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ABSTRACT Clostridioides difficile is the most common cause of antibiotic-
associated gastrointestinal infections. Capillary-electrophoresis (CE)-PCR ribotyping
is currently the gold standard for C. difficile typing but lacks discriminatory power to
study transmission and outbreaks in detail. New molecular methods have the
capacity to differentiate better, but backward compatibility with CE-PCR ribotyping
must be assessed. Using a well-characterized collection of diverse strains (N=630;
100 unique ribotypes [RTs]), we aimed to investigate PCR ribotyping prediction from
core genome multilocus sequence typing (cgMLST). Additionally, we compared the
discriminatory power of cgMLST (SeqSphere & EnteroBase) and whole genome
MLST (wgMLST) (EnteroBase) with single nucleotide polymorphism (SNP) analysis).
A unique cgMLST profile (>6 allele differences) was observed in 82/100 ribotypes,
indicating sufficient backward compatibility. Intra-RT allele difference varied per
ribotype and MLST clade. Application of cg/wgMLST and SNP analysis in two
outbreak settings with ribotypes RT078 and RT181 (known with a low intra-ribotype
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allele difference) showed no distinction between outbreak- and non-outbreak strains,
in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the
potential to be an alternative to CE-PCR ribotyping. The method is reproducible,
easy to standardize and offers higher discrimination. However, in some ribotype
complexes adjusted cut-off thresholds and epidemiological data are necessary to
recognize outbreaks. We propose to decrease the current threshold of 6 to 3 alleles

to better identify outbreaks.

KEYWORDS Clostridioides difficile, whole-genome sequencing, typing methods,

core genome MLST, whole genome MLST

INTRODUCTION

Clostridioides difficile is a Gram-positive anaerobic bacterium that is associated with
nosocomial gastrointestinal infection (1) (2). It is estimated that there were almost
500,000 patients with C. difficile infection (CDI) and around 29,000 deaths in the
United States in 2011 (2). Individuals with C. difficile infection (CDI) are an important
source of C. difficile transmission in healthcare settings (2). Typing of C. difficile is
necessary for infection control, epidemiology and evaluation of treatment. Several
methods are used for typing C. difficile, including capillary electrophoresis (CE) PCR
ribotyping (3) (4) and multilocus sequence typing (MLST) (5). CE-PCR ribotyping is
currently the gold standard. However, it does not provide sufficient discriminatory
power to distinguish related strains (6). Furthermore, for CE-PCR ribotyping,
standardization and interlaboratory comparisons are difficult to establish (7),
whereas for MLST this is relatively simple. In the case of a suspected outbreak CE-
PCR ribotyping can be used in combination with multilocus variable-number tandem
repeat (VNTR) analysis (MLVA) for subtyping of strains belonging to one PCR
ribotype (8). This combination of methods is usually sufficient to type strains and
understand transmission events. However, these methods do not provide sufficient
information about strain characteristics (e.g. possession of virulence and resistance
genes) and possible treatment failures (relapse vs. reinfection). The techniques are
also less suitable to study transmission and to determine the role of symptomatic
and asymptomatic patients in hospital acquired CDI (9). Therefore, typing methods
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67  with more discriminatory power and preferably based on better standardized whole
68 genome sequencing (WGS) are urgently needed.

69

70  There are two commonly applied methods to identify genomic variations using WGS.
71 Single nucleotide polymorphism (SNP) analysis usually uses a reference genome
72 and detects SNPs between the reference genome and the studied genome (10).

73 SNP analysis provides the highest resolution, but it is relatively slow, requires

74  extensive bioinformatic tools, is difficult to standardize and typing nomenclature is
75  missing (11), (12), (9). The second approach is based on gene-by-gene allelic

76 profiling of the core genome (cgMLST) or whole genome (wgMLST) (13). cgMLST
77  provides high discriminatory power, is more rapid than SNP analysis, offers

78  reasonably accurate reproducibility (11) and could be used as a typing method since
79  the scheme is maintained by a centralized database (14).

80

81  Currently there are several cg/wgMLST schemes available for C. difficile, both

82 commercially and publicly. The first commercial platform is SeqSphere+ software
83 [Ridom GmbH, Germany] comprising of a scheme (the cgMLST.org Nomenclature
84  Server) using up to 2147 core genes and 1357 accessory genes out of 3756 genes
85 present in strain 630 (14). The second is BioNumerics [bioMérieux, France] with the
86 cgMLST/wgMLST scheme developed by Applied-Maths, comprising 1999 core

87 genes and 6713 accessory genes and several other genes associated with

88 virulence, antimicrobial resistance and others from different C. difficile strains (15).
89 Besides these 2 commercial platforms, there is a publicly available cg/wgMLST

90 scheme from EnteroBase [University of Warwick, UK] consisting of 2556 genes for
91 the cgMLST scheme and up to 13763 genes for the wgMLST scheme (16). The

92  cgMLST scheme of EnteroBase (EB cgMLST) is also available through the Center
93 for Genomic Epidemiology (cgMLSTFinder 1.1,

94  https://cge.cbs.dtu.dk/services/cgMLSTFinder/).

