

Orthogonal representation of task-related information in theta phase-based multiple place fields of single units in the subiculum

Su-Min Lee, Jae-Min Seol, and Inah Lee*

Department of Brain and Cognitive Sciences
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea
08826

***Corresponding author:**

E-mail: inahlee@snu.ac.kr

Phone: +82-2-880-8013

Competing financial interests:

The authors declare no competing financial interests.

Acknowledgments:

This study was supported by the National Research Foundation of Korea (NRF 2017M3C7A1029661, 2018R1A4A1025616, and 2019R1A2C2088799) and the BK21 FOUR by the Ministry of Education and the NRF.

Author contribution:

Su-Min Lee designed research, performed research, analyzed data and wrote the paper; Jae-Min Seol analyzed data; Inah Lee designed research, interpreted data and wrote the paper.

1 **Abstract**

2

3 The subiculum is positioned at a critical juncture at the interface of the hippocampus with the
4 rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent
5 memory tasks remain largely unknown. One obstacle to make analytical comparisons of
6 neural firing patterns between the subiculum and hippocampal CA1 is the broad firing fields
7 of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the
8 broad firing field of a subicular neuron into multiple subfields to find the unique functional
9 contribution of the subiculum while male rats performed a hippocampal-dependent visual
10 scene memory task. Some of the broad firing fields of the subicular neurons were
11 successfully divided into multiple subfields by using the theta-phase precession cycle. The
12 resulting phase-based fields in the subiculum were more similar to those in CA1 in terms of
13 the field size and phase-precession strength. The new method significantly improved the
14 detection of task-relevant information in subicular cells without affecting the information
15 content represented by CA1 cells. Notably, multiple fields of a single subicular neuron,
16 unlike those in the CA1, could carry heterogeneous task-related information such as visual
17 context and choice response. Our findings suggest that the subicular cells integrate multiple
18 task-related factors by using theta rhythm to associate environmental context with action.

19 **Introduction**

20

21 The hippocampal formation plays key roles in fundamental cognitive functions, including
22 spatial navigation and episodic memory (Scoville and Milner, 1957; O'Keefe and Nadel,
23 1978; Eichenbaum, 2000). The subiculum, a region within the hippocampal formation, has
24 long been considered the area from which cortical outputs of the hippocampus emanate
25 (Amaral et al., 1991; Witter et al., 2000). However, viewing the subiculum as an area that
26 passively transmits hippocampal information to cortical regions might be inappropriate,
27 because the subiculum is connected not only with the CA1 of the hippocampus but also with
28 other areas, including the medial prefrontal cortex, entorhinal cortex, retrosplenial cortex,
29 perirhinal cortex, postrhinal cortex, nucleus accumbens, basal amygdala and various
30 subcortical regions (Witter, 2006; Cembrowski et al., 2018b; Matsumoto et al., 2019).

31 Physiologically, it has been reported that the neural correlates of the subiculum are
32 significantly different from those of the CA1 during spatial navigation. Specifically, neurons
33 in the subiculum tend to exhibit broader place fields than those in the CA1 (Barnes et al.,
34 1990; Sharp and Green, 1994; Kim et al., 2012b; Lee et al., 2018). Also, place cells in the
35 subiculum are more attuned to movement-related factors, such as direction and motion,
36 during navigation compared with CA1 place cells (Lever et al., 2009; Olson et al., 2017;
37 Kitanishi et al., 2021; Ledigerber et al., 2021). A few studies have also suggested that the
38 subiculum is essential in remembering places and environmental contexts (Morris et al.,
39 1990; Potvin et al., 2007, 2009; Potvin et al., 2010; Melo et al., 2020). However, the exact
40 roles of subicular neurons, especially in a goal-directed memory task, still remain largely
41 unknown. In our previous study, we reported that neurons in both the subiculum and CA1
42 showed rate remapping according to task-related factors, specifically visual scene and choice

43 response in a visual scene memory (VSM) task in which rats were required to make choices
44 in a T-maze using the visual scene stimulus presented around the maze (Lee et al., 2018).
45 Interestingly, place cells in the CA1 showed such firing properties while coding very specific
46 locations in space, whereas cells in the subiculum fired similarly while mapping broader
47 areas (e.g., stem or choice arm region), as if they represent the cognitive structure of the task
48 by schematically parsing the environment. On the basis of these results, we speculated that
49 position-linked environmental information in the hippocampus in the VSM task (Delcasso et
50 al., 2014; Lee and Lee, 2020) might be translated into contextual action-related information
51 that can be communicated with other brain regions.

52 One major obstacle that poses great difficulties for investigations of the neural
53 correlates of subicular neurons is their higher spontaneous firing rates and broader firing
54 fields in space compared with those of place cells in the hippocampus (Sharp and Green,
55 1994; Kim et al., 2012b; Lee et al., 2018). These firing characteristics of subicular neurons
56 make it difficult to apply the conventional analytical techniques optimized for place cells
57 recorded from hippocampus, where place fields are more restricted to specific locations of the
58 environment with a higher signal-to-noise ratio compared with the subiculum. For example,
59 in our previous study (Lee et al., 2018), we sought to identify field boundaries of subicular
60 cells by finding local minima through statistical comparisons of trial-by-trial firing rates
61 between neighboring bins. However, such methods had shortcomings, such as defining some
62 subicular cells as having no fields and ignoring small subfields in the presence of a dominant
63 field with a very high firing peak.

64 Notably, some previous studies attempted to parse the broad spatial firing field of a
65 subicular neuron into smaller fields using the phases of spikes in relation to theta rhythm
66 (Maurer et al., 2006; Kim et al., 2012b). Here, inspired by these studies, we compared the
67 traditional rate-based field-detection method with the theta phase-based field-detection

68 method using the same physiological data recorded from the CA1 and subiculum in our
69 previous study (Lee et al., 2018). The current study showed that the phase-based analysis
70 could successfully parse subicular firing fields into multiple subfields and that these newly
71 parsed place fields in the subiculum better represented task-related information. Importantly,
72 some subicular cells represent multiplex information associated with the VSM task through
73 their phase-based subfields, possibly suggesting a unique role of the subiculum in integrating
74 environmental information with action.

75

76 **Materials and Methods**

77

78 **Subjects**

79 Male Long-Evans rats ($n = 5$) were used in the current study. Food was restricted to maintain
80 rats' body weights at 350–400 g (85% of free-feeding weight), and water was made available
81 *ad libitum*. Rats were individually housed under a 12-h light/dark cycle. All protocols were
82 approved by the Institutional Animal Care and Use Committee of Seoul National University.

83

84 **Behavioral task**

85 Detailed descriptions of our experimental procedures, including the visual scene memory
86 (VSM) task and the apparatus (**Figure 1A**), are available in our previous study (Lee et al.,
87 2018). Briefly, the rat was located in a start box before a trial began. The experimenter started
88 the trial by opening the door of the start box, which also triggered presentation of a patterned
89 visual stimulus (i.e., visual scene) in an array of three adjacent LCD monitors surrounding the
90 choice-arm region of the T-maze. The rat then entered and ran along the stem of the T-maze
91 (stem, 73×8 cm; arms, 38×8 cm) and was required to turn left or right at the end of the

92 stem (*choice point*) in association with the visual scene. The rat obtained a quarter piece of
93 cereal reward (Froot Loops, Kellogg's) from the food well at the end of the correct arm, but
94 no reward was given if it entered the wrong arm. Four visual scenes (zebra, bamboo, pebbles,
95 mountains) were used. In all sessions, zebra stripes and bamboo patterns were associated with
96 the left arm, and pebbles and mountain patterns were associated with the right arm; within a
97 session, the four visual scenes were presented in a pseudorandom sequence.

98 During the pre-surgical training period, the rat was initially trained with a pair of
99 scene stimuli (zebra vs. pebbles or bamboo vs. mountain, counterbalanced for rats) until it
100 reached the performance criterion for each pair ($\geq 75\%$ correct for each scene for two
101 consecutive days). Once the rat reached the performance criterion for both scene pairs, a
102 hyperdrive carrying twenty-four tetrodes (+3 reference electrodes) was surgically implanted
103 in the right hemisphere to cover 3.2-6.6 mm posterior to bregma and 1-4 mm lateral to the
104 midline. After 1 wk of recovery, the rat was retrained until it reached pre-surgical
105 performance levels (**Figure 1B**), during which time the tetrodes were lowered into the
106 subiculum and CA1 by 40–160 μm daily. Thereafter, the main recording sessions (123 ± 6
107 trials/session, mean \pm SEM) began, and the four scene stimuli were presented in an
108 intermixed fashion during sessions.

109

110 **Electrophysiological recording and histological procedures**

111 Single unit spiking activity and local field potentials (LFPs) were recorded from the dorsal
112 CA1 and subiculum. Neural signals were transmitted to the data acquisition system (Digital
113 Lynx SX; Neuralynx) through a headstage connected to the EIB board and tethered via a slip-
114 ring commutator on the ceiling. Neural signals from tetrodes were amplified 1,000–10,000
115 times and sampled at 32 kHz. Spiking data were acquired by filtering at 600–6,000 Hz. LFPs
116 were obtained by filtering the same signals at 0.1–1,000 Hz. After completion of all recording

117 sessions, electrolytic lesions (10 μ A current for 10 s) were made to mark the tip positions of
118 the tetrodes. Twenty-four hours after electrolytic lesioning, the rat was sacrificed by
119 inhalation of an overdose of CO₂ and perfused transcardially. Brain tissue was stained using
120 thionin or Timm's method for Nissl substances (see details in Lee et al. (2018); **Figure 1C**).

121 The anatomical boundaries of the CA1 and subiculum were determined based on the
122 rat brain atlas (Paxinos and Watson, 2009). Tetrodes located in the transition area between the
123 CA1 and subiculum were excluded. To quantitatively describe the proximodistal positions of
124 the recording tetrodes, we measured the linearized length of the cell layer in the CA1 and
125 subiculum—specifically, the distance between the most distal to the proximal end along the
126 curved pyramidal cell layer in a given section—using image processing software (ImageJ;
127 NIH). Recording positions across rats were normalized by selecting a median value among
128 the linearized lengths of the pyramidal cell layers of the CA1 and subiculum in all rats, and
129 the ratio between the CA1 and subiculum was obtained (subiculum:CA1 = 0.36:0.64). The
130 relative positions of tetrode tips within each region were then calculated (**Figure 1D**).

131

132 **Extraction of outbound running epochs**

133 Before proceeding with a set of analyses based on spiking data in relation to their theta
134 phases, we extracted only those epochs associated with outbound journeys (from the start box
135 to either left or right food well). To facilitate theta rhythm-related analyses, we calculated the
136 instantaneous running speed so as to include epochs in which rats ran at a reasonable speed.
137 To this end, we interpolated linearized position data to compensate for vacancies caused by
138 rat head movements and/or tether interference. Next, outlier data points were suppressed
139 using a locally weighted robust regression. Then, the instantaneous running speed, calculated
140 by dividing the length of three consecutive data points by the duration of time, was assigned
141 to the middle point of the three. The average running speed was 35.3 cm/s in all sessions for

142 all rats. Spikes that occurred when running speed was greater than 20 cm/s were used in this
143 study. If the latency from the start box to the food well was longer than 6 s, that trial was
144 discarded.

145

146 **Spiking data analysis**

147 *Unit isolation*

148 Single units were isolated manually using both commercial software (SpikeSort3D;
149 Neuralynx) and a custom-written program (WinClust) based on the waveform parameters,
150 peak amplitude, energy, and peak-to-valley latencies. The same criteria from our previous
151 study (Lee et al., 2018) were used to evaluate unit-isolation quality, with the additional
152 criterion that the number of spikes during running epochs of outbound journeys on the track
153 should be greater than 50 (subiculum, n = 208 units; CA1, n = 327 units).

154

155 *Detection of firing rate-based place fields*

156 Position data acquired during outbound running epochs were first linearized by scaling down
157 using 2-cm spatial bins. The choice point—that is, the point where the rat's position data
158 diverged between left and right choice trials—was determined by detecting the spatial bin
159 with a statistical difference between left and right position traces (two-sample t-test). Then, a
160 linearized firing rate map was constructed by dividing the number of spikes by the number of
161 position data points in individual spatial bins. Boundaries of a firing field were defined as the
162 first spatial bin at which the firing rate dropped below 33% of the peak firing rate for two
163 consecutive bins. If a local peak exceeding 50% of the maximum peak firing rate was found
164 outside the predetermined firing field, it was considered as the peak of a possible subfield,
165 and the boundaries of the subfield were found using the same algorithm. After defining the
166 field boundaries, a firing field was identified as a place field when the peak firing rate within

167 the field exceed 1 Hz and the spatial information score of the field was greater than 0.5. The
168 spatial information score was computed according to the definition of Skaggs et al. (1993) as
169 follows:

170
$$\text{Spatial information score} = \sum_i p_i \frac{\lambda_i}{\lambda} \log_2 \frac{\lambda_i}{\lambda} (\text{bits/spike}),$$

171 where i denotes the spatial bin, p_i is the occupancy rate in the i^{th} bin, λ_i is the mean firing
172 rate in the i^{th} bin, and λ is the overall mean firing rate. The mean firing rate and peak firing
173 rate were obtained from the raw rate maps. For display, the rate maps were smoothed using
174 the adaptive binning method.

