes in&kRand RDEHc, a weighted rose plot was
constructed using the angles and lengths of vectors representing individual neurons, after
which a statistical test was performed in each angular bin. For analysis of the orthogonality of
RDI values, the angles between the diagonal line and the vectors of fields with maximum
RDlIscn or RDkcHc were obtained. Then, the product of their sine values, defined as the
strength of RDI orthogonality, was obtained. This measurement was adopted because it had
the characteristic that its value approached zero as any one of the fields came close to the

diagonal line.

Statistical analysis

Both the behavioral and neural data were analyzed using nonparametric statistical tests with
the level of statistical significance set at €.05 unless noted otherwise. Testing for

statistical significance was two-sided, except when testing significance against a specific
known value. For example, a one-sample Wilcoxon signed rank test was used to compare the

behavioral performance for different scene stimuli against our performance criterion of 75%

12
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and to test whether the differences in Bddlor RDkrc between field identification methods

were significantly above zero. The proportional differences in cell types between two regions
or two methods were tested using a Chi-square test. Comparisons of basic firing properties
including mean firing rates, spatial information score and field width were conducted using a
Wilcoxon rank sum test. The differences in slope and strength of theta phase precession were
examined by 2-way mixed ANOVA with region as a between-subject and method as a within-
subject factor, but an unpaired two-sample t test with Bonferroni correction was used for post
hoc test because the number of observations for the within-subject factor was different across
cells. Comparisons ofRDIscn, ARDIchcand RDI orthogonality strength between the CA1

and subiculum were performed using the Wilcoxon rank sum test. In addition, the Wilcoxon
rank sum test was also used for joint comparisorRiDlAcy and ARDIchcin the vector-
length-weighted rose plot to test regional differences in mean vector length within individual
angular bins. Differences in REJn and RDtncamong cell types (i.e., MF ortho, MF non-

ortho and SF) were assessed using a Kruskal-Wallis test, with the application of the

Bonferroni-corrected Wilcoxon rank sum test for post hoc comparisons.

Results

Electrophysiological recording in the subiculum and CA1 in the VSM task

In the VSM task, rats (n = 5) learned to associate each scene stimulus with either a left or
right turn response on the T-makggure 1A). During recording sessions, rats performed the
VSM task well above performance criterion (75%) for all stimuli (p-values < 0.0004 for all
scenes, one-sample Wilcoxon signed-rank tggure 1B). Tetrodes located at the
boundaries of either the CAL or subiculum (including the border between them) were

excluded from the analysigigure 1C). To quantify the anatomical distributions of recording
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locations for the CA1 and subiculum along the proximodistal axis, we measured the relative
positions from which individual cells were recorded and normalized them acrodsigats (

1D). Only cells satisfying our unit-filtering criteria (CA1, n = 2&ybiculum, n = 151) were
used for analysis. Subicular cells were found along the entire proximodistal axis, whereas
CA1 cells were mainly recorded from intermediate to proximal portions of the CAL1. More

details can be found in our previous study (Lee et al., 2018).

Limitations of the firing rate-based method in detecting place fields in the subiculum
Prior studies (Barnes et al., 19%harp and Green, 199Kim et al., 2012b;Lee et al., 2018)
reported that cells in the subiculum fire at higher rates with lower spatial selectivity than
those in the CA1, a finding also confirmed in our study. That is, cells recorded from the CAl
fired at focal and restricted locations along the T-m&igu(e 2A), whereas cells recorded
from the subiculum tended to show broad and continuous firing fieigaré 2B), making it
challenging to identify a place field using the conventional field-detection method based on
spatial firing rates. Specifically, although some subicular cells exhibited spatially tuned place
fields similar to CA1 place fields (cells 234-4-1-5 and 232-5-4f8gure 2B), some
background spiking activity continued to occur outside their place fields. Furthermore, some
subicular cells fired continuously across the entire track (cells 232-4-17-1 and 232-5-20-1 in
Figure 2B), complicating efforts to define the field boundaries for these cells. These
differences in field characteristics between the CA1 and subiculum can be more clearly
observed in population rate maps constructed by stacking the rate maps of individual cells
(Figure 2A and 2B.

To quantitatively compare differential firing patterns between the two regions, we
first classified cells according to the number of place fields: no place field, a single field, or

multiple fields. A spatial firing distribution was considered a place field if its peak firing rate

14
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315 exceeded 1 Hz and its spatial information content (bits/spike) exceeded 0.5. Field boundaries
316 were set at spatial bins in which the associated firing rates dropped below 33% of the peak
317  firing rate (see Methods Of cells that were active during the rat’s outbound journey on the

318  T-maze, approximately 90% were single-field cells in the CA1, while only about half of cells

319  exhibited either single- or multiple-field in the subiculuxrfl() =122.96, p < 0.0001Chi-

320  square testrigure 2C). With respect to basic firing properties, cells in the CA1 showed

321 lower firing rates [Figure 2D) with higher spatial informatiorF{gure 2E) compared with

322  those in the subiculum (firing rate, Z = 5.14, p < 0.008patial information, Z = 14.2317, p

323 < 0.0001; Wilcoxon rank-sum test). In addition, field widtragvlarger in subicular place cells
324  thanin CA1 place cells (Z = 5.96, p < 0.000A4lcoxon rank-sum test) for both single-field

325 and multiple-field cellsKigure 2F). Overall, these spatial firing pattern characteristics made
326 it difficult to define place fields for individual neurons in the subiculum compared with those
327 inthe CAL.

