

1 **PERFORMANCE OF CORE GENOME MULTILOCUS SEQUENCE TYPING**  
2 **COMPARED TO CAPILLARY-ELECTROPHORESIS PCR RIBOTYPING AND SNP**  
3 **ANALYSIS OF *Clostridioides difficile***

4

5 *Authors: Baktash A<sup>1</sup>, Corver J<sup>1</sup>, Harmanus C<sup>1,2</sup>, Smits WK<sup>1</sup>, Fawley W<sup>3</sup>, Wilcox MH<sup>4</sup>,*  
6 *Kumar N<sup>5</sup>, Eyre DW<sup>6</sup>, Indra A<sup>7</sup>, Mellmann A<sup>8</sup>, Kuijper EJ<sup>1,2</sup>*

7

8 *<sup>1</sup> Department of Medical Microbiology, Section Experimental Bacteriology, Leiden*  
9 *University Medical Center, Leiden, the Netherlands; <sup>2</sup> National Reference Laboratory*  
10 *Clostridium difficile, National Institute of Public Health and the Environment, Leiden*  
11 *University Medical Center, Leiden, the Netherlands; <sup>3</sup> National Infection Service,*  
12 *Public Health England, and University of Leeds, Leeds, United Kingdom; <sup>4</sup>*  
13 *Department of Microbiology, Leeds Teaching Hospitals & University of Leeds, Leeds,*  
14 *United Kingdom; <sup>5</sup> Microbiota Interactions Laboratory, Wellcome Sanger Institute,*  
15 *Hinxton, UK; <sup>6</sup> Big Data Institute, Nuffield Department of Population Health,*  
16 *University of Oxford, Oxford, United Kingdom; <sup>7</sup> Paracelsus Medical University of*  
17 *Salzburg, Salzburg, Austria; <sup>8</sup> Institute of Hygiene, University Hospital Münster, and*  
18 *National Reference Center for C. difficile, Münster Branch, Münster, Germany*

19

20 **ABSTRACT** *Clostridioides difficile* is the most common cause of antibiotic-  
21 associated gastrointestinal infections. Capillary-electrophoresis (CE)-PCR ribotyping  
22 is currently the gold standard for *C. difficile* typing but lacks discriminatory power to  
23 study transmission and outbreaks in detail. New molecular methods have the  
24 capacity to differentiate better, but backward compatibility with CE-PCR ribotyping  
25 must be assessed. Using a well-characterized collection of diverse strains (N=630;  
26 100 unique ribotypes [RTs]), we aimed to investigate PCR ribotyping prediction from  
27 core genome multilocus sequence typing (cgMLST). Additionally, we compared the  
28 discriminatory power of cgMLST (SeqSphere & Enterobase) and whole genome  
29 MLST (wgMLST) (Enterobase) with single nucleotide polymorphism (SNP) analysis.  
30 A unique cgMLST profile (>6 allele differences) was observed in 82/100 ribotypes,  
31 indicating sufficient backward compatibility. Intra-RT allele difference varied per  
32 ribotype and MLST clade. Application of cg/wgMLST and SNP analysis in two  
33 outbreak settings with ribotypes RT078 and RT181 (known with a low intra-ribotype

34 allele difference) showed no distinction between outbreak- and non-outbreak strains,  
35 in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the  
36 potential to be an alternative to CE-PCR ribotyping. The method is reproducible,  
37 easy to standardize and offers higher discrimination. However, in some ribotype  
38 complexes adjusted cut-off thresholds and epidemiological data are necessary to  
39 recognize outbreaks. We propose to decrease the current threshold of 6 to 3 alleles  
40 to better identify outbreaks.

41

42 **KEYWORDS** *Clostridioides difficile*, *whole-genome sequencing*, *typing methods*,  
43 *core genome MLST*, *whole genome MLST*

44

45

## 46 **INTRODUCTION**

47 *Clostridioides difficile* is a Gram-positive anaerobic bacterium that is associated with  
48 nosocomial gastrointestinal infection (1) (2). It is estimated that there were almost  
49 500,000 patients with *C. difficile* infection (CDI) and around 29,000 deaths in the  
50 United States in 2011 (2). Individuals with *C. difficile* infection (CDI) are an important  
51 source of *C. difficile* transmission in healthcare settings (2). Typing of *C. difficile* is  
52 necessary for infection control, epidemiology and evaluation of treatment. Several  
53 methods are used for typing *C. difficile*, including capillary electrophoresis (CE) PCR  
54 ribotyping (3) (4) and multilocus sequence typing (MLST) (5). CE-PCR ribotyping is  
55 currently the gold standard. However, it does not provide sufficient discriminatory  
56 power to distinguish related strains (6). Furthermore, for CE-PCR ribotyping,  
57 standardization and interlaboratory comparisons are difficult to establish (7),  
58 whereas for MLST this is relatively simple. In the case of a suspected outbreak CE-  
59 PCR ribotyping can be used in combination with multilocus variable-number tandem  
60 repeat (VNTR) analysis (MLVA) for subtyping of strains belonging to one PCR  
61 ribotype (8). This combination of methods is usually sufficient to type strains and  
62 understand transmission events. However, these methods do not provide sufficient  
63 information about strain characteristics (e.g. possession of virulence and resistance  
64 genes) and possible treatment failures (relapse vs. reinfection). The techniques are  
65 also less suitable to study transmission and to determine the role of symptomatic  
66 and asymptomatic patients in hospital acquired CDI (9). Therefore, typing methods

67 with more discriminatory power and preferably based on better standardized whole  
68 genome sequencing (WGS) are urgently needed.

69

70 There are two commonly applied methods to identify genomic variations using WGS.

71 Single nucleotide polymorphism (SNP) analysis usually uses a reference genome  
72 and detects SNPs between the reference genome and the studied genome (10).

73 SNP analysis provides the highest resolution, but it is relatively slow, requires  
74 extensive bioinformatic tools, is difficult to standardize and typing nomenclature is  
75 missing (11), (12), (9). The second approach is based on gene-by-gene allelic  
76 profiling of the core genome (cgMLST) or whole genome (wgMLST) (13). cgMLST  
77 provides high discriminatory power, is more rapid than SNP analysis, offers  
78 reasonably accurate reproducibility (11) and could be used as a typing method since  
79 the scheme is maintained by a centralized database (14).

80

81 Currently there are several cg/wgMLST schemes available for *C. difficile*, both  
82 commercially and publicly. The first commercial platform is SeqSphere+ software  
83 [Ridom GmbH, Germany] comprising of a scheme (the cgMLST.org Nomenclature  
84 Server) using up to 2147 core genes and 1357 accessory genes out of 3756 genes  
85 present in strain 630 (14). The second is BioNumerics [bioMérieux, France] with the  
86 cgMLST/wgMLST scheme developed by Applied-Maths, comprising 1999 core  
87 genes and 6713 accessory genes and several other genes associated with  
88 virulence, antimicrobial resistance and others from different *C. difficile* strains (15).

89 Besides these 2 commercial platforms, there is a publicly available cg/wgMLST  
90 scheme from Enterobase [University of Warwick, UK] consisting of 2556 genes for  
91 the cgMLST scheme and up to 13763 genes for the wgMLST scheme (16). The  
92 cgMLST scheme of Enterobase (EB cgMLST) is also available through the Center  
93 for Genomic Epidemiology (cgMLSTFinder 1.1;

94 <https://cge.cbs.dtu.dk/services/cgMLSTFinder/>).

95

96 Several studies have been published on the application of cgMLST (14), (11), (15),  
97 (16). Most studies show that cgMLST is backward compatible with CE-PCR  
98 ribotyping but only a restricted number of different ribotypes were analysed and  
99 outbreaks were not included. Recently, Seth-Smith and colleagues showed that  
100 cgMLST predicted 36 ribotypes using nearly 300 well characterised clinical strains

101 from Switzerland. However, some ribotypes complexes (RT 078/126) has a low  
102 genomic difference, whereas other ribotypes (e.g., RT 023) were very disperse (17).  
103 Our study builds upon previous work by assessing backward compatibility more in  
104 depth, using 100 unique ribotypes and changing thresholds to determine optimal  
105 differentiation between ribotypes. Furthermore, we analyse the performance of CE-  
106 PCR ribotyping, cgMLST, wgMLST and SNP analysis by using multiple software  
107 programs (SeqSphere & Enterobase) and applied the methods on two outbreaks.  
108 Importantly, our study shows that a threshold of  $\leq 3$  targets/alleles is needed for *C.*  
109 *difficile* isolates that are likely to belong to the same clone in an outbreak setting.  
110

## 111 MATERIALS AND METHODS

112 **Sequence data.** The NCBI database was searched at the start of this study for  
113 sequenced closed *C. difficile* genomes, this resulted in 4845 available genomes.  
114 Only sequence data generated on Illumina sequencing platform and representing  
115 known ribotypes were selected. A random selection of overrepresented strains (e.g.  
116 RT027 and RT078) were included. This approach resulted in 609 complete genome  
117 sequences that were analysed. Besides downloaded strains from the NCBI database  
118 we included also 21 recently sequenced strains at Leiden University Medical Center  
119 (LUMC). This comprised fifteen Greek RT181 CDI outbreak strains that were already  
120 sequenced for a previous study (PRJEB36956, Table S1, (18) and 6 strains from a  
121 Dutch CDI outbreak due to RT078. For sequencing of strains, total DNA was isolated  
122 from cultured bacteria. A few colonies were emulsified in Tris/EDTA (TE) buffer and  
123 heated at 100° C for 10 minutes according to the Griffiths *et al.* protocol (5). DNA  
124 was sequenced at Genome Scan B.V., Leiden, The Netherlands, on an Illumina  
125 NovaSeq 6000 after preparation with the NebNext Ultra II DNA library prep kit for  
126 Illumina. This produced on average 3 million paired-end reads (read size 150bp) per  
127 sample, with a minimum of 90% reads with a quality of  $\geq 30$ .  
128

129 **Ridom cgMLST.** Ridom<sup>®</sup> SeqSphere<sup>+</sup> (version 6.0.2; Ridom GmbH, Münster,  
130 Germany) was run with default settings for quality trimming, *de novo* assembly and  
131 allele calling on a Microsoft Windows operating system. Quality trimming occurred at  
132 both 5'-ends and 3'-end until an average base quality of 30 was reached (length of  
133 20 bases and a 120-fold coverage) (14), (13). *De novo* assembly was performed  
134 using the SKESA assembler version 2.3.0 (19) integrated in SeqSphere<sup>+</sup> (20) using

135 default settings for SKESA. SeqSphere<sup>+</sup> scanned for the defined genes using  
136 BLAST (21) with criteria described previously (22), (13). For further analysis,  
137 distance matrices, minimum spanning trees and neighbour joining trees were  
138 constructed using the integrated features within SeqSphere<sup>+</sup> with “pairwise ignoring  
139 missing values” option turned on.

140

141 **Enterobase cgMLST and wgMLST.** cgMLST was performed using cgMLST Finder  
142 1.1, available through the Center for Genomic Epidemiology (cgMLSTFinder 1.1;  
143 <https://cge.cbs.dtu.dk/services/cgMLSTFinder/> ). Genomic data was processed using  
144 automated pipelines inside Enterobase, as described in detail previously (23). In  
145 short, *de novo* assembly of Illumina sequence reads was performed using Spades  
146 v3.10 (24). In order to pass quality control, assemblies were needed to comply with  
147 criteria described previously (16). BLASTn and UBLASTP were used to align  
148 assemblies to alleles. Enterobase module MLSType was used to assess allele  
149 numbers and cluster types (23). cgMLST Finder 1.1 provides a distance matrix for  
150 analysis. Distance matrices were used to calculate the mean intra- and inter-allelic  
151 distance between different CE-PCR ribotypes. For wgMLST analysis, an *ad hoc*  
152 scheme was used based on the wgMLST scheme from Enterobase (EB wgMLST)  
153 (16), (25) . This *ad hoc* scheme was integrated in Ridom<sup>®</sup> SeqSphere (14). *De novo*  
154 assembly, allele calling and further analysis were carried out as mentioned  
155 previously (under Ridom cgMLST).

156

157 **SNP analysis.** SNPs were identified as previously described (26) using the webtool  
158 at the following address: <http://cge.cbs.dtu.dk/services/CSIPhylogeny/>. Default  
159 settings were used for the SNP analysis. *C. difficile* strain 630 (NC\_009089) was  
160 used as the reference genome for all analyses. In short, reads were mapped to the  
161 reference sequence using BWA (version 0.7.2) (27). Depth at each position was  
162 calculated using genomeCoverageBed, which is a component of BEDTools (version  
163 2.16.2) (28). SNPs were called using mpileup, which is a component of SAMTools  
164 (version 0.1.18) (29). Mapping quality (minimum of 25 reads) and SNP quality (SNPs  
165 were filtered out if quality was below 30 or if they were called within the vicinity of 10  
166 bp of another SNP) were calculated by BWA and SAMTools, respectively.  
167 CSIPhylogeny 1.4 provides a distance matrix for analysis. Distance matrices (based

168 on pairwise comparison, missing data were excluded) were used to calculate the  
169 mean intra- and inter-RT SNP distance between different CE-PCR ribotypes.

170

171 **Mean intra-ribotype allele difference.** Mean intra-ribotype allele difference was  
172 determined for 19 ribotypes using distance matrices produced with cgMLST and  
173 wgMLST schemes and SNP analysis. From each ribotype, 3 to 13 strains were  
174 included. To prevent inclusion of related strains, e.g. from outbreak reports, we  
175 selected ribotypes with at least 3 strains from different geographic locations and/or  
176 from different collection years.

177

178 **Data availability.** All own genome sequence data generated as part of this study  
179 were submitted to the NCBI/ENA under study number PRJEB46469. Sequence  
180 Read Archive (SRA) accession numbers for other analyzed genomes are provided in  
181 Table S1.

182

## 183 **RESULTS**

### 184 **Ridom cgMLST is backward compatible with CE-PCR ribotyping.**

185 To test the backward compatibility of cgMLST (SeqSphere) with CE-PCR ribotyping,  
186 we compared cgMLST and CE-PCR ribotyping using a selection of sequenced *C.*  
187 *difficile* strains with known ribotypes (Janezic & Rupnik, 2019). Figure 1 depicts a  
188 neighbour joining tree based on the Ridom SeqSphere cgMLST scheme (SqSp  
189 cgMLST) including 100 different PCR ribotypes from all 5 MLST Clades. Most  
190 ribotypes show a different allelic profile in cgMLST in comparison with other  
191 ribotypes. However, there are ribotypes within every MLST clade that show low allele  
192 difference (<6 alleles) in comparison with other ribotypes.

193

194 When all included strains (n=630 strains) from 100 unique ribotypes were analysed  
195 (shown in Table 1), 82 ribotypes were distinguishable, i.e., the strains within these  
196 ribotypes differed by >6 alleles from strains within other ribotypes. Eighteen ribotypes  
197 (18%) clustered together with 1-3 other ribotypes from the same clade and had  $\leq$  6  
198 allelic differences. This was observed in Clades 1, 2 and 5. In figure 2 we show the  
199 ribotypes in each cluster and how these clusters vary at different thresholds (0-6  
200 allelic differences). When the threshold was lowered from 6 to 0, the number of  
201 different ribotypes that clustered decreased from 13 to 2 (RT045 and RT127). The

202 amount of clusters decreased from 14 to 1. Even at a threshold of 0 allele difference,  
203 these ribotypes showed clustering, demonstrating the limitation of short-read  
204 sequencing and cgMLST.

205

#### 206 **Intra-ribotype allele difference varies per ribotype and per MLST clade**

207 We determined the mean allelic difference between strains from the same ribotype  
208 and tested if intra-ribotype allele differences vary between MLST clades and  
209 ribotypes. We also compared the mean intra-ribotype allele or SNP differences with  
210 cgMLST, wgMLST and SNP analysis. Mean intra-ribotype allele difference varied  
211 between ribotypes (Figure 3A). The method with the smallest scheme (SqSp  
212 cgMLST) showed the lowest intra-ribotype allele difference average (mean range of  
213 5-376 alleles) whereas SNP analysis showed the highest average (mean range of  
214 67-2563 alleles). As a comparison, the mean and median of the inter-ribotype allele  
215 difference were 1742 and 2131 alleles with SqSp cgMLST, respectively. Figure 3 A  
216 also shows that RT027 had an intra ribotype allele difference of 8.4 (SqSp cgMLST),  
217 10.7 (EB cgMLST), 18.1 (EB wgMLST) and 100.7 (SNP). Another complex ribotype,  
218 RT078 showed 13.2, 15.5, 29.3 and 139.4, respectively. The most frequently found  
219 ribotype in Europe, RT014 showed 148.1, 173, 258.8 and 855.7 respectively. RT023  
220 (clade 3) showed 108.7, 121.3, 157.5 and 1014.7, respectively. RT017 (clade 4)  
221 showed 22.3, 23.5, 63.7 and 129.3, respectively. EB wgMLST and SNP analysis  
222 showed similar results as cgMLST, but showed much higher average intra-ribotype  
223 allele and SNP difference. The ribotype with lowest intra-ribotype allele difference for  
224 clade 1 was again RT002 (64 alleles and 140 SNPs) and the highest was RT056  
225 (650 alleles and 2563 SNPs). The ribotype with the lowest intra-ribotype difference  
226 from clade 2 was RT181 (11 alleles and 67 SNPs), whereas the highest was RT036  
227 (39 alleles and 120 SNPs). RT023 from clade 3 showed an average of 158 intra-  
228 ribotype allele difference and 1015 SNP difference. RT017 from clade 4 showed 64  
229 allele and 129 SNP difference. Lastly, RT126 from clade 5 showed the lowest  
230 difference (18 allele and 130 SNP differences) and RT127 the highest (379 allele  
231 and 592 SNP differences). SNP analysis showed the highest resolution and often >2  
232 times difference in comparison with wgMLST.