175

176 **LFP analysis**

177 *Tetrode selection*

178 To align baseline offsets, we down-sampled LFPs from 32 kHz to 2 kHz and filtered them at
179 3–300 Hz using a zero-phase bandpass filter (3rd-order Butterworth filter with the *filtfilt*
180 function in MATLAB). LFP traces from running epochs were then visually inspected to
181 exclude tetrodes whose voltage traces exceeded the maximum value (3,000 μV) of the
182 analog-digital converter or artifacts such as bumping noises. Spiking phases in relation to
183 theta rhythm were analyzed by obtaining a power spectral density (PSD) function using a
184 multi-taper method (Chronux ToolBox; MATLAB) and then selecting reference tetrodes with
185 the strongest power in the high theta band (7–12 Hz) for individual sessions and regions. The
186 frequency range of the theta band was set so as to include the most prominent peak at 8 Hz in
187 the mean power spectral density function during the outbound journey and to minimize
188 bumping noises that usually occurred at less than 7 Hz. LFPs recorded from the CA1 and
189 subiculum were used for spiking phase analyses of single units in the corresponding regions.

190

191 *Spiking theta phases*

192 LFPs from reference tetrodes were filtered in the theta range (7-12 Hz) using a zero-phase
193 bandpass filter, followed by application of a Hilbert transform to decompose filtered LFPs
194 into amplitude and phase information. Spiking-phase relationships were examined by plotting
195 instantaneous theta phases and rat's linearized positions at time points when spikes occurred
196 in a 2-dimensional space (phase-position plot).

197

198 *Identification of theta phase-based place fields using DBSCAN*

199 To define a cluster of spikes that shared the same spiking-phase relationships, we adopted a
200 well-known clustering algorithm called the *Density-Based Spatial Clustering of Applications*
201 *with Noise (DBSCAN)* suggested by Ester et al. (1996). DBSCAN is a density-based,
202 nonparametric algorithm that gathers data points in close proximity while excluding distant or
203 sparsely located points as noise. In DBSCAN, it is not necessary to specify the number of
204 clusters in advance. Still, some parameters must be predetermined to run the algorithm, such
205 as the distance (ϵ) and the minimum number of points within a distance (N_{min}). Specifically, if
206 the number of data points at a distance ϵ from a point is greater than N_{min} , including itself, the
207 point is defined as a core point of a cluster. If another point contains the core point within
208 distance ϵ but does not satisfy N_{min} , it is defined as a border point. If there is no core point
209 and N_{min} is not satisfied, the point is defined as a noise point. In our study, clusters on the
210 position-phase plot were captured by the DBSCAN algorithm to find theta phase-based place
211 fields (*TP-based place fields*). To avoid detecting spurious sparse clusters, we restricted
212 DBSCAN parameters to the following ranges: distance (ϵ) < 8 cm; $N_{min} \geq 10$; and total
213 number of spikes in a cluster ≥ 30 . The parameters were determined manually in those ranges
214 so that the number of clusters in a cell was greater than the number of local maxima in
215 linearized firing rate maps. Biased clustering caused by experimenter subjectivity was

216 prevented by performing cross-validation with three additional experimenters who did not
217 participate in analyses of the current data sets. After cross-validation, cells with invalid
218 clustering were excluded from the analysis based on the following: (1) DBSCAN parameters
219 not satisfied (subiculum, n = 21; CA1, n = 24), (2) insufficient spikes (subiculum, n = 17;
220 CA1, n = 30), or (3) irregular cluster shape (subiculum, n = 16; CA1, n = 6).

221

222 *Quantification of theta phase precession*

223 After identification of individual place fields using theta phases, the slopes of theta
224 precession were measured by fitting individual spike clusters to circular-linear regression
225 lines (Kempter et al., 2012). A circular-linear correlation was also applied to determine if the
226 phase shift was significant (Toolbox for circular statistics with MATLAB; Berens, 2009).
227 Theta-phase precession of a place field was considered significant if the following criteria
228 were met: (1) range of phase shift $\geq 180^\circ$, (2) slope of regression line < 0 , and (3) p-value of
229 circular-linear correlation ≤ 0.05 .

230

231 **Analysis of rate remapping**

232 To measure the amount of rate modulation between firing rate maps associated with different
233 trial conditions (i.e., scene stimulus or choice response), we obtained a rate difference index
234 (RDI) by calculating an absolute value of *Cohen's d*:

$$235 \text{Rate difference index} = \left| \frac{\text{mean}(FR_1) - \text{mean}(FR_2)}{\text{std}(FR_1, FR_2)} \right|,$$

236 where FR_1 and FR_2 denote the in-field firing rates of individual trials associated with
237 different conditions. *Cohen's d* measure was adopted because it includes a term for standard
238 deviation in its denominator, which was expected to control for the confounding effect
239 induced by the variability in intrinsic firing between the CA1 and subiculum. With respect to

240 RDI for scene stimuli, two RDI values were obtained from two pairs of scenes associated
241 with the left or right choice arm ($RD{I_{SCN-L}}$ and $RD{I_{SCN-R}}$, respectively), then a maximum
242 value was chosen as a representative scene-based RDI of a cell ($RD{I_{SCN}}$). RDI for choice
243 response ($RD{I_{CHC}}$) was measured by calculating the difference in firing rates between left and
244 right choice trials. For calculation of $RD{I_{CHC}}$, only firing rate maps based on the areas ahead
245 of the choice point were used because the rat's actual positions on the maze were different
246 after the choice point. Since $RD{I_{SCN}}$ was originally calculated from firing rate maps
247 associated with the same choice arm, all spiking activities after the choice point were used.
248 However, if a spatial bin with a firing rate less than 75% of the peak firing rate was located in
249 one arm of the maze, the field was considered an arm field and was excluded from the RDI
250 analysis. For joint comparisons of changes in $RD{I_{SCN}}$ and $RD{I_{CHC}}$, a weighted rose plot was
251 constructed using the angles and lengths of vectors representing individual neurons, after
252 which a statistical test was performed in each angular bin. For analysis of the orthogonality of
253 RDI values, the angles between the diagonal line and the vectors of fields with maximum
254 $RD{I_{SCN}}$ or $RD{I_{CHC}}$ were obtained. Then, the product of their sine values, defined as the
255 strength of RDI orthogonality, was obtained. This measurement was adopted because it had
256 the characteristic that its value approached zero as any one of the fields came close to the
257 diagonal line.

258

259 **Statistical analysis**

260 Both the behavioral and neural data were analyzed using nonparametric statistical tests with
261 the level of statistical significance set at $\alpha = 0.05$ unless noted otherwise. Testing for
262 statistical significance was two-sided, except when testing significance against a specific
263 known value. For example, a one-sample Wilcoxon signed rank test was used to compare the
264 behavioral performance for different scene stimuli against our performance criterion of 75%

265 and to test whether the differences in $RD\text{I}_{\text{SCN}}$ or $RD\text{I}_{\text{CHC}}$ between field identification methods
266 were significantly above zero. The proportional differences in cell types between two regions
267 or two methods were tested using a Chi-square test. Comparisons of basic firing properties
268 including mean firing rates, spatial information score and field width were conducted using a
269 Wilcoxon rank sum test. The differences in slope and strength of theta phase precession were
270 examined by 2-way mixed ANOVA with region as a between-subject and method as a within-
271 subject factor, but an unpaired two-sample t test with Bonferroni correction was used for post
272 hoc test because the number of observations for the within-subject factor was different across
273 cells. Comparisons of $\Delta RD\text{I}_{\text{SCN}}$, $\Delta RD\text{I}_{\text{CHC}}$ and RDI orthogonality strength between the CA1
274 and subiculum were performed using the Wilcoxon rank sum test. In addition, the Wilcoxon
275 rank sum test was also used for joint comparison of $\Delta RD\text{I}_{\text{SCN}}$ and $\Delta RD\text{I}_{\text{CHC}}$ in the vector-
276 length-weighted rose plot to test regional differences in mean vector length within individual
277 angular bins. Differences in $RD\text{I}_{\text{SCN}}$ and $RD\text{I}_{\text{CHC}}$ among cell types (i.e., MF ortho, MF non-
278 ortho and SF) were assessed using a Kruskal-Wallis test, with the application of the
279 Bonferroni-corrected Wilcoxon rank sum test for post hoc comparisons.

280

281 **Results**

282

283 **Electrophysiological recording in the subiculum and CA1 in the VSM task**

284 In the VSM task, rats ($n = 5$) learned to associate each scene stimulus with either a left or
285 right turn response on the T-maze (**Figure 1A**). During recording sessions, rats performed the
286 VSM task well above performance criterion (75%) for all stimuli (p -values < 0.0004 for all
287 scenes, one-sample Wilcoxon signed-rank test; **Figure 1B**). Tetrodes located at the
288 boundaries of either the CA1 or subiculum (including the border between them) were
289 excluded from the analysis (**Figure 1C**). To quantify the anatomical distributions of recording

290 locations for the CA1 and subiculum along the proximodistal axis, we measured the relative
291 positions from which individual cells were recorded and normalized them across rats (**Figure**
292 **1D**). Only cells satisfying our unit-filtering criteria (CA1, n = 270; subiculum, n = 151) were
293 used for analysis. Subicular cells were found along the entire proximodistal axis, whereas
294 CA1 cells were mainly recorded from intermediate to proximal portions of the CA1. More
295 details can be found in our previous study (Lee et al., 2018).

296

297 **Limitations of the firing rate-based method in detecting place fields in the subiculum**

298 Prior studies (Barnes et al., 1990; Sharp and Green, 1994; Kim et al., 2012b; Lee et al., 2018)
299 reported that cells in the subiculum fire at higher rates with lower spatial selectivity than
300 those in the CA1, a finding also confirmed in our study. That is, cells recorded from the CA1
301 fired at focal and restricted locations along the T-maze (**Figure 2A**), whereas cells recorded
302 from the subiculum tended to show broad and continuous firing fields (**Figure 2B**), making it
303 challenging to identify a place field using the conventional field-detection method based on
304 spatial firing rates. Specifically, although some subicular cells exhibited spatially tuned place
305 fields similar to CA1 place fields (cells 234-4-1-5 and 232-5-4-8 in **Figure 2B**), some
306 background spiking activity continued to occur outside their place fields. Furthermore, some
307 subicular cells fired continuously across the entire track (cells 232-4-17-1 and 232-5-20-1 in
308 **Figure 2B**), complicating efforts to define the field boundaries for these cells. These
309 differences in field characteristics between the CA1 and subiculum can be more clearly
310 observed in population rate maps constructed by stacking the rate maps of individual cells
311 (**Figure 2A and 2B**).

312 To quantitatively compare differential firing patterns between the two regions, we
313 first classified cells according to the number of place fields: no place field, a single field, or
314 multiple fields. A spatial firing distribution was considered a place field if its peak firing rate

315 exceeded 1 Hz and its spatial information content (bits/spike) exceeded 0.5. Field boundaries
316 were set at spatial bins in which the associated firing rates dropped below 33% of the peak
317 firing rate (see **Methods**). Of cells that were active during the rat's outbound journey on the
318 T-maze, approximately 90% were single-field cells in the CA1, while only about half of cells
319 exhibited either single- or multiple-field in the subiculum ($\chi^2_{(1)} = 122.96$, $p < 0.0001$; Chi-
320 square test; **Figure 2C**). With respect to basic firing properties, cells in the CA1 showed
321 lower firing rates (**Figure 2D**) with higher spatial information (**Figure 2E**) compared with
322 those in the subiculum (firing rate, $Z = 5.14$, $p < 0.0001$; spatial information, $Z = 14.2317$, p
323 < 0.0001 ; Wilcoxon rank-sum test). In addition, field width was larger in subicular place cells
324 than in CA1 place cells ($Z = 5.96$, $p < 0.0001$; Wilcoxon rank-sum test) for both single-field
325 and multiple-field cells (**Figure 2F**). Overall, these spatial firing pattern characteristics made
326 it difficult to define place fields for individual neurons in the subiculum compared with those
327 in the CA1.