328

329

330 Identification of latent place fields based on theta phase precession of spiking

331 Our findings show that the fundamental differences in spatial firing characteristics between
332 the CA1 and subiculum make it difficult to use conventional approaches commonly

333  employed for analyzing place fields in both regions because these approaches have mostly
334 been developed for place fields of cells in the hippocampus and not for those in the

335  subiculum. In fact, a large number of subicular cells that would have been defined as no-field
336  cells by conventional field-detection methods did fire more vigorously at particular locations
337 of the track Figure 2B, cells 232-4-17-1 and 232-5-20-1), but the conventional field-

338  detection algorithm was unable to detect such spatial firing patterns because of the higher

339  spontaneous firing activities throughout the track in subicular cells compared with CA1

15
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neurons. Our previous study (Lee et al., 2018) tried to locate field boundaries in these cells by
adjusting the threshold for detecting field boundaries or by finding local minima through
statistical comparisons of trial-by-trial firing rates between neighboring bins. However, such
methods still defined some subicular cells as having no fields. Furthermore, the conventional
field-detection algorithm tended to ignore a small subfield if there was one dominant field

with a very high firing peak.

To overcome such limitations, we explored the possibility of defining place fields
using theta phase precession, a well-known phenomenon in which theta-related phases of
spikes of a neuron gradually shift to earlier phases as the rat repeatedly passes through the
cell’'s place field (O'Keefe and Recce, 19%kaggs et al., 1996). In particular, we examined
whether the broad firing field of a subicular neuron could be divided into multiple subfields if
it were defined by theta phases of spikes. As shown in Figure 3, theta phase precession
occurred robustly within the identified unitary place field in both the CA1 and subiculum as
the rat ran along the track (CA1 single-field cells 234-2-12-2 and 561-2-3-1 in Figure 3A
subicular single-field cells 232-5-4-8 and 234-4-1-5 in Figurg. 3Bportantly, those cells
classified as having no place field exhibited multiple cycles of robust theta phase precessions
(subicular non-place field cells 232-7-17-1 and 232-4-17Higare 3C).

To identify a spike cluster that belonged to a single theta-precession cycle in the
phase-position plot, we used the DBSCAN (density-based spatial clustering with applications
of noise) algorithm suggested by Ester et al. (1996)N&tkods for details). We compared
the results of two different methods for detecting place fields: a firing rate-based method that
finds a rate-based field, and the theta phase precession-based DBSCAN method, which finds
a phase-based field. Both algorithms produced the same results in some cells in both the CA1
and subiculumKigure 4A). However, we were also able to find new place fields for other

cells based on the phase-based method. Specifically, some cells that were originally classified
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365 as single-field cells were converted into multiple-field cells by application of the phase-based
366  algorithm EFigure 4B to 4D). That is, in some cells, existing rate-based fields were

367  subdivided into more than two phase-based fidtifgufe 4B). In other cells, additional place

368 fields that might not have been detectable by rate-based method (mostly owing to low firing
369 peaks) were revealed by the phase-based clusté&iiggré 4C). In a final group of cells, the

370  phase-based method separated an existing field and simultaneously added a new field.

371 (Figure 4D).

372 The proportions of cells showing different numbers of place fields changed using the
373  phase-based clustering method compared with the rate-based method. Specifically, phase-

374  based clustering classified 20% of CAL1 cells and 62% of subicular cells as multiple-field

375  cells and only 9% of subicular cells as having no fielcﬁ)( =106.70, p < 0.0001Chi-

376  square testrigure 5A). When the categorical changes were examined for each cell group, it
377  turned out that three-quarters of the rate-based non-place cells in the CA1 and subiculum
378  exhibited multiple phase-based place fieldiggre 5B). In addition, some rate-based single-
379  field cells in the CA1 (14%) and subiculum (45%) were converted to multiple-field cells by
380 the phase-based clustering. We also found that some rate-based multiple-field cells in the
381  subiculum exhibited additional phase-based fields after applying the phase-based protocol
382 (MF-added inFigure 5B). Phase-based place fields in the CA1 and subiculum still seemed to
383  display some fundamental differences. For example, the widths of phase-based place fields
384  remained significantly larger in the subiculum than in the CA1 (Z = 4.08, p < 0.0001;

385  Wilcoxon rank-sum tesFigure 5C) compared with widths of rate-based fields.

386 We next examined the robustness of theta phase precession of place cells in the
387  subiculum compared with that in the CA1 using circular statistics (linear regression and

388 linear correlation) for each spike cluster (Kempter et al., 2012). We found that the slope of

389 theta phase precession was significantly different between the two reqions €4.43, p =
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390 0.036), but it was not affected by the field-identification methegs{ky= 0.59, p = 0.44,