233 The mean intra-ribotype allele difference per clade was also calculated for clades 1,  
234 2 and 5 by combining the averages per ribotype within a clade (figure 3B). Clade 1  
235 had the highest average allele difference for SqSp cgMLST, EB cgMLST, EB

236 wgMLST and SNP analysis (114, 136, 171 allele difference and 685 SNPs,  
237 respectively). Followed by clade 5 with 39,49, 66 allele differences and 177 SNPs,  
238 respectively. Clade 2 had the lowest average intra-ribotype allele difference (9, 12,  
239 18 allele differences and 100 SNPs, respectively).  
240 Clade 1 had the highest mean intra-ribotype allele difference for wgMLST and SNP  
241 analysis (171 alleles and 685 SNPs), followed by clade 5 with 66 alleles and 177  
242 SNPs. Clade 2 had again the lowest mean intra-ribotype allele difference (18 alleles  
243 and 100 SNPs).

244

245 **WGS based typing methods cannot distinguish outbreak strains from non-**  
246 **outbreak strains in ribotypes with a low intra-ribotype allele difference**  
247 CE-PCR ribotyping has a low resolution in comparison with whole genome-based  
248 typing for outbreak analysis. However, even with the increased resolution of WGS  
249 based typing, it remains crucial to understand what defines an outbreak. Bletz *et al.*  
250 proposed a threshold of  $\leq 6$  alleles for cgMLST for isolates that are expected to  
251 belong to the same clone (14). In order to guide the interpretation of Bletz *et al.* we  
252 compared cgMLST, wgMLST and SNP analysis in 2 suspected outbreak settings.  
253 We selected outbreak strains from MLST clades 2 (RT 181) and 5 (RT 078), since  
254 both clades have a lower average allele difference. Confirmed outbreak strains were  
255 defined as having an epidemiological link (e.g. nursed in the same ward) combined  
256 with  $\leq 6$  allele differences. Control strains belonged to similar PCR ribotypes as the  
257 outbreaks strains or to other PCR ribotypes from the same clade.  
258 Next, we analysed the distance matrices of two clusters containing confirmed  
259 outbreaks and non-outbreak strains with cgMLST, wgMLST and SNP analysis. The  
260 strains within each cluster were either labelled as outbreak strain or control strain.  
261 These distance matrices of both clusters were visualized in graphs (Figure 5A and B)  
262 with each data point representing a distance in alleles or SNPs between 2 strains.  
263 We calculated the range of allele or SNP difference of outbreak strains (Range O)  
264 and compared it with the range of allele or SNP difference of non-outbreak strains  
265 (Range NO). The area between the upper limit of range O and the lower limit of  
266 range NO determines the area where adjustment of the threshold is possible,  
267 provided that outbreak strains and non-outbreak strains do not overlap. The larger  
268 the area, the better the method can discriminate between outbreak and non-outbreak  
269 strains.

270 The first CDI suspected outbreak we analysed was due to RT078 (clade 5) in a  
271 Dutch general hospital, involving 6 patients in the Gastroenterology ward between  
272 October-December 2018 (figure 4A). Three patients had an hospital-onset of CDI  
273 and 3 had a community-onset (including the index case). The first case (patient A)  
274 was admitted on 1<sup>st</sup> of November and had a community-onset of CDI since the 25<sup>th</sup>  
275 of October. The second case (patient B) was admitted on the 2<sup>nd</sup> of November and  
276 developed hospital-onset of CDI on the 5<sup>th</sup>. The 3<sup>rd</sup> case (patient C) was admitted on  
277 the 12<sup>th</sup> of November and developed hospital-onset of CDI on the 16<sup>th</sup>. One patient  
278 (patient D) was transferred from another hospital on the 24<sup>th</sup> of November and had  
279 CDI since the 13<sup>th</sup>, this patient did not belong to the outbreak. Two other patients  
280 (patient E & F) had a community onset of CDI and were admitted both on the 4<sup>th</sup> of  
281 December and had CDI since the 28<sup>th</sup> of November and 1<sup>st</sup> of December,  
282 respectively. Three isolates from 3 different patients showed a clustering and had 0  
283 allele differences (patients A, B and C), the other 3 patients (patients D, E and F) did  
284 not belong to this cluster and had >6 allele differences. Twelve additional control  
285 samples from Clade 5 were added to this collection. These included five Leeds-  
286 Leiden reference strains (RT033, RT045, RT066, RT078 and RT126) and 7 other  
287 strains (RT045, RT066, RT126, RT127 and RT078 (N=3)). Figure 4A depicts the  
288 minimum-spanning tree (based on SqSp cgMLST) of the studied isolates of clade 5  
289 (N=18). This resulted in three clusters ( $\leq 6$  alleles), each comprising of  
290 epidemiologically related and unrelated strains of which cluster 1 is the largest,  
291 involving three strains of the confirmed RT078 outbreak (3 cases [patient A, B and C]  
292 and 1 non-case [patient E]) and three control strains (RT066, RT078 and RT126).  
293 The second outbreak (18) occurred in a Greek 180-bed rehabilitation clinic involving  
294 15 CDI patients infected with RT181 (clade 2) at the orthopaedics and neurological  
295 wards between March and April 2019 (Figure 4B). All 15 patient isolates showed  
296 allele differences between 0-2 alleles. Seven control samples from Clade 2 were  
297 added to this collection, including Leeds-Leiden reference strains of RT016, RT027,  
298 RT198, 1 strain of RT036 and RT176 and 2 strains of RT181. Figure 4B shows the  
299 minimum-spanning tree based on SqSp cgMLST. Two clusters could be recognized,  
300 each comprising epidemiologically related and unrelated strains. Cluster 1 contained  
301 both confirmed outbreak strains (RT181, N=15) and control strains (RT181, N=2).  
302 Therefore, the current threshold of  $\leq 6$  alleles is not suitable to recognise an outbreak  
303 of RT 181.

304 Figure 5A shows that all WGS method could distinguish between confirmed outbreak  
305 and non-outbreak RT 078 strains, since there is no overlap between range O and  
306 range NO. SNP analysis had the best discriminatory power, followed by EB  
307 wgMLST and cgMLST, which showed the lowest discriminatory power. Figure 5B  
308 shows that wgMLST is the only method that could discriminate between outbreak  
309 and non-outbreak RT 181 strains, whereas cgMLST and SNP analysis show overlap  
310 in their ranges. Ranges O and NO are shown in Table 2 for both clusters and all  
311 applied typing methods. No overlap was seen between Range O and Range NO  
312 from Cluster 1 from the RT078 CDI outbreak. For SqSp cgMLST and EB cgMLST  
313 cluster 1 showed a difference of 3 alleles and 2 alleles between the Range O and  
314 Range NO, respectively. Furthermore, the difference between Range O and Range  
315 NO was for wgMLST and SNP analysis 6 alleles and 8 SNPs, indicating that the  
316 threshold could be lowered. However, Cluster 1 from the RT181 CDI outbreak  
317 showed overlap between Range O and Range NO in cgMLST and SNP analysis, but  
318 not in wgMLST, suggesting that the threshold only could be adjusted in wgMLST.  
319

## 320 **DISCUSSION**

321 We tested the backward compatibility between SqSp cgMLST and CE-PCR  
322 ribotyping and found 82 of 100 different PCR ribotypes had a unique cgMLST profile  
323 using a cut-off of  $\leq 6$  alleles differences. Assessing the performance of cgMLST,  
324 wgMLST and SNP typing in comparison with CE-PCR ribotyping revealed that intra-  
325 ribotype alleles difference varied per ribotype and per MLST clade. Application of  
326 cg/wgMLST and SNP analysis in outbreak settings of RT078 and RT181 showed  
327 that these methods can only distinguish outbreak strains from non-outbreak strains  
328 when a cut-off threshold of 3 alleles is used.

329 We show that SqSp cgMLST is backward compatible with CE-PCR -ribotyping, but  
330 there are certain ribotypes that are indistinguishable by SqSp cgMLST. These data  
331 are consistent with Seth-Smith *et al.* who found different PCR ribotypes (RT 078-  
332 126, RT 106-RT500) clustering with maximum of 9 allelic difference. In agreement  
333 with the findings of Seth-Smith *et al.*, we found ribotypes from clade 2 and 5 with the  
334 lowest mean intra-ribotype allele difference. We applied in our study the average  
335 allele differences, contrary to the study of Seth-Smith who used the maximum allelic  
336 difference. When we analysed for the maximum allelic difference, we found higher  
337 differences in all studied ribotypes than Seth-Smith *et al.* (e.g. RT027: 12 allelic

338 difference vs. 16 allelic difference in our study; RT078: 9 vs. 28, respectively; RT023:  
339 52 vs. 199, respectively). This may have been caused by the selection of samples,  
340 since we excluded samples from outbreaks by selecting strains separated in time  
341 and space.

342 Our results are also consistent with another study (30) that used SNP analysis to  
343 investigate the diversity within a ribotype. The study showed that MLST ST1  
344 (correlates with ribotype 027) was genetically less diverse with a lower SNP distance  
345 range between isolates than ST2 (correlates with ribotype 014). Finally, Frentrup *et*  
346 *al*, observed clustering of several ribotypes (e.g. RT001/RT241, RT106/RT500 and  
347 RT078/RT126) from MLST clades 1 and 5 (16), also in agreement with our  
348 observations.

349 Interestingly, decreasing the threshold from 6 to 0 allele difference will still result in  
350 clustering of certain ribotypes. The clustering between two strains of RT045 and two  
351 strains of RT127 at a threshold of 0 alleles in SqSp cgMLST was verified with EB  
352 cgMLST and SNP analysis. With EB cgMLST one clustering pair of RT045 and  
353 RT127 showed 1 allele difference, whereas the other remained at 0 allele difference.

354 Verification with SNP analysis showed 2 and 7 SNP differences. This observation  
355 impairs the backward compatibility of cgMLST with CE-PCR ribotyping and excludes  
356 studying the epidemiological links of some strains belonging to RT045 and RT127.

357 Our results demonstrate that the mean allele differences between strains from the  
358 same PCR ribotype with SqSp cgMLST and EB cgMLST are lower in comparison  
359 with EB wgMLST and SNP analysis, with the latter showing the highest resolution.

360 Similar results were seen in the studied RT078 CDI outbreak, where EB wgMLST  
361 and SNP analysis showed more discriminatory power in comparison with cgMLST.

362 Interestingly, EB wgMLST was the only WGS based method that could discriminate  
363 between outbreak strains and non-outbreak strains in RT181 CDI outbreak. A reason  
364 could be that EB wgMLST uses a pangenome as a scheme consisting of several *C.*  
365 *difficile* genomes, in contrast with SNP analysis, which used strain 630 as the  
366 reference genome. Ribotypes from clades (e.g. clade 2) that have emerged relatively  
367 recently will have lower mean intra-ribotype allele differences as strains from these  
368 ribotypes look genetically more similar. Therefore, it may be challenging to  
369 distinguish which strains are involved in an outbreak. Another problem with these  
370 recently emerged ribotypes (e.g. RT181) is that we have limited data to assess the  
371 intra-ribotype allele difference more accurately.

372 Based on our observations in two CDI outbreaks, we conclude that WGS based  
373 methods cannot discriminate between outbreak and non-outbreak strains in MLST  
374 clades with low intra-ribotype allele difference. It remains unknown why some clades  
375 are less diverse. It is possible that they have emerged relatively recently and  
376 therefore are less diverse. Alternatively, the strains in these clades could have a  
377 lower mutation rate resulting in less diversity and therefore a lower intra-ribotype  
378 allele difference (31), (32). For outbreaks caused by PCR ribotypes belonging to  
379 other clades than 2 and 5, the performance of cgMLST is comparable with SNP  
380 analysis. Our results are consistent with other studies showing a comparable  
381 performance of cgMLST with SNP analysis (14), (33). Based upon the Oxfordshire  
382 data set (31), Frentrup *et al.* had a similar conclusion regarding cgMLST and SNP  
383 analysis (16). They showed that *C. difficile* genomes that differ by  $\leq 2$  alleles  
384 generally also differ by  $2 \leq$ SNPs, using a logistic regression model, and concluded  
385 that cgMLST is equivalent to SNP analysis for identifying transmission chains  
386 between patients. Bletz *et al.* showed similar results between cgMLST and SNP  
387 analysis in detecting clusters when an outbreak due to ST1 was investigated (14).  
388 The main strength of our study is that we compared the performance of several  
389 typing methods, in contrast to previous studies (14), (11), (15), (16). We also  
390 expanded the collection of *C. difficile* strains and tested more than 600 sequenced  
391 strains belonging to 100 unique ribotypes. Our study has also some limitations. The  
392 lack of sufficient available genome sequences from strains belonging to clades 3 and  
393 4 limits the generalizability of our findings. Though the backward compatibility was  
394 not tested for EB wgMLST, the results can be extrapolated from SqSp cgMLST, EB  
395 cgMLST and SNP analysis, since the discriminatory power of EB wgMLST lies  
396 between the latter two. We could not verify the correctness of the strain PCR  
397 ribotypes, as we had only access to the information as deposited by the researchers.  
398 There are a few ribotypes that have similar banding pattern and could be  
399 misidentified. The best example is the similarity of RT014 with RT020; they have an  
400 almost identical PCR banding pattern, but they differ substantially from each other by  
401 cgMLST. Though we only studied two outbreaks, we carefully selected the outbreaks  
402 by choosing PCR ribotypes with low intra-ribotype alleles variation. Finally, we have  
403 not tested long read sequencing from which theoretically in silico PCR ribotyping can  
404 also be obtained.

405 We propose to decrease the current threshold of 6 alleles (14) to 3 alleles when  
406 using cgMLST in outbreak situations. We found a difference of 2 and 3 alleles  
407 between controls and outbreak strains with EB cgMLST and SqSp cgMLST,  
408 respectively. In the study by Eyre *et al.* the evolutionary rate of *C. difficile* was  
409 estimated to be 0.74 SNVs (95% confidence interval, 0.22-1.40) per genome per  
410 year (34). They expected 0-2 SNPs to occur when isolates are obtained <124 days  
411 apart and 3 SNPs when isolates were obtained 124-364 days apart. However, only  
412 vegetative *C. difficile* isolates obtained from patients were analyzed. According to  
413 Weller & Wu sporulation reduces the evolutionary rate of *Firmicutes* (35). Therefore,  
414 we expect that the evolutionary rate of *C. difficile* is lower during CDI transmission  
415 than during CDI within a patient, since the spores need time to transmit to another  
416 patient and otherwise lie dormant in the surroundings in a healthcare facility or in the  
417 environment for a long period. Accordingly, we expect that outbreak strains will  
418 generally fall within 0-2 alleles.

419 Nevertheless, we recommend a threshold of 3 alleles to compensate for any  
420 assembly artifacts when less conservative pipelines are used and for outbreaks that  
421 last longer than 124 days (36).

422 A concern with application of cgMLST is the availability of various cgMLST schemes  
423 and software programs. The centralized databases need resources to maintain their  
424 databases of sequentially numbered alleles. To tackle the problem of the need for a  
425 centralized database and to rapidly identify related genomes against a background  
426 of thousands of other identified genomes, Hash-Based cgMLST has been developed  
427 (11). It is based on cgMLST, but converts alleles in a unique hash or short string of  
428 letters. Furthermore, if every software provider uses its own cgMLST scheme, inter-  
429 laboratory comparison is delayed and understanding of epidemiology is hampered.  
430 As Werner *et al.* proposed, it is favourable that a fixed cgMLST scheme is  
431 constructed (33). Furthermore, there are logistical and cost considerations for routine  
432 implementation of cgMLST. Reference laboratory are needed with a good  
433 infrastructure to sequence strains on a routine basis while keeping the costs in mind  
434 as well.

