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Abstract

Motivation: Haplotype phasing approaches have been shown to improve accuracy of
the search space of neoantigen prediction by determining if adjacent variants are located
on the same chromosomal copy. However, the aneuploid nature of cancer cells as well as
the admixture of different clones in tumor bulk sequencing data are challenging the
current diploid based phasing algorithms. We present microphaser, a small-scale
phasing approach to improve haplotyping variants in cancer samples. Microphaser aims
to create a more accurate neopeptidome for downstream neoantigen prediction.
Results: Microphaser achieves large concordance with state-of-the-art phasing-aware
neoantigen prediction pipeline neoepiscope, with differences in edge cases and an
improved filtering step.
Availability: Microphaser is written in the Rust programming language. It is made
available via Github (https://github.com/koesterlab/microphaser)and Bioconda. The
corresponding prediction pipeline
(https://github.com/snakemake-workflows/dna-seq-neoantigen-prediction) has been
written within the Snakemake workflow management system and can be deployed as
part of the snakemake-workflows project.

Introduction 1

Cancer cells differ from healthy cells by accumulating various somatic variations, most 2

importantly in protein-coding regions (González et al., 2018). Those mutations arise 3

from various sources such as single nucleotide variants (SNVs), short insertions and 4

deletions (indels), gene fusions or larger structural variants like inversions, or 5

duplications. Not all of those variants are necessarily cancer drivers, but still alter the 6

genome, transcriptome and give rise to new mutated proteins, even if only acting as 7

1/18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455827doi: bioRxiv preprint 

https://github.com/koesterlab/microphaser
https://github.com/snakemake-workflows/dna-seq-neoantigen-prediction
https://doi.org/10.1101/2021.08.11.455827
http://creativecommons.org/licenses/by-nd/4.0/


passenger mutations. Those neoproteins are cancer-specific and distinctively separate 8

tumor cells from the surrounding healthy tissue (Schumacher et al., 2019). 9

The degradation of intracellular proteins into smaller peptides - known as proteolysis 10

or proteasomal cleavage - is an important process to remove flawed, misfolded proteins 11

or to generate ligands for immune recognition (Calis et al., 2015). To separate the 12

shorter peptides from the complete proteome, we refer to the entirety of peptide 13

sequences arising from proteasomal cleavage as peptidome. Cleaved peptides are then 14

transported to the endoplasmatic reticulum and loaded on the major histocompatibility 15

complex (MHC) proteins as peptide-MHC (pMHC) complexes (Neefjes et al., 2011). 16

Those complexes are presented on the cell surface and exposed to the T cells of the 17

immune system. T cells have the capability to distinguish normal peptides from 18

”foreign” neopeptides. 19

Therefore, the cancer-specific expression of those neopeptides can lead to an immune 20

reaction similar to the reaction towards foreign pathogens such as bacteria or viruses, 21

which can be exploited in immune response based cancer therapy (Schumacher and 22

Schreiber, 2015),(Vormehr et al., 2016). In immunology, an agent that is unknown to 23

the host organism and will therefore elicit an immune response is known as an antigen. 24

In analogy , immunogenic neopeptides which are derived from the patient’s 25

cancer-specific genome are called neoantigens. 26

Tumor neoantigens are a key principle in tumor immunotherapy (the treatment of 27

cancer by targeting tumor cells using the patient’s immune system). The inhibition of 28

immune checkpoints such as PD-L1 or CTLA4 (immunomodulators which are 29

overexpressed by tumor cells to downregulate immune reaction) is an already well 30

established method used successfully in treating cancer patients (Pardoll, 2012). 31

Targeting of tumor neoantigens is a key principle in cancer immunotherapy. 32

Different strategies are followed to mobilize neoantigen-specific CD8 T cells against 33

tumor cells. Several approaches are based on the prediction of neoantigens from the 34

tumor’s mutational landscape. Neopeptides derived from neoantigens are then used to 35

design personalized vaccines. 36

The treatment outcome differs from patient to patient and needs to be assessed 37

before individual therapy (Ribas and Wolchok, 2018). Since these approaches target the 38

mutational landscape of tumor cells, there are useful markers for the effectiveness of 39

immunotherapy such as the tumor mutational burden (Blank et al., 2016), neoantigen 40

burden (Schumacher et al., 2019) or the diversity and expression of the HLA (human 41

leukocyte antigen) antigen-presenting system (Boegel et al., 2019). Precise in-silico 42

prediction of neopeptides, their prevalence in the tumor and their antigenicity towards 43

the immune system are crucial steps for optimising tumor immunotherapy. More 44

personalized treatment options are currently being developed in the form of cancer 45

vaccines (Sahin and Türeci, 2018), which rely on few accurately predicted and highly 46

patient-specific neoantigen candidates. 47

It is not trivial to computationally predict valid neoantigen candidates from somatic 48

variants for several reason. For once, not every SNV leads to an alteration of a protein. 49

Not all emerging neopeptides can be bound and presented effectively by a patient’s 50

MHC. Even if a neopeptide is a valid MHC ligand, it might still not elicit an immune 51

reaction. Predicting the immunogenicity of an antigen is not yet completely solved, but 52

can be estimated using a measure of (dis)similarity of a neopeptide towards the normal 53

peptidome of a patient (Richman et al., 2019). The difference in MHC affinity between 54

the neopeptide and its normal equivalent can be a valid indicator for immunogenicity 55

and is used in some existing workflows (Bjerregaard et al., 2017). Low similarity and a 56

strong increase in MHC affinity benefit the probability of a neoantigen to get recognised 57

as ”foreign” by immune cells, as the corresponding normal is either looking different or 58

not well presented by the MHC at all. Those workflows focus on the comparison 59
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between the neopeptide and the normal peptide it was generated from. 60

