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Abstract 

Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and 

treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, 

tests in rodents are still poorly reproducible, and often unsuitable for unraveling the complex behavior 

after injury. Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia 

based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic 

behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all 

relevant joints and reference landmarks) in several mouse strains with an accuracy of 99.4%. Building 

on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils 

biologically relevant differences in locomotor profiles after a stroke over a time course of three weeks. 

We further refine the widely used ladder rung test using deep learning and compare its performance 

to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used 

conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and 

single-pellet grasping) regarding sensitivity, accuracy, time use and costs. We conclude that deep 

learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive 

data to describe the complex recovery of rodents following a stroke. The experimental set-up and 

analysis can also benefit a range of other neurological injuries that affect locomotion.  
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Introduction 

Stroke is a leading cause of disability and death worldwide. Over 13.7 million strokes occur each 

year, and one in four people over 25 years of age will experience a stroke in their lifetime1. The 

presence of life-saving medicines allows timely intervention, which has significantly decreased 

mortality following a stroke2,3. However, acute treatments are not applicable in most patients, mainly 

because of the narrow therapeutic time window, leaving five million patients permanently disabled 

every year4,5. To promote recovery outside the confines of conventional therapies, a variety of 

experimental treatments in rodents have emerged targeting neuroprotection6, therapeutic 

angiogenesis7–9, axonal sprouting10, or cell-based therapies11,12. In most of these studies, behavioral 

evaluation is the primary outcome and ultimately provides evidence that functional impairment can 

be corrected by the experimental treatment. However, behavioral tests in rodents have proved 

difficult: (1) test results are often poorly reproducible and (2) the task is limited to a specific 

sensorimotor outcome, thus ignoring most of the other biologically relevant parameters of functional 

recovery after stroke13.  

Advances in high-speed video equipment have enabled scientists to record massive datasets of animal 

behavior in exquisite detail, and commercial software solutions including Ethovision (Noldus), 

AnyMaze (Stoelting Co.), and Top Scan (CleverSys Inc.) have assisted with vision-based tracking 

and analysis. However, these technologies offer little methodological transparency, are not affordable 

for many laboratories14, and are often designed to study pre-specified modules within one particular 

paradigm (e.g., the Morris water maze or the open field test) rather than discover new behavioral 

patterns. The introduction of machine learning algorithms has recently permeated various sectors of 

life and provided a new set of tools ideally suited for behavior analysis. These algorithms, referred to 

as deep learning models, offer user-defined feature tracking with greater flexibility, as well as reduced 

software and hardware acquisition costs15. One of the latest contributions to this toolbox is the open-

source software DeepLabCut (DLC)16, which uses convolutional neural networks to automatically 

capture movements and postures directly from images and without requiring active or passive 

markers. DLC is a modified version of a state-of-the-art algorithm for tracking human movement, 

DeeperCut17  and can be used in a broad range of study systems with near human-level accuracy18,19. 

Typically, such algorithms are seen as “data-hungry”; algorithms must be trained first by showing 

thousands of hand-labeled frames, an effort that requires an enormous amount of time. DLC, 

however, is pre-trained on ImageNet, a large database of images used for image recognition 

research20. With that pretraining in place, DLC only needs a few training examples (typically 50 - 

200 frames) to achieve human-level accuracy, making it a highly data-efficient software16,21.  DLC 

has already been implemented in different research fields including neuroscience22–24.  
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In this study, we developed a modular experimental set-up to identify biologically relevant parameters 

to reveal gait abnormalities and motor deficits after a focal ischemic stroke. We trained the neural 

networks to recognize mice of different fur colors from three perspectives (left, bottom, and right) 

and to label 10 body parts with high accuracy. A detailed comprehensive post-hoc script allows 

analysis of a wide range of anatomical features within basic locomotor functions, vertical and 

horizontal limb movements, and coordinative features using the freeware software environment R. 

We detect distinct changes in the overall mouse gait affecting e.g., step synchronization, limb 

trajectories and joint angles after ischemia. These changes are distinct at acute and chronic time points 

and primarily (but not exclusively) affect the body parts contralateral to the lesion. We further refine 

the conventional ladder rung tests with DLC (e.g., for detection of foot placements) and compare the 

deep learning-assisted analysis with widely used behavioral tests for stroke recovery that use human 

annotations, the gold standard. We detect similar levels of accuracy, less variation, and a considerable 

reduction in time using the DLC-based approach. The findings are valuable to the stroke field to 

develop more reliable behavioral readouts and can be applied to other neurological disorders in 

rodents involving gait abnormalities.  
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Results  

Generation of a comprehensive locomotor profile using deep learning-based tracking 

Our aim was to develop a sensitive and reliable profiling of functional motor recovery in mice after 

stroke using open-access deep learning software, DLC. Unraveling the complexity of changes in 

locomotion is best approached via generation of gait parameters25. Therefore, we customized a free 

walking runway with two mirrors that allowed 3D recording of the mice from the lateral/side and 

down perspectives. The runway can be exchanged with an irregular ladder rung to identify fine-motor 

impairments by paw placement (Fig. 1A). The dimensions of the set-up were adapted from the 

routinely used MotoRater (TSE Systems)26. After adaptation to the set-up, non-injured mice were 

recorded from below with a conventional GoPro Hero 8 camera during the behavioral tasks. The DLC 

networks were trained based on ResNet-50 by manually labeling 120 frames from randomly selected 

videos of different mice. Individual body parts were selected according to previous guidelines to 

enable a comprehensive analysis of coordination, movement, and relative positioning of the mouse 

joints from all three perspectives, and included: tail base, iliac crest, hip, back ankles, back toe tip, 

shoulder, wrist, elbow, front toe tip, and head (Fig. 1B, C)27.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455647doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455647
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
 
