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Abstract

Motivation: Haplotype phasing approaches have been shown to improve accuracy of
the search space of neoantigen prediction by determining if adjacent variants are located
on the same chromosomal copy. However, the aneuploid nature of cancer cells as well as
the admixture of different clones in tumor bulk sequencing data are challenging the
current diploid based phasing algorithms. We present microphaser, a small-scale
phasing approach to improve haplotyping variants in cancer samples. Microphaser aims
to create a more accurate neopeptidome for downstream neoantigen prediction.
Results: Microphaser achieves large concordance with state-of-the-art phasing-aware
neoantigen prediction pipeline neoepiscope, with differences in edge cases and an
improved filtering step.

Availability: Microphaser is written in the Rust programming language. It is made
available via Github (https://github.com /koesterlab/microphaser)and Bioconda. The
corresponding prediction pipeline

(https://github.com /snakemake-workflows/dna-seq-neoantigen-prediction) has been
written within the Snakemake workflow management system and can be deployed as
part of the snakemake-workflows project.

Introduction )
Cancer cells differ from healthy cells by accumulating various somatic variations, most 2
importantly in protein-coding regions (Gonzalez et al.l 2018]). Those mutations arise 3
from various sources such as single nucleotide variants (SNVs), short insertions and 4
deletions (indels), gene fusions or larger structural variants like inversions, or 5
duplications. Not all of those variants are necessarily cancer drivers, but still alter the 6
genome, transcriptome and give rise to new mutated proteins, even if only acting as 7
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passenger mutations. Those neoproteins are cancer-specific and distinctively separate 8
tumor cells from the surrounding healthy tissue (Schumacher et al., 2019). 9

The degradation of intracellular proteins into smaller peptides - known as proteolysis 10
or proteasomal cleavage - is an important process to remove flawed, misfolded proteins u

or to generate ligands for immune recognition (Calis et al.l |[2015]). To separate the 12
shorter peptides from the complete proteome, we refer to the entirety of peptide 13
sequences arising from proteasomal cleavage as peptidome. Cleaved peptides are then 14
transported to the endoplasmatic reticulum and loaded on the major histocompatibility 15
complex (MHC) proteins as peptide-MHC (pMHC) complexes (Neefjes et al., [2011)). 16
Those complexes are presented on the cell surface and exposed to the T cells of the 17
immune system. T cells have the capability to distinguish normal peptides from 18
”foreign” neopeptides. 19

Therefore, the cancer-specific expression of those neopeptides can lead to an immune 20
reaction similar to the reaction towards foreign pathogens such as bacteria or viruses, 2
which can be exploited in immune response based cancer therapy (Schumacher and 2

Schreiber], [2015]),(Vormehr et al.,2016]). In immunology, an agent that is unknown to 3
the host organism and will therefore elicit an immune response is known as an antigen. 2

In analogy , immunogenic neopeptides which are derived from the patient’s 2
cancer-specific genome are called neoantigens. 2

Tumor neoantigens are a key principle in tumor immunotherapy (the treatment of 7
cancer by targeting tumor cells using the patient’s immune system). The inhibition of 2
immune checkpoints such as PD-L1 or CTLA4 (immunomodulators which are 2
overexpressed by tumor cells to downregulate immune reaction) is an already well 30
established method used successfully in treating cancer patients (Pardoll, |2012]). B

Targeting of tumor neoantigens is a key principle in cancer immunotherapy. 32
Different strategies are followed to mobilize neoantigen-specific CD8 T cells against 3
tumor cells. Several approaches are based on the prediction of neoantigens from the 3
tumor’s mutational landscape. Neopeptides derived from neoantigens are then used to 35
design personalized vaccines. 3

The treatment outcome differs from patient to patient and needs to be assessed 37
before individual therapy (Ribas and Wolchok| [2018). Since these approaches target the s
mutational landscape of tumor cells, there are useful markers for the effectiveness of 30

immunotherapy such as the tumor mutational burden (Blank et al., |2016), neoantigen
burden (Schumacher et al.,|2019) or the diversity and expression of the HLA (human a

leukocyte antigen) antigen-presenting system (Boegel et al., |2019)). Precise in-silico P
prediction of neopeptides, their prevalence in the tumor and their antigenicity towards 4
the immune system are crucial steps for optimising tumor immunotherapy. More a
personalized treatment options are currently being developed in the form of cancer 5
vaccines (Sahin and Tireci, [2018), which rely on few accurately predicted and highly 46
patient-specific neoantigen candidates. a7

It is not trivial to computationally predict valid neoantigen candidates from somatic s
variants for several reason. For once, not every SNV leads to an alteration of a protein.
Not all emerging neopeptides can be bound and presented effectively by a patient’s 50
MHC. Even if a neopeptide is a valid MHC ligand, it might still not elicit an immune 51
reaction. Predicting the immunogenicity of an antigen is not yet completely solved, but s
can be estimated using a measure of (dis)similarity of a neopeptide towards the normal s
peptidome of a patient (Richman et al., 2019). The difference in MHC affinity between s
the neopeptide and its normal equivalent can be a valid indicator for immunogenicity 55
and is used in some existing workflows (Bjerregaard et al., 2017). Low similarity and a s
strong increase in MHC affinity benefit the probability of a neoantigen to get recognised s
as "foreign” by immune cells, as the corresponding normal is either looking different or  ss
not well presented by the MHC at all. Those workflows focus on the comparison 50



https://doi.org/10.1101/2021.08.11.455827
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455827; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

between the neopeptide and the normal peptide it was generated from. 60

However, neopeptides can also be similar to normal peptides arising from different 61
genes and chromosomal regions. Thus, neopeptides should be filtered against the full 62
normal peptidome of the patient, to reduce false positive neoantigen candidates. 63

Further, even a possibly immunogenic neoantigen might be too rare in the tumor to e
be a useful target for immunotherapy, either because it is only present in a small 65
subclone or if it is not highly expressed. 66