However, neopeptides can also be similar to normal peptides arising from different 61

genes and chromosomal regions. Thus, neopeptides should be filtered against the full 62

normal peptidome of the patient, to reduce false positive neoantigen candidates. 63

Further, even a possibly immunogenic neoantigen might be too rare in the tumor to 64

be a useful target for immunotherapy, either because it is only present in a small 65

subclone or if it is not highly expressed. 66

Somatic variants such as SNVs should not be considered as isolated incidents but in 67

relation to their haplotype. It has been shown that incorporating neighbouring variants 68

- both germline and somatic - increases the success of neoantigen discovery (Hundal 69

et al., 2018; Wood et al., 2020). If we link a neopeptide to a specific somatic variant 70

that distinguishes it from its wildtype counterpart, it is evident that a second variant 71

close to this somatic variant of interest can have an influence on the amino acid 72

compositon of the resulting neopeptide. Even distal insertions or deletions can influence 73

downstream variants by introducing reading frame shifts and completely changing the 74

resulting protein. Therefore, in patient-specific neoantigen prediction, it is crucial to 75

include all variants in order to create an as exact as possible search space 76

(neopeptidome) to improve the success of downstream analysis. To model the possible 77

co-occurrence of neighbouring variant sites, it is important to determine which variants 78

co-occur on the same allele or chromosome copy. The combination of variants on a 79

single chromosome copy is called a haplotype. The process to determine a haplotype 80

from neighboring variants is called phasing. Phasing has already been incorporated in 81

neoantigen discovery using methods like GATK’s ReadBackedPhasing (McKenna et al., 82

2010) or HAPCut2 (Edge et al., 2016). It has been shown that those methods 83

successfully improve the accuracy of neoantigen prediction pipelines (Wood et al., 2020). 84

However, all existing phasing approaches so far used for this purpose assume that 85

the considered organism is diploid or at least of known ploidy and a homogeneous 86

mixture of cells with the same genome. In cancer, these assumptions are usually not 87

met. Here, we present microphaser, a tool for phasing possibly aneuploid sequencing 88

data composed of different subclones, by looking at short and distinct sequence windows 89

restricted to a length relevant for peptides. 90

Approach 91

Microphaser is a small-scale phasing algorithm designed for resolving haplotypes of 92

tumor data in short quasi-independent windows. Since correct genome-wide phasing is 93

not yet solved for aneuploid tumor data, microphaser instead limits the problem to 94

shorter, resolvable genomic regions. Since typical neoantigens are either 8-11 (MHC-I) 95

or 15 (MHC-II) amino acids in length, determining the haplotypes of every possible 96

neoantigen candidate independently is a reasonable simplification and a beneficial step 97

in creating an exact neopeptidome. Microphaser uses a sliding window approach over 98

the coding regions of the genome, while mapping genomic coordinates to gene 99

annotations. Using a step-size of 3 (codon length), microphaser divides transcripts in 100

window-sized peptides and determines the variant distribution at that position. 101

Following the actual open reading frames (ORF), the resulting peptides represent all 102

different haplotypes of the specific genomic region. On a paired tumor-normal sample, 103

microphaser generates both a set of mutated neopeptides as well as their normal, 104

unmutated counterparts. This allows the inclusion of a filter step to remove any mutated 105

peptides which are already encoded by nonmutated sequences in the normal proteome. 106
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Materials and Methods 107

Neoantigen prediction workflow: preprocessing 108

Microphaser can be run as part of a fully integrated neoantigen prediction pipeline 109

which is realised using the Snakemake workflow management system (Köster and 110

Rahmann, 2012). The pipeline is completely automated from start to end and 111

self-contained in terms of software distribution and installation. The only exception are 112

the netMHC-tools which are not available under a free license. All other needed 113

software is installed automatically using the package management system conda, 114

making use of the Bioconda channel (Grüning et al., 2018). The pipeline operates on 115

DNA-Seq data (whole-genome or whole-exome) in FASTQ format for matched 116

tumor-normal samples. Optionally, RNA-Seq data can be provided for transcript 117

abundance estimation. All required reference sequences and annotation are 118

automatically downloaded from the Ensembl ftp-servers and cached by snakemake. 119

Reads are aligned against the GRCh38 reference genome from the Ensembl release 100 120

using bwa-mem 0.7.17 (Li and Durbin, 2009), with subsequent sorting, indexing and 121

deduplication using samtools 1.9 (Li et al., 2009) and picard tools 2.22.1. Both somatic 122

and germline SNVs and indels are called using the variant caller Strelka (Saunders et al., 123

2012). Resulting germline and somatic variants are merged using bcftools 1.9 (Li, 2011), 124

the germline-only calls however are also retained for use in the germline phasing step of 125

microphaser. Variants are then preprocessed using bcftools norm, notably including 126

left-aligning of indel variants and decomposition of multiallelic variant calls. Variants 127

are annotated using the variant effect predictor VEP (McLaren et al., 2016). 128

Microphaser 129

For neopeptide identification, microphaser uses the tumor BAM file and the merged 130

variant calls in BCF format, as well as a reference FASTA file and annotation in GTF 131

format. Analogously, the generation of the sample-specific normal peptideome uses the 132

normal sample BAM file and germline-only variant calls. 133

To reach maximal accuracy, microphaser tries to detect all possible haplotypes which 134

carry somatic variation, including potentially small subclones which might exist in the 135

tumor, leading to a representation of potential neoantigens in all cancer cell 136

subpopulations. 137

The use of microphaser is structured in three main steps: 138

• creation of the normal sample-specific peptidome 139

• creation of the tumor-specific cancer peptidome 140

• translation of peptides and filtering for self-similarity 141

The creation of normal and tumor-specific peptidomes follows a nearly identical 142

routine. In the following, we refer to the two cases as somatic mode and germline mode, 143

and mention differences where necessary. First, genomic regions encoding for proteins 144

are identified by defining transcripts and exonic regions per gene while parsing a 145

genome annotation file. Microphaser then iterates over all valid transcripts exon by 146

exon, using a sliding-window approach to identify all peptides of a specific length which 147

might result from the current gene. Here, read-backed phasing is used to identify 148