Fig. 1: Experimental workflow to perform deep learning-based gait analysis. (A) Schematic view of the dimensions 
of experimental set-up. (B) Workflow to identify and label anatomical landmarks of mice for pose estimation. (C) 
Overview of labeled body parts from side and down perspective.  
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Next, we applied the neural network model to detect and extract the relevant body coordinates in each 

frame of all recorded videos. A training set of six videos proved sufficient to achieve a cross-entropy 

loss of < 0.1% indicating a marginal predicted divergences from the actual label after 500’000 

iterations (Fig. 2A). A more detailed analysis revealed that all selected body part labels could be 

tracked to >99% (Fig. 2B). The ratio of confident labels (>95% likelihood) to total labels ranged from 

96-100% for the runway and between 89-100% for the rung walk (Fig. 2B, C). In both set-ups, we 

observed the highest variability for the front and back toe tips. For further analysis all data points that 

did not pass the likelihood of detection threshold of 95% were excluded. The remaining data 

generated a full 3D profile of each animal during the behavioral task (Suppl. Fig 1A, B).  

Next, we used the same trained networks to reliably label body parts of a) the same mice three days 

after stroke, b) different mice with the same genetic background (C57BL/6J, black fur) and c) mice 

with a different genetic background (NOD, white fur). We achieved similar confidence in labeling 

for mice after stroke (95–100%) and mice with the same genotype (97–100%) after minor refinement 

of the network (see Methods, Suppl. Fig. 2A, B). However, we were unable to successfully refine the 

pre-existing network to track mice of a different strain with white fur (0-41%). We then created an 

entirely new training set for these mice with the same training parameters and reached similar levels 

of confidence (94–100%) to the original training set (Suppl. Fig. 2C, D).  

Overall, we demonstrated successful labeling and generation of 3D locomotor coordinates in non-

injured and injured mice of different genetic backgrounds and fur colors for both the runway and 

ladder rung walk using deep learning. 
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Fig. 2: DeepLabCut enables markerless 3D tracking of mouse body parts with high levels of accuracy. (A) Training 
efficiency of neural networks. (B) Likelihood of a confident labeling for individual body parts from down view (left) side 
view (right) in the runway and (C) during the ladder rung walk. Each dot represents an anatomical landmark of individual 
image frames in a video. The red dotted line represents the confidence threshold of 95% likelihood for reliable labeling. 
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Deep learning trained networks detect distinct gait abnormalities following stroke 

To identify stroke-related gait abnormalities across a specific time period, we induced a 

photothrombotic stroke in the right hemisphere of the sensorimotor cortex (Fig. 3A, B) 7,28. We 

confirmed successful induction of ischemia with a reduction of cerebral blood flow only in the 

ipsilesional right side (right: –72.1 ± 11.5%, p < 0.0001, left: –3.2 ± 8.6%, p = 0.872) using Laser 

doppler imaging 24 h after injury (Fig. 3C). Three weeks after injury, mice had histological damage 

in all cortical layers, which was accompanied by a microglial activation and glial scar formation on 

the ipsilesional hemisphere while sparing subcortical regions and the contralesional side. The injured 

tissue extended from +2 mm to –2 mm anterior posterior related to bregma, and the average stroke 

volume was 1.3 ± 0.2 mm3 (Fig. 3D, E).  

 
Fig. 3: Induction of photothrombotic stroke leads to permanent focal ischemia in the cortex. (A) Schematic time 
course of experimental interventions (B) Schematic representation of stroke procedure (C) Laser Doppler Imaging (LDI) 
of three representative baseline and stroked brains 24 hours after injury. D) Quantification of stroke area and stroke 
volume at 21 dpi. (E) Representative histological overview of cortical damage (Neurons, cyan), inflammatory infiltration 
(Iba1+, magenta) and scar formation (GFAP+, green) at 21 dpi, scale bar: 100 µm. Data are shown as mean distributions 
where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For boxplots: each dot 
in the plots represents one animal. Line graphs are plotted as mean ± sem. Significance of mean differences between the 
groups (baseline hemisphere, contralesional hemisphere, and ipsilesional hemisphere) was assessed using Tukey’s HSD. 
Asterisks indicate significance: ∗∗∗ P < 0.001. ctx: cortex, cc: corpus callosum, ap: anterior posterior, p.i.: post injury, ibz: 
ischemic border zone. 
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We began the motion tracking analysis by assessing the overall gait at baseline and after injury over 

a three-week period. Individual steps were identified by the movement speed of each limb between 

frames as filmed from below (Fig. 4A, B). In uninjured animals the footfall pattern showed a typical 

gait synchronization29 of opposing front and back paws (Fig. 4C). Normalizing the data to a single 

step cycle revealed that this pattern was severely altered acutely after injury as shown by single-

animal data (Fig. 4D). We noticed that the asynchronization between the paws is acutely increased 

after injury (p < 0.001, 3 dpi (days post injury); p = 0.029, 7 dpi; p = 0.031, 14 dpi) but recovered to 

baseline over 21 days (p = 0.81, 21 dpi; Fig. 4E). Furthermore, acutely injured mice walked slower 

as the step cycle duration was increased compared to intact mice (p = 0.05, 3 dpi, Fig. 4F). While the 

swing duration did not differ at any time point (all p > 0.05), stroked mice had a longer stance duration 