Somatic variants such as SNVs should not be considered as isolated incidents but in e
relation to their haplotype. It has been shown that incorporating neighbouring variants s

= both germline and somatic - increases the success of neoantigen discovery (Hundal 69
et al.l |2018; Wood et al., |2020). If we link a neopeptide to a specific somatic variant 70
that distinguishes it from its wildtype counterpart, it is evident that a second variant n
close to this somatic variant of interest can have an influence on the amino acid 7

compositon of the resulting neopeptide. Even distal insertions or deletions can influence 7
downstream variants by introducing reading frame shifts and completely changing the 7
resulting protein. Therefore, in patient-specific neoantigen prediction, it is crucial to 7
include all variants in order to create an as exact as possible search space 76
(neopeptidome) to improve the success of downstream analysis. To model the possible =
co-occurrence of neighbouring variant sites, it is important to determine which variants 7
co-occur on the same allele or chromosome copy. The combination of variants on a 70
single chromosome copy is called a haplotype. The process to determine a haplotype 80
from neighboring variants is called phasing. Phasing has already been incorporated in 81
neoantigen discovery using methods like GATK’s ReadBackedPhasing (McKenna et al.l, s

2010) or HAPCut2 (Edge et all 2016). It has been shown that those methods 8
successfully improve the accuracy of neoantigen prediction pipelines (Wood et all [2020). s

However, all existing phasing approaches so far used for this purpose assume that 8
the considered organism is diploid or at least of known ploidy and a homogeneous 86
mixture of cells with the same genome. In cancer, these assumptions are usually not 87
met. Here, we present microphaser, a tool for phasing possibly aneuploid sequencing 88
data composed of different subclones, by looking at short and distinct sequence windows e
restricted to a length relevant for peptides. 90
Approach a
Microphaser is a small-scale phasing algorithm designed for resolving haplotypes of 0
tumor data in short quasi-independent windows. Since correct genome-wide phasing is
not yet solved for aneuploid tumor data, microphaser instead limits the problem to 0
shorter, resolvable genomic regions. Since typical neoantigens are either 8-11 (MHC-I) o
or 15 (MHC-II) amino acids in length, determining the haplotypes of every possible 96
neoantigen candidate independently is a reasonable simplification and a beneficial step o
in creating an exact neopeptidome. Microphaser uses a sliding window approach over o
the coding regions of the genome, while mapping genomic coordinates to gene 99
annotations. Using a step-size of 3 (codon length), microphaser divides transcripts in 100
window-sized peptides and determines the variant distribution at that position. 101

Following the actual open reading frames (ORF), the resulting peptides represent all 102
different haplotypes of the specific genomic region. On a paired tumor-normal sample, 103
microphaser generates both a set of mutated neopeptides as well as their normal, 104
unmutated counterparts. This allows the inclusion of a filter step to remove any mutated 10
peptides which are already encoded by nonmutated sequences in the normal proteome. 10
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Materials and Methods o7
Neoantigen prediction workflow: preprocessing 108
Microphaser can be run as part of a fully integrated neoantigen prediction pipeline 100
which is realised using the Snakemake workflow management system (Koster and 110
Rahmann| [2012)). The pipeline is completely automated from start to end and m
self-contained in terms of software distribution and installation. The only exception are 1
the netMHC-tools which are not available under a free license. All other needed 13
software is installed automatically using the package management system conda, 114
making use of the Bioconda channel (Griining et al., [2018). The pipeline operates on 115
DNA-Seq data (whole-genome or whole-exome) in FASTQ format for matched 116
tumor-normal samples. Optionally, RNA-Seq data can be provided for transcript 117
abundance estimation. All required reference sequences and annotation are 118
automatically downloaded from the Ensembl ftp-servers and cached by snakemake. 119

Reads are aligned against the GRCh38 reference genome from the Ensembl release 100 120
using bwa-mem 0.7.17 (Li and Durbin, [2009)), with subsequent sorting, indexing and 121
deduplication using samtools 1.9 (Li et al., 2009) and picard tools 2.22.1. Both somatic 12
and germline SNVs and indels are called using the variant caller Strelka (Saunders et al., 12
2012)). Resulting germline and somatic variants are merged using beftools 1.9 (Li, [2011), 124
the germline-only calls however are also retained for use in the germline phasing step of 12

microphaser. Variants are then preprocessed using beftools norm, notably including 126
left-aligning of indel variants and decomposition of multiallelic variant calls. Variants 127
are annotated using the variant effect predictor VEP (McLaren et al., |2016]). 128
Microphaser 120
For neopeptide identification, microphaser uses the tumor BAM file and the merged 130

variant calls in BCF format, as well as a reference FASTA file and annotation in GTF 1
format. Analogously, the generation of the sample-specific normal peptideome uses the 13
normal sample BAM file and germline-only variant calls. 133

To reach maximal accuracy, microphaser tries to detect all possible haplotypes which 1z
carry somatic variation, including potentially small subclones which might exist in the 13

tumor, leading to a representation of potential neoantigens in all cancer cell 136
subpopulations. 137
The use of microphaser is structured in three main steps: 138
e creation of the normal sample-specific peptidome 139
e creation of the tumor-specific cancer peptidome 140
e translation of peptides and filtering for self-similarity 141
The creation of normal and tumor-specific peptidomes follows a nearly identical 142

routine. In the following, we refer to the two cases as somatic mode and germline mode, 1
and mention differences where necessary. First, genomic regions encoding for proteins s

are identified by defining transcripts and exonic regions per gene while parsing a 145
genome annotation file. Microphaser then iterates over all valid transcripts exon by 146
exon, using a sliding-window approach to identify all peptides of a specific length which 14
might result from the current gene. Here, read-backed phasing is used to identify 148
(sub)clonal haplotypes and their corresponding frequencies in the tumor sample. All 149
resulting nucleotide sequences are then translated into amino acid sequence, while 150

removing peptides resulting from synonymous mutation events by comparing them to  1s
their corresponding normal peptide. To further eliminate neopeptides which are similar 1
to peptides arising from the normal peptidome of a patient—and will therefore most 153

s
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probably not be immunogenic—microphaser performs a filtering step against the 154
complete normal peptidome while considering phased germline variants. The resulting  1ss
valid neopeptides can then be evaluated in terms of differential MHC binding towards s
their respective corresponding normal peptides. 157