(sub)clonal haplotypes and their corresponding frequencies in the tumor sample. All 149

resulting nucleotide sequences are then translated into amino acid sequence, while 150

removing peptides resulting from synonymous mutation events by comparing them to 151

their corresponding normal peptide. To further eliminate neopeptides which are similar 152

to peptides arising from the normal peptidome of a patient—and will therefore most 153
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probably not be immunogenic—microphaser performs a filtering step against the 154

complete normal peptidome while considering phased germline variants. The resulting 155

valid neopeptides can then be evaluated in terms of differential MHC binding towards 156

their respective corresponding normal peptides. 157

From the preprocessed data, microphaser starts reading gene, transcript and exon 158

positions from the provided GTF (see Supplement) and produces phased peptides from 159

both tumor and normal samples, following a sliding peptide-length window over the 160

coding regions of a gene. The process of phasing is explained in the following section. 161

Phasing Algorithm 162

Each transcript of a gene is phased separately. Microphaser begins at the start position 163

of the first exon and iterates over all exons of the transcript, before starting with the 164

next transcript variant or gene. To this end, microphaser creates a peptide window with 165

the length of the desired epitopes and slides the window over the transcript positions 166

until the stop codon is reached. During phasing, microphaser follows the transcript’s 167

open reading frame (ORF) encoded in the GTF to determine when a new codon has 168

been added to the peptide sequence. However, indel variants might lead to a frameshift 169

and create a new, additional ORF. Microphaser keeps track of all currently active 170

reading frames. 171

The strand information of the specific transcript plays an important role in 172

advancing the window throughout phasing. When reading genes located on the forward 173

(3’) strand, the window advances with increasing genomic coordinates, sliding from ”left 174

to right”, with the window starting at the first position of the first CDS. Genes on the 175

reverse (5’) strand are phased ”backwards” (Fig. 2A). The start of the transcript is the 176

end position of the first peptide window and the window slides from ”right to left”. 177

However, the sequence of the current peptide window is always generated from window 178

start to window end, so from ”left to right”. This is done to match the left-oriented 179

notation of insertions and deletions in variant calls. 180

Microphaser uses read and variant information to determine every haplotype and its 181

frequency in a peptide window. As the window advances, microphaser only considers 182

reads and variants which are covered by the current window position, i.e. variants which 183

lie inside the window and reads which completely enclose the window. To keep track of 184

the variants and their supporting reads at every window position, the algorithm 185

maintains an observation matrix. The observation matrix can be imagined as a 186

bit-matrix M with dimensions r, the number of observations (or reads), and v, the 187

number of variant sites, where every entry shows whether a read R supports the variant 188

allele at site V as (Fig. 1C): 189

M(V,R) =

{
1, if R supports V

0, otherwise

In this matrix, every read is associated to a bit vector with the size of the current variant 190

list, where the n-th bit represents the n-th variant position inside the current peptide 191

window. A bit is set to 1 if the corresponding variant is supported by the read, and set 192

to 0 otherwise. This bit vector represents the subset of variants co-occuring in the read 193

and therefore on the same haplotype. The representation of haplotypes as bit vectors 194

allows the use of fast bitwise operations when adding and removing new variant sites. 195

The phasing itself can be written as a stepwise protocol: 196

Removing old reads: When advancing the peptide window, it is sufficient to 197

consider the interval between the end of the previous and the end of the new window 198
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(C|G)AGCCTGGT(C|A)TACCA(T|G)AA
CCTGGT(C|A)TACCA(T|G)AAATG
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w1
w2
w3
w4

V1 V2 V3 V4

TTAACTCAGCCTGGTATACCAGAAATG

TTTACTGAGCCTGGTCTACCATAAATG
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Read6
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TT(A|T)ACT(C|G)AGCCTGGT(C|A)TA
ACT(C|G)AGCCTGGT(C|A)TACCA
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......
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w3
w4

V1 V2 V3 V4

Figure 1. Example for small-scale phasing. A: Four SNVs embedded in the genomic
sequence (top) and four resulting windows overlapping with the ORF. B: Six reads
overlapping the genomic region in A. C: The ObservationMatrix changes representing all
four windows in A. From window 1 to window 2, one read (Read1) and variant (V1) fall
out of the scope. From window 2 to window 3, one variant (V4) is newly added. From
window 3 to window 4, a new read (Read6) is added. D: The resulting haplotypes for all
four windows, with frequencies computed per window.
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CCAGCCTTTCAGCCTAGAGCCTATGTACACCAT

S E

S E

S E

A

Frameshift: 0.5 CTGTGTAACGCTGCT SNV: 0.5

L C P A A

 C V R L

Frame 0: 0.25

Frame 1: 0.25D

Frame 1:0.5

Frame 0:0.5

L  C  N  A  A 

  C  V  T  L

Frame 0: 0.25

Frame 1: 0.25

E

...

