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Abstract

Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and
treatment efficacy. Although functional motor recovery is considered the primary targeted outcome,
tests in rodents are still poorly reproducible, and often unsuitable for unraveling the complex behavior
after injury. Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia
based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic
behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all
relevant joints and reference landmarks) in several mouse strains with an accuracy of 99.4%. Building
on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils
biologically relevant differences in locomotor profiles after a stroke over a time course of three weeks.
We further refine the widely used ladder rung test using deep learning and compare its performance
to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used
conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and
single-pellet grasping) regarding sensitivity, accuracy, time use and costs. We conclude that deep
learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive
data to describe the complex recovery of rodents following a stroke. The experimental set-up and

analysis can also benefit a range of other neurological injuries that affect locomotion.
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Introduction

Stroke is a leading cause of disability and death worldwide. Over 13.7 million strokes occur each
year, and one in four people over 25 years of age will experience a stroke in their lifetime!. The
presence of life-saving medicines allows timely intervention, which has significantly decreased
mortality following a stroke?*. However, acute treatments are not applicable in most patients, mainly
because of the narrow therapeutic time window, leaving five million patients permanently disabled
every year*>. To promote recovery outside the confines of conventional therapies, a variety of
experimental treatments in rodents have emerged targeting neuroprotection’, therapeutic

L2 Tn most of these studies, behavioral

angiogenesis’’, axonal sprouting!®, or cell-based therapies
evaluation is the primary outcome and ultimately provides evidence that functional impairment can
be corrected by the experimental treatment. However, behavioral tests in rodents have proved
difficult: (1) test results are often poorly reproducible and (2) the task is limited to a specific
sensorimotor outcome, thus ignoring most of the other biologically relevant parameters of functional

recovery after stroke!s.

Advances in high-speed video equipment have enabled scientists to record massive datasets of animal
behavior in exquisite detail, and commercial software solutions including Ethovision (Noldus),
AnyMaze (Stoelting Co.), and Top Scan (CleverSys Inc.) have assisted with vision-based tracking
and analysis. However, these technologies offer little methodological transparency, are not affordable
for many laboratories!4, and are often designed to study pre-specified modules within one particular
paradigm (e.g., the Morris water maze or the open field test) rather than discover new behavioral
patterns. The introduction of machine learning algorithms has recently permeated various sectors of
life and provided a new set of tools ideally suited for behavior analysis. These algorithms, referred to
as deep learning models, offer user-defined feature tracking with greater flexibility, as well as reduced
software and hardware acquisition costs'>. One of the latest contributions to this toolbox is the open-
source software DeepLabCut (DLC)'¢, which uses convolutional neural networks to automatically
capture movements and postures directly from images and without requiring active or passive
markers. DLC is a modified version of a state-of-the-art algorithm for tracking human movement,
DeeperCut!” and can be used in a broad range of study systems with near human-level accuracy'®!.
Typically, such algorithms are seen as “data-hungry”’; algorithms must be trained first by showing
thousands of hand-labeled frames, an effort that requires an enormous amount of time. DLC,
however, is pre-trained on ImageNet, a large database of images used for image recognition
research?’, With that pretraining in place, DLC only needs a few training examples (typically 50 -
200 frames) to achieve human-level accuracy, making it a highly data-efficient software!62!. DLC

has already been implemented in different research fields including neuroscience® 24,
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In this study, we developed a modular experimental set-up to identify biologically relevant parameters
to reveal gait abnormalities and motor deficits after a focal ischemic stroke. We trained the neural
networks to recognize mice of different fur colors from three perspectives (left, bottom, and right)
and to label 10 body parts with high accuracy. A detailed comprehensive post-hoc script allows
analysis of a wide range of anatomical features within basic locomotor functions, vertical and
horizontal limb movements, and coordinative features using the freeware software environment R.
We detect distinct changes in the overall mouse gait affecting e.g., step synchronization, limb
trajectories and joint angles after ischemia. These changes are distinct at acute and chronic time points
and primarily (but not exclusively) affect the body parts contralateral to the lesion. We further refine
the conventional ladder rung tests with DLC (e.g., for detection of foot placements) and compare the
deep learning-assisted analysis with widely used behavioral tests for stroke recovery that use human
annotations, the gold standard. We detect similar levels of accuracy, less variation, and a considerable
reduction in time using the DLC-based approach. The findings are valuable to the stroke field to
develop more reliable behavioral readouts and can be applied to other neurological disorders in

rodents involving gait abnormalities.
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Results

Generation of a comprehensive locomotor profile using deep learning-based tracking