From the preprocessed data, microphaser starts reading gene, transcript and exon 158
positions from the provided GTF (see Supplement) and produces phased peptides from 150

both tumor and normal samples, following a sliding peptide-length window over the 160
coding regions of a gene. The process of phasing is explained in the following section. 1
Phasing Algorithm 162

Each transcript of a gene is phased separately. Microphaser begins at the start position 163
of the first exon and iterates over all exons of the transcript, before starting with the 164
next transcript variant or gene. To this end, microphaser creates a peptide window with 165
the length of the desired epitopes and slides the window over the transcript positions 166

until the stop codon is reached. During phasing, microphaser follows the transcript’s 167
open reading frame (ORF) encoded in the GTF to determine when a new codon has 168
been added to the peptide sequence. However, indel variants might lead to a frameshift 160
and create a new, additional ORF. Microphaser keeps track of all currently active 170
reading frames. 171

The strand information of the specific transcript plays an important role in 172

advancing the window throughout phasing. When reading genes located on the forward 173
(3’) strand, the window advances with increasing genomic coordinates, sliding from ”left 17
to right”, with the window starting at the first position of the first CDS. Genes on the s
reverse (5’) strand are phased ”backwards” (Fig. [2JA). The start of the transcript is the 1

end position of the first peptide window and the window slides from ”right to left”. 77
However, the sequence of the current peptide window is always generated from window 1
start to window end, so from ”left to right”. This is done to match the left-oriented 179
notation of insertions and deletions in variant calls. 180

Microphaser uses read and variant information to determine every haplotype and its s
frequency in a peptide window. As the window advances, microphaser only considers 182

reads and variants which are covered by the current window position, i.e. variants which 1
lie inside the window and reads which completely enclose the window. To keep track of  1s

the variants and their supporting reads at every window position, the algorithm 185
maintains an observation matrix. The observation matrix can be imagined as a 186
bit-matrix M with dimensions r, the number of observations (or reads), and v, the 187
number of variant sites, where every entry shows whether a read R supports the variant 1ss
allele at site V as (Fig. [[C): 189

1, if R supports V'

M(V,R):{

0, otherwise

In this matrix, every read is associated to a bit vector with the size of the current variant 10
list, where the n-th bit represents the n-th variant position inside the current peptide 191
window. A bit is set to 1 if the corresponding variant is supported by the read, and set 10
to 0 otherwise. This bit vector represents the subset of variants co-occuring in the read 103
and therefore on the same haplotype. The representation of haplotypes as bit vectors 104

allows the use of fast bitwise operations when adding and removing new variant sites. 19
The phasing itself can be written as a stepwise protocol: 196
Removing old reads: When advancing the peptide window, it is sufficient to 107

consider the interval between the end of the previous and the end of the new window 108
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+
A il V2 V3 V4 ¢
. wl V1 | V2 | V3 || Haplotypes
TT(A|T)ACT(C|G)AGCCTGGT (C|A)TACCA(T|G)AAATG - Readl 1T 1016
wl TT(A|T)ACT(C|G)AGCCTGGT(C|A)TA Read2 |1 |1 |0 |6
w2 ACT(C|G)AGCCTGGT (C|A)TACCA Read3 |0 [0 |1 |1
w3 (C|G)AGCCTGGT (C|A)TACCA(T|G Readd (1 |1 |0 |6
wa CCTGGT(C|A)TACCA(T|G AAATG Reads |0 |0 [1 |1
B w2 V2 | V3 || Haplotypes
Read2 || 1 0 2
Readl -::TTTACTGAGCCTGGTCTA fn{eagi (1J é ;
Read2 - - - TTTACTGAGCCTGGTCTACCATAAATG - - - Regs 1o 11 11
Read3 - TTAACTCAGCCTGGTATACCAGAAATG: - -
Read4 - - TTTACTGAGCCTGGTCTACCATAAATG: - - Rw3d . Y2 3’3 3’4 faplotwes
Read5 - - TTAACTCAGCCTGGTATACCAGAAATG - - - Rz o 11 11 I3
Read6 CCTGGTATAACAGAAATG - - - Readd (1 [0 |0 |4
Read5 || 0 1 1 3
D
w4 V3 | V4 || Haplotypes
w1 TTTACTGAGCCTGGTCTA 3/5 Read2 [0 |0 | O
TTAACTCAGCCTGGTATA 2/5 Read3 |1 [1 |3
Read4 || 0 0 0
w2 ACTGAGCCTGGTCTACCA 2/4 Reads |1 |1 |3
ACTCAGCCTGGTATACCA 2/4 R
ead6 || 1 1 3
w3 GAGCCTGGTCTACCATAA 2/4
CAGCCTGGTATACCAGAA 2/4
wa CCTGGTCTACCATAAATG  2/5