Frame 1

CAGGCTTATTTAGGCCAG

Frame 0

Q A Y L R P

R L I -    STOP

0.5

0.25

0.25

TATGCAGCTCCGAGG
CTGTGTAACGCTGCTTATGCAGCTCCGTGG
CTGTGTACCGCTGCT

GCAGCTCCGAGGCTG
GCTCCGAGGCTGTGT

CCGAGGCTGTGTACC
CCGAGGCTGTGTAAC

TGGCTGTGTAACGCT

CCGTGGCTGTGTAAC

AGGCTGTGTAACGCT
AGGCTGTGTACCGCT

B

CTGTGTAACGCTGCT0.5

0.5
0.5

0.5
0.5

CATTCAGGATCCT GGATACATGG CAATGAACTGCTA

TGG GGC
C

Figure 2. Algorithmic details. A: Phasing of reverse oriented transcripts with peptide
windows. B: Joining of two exons at a splice-site with variants on both sides. The
frequencies of the resulting neopeptides are computed from the combined exon window
frequencies. Normal peptide fractions are not reported but can be implied from the
neopeptide fractions C: Exon joining including an exon shorter than window size. The
middle exon is completely integrated in the joining of the other two exon windows. Blue
bases represent split codons. D: Representation of an SNV downstream of a frameshift
variant. The frameshift is introduced in 50% of the reads and the DNA is transcribed in
two ORFs with equal frequency. Downstream variants are integrated in both ORFs with
respect to their frequencies. E: If a stop codon is reached in a window, the corresponding
reading frame is finished and the analysis continues with the remaining ORF.
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and remove reads whose end positions are located in that interval, in other words, 199

observations which no longer span the current window. 200

Removing old variants: Similar to reads, variant sites can leave the current window 201

after advancing. These variants are removed from the observation matrix by creating a 202

bitmask of 2d − 1 with d representing the number of variants to be removed, using a 203

bitwise AND operation between the bitmask and the haplotype of every read. 204

Adding new reads: Next, new reads are added to the matrix. For every read, an 205

observation is initialized with a haplotype of 0. The haplotype is then updated for every 206

variant site in the window by setting the corresponding bit to 1 if the read supports the 207

variant. 208

Adding new variants: Finally, potential new variant sites are added. Again, 209

microphaser only needs to consider the small interval between the end of the previous 210

and the end of the current window. First, the haplotype of every observation is 211

left-shifted by the number of added variants. Then, the haplotypes are updated 212

considering their support of the newly added variants, analogous to step 3. 213

After every iteration of updating the observation matrix, microphaser checks if the 214

window is in frame with the currently active ORFs (see start of section ). Since the 215

stepsize of the peptide window is one, this does at least happen every three iterations. 216

In this case, all observations in the current observation matrix are grouped and every 217

distinct haplotype is assigned with the number of supporting reads. For every 218

haplotype, the reference sequence is updated by integrating the variants present in this 219

haplotype—i.e., variants where the corresponding bit is set to 1. Somatic variants are 220

only integrated in the neopeptide sequence (somatic mode), while normal variants are 221

integrated in both normal peptides (normal mode) and neopeptides. After all variant 222

sites in the window have been analysed, the mutated sequence is stored together with 223

the normal peptide sequence. If a haplotype carries a somatic indel variant, the 224

corresponding normal sequence is not reported since it is no longer similar to the 225

mutated sequence (the normal sequence will however be stored during germline 226

phasing). If a window does not contain any variant sites, or only germline variants, the 227

sequence will only be considered in germline phasing mode. In the somatic mode, 228

microphaser only writes peptide sequences containing somatic variants and their 229

respective normal sequence. Neopeptides containing stop codons are not reported and 230

since downstream regions after a stop will not be transcribed, the corresponding reading 231

frame is removed from the list of active ORFs. For every valid neopeptide sequence, a 232

record containing meta-information is created and saved under the same identifier (in a 233

.tsv file). Important fields in this record are gene and transcript IDs, genomic position 234

of the peptide window and the variant sites, haplotype frequency, read coverage and the 235

DNA sequences of the mutated and the normal peptide. The haplotype information of 236

the window is then stored for one additional iteration to ensure its accessibility in case 237

of an exon joining event (see below). 238

Exon Gap Joining - Closing distances between variants 239

The segmentation of coding transcripts into exons is one limitation of working with 240

genomic coordinates. Since the basic algorithm phases one exon after the other, it 241

would fail to generate peptides stretching over exon junctions (splice-sites), and would 242

miss potential neopeptides from somatic variants of interest within a window length 243

from a splice-site (Fig 2C). Thus, when microphaser restarts phasing at a new exon, the 244

last peptide window of the previous exon is combined with the first peptide window of 245
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the current exon to create a sequence of length 2w spanning the splice-site. Microphaser 246

then iterates over the resulting sequence to generate all peptide-length sequences. Since 247

there are no reads overlapping both parts of this splice-site sequence in whole exome or 248

whole genome sequencing, microphaser does not perform the haplotype counting 249

explained above, but reuses the haplotype information of the two merged windows, 250

computing a mean coverage and combining variant sites as explained in the next section. 251

Additionally, an exon might end with an unfinished codon consisting of only one or 252

two bases. In this case, the codon will be completed by the first one or two bases at the 253

start of the next exon. Since microphaser follows the ORF, a naive implementation 254

would ignore those split-codon bases on both sides of the splice-site since they are not in 255

frame. To tackle this, microphaser increases the window length to cover those 256

split-codon bases at exon end or start regions and evaluates possible variant sites at the 257

respective positions. 258

Furthermore, some exons might be shorter than the window, meaning they will not 259

encode for a peptide of sufficient length by themselves. For these short exons, the 260

window length is extended towards subsequent exons until the required length is 261

reached (Fig. 2C). 262

Combining distant variants 263

When handling splice-sites, one or even both windows might contain variant sites and 264

therefore feature multiple haplotypes. Since we lack information by reads overlapping 265

the intronic gap between the two exons, microphaser cannot count haplotypes directly 266

but considers all combinations of haplotypes from the two windows upstream and 267

downstream of the splice-site. Haplotype frequencies for the newly generated peptide 268

sequences are computed from the frequencies of both input haplotypes treating them as 269

independent variables. This approach follows the assumption of neutral tumor evolution 270

of Williams et al. (2016). The model postulates cancer growth from a pre-cancer cell 271

which already contains a substantial mutational burden, consisting of clonal (or public) 272

variants. Mutations that occur later during tumor evolution are mostly subclonal 273