391 two-way mixed ANOVA with region as the between-subject factor and the field-identification
392  method as the within subject factéigure 5D). There was no interaction between the region
393  and field-detection method ¢fs13)= 0.52, p = 0.47), mostly attributable to the reduced

394  regional difference when the phase-precession slope was calculated based on the phase-based
395 fields compared to the rate-based fields. The precession slope of rate-based fields tended to
396  be steeper in the CAl than in the subiculugas{t= 2.01, p = 0.045 for Bonferroni-corrected

397 unpaired two-samplettst; correctech = 0.0125), an outcome that could be expected based
398  on the larger field width of subicular place cells. However, the regional difference in slope
399 diminished when using the phase-based methwed & 1.64, p = 0.102). The slope of theta

400 phase precession was not affected by the field-detection method within each region (CA1,
401 tes5 = 1.39, p =0.16;SUB, t637)= 0.03, p =0.98). On the other hand, the strength of theta

402  phase precession of place cells evaluated by circular-linear correlation coefficient was

403  significantly different between the CA1 and subiculum k5= 31.57, p < 0.0001) and

404  between the two field-detection methodg ébs)= 50.25, p < 0.0001fwo-way mixed

405 ANOVA; Figure 5E). The interaction between the region and method was not significant

406  (Faes5=3.68, p = 0.055). Post-hoc tests revealed that the phase-precession strength

407 increased in phase-based fields compared with rate-based fields in both regiong{&AL, t

408  4.77, p <0.0001;subiculum, ges)= 5.36, p < 0.0001unpaired two-sample t test with

409  Bonferroni correction;corrected o= 0.0125). Although precession strength was sicguifily

410 lower in the subiculum than in the CA1 even after phase-based field identification (rate-

411 based, o) = 5.08, p < 0.0001phase-basedgi1)= 4.03, p < 0.0001), the precession strength
412 in the subiculum increased closer to that of the CA1.

413 We also tested whether the theta phase-based parsing of subicular broad firing fields

414  changed the proportion of place cells with significant theta phase precession. A place cell was

18
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classified as having significant theta phase precession as one of its subfields met the
following criteria: range of phase shift is equal to or larger than Edf)3e of circular-linear
regression line is lower than zesmd p-value of circular-linear correlation is eqioabr

lower than 0.05. Then, we obtained the proportion of place cells with or without significant

theta phase precession and even non-place cells. The proportional changes between field

identification methods were significant in the subiculwﬁlg =61.33, p < 0.000Xhi-

square testrigure 5F), but not in the CAl)(%l) =4.95, p = 0.084). Taken together, based

on the theta phase precession cycle, these findings indicate that the DBSCAN algorithm
effectively identified the multiple subfields enveloped in the broad firing activities of the

subicular cells.

Increase in task-relevant information in phase-based fields of subicular neurons

We previously reported that firing of neurons in the CA1 and subiculum was correlated with
the visual scene stimulus and choice response in the VSM task in the form of rate remapping
(Delcasso et al., 2014;ee et al., 2018). Here, we examined whether scaneloice-

dependent rate remapping also appeared in phase-based fields of neurons in the CA1 (n =
211) and subiculum (n = 139). To quantify rate remapping, we obtained a rate difference
index (RDI) for individual rate-based and phase-based fields using the firing rate maps
associated with different task conditions (see Methddigure 6A). The RDI for choice

response (RRRhc) was calculated using only the spiking activity recorded up to the choice
point. In contrast, for the scene-based RDI (| spiking activity associated with places
beyond the choice point were also included because only the scenes associated with the same
choice arm were compared. Place fields representing only arm areas were excluded from the

RDI analysis.
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439 We found that the phase-based field identification method extracted task-relevant
440 information more clearly than the rate-based method, especially in the subiculum. It also

441  revealed new information that went undetected by the conventional rate-based method. For
442  example, the phase-based method identified two fields for a subicular cell shown in Figure
443 6A on the stem of the maze that were unidentifiable by the conventional rate-based method.
444 One of the phase-based fields (redrigure 6A) showed a larger amount of scene

445  information than the rate-based field (0.32 > 0.06 forRfland 0.43 > 0.25 for RRLy.R)-

446  The other phase-based field (green in Figurg 6Aowed minimal information on the visual

447  scene but carried more information on the choice response compared with the rate-based field
448  (0.26 > 0.08 for RQYyo). As illustrated by the neuronal examples in Figure 86&8me phase-

449  based fields showed stronger rate remapping for scenes than for choices (cell 234-1-13-5 in
450 CAl, cells 415-13-18-1, 415-13-10-1 in the subiculum), whereas other phase-based fields
451  exhibited the opposite pattern (cell 561-1-14-€ il ; cells 232-6-19-1 and 415-10-19-2 in

452  the subiculum). Furthermore, scene and choice information increased to a similar degree in
453  some phase-based fieldadure 6B, cell 234-3-19-6 in CAlcells 415-11-19-1 and 232-4-

454 18-3in the subiculum).