Our aim was to develop a sensitive and reliable profiling of functional motor recovery in mice after
stroke using open-access deep learning software, DLC. Unraveling the complexity of changes in
locomotion is best approached via generation of gait parameters®. Therefore, we customized a free
walking runway with two mirrors that allowed 3D recording of the mice from the lateral/side and
down perspectives. The runway can be exchanged with an irregular ladder rung to identify fine-motor
impairments by paw placement (Fig. 1A). The dimensions of the set-up were adapted from the
routinely used MotoRater (TSE Systems)?®. After adaptation to the set-up, non-injured mice were
recorded from below with a conventional GoPro Hero 8 camera during the behavioral tasks. The DLC
networks were trained based on ResNet-50 by manually labeling 120 frames from randomly selected
videos of different mice. Individual body parts were selected according to previous guidelines to
enable a comprehensive analysis of coordination, movement, and relative positioning of the mouse
joints from all three perspectives, and included: tail base, iliac crest, hip, back ankles, back toe tip,

shoulder, wrist, elbow, front toe tip, and head (Fig. 1B, C)?’.
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Fig. 1: Experimental workflow to perform deep learning-based gait analysis. (A) Schematic view of the dimensions
of experimental set-up. (B) Workflow to identify and label anatomical landmarks of mice for pose estimation. (C)
Overview of labeled body parts from side and down perspective.
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Next, we applied the neural network model to detect and extract the relevant body coordinates in each
frame of all recorded videos. A training set of six videos proved sufficient to achieve a cross-entropy
loss of < 0.1% indicating a marginal predicted divergences from the actual label after 500°000
iterations (Fig. 2A). A more detailed analysis revealed that all selected body part labels could be
tracked to >99% (Fig. 2B). The ratio of confident labels (>95% likelihood) to total labels ranged from
96-100% for the runway and between 89-100% for the rung walk (Fig. 2B, C). In both set-ups, we
observed the highest variability for the front and back toe tips. For further analysis all data points that
did not pass the likelihood of detection threshold of 95% were excluded. The remaining data
generated a full 3D profile of each animal during the behavioral task (Suppl. Fig 1A, B).

Next, we used the same trained networks to reliably label body parts of a) the same mice three days
after stroke, b) different mice with the same genetic background (C57BL/6J, black fur) and c) mice
with a different genetic background (NOD, white fur). We achieved similar confidence in labeling
for mice after stroke (95-100%) and mice with the same genotype (97-100%) after minor refinement
of the network (see Methods, Suppl. Fig. 2A, B). However, we were unable to successfully refine the
pre-existing network to track mice of a different strain with white fur (0-41%). We then created an
entirely new training set for these mice with the same training parameters and reached similar levels
of confidence (94-100%) to the original training set (Suppl. Fig. 2C, D).

Overall, we demonstrated successful labeling and generation of 3D locomotor coordinates in non-
injured and injured mice of different genetic backgrounds and fur colors for both the runway and

ladder rung walk using deep learning.


https://doi.org/10.1101/2021.08.11.455647
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455647; this version posted August 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A 204 s

1.5 runway

Cross entropy loss, %

0 250 500 750 1000 0 250 500 750 1000
# of iterations in thousands, -

99 97 98 99 97 100 100 100 (99 96 94 89 94: 100 100 [ 100

3 100 |- a-s D G G ¢ N
o)
£
g 75 -
- Head » Head ® Back toe tip
3 50 Frontright | Front toe tip @ Back ankle
g Front I_eft © Wrist lliac crest
3 ® Back right Elbow ® Hip
5 o5 Back left | Shoulder ® Tail
5 ® Taibase =y
S down side
= T T T T T T T T T T T T T T T T Walk
= )
= 100/ | 100/ 100/ 100" 100 [ 100 98 96 100; 97 100/ /' 100 [ 100/ 100 ' 100 99
C ratio of confident labeling to total labeling,%
5 100 |ENED SNND GHED SND S D | CED GED W R e TS TR S - 95%
o
£
T 751 -
Qo
®©
§ 50 1 -
8
6 254 -
ge down side 72
o Ladder
o)
<
©
=

ratio of confident labeling to total labeling, %

Fig. 2: DeepLabCut enables markerless 3D tracking of mouse body parts with high levels of accuracy. (A) Training
efficiency of neural networks. (B) Likelihood of a confident labeling for individual body parts from down view (left) side
view (right) in the runway and (C) during the ladder rung walk. Each dot represents an anatomical landmark of individual
image frames in a video. The red dotted line represents the confidence threshold of 95% likelihood for reliable labeling.
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Deep learning trained networks detect distinct gait abnormalities following stroke

To identify stroke-related gait abnormalities across a specific time period, we induced a
photothrombotic stroke in the right hemisphere of the sensorimotor cortex (Fig. 3A, B) 7. We
confirmed successful induction of ischemia with a reduction of cerebral blood flow only in the
ipsilesional right side (right: —72.1 + 11.5%, p < 0.0001, left: —3.2 £+ 8.6%, p = 0.872) using Laser
doppler imaging 24 h after injury (Fig. 3C). Three weeks after injury, mice had histological damage
in all cortical layers, which was accompanied by a microglial activation and glial scar formation on
the ipsilesional hemisphere while sparing subcortical regions and the contralesional side. The injured
tissue extended from +2 mm to —2 mm anterior posterior related to bregma, and the average stroke