(private) passenger mutations which do not experience selective pressure (neutral) and 274

therefore grow with a steady allelic fraction that reflects their time of occurrence. 275

Therefore, even two variants with a similar subclonal allelic fraction did not 276

necessarily co-evolve in the same subclone but were rather introduced at the same point 277

in time. Accordingly, microphaser treats all variants as potentially independent events, 278

as even if they occurred in the same subclonal cell, they could have occured on different 279

haplotypes. The model tries to avoid making assumptions of co-occurrence of variants 280

and rather seeks to broaden the search space without missing potential neopeptides. 281

While the approach will lead to false positives, cases are rare and can be assessed when 282

evaluating the final resulting neoantigen candidates - for example using transcriptome 283

data, if available. 284

Let w1 and w2 be windows adjacent to the same intronic gap. In w1, a heterozygous
variant v results in two haplotypes h1 and h′1, while w2 is homozygous with haplotype
h2. The possible haplotypes over the intronic gap are therefore h = h1h2 and h′ = h′1h2.
The frequencies of those two haplotypes are computed as follows:

f(h) = f(h1) ∗ f(h2) and

f(h′) = f(h′1) ∗ f(h2)

where f(h) is the frequency of haplotype h. 285

While iterating over the gap sequence, some windows will not include the variant site 286

of v. In those windows, there is only one haplotype, and its frequency is computed as 287

the sum of f(h) and f(h′). 288
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Using this approach, microphaser also estimates the frequency of variants 289

downstream of frameshift events. As mentioned above, all active reading frames are 290

issued a specific frequency which is derived from the haplotype frequency of the 291

frameshift variant. To estimate the probability of a downstream variant to be in phase 292

with a reading frame, the ORF and variant frequencies are combined as described for 293

exon gap joins. 294

Keeping track of frameshifts 295

As mentioned in section , frameshift events (e.g., insertions or deletions) can lead to the 296

generation of a second reading frame (heterozygous or subclonal frameshift) or even 297

replace the original ORF (clonal or homozygous frameshift). Since these frameshift 298

events do not only influence the peptide windows they are located in but the entire 299

transcript downstream of the corresponding variant, it is important to keep track of the 300

currently active reading frames. Therefore, microphaser defines every reading frame F 301

as a tuple of the position of the corresponding frameshift variant, the introduced 302

frameshift and its frequency f(F ), derived from the variant’s allelic fraction. For all 303

active ORFs F in a transcript,
∑
f(F ) = 1 holds. 304

For every transcript, microphaser starts with the main ORF F0, with a frequency 305

f(F0) of 1. After the introduction of a frameshift by a variant, the frequency for the 306

variant is computed and stored as the frequency of the new frame. Accordingly, the 307

frequency of the original ORF is decreased by the alternative frame frequency. 308

From there on, the alternative frames are handled alongside the original frame. 309

Downstream variants will be interpreted for all active frames, resulting in different 310

neopeptides per frame. Especially variants which are synonymous with respect to the 311

main ORF might generate neopeptides in the alternative frame. 312

If the alternative frame is flagged as somatic, all resulting peptides, even those not 313

carrying SNVs themselves will be considered as neopeptides. 314

If an active reading frame reaches a stop codon, the frequency is set to 0 and the 315

frame is removed from the set of active frames, since translation will terminate after the 316

stop codon. However, any other active ORFs for which the codon does not translate to 317

a stop will continue. 318

Translation and Frequency Estimation 319

The phasing steps of microphaser produce peptide sequences still represented as forward 320

oriented DNA bases. In the filter subcommand, these sequences are translated into 321

amino acid (AA) sequences, depending on their respective transcript orientation. 322

After translation, mutated peptides which are identical to their normal counterparts 323

and originate from synonymous variants are removed immediately. This is required 324

since synonymous variants cannot simply be removed from the variant files as they can 325

produce a non-synonymous AA sequence if they co-occur with other variants in the 326

same codon or are located downstream of a frameshift. Furthermore, microphaser 327

removes all peptides containing stop codons and does not translate peptides which are 328

located downstream of a homozygous stop codon on the same ORF. 329

The remaining records are in most cases centered around somatic variants. Every 330

somatic variant of interest results in k different peptides of length k. Assuming a 331

standard epitope length of 9 AAs, one amino acid change generates 9 distinct 332

neopeptides. 333

We strive to annotate the neopeptides with the frequency θ in which their 334

underlying haplotype occurs at the given locus. This can be calculated in a Bayesian 335

way as follows. Assuming that a haplotype is covered by i = 1, . . . , k peptide windows, 336

our observed variables are ai, the number of reads supporting the variant haplotype and 337
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ni, the number of total reads over each window i. The true frequency θ of the variant 338

haplotype is the latent variable we would like to infer. Then, the likelihood of θ can be 339

calculated as 340

Pr(a1, . . . , ak, n1, . . . , nk | θ) =
k∏

i=1

(
ni
ai

)
θai(1− θ)ni−ai .