(p = 0.04, 3dpi, Fig. 4G, H). These alterations in the footfall pattern were associated with changes in 

the positioning of the paws during a step (Fig. 4I, J). The angle amplitude of the ipsilesional hindlimb 

relative to the body center increased acutely after injury (p = 0.003, 3dpi) while the angle of the front 

limbs remained unchanged (all p > 0.05, Fig. 4K).  

Overall, the synchronization of the footfall pattern was severely altered during the acute phase of 

stroke but returned to a normal pattern in the long-term 
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Fig. 4: Gait changes in footfall pattern in spontaneous walk after stroke. (A) Schematic set-up of runway walks from 
bottom perspective. (B) Movement speed of individual fore- and hindlimbs during spontaneous walk. (C) Footfall profile 
of single mouse without injury. (D) Footfall profiles of a normalized locomotor cycle showing the stance and phase start 
and end of three individual control mice (left) and stroked mice (right). (E) Ratio of asynchronization at baseline, 
3,7,14,21 dpi. (F) Duration of a cycle. (G, H) Comparison of cycle duration between stance and swing time in a time 
course. (I) Schematic view on analysis of positioning paws to body centers. (J) Profile of paw angles relative to body 
center of an individual animal. (K) Comparison of angles of individual paws to body center in a time course. Data are 
shown as mean distributions where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the 
data. Each dot in the plots represents one animal and significance of mean differences between the groups was assessed 
using repeated ANOVA with post-hoc analysis. Asterisks indicate significance: * P < 0.05, ** P < 0.01, *** P < 0.001 
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The kinematics of a spontaneous walk were then compared by tracking the fore- and hindlimb joints 

from the left and right-side perspectives (Fig. 5A, B). First, we analyzed the average height and total 

vertical movement of each joint involved in the hindlimb (iliac crest, hip, back ankle, and back toe 

tip) and forelimb movement (shoulder, elbow, wrist, and front toe tip, Fig. 5C, D). We identified 

alterations in the total vertical movement and average height of the fore- and hindlimb joints that was, 

as expected, more prominent on the contralateral left side. Most notably, the total vertical movement 

decreased in the contralateral left back and front toe tips, shoulder, and wrist at 3 dpi (all p < 0.05) 

with a partial but incomplete recovery over time (Fig. 5E, Suppl. Fig. 3). Interestingly, we also 

observe compensatory changes in the vertical movement on the ipsilateral right side most prominent 

in the back toe tip, back ankle, elbow, and wrist (Fig. 5E, Suppl. Fig 3). Next, we checked for 

alterations in the horizontal movement determining the average step length, as well as protraction, 

and retraction of the individual paws. At 3 dpi both retraction and protraction length are reduced in 

stroked mice. These changes remained more pronounced in the hind limbs during retraction whereas 

protractive changes returned to normal throughout the time course (Fig. 5F). Like the vertical 

movement, we also observed compensatory changes in protraction in the ipsilateral right hindlimb at 

later time points. Then, the joint positions were used to extract the angles of the hindlimbs (iliac crest-

hip-ankle; hip-ankle-toe tip) and forelimbs (shoulder-elbow-wrist; elbow-wrist-toe tip). The angular 

variations were acutely unchanged after stroke and showed a similar profile throughout the time 

course (Fig. 5G, H, Suppl. Fig. 4).  

To understand the individual importance of the >100 measured parameters (Table 1) during 

kinematics analysis, we applied a random forest classification to all animals throughout the entire 

time course (Fig. 5I). The most important parameters between the groups were: left front and back 

toe heights as well as protractive and total horizontal back toe movements. A separate analysis was 

performed between baseline and acutely injured mice at 3 dpi and mice with long-term deficits at 21 

dpi (Suppl. Fig. 5). In these subgroup analyses, we were able to predict the acute injury status with 

90% accuracy and long-term deficits with 85% accuracy using a confusion matrix. The overlap 

between the most important 20 parameters (top 10% of all measured parameters) in acute and chronic 

time points was only 20% further confirming the need to consider the entirety of the gait to understand 

the complexity of functional recovery over time (Suppl. Fig. 5). We then used a principal component 

analysis (PCA) to reduce the dimensions of our data and determine the differences between the 

groups. We found that data from later time points after injury cluster closer to the baseline suggesting 

that the recovery effects can be ascertained based on kinematic parameters. The separation expand 

when comparing only data from 3 dpi and 21 dpi to baseline (Suppl. Fig. 5). Importantly, these 