volume was 1.3 + 0.2 mm? (Fig. 3D, E).
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Fig. 3: Induction of photothrombotic stroke leads to permanent focal ischemia in the cortex. (A) Schematic time
course of experimental interventions (B) Schematic representation of stroke procedure (C) Laser Doppler Imaging (LDI)
of three representative baseline and stroked brains 24 hours after injury. D) Quantification of stroke area and stroke
volume at 21 dpi. (E) Representative histological overview of cortical damage (Neurons, cyan), inflammatory infiltration
(Ibal+, magenta) and scar formation (GFAP*, green) at 21 dpi, scale bar: 100 pm. Data are shown as mean distributions
where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For boxplots: each dot
in the plots represents one animal. Line graphs are plotted as mean + sem. Significance of mean differences between the
groups (baseline hemisphere, contralesional hemisphere, and ipsilesional hemisphere) was assessed using Tukey’s HSD.
Asterisks indicate significance: *** P < 0.001. ctx: cortex, cc: corpus callosum, ap: anterior posterior, p.i.: post injury, ibz:
ischemic border zone.
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We began the motion tracking analysis by assessing the overall gait at baseline and after injury over
a three-week period. Individual steps were identified by the movement speed of each limb between
frames as filmed from below (Fig. 4A, B). In uninjured animals the footfall pattern showed a typical
gait synchronization® of opposing front and back paws (Fig. 4C). Normalizing the data to a single
step cycle revealed that this pattern was severely altered acutely after injury as shown by single-
animal data (Fig. 4D). We noticed that the asynchronization between the paws is acutely increased
after injury (p < 0.001, 3 dpi (days post injury); p = 0.029, 7 dpi; p = 0.031, 14 dpi) but recovered to
baseline over 21 days (p = 0.81, 21 dpi; Fig. 4E). Furthermore, acutely injured mice walked slower
as the step cycle duration was increased compared to intact mice (p = 0.05, 3 dpi, Fig. 4F). While the
swing duration did not differ at any time point (all p > 0.05), stroked mice had a longer stance duration
(p = 0.04, 3dpi, Fig. 4G, H). These alterations in the footfall pattern were associated with changes in
the positioning of the paws during a step (Fig. 41, J). The angle amplitude of the ipsilesional hindlimb
relative to the body center increased acutely after injury (p = 0.003, 3dpi) while the angle of the front
limbs remained unchanged (all p > 0.05, Fig. 4K).

Overall, the synchronization of the footfall pattern was severely altered during the acute phase of

stroke but returned to a normal pattern in the long-term
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Fig. 4: Gait changes in footfall pattern in spontaneous walk after stroke. (A) Schematic set-up of runway walks from
bottom perspective. (B) Movement speed of individual fore- and hindlimbs during spontaneous walk. (C) Footfall profile
of single mouse without injury. (D) Footfall profiles of a normalized locomotor cycle showing the stance and phase start
and end of three individual control mice (left) and stroked mice (right). (E) Ratio of asynchronization at baseline,
3,7,14,21 dpi. (F) Duration of a cycle. (G, H) Comparison of cycle duration between stance and swing time in a time
course. (I) Schematic view on analysis of positioning paws to body centers. (J) Profile of paw angles relative to body
center of an individual animal. (K) Comparison of angles of individual paws to body center in a time course. Data are
shown as mean distributions where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the
data. Each dot in the plots represents one animal and significance of mean differences between the groups was assessed
using repeated ANOVA with post-hoc analysis. Asterisks indicate significance: *P < 0.05, P <0.01, ™ P < 0.001
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The kinematics of a spontaneous walk were then compared by tracking the fore- and hindlimb joints
from the left and right-side perspectives (Fig. SA, B). First, we analyzed the average height and total
vertical movement of each joint involved in the hindlimb (iliac crest, hip, back ankle, and back toe
tip) and forelimb movement (shoulder, elbow, wrist, and front toe tip, Fig. 5C, D). We identified
alterations in the total vertical movement and average height of the fore- and hindlimb joints that was,
as expected, more prominent on the contralateral left side. Most notably, the total vertical movement
decreased in the contralateral left back and front toe tips, shoulder, and wrist at 3 dpi (all p < 0.05)
with a partial but incomplete recovery over time (Fig. SE, Suppl. Fig. 3). Interestingly, we also
observe compensatory changes in the vertical movement on the ipsilateral right side most prominent
in the back toe tip, back ankle, elbow, and wrist (Fig. 5E, Suppl. Fig 3). Next, we checked for
alterations in the horizontal movement determining the average step length, as well as protraction,
and retraction of the individual paws. At 3 dpi both retraction and protraction length are reduced in
stroked mice. These changes remained more pronounced in the hind limbs during retraction whereas
protractive changes returned to normal throughout the time course (Fig. 5F). Like the vertical
movement, we also observed compensatory changes in protraction in the ipsilateral right hindlimb at
later time points. Then, the joint positions were used to extract the angles of the hindlimbs (iliac crest-
hip-ankle; hip-ankle-toe tip) and forelimbs (shoulder-elbow-wrist; elbow-wrist-toe tip). The angular
variations were acutely unchanged after stroke and showed a similar profile throughout the time
course (Fig. 5G, H, Suppl. Fig. 4).