435

436 In summary, cgMLST has the potential to replace CE-PCR ribotyping for *C. difficile*.  
437 The method provides similar differentiation of strains, is easy to standardize, is  
438 reproducible and shows a high discriminatory power. Several cgMLST based typing

439 methods have emerged with all their specific advantages and disadvantages (11),  
440 (14), (16). For the time being, it remains unclear whether one method will get the  
441 preference over other methods or that every center will use its own method.  
442 However, it is important to ensure that local and international strains can be  
443 compared regardless of the use of different methods either by exchange of raw data  
444 or via a centralized multi-national database with a fixed cgMLST scheme where  
445 every center contributes to. A consensus group could be assembled to harmonize  
446 these efforts as has been done previously for CE-PCR ribotyping (4).

447

448

449 **Conflict of Interest statements**

450 *AB; None. JC: None. CH: None. WKS: None. WF: None. MHW: None. NK: None.*  
451 *DWE: Lecture fees from Gilead, outside the submitted work. AM: None. EK:*  
452 *unrestricted research grant from Vedanta Bioscience, Boston.*

453

454 **Acknowledgments**

455 We thank B.V.H. Hornung for his assistance with data collection.

456

457

458

459 REFERENCES

- 460 1. Keller JJ, Kuijper EJ. 2015. Treatment of recurrent and severe *Clostridium difficile* infection.  
461 *Annu Rev Med* 66:373-86.
- 462 2. Smits WK, Lytras D, Lacy DB, Wilcox MH, Kuijper EJ. 2016. *Clostridium difficile* infection. *Nat Rev Dis Primers* 2:16020.
- 463 3. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ. 2008. Characterization of *Clostridium difficile* isolates using capillary gel electrophoresis-based PCR ribotyping. *J Med Microbiol* 57:1377-1382.
- 464 4. Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, Paulick A, Anderson L, Kuijper EJ, Wilcox MH. 2015. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for *Clostridium difficile*. *PLoS One* 10:e0118150.
- 465 5. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, Golubchik T, Harding RM, Jeffery KJ, Jolley KA, Kirton R, Peto TE, Rees G, Stoesser N, Vaughan A, Walker AS, Young BC, Wilcox M, Dingle KE. 2010. Multilocus sequence typing of *Clostridium difficile*. *J Clin Microbiol* 48:770-8.
- 466 6. Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, Harris D, Lipman L, Keessen EC, Corver J, Kuijper EJ, Lawley TD. 2014. Whole genome sequencing reveals potential spread of *Clostridium difficile* between humans and farm animals in the Netherlands, 2002 to 2011. *Euro Surveill* 19:20954.
- 467 7. Huber CA, Foster NF, Riley TV, Paterson DL. 2013. Challenges for standardization of *Clostridium difficile* typing methods. *J Clin Microbiol* 51:2810-4.
- 468 8. Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW, Kuijper EJ. 2013. Current application and future perspectives of molecular typing methods to study *Clostridium difficile* infections. *Euro Surveill* 18:20381.
- 469 9. Janezic S, Rupnik M. 2019. Development and Implementation of Whole Genome Sequencing-Based Typing Schemes for *Clostridioides difficile*. *Front Public Health* 7:309.
- 470 10. Eyre DW, Walker AS. 2013. *Clostridium difficile* surveillance: harnessing new technologies to control transmission. *Expert Rev Anti Infect Ther* 11:1193-205.
- 471 11. Eyre DW, Peto TEA, Crook DW, Walker AS, Wilcox MH. 2019. Hash-Based Core Genome Multilocus Sequence Typing for *Clostridium difficile*. *J Clin Microbiol* 58.
- 472 12. Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N, Shaw LP, Stoesser N, Peto TEA, Crook DW, Walker AS. 2020. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. *Gigascience* 9.
- 473 13. Mellmann A, Andersen PS, Bletz S, Friedrich AW, Kohl TA, Lilje B, Niemann S, Prior K, Rossen JW, Harmsen D. 2017. High Interlaboratory Reproducibility and Accuracy of Next-Generation-Sequencing-Based Bacterial Genotyping in a Ring Trial. *J Clin Microbiol* 55:908-913.
- 474 14. Bletz S, Janezic S, Harmsen D, Rupnik M, Mellmann A. 2018. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of *Clostridium difficile*. *J Clin Microbiol* 56.
- 475 15. Gateau C, Deboscker S, Couturier J, Vogel T, Schmitt E, Muller J, Menard C, Turcan B, Zaidi RS, Youssouf A, Lavigne T, Barbut F. 2019. Local outbreak of *Clostridioides difficile* PCR-Ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. *Anaerobe* 60:102087.
- 476 16. Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Goker M, Riedel T, Bunk B, Sproer C, Overmann J, Blaschitz M, Indra A, von Muller L, Kohl TA, Niemann S, Seyboldt C, Klawonn F, Kumar N, Lawley TD, Garcia-Fernandez S, Canton R, Del Campo R, Zimmermann O, Gross U, Achtman M, Nubel U. 2020. A publicly accessible database for *Clostridioides difficile* genome sequences supports tracing of transmission chains and epidemics. *Microb Genom* 6.

510 17. Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A,  
511 Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. 2021. Transition From PCR-Ribotyping  
512 to Whole Genome Sequencing Based Typing of *Clostridioides difficile*. *Front Cell Infect*  
513 *Microbiol* 11:681518.

514 18. Kachrimanidou M, Baktash A, Metallidis S, Tsachouridou O, Netsika F, Dimoglou D,  
515 Kassomenaki A, Mouza E, Haritonidou M, Kuijper E. 2020. An outbreak of *Clostridioides*  
516 *difficile* infections due to a 027-like PCR ribotype 181 in a rehabilitation centre:  
517 Epidemiological and microbiological characteristics. *Anaerobe* 65:102252.

518 19. Souvorov A, Agarwala R, Lipman DJ. 2018. SKESA: strategic k-mer extension for scrupulous  
519 assemblies. *Genome Biol* 19:153.

520 20. Junemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, Mellmann A,  
521 Goesmann A, von Haeseler A, Stoye J, Harmsen D. 2013. Updating benchtop sequencing  
522 performance comparison. *Nat Biotechnol* 31:294-6.

523 21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.  
524 *J Mol Biol* 215:403-10.

525 22. Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, Allerberger F, Harmsen D, Mellmann  
526 A. 2015. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for  
527 Whole-Genome Sequence-Based Typing of *Listeria monocytogenes*. *J Clin Microbiol* 53:2869-  
528 76.

529 23. Zhou Z, Alikhan NF, Mohamed K, Fan Y, Agama Study G, Achtman M. 2020. The Enterobase  
530 user's guide, with case studies on *Salmonella* transmissions, *Yersinia pestis* phylogeny, and  
531 *Escherichia* core genomic diversity. *Genome Res* 30:138-152.

532 24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI,  
533 Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner  
534 PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell  
535 sequencing. *J Comput Biol* 19:455-77.

536 25. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb  
537 software, the PubMLST.org website and their applications. *Wellcome Open Res* 3:124.

538 26. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. 2014. Solving the problem of  
539 comparing whole bacterial genomes across different sequencing platforms. *PLoS One*  
540 9:e104984.

541 27. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler  
542 transform. *Bioinformatics* 25:1754-60.

543 28. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic  
544 features. *Bioinformatics* 26:841-2.

545 29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,  
546 Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and  
547 SAMtools. *Bioinformatics* 25:2078-9.

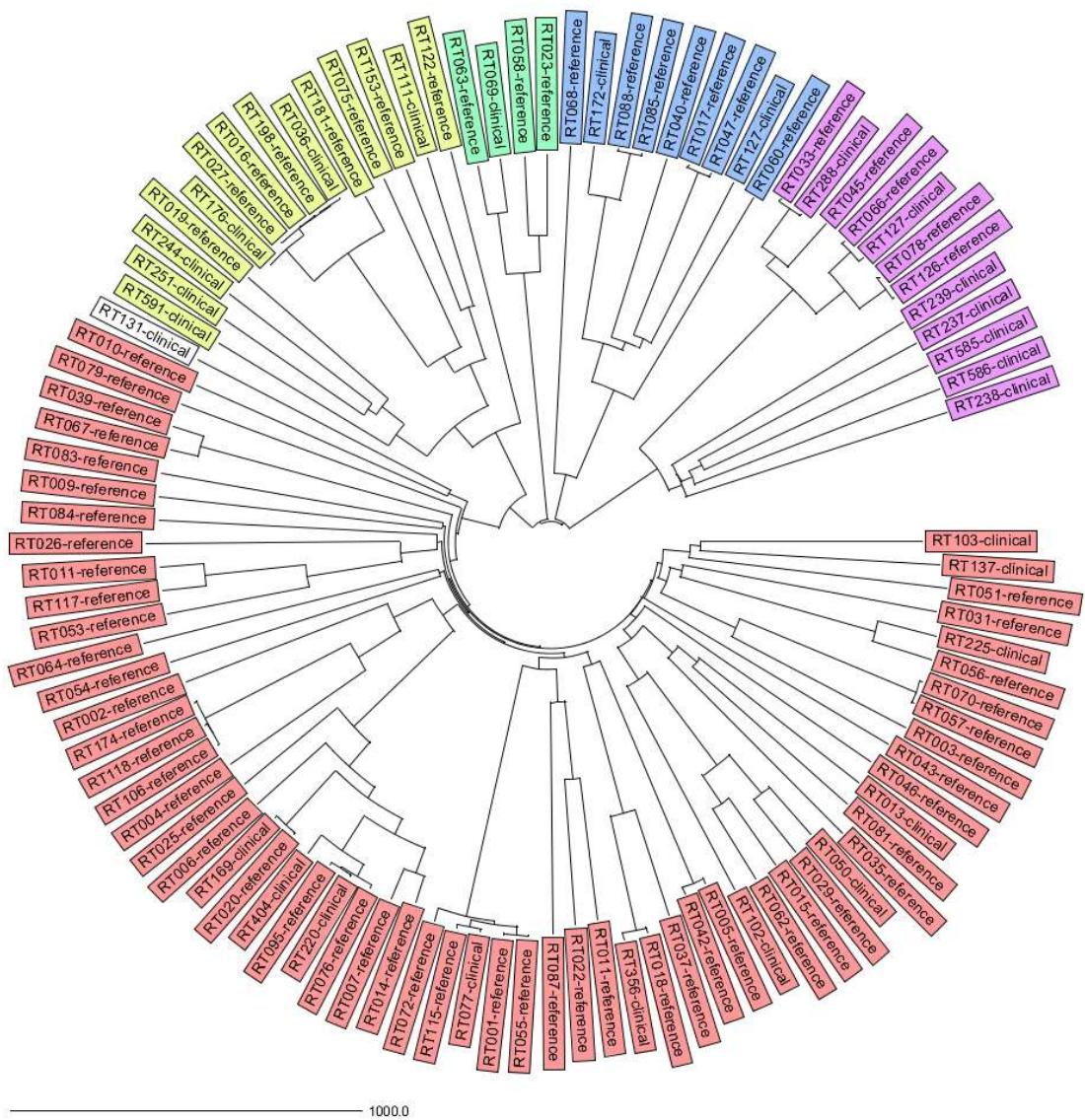
548 30. Miles-Jay AY, V.B. ; Pamer, E. ; Savidge, T.C. ; Kamboj, M. ; Garey, K. ; Snitkin, E. 2020. A  
549 multisite genomic epidemiology study of *Clostridioides difficile* infections in the U.S.  
550 supports differential roles of healthcare versus community spread for two common strains.  
551 medRxiv doi:<https://doi.org/10.1101/2020.11.28.20240192>.

552 31. Eyre DW, Fawley WN, Best EL, Griffiths D, Stoesser NE, Crook DW, Peto TE, Walker AS,  
553 Wilcox MH. 2013. Comparison of multilocus variable-number tandem-repeat analysis and  
554 whole-genome sequencing for investigation of *Clostridium difficile* transmission. *J Clin*  
555 *Microbiol* 51:4141-9.

556 32. Didelot X, Eyre DW, Cule M, Ip CL, Ansari MA, Griffiths D, Vaughan A, O'Connor L, Golubchik  
557 T, Batty EM, Piazza P, Wilson DJ, Bowden R, Donnelly PJ, Dingle KE, Wilcox M, Walker AS,  
558 Crook DW, Peto TE, Harding RM. 2012. Microevolutionary analysis of *Clostridium difficile*  
559 genomes to investigate transmission. *Genome Biol* 13:R118.

560 33. Werner A, Molling P, Fagerstrom A, Dyrkell F, Arnelllos D, Johansson K, Sundqvist M, Noren T.  
561 2020. Whole genome sequencing of *Clostridioides difficile* PCR ribotype 046 suggests  
562 transmission between pigs and humans. *PLoS One* 15:e0244227.

563 34. Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A, O'Connor L, Ip CLC, Golubchik T, Batty  
564 EM, Finney JM, Wyllie DH, Didelot X, Piazza P, Bowden R, Dingle KE, Harding RM, Crook DW,  
565 Wilcox MH, Peto TEA, Walker AS. 2013. Diverse sources of *C. difficile* infection identified on  
566 whole-genome sequencing. *N Engl J Med* 369:1195-205.


567 35. Weller C, Wu M. 2015. A generation-time effect on the rate of molecular evolution in  
568 bacteria. *Evolution* 69:643-52.

569 36. Kuenzli AB, Burri S, Casanova C, Sommerstein R, Bueti N, Seth-Smith HMB, Bodmer T, Egli A,  
570 Marschall J. 2020. Successful management of a *Clostridioides difficile* ribotype 027 outbreak  
571 with a lean intervention bundle. *J Hosp Infect* 106:240-245.

572

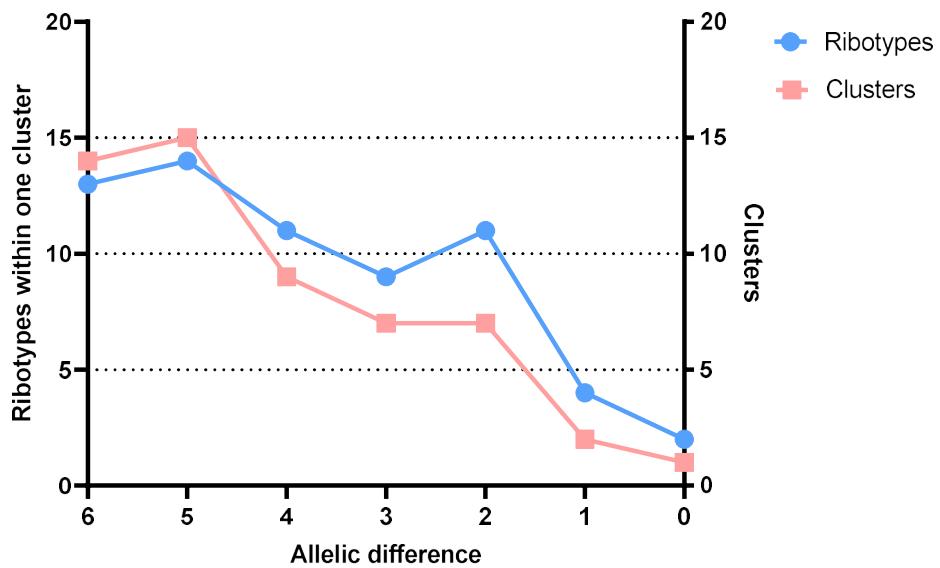
573

574



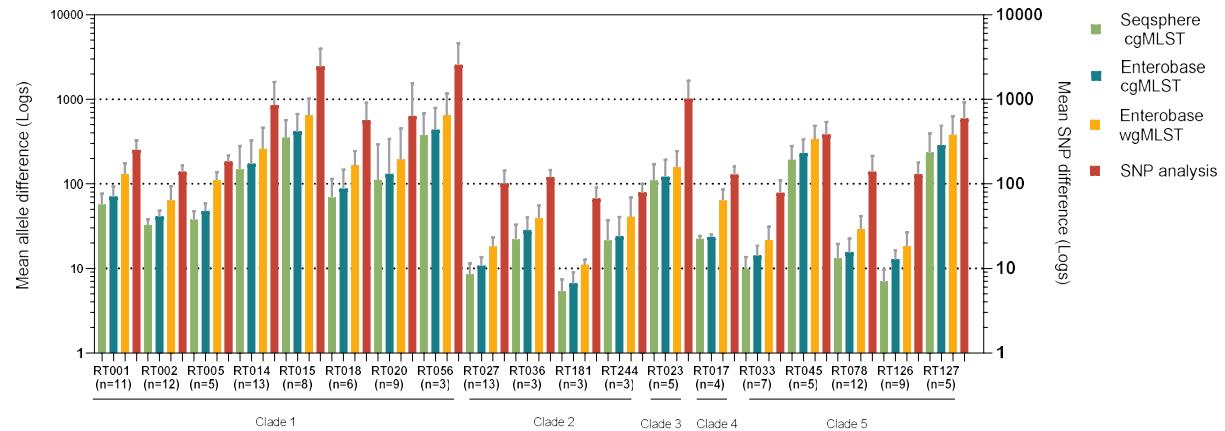
**Figure 1:** Neighbor joining tree from 100 unique ribotypes based on SqSp cgMLST allele difference. Each ribotype is depicted with “RTn” followed by “reference” (belonging to the Leeds-Leiden collection) or clinical (non-Leeds-Leiden strain). Ribotypes from MLST Clade 1, 2, 3, 4 ,5 are colored red, yellow, green, blue and purple, respectively. RT131 stated as CD131-01, 131, has no designated MLST Clade and is shown in white. The distance is given in absolute allelic difference.