95

96 Several studies have been published on the application of cgMLST (14), (11), (15),
97 (16). Most studies show that cgMLST is backward compatible with CE-PCR

98 ribotyping but only a restricted number of different ribotypes were analysed and

99  outbreaks were not included. Recently, Seth-Smith and colleagues showed that

100 cgMLST predicted 36 ribotypes using nearly 300 well characterised clinical strains


https://doi.org/10.1101/2021.08.10.455895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455895; this version posted August 12, 2021. The copyright holder for this preprint

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

from Switzerland. However, some ribotypes complexes (RT 078/126) has a low
genomic difference, whereas other ribotypes (e.g., RT 023) were very disperse (17).
Our study builds upon previous work by assessing backward compatibility more in
depth, using 100 unique ribotypes and changing thresholds to determine optimal
differentiation between ribotypes. Furthermore, we analyse the performance of CE-
PCR ribotyping, cgMLST, wgMLST and SNP analysis by using multiple software
programs (SeqSphere & EnteroBase) and applied the methods on two outbreaks.
Importantly, our study shows that a threshold of < 3 targets/alleles is needed for C.
difficile isolates that are likely to belong to the same clone in an outbreak setting.

MATERIALS AND METHODS

Sequence data. The NCBI database was searched at the start of this study for
sequenced closed C. difficile genomes, this resulted in 4845 available genomes.
Only sequence data generated on lllumina sequencing platform and representing
known ribotypes were selected. A random selection of overrepresented strains (e.g.
RT027 and RTO78) were included. This approach resulted in 609 complete genome
sequences that were analysed. Besides downloaded strains from the NCBI database
we included also 21 recently sequenced strains at Leiden University Medical Center
(LUMC). This comprised fifteen Greek RT181 CDI outbreak strains that were already
sequenced for a previous study (PRJEB36956, Table S1, (18) and 6 strains from a
Dutch CDI outbreak due to RT0O78. For sequencing of strains, total DNA was isolated
from cultured bacteria. A few colonies were emulsified in Tris/EDTA (TE) buffer and
heated at 100° C for 10 minutes according to the Griffiths et al. protocol (5). DNA
was sequenced at Genome Scan B.V., Leiden, The Netherlands, on an lllumina
NovaSeq 6000 after preparation with the NebNext Ultra Il DNA library prep kit for
lllumina. This produced on average 3 million paired-end reads (read size 150bp) per

sample, with a minimum of 90% reads with a quality of =30.

Ridom cgMLST. Ridom® SeqSphere* (version 6.0.2; Ridom GmbH, Miinster,
Germany) was run with default settings for quality trimming, de novo assembly and
allele calling on a Microsoft Windows operating system. Quality trimming occurred at
both 5’-ends and 3’-end until an average base quality of 30 was reached (length of
20 bases and a 120-fold coverage) (14), (13). De novo assembly was performed

using the SKESA assembler version 2.3.0 (19) integrated in SeqSphere” (20) using
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default settings for SKESA. SeqSphere” scanned for the defined genes using
BLAST (21) with criteria described previously (22), (13). For further analysis,
distance matrices, minimum spanning trees and neighbour joining trees were
constructed using the integrated features within SeqSphere” with “pairwise ignoring

missing values” option turned on.

EnteroBase cgMLST and wgMLST. cgMLST was performed using cgMLST Finder
1.1, available through the Center for Genomic Epidemiology (cgMLSTFinder 1.1;
https://cge.cbs.dtu.dk/services/cdMLSTFinder/ ). Genomic data was processed using

automated pipelines inside EnteroBase, as described in detail previously (23). In
short, de novo assembly of lllumina sequence reads was performed using Spades
v3.10 (24). In order to pass quality control, assemblies were needed to comply with
criteria described previously (16). BLASTn and UBLASTP were used to align
assemblies to alleles. EnteroBase module MLSType was used to assess allele
numbers and cluster types (23). cgMLST Finder 1.1 provides a distance matrix for
analysis. Distance matrices were used to calculate the mean intra- and inter-allelic
distance between different CE-PCR ribotypes. For wgMLST analysis, an ad hoc
scheme was used based on the wgMLST scheme from EnteroBase (EB wgMLST)
(16), (25) . This ad hoc scheme was integrated in Ridom® SeqSphere (14). De novo
assembly, allele calling and further analysis were carried out as mentioned

previously (under Ridom cgMLST).

SNP analysis. SNPs were identified as previously described (26) using the webtool
at the following address: http://cge.cbs.dtu.dk/services/CSIPhylogeny/. Default
settings were used for the SNP analysis. C. difficile strain 630 (NC_009089) was

used as the reference genome for all analyses. In short, reads were mapped to the
reference sequence using BWA (version 0.7.2) (27). Depth at each position was
calculated using genomeCoverageBed, which is a component of BEDTools (version
2.16.2) (28). SNPs were called using mpileup, which is a component of SAMTools
(version 0.1.18) (29). Mapping quality (minimum of 25 reads) and SNP quality (SNPs
were filtered out if quality was below 30 or if they were called within the vicinity of 10
bp of another SNP) were calculated by BWA and SAMTools, respectively.
CSIPhylogeny 1.4 provides a distance matrix for analysis. Distance matrices (based
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168  on pairwise comparison, missing data were excluded) were used to calculate the
169 mean intra- and inter-RT SNP distance between different CE-PCR ribotypes.