CCTGGTATAACAGAAATG 3/5
Figure 1. Example for small-scale phasing. A: Four SNVs embedded in the genomic

sequence (top) and four resulting windows overlapping with the ORF. B: Six reads
overlapping the genomic region in A. C: The ObservationMatrix changes representing all
four windows in A. From window 1 to window 2, one read (Readl) and variant (V1) fall
out of the scope. From window 2 to window 3, one variant (V4) is newly added. From
window 3 to window 4, a new read (Read6) is added. D: The resulting haplotypes for all
four windows, with frequencies computed per window.
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JF
A 4 B -
| |
| S = , E TATGCAGCTCCGTGG 0.5 0.5 CTGTGTAACGCTGCT
| S - | E TATGCAGCTCCGAGG 0.5 0.5 CTGTGTACCGCTGCT
S == E
o [GCAGCTCCGAGGCTG
' GCTCCGAGGCTGTGT
C CCGAGGCTGTGTACC
TGG GGC 0.25 CCGAGGCTGTGTAAC
- CCGTGGCTGTGTAAC
I B [ AGGCTGTGTACCGCT
0.25 AGGCTGTGTAACGCT
CATTCAGGATCClTI IGGll-\TACATlGG | |C|AATGAACTGCTA TGGCTGTGTAACGCT
05 [ CTGTGTAACGCTGCT
= v T 1 rFa .
D | C V T L Framel:0.25 E - Frame1
mmp Frame 1:0.5 _C V R L Frame1:0.25 R L I - STOP
Frameshift:0.5 CTGTGTAACGCTGCT SNV: 0.5 CAGGCTTATTTAGGCCAG
Framelo:o‘s L C P A A Frame0:0.25 ITTTTR P
(L C N A A Frame0:0.25 Frame 0

Figure 2. Algorithmic details. A: Phasing of reverse oriented transcripts with peptide
windows. B: Joining of two exons at a splice-site with variants on both sides. The
frequencies of the resulting neopeptides are computed from the combined exon window
frequencies. Normal peptide fractions are not reported but can be implied from the
neopeptide fractions C: Exon joining including an exon shorter than window size. The
middle exon is completely integrated in the joining of the other two exon windows. Blue
bases represent split codons. D: Representation of an SNV downstream of a frameshift
variant. The frameshift is introduced in 50% of the reads and the DNA is transcribed in
two ORFs with equal frequency. Downstream variants are integrated in both ORF's with
respect to their frequencies. E: If a stop codon is reached in a window, the corresponding
reading frame is finished and the analysis continues with the remaining ORF.
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and remove reads whose end positions are located in that interval, in other words, 100
observations which no longer span the current window. 200

Removing old variants: Similar to reads, variant sites can leave the current window o
after advancing. These variants are removed from the observation matrix by creating a 20

bitmask of 2¢ — 1 with d representing the number of variants to be removed, using a 203
bitwise AND operation between the bitmask and the haplotype of every read. 204
Adding new reads: Next, new reads are added to the matrix. For every read, an 205

observation is initialized with a haplotype of 0. The haplotype is then updated for every 206
variant site in the window by setting the corresponding bit to 1 if the read supports the 20

variant. 208
Adding new variants: Finally, potential new variant sites are added. Again, 200
microphaser only needs to consider the small interval between the end of the previous 210
and the end of the current window. First, the haplotype of every observation is o
left-shifted by the number of added variants. Then, the haplotypes are updated 212
considering their support of the newly added variants, analogous to step 3. 213

After every iteration of updating the observation matrix, microphaser checks if the 2.
window is in frame with the currently active ORF's (see start of section ). Since the 215

stepsize of the peptide window is one, this does at least happen every three iterations. 26
In this case, all observations in the current observation matrix are grouped and every a7
distinct haplotype is assigned with the number of supporting reads. For every 218
haplotype, the reference sequence is updated by integrating the variants present in this 219
haplotype—i.e., variants where the corresponding bit is set to 1. Somatic variants are = 20
only integrated in the neopeptide sequence (somatic mode), while normal variants are 2z
integrated in both normal peptides (normal mode) and neopeptides. After all variant 2
sites in the window have been analysed, the mutated sequence is stored together with 223

the normal peptide sequence. If a haplotype carries a somatic indel variant, the 24
corresponding normal sequence is not reported since it is no longer similar to the 225
mutated sequence (the normal sequence will however be stored during germline 226
phasing). If a window does not contain any variant sites, or only germline variants, the 2
sequence will only be considered in germline phasing mode. In the somatic mode, 28
microphaser only writes peptide sequences containing somatic variants and their 29

respective normal sequence. Neopeptides containing stop codons are not reported and 230
since downstream regions after a stop will not be transcribed, the corresponding reading »a
frame is removed from the list of active ORFs. For every valid neopeptide sequence, a 2
record containing meta-information is created and saved under the same identifier (in a 2
.tsv file). Important fields in this record are gene and transcript IDs, genomic position 23
of the peptide window and the variant sites, haplotype frequency, read coverage and the 23
DNA sequences of the mutated and the normal peptide. The haplotype information of 23
the window is then stored for one additional iteration to ensure its accessibility in case 2

of an exon joining event (see below). 238
Exon Gap Joining - Closing distances between variants 230
The segmentation of coding transcripts into exons is one limitation of working with 240
genomic coordinates. Since the basic algorithm phases one exon after the other, it on
would fail to generate peptides stretching over exon junctions (splice-sites), and would 2
miss potential neopeptides from somatic variants of interest within a window length 23

from a splice-site (Fig ) Thus, when microphaser restarts phasing at a new exon, the 24
last peptide window of the previous exon is combined with the first peptide window of s
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the current exon to create a sequence of length 2w spanning the splice-site. Microphaser s
then iterates over the resulting sequence to generate all peptide-length sequences. Since a7
there are no reads overlapping both parts of this splice-site sequence in whole exome or s
whole genome sequencing, microphaser does not perform the haplotype counting 29
explained above, but reuses the haplotype information of the two merged windows, 250
computing a mean coverage and combining variant sites as explained in the next section. s

Additionally, an exon might end with an unfinished codon consisting of only one or 2
two bases. In this case, the codon will be completed by the first one or two bases at the s

start of the next exon. Since microphaser follows the ORF, a naive implementation 254
would ignore those split-codon bases on both sides of the splice-site since they are not in 255
frame. To tackle this, microphaser increases the window length to cover those 256
split-codon bases at exon end or start regions and evaluates possible variant sites at the s
respective positions. 258

Furthermore, some exons might be shorter than the window, meaning they will not 25
encode for a peptide of sufficient length by themselves. For these short exons, the 260
window length is extended towards subsequent exons until the required length is 261
reached (Fig. 2(C). 262
Combining distant variants 263