In other words, we assume that the observed counts are binomial distributed with 341

success probability θ. Assuming a uniform prior distribution for θ, we can calculate the 342

95% credible interval and report it along with the maximum likelihood estimate for θ. 343

Germline Phasing and Filtering 344

Not all non-synonymous variants necessarily lead to a true tumor-specific neopeptide. 345

Considering the size of the human proteome, it is possible that a somatic mutation 346

generates a peptide which differs from its direct corresponding normal peptide but still 347

is identical to another normal peptide translated from a different gene. To detect those 348

self-identical peptides, the germline mode in microphaser generates a patient-specific 349

normal peptidome by incorporating and phasing only germline variants into the 350

reference genome. These peptides are translated and stored in a hashmap serving as a 351

control for neopeptide candidates. Any predicted neopeptides are compared against the 352

entire normal peptidome to remove self-peptides. 353

Neoantigen Prediction Workflow: Downstream Analysis 354

Output from microphaser can be used as part of a neoantigen prediction pipeline, using 355

the resulting neopeptides as a candidate set or search space. In such a pipeline, the 356

antigenicity of the resulting tumor neopeptides must be assessed with respect to the 357

HLA alleles of the patient sample. In our workflow, HLA typing for class I HLA alleles 358

is performed using optitype Szolek et al. (2014). The binding affinity of neopeptides, as 359

well as their wildtype analogues, to the predicted HLA alleles is then obtained using 360

netMHCpan v.4.1 Reynisson et al. (2020) for MHC-I alleles and netMHCIIpan v.4.0 361

Reynisson et al. (2020) for MHC-II alleles. The binding affinity is always predicted for a 362

neopeptide and its corresponding normal peptide, in order to detect differential binding 363

affinity due to the somatic AA change. 364

Results 365

Evaluation against neoepiscope 366

We compare the performance of microphaser with that of neoepiscope, a similar tool for 367

neopeptide candidate generation from variants. Neoepiscope works on whole exome 368

sequencing data and allows the use of pre-phased variant calls, with haplotype phasing 369

performed by HAPCut2. Since neoepiscope does not provide a fully integrated pipeline, 370

a snakemake workflow was created. Neoepiscope uses the allelic fraction information 371

encoded in VCF4.1 format (https://samtools.github.io/hts-specs/VCFv4.1.pdf) to 372

generate VAF information for the resulting neopeptides. HAPCut2 relies on genotype 373

information for haplotype phasing. Therefore, STRELKA variant calls were updated to 374

contain genotype information (GT) and allelic fraction (AF) fields using a pysam script. 375

Further variant file preparations and haplotype phasing with HAPCut2 were performed 376

as described in the neoepiscope best-practice. Neoantigen calling was used allowing 377

non-canonical start and stop codons, with netMHCpan v.4.1 chosen for MHC binding 378

affinity prediction. The complete neoepiscope snakemake workflow used in this paper is 379
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Figure 3. Concordance between four replicates of the same tumor-normal pair for both
microphaser (orange) and neoepiscope (blue). A + B: Frequency for every neopeptide
from a single replicate plotted against the mean frequency of the same neopeptide over
all replicates (A: All variants, B: Variants shared by all replicates.) C: Upsetplot of all
variants called in the four replicate pairs. D + E: Pairwise comparison of neopeptide
frequency for two replicate pairs. A VAF of 0 represents a neopeptide not present in one
of the compared replicates. (D: All variants; E: Variants shared by all replicates)

embedded in the complete analysis workflow and can be found archived on zenodo 380

under https://doi.org/10.5281/zenodo.5163772, while a generalised version is available 381

at https://github.com/jafors/snakemake-neoepiscope. Reference data in FASTA and 382

GTF format was obtained from the Ensembl GRCh38 assembly, release 100. 383

Datasets 384

We evaluated microphaser’s and neoepiscope’s perfomance on two datasets: 385

1. A concordance analyis was performed using a validation dataset consisting of 4 386

biological replicates from the same WGS sample. All replicates were produced 387

from different sequencing protocols in different labs. Craig et al. (2016) 388

2. A dataset of four melanoma metastases from a single patient was used to 389

demonstrate the algorithm on a typical use-case. This dataset has been analysed 390

for neopeptides in a study by Schrörs et al. (2017). 391

Concordance Dataset 392

To assess the robustness of microphaser neoantigen predictions, we analysed 393

concordance of its results across four replicates (EBI, Illumina, GSC, TGen) from the 394

same tumor cell line (melanoma cell line COLO829), sequenced with different 395

sequencing technologies in different institutes Craig et al. (2016) 396

(https://ega-archive.org/datasets/EGAD00001002142). Since microphaser is supposed 397

to work on the exon level, whole-genome reads were filtered to map to exonic regions. 398

We ran the pipeline independently on each replicate and compared the resulting 399

neoantigen candidates between replicates by their predicted frequency (Fig. 3D,E). 400

Additionally, we computed mean frequencies over the predicted neoantigen frequencies 401
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Figure 4. Comparison between neopeptides called by microphaser and neoepiscope.
Frequency of neopeptides found only by one algorithm is set to zero in the other algorithm.
(A: All variants; B: shared variants; C: Melanoma Metastases)

of all four replicates and compared the results of each replicate with the computed mean 402

values (Fig. 3A,B). 403

The same analysis was also performed using the neoepiscope pipeline (Section ). 404

Microphaser shows good concordance between the replicates, similar to the 405

concordance reached by neoepiscope (Fig. 3). Outliers and missing neoantigen 406

candidates almost exclusively occur in regions with low coverage (¡ 15) and 407

inappropriate sampling. Since most missed neopeptides probably result from differences 408

in variant calling results across replicates, a second analysis was performed only on those 409

variants shared by all four replicates. This removes most problematic neopeptides (zero 410

vs non-zero VAF) from the comparison (see Fig. 3 D vs. E, and A vs. B). The remaining 411

outliers can be explained with low coverage, low VAF and inadequate read sampling, 412

where reads supporting the variant are not completely overlapping the peptide window. 413