170

171 Mean intra-ribotype allele difference. Mean intra-ribotype allele difference was
172  determined for 19 ribotypes using distance matrices produced with cgMLST and

173  wgMLST schemes and SNP analysis. From each ribotype, 3 to 13 strains were

174  included. To prevent inclusion of related strains, e.g. from outbreak reports, we

175  selected ribotypes with at least 3 strains from different geographic locations and/or
176 ~ from different collection years.

177

178  Data availability. All own genome sequence data generated as part of this study
179  were submitted to the NCBI/ENA under study number PRJEB46469. Sequence

180 Read Archive (SRA) accession numbers for other analyzed genomes are provided in
181 Table S1.

182

183 RESULTS

184 Ridom cgMLST is backward compatible with CE-PCR ribotyping.

185  To test the backward compatibility of cgMLST (SeqSphere) with CE-PCR ribotyping,
186  we compared cgMLST and CE-PCR ribotyping using a selection of sequenced C.
187  difficile strains with known ribotypes (Janezic & Rupnik, 2019). Figure 1 depicts a
188  neighbour joining tree based on the Ridom SeqSphere cgMLST scheme (SqSp

189  cgMLST) including 100 different PCR ribotypes from all 5 MLST Clades. Most

190 ribotypes show a different allelic profile in cgMLST in comparison with other

191 ribotypes. However, there are ribotypes within every MLST clade that show low allele
192  difference (<6 alleles) in comparison with other ribotypes.

193

194  When all included strains (n=630 strains) from 100 unique ribotypes were analysed
195 (shown in Table 1), 82 ribotypes were distinguishable, i.e., the strains within these
196 ribotypes differed by >6 alleles from strains within other ribotypes. Eighteen ribotypes
197  (18%) clustered together with 1-3 other ribotypes from the same clade and had < 6
198 allelic differences. This was observed in Clades 1, 2 and 5. In figure 2 we show the
199 ribotypes in each cluster and how these clusters vary at different thresholds (0-6

200 allelic differences). When the threshold was lowered from 6 to O, the number of

201 different ribotypes that clustered decreased from 13 to 2 (RT045 and RT127). The
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amount of clusters decreased from 14 to 1. Even at a threshold of 0 allele difference,
these ribotypes showed clustering, demonstrating the limitation of short-read

sequencing and cgMLST.

Intra-ribotype allele difference varies per ribotype and per MLST clade

We determined the mean allelic difference between strains from the same ribotype
and tested if intra-ribotype allele differences vary between MLST clades and
ribotypes. We also compared the mean intra-ribotype allele or SNP differences with
CcgMLST, wgMLST and SNP analysis. Mean intra-ribotype allele difference varied
between ribotypes (Figure 3A). The method with the smallest scheme (SqSp
cgMLST) showed the lowest intra-ribotype allele difference average (mean range of
5-376 alleles) whereas SNP analysis showed the highest average (mean range of
67-2563 alleles). As a comparison, the mean and median of the inter-ribotype allele
difference were 1742 and 2131 alleles with SqSp cgMLST, respectively. Figure 3 A
also shows that RT027 had an intra ribotype allele difference of 8.4 (SqSp cgMLST),
10.7 (EB cgMLST), 18.1 (EB wgMLST) and 100.7 (SNP). Another complex ribotype,
RTO078 showed 13.2, 15.5, 29.3 and 139.4, respectively. The most frequently found
ribotype in Europe, RT014 showed 148.1, 173, 258.8 and 855.7 respectively. RT023
(clade 3) showed 108.7, 121.3, 157.5 and 1014.7, respectively. RT017 (clade 4)
showed 22.3, 23.5, 63.7 and 129.3, respectively. EB wgMLST and SNP analysis
showed similar results as cgMLST, but showed much higher average intra-ribotype
allele and SNP difference. The ribotype with lowest intra-ribotype allele difference for
clade 1 was again RT002 (64 alleles and 140 SNPs) and the highest was RT056
(650 alleles and 2563 SNPs). The ribotype with the lowest intra-ribotype difference
from clade 2 was RT181 (11 alleles and 67 SNPs), whereas the highest was RT036
(39 alleles and 120 SNPs). RT023 from clade 3 showed an average of 158 intra-
ribotype allele difference and 1015 SNP difference. RT017 from clade 4 showed 64
allele and 129 SNP difference. Lastly, RT126 from clade 5 showed the lowest
difference (18 allele and 130 SNP differences) and RT127 the highest (379 allele
and 592 SNP differences). SNP analysis showed the highest resolution and often >2
times difference in comparison with wgMLST.