changes were not observed in non-stroked control mice throughout the time course (Suppl. Fig. 6). 
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Fig. 5: Kinematic changes in runway walk after stroke. (A) Schematic overview of analysis from the sides (B) Stick 
profile of fore and hindlimb movement in individual mouse (C, D) Profile of hindlimb and forelimb joints in intact and 
stroked mice (E) Absolute height of selected joints at baseline and 3,7,14,21 dpi. (F) Protraction and retraction of joints 
throughout a time course (G, H) Angular variability between front and hindlimb joints (I) Random Forest classification 
of most important parameters (J) Principal component analysis of baseline 3, 7, 14, 21 dpi. Data are shown as mean 
distributions where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For 
boxplots: each dot in the plots represents one animal. Line graphs are plotted as mean ± sem. For line graphs: the dots 
represent the mean of the data. Significance of mean differences between the groups was assessed using repeated ANOVA 
with post-hoc analysis. Asterisks indicate significance: * P < 0.05, ** P < 0.01, *** P < 0.001. i-h-a: iliac crest-hip-ankle, h-
a-t: hip-ankle-toe, s-e-w: shoulder-elbow-wrist, e-w-t: elbow-wrist-toe, PC: principal component. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455647doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455647
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Next, we considered whether deep networks can also be applied to conventional behavioral tests to 

detect fine motor deficits in a ladder rung test (Fig. 6A). Tracking the fore- and hindlimbs during the 

ladder rung recordings enabled the identification of stepping errors in the side view (Fig. 6 B, C). We 

identified a 106% increase of the overall error rate in injured animals compared with their intact 

controls (intact 5.27 ± 8.4%, stroked: 10.9 ± 12.6%, p < 0.001) at 3 dpi. This increased error rate after 

acute stroke was most pronounced on the contralesional side (left front paw: +182%; left back paw: 

+142%, both p < 0.001) but also marginally detectable in the ipsilesional site (right front paw: +21%, 

p = 0.423; right back paw: +17%, p < 0.001; Fig 6 D). In a time course of three weeks, we detected a 

marked increase of footfall errors in both the contralateral left front and back toe (all p < 0.001) 

compared to baseline. Although the error rate returned to baseline for the back paw (p = 0.397), it 

does not fully recover for front paw (p = 0.017), as previously observed 7 (Fig. 6E).  

In a subset of 20 randomly selected videos, we cross verified the error rates by a blinded observer and 

compared the variability between the DLC-approach and the manual assessment of the parameters 

regarding (1) variability of the analysis and (2) duration of the analysis. We did not detect a difference 

in the scoring accuracy between the manual assessment and DLC-assisted analysis, but manual 

assessment required 200 times as more time (human: 4.18 ± 0.63 min; DLC: 0.02 min, p < 0.0001; 

Fig. 6F-H, Suppl. Fig. 7).   

Overall, these results suggest that DLC-assisted analysis of the ladder rung test achieves human-level 

accuracy, while saving time and avoiding variability between human observers. 
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Fig. 6: DeepLabCut assisted analysis of horizonal rung test after stroke. (A) Schematic view of ladder rung test. (B) 
Side view of step profile of hips, back toes, shoulder, and front toes in individual animals at baseline and 3 dpi. (C) 
Photographs of mouse from three perspectives. (D) Overall success and error rate in the contralesional and ipsilesional 
hemisphere of all paws. (E) Time course of error rate during ladder rung test in the individual paws. (F) Comparison of 
error rate scores in selected videos between three human observers and DLC. (G) Correlation matrix between human 
observers and DLC. (H) Duration of analysis for ladder rung test. Data are shown as mean distributions where the white 
dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For boxplots: each dot in the plots 
represents one animal. Line graphs are plotted as mean ± sem. For line graphs: the dots represent the mean of the data. 
Significance of mean differences between the groups was assessed using repeated ANOVA with post-hoc analysis. 
Asterisks indicate significance: * P < 0.05, ** P < 0.01, *** P < 0.001.   
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Comparison of deep learning-based tracking to conventional behavioral tests for stroke-related 

functional recovery  

Finally, we benchmarked DLC-tracking performance against popular functional tests to detect stroke-

related functional deficits. We performed a rotarod test with the same set of animals and analyzed 

previously acquired data from a broad variety of behavioral tasks routinely used in stroke research 

including neurological scoring, cylinder test, the irregular ladder rung walk, and single pellet grasping 

(Fig. 7A, B).  

In all behavioral set-ups, we identified initial deficits after stroke (rotarod: p= 0.006, all other tests: p 

< 0.001). While the neurological deficit score (21 dpi, p = 0.97) and the rotarod (21 dpi, p = 0.99) did 

not provide much sensitivity beyond the acute phase (Fig. 7A, B), the ladder rung test, cylinder test, 

and single pellet grasping were suitable to reveal long-term impairments in mouse stroke models (21 

dpi, all p < 0.001, Fig. 7C-E, Suppl. Fig. 8A).  

These functional tests were then further compared in a semi-quantitative spider diagram regarding 

(1) duration to perform the task, (2) objectivity, (3) post-hoc analysis, (4) requirement of pre-training, 

and (5) costs (Fig. 7G, Suppl. Fig. 8B, C). Despite the simple performance, the neurological scoring, 

rotarod and cylinder tests have the drawback of a relatively low sensitivity and objectivity. On the 

other hand, more sensitive tests such as the pellet grasping test require intense pre-training of the 

animals, or the manual post-analysis of a ladder rung test can be tedious and suffer from variability 

between investigators. All these conventional tests only provide a very low number of readouts, which 

may not capture the entire complexity of the acute injury and subsequent recovery.  