When handling splice-sites, one or even both windows might contain variant sites and 264
therefore feature multiple haplotypes. Since we lack information by reads overlapping s
the intronic gap between the two exons, microphaser cannot count haplotypes directly 266
but considers all combinations of haplotypes from the two windows upstream and 267
downstream of the splice-site. Haplotype frequencies for the newly generated peptide 268
sequences are computed from the frequencies of both input haplotypes treating them as 260
independent variables. This approach follows the assumption of neutral tumor evolution 27

of Williams et al|(2016). The model postulates cancer growth from a pre-cancer cell )
which already contains a substantial mutational burden, consisting of clonal (or public)
variants. Mutations that occur later during tumor evolution are mostly subclonal 273
(private) passenger mutations which do not experience selective pressure (neutral) and 27
therefore grow with a steady allelic fraction that reflects their time of occurrence. 275

Therefore, even two variants with a similar subclonal allelic fraction did not 276

necessarily co-evolve in the same subclone but were rather introduced at the same point 27
in time. Accordingly, microphaser treats all variants as potentially independent events, 2
as even if they occurred in the same subclonal cell, they could have occured on different 27
haplotypes. The model tries to avoid making assumptions of co-occurrence of variants  2s0
and rather seeks to broaden the search space without missing potential neopeptides. 281
While the approach will lead to false positives, cases are rare and can be assessed when 2
evaluating the final resulting neoantigen candidates - for example using transcriptome 283
data, if available. 284
Let w; and wy be windows adjacent to the same intronic gap. In wy, a heterozygous
variant v results in two haplotypes h; and A, while wy is homozygous with haplotype
hs. The possible haplotypes over the intronic gap are therefore h = hihy and b’/ = hhs.
The frequencies of those two haplotypes are computed as follows:

f(h) = f(h1) * f(h2) and
f(W) = f(RY) * f(h2)

where f(h) is the frequency of haplotype h. 285

While iterating over the gap sequence, some windows will not include the variant site  2s6
of v. In those windows, there is only one haplotype, and its frequency is computed as 27
the sum of f(h) and f(h'). 288
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Using this approach, microphaser also estimates the frequency of variants 289
downstream of frameshift events. As mentioned above, all active reading frames are 200
issued a specific frequency which is derived from the haplotype frequency of the 201

frameshift variant. To estimate the probability of a downstream variant to be in phase 2
with a reading frame, the ORF and variant frequencies are combined as described for 203

exon gap joins. 204
Keeping track of frameshifts 205
As mentioned in section , frameshift events (e.g., insertions or deletions) can lead to the 206
generation of a second reading frame (heterozygous or subclonal frameshift) or even 207
replace the original ORF (clonal or homozygous frameshift). Since these frameshift 208
events do not only influence the peptide windows they are located in but the entire 299

transcript downstream of the corresponding variant, it is important to keep track of the w0
currently active reading frames. Therefore, microphaser defines every reading frame F su

as a tuple of the position of the corresponding frameshift variant, the introduced 302
frameshift and its frequency f(F), derived from the variant’s allelic fraction. For all 303
active ORFs F' in a transcript, Y f(F) = 1 holds. 304

For every transcript, microphaser starts with the main ORF F0, with a frequency 305
f(FO0) of 1. After the introduction of a frameshift by a variant, the frequency for the 306

variant is computed and stored as the frequency of the new frame. Accordingly, the 307
frequency of the original ORF is decreased by the alternative frame frequency. 308
From there on, the alternative frames are handled alongside the original frame. 300
Downstream variants will be interpreted for all active frames, resulting in different 310
neopeptides per frame. Especially variants which are synonymous with respect to the  su
main ORF might generate neopeptides in the alternative frame. 312
If the alternative frame is flagged as somatic, all resulting peptides, even those not a1
carrying SNVs themselves will be considered as neopeptides. 314
If an active reading frame reaches a stop codon, the frequency is set to 0 and the 315

frame is removed from the set of active frames, since translation will terminate after the s
stop codon. However, any other active ORF's for which the codon does not translate to a1

a stop will continue. 318
Translation and Frequency Estimation 310
The phasing steps of microphaser produce peptide sequences still represented as forward 3z
oriented DNA bases. In the filter subcommand, these sequences are translated into 31
amino acid (AA) sequences, depending on their respective transcript orientation. 32

After translation, mutated peptides which are identical to their normal counterparts s
and originate from synonymous variants are removed immediately. This is required 324
since synonymous variants cannot simply be removed from the variant files as they can s
produce a non-synonymous AA sequence if they co-occur with other variants in the 326
same codon or are located downstream of a frameshift. Furthermore, microphaser 37
removes all peptides containing stop codons and does not translate peptides which are s
located downstream of a homozygous stop codon on the same ORF. 320

The remaining records are in most cases centered around somatic variants. Every 330
somatic variant of interest results in k different peptides of length k. Assuming a 331
standard epitope length of 9 AAs, one amino acid change generates 9 distinct 332
neopeptides. 333

We strive to annotate the neopeptides with the frequency 6 in which their 334
underlying haplotype occurs at the given locus. This can be calculated in a Bayesian 335
way as follows. Assuming that a haplotype is covered by i = 1,..., k peptide windows, 33

our observed variables are a;, the number of reads supporting the variant haplotype and s
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n;, the number of total reads over each window i. The true frequency 6 of the variant 33
haplotype is the latent variable we would like to infer. Then, the likelihood of 6 can be 33
calculated as 340
Ly

Pr(ai,...,ag,n1,...,np | 0) = H < !

i=1

)9“"(1 — )i,
1

In other words, we assume that the observed counts are binomial distributed with 3
success probability §. Assuming a uniform prior distribution for €, we can calculate the s«
95% credible interval and report it along with the maximum likelihood estimate for 6. s