455 We next investigated the extent to which task-related information carried by a single
456  unit changed when the field identification protocol was changed from the rate-based to the
457  phase-based method. For this purpose, if one cell showed multiple fields, the maximum RDI
458  value was selected as the representative RDI of the cell (closed black dot in Figure 6C

459  Then, we calculated thdifference in RD(ARDI) by subtracting the representative RDI value
460  of the rate-based protocol from the representative RDI value of the phase-based protocol for
461  scene ARDIscn) and choiceARDlIcHc) information, respectively. Both REdn and RDEwc

462  increased remarkably in the subiculum after theta phase-based field identification (T = 1582,

463  p =0.0002 for RDlIscn, T = 2415, p < 0.0001 fakRDlcHc; one-sample Wilcoxon signed
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rank test), but no significant increase was found in the CA1 (T = 365, p = 0.6BM0&\;
T =645, p = 0.47 for RDIchHc; Figure 6D). The RDI increases for subicular neurons were
significantly higher than those for CA1 neurons for both visual scenes (Z = 3.26, p = 0.0011
for ARDIscn) and choices (Z = 5.44, p < 0.0001 fdRRlcHc; Wilcoxon rank-sum test).

For joint comparisons of changes in scene- and choice-based rate remapping, the
differences in RDJcn and RDtwHe of each cell were marked as dots on a scatter fpigiie
6E). As shown in the first and second quadrants of the scatter plaicikddid RDErc
values increased jointly after the phase-based field identification method in the subiculum
compared with the CA1, where there was no such trend. Furthermorg;RRlues were
enhanced in some cells irrespective of RfRl/alues. To statistically compare the regional
differences visible in the scatter plot, we first divided the quadrant into equally spaced
angular bins (30°) and drew the mean vectors for each bin in a vector-length—weighted rose
plot. As shown in Figure 6Fthe stronger RDI enhancement in the subiculum compared with
the CAl was clearly visible in the first and second quadrants (bin 30°-60°, p =lif@&°-
120°, p = 0.014pin 120°-150°, p = 0.003Vilcoxon rank-sum test). Taken together, these
results indicate that the theta phase-based field detection method is capable of identifying
task-relevant information that would otherwise have been unidentifiable using the traditional

rate-based field-detection protocol.

Neurons in the subiculum represent scene and choice information more orthogonally in

their multiple phased-based fields than CA1 cells

We further examined the functional significance of amplified task-related information (i.e.,
scene and choice) discovered by the phase-based method in subicular neurons compared with
CA1 cells in our VSM task. If a place field showed the same amount of rate modulation for

both scene and choice factors, the corresponding data point on the RDI scatter plot should be
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located on the diagonal (e.g., field 1Rigure 7A). In contrast, if the amount of field

remapping was influenced to a greater degree by one of the task-related factors, the data point
should be located farther away from the diagonal (e.g., field~Bjure 7A). If a cell had

multiple phase-based fields and each field represented either scene or choice information
more strongly than the other, the cell was considered as orthogonalizing scene and choice
information Eigure 7B).

A significantly larger portion of subicular neurons exhibited orthogonal

representations of task-related variables than CA1 neuxtﬁl)s € 18.65, p < 0.0001Chi-

square testrigure 7C). To test whether the orthogonal representation occurred more strongly
in subicular cells, we measured the angle between the diagonal and the vector of each phase-
based field{scn and &nc; Figure 7D), then calculated orthogonality strength by multiplying

the sine values of the angles. RDI orthogonality was significantly stronger in the subiculum
than in the CA1 (Z = 3.3, p = 0.001, Wilcoxon rank-sum téigiure 7E).

Finally, we tested whether the amount of rate remapping differed between the
following cell groups: multiple-field cells with orthogonal representations (MF ortho),
multiple-field cells without such representations (MF non-ortho), and single-field cells (SF).
Since the number of CA1 cells showing orthogonal representations was too small (n = 10) to
obtain sufficient statistical power, tests were performed only within the subiculum. There

were significant differences in both scem@)( =7.79, p = 0.02, Kruskal-Wallis tesEigure
7F) and choice)((zz) =19.44, p < 0.000Eigure 7G) between the subgroups. Specifically,

cells having multiple fields showed larger RENvalues than those with single fields (MF
ortho vs. SF: Z=2.12, p = 0.03MF non-ortho vs. SF: Z = 2.5, p = 0.01BtF ortho vs. MF
non-ortho: Z = 0.37, p 8.7; Wilcoxon rank-sum test with Bonferroni correctioagrrected «

= 0.016). Moreover, subicular cells with orthogonal representations exhibited significantly
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513  larger RDtncVvalues than other groups (MF ortho vs. SF: Z = 4.51, p < 0.00¢1 non-

514  orthovs. SF: Z = 2.16, p = 0.03MF ortho vs. MF non-ortho: Z = 2.4, p = 0.016). $ke

515  findings indicate that subicular multiple fields identified based on the relationships between
516  spiking theta phase precessions did not uniformly represent task-relevant information.

517 Instead, they carried heterogeneous task-related information in a more orthogonal fashion
518 compared with CA1 cells. Furthermore, such subicular cells represented task-related

519  information more strongly than CAL1 cells in the VSM task.