More advanced analysis including kinematic tracking offers the advantage of generating a variety of 

parameters but the high costs for the set-up and the commercial software are disadvantages (Fig 7H). 

The DLC-assisted tracking presented here provides an open-source solution that is available at 

negligible costs and can be set up easily. The experiment duration is shortened, and animal welfare 

is improved since the test does not require marking the mouse joints beforehand. Most importantly, 

using our comprehensive post-analysis, the set-up reduces analysis time while minimizing observer 

biases during the evaluation. 
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Fig. 7: Functional assessment of recovery after stroke using conventional behavioral tests. (A) Neurological score, 
(B) Rotarod test, (C) Dragging during cylinder test, (D) Missteps in ladder rung test, (E) Drag and drop in single pallet 
grasping. (F) Semi-quantitative measure of relevant parameters for behavioral tests (time, sensitivity, readouts, 
objectivity, long-term deficits, post-hoc analysis, pre-training, and costs). (G) Spider chart of conventional behavioral 
tests (H) Spider chart of behavioral tests without and with DLC assistance. Dara are shown as line graphs and are plotted 
as mean ± sem.  Significance of mean differences between the groups was assessed using repeated ANOVA with post-
hoc analysis. Asterisks indicate significance: ** P < 0.01, *** P < 0.001. 
 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455647doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455647
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Discussion 

Preclinical stroke research heavily relies on rodent behavior when assessing functional recovery or 

treatment efficacy. Nonetheless, there is an unmet demand for comprehensive unbiased tools to 

capture the complex gait alterations after stroke; many conventional methods either do not have much 

sensitivity aside from identifying initial injures; or require many resources and a time-consuming 

analysis. In this study, we used deep learning to refine 3D gait analysis of mice after stroke. We 

performed markerless labeling of 10 body parts in uninjured control mice of different strains and fur 

color with 99% accuracy. This allowed us to describe a set of >100 biologically meaningful 

parameters for examining e.g., synchronization, spatial variability, and joint angles during a 

spontaneous walk; and that showed differential importance for acute and long-term deficits. We 

refined our deep learning analysis for use with the ladder rung test, which achieved outcomes 

comparable to manual scoring accuracy. We found that our DLC-assisted tracking approach, when 

benchmarked to other conventionally used behavior tests in preclinical stroke research, outperformed 

those based on measures of sensitivity, time-demand, and resources. 

The use of machine learning approaches has dramatically increased in life sciences and will likely 

gain importance in the future. The introduction of DeepLabCut considerably facilitated the markerless 

labeling of mice and expanded the scope of kinematic tracking software16,21. Although commercial 

attempts to automate behavioral tests eliminated observer bias, the analyzed parameters are often pre-

defined and cannot be altered. Especially for customized set-ups, DLC has been shown to reach 

human-level accuracy while outperforming commercial systems (e.g. EthoVision, TSE Multi 

Conditioning system) at a fraction of the cost 19. These advantages may become more apparent in the 

future since unsupervised machine learning is beginning to reveal the true complexity of animal 

behavior and may allow recognition of behavioral sequences not detectable by humans. On the other 

hand, execution and interpretation of unsupervised tracking is often beyond the reach of many basic 

research labs and requires the necessary machine learning knowledge13.  

Many neurological disorders (e.g., multiple sclerosis, Huntington’s, and spinal cord injury) result in 

pronounced motor deficits in patients, as well as in mice models, with alterations in the general 

locomotor pattern. These alterations are usually readily identifiable, especially in the acute phase, and 

excellent automated tools have recently been developed to track the motor impairments 30. In contrast, 

deficits following cortical stroke in mice often do not reveal such clear signs of injury and require 

higher levels of sensitivity to identify the motor impairment7,8,31. The degree of functional motor 

deficits after stroke is highly dependent on corticospinal tract lesions that often result in specific 

deficits e.g., impairment of fine motor skills32. Moreover, a stroke most commonly affects only one 
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body side; therefore, an experimental set-up that contains 3D information is highly valuable, as it 

enables the detection of contra- and ipsilateral trajectories of each anatomical landmark. Accordingly, 

our set-ups enabled us to also detect intra-animal differences that may be important to distinguish 

between normal and compensatory movements throughout the recovery time course33.   

Compensatory strategies (e.g. avoiding the use of the impaired limb or relying on the intact limb) are 

highly prevalent in rodents and in humans34,35. Although functional recovery is generally observed in 

a variety of tests, it is important to distinguish between compensatory responses and “true” recovery. 

These mechanisms are hard to dissect in specific trained tasks (e.g., reaching during single pellet 

grasping). Therefore, tasks of spontaneous limb movements and many kinematic parameters are 

valuable to distinguish these two recovery mechanisms25. Interestingly, we observed alterations in 

several ipsilateral trajectories during the runway walk affecting the vertical positioning as well as 

protractive and retractive movement (although less prominent than in the contralateral paws) that 

suggest a compensatory movement. Similar gait alterations have been previously reported in a mouse 

model of distal middle cerebral artery occlusion, another common model of ischemia in mice36. These 

compensatory movements are predominantly caused by either plastic change by the adjacent areas of 

cortex or through support from anatomical reorganization of the contralesional hemisphere37–39 and, 

therefore, could provide valuable information about the therapeutic effects of a drug or a treatment. 