Germline Phasing and Filtering 304

Not all non-synonymous variants necessarily lead to a true tumor-specific neopeptide. 34
Considering the size of the human proteome, it is possible that a somatic mutation 346
generates a peptide which differs from its direct corresponding normal peptide but still s«
is identical to another normal peptide translated from a different gene. To detect those s
self-identical peptides, the germline mode in microphaser generates a patient-specific 340
normal peptidome by incorporating and phasing only germline variants into the 350
reference genome. These peptides are translated and stored in a hashmap serving as a  3s
control for neopeptide candidates. Any predicted neopeptides are compared against the s

entire normal peptidome to remove self-peptides. 353
Neoantigen Prediction Workflow: Downstream Analysis 354
Output from microphaser can be used as part of a neoantigen prediction pipeline, using s
the resulting neopeptides as a candidate set or search space. In such a pipeline, the 356
antigenicity of the resulting tumor neopeptides must be assessed with respect to the 357

HLA alleles of the patient sample. In our workflow, HLA typing for class I HLA alleles 358
is performed using optitype [Szolek et al.| (2014). The binding affinity of neopeptides, as o
well as their wildtype analogues, to the predicted HLA alleles is then obtained using 360
netMHCpan v.4.1 [Reynisson et al.| (2020) for MHC-I alleles and netMHCIIpan v.4.0 361
Reynisson et al|(2020) for MHC-ITI alleles. The binding affinity is always predicted for a s
neopeptide and its corresponding normal peptide, in order to detect differential binding 363

affinity due to the somatic AA change. 364
Results 5
Evaluation against neoepiscope 366

We compare the performance of microphaser with that of neoepiscope, a similar tool for s
neopeptide candidate generation from variants. Neoepiscope works on whole exome 368
sequencing data and allows the use of pre-phased variant calls, with haplotype phasing 36
performed by HAPCut2. Since neoepiscope does not provide a fully integrated pipeline, 30
a snakemake workflow was created. Neoepiscope uses the allelic fraction information an
encoded in VCF4.1 format (https://samtools.github.io/hts-specs/VCFv4.1.pdf) to a2
generate VAF information for the resulting neopeptides. HAPCut2 relies on genotype 3
information for haplotype phasing. Therefore, STRELKA variant calls were updated to s
contain genotype information (GT) and allelic fraction (AF) fields using a pysam script. s
Further variant file preparations and haplotype phasing with HAPCut2 were performed s
as described in the neoepiscope best-practice. Neoantigen calling was used allowing 377
non-canonical start and stop codons, with netMHCpan v.4.1 chosen for MHC binding s
affinity prediction. The complete neoepiscope snakemake workflow used in this paper is 3w
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Figure 3. Concordance between four replicates of the same tumor-normal pair for both
microphaser (orange) and neoepiscope (blue). A + B: Frequency for every neopeptide
from a single replicate plotted against the mean frequency of the same neopeptide over
all replicates (A: All variants, B: Variants shared by all replicates.) C: Upsetplot of all
variants called in the four replicate pairs. D + E: Pairwise comparison of neopeptide
frequency for two replicate pairs. A VAF of 0 represents a neopeptide not present in one
of the compared replicates. (D: All variants; E: Variants shared by all replicates)

embedded in the complete analysis workflow and can be found archived on zenodo 380
under https://doi.org/10.5281/zenodo.5163772, while a generalised version is available  se
at https://github.com/jafors/snakemake-neoepiscope. Reference data in FASTA and 382

GTF format was obtained from the Ensembl GRCh38 assembly, release 100. 383
Datasets 304
We evaluated microphaser’s and neoepiscope’s perfomance on two datasets: 385
1. A concordance analyis was performed using a validation dataset consisting of 4 386
biological replicates from the same WGS sample. All replicates were produced 387

from different sequencing protocols in different labs. |Craig et al.| (2016) 388

2. A dataset of four melanoma metastases from a single patient was used to 389
demonstrate the algorithm on a typical use-case. This dataset has been analysed 300

for neopeptides in a study by |Schrors et al.| (2017). 301
Concordance Dataset 302
To assess the robustness of microphaser neoantigen predictions, we analysed 303
concordance of its results across four replicates (EBI, Illumina, GSC, TGen) from the 30
same tumor cell line (melanoma cell line COLO829), sequenced with different 395
sequencing technologies in different institutes [Craig et al.| (2016) 396

(https://ega-archive.org/datasets/EGAD00001002142). Since microphaser is supposed 3o
to work on the exon level, whole-genome reads were filtered to map to exonic regions. s

We ran the pipeline independently on each replicate and compared the resulting 399
neoantigen candidates between replicates by their predicted frequency (Fig. ,E). 400

Additionally, we computed mean frequencies over the predicted neoantigen frequencies o
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Figure 4. Comparison between neopeptides called by microphaser and neoepiscope.
Frequency of neopeptides found only by one algorithm is set to zero in the other algorithm.
(A: All variants; B: shared variants; C: Melanoma Metastases)

of all four replicates and compared the results of each replicate with the computed mean 40

values (Fig. [3A,B). 403
The same analysis was also performed using the neoepiscope pipeline (Section ). 404
Microphaser shows good concordance between the replicates, similar to the 205

concordance reached by neoepiscope (Fig. . Outliers and missing neoantigen 406

candidates almost exclusively occur in regions with low coverage (j 15) and a07

inappropriate sampling. Since most missed neopeptides probably result from differences s
in variant calling results across replicates, a second analysis was performed only on those a0
variants shared by all four replicates. This removes most problematic neopeptides (zero 4w
vs non-zero VAF) from the comparison (see Fig. [3[D vs. E, and A vs. B). The remaining
outliers can be explained with low coverage, low VAF and inadequate read sampling, a2
where reads supporting the variant are not completely overlapping the peptide window. a3

In addition to the concordance analysis, we compared microphaser results directly .