The mean intra-ribotype allele difference per clade was also calculated for clades 1,
2 and 5 by combining the averages per ribotype within a clade (figure 3B). Clade 1
had the highest average allele difference for SqSp cgMLST, EB cgMLST, EB
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wgMLST and SNP analysis (114, 136, 171 allele difference and 685 SNPs,
respectively). Followed by clade 5 with 39,49, 66 allele differences and 177 SNPs,
respectively. Clade 2 had the lowest average intra-ribotype allele difference (9, 12,
18 allele differences and 100 SNPs, respectively).

Clade 1 had the highest mean intra-ribotype allele difference for wgMLST and SNP
analysis (171 alleles and 685 SNPs), followed by clade 5 with 66 alleles and 177
SNPs. Clade 2 had again the lowest mean intra-ribotype allele difference (18 alleles
and 100 SNPs).

WGS based typing methods cannot distinguish outbreak strains from non-
outbreak strains in ribotypes with a low intra-ribotype allele difference

CE-PCR ribotyping has a low resolution in comparison with whole genome-based
typing for outbreak analysis. However, even with the increased resolution of WGS
based typing, it remains crucial to understand what defines an outbreak. Bletz et al.
proposed a threshold of < 6 alleles for cgMLST for isolates that are expected to
belong to the same clone (14). In order to guide the interpretation of Bletz et al. we
compared cgMLST, wgMLST and SNP analysis in 2 suspected outbreak settings.
We selected outbreak strains from MLST clades 2 (RT 181) and 5 (RT 078), since
both clades have a lower average allele difference. Confirmed outbreak strains were
defined as having an epidemiological link (e.g. nursed in the same ward) combined
with < 6 allele differences. Control strains belonged to similar PCR ribotypes as the
outbreaks strains or to other PCR ribotypes from the same clade.

Next, we analysed the distance matrices of two clusters containing confirmed
outbreaks and non-outbreak strains with cgMLST, wgMLST and SNP analysis. The
strains within each cluster were either labelled as outbreak strain or control strain.
These distance matrices of both clusters were visualized in graphs (Figure 5A and B)
with each data point representing a distance in alleles or SNPs between 2 strains.
We calculated the range of allele or SNP difference of outbreak strains (Range O)
and compared it with the range of allele or SNP difference of non-outbreak strains
(Range NO). The area between the upper limit of range O and the lower limit of
range NO determines the area where adjustment of the threshold is possible,
provided that outbreak strains and non-outbreak strains do not overlap. The larger
the area, the better the method can discriminate between outbreak and non-outbreak

strains.
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The first CDI suspected outbreak we analysed was due to RT078 (clade 5) in a
Dutch general hospital, involving 6 patients in the Gastroenterology ward between
October-December 2018 (figure 4A). Three patients had an hospital-onset of CDI
and 3 had a community-onset (including the index case). The first case (patient A)
was admitted on 1% of November and had a community-onset of CDI since the 25"
of October. The second case (patient B) was admitted on the 2" of November and
developed hospital-onset of CDI on the 5. The 3" case (patient C) was admitted on
the 12™ of November and developed hospital-onset of CDI on the 16™. One patient
(patient D) was transferred from another hospital on the 24™ of November and had
CDI since the 13", this patient did not belong to the outbreak. Two other patients
(patient E & F) had a community onset of CDI and were admitted both on the 4™ of
December and had CDI since the 28" of November and 1% of December,
respectively. Three isolates from 3 different patients showed a clustering and had 0
allele differences (patients A, B and C), the other 3 patients (patients D, E and F) did
not belong to this cluster and had >6 allele differences. Twelve additional control
samples from Clade 5 were added to this collection. These included five Leeds-
Leiden reference strains (RT033, RT045, RT066, RT078 and RT126) and 7 other
strains (RT045, RT066, RT126, RT127 and RT078 (N=3)). Figure 4A depicts the
minimum-spanning tree (based on SqSp cgMLST) of the studied isolates of clade 5
(N=18). This resulted in three clusters (< 6 alleles), each comprising of
epidemiologically related and unrelated strains of which cluster 1 is the largest,
involving three strains of the confirmed RTO78 outbreak (3 cases [patient A, B and C]
and 1 non-case [patient E]) and three control strains (RT066, RT078 and RT126).
The second outbreak (18) occurred in a Greek 180-bed rehabilitation clinic involving
15 CDI patients infected with RT181 (clade 2) at the orthopaedics and neurological
wards between March and April 2019 (Figure 4B). All 15 patient isolates showed
allele differences between 0-2 alleles. Seven control samples from Clade 2 were
added to this collection, including Leeds-Leiden reference strains of RT016, RT027,
RT198, 1 strain of RT036 and RT176 and 2 strains of RT181. Figure 4B shows the
minimum-spanning tree based on SqSp cgMLST. Two clusters could be recognized,
each comprising epidemiologically related and unrelated strains. Cluster 1 contained
both confirmed outbreak strains (RT181, N=15) and control strains (RT181, N=2).
Therefore, the current threshold of <6 alleles is not suitable to recognise an outbreak
of RT 181.
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Figure 5A shows that all WGS method could distinguish between confirmed outbreak
and non-outbreak RT 078 strains, since there is no overlap between range O and
range NO. SNP analysis had the best discriminatory power, followed by EB
wgMLST and cgMLST, which showed the lowest discriminatory power. Figure 5B
shows that wgMLST is the only method that could discriminate between outbreak
and non-outbreak RT 181 strains, whereas cgMLST and SNP analysis show overlap
in their ranges. Ranges O and NO are shown in Table 2 for both clusters and all
applied typing methods. No overlap was seen between Range O and Range NO
from Cluster 1 from the RT078 CDI outbreak. For SqSp cgMLST and EB cgMLST
cluster 1 showed a difference of 3 alleles and 2 alleles between the Range O and
Range NO, respectively. Furthermore, the difference between Range O and Range
NO was for wgMLST and SNP analysis 6 alleles and 8 SNPs, indicating that the
threshold could be lowered. However, Cluster 1 from the RT181 CDI outbreak
showed overlap between Range O and Range NO in cgMLST and SNP analysis, but
not in wgMLST, suggesting that the threshold only could be adjusted in wgMLST.