Apart from general kinematic gait analysis, variations of the horizontal ladder rung/foot fault or grid 

tests remain one of the most reproducible tasks to assess motor skill in rodents after injury, including 

stroke 31. However, these tests often remain unused in many experimental stroke studies, most likely 

due to the associated time-consuming analysis. DLC-assisted refinement might allow future studies 

to incorporate this important assessment into their analyses given the striking decrease in time 

investment. We have demonstrated that DLC-assisted refinement of these conventional tests 

represents a striking decrease in time-consumption. Therefore, it is conceivable that some of these 

conventional tests and others assessment methods (e.g., single pellet grasping) may profit from the 

advancements of deep learning and will not be fully replaced by kinematic gait analysis. 

Interestingly, some of the assessed parameters showed an impairment after stroke only in the acute 

phase (e.g., synchronization, cycle duration, hip movement), while some parameters showed an initial 

impairment after injury followed by a partial or full recovery (e.g., wrist height, toe movement, and 

retraction) and others showed no recovery in the time course of this study. Given the number of 

parameters raised in this setting, this approach might be particularly suited to assess treatment efficacy 

of drug interventions in preclinical stroke research. Overall, we found a strong separation of 

parameters in the acute vs. chronic phase in the PCA and random forest analysis, making this 

approach suitable to assess both the acute phase as well as the chronic phase. It will be of interest in 
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the future to assess the presented approach in different models of stroke as well as in additional 

neurological conditions such as spinal cord injury, ALS, cerebral palsy or others.25.   

Notably, a detailed kinematic analysis required optional recording settings to generate a high contrast 

between animal and background. In our experience these parameters needed to be adapted to the fur 

color in the animals. Although we reached almost equivalent tracking accuracy of 99.4% (equivalent 

to losing 6 in every 1’000 recorded frames), mice with black and white fur could not be tracked based 

on the same neural network and required two training sessions, which may show slight differences in 

the analysis. Moreover, the high accuracy in our experimental set-up was achieved by recording only 

mice with smooth runs without longer interruptions. In the future, these limitations could be overcome 

by combining DLC-tracking with a recently developed unsupervised clustering approach to reveal 

grooming or other unpredictable stops during a run40,41.  

Taken together, in this study, we developed a comprehensive gait analysis to assess stroke 

impairments in mice using deep learning. The developed set-up requires minimal resources and 

generates characteristic multifaceted outcomes for acute and chronic phases after stroke. Moreover, 

we refined conventional behavioral tests used in stroke assessment at human-level accuracy that may 

be expanded for other behavioral tests for stroke and other neurological diseases affecting 

locomotion.  
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Materials and Methods 

Animals 

All procedures were conducted in accordance with governmental, institutional (University of Zurich), 

and ARRIVE guidelines and had been approved by the Veterinarian Office of the Canton of Zurich 

(license: 209/2019). In total 25 wildtype (WT) mice with a C57BL/6 background mice and 12 non-

obese diabetic SCID gamma (NSG) mice were used (female and male, 3 months of age). Mice were 

housed in standard type II/III cages on a 12h day/light cycle (6:00 A.M. lights on) with food and 

water ad libitum. All mice were acclimatized for at least a week to environmental conditions before 

set into experiment. 

Photothrombotic lesion 

Mice were anesthetized using isoflurane (3% induction, 1.5% maintenance, Attane, Provet AG). 

Analgesic (Novalgin, Sanofi) was administered 24 h prior to the start of the procedure via drinking 

water. A photothrombotic stroke to unilaterally lesion the sensorimotor cortex was induced on the 

right hemisphere, as previously described (Labat-gest and Tomasi, 2013; Rust et al., 2019b). Briefly, 

animals were placed in a stereotactic frame (David Kopf Instruments), the surgical area was sanitized, 

and the skull was exposed through a midline skin incision. A cold light source (Olympus KL 

1,500LCS, 150W, 3,000K) was positioned over the right forebrain cortex (anterior/posterior: −1.5–

+1.5 mm and medial/lateral 0 mm to +2 mm relative to Bregma).  Rose Bengal (15 mg/ml, in 0.9% 

NaCl, Sigma) was injected intraperitoneally 5 min prior to illumination and the region of interest was 

subsequently illuminated through the intact skull for 12 min. To restrict the illuminated area, an 

opaque template with an opening of 3 × 4 mm was placed directly on the skull. The wound was closed 

using a 6/0 silk suture and animals were allowed to recover. For postoperative care, all animals 

received analgesics (Novalgin, Sanofi) for at least 3 days after surgery. 

Blood Perfusion by Laser Doppler Imaging 

Cerebral blood flow (CBF) was measured using Laser Doppler Imaging (Moor Instruments, 

MOORLDI2-IR). Animals were placed in a stereotactic frame; the surgical area was sanitized and 

the skull was exposed through a midline skin incision. The brain was scanned using the repeat image 

measurement mode. All data were exported and quantified in terms of flux in the ROI using Fiji 

(ImageJ). 
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Immunofluorescence 

Brain sections were washed with 0.1M phosphate buffer (PB) and incubated with blocking solution 

containing donkey serum (5%) in PB for 30 min at room temperature. Sections were incubated with 

primary antibodies (rb-GFAP 1:200, Dako, gt-Iba1, 1:500 Wako, NeuroTrace™ 1:200, Thermo 

Fischer) overnight at 4°C. The next day, sections were washed and incubated with corresponding 

secondary antibodies (1:500, Thermo Fischer Scientific). Sections were mounted in 0.1 M PB on 

Superfrost PlusTM microscope slides and coverslipped using Mowiol. 