520
521 Discussion

522

523  In the current study, we characterized the firing patterns of place cells in the CA1 and

524  subiculum using both phase- and rate-coding methods. Our findings demonstrate that some of
525  the broad place fields of subicular neurons can be parsed into multiple fields using the theta-
526  phase precession cycle. The newly discovered, phase-based place fields in the subiculum
527  were more similar to those in CALl in terms of field size and phase-precession strength.

528  However, unlike the case in the CAl, the neural representational strength of task-relevant
529  information was significantly improved in the subiculum by the phase-based field-detection
530 method. Furthermore, our results suggest that firing for multiple fields by a single neuron

531 may provide the subiculum with the unique function of representing different types of task-
532  related information in an orthogonal fashion compared with the CA1.

533

534  Underlying mechanisms of multiple cycles of theta phase precession and their associated
535 place fields in the subiculum

536  One possible mechanism underlying the multiple cycles of theta phase precession and their
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associated place fields in the subiculum is convergent inputs from multiple place cells in the
CALl to a subicular cell. To our knowledge, whether a single subicular neuron is innervated by
multiple CAL1 place cells is still largely unknown. However, it has been reported that axon
branches extending from a single CA1 pyramidal cell diverge to a very wide region within

the subiculum, covering approximately 2 mm along the septotemporal axis (Tamamaki et al.,
1987) and one-third of the subiculum along the proximodistal axis (Amaral et al., 1991). In
addition, approximately 40% of CA1 pyramidal cells are known to send efferent projections
to the subiculum (Roy et al., 2017). Based on these anatomical results, it is possible that a
single subicular cell receives synaptic inputs from multiple CA1 pyramidal cells. If this is the
case, a subicular place cell that receives inputs from multiple place cells in the CA1 whose
firing peaks are located at distant locations may develop multiple place fields. Conversely, if
multiple CAL1 place cells sending projections to a single subicular place cell have overlapping
place fields, then the subicular cell might exhibit a single broad firing field. Some prior
studies may support these possibilities (Fernandez-Ruiz et al., ZdrEmillo and Kempter,

2017).

Another possibility is that the multiple fields of the subiculum might be based on
inputs from cells in the medial entorhinal cortex, especially grid cells showing periodic firing
fields and theta phase precession. Some models have shown that theta phase precession in the
CA1 could be derived from grid cells in the medial entorhinal cortex (Molter and Yamaguchi,
2008; Schlesiger et al., 2015). It has also been repdni@demporal coding (including theta
phase precession) in the CAl is impaired by lesioning of the medial entorhinal cortex
(Schlesiger et al., 2015). However, cells in layer 3 of the entorhinal cortex, which mainly
project to the CA1 and subiculum, do not exhibit phase precession relative to theta rhythm
(Hafting et al., 2008). Whether theta phase precession in the subiculum is inherited from grid

cells in the medial entorhinal cortex remains to be investigated.
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Lastly, there is the possibility that cells in the subiculum might be influenced by
multiple sources of theta rhythm—one from an extracellular source and another generated
intrinsically. Specifically, some previous studies have proposed an interference model as the
mechanism for theta phase precession in the CA1 (O'Keefe and RecceBuggsss et al.,

1994; O'Keefe and Burgess, 2005). According to this matieke is an intrinsic theta

oscillator within pyramidal cells that causes theta phase precession while maintaining a
frequency that can be different from that of the extracellular theta rhythm. This model is
supported by experimental evidence showing that pyramidal cells in the dorsal hippocampus
show higher intrinsic oscillation frequencies than those in the ventral hippocampus, resulting
in smaller place fields in the dorsal hippocampus (Maurer et al., 2005). Experimental
evidence for the presence of an intrinsic theta oscillator in the subiculum has not been
reported. However, because principal cells in the subiculum have denser recurrent
connectivity than those in the CA1 (Harris and Stewart, 2bl#ryis et al., 2001 Bohm et

al., 2015), it is possible that cells in the subiculum can generate local rhythms intrinsically.
Notably, a recent study reported that an atypical type of sharp-wave ripple occurs in the
subiculum, independent of traditionally known CA3-originating sharp-wave ripples (Imbrosci
et al., 2021), an observation that may support the possibility that subicular neurons

intrinsically generate their own local oscillations.

Clustering algorithm for identifying multiple cycles of theta phase precession and their
associated place fields

A previous study by Maurer et al. (2006) demonstrated that the partially overlapping place
fields of a single cell in the CA1 could be segmented by manually drawing boundaries around
the spikes belonging to individual cycles of theta phase precession on the position-phase

scatter plot. Further improving this strategy, Kim et al. (2012b) developed an automated

25


https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.456028; this version posted August 12, 2021. The copyright holder for this preprint

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

algorithm that constructs a phase-position firing-rate map from normalized phase-position
plots of rat occupancy and then defines place fields based on detection of local maxima.
However, there were challenges to adopting this previous protocol in the current study. First,
these authors used a behavioral paradigm in which rats ran along a track in the absence of
environmental change or mnemonic task demand, whereas in the current study rats performed
a mnemonic task in which they were required to associate different scenes with discrete
behavioral choices. Our previous study showed that firing rates of subicular cells are
modulated in relation to task-related information (i.e., scene and choice) (Lee et al., 2018). In
that case, even if a field had a high firing rate in one condition, it might show a low firing rate
in the other condition. Accordingly, in the overall firing rate map obtained by averaging the
firing rates for all conditions, the high firing rate under one specific condition is likely to be
canceled out by that under the other condition, making it difficult to definitively establish
peak firing and field boundaries when defining a place field. Second, the length of the linear
track used in the current study was relatively short, possibly resulting in more overlap
between place fields and thus creating difficulties in setting an appropriate threshold for
segmenting individual fields on the phase-position firing-rate map.