DISCUSSION

We tested the backward compatibility between SqSp cgMLST and CE-PCR
ribotyping and found 82 of 100 different PCR ribotypes had a unique cgMLST profile
using a cut-off of <6 alleles differences. Assessing the performance of cgMLST,
wgMLST and SNP typing in comparison with CE-PCR ribotyping revealed that intra-
ribotype alleles difference varied per ribotype and per MLST clade. Application of
cg/wgMLST and SNP analysis in outbreak settings of RT078 and RT181 showed
that these methods can only distinguish outbreak strains from non-outbreak strains
when a cut-off threshold of 3 alleles is used.

We show that SqSp cgMLST is backward compatible with CE-PCR -ribotyping, but
there are certain ribotypes that are indistinguishable by SqSp cgMLST. These data
are consistent with Seth-Smith et al. who found different PCR ribotypes (RT 078-
126, RT 106-RT500) clustering with maximum of 9 allelic difference. In agreement
with the findings of Seth-Smith et al., we found ribotypes from clade 2 and 5 with the
lowest mean intra-ribotype allele difference. We applied in our study the average
allele differences, contrary to the study of Seth-Smith who used the maximum allelic
difference. When we analysed for the maximum allelic difference, we found higher

differences in all studied ribotypes than Seth-Smith et al. (e.g. RT027: 12 allelic


https://doi.org/10.1101/2021.08.10.455895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455895; this version posted August 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

338 difference vs. 16 allelic difference in our study; RT078: 9 vs. 28, respectively; RT023:
339 52 vs. 199, respectively). This may have been caused by the selection of samples,
340 since we excluded samples from outbreaks by selecting strains separated in time
341 and space.

342  Our results are also consistent with another study (30) that used SNP analysis to

343  investigate the diversity within a ribotype. The study showed that MLST ST1

344  (correlates with ribotype 027) was genetically less diverse with a lower SNP distance
345 range between isolates than ST2 (correlates with ribotype 014). Finally, Frentrup et
346  al, observed clustering of several ribotypes (e.g. RTO01/RT241, RT106/RT500 and
347 RTO78/RT126) from MLST clades 1 and 5 (16), also in agreement with our

348  observations.

349 Interestingly, decreasing the threshold from 6 to O allele difference will still result in
350 clustering of certain ribotypes. The clustering between two strains of RT045 and two
351  strains of RT127 at a threshold of O alleles in SqSp cgMLST was verified with EB

352 cgMLST and SNP analysis. With EB cgMLST one clustering pair of RT045 and

353 RT127 showed 1 allele difference, whereas the other remained at O allele difference.
354  Verification with SNP analysis showed 2 and 7 SNP differences. This observation
355 impairs the backward compatibility of cgMLST with CE-PCR ribotyping and excludes
356  studying the epidemiological links of some strains belonging to RT045 and RT127.
357  Our results demonstrate that the mean allele differences between strains from the
358 same PCR ribotype with SqQSp cgMLST and EB cgMLST are lower in comparison
359  with EB wgMLST and SNP analysis, with the latter showing the highest resolution.
360  Similar results were seen in the studied RT078 CDI outbreak, where EB wgMLST
361 and SNP analysis showed more discriminatory power in comparison with cgMLST.
362 Interestingly, EB wgMLST was the only WGS based method that could discriminate
363  between outbreak strains and non-outbreak strains in RT181 CDI outbreak. A reason
364 could be that EB wgMLST uses a pangenome as a scheme consisting of several C.
365 difficile genomes, in contrast with SNP analysis, which used strain 630 as the

366 reference genome. Ribotypes from clades (e.g. clade 2) that have emerged relatively
367 recently will have lower mean intra-ribotype allele differences as strains from these
368 ribotypes look genetically more similar. Therefore, it may be challenging to