To understand the individual importance of the >100 measured parameters (Table 1) during
kinematics analysis, we applied a random forest classification to all animals throughout the entire
time course (Fig. 5I). The most important parameters between the groups were: left front and back
toe heights as well as protractive and total horizontal back toe movements. A separate analysis was
performed between baseline and acutely injured mice at 3 dpi and mice with long-term deficits at 21
dpi (Suppl. Fig. 5). In these subgroup analyses, we were able to predict the acute injury status with
90% accuracy and long-term deficits with 85% accuracy using a confusion matrix. The overlap
between the most important 20 parameters (top 10% of all measured parameters) in acute and chronic
time points was only 20% further confirming the need to consider the entirety of the gait to understand
the complexity of functional recovery over time (Suppl. Fig. 5). We then used a principal component
analysis (PCA) to reduce the dimensions of our data and determine the differences between the
groups. We found that data from later time points after injury cluster closer to the baseline suggesting
that the recovery effects can be ascertained based on kinematic parameters. The separation expand
when comparing only data from 3 dpi and 21 dpi to baseline (Suppl. Fig. 5). Importantly, these

changes were not observed in non-stroked control mice throughout the time course (Suppl. Fig. 6).
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Fig. 5: Kinematic changes in runway walk after stroke. (A) Schematic overview of analysis from the sides (B) Stick
profile of fore and hindlimb movement in individual mouse (C, D) Profile of hindlimb and forelimb joints in intact and
stroked mice (E) Absolute height of selected joints at baseline and 3,7,14,21 dpi. (F) Protraction and retraction of joints
throughout a time course (G, H) Angular variability between front and hindlimb joints (I) Random Forest classification
of most important parameters (J) Principal component analysis of baseline 3, 7, 14, 21 dpi. Data are shown as mean
distributions where the white dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For
boxplots: each dot in the plots represents one animal. Line graphs are plotted as mean + sem. For line graphs: the dots
represent the mean of the data. Significance of mean differences between the groups was assessed using repeated ANOVA
with post-hoc analysis. Asterisks indicate significance: “P < 0.05, ™ P <0.01, ™ P < 0.001. i-h-a: iliac crest-hip-ankle, h-
a-t: hip-ankle-toe, s-e-w: shoulder-elbow-wrist, e-w-t: elbow-wrist-toe, PC: principal component.
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Next, we considered whether deep networks can also be applied to conventional behavioral tests to
detect fine motor deficits in a ladder rung test (Fig. 6A). Tracking the fore- and hindlimbs during the
ladder rung recordings enabled the identification of stepping errors in the side view (Fig. 6 B, C). We
identified a 106% increase of the overall error rate in injured animals compared with their intact
controls (intact 5.27 + 8.4%, stroked: 10.9 + 12.6%, p <0.001) at 3 dpi. This increased error rate after
acute stroke was most pronounced on the contralesional side (left front paw: +182%; left back paw:
+142%, both p < 0.001) but also marginally detectable in the ipsilesional site (right front paw: +21%,
p = 0.423; right back paw: +17%, p < 0.001; Fig 6 D). In a time course of three weeks, we detected a
marked increase of footfall errors in both the contralateral left front and back toe (all p < 0.001)
compared to baseline. Although the error rate returned to baseline for the back paw (p = 0.397), it
does not fully recover for front paw (p = 0.017), as previously observed 7 (Fig. 6E).

In a subset of 20 randomly selected videos, we cross verified the error rates by a blinded observer and
compared the variability between the DLC-approach and the manual assessment of the parameters
regarding (1) variability of the analysis and (2) duration of the analysis. We did not detect a difference
in the scoring accuracy between the manual assessment and DLC-assisted analysis, but manual
assessment required 200 times as more time (human: 4.18 + 0.63 min; DLC: 0.02 min, p < 0.0001;
Fig. 6F-H, Suppl. Fig. 7).

Overall, these results suggest that DLC-assisted analysis of the ladder rung test achieves human-level

accuracy, while saving time and avoiding variability between human observers.
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Fig. 6: DeepLabCut assisted analysis of horizonal rung test after stroke. (A) Schematic view of ladder rung test. (B)
Side view of step profile of hips, back toes, shoulder, and front toes in individual animals at baseline and 3 dpi. (C)
Photographs of mouse from three perspectives. (D) Overall success and error rate in the contralesional and ipsilesional
hemisphere of all paws. (E) Time course of error rate during ladder rung test in the individual paws. (F) Comparison of
error rate scores in selected videos between three human observers and DLC. (G) Correlation matrix between human
observers and DLC. (H) Duration of analysis for ladder rung test. Data are shown as mean distributions where the white
dot represents the mean. Boxplots indicate the 25% to 75% quartiles of the data. For boxplots: each dot in the plots
represents one animal. Line graphs are plotted as mean + sem. For line graphs: the dots represent the mean of the data.

Significance of mean differences between the groups was assessed using repeated ANOVA with post-hoc analysis.
Asterisks indicate significance: * P < 0.05, ** P <0.01, *** P <0.001.
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Comparison of deep learning-based tracking to conventional behavioral tests for stroke-related

Junctional recovery

Finally, we benchmarked DLC-tracking performance against popular functional tests to detect stroke-
related functional deficits. We performed a rotarod test with the same set of animals and analyzed
previously acquired data from a broad variety of behavioral tasks routinely used in stroke research
including neurological scoring, cylinder test, the irregular ladder rung walk, and single pellet grasping
(Fig. 7A, B).

In all behavioral set-ups, we identified initial deficits after stroke (rotarod: p= 0.006, all other tests: p
<0.001). While the neurological deficit score (21 dpi, p = 0.97) and the rotarod (21 dpi, p = 0.99) did
not provide much sensitivity beyond the acute phase (Fig. 7A, B), the ladder rung test, cylinder test,
and single pellet grasping were suitable to reveal long-term impairments in mouse stroke models (21
dpi, all p <0.001, Fig. 7C-E, Suppl. Fig. 8A).