328

329

330 **Identification of latent place fields based on theta phase precession of spiking**

331 Our findings show that the fundamental differences in spatial firing characteristics between
332 the CA1 and subiculum make it difficult to use conventional approaches commonly
333 employed for analyzing place fields in both regions because these approaches have mostly
334 been developed for place fields of cells in the hippocampus and not for those in the
335 subiculum. In fact, a large number of subicular cells that would have been defined as no-field
336 cells by conventional field-detection methods did fire more vigorously at particular locations
337 of the track (**Figure 2B**, cells 232-4-17-1 and 232-5-20-1), but the conventional field-
338 detection algorithm was unable to detect such spatial firing patterns because of the higher
339 spontaneous firing activities throughout the track in subicular cells compared with CA1

340 neurons. Our previous study (Lee et al., 2018) tried to locate field boundaries in these cells by
341 adjusting the threshold for detecting field boundaries or by finding local minima through
342 statistical comparisons of trial-by-trial firing rates between neighboring bins. However, such
343 methods still defined some subicular cells as having no fields. Furthermore, the conventional
344 field-detection algorithm tended to ignore a small subfield if there was one dominant field
345 with a very high firing peak.

346 To overcome such limitations, we explored the possibility of defining place fields
347 using theta phase precession, a well-known phenomenon in which theta-related phases of
348 spikes of a neuron gradually shift to earlier phases as the rat repeatedly passes through the
349 cell's place field (O'Keefe and Recce, 1993; Skaggs et al., 1996). In particular, we examined
350 whether the broad firing field of a subicular neuron could be divided into multiple subfields if
351 it were defined by theta phases of spikes. As shown in **Figure 3**, theta phase precession
352 occurred robustly within the identified unitary place field in both the CA1 and subiculum as
353 the rat ran along the track (CA1 single-field cells 234-2-12-2 and 561-2-3-1 in **Figure 3A**;
354 subicular single-field cells 232-5-4-8 and 234-4-1-5 in **Figure 3B**). Importantly, those cells
355 classified as having no place field exhibited multiple cycles of robust theta phase precessions
356 (subicular non-place field cells 232-7-17-1 and 232-4-17-1 in **Figure 3C**).

357 To identify a spike cluster that belonged to a single theta-precession cycle in the
358 phase-position plot, we used the DBSCAN (density-based spatial clustering with applications
359 of noise) algorithm suggested by Ester et al. (1996) (see **Methods** for details). We compared
360 the results of two different methods for detecting place fields: a firing rate-based method that
361 finds a *rate-based field*, and the theta phase precession-based DBSCAN method, which finds
362 a *phase-based field*. Both algorithms produced the same results in some cells in both the CA1
363 and subiculum (**Figure 4A**). However, we were also able to find new place fields for other
364 cells based on the phase-based method. Specifically, some cells that were originally classified

365 as single-field cells were converted into multiple-field cells by application of the phase-based
366 algorithm (**Figure 4B to 4D**). That is, in some cells, existing rate-based fields were
367 subdivided into more than two phase-based fields (**Figure 4B**). In other cells, additional place
368 fields that might not have been detectable by rate-based method (mostly owing to low firing
369 peaks) were revealed by the phase-based clustering (**Figure 4C**). In a final group of cells, the
370 phase-based method separated an existing field and simultaneously added a new field.
371 (**Figure 4D**).

372 The proportions of cells showing different numbers of place fields changed using the
373 phase-based clustering method compared with the rate-based method. Specifically, phase-
374 based clustering classified 20% of CA1 cells and 62% of subiculum cells as multiple-field
375 cells and only 9% of subiculum cells as having no fields ($\chi^2_{(1)} = 106.70$, $p < 0.0001$; Chi-
376 square test; **Figure 5A**). When the categorical changes were examined for each cell group, it
377 turned out that three-quarters of the rate-based non-place cells in the CA1 and subiculum
378 exhibited multiple phase-based place fields (**Figure 5B**). In addition, some rate-based single-
379 field cells in the CA1 (14%) and subiculum (45%) were converted to multiple-field cells by
380 the phase-based clustering. We also found that some rate-based multiple-field cells in the
381 subiculum exhibited additional phase-based fields after applying the phase-based protocol
382 (MF-added in **Figure 5B**). Phase-based place fields in the CA1 and subiculum still seemed to
383 display some fundamental differences. For example, the widths of phase-based place fields
384 remained significantly larger in the subiculum than in the CA1 ($Z = 4.08$, $p < 0.0001$;
385 Wilcoxon rank-sum test; **Figure 5C**) compared with widths of rate-based fields.

386 We next examined the robustness of theta phase precession of place cells in the
387 subiculum compared with that in the CA1 using circular statistics (linear regression and
388 linear correlation) for each spike cluster (Kempter et al., 2012). We found that the slope of
389 theta phase precession was significantly different between the two regions ($F_{(1,435)} = 4.43$, $p =$

390 0.036), but it was not affected by the field-identification method ($F_{(1,613)} = 0.59$, $p = 0.44$,
391 two-way mixed ANOVA with region as the between-subject factor and the field-identification
392 method as the within subject factor; **Figure 5D**). There was no interaction between the region
393 and field-detection method ($F_{(1,613)} = 0.52$, $p = 0.47$), mostly attributable to the reduced
394 regional difference when the phase-precession slope was calculated based on the phase-based
395 fields compared to the rate-based fields. The precession slope of rate-based fields tended to
396 be steeper in the CA1 than in the subiculum ($t_{(805)} = 2.01$, $p = 0.045$ for Bonferroni-corrected
397 unpaired two-sample t-test; corrected $\alpha = 0.0125$), an outcome that could be expected based
398 on the larger field width of subicular place cells. However, the regional difference in slope
399 diminished when using the phase-based method ($t_{(496)} = 1.64$, $p = 0.102$). The slope of theta
400 phase precession was not affected by the field-detection method within each region (CA1,
401 $t_{(555)} = 1.39$, $p = 0.16$; SUB, $t_{(637)} = 0.03$, $p = 0.98$). On the other hand, the strength of theta
402 phase precession of place cells evaluated by circular-linear correlation coefficient was
403 significantly different between the CA1 and subiculum ($F_{(1,445)} = 31.57$, $p < 0.0001$) and
404 between the two field-detection methods ($F_{(1,655)} = 50.25$, $p < 0.0001$; two-way mixed
405 ANOVA; **Figure 5E**). The interaction between the region and method was not significant
406 ($F_{(1,655)} = 3.68$, $p = 0.055$). Post-hoc tests revealed that the phase-precession strength
407 increased in phase-based fields compared with rate-based fields in both regions (CA1, $t_{(565)} =$
408 4.77 , $p < 0.0001$; subiculum, $t_{(695)} = 5.36$, $p < 0.0001$; unpaired two-sample t test with
409 Bonferroni correction; corrected $\alpha = 0.0125$). Although precession strength was significantly
410 lower in the subiculum than in the CA1 even after phase-based field identification (rate-
411 based, $t_{(896)} = 5.08$, $p < 0.0001$; phase-based, $t_{(541)} = 4.03$, $p < 0.0001$), the precession strength
412 in the subiculum increased closer to that of the CA1.

413 We also tested whether the theta phase-based parsing of subicular broad firing fields
414 changed the proportion of place cells with significant theta phase precession. A place cell was

415 classified as having significant theta phase precession as one of its subfields met the
416 following criteria: range of phase shift is equal to or larger than 180°; slope of circular-linear
417 regression line is lower than zero; and p-value of circular-linear correlation is equal to or
418 lower than 0.05. Then, we obtained the proportion of place cells with or without significant
419 theta phase precession and even non-place cells. The proportional changes between field
420 identification methods were significant in the subiculum ($\chi^2_{(1)} = 61.33$, $p < 0.0001$; Chi-
421 square test; **Figure 5F**), but not in the CA1 ($\chi^2_{(1)} = 4.95$, $p = 0.084$). Taken together, based
422 on the theta phase precession cycle, these findings indicate that the DBSCAN algorithm
423 effectively identified the multiple subfields enveloped in the broad firing activities of the
424 subiculum cells.

425

426 **Increase in task-relevant information in phase-based fields of subiculum neurons**

427 We previously reported that firing of neurons in the CA1 and subiculum was correlated with
428 the visual scene stimulus and choice response in the VSM task in the form of rate remapping
429 (Delcasso et al., 2014; Lee et al., 2018). Here, we examined whether scene- or choice-
430 dependent rate remapping also appeared in phase-based fields of neurons in the CA1 ($n =$
431 211) and subiculum ($n = 139$). To quantify rate remapping, we obtained a rate difference
432 index (RDI) for individual rate-based and phase-based fields using the firing rate maps
433 associated with different task conditions (see **Methods**; **Figure 6A**). The RDI for choice
434 response ($RDIC_{HC}$) was calculated using only the spiking activity recorded up to the choice
435 point. In contrast, for the scene-based RDI ($RDIS_{CN}$), spiking activity associated with places
436 beyond the choice point were also included because only the scenes associated with the same
437 choice arm were compared. Place fields representing only arm areas were excluded from the
438 RDI analysis.

439 We found that the phase-based field identification method extracted task-relevant
440 information more clearly than the rate-based method, especially in the subiculum. It also
441 revealed new information that went undetected by the conventional rate-based method. For
442 example, the phase-based method identified two fields for a subicular cell shown in **Figure**
443 **6A** on the stem of the maze that were unidentifiable by the conventional rate-based method.
444 One of the phase-based fields (red in **Figure 6A**) showed a larger amount of scene
445 information than the rate-based field ($0.32 > 0.06$ for RD_{SCN-L} and $0.43 > 0.25$ for RD_{SCN-R}).
446 The other phase-based field (green in **Figure 6A**) showed minimal information on the visual
447 scene but carried more information on the choice response compared with the rate-based field
448 ($0.26 > 0.08$ for RD_{CHC}). As illustrated by the neuronal examples in **Figure 6B**, some phase-
449 based fields showed stronger rate remapping for scenes than for choices (cell 234-1-13-5 in
450 CA1, cells 415-13-18-1, 415-13-10-1 in the subiculum), whereas other phase-based fields
451 exhibited the opposite pattern (cell 561-1-14-6 in CA1; cells 232-6-19-1 and 415-10-19-2 in
452 the subiculum). Furthermore, scene and choice information increased to a similar degree in
453 some phase-based fields (**Figure 6B**, cell 234-3-19-6 in CA1; cells 415-11-19-1 and 232-4-
454 18-3 in the subiculum).

455 We next investigated the extent to which task-related information carried by a single
456 unit changed when the field identification protocol was changed from the rate-based to the
457 phase-based method. For this purpose, if one cell showed multiple fields, the maximum RDI
458 value was selected as the representative RDI of the cell (closed black dot in **Figure 6C**).
459 Then, we calculated the *difference in RDI* (ΔRDI) by subtracting the representative RDI value
460 of the rate-based protocol from the representative RDI value of the phase-based protocol for
461 scene (ΔRD_{SCN}) and choice (ΔRD_{CHC}) information, respectively. Both RD_{SCN} and RD_{CHC}
462 increased remarkably in the subiculum after theta phase-based field identification ($T = 1582$,
463 $p = 0.0002$ for ΔRD_{SCN} ; $T = 2415$, $p < 0.0001$ for ΔRD_{CHC} ; one-sample Wilcoxon signed

464 rank test), but no significant increase was found in the CA1 ($T = 365$, $p = 0.68$ for $\Delta\text{RDI}_{\text{SCN}}$;
465 $T = 645$, $p = 0.47$ for $\Delta\text{RDI}_{\text{CHC}}$; **Figure 6D**). The RDI increases for subicular neurons were
466 significantly higher than those for CA1 neurons for both visual scenes ($Z = 3.26$, $p = 0.0011$
467 for $\Delta\text{RDI}_{\text{SCN}}$) and choices ($Z = 5.44$, $p < 0.0001$ for $\Delta\text{RDI}_{\text{CHC}}$; Wilcoxon rank-sum test).