Behavioral studies 

Animal were subjected to a series of behavioral tests at different time points. The here used tests 

included the (1) runway, (2) ladder rung test, (3) the rotarod test, (4) neurological scoring, (5) cylinder 

test, (6) single pallet grasping. All tests were evaluated at baseline and 3, 7, 14 and 21 after stroke 

induction. Animals used for deep learning-assisted tests (runway, ladder rung) represent a different 

cohort of animals to the remaining behavior tasks.  

Runway test  

A runway walk was performed to assess whole body coordination during overground locomotion. 

The walking apparatus consisted of a clear Plexiglas basin, 156 cm long, 11.5 cm wide and 11.5 cm 

high (Fig. 1). The basin was equipped with two ∼ 45° mirrors (perpendicularly arranged) to allow 

simultaneous collection of side and bottom views to generate three-dimensional tracking data. Mice 

were recorded crossing the runway with a high-definition video camera (GoPro Hero 7) at a resolution 

of 4000 x 3000 and a rate of 60 frames per second. Lighting consisted of warm background light and 

cool white LED stripes positioned to maximize contrast and reduce reflection. After acclimatization 

to the apparatus, mice were trained in two daily sessions until they crossed the runway at constant 

speed and voluntarily (without external intervention). Each animal was placed individually on one 

end of the basin and was allowed to walk for 3 minutes.  

Ladder rung test 

The same set up as in the runway was used for the ladder rung test, to assess skilled locomotion. We 

replaced the Plexiglas runway with a horizontal ladder (length: 113 cm, width: 7 cm, distance to 

ground: 15 cm). To prevent habituation to a specific bar distance, bars were irregularly spaced (1-4 

cm). For behavioral testing, a total of at least three runs per animal were recorded. Kinematic analysis 

of both tasks was based exclusively on video recordings and only passages with similar and constant 

movement velocities and without lateral instability were used. A misstep was defined when the mouse 
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toe tips reached 0.5 cm below the ladder height. The error rate was calculated by errors / total steps* 

100.  

Rotarod test 

The rotarod test is a standard sensory-motor test to investigate the animals’ ability to stay and run on 

an accelerated rod (Ugo Basile, Gemonio, Italy). All animals were pre-trained to stay on the 

accelerating rotarod (slowly increasing from 5 to 50 rpm in 300s) until they could remain on the rod 

for > 60 s. During the performance, the time and speed was measured until the animals fell or started 

to rotate with the rod without running. The test was always performed three times and means were 

used for statistical analysis. The recovery phase between the trials was at least 10 min.  

Neurological score / Bederson score 

We used a modified version of the Bederson (0-5) score to evaluate neurological deficits after stroke. 

The task was adapted from Biebet et al. 42 The following scoring was applied; (0) no observable 

deficit; (1) forelimb flexion; (2) forelimb flexion and decreased resistance to lateral push; (3) circling; 

(4) circling and spinning around the cranial-caudal axis; (5) no spontaneous movement/ death. 

Cylinder Test 

To evaluate locomotor asymmetry mice were placed in an opentop, clear plastic cylinder for about 

10 min to record their forelimb activity while rearing against the wall of the arena. The task was 

adapted from Roome et al. 43. Forelimb use is defined by the placement of the whole palm on the wall 

of the arena, which indicates its use for body support. Forelimb contacts while rearing were scored 

with a total of 20 contacts recorded for each animal. Three parameters were analysed which include 

paw preference, symmetry and paw dragging. Paw preference was assessed by the number of 

impaired forelimb contacts to the total forelimb contacts. Symmetry was calculated by the ratio of 

asymmetrical paw contacts to total paw contacts. Paw dragging was assessed by the ratio of the 

number of dragged impaired forelimb contacts to total impaired forelimb contacts. 

Single pellet grasping  

All animals were trained to reach with their right paw for 14 days prior to stroke induction over the 

left motor cortex. Baseline measurements were taken on the day before surgery (0dpo) and test days 

started at 4 dpo and were conducted weekly thereafter (7, 14, 21, 28 dpo). For the duration of 

behavioral training and test periods, animals were food restricted, except for 1 day prior to 3 days 

post injury. Body weights were kept above 80% of initial weight. The single pellet reaching task was 

adapted from Chen et al. 44. Mice were trained to reach through a 0.5-cm-wide vertical slot on the 
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right side of the acrylic box to obtain a food pellet (Bio-Serv, Dustless Precision Pellets, 20 mg) 

following the guidelines of the original protocol. To motivate the mice to not drop the pellet, we 

additionally added a grid floor to the box, resulting in the dropped pellets to be out of reach for the 

animals. Mice were further trained to walk to the back of the box in between grasps to reposition 

themselves as well as to calm them down in between unsuccessful grasping attempts. Mice that did 

not successfully learn the task during the two weeks of shaping were excluded from the task (n=2). 