369  distinguish which strains are involved in an outbreak. Another problem with these
370 recently emerged ribotypes (e.g. RT181) is that we have limited data to assess the

371 intra-ribotype allele difference more accurately.
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372  Based on our observations in two CDI outbreaks, we conclude that WGS based

373 methods cannot discriminate between outbreak and non-outbreak strains in MLST
374  clades with low intra-ribotype allele difference. It remains unknown why some clades
375 are less diverse. It is possible that they have emerged relatively recently and

376  therefore are less diverse. Alternatively, the strains in these clades could have a

377 lower mutation rate resulting in less diversity and therefore a lower intra-ribotype

378 allele difference (31), (32). For outbreaks caused by PCR ribotypes belonging to

379  other clades than 2 and 5, the performance of cgMLST is comparable with SNP

380 analysis. Our results are consistent with other studies showing a comparable

381  performance of cgMLST with SNP analysis (14), (33). Based upon the Oxfordshire
382 data set (31), Frentrup et al. had a similar conclusion regarding cgMLST and SNP
383 analysis (16). They showed that C. difficile genomes that differ by <2 alleles

384 generally also differ by 2 <SNPs, using a logistic regression model, and concluded
385 that cgMLST is equivalent to SNP analysis for identifying transmission chains

386  between patients. Bletz et al. showed similar results between cgMLST and SNP

387 analysis in detecting clusters when an outbreak due to ST1 was investigated (14).
388  The main strength of our study is that we compared the performance of several

389  typing methods, in contrast to previous studies (14), (11), (15), (16). We also

390 expanded the collection of C. difficile strains and tested more than 600 sequenced
391  strains belonging to 100 unique ribotypes. Our study has also some limitations. The
392 lack of sufficient available genome sequences from strains belonging to clades 3 and
393 4 limits the generalizability of our findings. Though the backward compatibility was
394 not tested for EB wgMLST, the results can be extrapolated from SqSp cgMLST, EB
395 cgMLST and SNP analysis, since the discriminatory power of EB wgMLST lies

396  between the latter two. We could not verify the correctness of the strain PCR

397 ribotypes, as we had only access to the information as deposited by the researchers.
398 There are a few ribotypes that have similar banding pattern and could be

399 misidentified. The best example is the similarity of RT014 with RT020; they have an
400 almost identical PCR banding pattern, but they differ substantially from each other by
401 cgMLST. Though we only studied two outbreaks, we carefully selected the outbreaks
402 by choosing PCR ribotypes with low intra-ribotype alleles variation. Finally, we have
403 not tested long read sequencing from which theoretically in silico PCR ribotyping can
404  also be obtained.
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We propose to decrease the current threshold of 6 alleles (14) to 3 alleles when
using cgMLST in outbreak situations. We found a difference of 2 and 3 alleles
between controls and outbreak strains with EB cgMLST and SqSp cgMLST,
respectively. In the study by Eyre et al. the evolutionary rate of C. difficile was
estimated to be 0.74 SNVs (95% confidence interval, 0.22-1.40) per genome per
year (34). They expected 0-2 SNPs to occur when isolates are obtained <124 days
apart and 3 SNPs when isolates were obtained 124-364 days apart. However, only
vegetative C. difficile isolates obtained from patients were analyzed. According to
Weller & Wu sporulation reduces the evolutionary rate of Firmicutes (35). Therefore,
we expect that the evolutionary rate of C. difficile is lower during CDI transmission
than during CDI within a patient, since the spores need time to transmit to another
patient and otherwise lie dormant in the surroundings in a healthcare facility or in the
environment for a long period. Accordingly, we expect that outbreak strains will
generally fall within 0-2 alleles.

Nevertheless, we recommend a threshold of 3 alleles to compensate for any
assembly artifacts when less conservative pipelines are used and for outbreaks that
last longer than 124 days (36).

A concern with application of cgMLST is the availability of various cgMLST schemes
and software programs. The centralized databases need resources to maintain their
databases of sequentially numbered alleles. To tackle the problem of the need for a
centralized database and to rapidly identify related genomes against a background
of thousands of other identified genomes, Hash-Based cgMLST has been developed
(112). It is based on cgMLST, but converts alleles in a unique hash or short string of
letters. Furthermore, if every software provider uses its own cgMLST scheme, inter-
laboratory comparison is delayed and understanding of epidemiology is hampered.
As Werner et al. proposed, it is favourable that a fixed cgMLST scheme is
constructed (33). Furthermore, there are logistical and cost considerations for routine
implementation of cgMLST. Reference laboratory are needed with a good
infrastructure to sequence strains on a routine basis while keeping the costs in mind

as well.

In summary, cgMLST has the potential to replace CE-PCR ribotyping for C. difficile.
The method provides similar differentiation of strains, is easy to standardize, is

reproducible and shows a high discriminatory power. Several cgMLST based typing
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439  methods have emerged with all their specific advantages and disadvantages (11),
440  (14), (16). For the time being, it remains unclear whether one method will get the
441  preference over other methods or that every center will use its own method.