**Table 1: Clustering between ribotypes at different thresholds based on SqSp cgMLST**

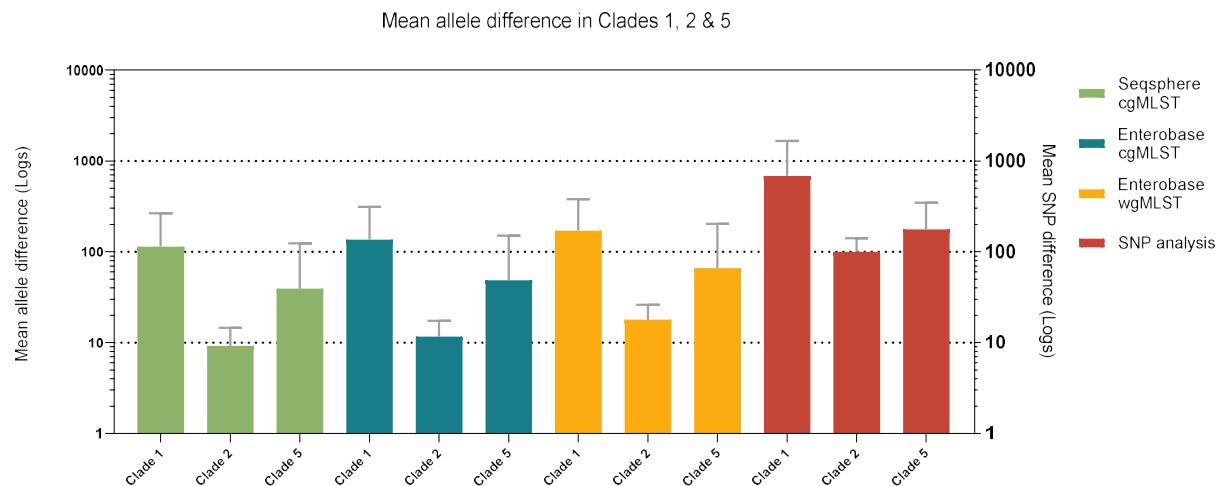

| Threshold (in alleles) | RT <sup>a</sup> | amount of strains <sup>b</sup> | RT <sup>c, d</sup> | amount of strains <sup>b</sup> | Clade | Threshold (in alleles) | RT <sup>a</sup> | amount of strains <sup>b</sup> | RT <sup>c, d</sup> | amount of strains <sup>b</sup> | Clade |
|------------------------|-----------------|--------------------------------|--------------------|--------------------------------|-------|------------------------|-----------------|--------------------------------|--------------------|--------------------------------|-------|
| 6                      | 020             | 1/20                           | 076                | 1/2                            | 1     | 4                      | 016             | 1/1                            | 027                | 1/23                           |       |
|                        | 016             | 1/1                            | 027                | 5/23                           | 2     |                        | 027             | 6/23                           | 036                | 1/4                            | 2     |
|                        |                 |                                | 036                | 1/4                            |       |                        |                 | 9/23                           | 176                | 5/16                           |       |
|                        |                 |                                | 176                | 4/16                           |       |                        | 033             | 2/46                           | 288                | 2/2                            |       |
|                        | 027             | 3/23                           | 036                | 2/4                            | 2     | 2                      | 045             | 2/15                           | 078                | 5/58                           |       |
|                        |                 | 10/23                          | 176                | 13/16                          |       |                        |                 | 2/15                           | 126                | 4/29                           |       |
|                        |                 | 2/23                           | 198                | 1/2                            |       |                        |                 | 3/15                           | 127                | 3/17                           |       |
|                        | 036             | 1/4                            | 176                | 1/16                           | 2     |                        | 066             | 1/2                            | 078                | 1/58                           |       |
|                        | 033             | 2/46                           | 288                | 2/2                            | 5     | 3                      | 078             | 25/58                          | 126                | 15/29                          |       |
|                        | 045             | 2/15                           | 078                | 16/58                          | 5     |                        | 018             | 1/18                           | 356                | 3/13                           | 1     |
| 5                      |                 | 2/15                           | 126                | 7/29                           |       |                        | 027             | 3/23                           | 036                | 1/4                            | 2     |
|                        | 066             | 1/2                            | 078                | 3/58                           | 5     | 2                      |                 | 6/23                           | 176                | 3/16                           | 2     |
|                        |                 |                                | 1/2                | 126                            | 1/29  |                        | 045             | 1/15                           | 078                | 1/58                           |       |
|                        | 078             | 39/58                          | 126                | 23/29                          | 5     |                        |                 | 1/15                           | 126                | 1/29                           |       |
|                        | 018             | 1/18                           | 356                | 1/13                           | 1     |                        |                 | 3/15                           | 127                | 3/17                           |       |
|                        | 016             | 1/1                            | 027                | 2/23                           | 2     | 2                      | 078             | 18/58                          | 126                | 13/29                          |       |
|                        |                 |                                | 176                | 1/16                           |       |                        | 001             | 1/14                           | 055                | 1/1                            | 1     |
|                        |                 |                                | 198                | 1/2                            |       |                        | 018             | 1/18                           | 356                | 3/13                           | 1     |
|                        | 027             | 4/23                           | 036                | 1/4                            | 2     |                        | 016             | 1/1                            | 027                | 1/23                           |       |
|                        |                 | 10/23                          | 176                | 6/16                           |       | 2                      | 027             | 3/23                           | 176                | 2/16                           |       |
|                        |                 | 2/23                           | 198                | 1/2                            |       |                        | 045             | 2/15                           | 126                | 2/29                           |       |
|                        | 036             | 1/4                            | 176                | 2/16                           | 2     |                        |                 | 1/15                           | 127                | 2/17                           |       |
| 4                      | 033             | 1/46                           | 288                | 1/2                            | 5     | 1                      | 078             | 8/58                           | 126                | 4/29                           |       |
|                        | 045             | 2/15                           | 078                | 7/58                           | 5     |                        | 018             | 1/18                           | 356                | 6/13                           | 1     |
|                        |                 | 2/15                           | 126                | 4/29                           |       |                        | 045             | 1/15                           | 127                | 1/17                           |       |
|                        |                 | 3/15                           | 127                | 2/17                           |       |                        | 0               | 045                            | 2/15               | 127                            | 2/17  |
|                        | 066             | 1/2                            | 078                | 4/58                           | 5     | 0                      |                 |                                |                    |                                |       |
|                        |                 | 1/2                            | 126                | 2/29                           |       |                        |                 |                                |                    |                                |       |
|                        | 078             | 31/58                          | 126                | 21/29                          | 5     |                        |                 |                                |                    |                                |       |

a) Studied PCR ribotype

b) Amount of strains that cluster with another PCR ribotype

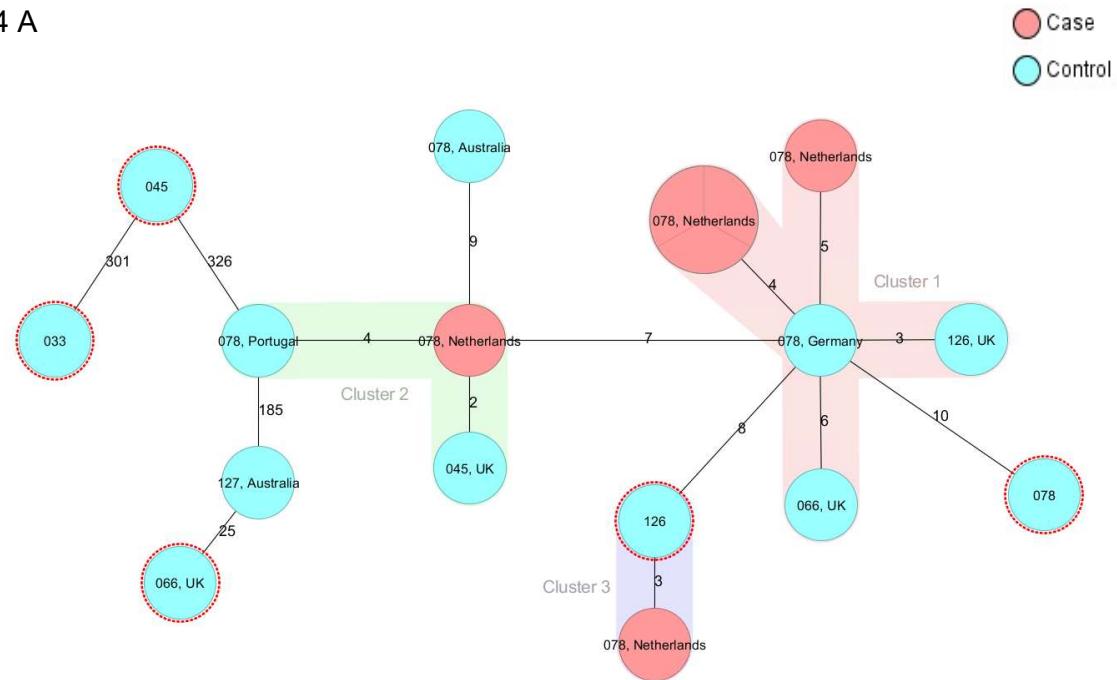

c) The comparison between PCR ribotypes is depicted only once per threshold (e.g. comparison between RT016 and RT027 at threshold 6 is only shown in the RT016 row and is not again depicted in the RT027 row)

d) Matching other PCR ribotype strain

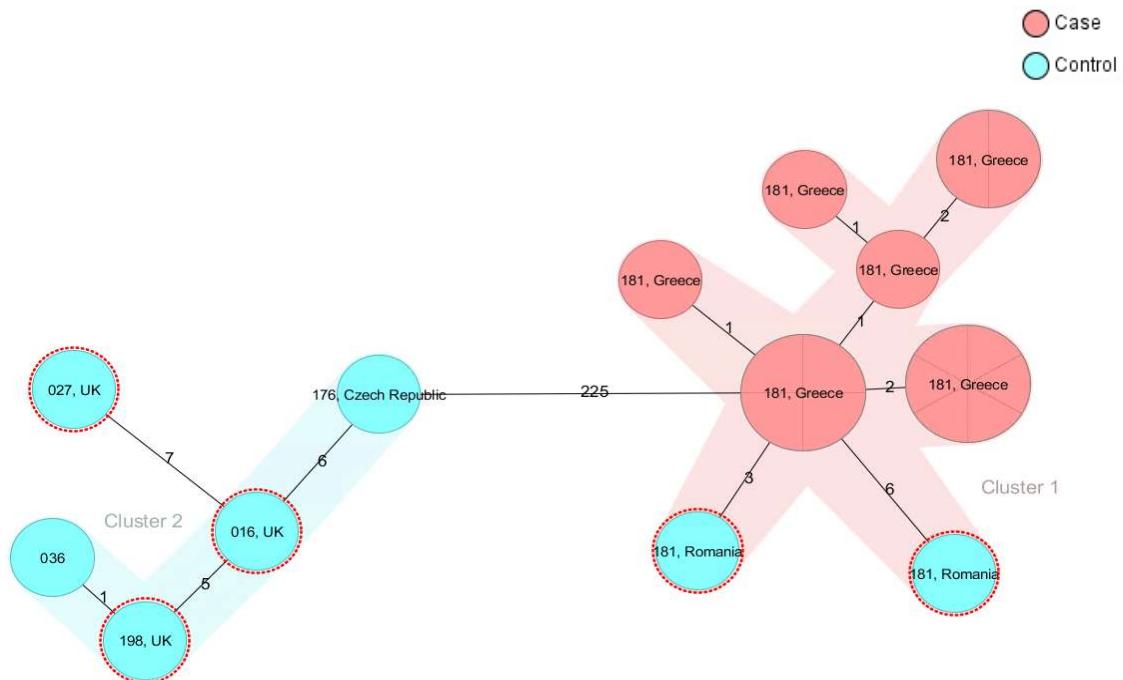



**Figure 2:** Clustering of different PCR ribotypes at different thresholds (0-6 allelic difference). The number of clustering PCR ribotypes is shown in blue and the amount of clusters at every threshold is shown in pink.