These functional tests were then further compared in a semi-quantitative spider diagram regarding
(1) duration to perform the task, (2) objectivity, (3) post-hoc analysis, (4) requirement of pre-training,
and (5) costs (Fig. 7G, Suppl. Fig. 8B, C). Despite the simple performance, the neurological scoring,
rotarod and cylinder tests have the drawback of a relatively low sensitivity and objectivity. On the
other hand, more sensitive tests such as the pellet grasping test require intense pre-training of the
animals, or the manual post-analysis of a ladder rung test can be tedious and suffer from variability
between investigators. All these conventional tests only provide a very low number of readouts, which
may not capture the entire complexity of the acute injury and subsequent recovery.

More advanced analysis including kinematic tracking offers the advantage of generating a variety of
parameters but the high costs for the set-up and the commercial software are disadvantages (Fig 7H).
The DLC-assisted tracking presented here provides an open-source solution that is available at
negligible costs and can be set up easily. The experiment duration is shortened, and animal welfare
is improved since the test does not require marking the mouse joints beforehand. Most importantly,
using our comprehensive post-analysis, the set-up reduces analysis time while minimizing observer

biases during the evaluation.
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Fig. 7: Functional assessment of recovery after stroke using conventional behavioral tests. (A) Neurological score,
(B) Rotarod test, (C) Dragging during cylinder test, (D) Missteps in ladder rung test, (E) Drag and drop in single pallet
grasping. (F) Semi-quantitative measure of relevant parameters for behavioral tests (time, sensitivity, readouts,
objectivity, long-term deficits, post-hoc analysis, pre-training, and costs). (G) Spider chart of conventional behavioral
tests (H) Spider chart of behavioral tests without and with DLC assistance. Dara are shown as line graphs and are plotted
as mean + sem. Significance of mean differences between the groups was assessed using repeated ANOVA with post-
hoc analysis. Asterisks indicate significance: ** P <0.01, *** P <0.001.
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Discussion

Preclinical stroke research heavily relies on rodent behavior when assessing functional recovery or
treatment efficacy. Nonetheless, there is an unmet demand for comprehensive unbiased tools to
capture the complex gait alterations after stroke; many conventional methods either do not have much
sensitivity aside from identifying initial injures; or require many resources and a time-consuming
analysis. In this study, we used deep learning to refine 3D gait analysis of mice after stroke. We
performed markerless labeling of 10 body parts in uninjured control mice of different strains and fur
color with 99% accuracy. This allowed us to describe a set of >100 biologically meaningful
parameters for examining e.g., synchronization, spatial variability, and joint angles during a
spontaneous walk; and that showed differential importance for acute and long-term deficits. We
refined our deep learning analysis for use with the ladder rung test, which achieved outcomes
comparable to manual scoring accuracy. We found that our DLC-assisted tracking approach, when
benchmarked to other conventionally used behavior tests in preclinical stroke research, outperformed

those based on measures of sensitivity, time-demand, and resources.

The use of machine learning approaches has dramatically increased in life sciences and will likely
gain importance in the future. The introduction of DeepLabCut considerably facilitated the markerless
labeling of mice and expanded the scope of kinematic tracking software!®2!. Although commercial
attempts to automate behavioral tests eliminated observer bias, the analyzed parameters are often pre-
defined and cannot be altered. Especially for customized set-ups, DLC has been shown to reach
human-level accuracy while outperforming commercial systems (e.g. EthoVision, TSE Multi
Conditioning system) at a fraction of the cost °. These advantages may become more apparent in the
future since unsupervised machine learning is beginning to reveal the true complexity of animal
behavior and may allow recognition of behavioral sequences not detectable by humans. On the other
hand, execution and interpretation of unsupervised tracking is often beyond the reach of many basic

research labs and requires the necessary machine learning knowledge'>.

Many neurological disorders (e.g., multiple sclerosis, Huntington’s, and spinal cord injury) result in
pronounced motor deficits in patients, as well as in mice models, with alterations in the general
locomotor pattern. These alterations are usually readily identifiable, especially in the acute phase, and
excellent automated tools have recently been developed to track the motor impairments . In contrast,
deficits following cortical stroke in mice often do not reveal such clear signs of injury and require
higher levels of sensitivity to identify the motor impairment’”-®3!. The degree of functional motor
deficits after stroke is highly dependent on corticospinal tract lesions that often result in specific

deficits e.g., impairment of fine motor skills*2. Moreover, a stroke most commonly affects only one
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body side; therefore, an experimental set-up that contains 3D information is highly valuable, as it
enables the detection of contra- and ipsilateral trajectories of each anatomical landmark. Accordingly,
our set-ups enabled us to also detect intra-animal differences that may be important to distinguish

between normal and compensatory movements throughout the recovery time course®.

Compensatory strategies (e.g. avoiding the use of the impaired limb or relying on the intact limb) are
highly prevalent in rodents and in humans***. Although functional recovery is generally observed in
a variety of tests, it is important to distinguish between compensatory responses and “true” recovery.
These mechanisms are hard to dissect in specific trained tasks (e.g., reaching during single pellet
grasping). Therefore, tasks of spontaneous limb movements and many kinematic parameters are
valuable to distinguish these two recovery mechanisms?. Interestingly, we observed alterations in
several ipsilateral trajectories during the runway walk affecting the vertical positioning as well as
protractive and retractive movement (although less prominent than in the contralateral paws) that
suggest a compensatory movement. Similar gait alterations have been previously reported in a mouse
model of distal middle cerebral artery occlusion, another common model of ischemia in mice?. These
compensatory movements are predominantly caused by either plastic change by the adjacent areas of
cortex or through support from anatomical reorganization of the contralesional hemisphere®’? and,

therefore, could provide valuable information about the therapeutic effects of a drug or a treatment.