with neoepiscope on all four replicates of the dataset. Here, it can be seen that a5
differences arise mostly in neoantigen candidates predicted by neoepiscope which are a16
not present in microphaser results (Fig. 4| A and B). The mechanisms and algorithmic  a
differences leading to those missing neopeptides will be explained on examples in the a18
following section . a19
Melanoma Dataset 420
We used published WES data from four metastases of a single melanoma patient in 21
order to test microphaser on a real case (Schrors et al) [2017). In this study, four 422

neoantigen candidates were validated with T-cell assays, which could all be predicted by
both microphaser and neoepiscope. This dataset was used to explore further differences 42

in prediction results between microphaser and neoepiscope together with the 425
aforementioned concordance dataset (FigHC). 426
Comparison w1

In this section, we compare the neoantigen candidate sets predicted by microphaser and s
neoepiscope. We mainly focus on those neopeptides only predicted by either microphaser 9
or neoepiscope and explain differences in prediction results due to algorithmic features a0
and specific corner cases, illustrated on examples taken from the two analysed datasets. s

Self-identity to Normal Peptidome The lack of multiple neoepiscope candidates 43
in microphaser predictions is the most prominent difference between microphaser and 433
neoepiscope results and are highlighted in (Fig. a3
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Figure 5. Interesting cases A: Filtering of identical peptides arising from non-
synonymous variants due to similar genes. B: Two transcript variants of the same
gene. A somatic deletion in transcript ENST00000304494 creates a new ORF which
is identical to the normal transcript ENST00000579755 and will therefore be removed
by microphaser. C: Varying read support of alternative transcript variants. One exon
in the second transcript is not covered, which leads to uncertainty in the respective
peptide windows. Microphaser will report a read coverage of 0. D: Influence of low
coverage/VAF in PDZD7 gene. Only two reads carry the variant and their positioning
does only allow to fully support one peptide window since read2 does not cover the
entire mutated codon.

The largest fraction of such candidates not generated by microphaser is due to the a3

filtering mechanism it uses. While neoepiscope only filters neopeptides where a 436
synonymous peptide arises in the same transcript, microphaser filters neopeptides with 437
synonymous peptides occurring anywhere in the complete normal peptidome of the 238
patient. This especially leads to the elimination of false positive neopeptides due to 4390
homolog sequences in the same gene family. As can be seen in Fig. fJA, the S153L 440

variant found in STIRPB1 which creates an altered amino acid sequence that is highly an
similar to a sequence in the gene product of SIRPG, a gene from the same gene family. 4
All resulting 9-mers around the SIRPB1 variant are valid neopeptides compared to their s
position-equivalent normal peptide. However, comparing the 9-mer peptides of to the s

homolog sequence from SIRPG leads to the identification of four SIRPB1 tumor e
neopeptides identical to normal SIRPG peptides. These peptides are therefore removed s
from the candidate dataset during the microphaser filtering step. a7

Furthermore, as seen in Fig. BB, even a frameshift variant can lead to self-similar a8
neopeptides. A deletion introduced in two transcript variants of CDKN2A generates a a0
new frame for each transcript. However, the newly generated frame in the first 450
transcript variant matches the original frame of the second transcript variant. as1
Therefore, all peptides arising from this frameshift can be considered as self-similar. 452
The second new frame has however not been seen in the normal transcript variants and s
does therefore count as a valid source of possible neoantigens. 254

Uncovered exons Another source of differences in peptide prediction lies in regions s
with a lack of coverage in the WES. These cases especially originates from SNVs located s
near splice-sites. While the coverage at the variant site is fine—as the variant would not a7
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have been called otherwise—there is no read coverage at the next exon of the transcript sss
(Fig. [5IC). While neoepiscope uses the depth determined at the SNV site by the used 459
variant caller, microphaser combines the read depth values of both exons at a splice site 40
and returns a depth of zero if one of the exons has no coverage. In this case, the correct s
variant profile can not be determined—due to lack of read coverage—and it is likely 162
that the resulting peptides might not be produced since the corresponding exon is not 4
present in the patient. In Fig. BIC, two MAP2K1 transcripts are shown which share one 4
exon with a P193S variant near the exon start. However, the previous exon is not the s
same in both transcripts. While the canonical transcript has a high read coverage on 466

both exons, the alternative exon of the second transcript variant is not covered at all. 4
Microphaser returns the resulting neopeptide sequences for both transcripts and 468
indicates that the peptides unique to the alternative transcript have a coverage of zero, o
marking them as uncertain candidates. ar0
Low Coverage On the other hand, requiring that reads fully cover a window of an

interest to be considered for a contained variant, means that microphaser misses some
peptides: when no read covers the entire peptide window, microphaser cannot resolve 73
the haplotypes with absolute certainty (Fig. ) Therefore, microphaser is sensitive to a7
regions with low coverage and small VAF. Especially if the reads which support the 475

variant of interest are not entirely covering the genomic space around the variant, 476
microphaser might miss some peptide windows. The impact of this sensitivity also ar7
depends on the length of the peptide window and the length of the reads. While the 478
loss of single neopeptides is undesirable in terms of a complete overview of all a79

neoantigen candidates, it can be argued that peptides resulting from sites with either 480
low coverage, low VAF or both might not be ideal candidates since such sites carry an s
increased amount of uncertainty. However, this is a problem we would like to tackle in s

the future, e.g. by connecting reads which support the same haplotypes. 283
Long Deletions Finally, longer deletions are not properly handled by the current 284
microphaser approach in comparison to neoepiscope. Since the peptide windows are 285

fixed at lengths specific to the desired peptide length, deletions in a window will shorten s
the peptide sequence in the window by the length of the deletion. Especially in large ag7
deletions, the windows will not contain enough bases to get a valid neoantigen out of it. s
However, long deletions could be treated as intronic gaps, with the windows before and  sso
after the deletions representing two neighbouring exons. We will explore this approach a0
in the future. 201

Low Clonal Fraction Another important source of differences lies in the phasing of 4o
distant variants, both germline and somatic. While the phasing of two distant SNVs - 49
even located on different exons - is usually not crucial in detecting short neopeptides, 40
there are two cases in which a correct phasing improves the prediction results: a05