468 For joint comparisons of changes in scene- and choice-based rate remapping, the
469 differences in RDI_{SCN} and RDI_{CHC} of each cell were marked as dots on a scatter plot (**Figure**
470 **6E**). As shown in the first and second quadrants of the scatter plot, RDI_{SCN} and RDI_{CHC}
471 values increased jointly after the phase-based field identification method in the subiculum
472 compared with the CA1, where there was no such trend. Furthermore, RDI_{CHC} values were
473 enhanced in some cells irrespective of RDI_{SCN} values. To statistically compare the regional
474 differences visible in the scatter plot, we first divided the quadrant into equally spaced
475 angular bins (30°) and drew the mean vectors for each bin in a vector-length-weighted rose
476 plot. As shown in **Figure 6F**, the stronger RDI enhancement in the subiculum compared with
477 the CA1 was clearly visible in the first and second quadrants (bin 30° - 60° , $p = 0.006$; bin 90° -
478 120° , $p = 0.014$; bin 120° - 150° , $p = 0.005$; Wilcoxon rank-sum test). Taken together, these
479 results indicate that the theta phase-based field detection method is capable of identifying
480 task-relevant information that would otherwise have been unidentifiable using the traditional
481 rate-based field-detection protocol.

482

483 **Neurons in the subiculum represent scene and choice information more orthogonally in**
484 **their multiple phased-based fields than CA1 cells**

485 We further examined the functional significance of amplified task-related information (i.e.,
486 scene and choice) discovered by the phase-based method in subicular neurons compared with
487 CA1 cells in our VSM task. If a place field showed the same amount of rate modulation for
488 both scene and choice factors, the corresponding data point on the RDI scatter plot should be

489 located on the diagonal (e.g., field 1 in **Figure 7A**). In contrast, if the amount of field
490 remapping was influenced to a greater degree by one of the task-related factors, the data point
491 should be located farther away from the diagonal (e.g., field 2 in **Figure 7A**). If a cell had
492 multiple phase-based fields and each field represented either scene or choice information
493 more strongly than the other, the cell was considered as *orthogonalizing* scene and choice
494 information (**Figure 7B**).

495 A significantly larger portion of subiculum neurons exhibited orthogonal
496 representations of task-related variables than CA1 neurons ($\chi^2_{(1)} = 18.65$, $p < 0.0001$; Chi-
497 square test; **Figure 7C**). To test whether the orthogonal representation occurred more strongly
498 in subiculum cells, we measured the angle between the diagonal and the vector of each phase-
499 based field (θ_{SCN} and θ_{CHC} ; **Figure 7D**), then calculated orthogonality strength by multiplying
500 the sine values of the angles. RDI orthogonality was significantly stronger in the subiculum
501 than in the CA1 ($Z = 3.3$, $p = 0.001$, Wilcoxon rank-sum test; **Figure 7E**).

502 Finally, we tested whether the amount of rate remapping differed between the
503 following cell groups: multiple-field cells with orthogonal representations (MF ortho),
504 multiple-field cells without such representations (MF non-ortho), and single-field cells (SF).
505 Since the number of CA1 cells showing orthogonal representations was too small ($n = 10$) to
506 obtain sufficient statistical power, tests were performed only within the subiculum. There
507 were significant differences in both scene ($\chi^2_{(2)} = 7.79$, $p = 0.02$, Kruskal-Wallis test; **Figure**
508 **7F**) and choice ($\chi^2_{(2)} = 19.44$, $p < 0.0001$; **Figure 7G**) between the subgroups. Specifically,
509 cells having multiple fields showed larger RDI_{SCN} values than those with single fields (MF
510 ortho vs. SF: $Z = 2.12$, $p = 0.034$; MF non-ortho vs. SF: $Z = 2.5$, $p = 0.013$; MF ortho vs. MF
511 non-ortho: $Z = 0.37$, $p = 0.7$; Wilcoxon rank-sum test with Bonferroni correction; corrected α
512 = 0.016). Moreover, subiculum cells with orthogonal representations exhibited significantly

513 larger RDIC_{HC} values than other groups (MF ortho vs. SF: $Z = 4.51$, $p < 0.0001$; MF non-
514 ortho vs. SF: $Z = 2.16$, $p = 0.031$; MF ortho vs. MF non-ortho: $Z = 2.4$, $p = 0.016$). These
515 findings indicate that subiculum multiple fields identified based on the relationships between
516 spiking theta phase precessions did not uniformly represent task-relevant information.
517 Instead, they carried heterogeneous task-related information in a more orthogonal fashion
518 compared with CA1 cells. Furthermore, such subiculum cells represented task-related
519 information more strongly than CA1 cells in the VSM task.

520

521 **Discussion**

522

523 In the current study, we characterized the firing patterns of place cells in the CA1 and
524 subiculum using both phase- and rate-coding methods. Our findings demonstrate that some of
525 the broad place fields of subiculum neurons can be parsed into multiple fields using the theta-
526 phase precession cycle. The newly discovered, phase-based place fields in the subiculum
527 were more similar to those in CA1 in terms of field size and phase-precession strength.
528 However, unlike the case in the CA1, the neural representational strength of task-relevant
529 information was significantly improved in the subiculum by the phase-based field-detection
530 method. Furthermore, our results suggest that firing for multiple fields by a single neuron
531 may provide the subiculum with the unique function of representing different types of task-
532 related information in an orthogonal fashion compared with the CA1.

533

534 **Underlying mechanisms of multiple cycles of theta phase precession and their associated
535 place fields in the subiculum**

536 One possible mechanism underlying the multiple cycles of theta phase precession and their

537 associated place fields in the subiculum is convergent inputs from multiple place cells in the
538 CA1 to a subicular cell. To our knowledge, whether a single subicular neuron is innervated by
539 multiple CA1 place cells is still largely unknown. However, it has been reported that axon
540 branches extending from a single CA1 pyramidal cell diverge to a very wide region within
541 the subiculum, covering approximately 2 mm along the septotemporal axis (Tamamaki et al.,
542 1987) and one-third of the subiculum along the proximodistal axis (Amaral et al., 1991). In
543 addition, approximately 40% of CA1 pyramidal cells are known to send efferent projections
544 to the subiculum (Roy et al., 2017). Based on these anatomical results, it is possible that a
545 single subicular cell receives synaptic inputs from multiple CA1 pyramidal cells. If this is the
546 case, a subicular place cell that receives inputs from multiple place cells in the CA1 whose
547 firing peaks are located at distant locations may develop multiple place fields. Conversely, if
548 multiple CA1 place cells sending projections to a single subicular place cell have overlapping
549 place fields, then the subicular cell might exhibit a single broad firing field. Some prior
550 studies may support these possibilities (Fernandez-Ruiz et al., 2017; Jaramillo and Kempter,
551 2017).

552 Another possibility is that the multiple fields of the subiculum might be based on
553 inputs from cells in the medial entorhinal cortex, especially grid cells showing periodic firing
554 fields and theta phase precession. Some models have shown that theta phase precession in the
555 CA1 could be derived from grid cells in the medial entorhinal cortex (Molter and Yamaguchi,
556 2008; Schlesiger et al., 2015). It has also been reported that temporal coding (including theta
557 phase precession) in the CA1 is impaired by lesioning of the medial entorhinal cortex
558 (Schlesiger et al., 2015). However, cells in layer 3 of the entorhinal cortex, which mainly
559 project to the CA1 and subiculum, do not exhibit phase precession relative to theta rhythm
560 (Hafting et al., 2008). Whether theta phase precession in the subiculum is inherited from grid
561 cells in the medial entorhinal cortex remains to be investigated.

562 Lastly, there is the possibility that cells in the subiculum might be influenced by
563 multiple sources of theta rhythm—one from an extracellular source and another generated
564 intrinsically. Specifically, some previous studies have proposed an interference model as the
565 mechanism for theta phase precession in the CA1 (O'Keefe and Recce, 1993; Burgess et al.,
566 1994; O'Keefe and Burgess, 2005). According to this model, there is an intrinsic theta
567 oscillator within pyramidal cells that causes theta phase precession while maintaining a
568 frequency that can be different from that of the extracellular theta rhythm. This model is
569 supported by experimental evidence showing that pyramidal cells in the dorsal hippocampus
570 show higher intrinsic oscillation frequencies than those in the ventral hippocampus, resulting
571 in smaller place fields in the dorsal hippocampus (Maurer et al., 2005). Experimental
572 evidence for the presence of an intrinsic theta oscillator in the subiculum has not been
573 reported. However, because principal cells in the subiculum have denser recurrent
574 connectivity than those in the CA1 (Harris and Stewart, 2001; Harris et al., 2001; Bohm et
575 al., 2015), it is possible that cells in the subiculum can generate local rhythms intrinsically.
576 Notably, a recent study reported that an atypical type of sharp-wave ripple occurs in the
577 subiculum, independent of traditionally known CA3-originating sharp-wave ripples (Imbrosi
578 et al., 2021), an observation that may support the possibility that subicular neurons
579 intrinsically generate their own local oscillations.

580

581 **Clustering algorithm for identifying multiple cycles of theta phase precession and their
582 associated place fields**

583 A previous study by Maurer et al. (2006) demonstrated that the partially overlapping place
584 fields of a single cell in the CA1 could be segmented by manually drawing boundaries around
585 the spikes belonging to individual cycles of theta phase precession on the position-phase
586 scatter plot. Further improving this strategy, Kim et al. (2012b) developed an automated

587 algorithm that constructs a phase-position firing-rate map from normalized phase-position
588 plots of rat occupancy and then defines place fields based on detection of local maxima.
589 However, there were challenges to adopting this previous protocol in the current study. First,
590 these authors used a behavioral paradigm in which rats ran along a track in the absence of
591 environmental change or mnemonic task demand, whereas in the current study rats performed
592 a mnemonic task in which they were required to associate different scenes with discrete
593 behavioral choices. Our previous study showed that firing rates of subiculum cells are
594 modulated in relation to task-related information (i.e., scene and choice) (Lee et al., 2018). In
595 that case, even if a field had a high firing rate in one condition, it might show a low firing rate
596 in the other condition. Accordingly, in the overall firing rate map obtained by averaging the
597 firing rates for all conditions, the high firing rate under one specific condition is likely to be
598 canceled out by that under the other condition, making it difficult to definitively establish
599 peak firing and field boundaries when defining a place field. Second, the length of the linear
600 track used in the current study was relatively short, possibly resulting in more overlap
601 between place fields and thus creating difficulties in setting an appropriate threshold for
602 segmenting individual fields on the phase-position firing-rate map.

603 Therefore, to eliminate the risk of being unable to find potential task-related firing
604 fields, we adopted the clustering algorithm DBSCAN (Ester et al., 1996), which can be
605 applied to the raw phase-position spiking plot without normalizing for occupancy. We chose
606 this algorithm for several reasons. First, when sampled sufficiently, spikes tend to occur at the
607 most preferred location within a place field with highest probability and then gradually
608 diminish as the distance from the field center increases (i.e., Gaussian-like distribution).
609 Because of its density-based algorithmic nature, the DBSCAN algorithm is suitable for
610 finding clusters when data points exhibit such distributions. Second, DBSCAN has the
611 advantage of robustly detecting outliers, which enabled us to process continuous and

612 spontaneous firing activities of subicular fields. Furthermore, DBSCAN does not require an
613 experimenter to predetermine the number of clusters. Finally, the DBSCAN algorithm does
614 not limit cluster shape, so it can flexibly find clusters in a complex data set.

615

616 **Functional significance of the more orthogonal representation of scene and choice
617 information in the subiculum than the CA1**

618 The spatial firing properties of subicular neurons are different from those of CA1 cells. This
619 unique nature of the subiculum has been attributed to signals from outside the hippocampal
620 formation, including those related to movement and head direction of the thalamic region
621 (Frost et al., 2021). However, task-related information such as scene and choice information
622 in the subiculum should also be influenced by inputs from the dorsal CA1, as demonstrated in
623 our previous studies (Kim et al., 2012a; Delcasso et al., 2014). This possibility is supported
624 by findings of the current study showing significantly enhanced rate modulation for task-
625 relevant information, as only the group of spikes constituting a single cycle of theta phase
626 precession was extracted for measuring the representational strength of task-related
627 information.

628 The enhancement of task-related signals in the subiculum allowed us to investigate
629 the functional roles of subicular cells in the VSM task compared with our previous study in
630 which we relied on the traditional rate-based field-detection algorithm (Lee et al., 2018).
631 Remarkably, some subicular neurons carried orthogonal scene and choice information in their
632 subfields. This phenomenon could arise in a scenario in which different CA1 cells, each
633 carrying one type of task-related information more strongly than the other, send their outputs
634 to a single subicular neuron. Subicular neuron could then facilitate associative learning by
635 representing different types of information concurrently so that downstream structures
636 receive more associative information between the critical task variables. Note that a subicular

637 cell tends to represent different task-related information in separated fields associated with
638 distant locations, but not conjunctively in one field. The different types of information
639 represented by the separate fields of a subicular cell might then be transmitted into identical
640 target regions nearly simultaneously with a certain phase relationship, potentially
641 contributing to the formation and retention of hippocampal associative memory.