442  However, it is important to ensure that local and international strains can be

443  compared regardless of the use of different methods either by exchange of raw data
444  or via a centralized multi-national database with a fixed cgMLST scheme where
445  every center contributes to. A consensus group could be assembled to harmonize
446  these efforts as has been done previously for CE-PCR ribotyping (4).
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Figure 1: Neighbor joining tree from 100 unique ribotypes based on SqSp cgMLST
allele difference. Each ribotype is depicted with “RTn” followed by “reference”
(belonging to the Leeds-Leiden collection) or clinical (non-Leeds-Leiden strain).
Ribotypes from MLST Clade 1, 2, 3, 4,5 are colored red, yellow, green, blue and
purple, respectively. RT131 stated as CD131-01, 131, has no designated MLST

Clade and is shown in white. The distance is given in absolute allelic difference.
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Table 1: Clustering between ribotypes at different thresholds based on SqSp cgMLST

Threshold (in  RT? amountof RT %Y amountof Clade Threshold (in RT? amountof RT®Y amount Clade
alleles) strains ° strains ° alleles) strains ° bof strains
6 020 1/20 076 1/2 1 4 016 11 027 1/23
016 n 027 5/23 2 027 6/23 036 1/4 2
036 14 9/23 176 5/16
176 4ne 033 2/46 288 2/2
027 3/23 036 2/4 2 045 2/15 078 5/58
10/23 176 13/16 2/15 126 4/29
2/23 198 1/2 3/15 127 3/17
036 1/4 176 1/16 2 066 1/2 078 1/58
033 2/46 288 2/2 5 078 25/58 126 15/29
045 2/15 078 16/58 5 3 018 78 356 313 !
2/15 126 7129 027 3/23 036 1/4
066 1/2 078 3/58 5 6/23 176 3/16
1/2 126 1/29 045 115 078 1/58
078 39/58 126 23/29 5 115 126 1/29
5 018 1/18 356 1/13 1 3115 127 3117
016 n 027 2123 2 078 18/58 126 13/29
176 1/16 2 001 114 055 11 1
198 1/2 018 118 356 3/13 1
027 423 036 1/4 2 016 11 027 1/23
10/23 176 6/16 027 3/23 176 2/16
2/23 198 1/2 045 2/15 126 2/29
036 1/4 176 2/16 2 115 127 2/17
033 1/46 288 1/2 5 078 8/58 126 4/29
045 2/15 078 7/58 5 1 018 78 356 63 !
2/15 126 4/29 045 115 127 117
3/15 127 2/17 0 045 2/15 127 2/17
066 1/2 078 4/58 5
1/2 126 2/29
078 31/58 126 21/29 5

a) Studied PCR ribotype

b) Amount of strains that cluster with another PCR ribotype

c) The comparison between PCR ribotypes is depicted only once per threshold (e.g.
comparison between RT016 and RT027 at threshold 6 is only shown in the RT016

row and is not again depicted in the RT027 row)

d) Matching other PCR ribotype strain
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Figure 2: Clustering of different PCR ribotypes at different thresholds (0-6 allelic

difference). The number of clustering PCR ribotypes is shown in blue and the

amount of clusters at every threshold is shown in pink.
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Figure 3: A) Mean intra-ribotype allele and SNP difference shown for ribotypes from MLST Clade 1 (RT001-RT056), Clade 2
(RT027-RT244), Clade 3 (RT023), Clade 4 (RT017) and Clade 5 (RT033-RT127). Mean intra-ribotype allele difference per ribotype
is shown in light green, turquois and orange for SqSp cgMLST , EB cgMLST and EB wgMLST, respectively. Mean intra-ribotype
SNP difference per ribotype is shown in red. B) Mean intra-ribotype allele and SNP difference shown for MLST Clade 1, Clade 2
and Clade 5. Mean intra-ribotype allele difference per Clade is shown in light green, turquois and orange for SqSp cgMLST, EB
cgMLST and EB wgMLST, respectively. Mean intra-ribotype SNP difference per Clade is shown in red.
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Figure 4: SqQSP cgMLST analysis with minimum- spanning trees of 2 suspected CDI
outbreaks of RT078 and RT181. A) Minimum-spanning tree of PCR-ribotype 078
(clade 5) CDI suspected outbreak with 6 cases (RT078, shown in red), confirmed
outbreak with 3 cases (RT078, shown in largest red circle) and added control strains
of ribotypes belonging to clade 5 (reference strains of RT033, RT045, RT066,
RT078, RT126 shown in blue with red circles and non-reference strains of RT045,
RT066, RT078, RT126 and RT127 shown in blue). B) Minimum-spanning tree of
PCR-ribotype 181 (clade 2) CDI suspected outbreak with 15 suspected and
confirmed cases (RT181, shown in red) and control strains of ribotypes of clade 2
(reference strains of RT016, RT027, RT181 and RT198 shown in blue with red
circles and non-reference strains of RT036 and RT176 shown in blue.