Apart from general kinematic gait analysis, variations of the horizontal ladder rung/foot fault or grid
tests remain one of the most reproducible tasks to assess motor skill in rodents after injury, including
stroke 3!. However, these tests often remain unused in many experimental stroke studies, most likely
due to the associated time-consuming analysis. DLC-assisted refinement might allow future studies
to incorporate this important assessment into their analyses given the striking decrease in time
investment. We have demonstrated that DLC-assisted refinement of these conventional tests
represents a striking decrease in time-consumption. Therefore, it is conceivable that some of these
conventional tests and others assessment methods (e.g., single pellet grasping) may profit from the

advancements of deep learning and will not be fully replaced by kinematic gait analysis.

Interestingly, some of the assessed parameters showed an impairment after stroke only in the acute
phase (e.g., synchronization, cycle duration, hip movement), while some parameters showed an initial
impairment after injury followed by a partial or full recovery (e.g., wrist height, toe movement, and
retraction) and others showed no recovery in the time course of this study. Given the number of
parameters raised in this setting, this approach might be particularly suited to assess treatment efficacy
of drug interventions in preclinical stroke research. Overall, we found a strong separation of
parameters in the acute vs. chronic phase in the PCA and random forest analysis, making this

approach suitable to assess both the acute phase as well as the chronic phase. It will be of interest in
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the future to assess the presented approach in different models of stroke as well as in additional

neurological conditions such as spinal cord injury, ALS, cerebral palsy or others.?.

Notably, a detailed kinematic analysis required optional recording settings to generate a high contrast
between animal and background. In our experience these parameters needed to be adapted to the fur
color in the animals. Although we reached almost equivalent tracking accuracy of 99.4% (equivalent
to losing 6 in every 1’000 recorded frames), mice with black and white fur could not be tracked based
on the same neural network and required two training sessions, which may show slight differences in
the analysis. Moreover, the high accuracy in our experimental set-up was achieved by recording only
mice with smooth runs without longer interruptions. In the future, these limitations could be overcome
by combining DLC-tracking with a recently developed unsupervised clustering approach to reveal

grooming or other unpredictable stops during a run*4!,

Taken together, in this study, we developed a comprehensive gait analysis to assess stroke
impairments in mice using deep learning. The developed set-up requires minimal resources and
generates characteristic multifaceted outcomes for acute and chronic phases after stroke. Moreover,
we refined conventional behavioral tests used in stroke assessment at human-level accuracy that may
be expanded for other behavioral tests for stroke and other neurological diseases affecting

locomotion.
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Materials and Methods

Animals

All procedures were conducted in accordance with governmental, institutional (University of Zurich),
and ARRIVE guidelines and had been approved by the Veterinarian Office of the Canton of Zurich
(license: 209/2019). In total 25 wildtype (WT) mice with a C57BL/6 background mice and 12 non-
obese diabetic SCID gamma (NSG) mice were used (female and male, 3 months of age). Mice were
housed in standard type II/III cages on a 12h day/light cycle (6:00 A.M. lights on) with food and
water ad libitum. All mice were acclimatized for at least a week to environmental conditions before

set into experiment.

Photothrombotic lesion

Mice were anesthetized using isoflurane (3% induction, 1.5% maintenance, Attane, Provet AG).
Analgesic (Novalgin, Sanofi) was administered 24 h prior to the start of the procedure via drinking
water. A photothrombotic stroke to unilaterally lesion the sensorimotor cortex was induced on the
right hemisphere, as previously described (Labat-gest and Tomasi, 2013; Rust et al., 2019b). Briefly,
animals were placed in a stereotactic frame (David Kopf Instruments), the surgical area was sanitized,
and the skull was exposed through a midline skin incision. A cold light source (Olympus KL
1,500LCS, 150W, 3,000K) was positioned over the right forebrain cortex (anterior/posterior: —1.5—
+1.5 mm and medial/lateral 0 mm to +2 mm relative to Bregma). Rose Bengal (15 mg/ml, in 0.9%
NaCl, Sigma) was injected intraperitoneally 5 min prior to illumination and the region of interest was
subsequently illuminated through the intact skull for 12 min. To restrict the illuminated area, an
opaque template with an opening of 3 x 4 mm was placed directly on the skull. The wound was closed
using a 6/0 silk suture and animals were allowed to recover. For postoperative care, all animals

received analgesics (Novalgin, Sanofi) for at least 3 days after surgery.