Therefore, to eliminate the risk of being unable to find potential task-related firing
fields, we adopted the clustering algorithm DBSCAN (Ester et al., 1996), which can be
applied to the raw phase-position spiking plot without normalizing for occupancy. We chose
this algorithm for several reasons. First, when sampled sufficiently, spikes tend to occur at the
most preferred location within a place field with highest probability and then gradually
diminish as the distance from the field center increases (i.e., Gaussian-like distribution).
Because of its density-based algorithmic nature, the DBSCAN algorithm is suitable for
finding clusters when data points exhibit such distributions. Second, DBSCAN has the

advantage of robustly detecting outliers, which enabled us to process continuous and

26


https://doi.org/10.1101/2021.08.11.456028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.456028; this version posted August 12, 2021. The copyright holder for this preprint

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

spontaneous firing activities of subicular fields. Furthermore, DBSCAN does not require an
experimenter to predetermine the number of clusters. Finally, the DBSCAN algorithm does

not limit cluster shape, so it can flexibly find clusters in a complex data set.

Functional significance of the more orthogonal representation of scene and choice
information in the subiculum than the CA1

The spatial firing properties of subicular neurons are different from those of CA1 cells. This
unique nature of the subiculum has been attributed to signals from outside the hippocampal
formation, including those related to movement and head direction of the thalamic region
(Frost et al., 2021). However, task-related information such as scene and choice information
in the subiculum should also be influenced by inputs from the dorsal CA1, as demonstrated in
our previous studies (Kim et al., 2012Bglcasso et al., 2014). This possibility is supgart

by findings of the current study showing significantly enhanced rate modulation for task-
relevant information, as only the group of spikes constituting a single cycle of theta phase
precession was extracted for measuring the representational strength of task-related
information.

The enhancement of task-related signals in the subiculum allowed us to investigate
the functional roles of subicular cells in the VSM task compared with our previous study in
which we relied on the traditional rate-based field-detection algorithm (Lee et al., 2018).
Remarkably, some subicular neurons carried orthogonal scene and choice information in their
subfields. This phenomenon could arise in a scenario in which different CA1 cells, each
carrying one type of task-related information more strongly than the other, send their outputs
to a single subicular neuron. Subicular neuron could then facilitate associative learning by
representing different types of information concurrently so that downstream structures

receive more associative information between the critical task variables. Note that a subicular
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637  cell tends to represent different task-related information in separated fields associated with
638 distant locations, but not conjunctively in one field. The different types of information

639 represented by the separate fields of a subicular cell might then be transmitted into identical
640  target regions nearly simultaneously with a certain phase relationship, potentially

641  contributing to the formation and retention of hippocampal associative memory.

642

643  Functional subclasses of neurons in the subiculum may play key roles in hippocampal-

644  dependent action in a visual contextual memory task

645  Numerous studies have suggested the presence of anatomical and physiological

646  subpopulations in the subiculum. Specifically, it has been reported that afferent and efferent
647  projections of the subiculum are organized topographically along the proximodistal axis

648  (Tamamaki et al., 1987Amaral et al., 1991;Tamamaki and Nojyo, 1993\laber and Witter,

649  1998; Witter et al., 2000:Ishizuka, 2001 ;Witter, 2006; Cembrowski et al., 2018bKitanishi

650 etal., 2021), as the proximal and distal parts of the subiculum are clearly divided according
651  to gene expression in principal cells (Cembrowski et al., 20C&mbrowski et al., 2018a).

652 In addition to these anatomical subdivisions, in vitro physiological studies have reported two
653  types of intrinsic firing for subicular principal cells—bursting and regular-spiking (Stewart
654 and Wong, 1993:.Taube,1993; Behr et al., 1996)—and shown that these cells é&ib

655 unique distribution gradient along the proximodistal axis (Harris et al., 2a0$ky et al.,

656  2008; Kim and Spruston, 2012). These two classes of aedlsnodulated differently by

657  sharp-wave ripples of the CA1 and have different intrinsic connectivity (Bohm et al., 2015).
658  Furthermore, a series of recent in vivo studies identified subpopulations in the subiculum with
659 different spatial firing characteristics (Brotons-Mas et al., 2(R@y et al.2017; Simonnet

660 and Brecht, 2019Poulter et al., 2021).

661 Our physiological results also suggest that there are functionally different subclasses
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of neurons within the subiculum. In our previous paper, subicular cells with a single broad
field showed a “schematic” firing pattern that depended on the cognitive structure of the task;
we speculated that this firing pattern serves to mediate contextual behavior by representing
the discrete region associated with critical epochs of the task (Lee et al., 2018). That is, cells
in the CA1 and subiculum represent specific location information and an epoch-based region,
respectively. On the other hand, subicular cells with multiple focal fields are thought to
contribute to associative memory by subsequently—but almost concurrently—transmitting
different types of task-relevant information to downstream structures where choice-related
actions and decisions occur.