642

643 **Functional subclasses of neurons in the subiculum may play key roles in hippocampal-
644 dependent action in a visual contextual memory task**

645 Numerous studies have suggested the presence of anatomical and physiological
646 subpopulations in the subiculum. Specifically, it has been reported that afferent and efferent
647 projections of the subiculum are organized topographically along the proximodistal axis
648 (Tamamaki et al., 1987; Amaral et al., 1991; Tamamaki and Nojyo, 1995; Naber and Witter,
649 1998; Witter et al., 2000; Ishizuka, 2001; Witter, 2006; Cembrowski et al., 2018b; Kitanishi
650 et al., 2021), as the proximal and distal parts of the subiculum are clearly divided according
651 to gene expression in principal cells (Cembrowski et al., 2018b; Cembrowski et al., 2018a).
652 In addition to these anatomical subdivisions, *in vitro* physiological studies have reported two
653 types of intrinsic firing for subicular principal cells—bursting and regular-spiking (Stewart
654 and Wong, 1993; Taube, 1993; Behr et al., 1996)—and shown that these cells exhibit a
655 unique distribution gradient along the proximodistal axis (Harris et al., 2001; Jarsky et al.,
656 2008; Kim and Spruston, 2012). These two classes of cells are modulated differently by
657 sharp-wave ripples of the CA1 and have different intrinsic connectivity (Bohm et al., 2015).
658 Furthermore, a series of recent *in vivo* studies identified subpopulations in the subiculum with
659 different spatial firing characteristics (Brotons-Mas et al., 2017; Roy et al., 2017; Simonnet
660 and Brecht, 2019; Poulter et al., 2021).

661 Our physiological results also suggest that there are functionally different subclasses

662 of neurons within the subiculum. In our previous paper, subicular cells with a single broad
663 field showed a “schematic” firing pattern that depended on the cognitive structure of the task;
664 we speculated that this firing pattern serves to mediate contextual behavior by representing
665 the discrete region associated with critical epochs of the task (Lee et al., 2018). That is, cells
666 in the CA1 and subiculum represent specific location information and an epoch-based region,
667 respectively. On the other hand, subicular cells with multiple focal fields are thought to
668 contribute to associative memory by subsequently—but almost concurrently—transmitting
669 different types of task-relevant information to downstream structures where choice-related
670 actions and decisions occur.

671 Taken together, our findings indicate that the subiculum may support visual
672 contextual behavior in space through two processes, each driven by a distinctive neuronal
673 class. Information regarding context and future path leading to the goal location, separately
674 recognized at focal and distant place fields of the CA1, could be integrated by subicular cells
675 with multiple phase-based fields and transmitted to downstream areas. In particular, such
676 information processing in the subiculum could be critical for converting contextual
677 information into an action signal. At the same time, subicular cells with a broad single field
678 may represent the area in which all locations are associated with a common task-related
679 variable, such as a specific visual scene or choice response. A recent study showing that CA1-
680 projecting subicular cells receive direct inputs from the visual cortex and send their
681 projections to some critical regions (e.g., perirhinal cortex, CA1) in the VSM task used in the
682 current study may also support the functional significance of the subiculum in the visual
683 contextual behavioral task (Sun et al., 2019).

684 **References**

685

686 Amaral DG, Dolorfo C, Alvarez-Royo P (1991) Organization of CA1 projections to the
687 subiculum: a PHA-L analysis in the rat. *Hippocampus* 1:415-435.

688 Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of
689 spatial and temporal characteristics of neuronal activity in sequential stages of
690 hippocampal processing. *Prog Brain Res* 83:287-300.

691 Behr J, Empson RM, Schmitz D, Gloveli T, Heinemann U (1996) Electrophysiological
692 properties of rat subicular neurons in vitro. *Neurosci Lett* 220:41-44.

693 Bohm C, Peng Y, Maier N, Winterer J, Poulet JF, Geiger JR, Schmitz D (2015) Functional
694 Diversity of Subicular Principal Cells during Hippocampal Ripples. *J Neurosci*
695 35:13608-13618.

696 Brotons-Mas JR, Schaffelhofer S, Guger C, O'Mara SM, Sanchez-Vives MV (2017)
697 Heterogeneous spatial representation by different subpopulations of neurons in the
698 subiculum. *Neuroscience* 343:174-189.

699 Burgess N, Recce ML, O'Keefe J (1994) A Model of Hippocampal Function. *Neural*
700 networks : the official journal of the International Neural Network Society 7.

701 Cembrowski MS, Wang L, Lemire AL, Copeland M, DiLisio SF, Clements J, Spruston N
702 (2018a) The subiculum is a patchwork of discrete subregions. *Elife* 7.

703 Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekhar J, Bas E,
704 Spruston N (2018b) Dissociable Structural and Functional Hippocampal Outputs via
705 Distinct Subiculum Cell Classes. *Cell* 173:1280-1292 e1218.

706 Delcasso S, Huh N, Byeon JS, Lee J, Jung MW, Lee I (2014) Functional relationships
707 between the hippocampus and dorsomedial striatum in learning a visual scene-based
708 memory task in rats. *J Neurosci* 34:15534-15547.

709 Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. *Nat Rev Neurosci* 1:41-50.

710

711 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering

712 clusters a density-based algorithm for discovering clusters in large spatial databases

713 with noise. In: *Proceedings of the Second International Conference on Knowledge*

714 *Discovery and Data Mining*, pp 226-231. Portland, Oregon: AAAI Press.

715 Fernandez-Ruiz A, Oliva A, Nagy GA, Maurer AP, Berenyi A, Buzsaki G (2017) Entorhinal-

716 CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma

717 Coupling. *Neuron* 93:1213-1226 e1215.

718 Frost BE, Martin SK, Cafalchio M, Islam MN, Aggleton JP, O'Mara SM (2021) Anterior

719 Thalamic Inputs are Required for Subiculum Spatial Coding, with Associated

720 Consequences for Hippocampal Spatial Memory. *The Journal of Neuroscience*.

721 Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent

722 phase precession in entorhinal grid cells. *Nature* 453:1248-1252.

723 Harris E, Stewart M (2001) Intrinsic connectivity of the rat subiculum: II. Properties of

724 synchronous spontaneous activity and a demonstration of multiple generator regions.

725 *J Comp Neurol* 435:506-518.

726 Harris E, Witter MP, Weinstein G, Stewart M (2001) Intrinsic connectivity of the rat

727 subiculum: I. Dendritic morphology and patterns of axonal arborization by pyramidal

728 neurons. *J Comp Neurol* 435:490-505.

729 Imbrosi B, Nitzan N, McKenzie S, Donoso JR, Swaminathan A, Bohm C, Maier N, Schmitz

730 D (2021) Subiculum as a generator of sharp wave-ripples in the rodent hippocampus.

731 *Cell Rep* 35:109021.

732 Ishizuka N (2001) Laminar organization of the pyramidal cell layer of the subiculum in the

733 rat. *J Comp Neurol* 435:89-110.

734 Jaramillo J, Kempter R (2017) Phase precession: a neural code underlying episodic memory?
735 Curr Opin Neurobiol 43:130-138.

736 Jarsky T, Mady R, Kennedy B, Spruston N (2008) Distribution of bursting neurons in the
737 CA1 region and the subiculum of the rat hippocampus. J Comp Neurol 506:535-547.

738 Kempter R, Leibold C, Buzsaki G, Diba K, Schmidt R (2012) Quantifying circular-linear
739 associations: hippocampal phase precession. J Neurosci Methods 207:113-124.

740 Kim S, Lee J, Lee I (2012a) The hippocampus is required for visually cued contextual
741 response selection, but not for visual discrimination of contexts. Front Behav
742 Neurosci 6:66.

743 Kim SM, Ganguli S, Frank LM (2012b) Spatial information outflow from the hippocampal
744 circuit: distributed spatial coding and phase precession in the subiculum. J Neurosci
745 32:11539-11558.

746 Kim Y, Spruston N (2012) Target-specific output patterns are predicted by the distribution of
747 regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus
748 22:693-706.

749 Kitanishi T, Umaba R, Mizuseki K (2021) Robust information routing by dorsal subiculum
750 neurons. Sci Adv 7.

751 Ledergerber D, Battistin C, Blackstad JS, Gardner RJ, Witter MP, Moser MB, Roudi Y,
752 Moser EI (2021) Task-dependent mixed selectivity in the subiculum. Cell Rep
753 35:109175.

754 Lee CH, Lee I (2020) Impairment of Pattern Separation of Ambiguous Scenes by Single
755 Units in the CA3 in the Absence of the Dentate Gyrus. J Neurosci 40:3576-3590.

756 Lee HW, Lee SM, Lee I (2018) Neural Firing Patterns Are More Schematic and Less
757 Sensitive to Changes in Background Visual Scenes in the Subiculum than in the
758 Hippocampus. J Neurosci 38:7392-7408.

759 Lever C, Burton S, Jeewajee A, O'Keefe J, Burgess N (2009) Boundary vector cells in the
760 subiculum of the hippocampal formation. *J Neurosci* 29:9771-9777.

761 Matsumoto N, Kitanishi T, Mizuseki K (2019) The subiculum: Unique hippocampal hub and
762 more. *Neurosci Res* 143:1-12.

763 Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL (2005) Self-motion and
764 the origin of differential spatial scaling along the septo-temporal axis of the
765 hippocampus. *Hippocampus* 15:841-852.

766 Maurer AP, Cowen SL, Burke SN, Barnes CA, McNaughton BL (2006) Organization of
767 hippocampal cell assemblies based on theta phase precession. *Hippocampus* 16:785-
768 794.

769 Melo MB, Favaro VM, Oliveira MGM (2020) The dorsal subiculum is required for
770 contextual fear conditioning consolidation in rats. *Behav Brain Res* 390:112661.

771 Molter C, Yamaguchi Y (2008) Impact of temporal coding of presynaptic entorhinal cortex
772 grid cells on the formation of hippocampal place fields. *Neural networks : the official*
773 *journal of the International Neural Network Society* 21:303-310.

774 Morris RG, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate Lesions of Hippocampus
775 and/or Subiculum: Dissociating Components of Allocentric Spatial Learning. *Eur J*
776 *Neurosci* 2:1016-1028.

777 Naber PA, Witter MP (1998) Subicular efferents are organized mostly as parallel projections:
778 a double-labeling, retrograde-tracing study in the rat. *J Comp Neurol* 393:284-297.

779 O'Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford Univ Press.

780 O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the
781 EEG theta rhythm. *Hippocampus* 3:317-330.

782 O'Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells:
783 theoretical significance and relationship to entorhinal grid cells. *Hippocampus*

784 15:853-866.

785 Olson JM, Tongprasearth K, Nitz DA (2017) Subiculum neurons map the current axis of
786 travel. *Nat Neurosci* 20:170-172.

787 Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, Ed 6. Elsevier.

788 Potvin O, Dore FY, Goulet S (2007) Contributions of the dorsal hippocampus and the dorsal
789 subiculum to processing of idiothetic information and spatial memory. *Neurobiol*
790 *Learn Mem* 87:669-678.

791 Potvin O, Dore FY, Goulet S (2009) Lesions of the dorsal subiculum and the dorsal
792 hippocampus impaired pattern separation in a task using distinct and overlapping
793 visual stimuli. *Neurobiol Learn Mem* 91:287-297.

794 Potvin O, Lemay F, Dion M, Corado G, Dore FY, Goulet S (2010) Contribution of the dorsal
795 subiculum to memory for temporal order and novelty detection using objects, odors,
796 or spatial locations in the rat. *Neurobiol Learn Mem* 93:330-336.

797 Poulter S, Lee SA, Dachtler J, Wills TJ, Lever C (2021) Vector trace cells in the subiculum of
798 the hippocampal formation. *Nat Neurosci* 24:266-275.

799 Roy DS, Kitamura T, Okuyama T, Ogawa SK, Sun C, Obata Y, Yoshiki A, Tonegawa S
800 (2017) Distinct Neural Circuits for the Formation and Retrieval of Episodic
801 Memories. *Cell* 170:1000-1012 e1019.

802 Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK,
803 Leibold C, Leutgeb S (2015) The medial entorhinal cortex is necessary for temporal
804 organization of hippocampal neuronal activity. *Nat Neurosci* 18:1123-1132.

805 Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. *J*
806 *Neurol Neurosurg Psychiatry* 20:11-21.

807 Sharp PE, Green C (1994) Spatial correlates of firing patterns of single cells in the subiculum
808 of the freely moving rat. *J Neurosci* 14:2339-2356.