In addition to the concordance analysis, we compared microphaser results directly 414

with neoepiscope on all four replicates of the dataset. Here, it can be seen that 415

differences arise mostly in neoantigen candidates predicted by neoepiscope which are 416

not present in microphaser results (Fig. 4 A and B). The mechanisms and algorithmic 417

differences leading to those missing neopeptides will be explained on examples in the 418

following section . 419

Melanoma Dataset 420

We used published WES data from four metastases of a single melanoma patient in 421

order to test microphaser on a real case (Schrörs et al., 2017). In this study, four 422

neoantigen candidates were validated with T-cell assays, which could all be predicted by 423

both microphaser and neoepiscope. This dataset was used to explore further differences 424

in prediction results between microphaser and neoepiscope together with the 425

aforementioned concordance dataset (Fig.4C). 426

Comparison 427

In this section, we compare the neoantigen candidate sets predicted by microphaser and 428

neoepiscope. We mainly focus on those neopeptides only predicted by either microphaser 429

or neoepiscope and explain differences in prediction results due to algorithmic features 430

and specific corner cases, illustrated on examples taken from the two analysed datasets. 431

Self-identity to Normal Peptidome The lack of multiple neoepiscope candidates 432

in microphaser predictions is the most prominent difference between microphaser and 433

neoepiscope results and are highlighted in (Fig.4). 434
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D

B

C

Figure 5. Interesting cases A: Filtering of identical peptides arising from non-
synonymous variants due to similar genes. B: Two transcript variants of the same
gene. A somatic deletion in transcript ENST00000304494 creates a new ORF which
is identical to the normal transcript ENST00000579755 and will therefore be removed
by microphaser. C: Varying read support of alternative transcript variants. One exon
in the second transcript is not covered, which leads to uncertainty in the respective
peptide windows. Microphaser will report a read coverage of 0. D: Influence of low
coverage/VAF in PDZD7 gene. Only two reads carry the variant and their positioning
does only allow to fully support one peptide window since read2 does not cover the
entire mutated codon.

The largest fraction of such candidates not generated by microphaser is due to the 435

filtering mechanism it uses. While neoepiscope only filters neopeptides where a 436

synonymous peptide arises in the same transcript, microphaser filters neopeptides with 437

synonymous peptides occurring anywhere in the complete normal peptidome of the 438

patient. This especially leads to the elimination of false positive neopeptides due to 439

homolog sequences in the same gene family. As can be seen in Fig. 5A, the S153L 440

variant found in SIRPB1 which creates an altered amino acid sequence that is highly 441

similar to a sequence in the gene product of SIRPG, a gene from the same gene family. 442

All resulting 9-mers around the SIRPB1 variant are valid neopeptides compared to their 443

position-equivalent normal peptide. However, comparing the 9-mer peptides of to the 444

homolog sequence from SIRPG leads to the identification of four SIRPB1 tumor 445

neopeptides identical to normal SIRPG peptides. These peptides are therefore removed 446

from the candidate dataset during the microphaser filtering step. 447

Furthermore, as seen in Fig. 5B, even a frameshift variant can lead to self-similar 448

neopeptides. A deletion introduced in two transcript variants of CDKN2A generates a 449

new frame for each transcript. However, the newly generated frame in the first 450

transcript variant matches the original frame of the second transcript variant. 451

Therefore, all peptides arising from this frameshift can be considered as self-similar. 452

The second new frame has however not been seen in the normal transcript variants and 453

does therefore count as a valid source of possible neoantigens. 454

Uncovered exons Another source of differences in peptide prediction lies in regions 455

with a lack of coverage in the WES. These cases especially originates from SNVs located 456

near splice-sites. While the coverage at the variant site is fine—as the variant would not 457
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have been called otherwise—there is no read coverage at the next exon of the transcript 458

(Fig. 5C). While neoepiscope uses the depth determined at the SNV site by the used 459

variant caller, microphaser combines the read depth values of both exons at a splice site 460

and returns a depth of zero if one of the exons has no coverage. In this case, the correct 461

variant profile can not be determined—due to lack of read coverage—and it is likely 462

that the resulting peptides might not be produced since the corresponding exon is not 463

present in the patient. In Fig. 5C, two MAP2K1 transcripts are shown which share one 464

exon with a P193S variant near the exon start. However, the previous exon is not the 465

same in both transcripts. While the canonical transcript has a high read coverage on 466

both exons, the alternative exon of the second transcript variant is not covered at all. 467

Microphaser returns the resulting neopeptide sequences for both transcripts and 468

indicates that the peptides unique to the alternative transcript have a coverage of zero, 469

marking them as uncertain candidates. 470

Low Coverage On the other hand, requiring that reads fully cover a window of 471

interest to be considered for a contained variant, means that microphaser misses some 472

peptides: when no read covers the entire peptide window, microphaser cannot resolve 473

the haplotypes with absolute certainty (Fig. 5D). Therefore, microphaser is sensitive to 474

regions with low coverage and small VAF. Especially if the reads which support the 475

variant of interest are not entirely covering the genomic space around the variant, 476

microphaser might miss some peptide windows. The impact of this sensitivity also 477

depends on the length of the peptide window and the length of the reads. While the 478

loss of single neopeptides is undesirable in terms of a complete overview of all 479

neoantigen candidates, it can be argued that peptides resulting from sites with either 480

low coverage, low VAF or both might not be ideal candidates since such sites carry an 481

increased amount of uncertainty. However, this is a problem we would like to tackle in 482

the future, e.g. by connecting reads which support the same haplotypes. 483

Long Deletions Finally, longer deletions are not properly handled by the current 484

microphaser approach in comparison to neoepiscope. Since the peptide windows are 485

fixed at lengths specific to the desired peptide length, deletions in a window will shorten 486

the peptide sequence in the window by the length of the deletion. Especially in large 487

deletions, the windows will not contain enough bases to get a valid neoantigen out of it. 488

However, long deletions could be treated as intronic gaps, with the windows before and 489

after the deletions representing two neighbouring exons. We will explore this approach 490

in the future. 491

Low Clonal Fraction Another important source of differences lies in the phasing of 492

distant variants, both germline and somatic. While the phasing of two distant SNVs - 493

even located on different exons - is usually not crucial in detecting short neopeptides, 494

there are two cases in which a correct phasing improves the prediction results: 495