During each experiment session, the grasping success was scored for 30 reaching attempts or for a 

maximum of 20 minutes. Scores for the grasp were as follows: “1” for a successful grasp and retrieval 

of the pellet (either on first attempt or after several attempts); “0” for a complete miss in which the 

pellet was misplaced and not retrieved into the box; “0.5” for drag or drops, in which the animal 

successfully grasped the pellet but dropped it during the retrieval phase. The success rate was 

calculated for each animal as end score = (total score/number of attempts*100). 

DeepLabCut (DLC) 

Video recordings were processed by DeepLabCut (DLC, v. 2.1.5), a computer vision algorithm that 

allows automatic and markerless tracking of user-defined features. A relatively small subset of 

camera frames (training dataset) is manually labelled as accurately as possible (for each task and 

strain, respectively). Those frames are then used to train an artificial network. Once the network is 

sufficiently trained, different videos can then be directly input to DLC for automated tracking. The 

network predicts the marker locations in the new videos, and the 2D points can be further processed 

for performance evaluation and 3D reconstruction. 

Dataset preparation:  

Each video was migrated to Adobe Premiere (v. 15.4) and optimized for image quality (color 

correction and sharpness). Videos were split into short one-run-sequences (left to right or right to 

left), cropped to remove background and exported/compressed in H.264 format.  

Training:  

The general networks for both behavioral tests were trained based on ResNet-50 by manually 

labelling 120 frames selected using k-means clustering from multiple videos of different mice (N = 6 

videos/network). We labelled 10 distinct body parts (head, front toe tip, wrist, shoulder, elbow, back 

toe, back ankle, iliac crest, hip, tail) in all videos of mice recorded from side views (left, right) and 8 

body parts (head, right front toe, left front toe, center front, right back toe, left back toe, center back, 

tail base)  in all videos showing the bottom view, respectively (for details, see Suppl. Fig. 1, 2). Using 

these hand labelled data, we allowed training to run for 1’030’000 iterations (DLC’s native cross-
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entropy loss function plateaued between 100’000 and 300’000 iterations). Evaluation of labelling 

accuracy was assessed using the ‘evaluate network’ function provided by DLC. This function 

computes the Euclidean error between the manual labels and the ones predicted by DLC averaged 

over the hand locations and test images (mean absolute error, proportional to the average root mean 

square error).   

Refinement:  

20 outlier frames from each of the training videos where manually corrected and then added to the 

training dataset. Locations with a p <0.9 were relabeled. The network was then refined using the same 

numbers of iterations (1’030’000). 

All experiments were performed inside the Anaconda environment (Python 3.7.8) provided by DLC 

using NVIDIA GeForce RTX 2060.  

Data processing with R 

Video pixel coordinates for the labels produced by DLC were imported into R Studio (Version 4.04 

(2021-02-15) and processed with custom scrips that can be assessed here: 

https://github.com/rustlab1/DLC-Gait-Analysis. Briefly, accuracy values of individual videos were 

evaluated and data points with a low likelihood were removed. Representative videos were chosen to 

plot a general overview of the gait. Next, individual steps were identified within the run by the speed 

of the paws to identify the “stance” and “swing” phase. These steps were analyzed for 

synchronization, speed, length, and duration from the down view over a time course. Additionally, 

the angular positioning between the body center and the individual paws was measured. From the 

lateral/side view, we next measured average and total height differences of individual joins (y-

coordinates) and the total movement, protraction, and retraction changes per step (x-coordinates) over 

the time course. Next, we measured angular variability (max, average, min) between neighboring 

joints including (hip-ankle-toe, iliac crest-hip-back-ankle, elbow-wrist-front toe, shoulder-elbow-

wrist).  

All >100 generated parameters were extracted to perform a random forest classification (ntree = 100) 

to determine the importance (Gini impurity-based feature importance) for determining accuracy of 

the injury status. This was performed for all time points (bl, 3, 7, 14,21 dpi) and in a subgroup analysis 

between baseline vs. 3 dpi and baseline vs. 21 dpi. A confusion matrix was performed for determining 

the prediction accuracy of this model. The most five important parameters were used to perform a 

principal component analysis to demonstrate separation of these parameters.     
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Statistical Analysis 

Statistical analysis was performed using RStudio (4.04 (2021-02-15). Sample sizes were designed 

with adequate power according to our previous studies 7,28,45 and to the literature 8,11. Overview of 

sample sizes can be found in Suppl. Table 1. All data were tested for normal distribution by using the 

Shapiro-Wilk test. Normally distributed data were tested for differences with a two-tailed unpaired 

one-sample t-test to compare changes between two groups (differences between ipsi- and 

contralesional sides). Multiple comparisons were initially tested for normal distribution with the 

Shapiro-Wilk test. The significance of mean differences between normally distributed multiple 

comparisons was assessed using repeated measures ANOVA with post-hoc analysis (p adjustment 

method = holm). Variables exhibiting a skewed distribution were transformed, using natural 

logarithms before the tests to satisfy the prerequisite assumptions of normality. An overview of all 

raw data and tests can be found in Suppl. Table 3. Data are expressed as means ± SD, and statistical 

significance was defined as ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. Raw data, summarized data and 

statistical evaluation can be found in the supplementary information (Suppl. Table 2-37).  

Code availability 

The code with sample data are available at https://github.com/rustlab1/DLC-Gait-Analysis  
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