The size and septation of the circle in the minimum-spanning trees corresponds to
the number of included strains. The numbers between each circle correspond to the
number of different alleles between the strains. The coloured shadowing of circles
represents a cluster with <= 6 allele differences that are genetically related. One or

more strains inside a circle means that these strains have 0 allele difference.
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Figure 5: Visualised distance matrices of strain pairs based on cgMLST, wgMLST
and SNP analysis of isolates of cluster 1 as described in figure 4A & 4B. A)
Visualised distance matrix of strain pairs belonging to cluster 1 of RT078. B)
Visualised distance matrix of strain pairs belonging to cluster 1 of RT181. Allele
difference per pair of strains is shown in light green, turquois and orange for cgMLST
in SeqSphere, cgMLST and wgMLST in EnteroBase, respectively. SNP difference

per pair of strains is shown in red.
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Table 2: comparison in range between outbreak and non-outbreak strains of
RT078 and RT181

Typing method  Strains Range (alleles or Difference between
SNPs) Range O & Range NO ®
SqSp cgMLST 078 confirmed outbreak 0 3
non-outbreak 3-9
181 confirmed outbreak 0-5 overlap
non-outbreak 3-9
EB cgMLST 078 confirmed outbreak 2-4 2
non-outbreak 6-14
181 confirmed outbreak 0-8 overlap
non-outbreak 4-12
EB wgMLST 078 confirmed outbreak 1 6
non-outbreak 7-41
181 confirmed outbreak 0-8 2
non-outbreak 10-15
SNP analysis 078 confirmed outbreak 0 8
non-outbreak 8-14
181 confirmed outbreak 0-9 overlap
non-outbreak 7-23

a) Range O is the range in allele or SNP difference between all outbreak strains.
Range NO is the range in allele or SNP difference of non-outbreak strains compared

with themselves and compared with outbreak strains.
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Table S1: included WGS strains of C. difficile in this study.

Sample ID Ribotype Collection Country of ST CcC SRA accession no
Date Isolation

SRR7308630-001 001 2013 UK 3 1 SRR7308630
SRR1519369-LL-001 001 ? ? 3 1 SRR1519369
SRR7309226-001 001 2013 Netherlands 3 1 SRR7309226
SRR7308692-001 001 2013 Italy 3 1 SRR7308692
SRR7308732-001 001 2013 Finland 3 1 SRR7308732
SRR7308761-001 001 2013 Sweden 3 1 SRR7308761
SRR7308773-001 001 2013 Slovakia 3 1 SRR7308773
SRR7308776-001 001 2013 Slovakia 3 1 SRR7308776
SRR7308804-001 001 2013 Spain 3 1 SRR7308804
SRR7308833-001 001 2013 France 3 1 SRR7308833
SRR7308981-001 001 2013 Italy 3 1 SRR7308981
SRR7309099-001 001 2013 Germany 3 1 SRR7309099
SRR7309176-001 001 ? Bulgaria 3 1 SRR7309176
SRR7308836-001 001 ? Netherlands 3 1 SRR7308836
SRR7308645-002 002 2013 Portugal 8 1 SRR7308645
SRR7308677-002 002 2013 Netherlands 8 1 SRR7308677
SRR7309212-002 002 2013 Belgium 8 1 SRR7309212
SRR7308752-002 002 2013 France 8 1 SRR7308752
SRR7309014-002 002 2013 Sweden 8 1 SRR7309014
SRR7309032-002 002 2013 Finland 8 1 SRR7309032
SRR7309128-002 002 2013 Romania 8 1 SRR7309128
SRR7309141-002 002 2013 Portugal 8 1 SRR7309141
SRR7309152-002 002 2013 Romania 8 1 SRR7309152
SRR7309217-002 002 2013 Italy 8 1 SRR7309217
SRR7309219-002 002 2013 UK 8 1 SRR7309219
SRR1519370-LL-002 002 ? ? 8 1 SRR1519370
SRR6042346-002 002 2010 USA 55 1 SRR6042346
SRR7308785-002 002 2013 Poland 8 1 SRR7308785
SRR7308659-002 002 2013 Germany 8 1 SRR7308659
SRR7308698-002 002 2013 UK 8 1 SRR7308698
SRR7308733-002 002 2013 Italy 8 1 SRR7308733
SRR7308704-002 002 2013 France 8 1 SRR7308704
SRR1519371-LL-003 003 2005 UK 12 1 SRR1519371
SRR7852176-003 003 ? UK 12 1 SRR7852176
SRR1519372-LL-004 004 1995 UK 115 1 SRR1519372
SRR7852181-005 005 ? UK 1 SRR7852181
SRR7852186-005 005 ? UK 6 1 SRR7852186
SRR7852185-005 005 ? UK ? ? SRR7852185
SRR6042365-005 005 2010 USA 6 1 SRR6042365
ERR833662-005 005 ? UK 6 1 ERR833662
SRR6042356-005 005 2010 USA 6 1 SRR6042356
SRR7852187-005 005 ? UK 6 1 SRR7852187
SRR7852208-005 005 ? UK 6 1 SRR7852208
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