## 3 A

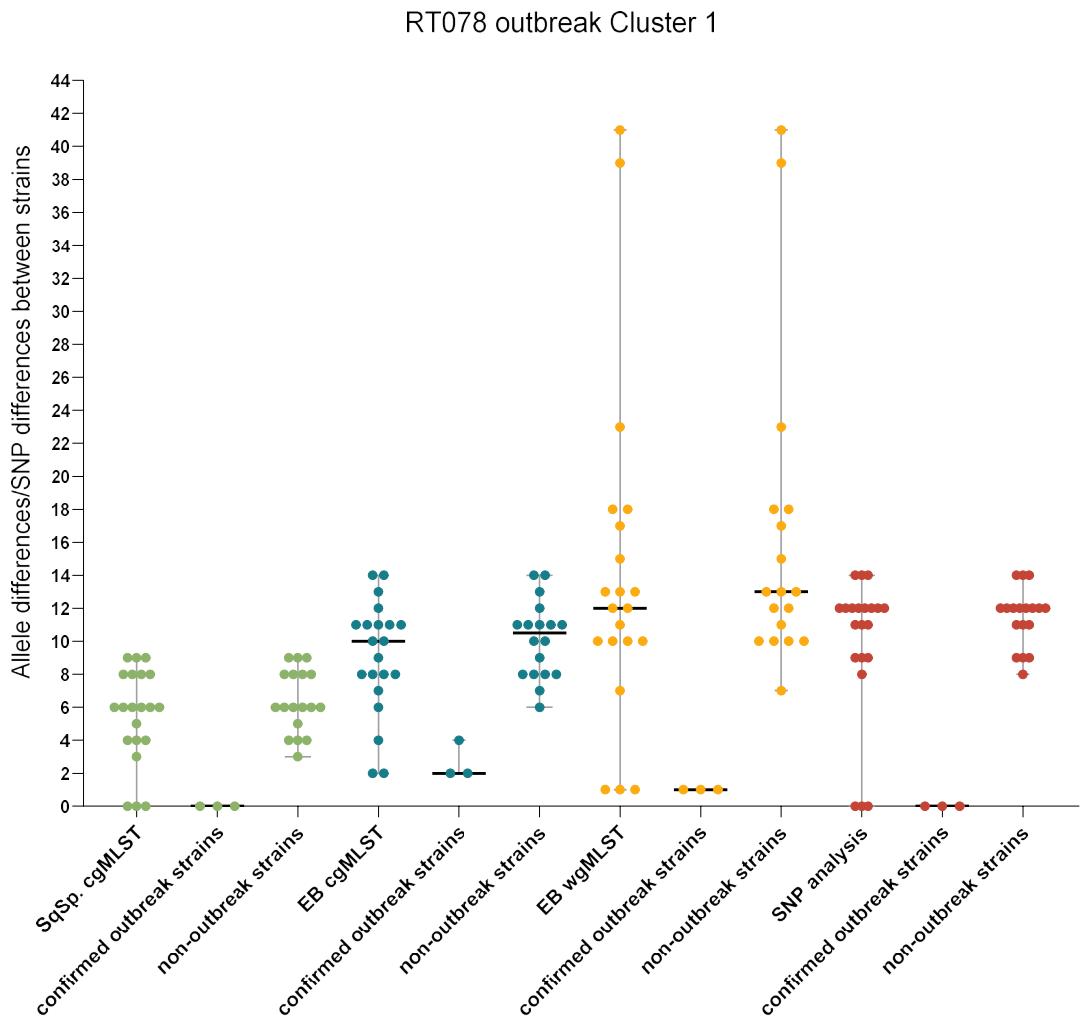



3 B

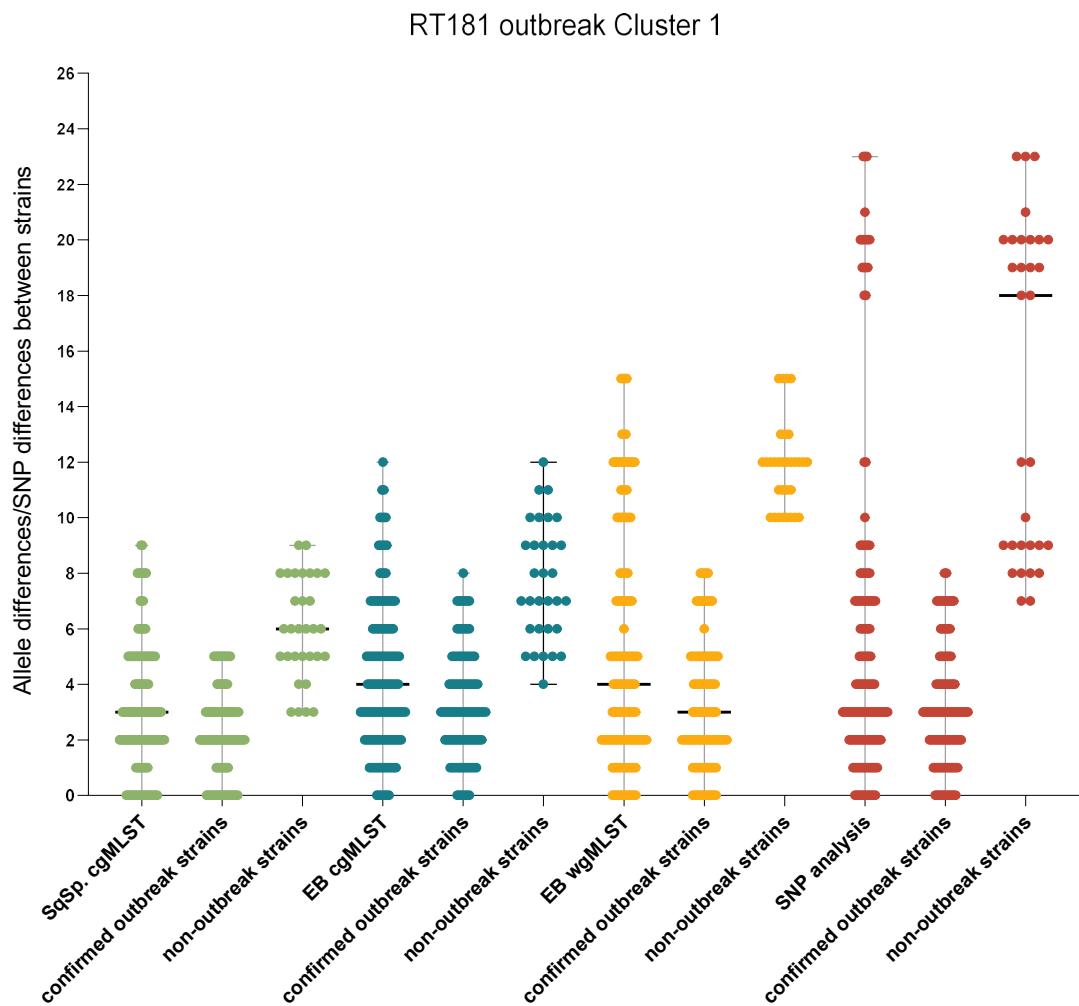



**Figure 3: A)** Mean intra-ribotype allele and SNP difference shown for ribotypes from MLST Clade 1 (RT001-RT056), Clade 2 (RT027-RT244), Clade 3 (RT023), Clade 4 (RT017) and Clade 5 (RT033-RT127). Mean intra-ribotype allele difference per ribotype is shown in light green, turquoise and orange for SqSp cgMLST, EB cgMLST and EB wgMLST, respectively. Mean intra-ribotype SNP difference per ribotype is shown in red. **B)** Mean intra-ribotype allele and SNP difference shown for MLST Clade 1, Clade 2 and Clade 5. Mean intra-ribotype allele difference per Clade is shown in light green, turquoise and orange for SqSp cgMLST, EB cgMLST and EB wgMLST, respectively. Mean intra-ribotype SNP difference per Clade is shown in red.

4 A




B




**Figure 4:** SqSP cgMLST analysis with minimum- spanning trees of 2 suspected CDI outbreaks of RT078 and RT181. A) Minimum-spanning tree of PCR-ribotype 078 (clade 5) CDI suspected outbreak with 6 cases (RT078, shown in red), confirmed outbreak with 3 cases (RT078, shown in largest red circle) and added control strains of ribotypes belonging to clade 5 (reference strains of RT033, RT045, RT066, RT078, RT126 shown in blue with red circles and non-reference strains of RT045, RT066, RT078, RT126 and RT127 shown in blue). B) Minimum-spanning tree of PCR-ribotype 181 (clade 2) CDI suspected outbreak with 15 suspected and confirmed cases (RT181, shown in red) and control strains of ribotypes of clade 2 (reference strains of RT016, RT027, RT181 and RT198 shown in blue with red circles and non-reference strains of RT036 and RT176 shown in blue). The size and septation of the circle in the minimum-spanning trees corresponds to the number of included strains. The numbers between each circle correspond to the number of different alleles between the strains. The coloured shadowing of circles represents a cluster with  $\leq 6$  allele differences that are genetically related. One or more strains inside a circle means that these strains have 0 allele difference.

5A



B



**Figure 5:** Visualised distance matrices of strain pairs based on cgMLST, wgMLST and SNP analysis of isolates of cluster 1 as described in figure 4A & 4B. A) Visualised distance matrix of strain pairs belonging to cluster 1 of RT078. B) Visualised distance matrix of strain pairs belonging to cluster 1 of RT181. Allele difference per pair of strains is shown in light green, turquoise and orange for cgMLST in SeqSphere, cgMLST and wgMLST in Enterobase, respectively. SNP difference per pair of strains is shown in red.

**Table 2: comparison in range between outbreak and non-outbreak strains of RT078 and RT181**

| Typing method | Strains                | Range (alleles or SNPs) | Difference between Range O & Range NO <sup>a</sup> |
|---------------|------------------------|-------------------------|----------------------------------------------------|
| SqSp cgMLST   | 078 confirmed outbreak | 0                       | 3                                                  |
|               | non-outbreak           | 3-9                     |                                                    |
|               | 181 confirmed outbreak | 0-5                     | overlap                                            |
|               | non-outbreak           | 3-9                     |                                                    |
| EB cgMLST     | 078 confirmed outbreak | 2-4                     | 2                                                  |
|               | non-outbreak           | 6-14                    |                                                    |
|               | 181 confirmed outbreak | 0-8                     | overlap                                            |
|               | non-outbreak           | 4-12                    |                                                    |
| EB wgMLST     | 078 confirmed outbreak | 1                       | 6                                                  |
|               | non-outbreak           | 7-41                    |                                                    |
|               | 181 confirmed outbreak | 0-8                     | 2                                                  |
|               | non-outbreak           | 10-15                   |                                                    |
| SNP analysis  | 078 confirmed outbreak | 0                       | 8                                                  |
|               | non-outbreak           | 8-14                    |                                                    |
|               | 181 confirmed outbreak | 0-9                     | overlap                                            |
|               | non-outbreak           | 7-23                    |                                                    |

a) Range O is the range in allele or SNP difference between all outbreak strains.

Range NO is the range in allele or SNP difference of non-outbreak strains compared with themselves and compared with outbreak strains.

**Table S1: included WGS strains of *C. difficile* in this study.**

| Sample ID         | Ribotype | Collection Date | Country of Isolation | ST  | CC | SRA accession no |
|-------------------|----------|-----------------|----------------------|-----|----|------------------|
| SRR7308630-001    | 001      | 2013            | UK                   | 3   | 1  | SRR7308630       |
| SRR1519369-LL-001 | 001      | ?               | ?                    | 3   | 1  | SRR1519369       |
| SRR7309226-001    | 001      | 2013            | Netherlands          | 3   | 1  | SRR7309226       |
| SRR7308692-001    | 001      | 2013            | Italy                | 3   | 1  | SRR7308692       |
| SRR7308732-001    | 001      | 2013            | Finland              | 3   | 1  | SRR7308732       |
| SRR7308761-001    | 001      | 2013            | Sweden               | 3   | 1  | SRR7308761       |
| SRR7308773-001    | 001      | 2013            | Slovakia             | 3   | 1  | SRR7308773       |
| SRR7308776-001    | 001      | 2013            | Slovakia             | 3   | 1  | SRR7308776       |
| SRR7308804-001    | 001      | 2013            | Spain                | 3   | 1  | SRR7308804       |
| SRR7308833-001    | 001      | 2013            | France               | 3   | 1  | SRR7308833       |
| SRR7308981-001    | 001      | 2013            | Italy                | 3   | 1  | SRR7308981       |
| SRR7309099-001    | 001      | 2013            | Germany              | 3   | 1  | SRR7309099       |
| SRR7309176-001    | 001      | ?               | Bulgaria             | 3   | 1  | SRR7309176       |
| SRR7308836-001    | 001      | ?               | Netherlands          | 3   | 1  | SRR7308836       |
| SRR7308645-002    | 002      | 2013            | Portugal             | 8   | 1  | SRR7308645       |
| SRR7308677-002    | 002      | 2013            | Netherlands          | 8   | 1  | SRR7308677       |
| SRR7309212-002    | 002      | 2013            | Belgium              | 8   | 1  | SRR7309212       |
| SRR7308752-002    | 002      | 2013            | France               | 8   | 1  | SRR7308752       |
| SRR7309014-002    | 002      | 2013            | Sweden               | 8   | 1  | SRR7309014       |
| SRR7309032-002    | 002      | 2013            | Finland              | 8   | 1  | SRR7309032       |
| SRR7309128-002    | 002      | 2013            | Romania              | 8   | 1  | SRR7309128       |
| SRR7309141-002    | 002      | 2013            | Portugal             | 8   | 1  | SRR7309141       |
| SRR7309152-002    | 002      | 2013            | Romania              | 8   | 1  | SRR7309152       |
| SRR7309217-002    | 002      | 2013            | Italy                | 8   | 1  | SRR7309217       |
| SRR7309219-002    | 002      | 2013            | UK                   | 8   | 1  | SRR7309219       |
| SRR1519370-LL-002 | 002      | ?               | ?                    | 8   | 1  | SRR1519370       |
| SRR6042346-002    | 002      | 2010            | USA                  | 55  | 1  | SRR6042346       |
| SRR7308785-002    | 002      | 2013            | Poland               | 8   | 1  | SRR7308785       |
| SRR7308659-002    | 002      | 2013            | Germany              | 8   | 1  | SRR7308659       |
| SRR7308698-002    | 002      | 2013            | UK                   | 8   | 1  | SRR7308698       |
| SRR7308733-002    | 002      | 2013            | Italy                | 8   | 1  | SRR7308733       |
| SRR7308704-002    | 002      | 2013            | France               | 8   | 1  | SRR7308704       |
| SRR1519371-LL-003 | 003      | 2005            | UK                   | 12  | 1  | SRR1519371       |
| SRR7852176-003    | 003      | ?               | UK                   | 12  | 1  | SRR7852176       |
| SRR1519372-LL-004 | 004      | 1995            | UK                   | 115 | 1  | SRR1519372       |
| SRR7852181-005    | 005      | ?               | UK                   | 6   | 1  | SRR7852181       |
| SRR7852186-005    | 005      | ?               | UK                   | 6   | 1  | SRR7852186       |
| SRR7852185-005    | 005      | ?               | UK                   | ?   | ?  | SRR7852185       |
| SRR6042365-005    | 005      | 2010            | USA                  | 6   | 1  | SRR6042365       |
| ERR833662-005     | 005      | ?               | UK                   | 6   | 1  | ERR833662        |
| SRR6042356-005    | 005      | 2010            | USA                  | 6   | 1  | SRR6042356       |
| SRR7852187-005    | 005      | ?               | UK                   | 6   | 1  | SRR7852187       |
| SRR7852208-005    | 005      | ?               | UK                   | 6   | 1  | SRR7852208       |

|                   |     |      |                |             |   |            |
|-------------------|-----|------|----------------|-------------|---|------------|
| SRR6042370-005    | 005 | 2010 | USA            | 6           | 1 | SRR6042370 |
| SRR1519373-LL-005 | 005 | 2005 | UK             | 6           | 1 | SRR1519373 |
| SRR1519374-LL-006 | 006 | 1995 | UK             | 2           | 1 | SRR1519374 |
| SRR1519375-LL-007 | 007 | 1995 | UK             | 49          | 1 | SRR1519375 |
| SRR7852197-007    | 007 | ?    | UK             | 49          | 1 | SRR7852197 |
| SRR7852191-009    | 009 | ?    | UK             | 3           | 1 | SRR7852191 |
| SRR1519376-LL-009 | 009 | 2007 | UK             | 3           | 1 | SRR1519376 |
| SRR1519377-LL-010 | 010 | ?    | UK             | 15          | 1 | SRR1519377 |
| ERR833666-010     | 010 | ?    | UK             | 15          | 1 | ERR833666  |
| ERR833672-010     | 010 | ?    | UK             | 15          | 1 | ERR833672  |
| SRR1519378-LL-011 | 011 | 2005 | UK             | 36          | 1 | SRR1519378 |
| ERR833660-012     | 012 | ?    | UK             | 54          | 1 | ERR833660  |
| SRR1519379-LL-012 | 012 | ?    | Belgium        | 54          | 1 | SRR1519379 |
| SRR593175-013     | 013 | ?    | USA            | 45          | 1 | SRR593175  |
| ERR1307016-014    | 014 | ?    | Australia      | 2           | 1 | ERR1307016 |
| SRR7308710-014    | 014 | 2013 | Hungary        | 13          | 1 | SRR7308710 |
| SRR7308735-014    | 014 | 2013 | Sweden         | 49          | 1 | SRR7308735 |
| SRR7308765-014    | 014 | 2013 | Czech Republic | 2           | 1 | SRR7308765 |
| SRR7308801-014    | 014 | 2013 | Italy          | 2           | 1 | SRR7308801 |
| SRR7309218-014    | 014 | 2013 | Ireland        | 2           | 1 | SRR7309218 |
| SRR7308852-014    | 014 | 2013 | UK             | 13          | 1 | SRR7308852 |
| SRR7308907-014    | 014 | 2013 | Italy          | 2           | 1 | SRR7308907 |
| SRR7308925-014    | 014 | 2013 | Czech Republic | 2           | 1 | SRR7308925 |
| SRR7308936-014    | 014 | 2013 | Slovakia       | 13          | 1 | SRR7308936 |
| SRR7309040-014    | 014 | 2013 | Spain          | 2           | 1 | SRR7309040 |
| SRR7309087-014    | 014 | 2013 | Romania        | ? (unknown) | ? | SRR7309087 |
| SRR7309095-014    | 014 | 2013 | Sweden         | ? (unknown) | ? | SRR7309095 |
| SRR7309127-014    | 014 | 2013 | Germany        | 2           | 1 | SRR7309127 |
| SRR7309213-014    | 014 | 2013 | UK             | 14          | 1 | SRR7309213 |
| SRR7308784-014    | 014 | 2013 | Hungary        | 2           | 1 | SRR7308784 |
| SRR1519380-LL-014 | 014 | ?    | ?              | 2           | 1 | SRR1519380 |
| SRR7309104-014    | 014 | 2013 | France         | 2           | 1 | SRR7309104 |
| SRR7309188-014    | 014 | 2013 | Poland         | 2           | 1 | SRR7309188 |
| SRR7308861-014    | 014 | 2013 | UK             | 2           | 1 | SRR7308861 |
| SRR7309062-015    | 015 | 2013 | UK             | 44          | 1 | SRR7309062 |
| SRR7309143-015    | 015 | 2013 | UK             | 44          | 1 | SRR7309143 |
| SRR7309211-015    | 015 | 2013 | Germany        | 10          | 1 | SRR7309211 |
| SRR7308686-015    | 015 | 2013 | Germany        | 10          | 1 | SRR7308686 |
| SRR7308700-015    | 015 | 2013 | Germany        | 44          | 1 | SRR7308700 |
| SRR7308914-015    | 015 | 2013 | Germany        | 44          | 1 | SRR7308914 |
| SRR7308766-015    | 015 | 2013 | Bulgaria       | 44          | 1 | SRR7308766 |
| SRR7308811-015    | 015 | 2013 | Netherlands    | 160         | 1 | SRR7308811 |
| SRR7308858-015    | 015 | 2013 | Germany        | 10          | 1 | SRR7308858 |
| SRR7308881-015    | 015 | 2013 | France         | 10          | 1 | SRR7308881 |
| SRR7308931-015    | 015 | 2013 | Bulgaria       | 44          | 1 | SRR7308931 |
| SRR7309068-015    | 015 | 2013 | UK             | 44          | 1 | SRR7309068 |