1. If variants are located near the same splice-site on two consecutive exons, we want 496

to know if they are on the same haplotype. However, since intronic regions are 497

usually not covered in WES data, conventional read-backed phasing lacks reads to 498

span the distance between the variants (see Fig. 2B). While microphaser computes 499

a haplotype frequency for every possible combination of the two consecutive 500

haplotypes, neoepiscope misses combinations and does not recompute the 501

haplotype frequency but assigns the VAF of the somatic variant of interest 502

predicted from variant calling to all neopeptides arising from this variant. 503

2. A special case appears with frameshift insertions and deletions. Often, it is not 504

possible to determine which downstream variants are on the frameshift haplotype, 505
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especially considering the possibility of a shifted reading frame stretching over 506

multiple exons. Here, microphaser also integrates all downstream variants in all 507

current ORFs and recomputes the haplotype frequency based on ORF and variant 508

frequency (Fig. 2D). 509

Discussion 510

Microphaser is a tool for neopeptide candidate generation in neoantigen discovery, using 511

small-scale read-backed phasing to determine haplotypes and haplotype frequencies, 512

including variant combinations from small subclones. It performs phasing for both the 513

germline and the somatic variants, generates all possible peptides based on the resulting 514

haplotypes and extensively filters those to eliminate false positive neopeptides. By 515

comprehensively eliminating neopeptide candidates with an identical peptide present in 516

the normal peptidome of the patient (which are unlikely to elicit an immunogenic 517

reaction), the filtering narrows the experimental search space for neoantigens. 518

We have shown that microphaser has a robust concordance over different conditions 519

and replicates, especially in regions with a sufficient read coverage. 520

In comparison to other state-of-the-art phasing-aware toolkits such as neoepiscope, 521

microphaser performs on a similar level and predicts a largely overlapping set of 522

potential neoantigens (Fig. 3 and 4). However, microphaser explores neoantigen 523

candidates more carefully, filters self-similar neopeptides comprehensively, and comes as 524

part of a completely automated workflow incorporating all steps from read data to final 525

neoantigen prediction. Furthermore, microphaser does not rely on published phasing 526

tools such as HapCut2 or GATK ReadBackedPhasing, which are limited to diploid 527

samples. Instead, it makes more accurate predictions, even for smaller subclones. 528

Due to its sliding window approach and the required read coverage of the complete 529

window, microphaser finds fewer neoantigen candidates in low coverage regions than 530

neoepiscope. While this enables microphaser to eliminate possible false positive peptides 531

with partially zero coverage, it might also introduce false negatives at sites with a low 532

variant allelic depth. Since the affected variants likely have a low read depth or allelic 533

fraction, it can be argued that the resulting peptides are non-ideal candidates. But, 534

higher read coverage per window could be achieved by using all reads which cover the 535

variant site(s) in a window but not necessarily the complete window. 536

The filter step against the normal peptidome has been shown to successfully remove 537

self-similar neopeptides. 538

While the normal peptidome is built patient-specific, future releases of microphaser 539

will keep redundant peptides, i.e. peptides which do not arise by patient-specific 540

germline variants but from regions identical to the reference peptidome, stored in a 541

separate cache to avoid computational overhead. 542

We will further explore the possibility to not only remove synonymous neopeptides 543

but also detect all normal peptides with a hamming distance of one. As seen in Section , 544

MHC affinity is compared between a tumor neopeptide and its corresponding normal 545

peptide (the same peptide without the somatic variant), since difference in affinity can 546

serve as a predictive marker for immunogenicity. Usually, this is the normal peptide 547

which is most similar to the neopeptide. 548

For neopeptides derived from insertions or deletions, this assumption does not hold, 549

since the variant might introduce a large change in the normal peptide, including a 550

potential frameshift. Finding all similar normal peptides to a neoantigen candidate 551

might additionally improve the predictive value of the MHC affinity comparison 552

between neopeptide and normal peptide. Therefore, we aim to improve the filtering 553

algorithm to detect all normal peptides with a distinct Hamming distance towards every 554

neoantigen candidate in order to increase the range of MHC affinity comparisons. 555
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Considering subclonal samples, microphaser is able to resolve even small subclonal 556

haplotypes. If a major clonal variant A is adjacent to a second subclonal variant site B, 557

both a major clone A and a minor clone A-B exist. Microphaser detects both clones 558

according to their frequency and returns peptides carrying only A and both A and B. 559

Another problematic case are longer deletions. In windows where deletions are 560

introduced, microphaser has not yet analysed the genomic sequence downstream of the 561

deletion and can therefore only remove the deleted bases from the sequence but not add 562

further nucleotides after the deleted region. However, this case can be considered as a 563

very short intronic gap and could be solved by a similar joining step, where the last 564

complete peptide window before the deletion is joined with the first complete window 565

after the deletion. 566

0.0.1 Future work 567

False negative results—especially in low coverage regions—arise from the strict 568

requirement of reads overlapping the complete peptide window. We aim to combine 569

information from overlapping reads supporting the somatic variant of interest into longer 570

”pseudo-reads” which will negate the negative effect of unfortunate read sampling. 571

With the use of RNA sequencing data - which is important to analyse in neoantigen 572

prediction to identify the expression level of potential neoantigens - we plan to identify 573

a patient-specific transcriptome. Removing unexpressed transcripts and adding 574

non-canonical transcript variants would very likely further improve the accuracy of 575

microphaser. We aim to implement a phasing mode additionally or solely using RNA 576

sequencing data in order to close intronic gaps and deliver a direct view on the 577

expressed transcripts. Together with a variant calling approach detecting variation 578

directly from RNA sequencing reads, this would allow for a purely RNA based 579

neoantigen prediction. In this scenario, peptide frequencies would however no longer 580

represent the haplotype frequency of the occurring variants but rather their fraction of 581

the total expression level in this transcript. 582
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