Blood Perfusion by Laser Doppler Imaging

Cerebral blood flow (CBF) was measured using Laser Doppler Imaging (Moor Instruments,
MOORLDI2-IR). Animals were placed in a stereotactic frame; the surgical area was sanitized and
the skull was exposed through a midline skin incision. The brain was scanned using the repeat image
measurement mode. All data were exported and quantified in terms of flux in the ROI using Fiji

(Image)).
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Immunofluorescence

Brain sections were washed with 0.1M phosphate buffer (PB) and incubated with blocking solution
containing donkey serum (5%) in PB for 30 min at room temperature. Sections were incubated with
primary antibodies (rb-GFAP 1:200, Dako, gt-Ibal, 1:500 Wako, NeuroTrace™ 1:200, Thermo
Fischer) overnight at 4°C. The next day, sections were washed and incubated with corresponding
secondary antibodies (1:500, Thermo Fischer Scientific). Sections were mounted in 0.1 M PB on

Superfrost PlusTM microscope slides and coverslipped using Mowiol.

Behavioral studies

Animal were subjected to a series of behavioral tests at different time points. The here used tests
included the (1) runway, (2) ladder rung test, (3) the rotarod test, (4) neurological scoring, (5) cylinder
test, (6) single pallet grasping. All tests were evaluated at baseline and 3, 7, 14 and 21 after stroke
induction. Animals used for deep learning-assisted tests (runway, ladder rung) represent a different

cohort of animals to the remaining behavior tasks.
Runway test

A runway walk was performed to assess whole body coordination during overground locomotion.
The walking apparatus consisted of a clear Plexiglas basin, 156 cm long, 11.5 cm wide and 11.5 cm
high (Fig. 1). The basin was equipped with two ~ 45° mirrors (perpendicularly arranged) to allow
simultaneous collection of side and bottom views to generate three-dimensional tracking data. Mice
were recorded crossing the runway with a high-definition video camera (GoPro Hero 7) at a resolution
of 4000 x 3000 and a rate of 60 frames per second. Lighting consisted of warm background light and
cool white LED stripes positioned to maximize contrast and reduce reflection. After acclimatization
to the apparatus, mice were trained in two daily sessions until they crossed the runway at constant
speed and voluntarily (without external intervention). Each animal was placed individually on one

end of the basin and was allowed to walk for 3 minutes.
Ladder rung test

The same set up as in the runway was used for the ladder rung test, to assess skilled locomotion. We
replaced the Plexiglas runway with a horizontal ladder (length: 113 cm, width: 7 cm, distance to
ground: 15 cm). To prevent habituation to a specific bar distance, bars were irregularly spaced (1-4
cm). For behavioral testing, a total of at least three runs per animal were recorded. Kinematic analysis
of both tasks was based exclusively on video recordings and only passages with similar and constant

movement velocities and without lateral instability were used. A misstep was defined when the mouse
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toe tips reached 0.5 cm below the ladder height. The error rate was calculated by errors / total steps*

100.
Rotarod test

The rotarod test is a standard sensory-motor test to investigate the animals’ ability to stay and run on
an accelerated rod (Ugo Basile, Gemonio, Italy). All animals were pre-trained to stay on the
accelerating rotarod (slowly increasing from 5 to 50 rpm in 300s) until they could remain on the rod
for > 60 s. During the performance, the time and speed was measured until the animals fell or started
to rotate with the rod without running. The test was always performed three times and means were

used for statistical analysis. The recovery phase between the trials was at least 10 min.
Neurological score / Bederson score

We used a modified version of the Bederson (0-5) score to evaluate neurological deficits after stroke.
The task was adapted from Biebet et al. 4> The following scoring was applied; (0) no observable
deficit; (1) forelimb flexion; (2) forelimb flexion and decreased resistance to lateral push; (3) circling;

(4) circling and spinning around the cranial-caudal axis; (5) no spontaneous movement/ death.
Cylinder Test

To evaluate locomotor asymmetry mice were placed in an opentop, clear plastic cylinder for about
10 min to record their forelimb activity while rearing against the wall of the arena. The task was
adapted from Roome et al. +*. Forelimb use is defined by the placement of the whole palm on the wall
of the arena, which indicates its use for body support. Forelimb contacts while rearing were scored
with a total of 20 contacts recorded for each animal. Three parameters were analysed which include
paw preference, symmetry and paw dragging. Paw preference was assessed by the number of
impaired forelimb contacts to the total forelimb contacts. Symmetry was calculated by the ratio of
asymmetrical paw contacts to total paw contacts. Paw dragging was assessed by the ratio of the

number of dragged impaired forelimb contacts to total impaired forelimb contacts.
Single pellet grasping

All animals were trained to reach with their right paw for 14 days prior to stroke induction over the
left motor cortex. Baseline measurements were taken on the day before surgery (Odpo) and test days
started at 4 dpo and were conducted weekly thereafter (7, 14, 21, 28 dpo). For the duration of
behavioral training and test periods, animals were food restricted, except for 1 day prior to 3 days
post injury. Body weights were kept above 80% of initial weight. The single pellet reaching task was

adapted from Chen et al. **. Mice were trained to reach through a 0.5-cm-wide vertical slot on the
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right side of the acrylic box to obtain a food pellet (Bio-Serv, Dustless Precision Pellets, 20 mg)
following the guidelines of the original protocol. To motivate the mice to not drop the pellet, we
additionally added a grid floor to the box, resulting in the dropped pellets to be out of reach for the
animals. Mice were further trained to walk to the back of the box in between grasps to reposition
themselves as well as to calm them down in between unsuccessful grasping attempts. Mice that did
not successfully learn the task during the two weeks of shaping were excluded from the task (n=2).
During each experiment session, the grasping success was scored for 30 reaching attempts or for a
maximum of 20 minutes. Scores for the grasp were as follows: “1” for a successful grasp and retrieval
of the pellet (either on first attempt or after several attempts); “0” for a complete miss in which the
pellet was misplaced and not retrieved into the box; “0.5” for drag or drops, in which the animal
successfully grasped the pellet but dropped it during the retrieval phase. The success rate was

calculated for each animal as end score = (total score/number of attempts*100).