809 Simonnet J, Brecht M (2019) Burst Firing and Spatial Coding in Subicular Principal Cells. *J
810 Neurosci* 39:3651-3662.

811 Skaggs WE, McNaughton BL, Gothard KM (1993) An information-theoretic approach to
812 deciphering the hippocampal code. *Adv Neural Inf Process Syst* 5:1030-1038.

813 Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in
814 hippocampal neuronal populations and the compression of temporal sequences.
815 *Hippocampus* 6:149-172.

816 Stewart M, Wong RK (1993) Intrinsic properties and evoked responses of guinea pig
817 subiculum neurons in vitro. *J Neurophysiol* 70:232-245.

818 Sun Y, Jin S, Lin X, Chen L, Qiao X, Jiang L, Zhou P, Johnston KG, Golshani P, Nie Q,
819 Holmes TC, Nitz DA, Xu X (2019) CA1-projecting subiculum neurons facilitate
820 object-place learning. *Nat Neurosci*.

821 Tamamaki N, Nojyo Y (1995) Preservation of topography in the connections between the
822 subiculum, field CA1, and the entorhinal cortex in rats. *J Comp Neurol* 353:379-390.

823 Tamamaki N, Abe K, Nojyo Y (1987) Columnar organization in the subiculum formed by
824 axon branches originating from single CA1 pyramidal neurons in the rat
825 hippocampus. *Brain Res* 412:156-160.

826 Taube JS (1993) Electrophysiological properties of neurons in the rat subiculum in vitro. *Exp
827 Brain Res* 96:304-318.

828 Witter MP (2006) Connections of the subiculum of the rat: topography in relation to
829 columnar and laminar organization. *Behav Brain Res* 174:251-264.

830 Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, Scheltens P,
831 Lopes da Silva FH (2000) Cortico-hippocampal communication by way of parallel
832 parahippocampal-subiculum pathways. *Hippocampus* 10:398-410.

833

834 **Figure legends**

835

836 **Figure 1. Behavioral task and histological verification of electrophysiological recordings.**

837 **(A)** VSM task. As a trial begins, the rat runs out onto the track of a T-maze from the start box
838 (S), and one of four visual scene stimuli (Zebra, Z; Bamboo, B; Pebbles, P; Mountain, M) is
839 presented on LCD monitors. Each scene stimulus is associated with either the left or right arm
840 of the T-maze. The rat obtains a piece of cereal reward from the food well, located at the end
841 of both arms, if it chooses the correctly associated side. **(B)** Behavioral performance during
842 recording sessions (21 sessions from 5 rats). Each dot corresponds to the percent correct for
843 each scene stimulus of a session and is color-coded for individual rats. Box plot indicates
844 interquartile range and median value. The median values exceeded the performance criterion
845 (dashed line, 75%) for all scenes. **(C)** Photomicrographs of Nissl-stained coronal brain sections
846 with verified electrode tips (black arrows). Numbers above the arrows indicate normalized
847 positions of marked recording sites along the proximodistal axis. Dashed lines represent the
848 anatomical boundaries of the CA1 and subiculum. Upper and lower rows show recording sites
849 from the subiculum and CA1, respectively. **(D)** Proportional distribution of cells recorded in
850 the CA1 (blue) and subiculum (SUB; red) along the proximodistal axis (CA1, n = 270; SUB,
851 n = 151). The positions are normalized to account for differences in relative length between
852 two regions (see **Methods**). The dashed line at 0.36 indicates the boundary between two
853 regions.

854

855 **Figure 2. Poorer spatial firing patterns in the subiculum than the CA1. (A, B)** Firing rate
856 maps of single cells (left) and cell populations (right) in the CA1 (A) and subiculum (B), plotted
857 as a function of linearized position on the T-maze from the start box (st box) to the food wells
858 (fw) in both arms. Red arrowheads indicate the choice point after which rats' positions diverged

859 to the two arms. On the firing rate maps of single cells, verified place fields are overlaid with
860 black lines, and non-place fields that did not pass the place field criteria are marked by black
861 dotted lines. Serial numbers on the upper left corner are cell IDs. Indices on the right corner
862 denote mean peak firing rates (Hz) and spatial information scores (bit/spike) of place and non-
863 place fields. Population firing rate maps are sorted according to peak firing rate of each cell on
864 the T-maze. White dashed lines and red arrowheads indicate the choice points. (C) Proportional
865 differences of place cells defined by the firing rate-based method. Cells are classified into three
866 groups according to the number of place fields within a cell: ‘single-field (SF)’ for one field,
867 ‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)’ for zero field.
868 ***p < 0.0001. (D–F) Differences in mean firing rate (D), spatial information score (SI score;
869 E), and place field width (F) of recorded cells between the CA1 and subiculum. Box plot
870 indicates interquartile range and median value for each region. ***p < 0.0001.

871
872 **Figure 3. Robust and multiple theta phase precession in the subiculum. (A–C)**
873 Representative examples of theta phase precession in the CA1 single-field cells (A), subicular
874 single-field cells (B), and subicular non-place field cells (C). The left column within each cell
875 consists of linearized position (top), a raw trace of theta oscillation (middle), and spiking
876 theta phases (bottom) in the temporal axis in a single trial. Spikes in the raw theta traces are
877 marked by red circular dots. Scale bar, 250 μ V. Spiking theta phases are plotted within a
878 range of 360°, and the initial phase is adjusted for clear observation of theta phase precession.
879 Serial numbers in the upper right corner are cell IDs. The right column displays a linearized
880 firing rate map (top) and a position-phase plot (bottom) on the spatial axis across a session.
881 Black solid lines overlaid on the firing rate maps indicate verified place fields, whereas black
882 dotted lines are non-place fields. Numbers above firing rate maps denote peak firing rates
883 (Hz) and spatial information scores (bit/spike) of place or non-place fields. Red arrowheads

884 and red dashed lines mark choice points. Note that subiculum cells showed multiple cycles of
885 theta phase precession, some of which were as robust as those of CA1 cells.

886

887 **Figure 4. Identification of place fields based on spiking theta phases in the CA1 and**
888 **subiculum. (A–D)** Each subplot for individual cells consists of a linearized firing rate map
889 (top) and a position-phase plot (bottom) on the spatial axis across a session. Gray lines on the
890 firing rate maps indicate averaged firing activity, solid black lines denote place fields defined
891 by firing rates (rate-based place fields), and color-coded lines denote place fields based on theta
892 phases (phase-based place fields). Serial numbers above the firing rate maps are cell IDs. Color-
893 coded numbers on the right corner indicate peak firing rate (Hz) and spatial information score
894 (bit/spike) of individual phase-based place fields. Red arrowheads indicate choice points. Spike
895 clusters in position-phase plots are color-coded with the same color used for the firing rate
896 maps. Black straight lines on each spike cluster indicate the circular-linear regression line. The
897 numbers and asterisks in the box with colored borders are circular-linear correlation
898 coefficients; their significance for phase-based fields is indicated in the same color.
899 ***p < 0.0001.

900

901 **Figure 5. Advantages of spiking theta phase-based field identification. (A)** Proportional
902 differences of place cells defined using the theta phase-based method. Cells are classified into
903 three groups according to the number of place fields within a cell as follows: ‘single-field
904 (SF)’ for one field, ‘multiple-field (MF)’ for more than one field, and ‘non-place field (NF)’
905 for zero field. ***p < 0.0001. **(B)** Categorical changes of cells within each rate-based cell
906 group (NF, SF, and MF on the x-axis) as the field identification method was shifted to phase-
907 based. The bar graph shows what proportion of cells in each cell group classified by the rate-
908 based method was re-categorized after the phase-based method. **(C)** Regional differences in

909 place field width after phase-based field identification. ***p < 0.0001. **(D, E)** Cumulative
910 distributions of theta phase precession (TPP) slope (D) and correlation coefficient (E) of
911 place cells for each method (rate- and phase-based) and each region. Line graphs on the right
912 side of each panel display mean values and standard errors for the same data. **(F)** Proportional
913 changes in place cells with or without significant theta phase precession after the phase-based
914 field identification within each region. ***p < 0.0001.

915

916 **Figure 6. Scene- and choice-dependent rate remapping is enhanced in the subiculum but**
917 **not in the CA1 after phase-based field identification.** **(A)** A representative subicular cell
918 illustrating how difference indices for scene (RDI_{SCN}) and choice (RDI_{CHC}) are obtained. The
919 linearized firing rate map in the left panel shows rate-based fields (black line) and phase-
920 based fields (color-coded lines) averaged across all trials. Middle panel shows firing rate
921 maps associated with different task-relevant information. Rate-based fields are marked as
922 black lines (upper row) and phase-based fields are color-coded (bottom row). Shaded areas
923 overlaid on the fields are standard errors. Numbers above the fields indicate RDI values.
924 Rightmost panel shows RDI_{SCN} and RDI_{CHC} values for individual fields marked as dots on the
925 scatter plot; open black dots correspond to rate-based fields and color-coded dots denote
926 phase-based fields. The dashed line shows the diagonal. **(B)** Example neurons in the CA1 and
927 subiculum with their RDI values associated with the scene and choice information. Within
928 each neuron, linearized firing rate map (left) and RDI scatter plot (right) are shown as in (A).
929 Solid black lines on firing rate maps are firing rate (FR)-based firing fields and color-coded
930 lines are theta phase (TP)-based place fields, with arm fields depicted in dotted lines. Serial
931 numbers above the rate maps are cell IDs. Red arrowheads indicate choice points. **(C)**
932 Illustration showing how RDI differences (i.e., Δ RDI_{SCN} and Δ RDI_{CHC}) are measured using
933 the rate-based method (open black circle) and phase-based method (closed black circle). The

934 closed black circle is a representative point for the phase-based method, marked by selecting
935 maximum values among RDIs obtained from all phase-based fields. **(D)** Bar graphs
936 comparing the magnitude of changes in RDI_{SCN} and RDI_{CHC} between regions. Data are
937 presented as means \pm standard error of the mean. *** $p < 0.0001$. **(E)** Scatter plot jointly
938 displaying $\Delta\text{RDI}_{\text{SCN}}$ and $\Delta\text{RDI}_{\text{CHC}}$ for all neurons in the CA1 and subiculum. Note that
939 subicular neurons are more dispersed in the first and second quadrant than CA1 neurons. **(F)**
940 Weighted rose plot constructed using data from (E) for statistical comparison. ** $p < 0.01$,
941 * $p < 0.05$.

942

943 **Figure 7. Scene and choice information are orthogonally represented by multiple phase-**
944 **based fields of subicular neurons.** **(A)** Illustration showing the different relationships
945 between RDI_{SCN} and RDI_{CHC} of example fields on the RDI scatter plot. Field1 (red) near the
946 diagonal line shows the same amount of rate modulation for scene and choice information,
947 whereas field2 (green) located further away from the diagonal line had much stronger rate-
948 remapping for scene than choice information. **(B)** Four examples of orthogonal
949 representations for scene and choice information for individual neurons. For each neuron, the
950 left panel shows a linearized firing rate map (left) and the right panel shows an RDI scatter
951 plot. Each phase-based field is color-coded. Serial numbers above the rate map indicate cell
952 IDs. Numbers on the scatter plots indicate RDI orthogonality strength. **(C)** Proportion of cells
953 for which phase-based fields have orthogonal representations for scene and choice
954 information. *** $p < 0.0001$. **(D)** Illustration displaying how the strength of orthogonal
955 representations for scene and choice information is quantified. θ_{SCN} and θ_{CHC} indicate the
956 angles between the diagonal line and the vectors of the fields whose RDI_{SCN} or RDI_{CHC} is the
957 maximum value. **(E)** Cumulative distribution of RDI orthogonality strength for each region.
958 ** $p < 0.01$. **(F, G)** Cumulative proportion of subicular cells for RDI_{SCN} (F) and RDI_{CHC} (G).

959 Bar graphs on the right side of each panel show RDI differences between subgroups within
960 the subiculum. ***p < 0.0001, *p < 0.016.