Taken together, our findings indicate that the subiculum may support visual
contextual behavior in space through two processes, each driven by a distinctive neuronal
class. Information regarding context and future path leading to the goal location, separately
recognized at focal and distant place fields of the CAL, could be integrated by subicular cells
with multiple phase-based fields and transmitted to downstream areas. In particular, such
information processing in the subiculum could be critical for converting contextual
information into an action signal. At the same time, subicular cells with a broad single field
may represent the area in which all locations are associated with a common task-related
variable, such as a specific visual scene or choice response. A recent study showing that CA1-
projecting subicular cells receive direct inputs from the visual cortex and send their
projections to some critical regions (e.g., perirhinal cortex, CA1l) in the VSM task used in the
current study may also support the functional significance of the subiculum in the visual

contextual behavioral task (Sun et al., 2019).
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Figure legends

Figure 1. Behavioral task and histological verification of electrophysiological recordings.

(A) VSM task. As a trial begins, the rat runs out onto the track of a T-maze from the start box
(S), and one of four visual scene stimuli (Zel#aBamboo,B; PebblesP; Mountain, M) is
presented on LCD monitors. Each scene stimulus is associated with either the left or right arm
of the T-maze. The rat obtains a piece of cereal reward from the food well, located at the end
of both arms, if it chooses the correctly associated sgjeBéhavioral performance during
recording sessions (21 sessions from 5 rats). Each dot corresponds to the percent correct for
each scene stimulus of a session and is color-coded for individual rats. Box plot indicates
interquartile range and median value. The median values exceeded the performance criterion
(dashed line, 75%) for all scene8) Photomicrographs of Nissl-stained coronal brain sections
with verified electrode tips (black arrows). Numbers above the arrows indicate normalized
positions of marked recording sites along the proximodistal axis. Dashed lines represent the
anatomical boundaries of the CA1 and subiculum. Upper and lower rows show recording sites
from the subiculum and CALl, respectivel) (Proportional distribution of cells recorded in

the CA1 (blue) and subiculugS8UB; red) along the proximodistal axis (CA1, n = 2BLJB,

n =151). The positions are normalized to account for differences in relative length between
two regions (seéMethods). The dashed line at 0.36 indicates the boundary between two

regions.

Figure 2. Poorer spatial firing patterns in the subiculum than the CALl. A, B) Firing rate
maps of single cells (left) and cell populations (right) in the CA1 (A) and subiculum (B), plotted
as a function of linearized position on the T-maze from the start box (st box) to the food wells

(fw) in both arms. Red arrowheads indicate the choice point after which rats’ positions diverged
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to the two arms. On the firing rate maps of single cells, verified place fields are overlaid with
black lines, and non-place fields that did not pass the place field criteria are marked by black
dotted lines. Serial numbers on the upper left corner are cell IDs. Indices on the right corner
denote mean peak firing rates (Hz) and spatial information scores (bit/spike) of place and non-
place fields. Population firing rate maps are sorted according to peak firing rate of each cell on
the T-maze. White dashed lines and red arrowheads indicate the choice @pintepprtional
differences of place cells defined by the firing rate-based method. Cells are classified into three
groups according to the number of place fields within a cell: ‘single-field (SF)’ for one field,
‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)’ for zero field.
***p < 0.0001. ©-F) Differences in mean firing rate (D), spatial information score (S| score;

E), and place field width (F) of recorded cells between the CA1 and subiculum. Box plot

indicates interquartile range and median value for each region. ***p < 0.0001.

Figure 3. Robust and multiple theta phase precession in the subiculumA{C)

Representative examples of theta phase precession in the CAL1 single-field cells (A), subicular
single-field cells (B), and subicular non-place field cells (C). The left column within each cell
consists of linearized position (top), a raw trace of theta oscillation (middle), and spiking

theta phases (bottom) in the temporal axis in a single trial. Spikes in the raw theta traces are
marked by red circular dots. Scale bar, 250%$piking theta phases are plotted within a

range of 360°, and the initial phase is adjusted for clear observation of theta phase precession.
Serial numbers in the upper right corner are cell IDs. The right column displays a linearized
firing rate map (top) and a position-phase plot (bottom) on the spatial axis across a session.
Black solid lines overlaid on the firing rate maps indicate verified place fields, whereas black
dotted lines are non-place fields. Numbers above firing rate maps denote peak firing rates

(Hz) and spatial information scores (bit/spike) of place or non-place fields. Red arrowheads
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and red dashed lines mark choice points. Note that subicular cells showed multiple cycles of

theta phase precession, some of which were as robust as those of CA1 cells.