DeepLabCut (DLC)

Video recordings were processed by DeepLabCut (DLC, v. 2.1.5), a computer vision algorithm that
allows automatic and markerless tracking of user-defined features. A relatively small subset of
camera frames (training dataset) is manually labelled as accurately as possible (for each task and
strain, respectively). Those frames are then used to train an artificial network. Once the network is
sufficiently trained, different videos can then be directly input to DLC for automated tracking. The
network predicts the marker locations in the new videos, and the 2D points can be further processed

for performance evaluation and 3D reconstruction.
Dataset preparation:

Each video was migrated to Adobe Premiere (v. 15.4) and optimized for image quality (color
correction and sharpness). Videos were split into short one-run-sequences (left to right or right to

left), cropped to remove background and exported/compressed in H.264 format.
Training:

The general networks for both behavioral tests were trained based on ResNet-50 by manually
labelling 120 frames selected using k-means clustering from multiple videos of different mice (N =6
videos/network). We labelled 10 distinct body parts (head, front toe tip, wrist, shoulder, elbow, back
toe, back ankle, iliac crest, hip, tail) in all videos of mice recorded from side views (left, right) and 8
body parts (head, right front toe, left front toe, center front, right back toe, left back toe, center back,
tail base) in all videos showing the bottom view, respectively (for details, see Suppl. Fig. 1, 2). Using

these hand labelled data, we allowed training to run for 1°030°000 iterations (DLC’s native cross-
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entropy loss function plateaued between 100’000 and 300’000 iterations). Evaluation of labelling
accuracy was assessed using the ‘evaluate network’ function provided by DLC. This function
computes the Euclidean error between the manual labels and the ones predicted by DLC averaged
over the hand locations and test images (mean absolute error, proportional to the average root mean

square error).
Refinement:

20 outlier frames from each of the training videos where manually corrected and then added to the
training dataset. Locations with a p <0.9 were relabeled. The network was then refined using the same

numbers of iterations (1°030°000).

All experiments were performed inside the Anaconda environment (Python 3.7.8) provided by DLC

using NVIDIA GeForce RTX 2060.

Data processing with R

Video pixel coordinates for the labels produced by DLC were imported into R Studio (Version 4.04
(2021-02-15) and processed with custom scrips that can be assessed here:

https://github.com/rustlab1/DLC-Gait-Analysis. Briefly, accuracy values of individual videos were

evaluated and data points with a low likelihood were removed. Representative videos were chosen to
plot a general overview of the gait. Next, individual steps were identified within the run by the speed
of the paws to identify the “stance” and “swing” phase. These steps were analyzed for
synchronization, speed, length, and duration from the down view over a time course. Additionally,
the angular positioning between the body center and the individual paws was measured. From the
lateral/side view, we next measured average and total height differences of individual joins (y-
coordinates) and the total movement, protraction, and retraction changes per step (x-coordinates) over
the time course. Next, we measured angular variability (max, average, min) between neighboring
joints including (hip-ankle-toe, iliac crest-hip-back-ankle, elbow-wrist-front toe, shoulder-elbow-

wrist).

All >100 generated parameters were extracted to perform a random forest classification (ntree = 100)
to determine the importance (Gini impurity-based feature importance) for determining accuracy of
the injury status. This was performed for all time points (bl, 3, 7, 14,21 dpi) and in a subgroup analysis
between baseline vs. 3 dpi and baseline vs. 21 dpi. A confusion matrix was performed for determining
the prediction accuracy of this model. The most five important parameters were used to perform a

principal component analysis to demonstrate separation of these parameters.
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Statistical Analysis

Statistical analysis was performed using RStudio (4.04 (2021-02-15). Sample sizes were designed

7.2845 and to the literature ®'!. Overview of

with adequate power according to our previous studies
sample sizes can be found in Suppl. Table 1. All data were tested for normal distribution by using the
Shapiro-Wilk test. Normally distributed data were tested for differences with a two-tailed unpaired
one-sample #-test to compare changes between two groups (differences between ipsi- and
contralesional sides). Multiple comparisons were initially tested for normal distribution with the
Shapiro-Wilk test. The significance of mean differences between normally distributed multiple
comparisons was assessed using repeated measures ANOVA with post-hoc analysis (p adjustment
method = holm). Variables exhibiting a skewed distribution were transformed, using natural
logarithms before the tests to satisfy the prerequisite assumptions of normality. An overview of all
raw data and tests can be found in Suppl. Table 3. Data are expressed as means + SD, and statistical

significance was defined as *p < 0.05, *xp <0.01, and **xp <0.001. Raw data, summarized data and

statistical evaluation can be found in the supplementary information (Suppl. Table 2-37).

Code availability

The code with sample data are available at https://github.com/rustlab1/DLC-Gait-Analysis
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