|                    |         |      |         |    |   |            |
|--------------------|---------|------|---------|----|---|------------|
| SRR7309165-015     | 015     | 2012 | France  | 10 | 1 | SRR7309165 |
| SRR1519381-LL-015  | 015     | 2006 | UK      | 10 | 1 | SRR1519381 |
| SRR7308670-015     | 015     | 2013 | Romania | 44 | 1 | SRR7308670 |
| SRR7308847-015     | 015     | 2013 | Ireland | 44 | 1 | SRR7308847 |
| SRR7308958-015     | 015     | 2013 | UK      | 44 | 1 | SRR7308958 |
| SRR7308789-015     | 015     | 2012 | France  | 10 | 1 | SRR7308789 |
| SRR7309191-015     | 015     | 2013 | Germany | 10 | 1 | SRR7309191 |
| SRR6042362-015/046 | 015/046 | 2010 | USA     | 10 | 1 | SRR6042362 |
| SRR1519382-LL-016  | 016     | 2008 | UK      | 1  | 2 | SRR1519382 |
| ERR1346261-017     | 017     | ?    | ?       | 37 | 4 | ERR1346261 |
| ERR1346244-017     | 017     | ?    | ?       | 37 | 4 | ERR1346244 |
| ERR788991-017      | 017     | ?    | UK      | 37 | 4 | ERR788991  |
| ERR1346256-017     | 017     | ?    | ?       | 37 | 4 | ERR1346256 |
| ERR1346252-017     | 017     | ?    | ?       | 37 | 4 | ERR1346252 |
| ERR1346250-017     | 017     | ?    | ?       | 37 | 4 | ERR1346250 |
| ERR1346249-017     | 017     | ?    | ?       | 37 | 4 | ERR1346249 |
| ERR1346248-017     | 017     | ?    | ?       | 37 | 4 | ERR1346248 |
| ERR1346246-017     | 017     | ?    | ?       | 37 | 4 | ERR1346246 |
| ERR1346245-017     | 017     | ?    | ?       | 37 | 4 | ERR1346245 |
| ERR1346263-017     | 017     | ?    | ?       | 37 | 4 | ERR1346263 |
| ERR1346247-017     | 017     | ?    | ?       | 37 | 4 | ERR1346247 |
| ERR1346253-017     | 017     | ?    | ?       | 37 | 4 | ERR1346253 |
| ERR1346257-017     | 017     | ?    | ?       | 37 | 4 | ERR1346257 |
| ERR1346255-017     | 017     | ?    | ?       | 37 | 4 | ERR1346255 |
| ERR788960-017      | 017     | ?    | UK      | 37 | 4 | ERR788960  |
| ERR788962-017      | 017     | ?    | UK      | 37 | 4 | ERR788962  |
| ERR788967-017      | 017     | ?    | UK      | 37 | 4 | ERR788967  |
| ERR788968-017      | 017     | ?    | UK      | 37 | 4 | ERR788968  |
| ERR788969-017      | 017     | ?    | UK      | 37 | 4 | ERR788969  |
| ERR788971-017      | 017     | ?    | UK      | 37 | 4 | ERR788971  |
| ERR788972-017      | 017     | ?    | UK      | 37 | 4 | ERR788972  |
| ERR788974-017      | 017     | ?    | UK      | 37 | 4 | ERR788974  |
| ERR788975-017      | 017     | ?    | UK      | 37 | 4 | ERR788975  |
| ERR788976-017      | 017     | ?    | UK      | 37 | 4 | ERR788976  |
| ERR788977-017      | 017     | ?    | UK      | 37 | 4 | ERR788977  |
| ERR788978-017      | 017     | ?    | UK      | 37 | 4 | ERR788978  |
| ERR788979-017      | 017     | ?    | UK      | 37 | 4 | ERR788979  |
| ERR788980-017      | 017     | ?    | UK      | 37 | 4 | ERR788980  |
| ERR788981-017      | 017     | ?    | UK      | 37 | 4 | ERR788981  |
| ERR1346259-017     | 017     | ?    | ?       | 37 | 4 | ERR1346259 |
| ERR1346258-017     | 017     | ?    | ?       | 37 | 4 | ERR1346258 |
| ERR1346262-017     | 017     | ?    | ?       | 37 | 4 | ERR1346262 |
| ERR1346260-017     | 017     | ?    | ?       | 37 | 4 | ERR1346260 |
| ERR788994-017      | 017     | ?    | UK      | 37 | 4 | ERR788994  |
| ERR788984-017      | 017     | ?    | UK      | 37 | 4 | ERR788984  |
| ERR1346251-017     | 017     | ?    | ?       | 37 | 4 | ERR1346251 |

|                    |         |      |                |     |   |            |
|--------------------|---------|------|----------------|-----|---|------------|
| ERR788985-017      | 017     | ?    | UK             | 37  | 4 | ERR788985  |
| ERR788986-017      | 017     | ?    | UK             | 37  | 4 | ERR788986  |
| ERR788987-017      | 017     | ?    | UK             | 37  | 4 | ERR788987  |
| ERR788989-017      | 017     | ?    | UK             | 37  | 4 | ERR788989  |
| ERR788993-017      | 017     | ?    | UK             | 37  | 4 | ERR788993  |
| ERR788995-017      | 017     | ?    | UK             | 37  | 4 | ERR788995  |
| SRR1519383-LL-017  | 017     | ?    | ?              | 37  | 4 | SRR1519383 |
| SRR7309227-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7309227 |
| SRR7308628-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308628 |
| SRR7308794-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308794 |
| SRR7309012-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7309012 |
| SRR7309013-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7309013 |
| SRR7309172-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7309172 |
| SRR7308763-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308763 |
| SRR7309195-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7309195 |
| SRR7308787-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308787 |
| SRR7308816-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308816 |
| SRR7308908-018     | 018     | 2013 | Italy          | 17  | 1 | SRR7308908 |
| SRR7308901-018     | 018     | 2012 | France         | 17  | 1 | SRR7308901 |
| SRR7309096-018     | 018     | 2013 | Germany        | 17  | 1 | SRR7309096 |
| SRR7308930-018     | 018     | 2013 | Romania        | 17  | 1 | SRR7308930 |
| SRR7309150-018     | 018     | 2013 | Romania        | 17  | 1 | SRR7309150 |
| SRR7309190-018     | 018     | 2013 | Poland         | 17  | 1 | SRR7309190 |
| SRR1519384-LL-018  | 018     | ?    | ?              | 17  | 1 | SRR1519384 |
| SRR7309216-018     | 018     | 2013 | Romania        | 17  | 1 | SRR7309216 |
| SRR3547038-018/052 | 018/052 | 2015 | Italy          | 17  | 1 | SRR3547038 |
| SRR1519385-LL-019  | 019     | ?    | ?              | 67  | 2 | SRR1519385 |
| SRR7309161-020     | 020     | 2013 | Germany        | 2   | 1 | SRR7309161 |
| SRR7308878-020     | 020     | 2012 | France         | 2   | 1 | SRR7308878 |
| SRR7308905-020     | 020     | 2013 | Portugal       | 2   | 1 | SRR7308905 |
| SRR7308629-020     | 020     | 2012 | France         | 2   | 1 | SRR7308629 |
| SRR7308750-020     | 020     | 2013 | Czech Republic | 110 | 1 | SRR7308750 |
| SRR7309214-020     | 020     | 2013 | Italy          | 2   | 1 | SRR7309214 |
| SRR7309116-020     | 020     | 2013 | Belgium        | 2   | 1 | SRR7309116 |
| SRR7308953-020     | 020     | 2013 | Belgium        | 2   | 1 | SRR7308953 |
| SRR7308927-020     | 020     | 2013 | Czech Republic | 2   | 1 | SRR7308927 |
| SRR7308894-020     | 020     | 2013 | France         | 2   | 1 | SRR7308894 |
| SRR7308873-020     | 020     | 2013 | Portugal       | 2   | 1 | SRR7308873 |
| SRR7308778-020     | 020     | 2013 | Belgium        | 2   | 1 | SRR7308778 |
| SRR7308770-020     | 020     | 2013 | Germany        | 2   | 1 | SRR7308770 |
| SRR7308759-020     | 020     | 2013 | Romania        | 2   | 1 | SRR7308759 |
| SRR7308709-020     | 020     | 2013 | Romania        | 2   | 1 | SRR7308709 |
| SRR7308689-020     | 020     | 2013 | Germany        | 2   | 1 | SRR7308689 |
| SRR7308688-020     | 020     | 2013 | France         | 2   | 1 | SRR7308688 |
| SRR7308644-020     | 020     | 2013 | Italy          | 2   | 1 | SRR7308644 |
| SRR1519386-LL-020  | 020     | 1996 | Poland         | 13  | 1 | SRR1519386 |

|                    |     |      |                |     |   |            |
|--------------------|-----|------|----------------|-----|---|------------|
| SRR7308693-020     | 020 | 2013 | Czech Republic | 2   | 1 | SRR7308693 |
| SRR7308969-020     | 020 | 2013 | Germany        | 2   | 1 | SRR7308969 |
| SRR1519387-LL-022  | 022 | 1990 | UK             | 66  | 1 | SRR1519387 |
| ERR232375-023      | 023 | 2008 | UK             | 5   | 3 | ERR232375  |
| ERR2215969-023     | 023 | ?    | ?              | 5   | 3 | ERR2215969 |
| SRR1519388-LL-023  | 023 | 2001 | Netherlands    | 5   | 3 | SRR1519388 |
| ERR125913-Sang-023 | 023 | 2008 | UK             | 5   | 3 | ERR125913  |
| ERR142362-023      | 023 | 2007 | UK             | 25  | 3 | ERR142362  |
| ERR126268-023      | 023 | 2007 | UK             | 22  | 3 | ERR126268  |
| SRR1519389-LL-025  | 025 | 1994 | Ireland        | 49  | 1 | SRR1519389 |
| SRR7852202-026     | 026 | ?    | UK             | 7   | 1 | SRR7852202 |
| SRR7852178-026     | 026 | ?    | UK             | 7   | 1 | SRR7852178 |
| SRR7852201-026     | 026 | ?    | UK             | 7   | 1 | SRR7852201 |
| SRR1519390-LL-026  | 026 | 1996 | UK             | 7   | 1 | SRR1519390 |
| ERR467623-027      | 027 | ?    | ?              | 154 | 2 | ERR467623  |
| ERR044837-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044837  |
| ERR044840-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044840  |
| ERR044825-027      | 027 | 2006 | Austria        | 1   | 2 | ERR044825  |
| ERR044843-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044843  |
| ERR044846-027      | 027 | 2009 | Poland         | 1   | 2 | ERR044846  |
| ERR030295-027      | 027 | 2010 | UK             | 1   | 2 | ERR030295  |
| ERR044842-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044842  |
| ERR044841-027      | 027 | 2005 | Netherlands    | 1   | 2 | ERR044841  |
| ERR044830-027      | 027 | 2006 | Germany        | 1   | 2 | ERR044830  |
| ERR044838-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044838  |
| SRR1519391-LL-027  | 027 | 2004 | UK             | 1   | 2 | SRR1519391 |
| ERR044826-027      | 027 | 2005 | Belgium        | 1   | 2 | ERR044826  |
| ERR044845-027      | 027 | 2007 | Norway         | 1   | 2 | ERR044845  |
| ERR467589-027      | 027 | ?    | ?              | 1   | 2 | ERR467589  |
| ERR044829-027      | 027 | 2007 | France         | 1   | 2 | ERR044829  |
| ERR044844-027      | 027 | 2007 | Netherlands    | 1   | 2 | ERR044844  |
| ERR044839-027      | 027 | 2006 | Netherlands    | 1   | 2 | ERR044839  |
| ERR044848-027      | 027 | 2008 | Switzerland    | 1   | 2 | ERR044848  |
| ERR044834-027      | 027 | 2007 | Luxemburg      | 1   | 2 | ERR044834  |
| ERR044833-027      | 027 | 2008 | Ireland        | 1   | 2 | ERR044833  |
| ERR044828-027      | 027 | 2009 | Finland        | 1   | 2 | ERR044828  |
| ERR026421-027      | 027 | 2006 | UK             | 1   | 2 | ERR026421  |
| SRR1519392-LL-029  | 029 | 1995 | UK             | 16  | 1 | SRR1519392 |
| SRR593230-029      | 029 | ?    | USA            | 16  | 1 | SRR593230  |
| ERR833664-031      | 031 | ?    | UK             | 29  | 1 | ERR833664  |
| SRR593311-031      | 031 | ?    | USA            | 26  | 1 | SRR593311  |
| SRR1519393-LL-031  | 031 | 1998 | UK             | 29  | 1 | SRR1519393 |
| ERR247078-Sang-033 | 033 | 2006 | Australia      | 11  | 5 | ERR247078  |
| ERR247077-Sang-033 | 033 | 2009 | UK             | 11  | 5 | ERR247077  |
| ERR247076-Sang-033 | 033 | ?    | Australia      | 11  | 5 | ERR247076  |
| ERR247075-Sang-033 | 033 | 2006 | US             | 11  | 5 | ERR247075  |

|                              |     |      |           |    |   |               |
|------------------------------|-----|------|-----------|----|---|---------------|
| ERR247071-Sang-033           | 033 | 2005 | US        | 11 | 5 | ERR247071     |
| ERR247070-Sang-033           | 033 | 2007 | US        | 11 | 5 | ERR247070     |
| ERR247107-Sang-033           | 033 | 1982 | Australia | 11 | 5 | ERR247107     |
| ERR247106-Sang-033           | 033 | 1980 | Australia | 11 | 5 | ERR247106     |
| ERR247105-Sang-033           | 033 | 2006 | Australia | 11 | 5 | ERR247105     |
| ERR247104-Sang-033           | 033 | 2006 | Australia | 11 | 5 | ERR247104     |
| ERR247103-Sang-033           | 033 | 2006 | Australia | 11 | 5 | ERR247103     |
| ERR2898837-033               | 033 | 1982 | Australia | 11 | 5 | ERR2898837    |
| ERR2898836-033               | 033 | 1980 | Australia | 11 | 5 | ERR2898836    |
| ERR2898835-033               | 033 | 2006 | Australia | 11 | 5 | ERR2898835    |
| ERR2898834-033               | 033 | 2006 | Australia | 11 | 5 | ERR2898834    |
| ERR2898833-033               | 033 | 2006 | Australia | 11 | 5 | ERR2898833    |
| ERR247108-Sang-033           | 033 | 2007 | Australia | 11 | 5 | ERR247108     |
| ERR2898838-033               | 033 | 2007 | Australia | 11 | 5 | ERR2898838    |
| ERR2898928-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898928    |
| ERR2898844-033               | 033 | 2012 | France    | 11 | 5 | ERR2898844    |
| ERR247090-Sang-033           | 033 | 2012 | Australia | 11 | 5 | ERR247090     |
| ERR2898920-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898920    |
| ERR247088-Sang-033           | 033 | 2012 | Australia | 11 | 5 | ERR247088     |
| ERR2898923-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898923    |
| ERR2898922-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898922    |
| ERR2898919-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898919    |
| ERR2898885-033               | 033 | 2015 | Australia | 11 | 5 | ERR2898885    |
| ERR2898884-033               | 033 | 2015 | Australia | 11 | 5 | ERR2898884    |
| ERR2898883-033               | 033 | 2015 | Australia | 11 | 5 | ERR2898883    |
| ERR2898882-033               | 033 | 2015 | Australia | 11 | 5 | ERR2898882    |
| ERR2898886-033               | 033 | 2015 | Australia | 11 | 5 | ERR2898886    |
| ERR2898846-033               | 033 | 2012 | France    | 11 | 5 | ERR2898846    |
| ERR2898845-033               | 033 | 2013 | France    | 11 | 5 | ERR2898845    |
| ERR2898841-033               | 033 | 2012 | France    | 11 | 5 | ERR2898841    |
| ERR2898840-033               | 033 | 2013 | Australia | 11 | 5 | ERR2898840    |
| ERR2898831-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898831    |
| ERR2215990-033               | 033 | ?    | ?         | 11 | 5 | ERR2215990    |
| ERR2898843-033               | 033 | 2011 | France    | 11 | 5 | ERR2898843    |
| ERR2898842-033               | 033 | 2012 | France    | 11 | 5 | ERR2898842    |
| SRR1519394-LL-033            | 033 | ?    | ?         | 11 | 5 | SRR1519394    |
| ERR247102-Sang-033           | 033 | ?    | Australia | 11 | 5 | ERR247102     |
| ERR171341-Sang-033           | 033 | 2011 | UK        | 11 | 5 | ERR171341     |
| ERR247116-Sang-033           | 033 | 2007 | Australia | 11 | 5 | ERR247116     |
| ERR1854839-033               | 033 | 2007 | Australia | 11 | 5 | ERR1854839    |
| ERR2898839-033               | 033 | 2007 | Australia | 11 | 5 | ERR2898839    |
| ERR2898832-033               | 033 | 2012 | Australia | 11 | 5 | ERR2898832    |
| SRR1519395-LL-035            | 035 | ?    | ?         | 40 | 1 | SRR1519395    |
| 103634-001-033-036           | 036 | ?    | ?         | 1  | 2 | Not submitted |
| 103634-001-034-036           | 036 | ?    | ?         | 1  | 2 | Not submitted |
| HNFKWDSXX-103786-001-042-036 | 036 | 2019 | Greece    | 1  | 2 | ERR3981060    |