1. If variants are located near the same splice-site on two consecutive exons, we want s
to know if they are on the same haplotype. However, since intronic regions are a07
usually not covered in WES data, conventional read-backed phasing lacks reads to s
span the distance between the variants (see Fig. ) While microphaser computes a0

a haplotype frequency for every possible combination of the two consecutive 500
haplotypes, neoepiscope misses combinations and does not recompute the 501
haplotype frequency but assigns the VAF of the somatic variant of interest 502
predicted from variant calling to all neopeptides arising from this variant. 503
2. A special case appears with frameshift insertions and deletions. Often, it is not 504

possible to determine which downstream variants are on the frameshift haplotype, sos
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especially considering the possibility of a shifted reading frame stretching over 506
multiple exons. Here, microphaser also integrates all downstream variants in all ~ sor
current ORF's and recomputes the haplotype frequency based on ORF and variant s

frequency (Fig. D). 500

Discussion 510

Microphaser is a tool for neopeptide candidate generation in neoantigen discovery, using su
small-scale read-backed phasing to determine haplotypes and haplotype frequencies, 512
including variant combinations from small subclones. It performs phasing for both the s
germline and the somatic variants, generates all possible peptides based on the resulting s

haplotypes and extensively filters those to eliminate false positive neopeptides. By 515
comprehensively eliminating neopeptide candidates with an identical peptide present in s
the normal peptidome of the patient (which are unlikely to elicit an immunogenic 517
reaction), the filtering narrows the experimental search space for neoantigens. 518

We have shown that microphaser has a robust concordance over different conditions s
and replicates, especially in regions with a sufficient read coverage. 520

In comparison to other state-of-the-art phasing-aware toolkits such as neoepiscope,  sx
microphaser performs on a similar level and predicts a largely overlapping set of 522
potential neoantigens (Fig. |3| and . However, microphaser explores neoantigen 523

candidates more carefully, filters self-similar neopeptides comprehensively, and comes as sz
part of a completely automated workflow incorporating all steps from read data to final s

neoantigen prediction. Furthermore, microphaser does not rely on published phasing 526
tools such as HapCut2 or GATK ReadBackedPhasing, which are limited to diploid 527
samples. Instead, it makes more accurate predictions, even for smaller subclones. 528

Due to its sliding window approach and the required read coverage of the complete s
window, microphaser finds fewer neoantigen candidates in low coverage regions than 530

neoepiscope. While this enables microphaser to eliminate possible false positive peptides sx
with partially zero coverage, it might also introduce false negatives at sites with a low s
variant allelic depth. Since the affected variants likely have a low read depth or allelic s

fraction, it can be argued that the resulting peptides are non-ideal candidates. But, 534
higher read coverage per window could be achieved by using all reads which cover the s
variant site(s) in a window but not necessarily the complete window. 536

The filter step against the normal peptidome has been shown to successfully remove  s3x
self-similar neopeptides. 538

While the normal peptidome is built patient-specific, future releases of microphaser s
will keep redundant peptides, i.e. peptides which do not arise by patient-specific 540
germline variants but from regions identical to the reference peptidome, stored in a 541
separate cache to avoid computational overhead. 542

We will further explore the possibility to not only remove synonymous neopeptides s
but also detect all normal peptides with a hamming distance of one. As seen in Section , s
MHC affinity is compared between a tumor neopeptide and its corresponding normal 545
peptide (the same peptide without the somatic variant), since difference in affinity can s

serve as a predictive marker for immunogenicity. Usually, this is the normal peptide 547
which is most similar to the neopeptide. 548

For neopeptides derived from insertions or deletions, this assumption does not hold, s
since the variant might introduce a large change in the normal peptide, including a 550
potential frameshift. Finding all similar normal peptides to a neoantigen candidate 551
might additionally improve the predictive value of the MHC affinity comparison 552
between neopeptide and normal peptide. Therefore, we aim to improve the filtering 553
algorithm to detect all normal peptides with a distinct Hamming distance towards every ss
neoantigen candidate in order to increase the range of MHC affinity comparisons. 555
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Considering subclonal samples, microphaser is able to resolve even small subclonal s
haplotypes. If a major clonal variant A is adjacent to a second subclonal variant site B, = ss

both a major clone A and a minor clone A-B exist. Microphaser detects both clones 558
according to their frequency and returns peptides carrying only A and both A and B.  sso
Another problematic case are longer deletions. In windows where deletions are 560

introduced, microphaser has not yet analysed the genomic sequence downstream of the se
deletion and can therefore only remove the deleted bases from the sequence but not add se
further nucleotides after the deleted region. However, this case can be considered as a  se3

very short intronic gap and could be solved by a similar joining step, where the last 564
complete peptide window before the deletion is joined with the first complete window  ses
after the deletion. 566
0.0.1 Future work 567
False negative results—especially in low coverage regions—arise from the strict 568
requirement of reads overlapping the complete peptide window. We aim to combine 569
information from overlapping reads supporting the somatic variant of interest into longer s
”pseudo-reads” which will negate the negative effect of unfortunate read sampling. 571

With the use of RNA sequencing data - which is important to analyse in neoantigen s
prediction to identify the expression level of potential neoantigens - we plan to identify s

a patient-specific transcriptome. Removing unexpressed transcripts and adding 574
non-canonical transcript variants would very likely further improve the accuracy of 575
microphaser. We aim to implement a phasing mode additionally or solely using RNA 576
sequencing data in order to close intronic gaps and deliver a direct view on the 577
expressed transcripts. Together with a variant calling approach detecting variation 578
directly from RNA sequencing reads, this would allow for a purely RNA based 579
neoantigen prediction. In this scenario, peptide frequencies would however no longer 580
represent the haplotype frequency of the occurring variants but rather their fraction of s
the total expression level in this transcript. 582
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