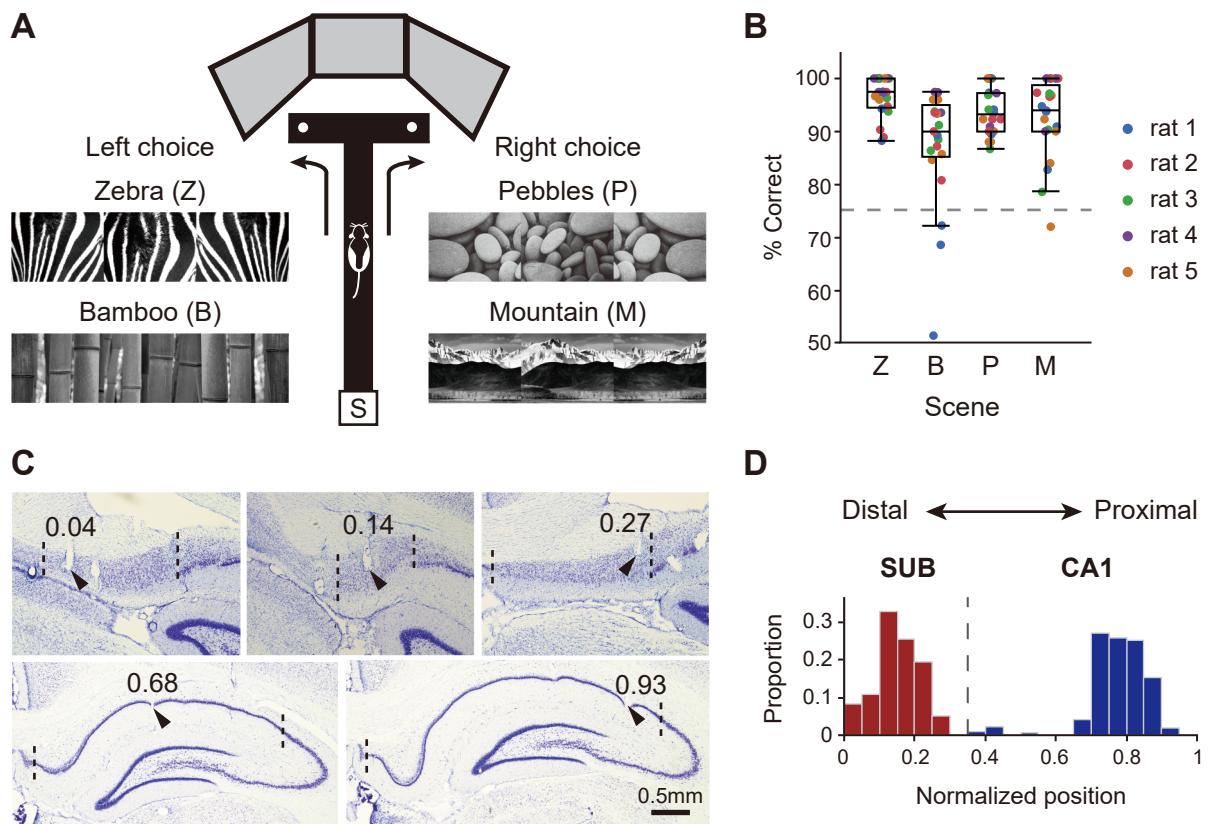


Figure 1

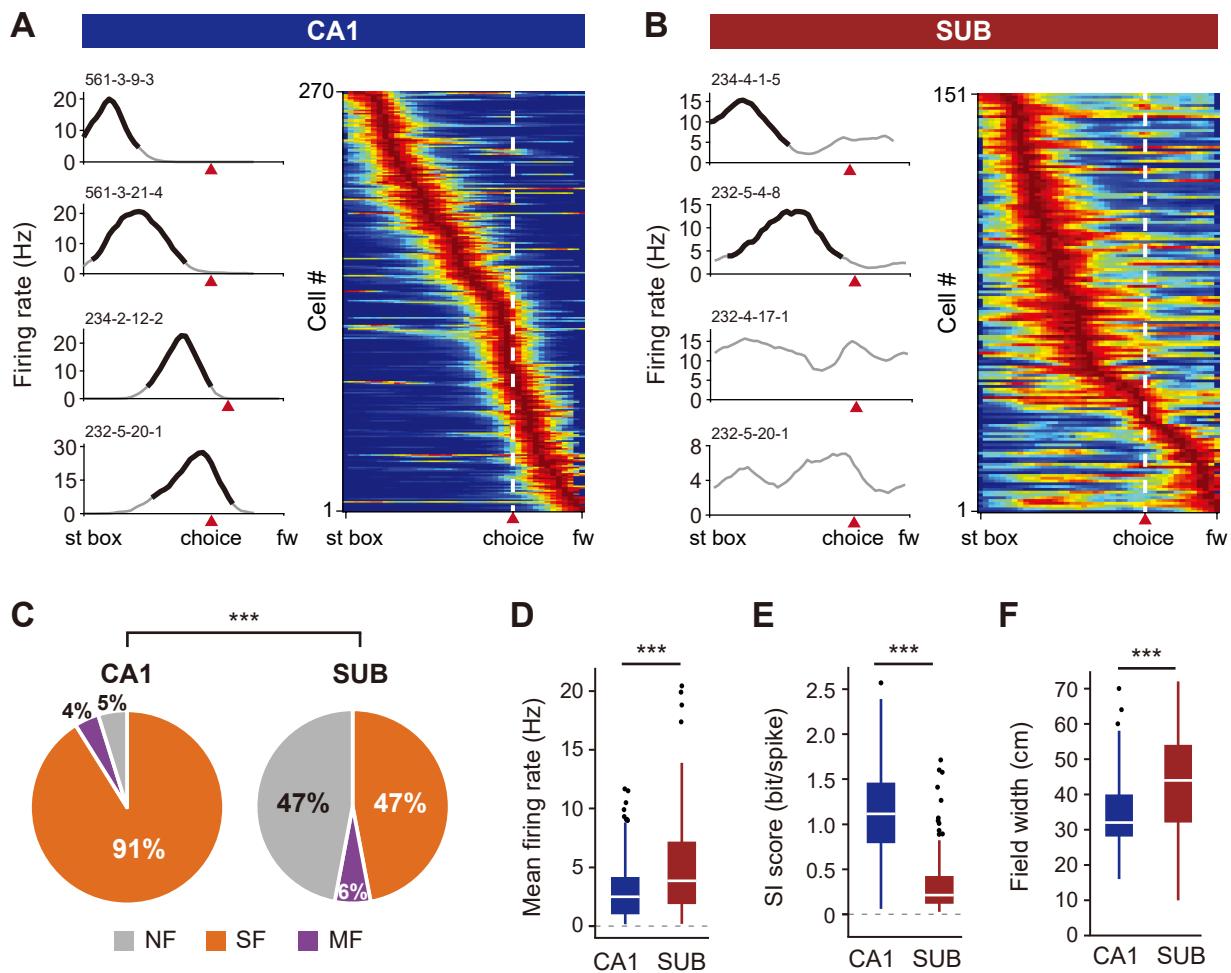


Figure 2

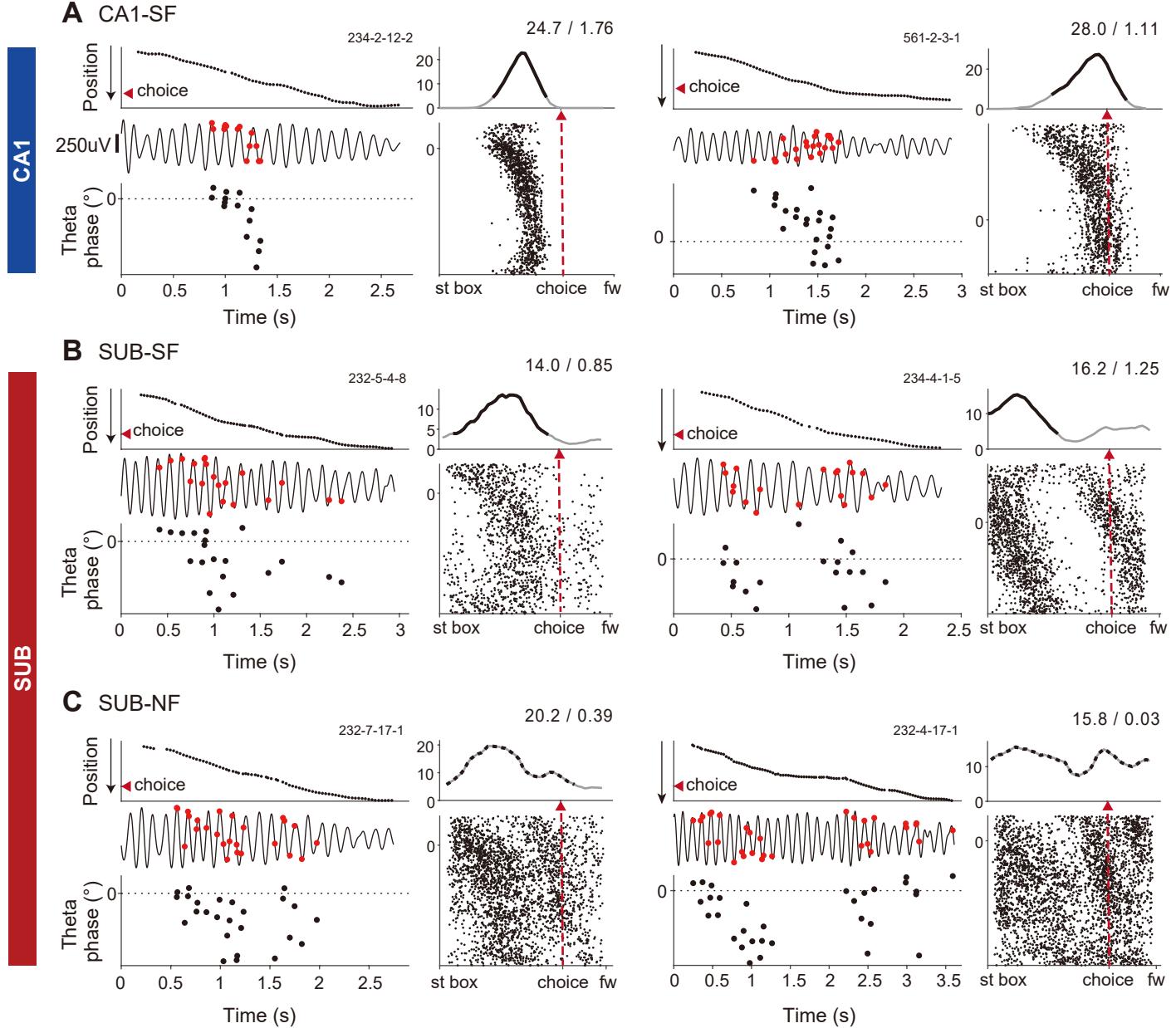


Figure 3

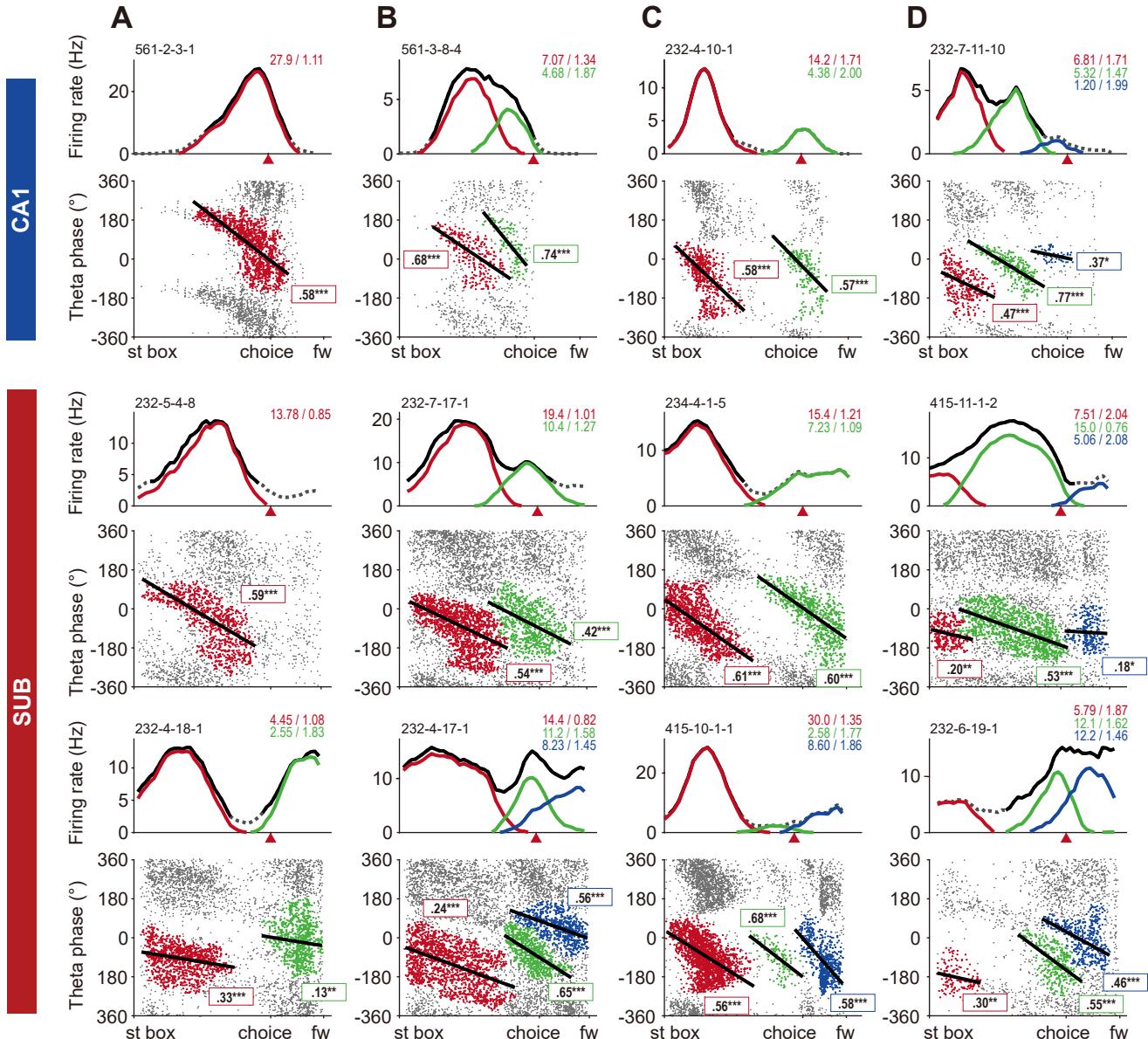