|                              |         |      |             |             |   |               |
|------------------------------|---------|------|-------------|-------------|---|---------------|
| HNFKWDSXX-103786-001-043-036 | 036     | 2019 | Greece      | 1           | 2 | ERR3981061    |
| 103634-001-038-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-041-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-044-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-043-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-037-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-039-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-040-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| 103634-001-042-036/198       | 036/198 | ?    | Hungary     | 1           | 2 | Not submitted |
| SRR1519396-LL-037            | 037     | 1994 | UK          | 98          | 1 | SRR1519396    |
| SRR7852193-039               | 039     | ?    | UK          | ? (unknown) | ? | SRR7852193    |
| SRR7852194-039               | 039     | ?    | UK          | ? (unknown) | ? | SRR7852194    |
| SRR1519397-LL-039            | 039     | ?    | ?           | 26          | 1 | SRR1519397    |
| SRR1519398-LL-040            | 040     | ?    | ?           | 121         | 4 | SRR1519398    |
| SRR1519399-LL-042            | 042     | 1998 | UK          | 6           | 1 | SRR1519399    |
| SRR1519400-LL-043            | 043     | 1980 | New Zealand | 103         | 1 | SRR1519400    |
| ERR247084-Sang-045           | 045     | 2009 | Australia   | 11          | 5 | ERR247084     |
| ERR256923-Sang-045           | 045     | 2010 | UK          | 11          | 5 | ERR256923     |
| ERR256920-Sang-045           | 045     | 2008 | UK          | 11          | 5 | ERR256920     |
| ERR247091-Sang-045           | 045     | 2005 | Australia   | 11          | 5 | ERR247091     |
| ERR247114-Sang-045           | 045     | 2006 | Australia   | 11          | 5 | ERR247114     |
| ERR247117-Sang-045           | 045     | 2007 | Australia   | 11          | 5 | ERR247117     |
| ERR257024-Sang-045           | 045     | 2012 | Sweden      | 161         | 5 | ERR257024     |
| ERR171222-Sang-045           | 045     | 2009 | UK          | 11          | 5 | ERR171222     |
| ERR171342-Sang-045           | 045     | 2011 | UK          | 11          | 5 | ERR171342     |
| SRR1519401-LL-045            | 045     | ?    | ?           | 11          | 5 | SRR1519401    |
| ERR126280-045                | 045     | ?    | ?           | 11          | 5 | ERR126280     |
| ERR171355-Sang-045           | 045     | 2011 | Netherlands | 161         | 5 | ERR171355     |
| ERR171354-Sang-045           | 045     | 2011 | Netherlands | 161         | 5 | ERR171354     |
| ERR256921-Sang-045           | 045     | 2009 | UK          | 11          | 5 | ERR256921     |
| ERR256924-Sang-045           | 045     | 2010 | UK          | 11          | 5 | ERR256924     |
| SRR593309-046                | 046     | ?    | USA         | 35          | 1 | SRR593309     |
| SRR1519402-LL-046            | 046     | ?    | ?           | 35          | 1 | SRR1519402    |
| ERR171363-Sang-047           | 047     | 2009 | UK          | 37          | 4 | ERR171363     |
| SRR1519403-LL-047            | 047     | 2007 | UK          | 37          | 4 | SRR1519403    |
| SRR1519404-050               | 050     | 2007 | UK          | 18          | 1 | SRR1519404    |
| SRR1519405-LL-051            | 051     | 1996 | UK          | 101         | 1 | SRR1519405    |
| SRR1519406-LL-053            | 053     | 2006 | USA         | 63          | 1 | SRR1519406    |
| SRR1519407-LL-054            | 054     | ?    | ?           | 43          | 1 | SRR1519407    |
| SRR593228-054                | 054     | ?    | USA         | 43          | 1 | SRR593228     |
| SRR1519408-LL-055            | 055     | 1998 | UK          | 3           | 1 | SRR1519408    |
| SRR593371-056                | 056     | ?    | USA         | 58          | 1 | SRR593371     |
| SRR593385-056                | 056     | ?    | USA         | 34          | 1 | SRR593385     |
| SRR1519409-LL-056            | 056     | ?    | ?           | 34          | 1 | SRR1519409    |
| SRR1519410-LL-057            | 057     | 2008 | UK          | 55          | 1 | SRR1519410    |
| ERR171364-Sang-058           | 058     | 2009 | UK          | 96          | 3 | ERR171364     |

|                        |     |      |             |     |   |                         |
|------------------------|-----|------|-------------|-----|---|-------------------------|
| SRR1519411-LL-058      | 058 | 1997 | UK          | 96  | 3 | SRR1519411              |
| ERR126275-058          | 058 | 2008 | UK          | 96  | 3 | ERR126275               |
| ERR125966-Sang-060     | 060 | 2009 | UK          | 87  | 4 | ERR125966               |
| SRR1519412-LL-060      | 060 | ?    | ?           | 38  | 4 | SRR1519412              |
| SRR1519413-LL-062      | 062 | 2008 | UK          | 44  | 1 | SRR1519413              |
| SRR593211-062          | 062 | ?    | USA         | 44  | 1 | SRR593211               |
| SRR1519414-LL-063      | 063 | ?    | ?           | 5   | 3 | SRR1519414              |
| SRR1519415-LL-064      | 064 | ?    | ?           | 33  | 1 | SRR1519415              |
| ERR171335-066          | 066 | ?    | UK          | 11  | 5 | ERR171335               |
| ERR171343-Sang-066     | 066 | 2010 | UK          | 11  | 5 | ERR171343               |
| SRR1519416-LL-066      | 066 | ?    | UK          | 11  | 5 | SRR1519416              |
| SRR1519417-LL-067      | 067 | ?    | ?           | 27  | 1 | SRR1519417              |
| SRR1519418-LL-068      | 068 | ?    | ?           | 127 | 4 | SRR1519418              |
| ERR126286-069          | 069 | 2009 | UK          | 5   | 3 | ERR126286               |
| SRR7852179-070         | 070 | ?    | UK          | 99  | 1 | SRR7852179              |
| SRR1519419-LL-070      | 070 | ?    | ?           | 55  | 1 | SRR1519419              |
| SRR1519420-LL-072      | 072 | ?    | ?           | 3   | 1 | SRR1519420              |
| SRR1519421-LL-075      | 075 | ?    | ?           | 95  | 2 | SRR1519421              |
| SRR1519422-LL-076      | 076 | 1997 | UK          | 2   | 1 | SRR1519422              |
| ERR3278159-076         | 076 | ?    | Spain       | 2   | 1 | ERR3278159              |
| SRR6042350-077         | 077 | 2010 | USA         | 3   | 1 | SRR6042350              |
| ERR2898875-078         | 078 | 2012 | Australia   | 11  | 5 | ERR2898875              |
| ERR171325-078          | 078 | 2008 | Netherlands | 11  | 5 | ERR171325               |
| ERR171328-078          | 078 | 2009 | Netherlands | 11  | 5 | ERR171328               |
| ERR171329-078          | 078 | 2010 | Netherlands | 11  | 5 | ERR171329               |
| ERR257065-078-Pig-P12  | 078 | 2011 | Netherlands | 11  | 5 | ERR257065               |
| ERR257061-078-Farm-P4  | 078 | 2011 | Netherlands | 11  | 5 | ERR257061               |
| ERR257046-078-Pig-P4   | 078 | 2011 | Netherlands | 11  | 5 | ERR257046               |
| ERR257045-078-Pig-P9   | 078 | 2011 | Netherlands | 11  | 5 | ERR257045               |
| ERR257044-078-Farm-P12 | 078 | 2011 | Netherlands | 11  | 5 | ERR257044               |
| ERR257050-078-Farm-P8  | 078 | 2011 | Netherlands | 11  | 5 | ERR257050               |
| SRR7308938-078         | 078 | 2013 | Germany     | 11  | 5 | SRR7308938              |
| ERR171322-078          | 078 | 2008 | Netherlands | 11  | 5 | ERR171322               |
| ERR171332-078          | 078 | 2011 | Netherlands | 11  | 5 | ERR171332               |
| ERR171337-078          | 078 | 2002 | Netherlands | 11  | 5 | ERR171337               |
| ERR171338-078          | 078 | 2002 | Netherlands | 11  | 5 | ERR171338               |
| ERR257070-078-Pig-P11  | 078 | 2011 | Netherlands | 11  | 5 | ERR257070               |
| ERR257048-078-Pig-P10  | 078 | 2011 | Netherlands | 11  | 5 | ERR257048               |
| ERR257051-078-Pig-P6   | 078 | 2011 | Netherlands | 11  | 5 | ERR257051               |
| CD05_A_078             | 078 | 2018 | Netherlands | 11  | 5 | ERS6671669 (This study) |
| CD07_A_078             | 078 | 2018 | Netherlands | 11  | 5 | ERS6671670 (This study) |
| CD08_A_078             | 078 | 2018 | Netherlands | 11  | 5 | ERS6671671 (This study) |
| ERR171317-078          | 078 | 2007 | Netherlands | 11  | 5 | ERR171317               |
| ERR257063-078-Pig-P2   | 078 | 2011 | Netherlands | 11  | 5 | ERR257063               |

|                       |     |      |             |    |   |                         |
|-----------------------|-----|------|-------------|----|---|-------------------------|
| ERR257049-078-Farm-P2 | 078 | 2011 | Netherlands | 11 | 5 | ERR257049               |
| ERR257053-078-Pig-P3  | 078 | 2011 | Netherlands | 11 | 5 | ERR257053               |
| CD3-2_DMS27440-V-078  | 078 | ?    | China       | 11 | 5 | Not submitted           |
| ERR257058-078-Pig-UP  | 078 | 2011 | Netherlands | 11 | 5 | ERR257058               |
| SRR7308955-078        | 078 | 2013 | Greece      | 11 | 5 | SRR7308955              |
| SRR7308972-078        | 078 | 2012 | France      | 11 | 5 | SRR7308972              |
| SRR7309155-078        | 078 | 2013 | Italy       | 11 | 5 | SRR7309155              |
| CD09_A_078            | 078 | 2018 | Netherlands | 11 | 5 | ERS6671672 (This study) |
| CD10_A_078            | 078 | 2018 | Netherlands | 11 | 5 | ERS6671673 (This study) |
| SRR7309171-078        | 078 | 2013 | Portugal    | 11 | 5 | SRR7309171              |
| SRR7309098-078        | 078 | 2013 | Italy       | 11 | 5 | SRR7309098              |
| SRR7308946-078        | 078 | 2013 | Germany     | 11 | 5 | SRR7308946              |
| SRR7308846-078        | 078 | 2013 | Germany     | 11 | 5 | SRR7308846              |
| SRR1519423-LL-078     | 078 | ?    | ?           | 11 | 5 | SRR1519423              |
| ERR2898853-078        | 078 | 2016 | ERR2898853  | 11 | 5 | ERR2898853              |
| ERR2898848-078        | 078 | 2010 | Australia   | 11 | 5 | ERR2898848              |
| ERR027342-078         | 078 | 2007 | Ireland     | 11 | 5 | ERR027342               |
| SRR7308986-078        | 078 | 2013 | France      | 11 | 5 | SRR7308986              |
| SRR7308758-078        | 078 | 2013 | Ireland     | 11 | 5 | SRR7308758              |
| SRR7309059-078        | 078 | 2013 | UK          | 11 | 5 | SRR7309059              |
| SRR7309228-078        | 078 | 2013 | Italy       | 11 | 5 | SRR7309228              |
| ERR171331-078         | 078 | 2010 | Netherlands | 11 | 5 | ERR171331               |
| ERR171309-078         | 078 | 2006 | Netherlands | 11 | 5 | ERR171309               |
| ERR257068-078-Pig-UP  | 078 | 2011 | Netherlands | 11 | 5 | ERR257068               |
| ERR171313-078         | 078 | 2007 | Netherlands | 11 | 5 | ERR171313               |
| ERR171352-078-Pig-UP  | 078 | 2009 | Netherlands | 11 | 5 | ERR171352               |
| ERR171353-078-Pig-UP  | 078 | 2009 | Netherlands | 11 | 5 | ERR171353               |
| ERR171316-078         | 078 | 2007 | Netherlands | 11 | 5 | ERR171316               |
| ERR171319-078         | 078 | 2007 | Netherlands | 11 | 5 | ERR171319               |
| ERR171320-078         | 078 | 2008 | Netherlands | 11 | 5 | ERR171320               |
| ERR257059-078-Farm-UP | 078 | 2011 | Netherlands | 11 | 5 | ERR257059               |
| ERR171323-078         | 078 | 2008 | Netherlands | 11 | 5 | ERR171323               |
| ERR171326-078         | 078 | 2009 | Netherlands | 11 | 5 | ERR171326               |
| ERR171330-078         | 078 | 2010 | Netherlands | 11 | 5 | ERR171330               |
| ERR171339-078         | 078 | 2002 | Netherlands | 11 | 5 | ERR171339               |
| ERR171343-078         | 078 | 2010 | Netherlands | 11 | 5 | ERR171343               |
| ERR171346-078         | 078 | 2007 | Netherlands | ?  | ? | ERR171346               |
| ERR171349-078         | 078 | 2009 | Netherlands | 11 | 5 | ERR171349               |
| ERR257066-078-Farm-P7 | 078 | 2011 | Netherlands | 11 | 5 | ERR257066               |
| ERR257064-078-Pig-P7  | 078 | 2011 | Netherlands | 11 | 5 | ERR257064               |
| ERR171310-078         | 078 | 2006 | Netherlands | 11 | 5 | ERR171310               |
| ERR171312-078         | 078 | 2007 | Netherlands | 11 | 5 | ERR171312               |
| ERR171314-078         | 078 | 2007 | Netherlands | 11 | 5 | ERR171314               |
| ERR171321-078         | 078 | 2008 | Netherlands | 11 | 5 | ERR171321               |

|                        |     |      |             |     |   |                         |
|------------------------|-----|------|-------------|-----|---|-------------------------|
| ERR171327-078          | 078 | 2009 | Netherlands | 11  | 5 | ERR171327               |
| ERR403717-078          | 078 | 2008 | Netherlands | 11  | 5 | ERR403717               |
| ERR257072-078-Farm-P5  | 078 | 2011 | Netherlands | 11  | 5 | ERR257072               |
| ERR257071-78-Pig-P5    | 078 | 2011 | Netherlands | 11  | 5 | ERR257071               |
| ERR257069-078-Farm-P6  | 078 | 2011 | Netherlands | 11  | 5 | ERR257069               |
| ERR257056-078-Farm-P10 | 078 | 2011 | Netherlands | 11  | 5 | ERR257056               |
| ERR257055-078-Pig-P8   | 078 | 2011 | Netherlands | 11  | 5 | ERR257055               |
| ERR257054-078-Farm-UP  | 078 | 2011 | Netherlands | 11  | 5 | ERR257054               |
| ERR171356-078-Farm-P1  | 078 | 2011 | Netherlands | 11  | 5 | ERR171356               |
| ERR257047-078-Farm-P11 | 078 | 2011 | Netherlands | 11  | 5 | ERR257047               |
| ERR257060-078-Farm-P9  | 078 | 2011 | Netherlands | 11  | 5 | ERR257060               |
| ERR257062-078-Farm-UP  | 078 | 2011 | Netherlands | 11  | 5 | ERR257062               |
| SRR7308726-078         | 078 | 2013 | UK          | 11  | 5 | SRR7308726              |
| SRR7308912-078         | 078 | 2013 | Ireland     | 11  | 5 | SRR7308912              |
| SRR7308920-078         | 078 | 2013 | Spain       | 11  | 5 | SRR7308920              |
| SRR7309151-078         | 078 | 2013 | Germany     | 11  | 5 | SRR7309151              |
| CD11_A_078             | 078 | 2018 | Netherlands | 11  | 5 | ERS6671674 (This study) |
| SRR7308895-078         | 078 | 2013 | Germany     | 11  | 5 | SRR7308895              |
| ERR171311-078          | 078 | 2007 | Netherlands | 11  | 5 | ERR171311               |
| ERR171315-078          | 078 | 2007 | Netherlands | 11  | 5 | ERR171315               |
| ERR171318-078          | 078 | 2007 | Netherlands | 11  | 5 | ERR171318               |
| ERR171334-078          | 078 | 2009 | Netherlands | 11  | 5 | ERR171334               |
| ERR171336-078          | 078 | 2002 | Netherlands | 11  | 5 | ERR171336               |
| ERR171347-078-Pig-UP   | 078 | 2002 | Netherlands | 11  | 5 | ERR171347               |
| ERR171348-078-Pig-UP   | 078 | 2009 | Netherlands | 11  | 5 | ERR171348               |
| SRR7308809-078         | 078 | 2013 | Germany     | 11  | 5 | SRR7308809              |
| SRR7308838-078         | 078 | 2013 | Portugal    | 11  | 5 | SRR7308838              |
| ERR171357-078-Pig-P1   | 078 | 2011 | Netherlands | 11  | 5 | ERR171357               |
| SRR7308822-078         | 078 | 2013 | Italy       | 11  | 5 | SRR7308822              |
| SRR7309025-078         | 078 | 2013 | Italy       | 11  | 5 | SRR7309025              |
| SRR7309049-078         | 078 | 2013 | Portugal    | 11  | 5 | SRR7309049              |
| SRR1519424-LL-079      | 079 | 1994 | ?           | 126 | 1 | SRR1519424              |
| SRR1519425-LL-081      | 081 | 1996 | UK          | 9   | 1 | SRR1519425              |
| SRR7852189-081         | 081 | ?    | UK          | 9   | 1 | SRR7852189              |
| SRR7852192-081         | 081 | ?    | UK          | 9   | 1 | SRR7852192              |
| SRR1519426-LL-083      | 083 | 1997 | UK          | 59  | 1 | SRR1519426              |
| SRR1519427-LL-084      | 084 | 1995 | UK          | 48  | 1 | SRR1519427              |
| SRR593202-084          | 084 | ?    | USA         | 17  | 1 | SRR593202               |
| ERR125915-Sang-085     | 085 | 2009 | UK          | 39  | 4 | ERR125915               |
| SRR1519428-LL-085      | 085 | ?    | ?           | 39  | 4 | SRR1519428              |
| ERR2216001-087         | 087 | ?    | ?           | 46  | 1 | ERR2216001              |
| SRR1519429-LL-087      | 087 | ?    | ?           | 46  | 1 | SRR1519429              |
| SRR1519430-LL-088      | 088 | 1997 | UK          | 39  | 4 | SRR1519430              |
| SRR1519431-LL-095      | 095 | 1995 | ?           | 2   | 1 | SRR1519431              |
| ERR2215983-102         | 102 | ?    | ?           | 24  | 1 | ERR2215983              |