Figure 4. Identification of place fields based on spiking theta phases in the CA1 and
subiculum. (A—D) Each subplot for individual cells consists of a linearized firing rate map
(top) and a position-phase plot (bottom) on the spatial axis across a session. Gray lines on the
firing rate maps indicate averaged firing activity, solid black lines denote place fields defined
by firing rates (rate-based place fields), and color-coded lines denote place fields based on theta
phases (phase-based place fields). Serial numbers above the firing rate maps are cell IDs. Color-
coded numbers on the right corner indicate peak firing rate (Hz) and spatial information score
(bit/spike) of individual phase-based place fields. Red arrowheads indicate choice points. Spike
clusters in position-phase plots are color-coded with the same color used for the firing rate
maps. Black straight lines on each spike cluster indicate the circular-linear regression line. The
numbers and asterisks in the box with colored borders are circular-linear correlation
coefficients; their significance for phase-based fields is indicated in the same color.

***p < 0.0001.

Figure 5. Advantages of spiking theta phase-based field identificationA{ Proportional
differences of place cells defined using the theta phase-based method. Cells are classified into
three groups according to the number of place fields within a cell as follows: ‘single-field

(SF)’ for one field, ‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)'

for zero field. ***p < 0.0001.B) Categorical changes of cells within each rate-based cell

group (NF, SF, and MF on theaxis) as the field identification method was shifted to phase-
based. The bar graph shows what proportion of cells in each cell group classified by the rate-

based method was re-categorized after the phase-based méjRdgional differences in
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place field width after phase-based field identification. ***p < 0.0001.K) Cumulative
distributions of theta phase precession (TPP) slope (D) and correlation coefficient (E) of

place cells for each method (rate- and phase-based) and each region. Line graphs on the right
side of each panel display mean values and standard errors for the sante @atgqrtional
changes in place cells with or without significant theta phase precession after the phase-based

field identification within each region. ***p < 0.0001.

Figure 6. Scene- and choice-dependent rate remapping is enhanced in the subiculum but
not in the CA1 after phase-based field identification.A) A representative subicular cell
illustrating how difference indices for scene (B&J) and choice (RQ4c) are obtained. The
linearized firing rate map in the left panel shows rate-based fields (black line) and phase-
based fields (color-coded lines) averaged across all trials. Middle panel shows firing rate
maps associated with different task-relevant information. Rate-based fields are marked as
black lines (upper row) and phase-based fields are color-coded (bottom row). Shaded areas
overlaid on the fields are standard errors. Numbers above the fields indicate RDI values.
Rightmost panel shows R&Jn and RDtwc values for individual fields marked as dots on the
scatter plotopen black dots correspond to rate-based fields and color-coded dots denote
phase-based fields. The dashed line shows the diagBh&xéample neurons in the CAl and
subiculum with their RDI values associated with the scene and choice information. Within
each neuron, linearized firing rate map (left) and RDI scatter plot (right) are shown as in (A).
Solid black lines on firing rate maps are firing rate (FR)-based firing fields and color-coded
lines are theta phase (TP)-based place fields, with arm fields depicted in dotted lines. Serial
numbers above the rate maps are cell IDs. Red arrowheads indicate choice@pints. (
lllustration showing how RDI differences (i.e RBIscn and ARDlcHc) are measured using

the rate-based method (open black circle) and phase-based method (closed black circle). The
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934  closed black circle is a representative point for the phase-based method, marked by selecting
935 maximum values among RDIs obtained from all phase-based fiBldBaf graphs

936 comparing the magnitude of changes in RlRland RDtxc between regions. Data are

937 presented as means + standard error of the mean. ***p < 0.@)(3cétter plot jointly

938 displaying RDIscnandARDIchc for all neurons in the CA1 and subiculum. Note that

939  subicular neurons are more dispersed in the first and second quadrant than CA1 rféurons. (
940  Weighted rose plot constructed using data from (E) for statistical comparison. **p < 0.01,

941  *p <0.05.

942

943  Figure 7. Scene and choice information are orthogonally represented by multiple phase-

944  based fields of subicular neurons.A) lllustration showing the different relationships

945  between RDdcn and RDtwrc of example fields on the RDI scatter plot. Fieldl (red) near the
946 diagonal line shows the same amount of rate modulation for scene and choice information,
947  whereas field2 (green) located further away from the diagonal line had much stronger rate-
948  remapping for scene than choice informatidd). Four examples of orthogonal

949  representations for scene and choice information for individual neurons. For each neuron, the
950 left panel shows a linearized firing rate map (left) and the right panel shows an RDI scatter
951  plot. Each phase-based field is color-coded. Serial numbers above the rate map indicate cell
952 IDs. Numbers on the scatter plots indicate RDI orthogonality strer@jttieroportion of cells

953  for which phase-based fields have orthogonal representations for scene and choice

954  information. ***p < 0.0001. D) lllustration displaying how the strength of orthogonal

955  representations for scene and choice information is quantifiedafd &nc indicate the

956 angles between the diagonal line and the vectors of the fields whosen\®@DRDlcHc is the

957  maximum value.E) Cumulative distribution of RDI orthogonality strength for each region.

958 **p < 0.01. (F, G) Cumulative proportion of subicular cells for R\ (F) and RD¢Hc (G).
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959  Bar graphs on the right side of each panel show RDI differences between subgroups within

960  the subiculum. ***p < 0.0001, *p < 0.016.
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