Figure 4

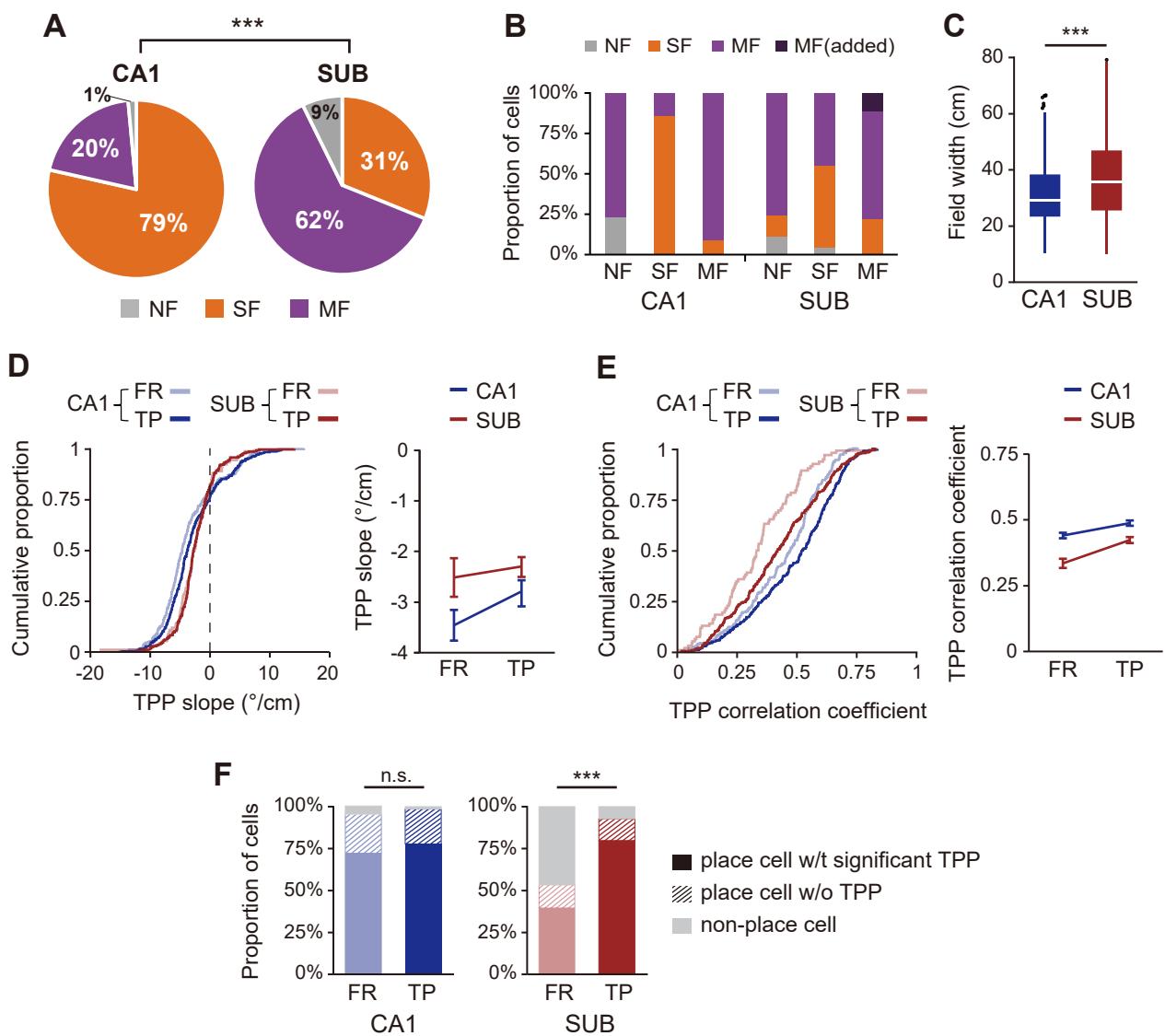


Figure 5

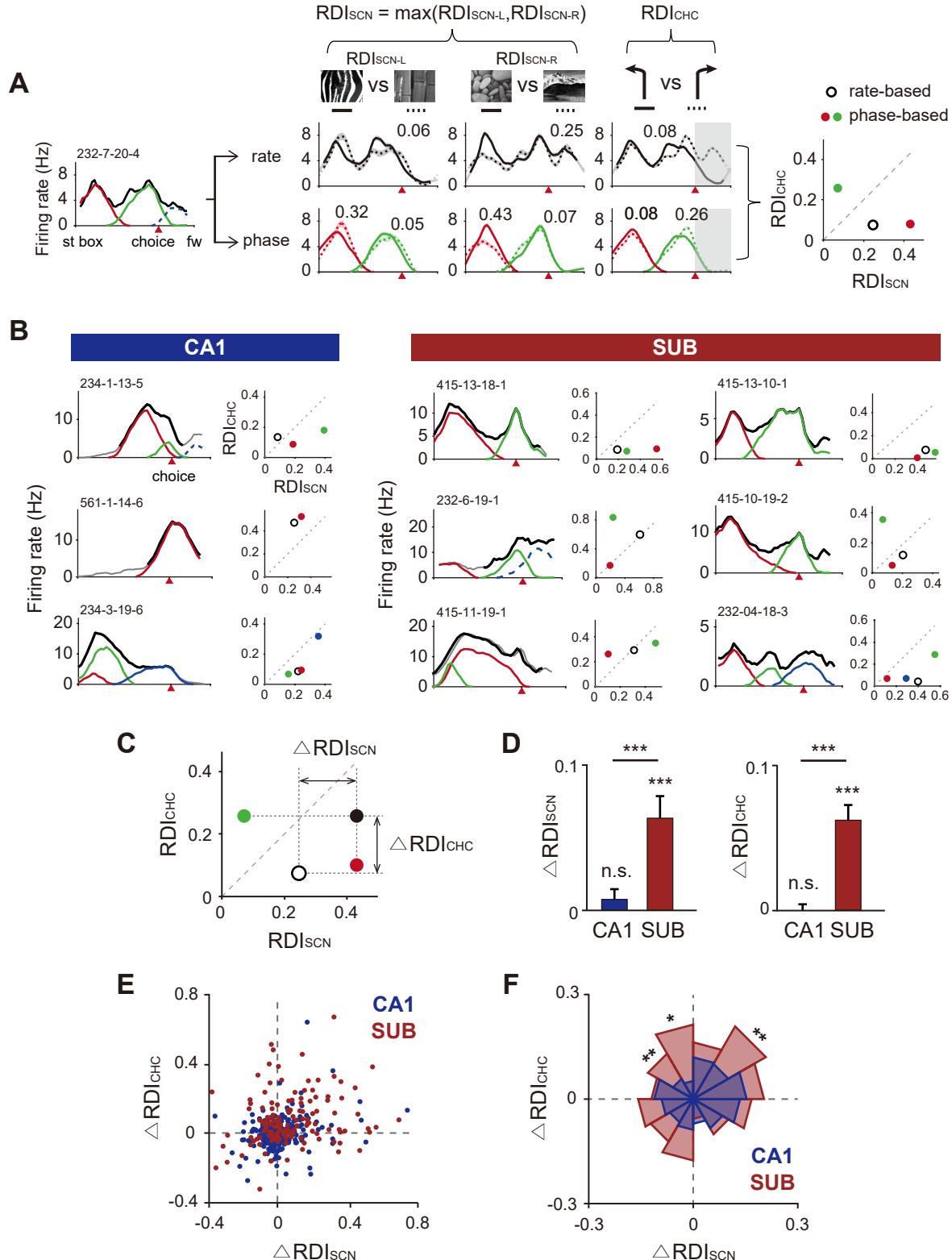


Figure 6

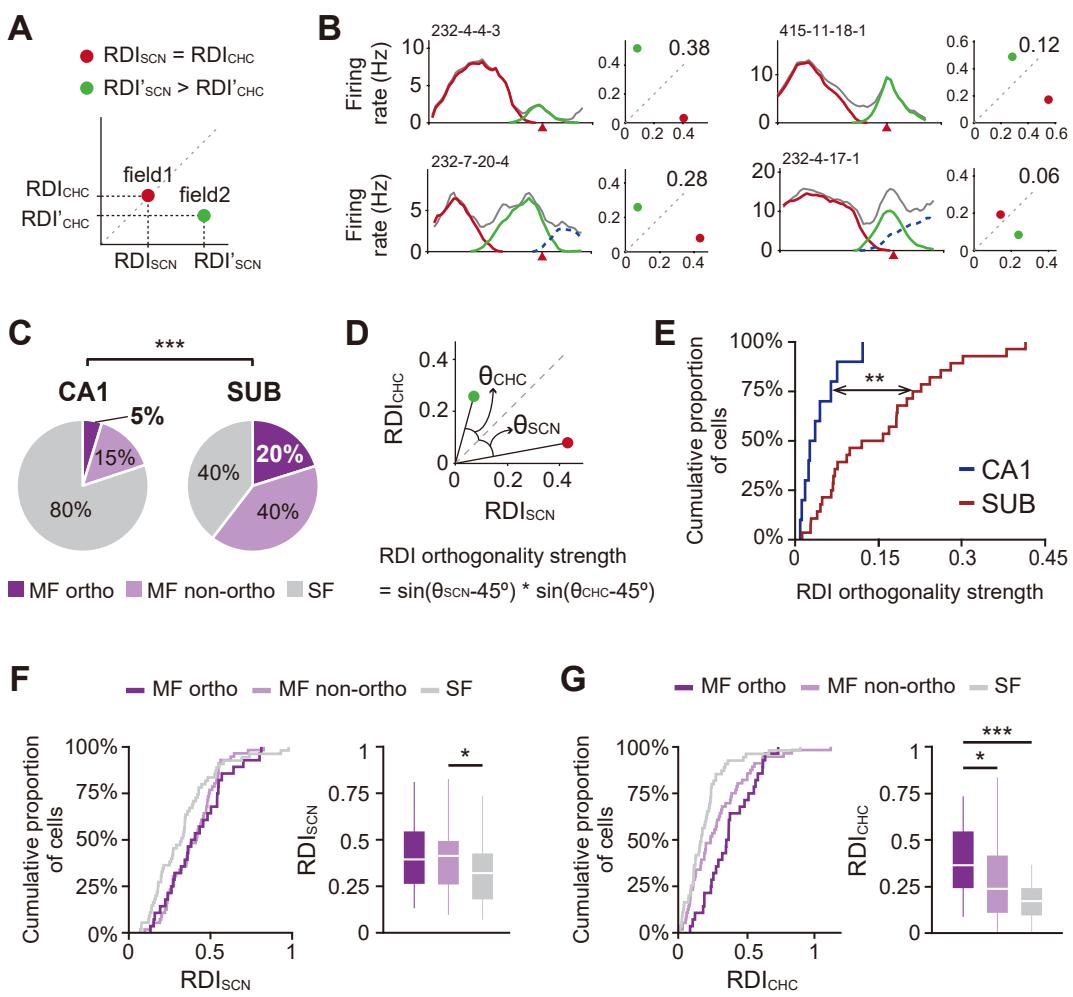


Figure 7