|                    |         |      |            |     |   |            |
|--------------------|---------|------|------------|-----|---|------------|
| SRR593300-103      | 103     | ?    | USA        | 53  | 1 | SRR593300  |
| ERR2215975-103     | 103     | ?    | ?          | 53  | 1 | ERR2215975 |
| ERR3276437-106     | 106     | ?    | ERR3276437 | 42  | 1 | ERR3276437 |
| ERR3276441-106     | 106     | ?    | Spain      | 42  | 1 | ERR3276441 |
| ERR3276506-106     | 106     | ?    | Spain      | 42  | 1 | ERR3276506 |
| ERR3278163-106     | 106     | ?    | Spain      | 42  | 1 | ERR3278163 |
| ERR3278167-106     | 106     | ?    | Spain      | 42  | 1 | ERR3278167 |
| ERR3288184-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288184 |
| ERR3288190-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288190 |
| ERR3288325-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288325 |
| ERR3288336-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288336 |
| ERR3288338-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288338 |
| ERR3289201-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289201 |
| ERR3289202-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289202 |
| ERR3289205-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289205 |
| ERR3289207-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289207 |
| ERR3289209-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289209 |
| ERR3289212-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289212 |
| ERR3299518-106     | 106     | ?    | Spain      | 42  | 1 | ERR3299518 |
| ERR3288471-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288471 |
| ERR3289206-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289206 |
| ERR3276440-106     | 106     | ?    | Spain      | 42  | 1 | ERR3276440 |
| ERR3299515-106     | 106     | ?    | Spain      | 42  | 1 | ERR3299515 |
| ERR3288467-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288467 |
| ERR3288205-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288205 |
| ERR3288577-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288577 |
| ERR3288578-106     | 106     | ?    | Spain      | 42  | 1 | ERR3288578 |
| ERR3289203-106     | 106     | ?    | Spain      | 42  | 1 | ERR3289203 |
| ERR3296455-106     | 106     | ?    | Spain      | 42  | 1 | ERR3296455 |
| ERR3299510-106     | 106     | ?    | Spain      | 42  | 1 | ERR3299510 |
| SRR1519432-LL-106  | 106     | 1997 | UK         | 42  | 1 | SRR1519432 |
| SRR6042360-106/174 | 106/174 | 2010 | USA        | 36  | 1 | SRR6042360 |
| SRR6042371-106/174 | 106/174 | 2010 | USA        | 42  | 1 | SRR6042371 |
| SRR593379-111      | 111     | ?    | USA        | 123 | 2 | SRR593379  |
| SRR1519433-LL-115  | 115     | 1997 | UK         | 3   | 1 | SRR1519433 |
| SRR1519434-LL-117  | 117     | 1996 | Poland     | 54  | 1 | SRR1519434 |
| SRR1519435-LL-118  | 118     | 2007 | UK         | 42  | 1 | SRR1519435 |
| SRR1519436-LL-122  | 122     | ?    | ?          | 116 | 2 | SRR1519436 |
| ERR247101-Sang-126 | 126     | ?    | Australia  | 258 | 5 | ERR247101  |
| ERR256918-Sang-126 | 126     | 2011 | UK         | 11  | 5 | ERR256918  |
| ERR247083-Sang-126 | 126     | 2009 | Australia  | 258 | 5 | ERR247083  |
| ERR2898771-126     | 126     | 2002 | Italy      | 11  | 5 | ERR2898771 |
| ERR2898789-126     | 126     | 2012 | Taiwan     | 11  | 5 | ERR2898789 |
| ERR2898749-126     | 126     | 2013 | Australia  | 11  | 5 | ERR2898749 |
| SRR1519437-LL-126  | 126     | ?    | ?          | 11  | 5 | SRR1519437 |
| ERR256915-Sang-126 | 126     | 2010 | UK         | 11  | 5 | ERR256915  |

|                    |     |      |             |     |   |            |
|--------------------|-----|------|-------------|-----|---|------------|
| ERR257010-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257010  |
| ERR257012-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257012  |
| ERR257015-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257015  |
| ERR257016-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257016  |
| ERR257018-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257018  |
| ERR257019-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257019  |
| ERR257021-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257021  |
| ERR257022-Sang-126 | 126 | 2010 | Belgium     | 11  | 5 | ERR257022  |
| ERR2898787-126     | 126 | 2011 | Taiwan      | 11  | 5 | ERR2898787 |
| ERR2898786-126     | 126 | ?    | Spain       | 11  | 5 | ERR2898786 |
| ERR2898746-126     | 126 | 2011 | Australia   | 11  | 5 | ERR2898746 |
| ERR2898745-126     | 126 | 2011 | Australia   | 11  | 5 | ERR2898745 |
| ERR2898783-126     | 126 | 2010 | Italy       | 11  | 5 | ERR2898783 |
| ERR2898748-126     | 126 | 2012 | Australia   | 11  | 5 | ERR2898748 |
| ERR2898747-126     | 126 | 2012 | Australia   | 11  | 5 | ERR2898747 |
| ERR2898769-126     | 126 | ?    | Canada      | 11  | 5 | ERR2898769 |
| ERR2898750-126     | 126 | 2012 | Australia   | 11  | 5 | ERR2898750 |
| ERR2898772-126     | 126 | 2013 | Italy       | 11  | 5 | ERR2898772 |
| ERR2898791-126     | 126 | ?    | USA         | 11  | 5 | ERR2898791 |
| ERR2898782-126     | 126 | 2008 | Italy       | ?   | ? | ERR2898782 |
| ERR256916-Sang-126 | 126 | 2010 | UK          | 11  | 5 | ERR256916  |
| ERR2898818-127     | 127 | 2008 | Australia   | 11  | 5 | ERR2898818 |
| ERR2898900-127     | 127 | 2012 | Australia   | 11  | 5 | ERR2898900 |
| ERR2898860-127     | 127 | 2007 | Australia   | 11  | 5 | ERR2898860 |
| ERR2898807-127     | 127 | 2013 | Australia   | 11  | 5 | ERR2898807 |
| ERR2898911-127     | 127 | 2013 | Australia   | 11  | 5 | ERR2898911 |
| ERR2898801-127     | 127 | 2012 | Australia   | 11  | 5 | ERR2898801 |
| ERR2898802-127     | 127 | 2014 | Australia   | 11  | 5 | ERR2898802 |
| ERR247118-Sang-127 | 127 | 2005 | Australia   | 11  | 5 | ERR247118  |
| ERR2898820-127     | 127 | 2005 | Australia   | 11  | 5 | ERR2898820 |
| ERR247093-Sang-127 | 127 | 2005 | Australia   | 11  | 5 | ERR247093  |
| ERR2898799-127     | 127 | 2011 | Australia   | 11  | 5 | ERR2898799 |
| ERR2898823-127     | 127 | 2010 | Japan       | 11  | 5 | ERR2898823 |
| ERR2898825-127     | 127 | 2010 | Japan       | 11  | 5 | ERR2898825 |
| ERR2898824-127     | 127 | 2010 | Japan       | 11  | 5 | ERR2898824 |
| ERR2898828-127     | 127 | 2011 | Taiwan      | 11  | 5 | ERR2898828 |
| ERR2898829-127     | 127 | 2012 | Taiwan      | 11  | 5 | ERR2898829 |
| ERR2898898-127     | 127 | 2009 | Australia   | 11  | 5 | ERR2898898 |
| ERR171360-Sang-130 | 130 | 2010 | UK          | 158 | 4 | ERR171360  |
| SRR1519438-131     | 131 | 2001 | Kuwait      | 122 | ? | SRR1519438 |
| SRR593375-137      | 137 | ?    | USA         | 4   | 1 | SRR593375  |
| SRR1519439-LL-153  | 153 | 2003 | Netherlands | 32  | 2 | SRR1519439 |
| SRR1519440-169     | 169 | 2005 | UK          | 13  | 1 | SRR1519440 |
| ERR171361-Sang-172 | 172 | 2010 | UK          | 159 | 4 | ERR171361  |
| SRR1519441-LL-174  | 174 | 2007 | UK          | 42  | 1 | SRR1519441 |
| SRR7852188-174     | 174 | ?    | UK          | 6   | 1 | SRR7852188 |

|                              |     |      |                |     |   |               |
|------------------------------|-----|------|----------------|-----|---|---------------|
| SRR7308767-176               | 176 | 2013 | Germany        | 1   | 2 | SRR7308767    |
| SRR7309085-176               | 176 | 2013 | Germany        | 1   | 2 | SRR7309085    |
| SRR7308880-176               | 176 | 2013 | Germany        | 1   | 2 | SRR7308880    |
| SRR7308660-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7308660    |
| SRR7308694-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7308694    |
| SRR7309134-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7309134    |
| SRR7309148-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7309148    |
| SRR7309197-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7309197    |
| SRR7308825-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7308825    |
| SRR7308625-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7308625    |
| SRR7309097-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7309097    |
| SRR7308956-176               | 176 | 2013 | Czech Republic | 1   | 2 | SRR7308956    |
| SRR7308940-176               | 176 | 2013 | Czech republic | 1   | 2 | SRR7308940    |
| SRR7308771-176               | 176 | 2013 | Czech republic | 1   | 2 | SRR7308771    |
| SRR7308985-176               | 176 | 2013 | Germany        | 1   | 2 | SRR7308985    |
| SRR7308631-176               | 176 | 2013 | Germany        | 1   | 2 | SRR7308631    |
| HNFKWDSXX-103786-001-033-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981062    |
| HNFKWDSXX-103786-001-034-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981063    |
| HNFKWDSXX-103786-001-035-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981064    |
| HNFKWDSXX-103786-001-036-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981065    |
| HNFKWDSXX-103786-001-037-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981066    |
| HNFKWDSXX-103786-001-038-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981067    |
| HNFKWDSXX-103786-001-039-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981068    |
| HNFKWDSXX-103786-001-040-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981069    |
| HNFKWDSXX-103786-001-041-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981070    |
| HNFKWDSXX-103786-001-044-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981071    |
| HNFKWDSXX-103786-001-045-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981072    |
| HNFKWDSXX-103786-001-046-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981073    |
| HNFKWDSXX-103786-001-047-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981074    |
| HNFKWDSXX-103786-001-048-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981075    |
| HNFKWDSXX-103786-001-049-181 | 181 | 2019 | Greece         | 1   | 2 | ERR3981076    |
| Isolate1-Leeds               | 181 | ?    | Romania        | 1   | 2 | ERR3981079    |
| Isolate2-Leeds               | 181 | ?    | Romania        | 1   | 2 | ERR3981080    |
| SRR1519442-LL-198            | 198 | 2006 | UK             | 1   | 2 | SRR1519442    |
| 103634-001-035-198           | 198 | ?    | ?              | 1   | 2 | Not submitted |
| ERR833670-220                | 220 | ?    | UK             | 2   | 1 | ERR833670     |
| ERR833669-220                | 220 | ?    | UK             | 2   | 1 | ERR833669     |
| SRR7852190-225               | 225 | ?    | UK             | 58  | 1 | SRR7852190    |
| ERR247085-Sang-237           | 237 | 2009 | Australia      | 167 | 5 | ERR247085     |
| ERR247082-Sang-237           | 237 | 2008 | Australia      | 167 | 5 | ERR247082     |
| ERR1854833-238               | 238 | 2007 | Australia      | 169 | 5 | ERR1854833    |
| ERR1854841-239               | 239 | 2005 | Australia      | 168 | 5 | ERR1854841    |
| SRR2751309-244               | 244 | ?    | Australia      | 41  | 2 | SRR2751309    |

|                       |     |      |           |     |   |            |
|-----------------------|-----|------|-----------|-----|---|------------|
| SRR2751311-244        | 244 | ?    | Australia | 41  | 2 | SRR2751311 |
| SRR2751302-Sang-244   | 244 | ?    | Australia | 41  | 2 | SRR2751302 |
| SRR2751305-244        | 244 | ?    | Australia | 41  | 2 | SRR2751305 |
| SRR2751307-244        | 244 | ?    | Australia | 41  | 2 | SRR2751307 |
| SRR2751308-244        | 244 | ?    | Australia | 41  | 2 | SRR2751308 |
| SRR2751310-244        | 244 | ?    | Australia | 41  | 2 | SRR2751310 |
| SRR2751293-244        | 244 | ?    | Australia | 41  | 2 | SRR2751293 |
| ERR2215996-Clade2-244 | 244 | ?    | ?         | 41  | 2 | ERR2215996 |
| ERR2215977-Clade2-251 | 251 | ?    | ?         | 231 | 2 | ERR2215977 |
| ERR1347091-251        | 251 | ?    | Australia | 231 | 2 | ERR1347091 |
| ERR1347090-251        | 251 | ?    | Australia | 231 | 2 | ERR1347090 |
| ERR1347089-251        | 251 | ?    | Australia | 231 | 2 | ERR1347089 |
| ERR1347088-251        | 251 | ?    | Australia | 231 | 2 | ERR1347088 |
| ERR2898847-288        | 288 | 2006 | Australia | 11  | 5 | ERR2898847 |
| ERR2898924-288        | 288 | 2013 | Australia | 11  | 5 | ERR2898924 |
| SRR7308916-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308916 |
| SRR7309178-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309178 |
| SRR7309102-356        | 356 | 2013 | Italy     | ?   | ? | SRR7309102 |
| SRR7309088-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309088 |
| SRR7309077-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309077 |
| SRR7309044-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309044 |
| SRR7309041-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309041 |
| SRR7309022-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7309022 |
| SRR7308855-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308855 |
| SRR7308803-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308803 |
| SRR7308786-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308786 |
| SRR7308719-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308719 |
| SRR7308708-356        | 356 | 2013 | Italy     | 17  | 1 | SRR7308708 |
| ERR3293604-404        | 404 | ?    | Spain     | 110 | 1 | ERR3293604 |
| ERR3293601-404        | 404 | ?    | Spain     | 110 | 1 | ERR3293601 |
| ERR3289211-404        | 404 | ?    | Spain     | 110 | 1 | ERR3289211 |
| ERR3288472-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288472 |
| ERR3289197-404        | 404 | ?    | Spain     | 110 | 1 | ERR3289197 |
| ERR3288469-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288469 |
| ERR3288324-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288324 |
| ERR3288327-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288327 |
| ERR3288177-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288177 |
| ERR3288176-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288176 |
| ERR3278162-404        | 404 | ?    | Spain     | 110 | 1 | ERR3278162 |
| ERR3274941-404        | 404 | ?    | Spain     | 110 | 1 | ERR3274941 |
| ERR3288348-404        | 404 | ?    | Spain     | 110 | 1 | ERR3288348 |
| ERR1854837-585        | 585 | 1998 | ?         | 164 | 5 | ERR1854837 |
| ERR1854838-586        | 586 | 2007 | Australia | 167 | 5 | ERR1854838 |