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Abstract.

The problem of selecting targeted gene panels that capture maximum variability encoded in
scRNA-sequencing data has become of great practical importance. scRNA-seq datasets are
increasingly being used to identify gene panels that can be probed using alternative molecular
technologies, such as spatial transcriptomics. In this context, the number of genes that can be
probed is an important limiting factor, so choosing the best subset of genes is vital. Existing
methods for this task are limited by either a reliance on pre-existing cell type labels or by
difficulties in identifying markers of rare cell types. We resolve this by introducing an iterative
approach, geneBasis, for selecting an optimal gene panel, where each newly added gene
captures the maximum distance between the true manifold and the manifold constructed using
the currently selected gene panel. We demonstrate, using a variety of metrics and diverse
datasets, that our approach outperforms existing strategies, and can not only resolve cell types
but also more subtle cell state differences. Our approach is available as an open source, easy-

to-use, documented R package (https://github.com/MarioniLab/geneBasisR).

Introduction.
Single-cell RNA sequencing (scRNA-seq) is a fundamental approach for studying

transcriptional heterogeneity within individual tissues, organs and organisms (reviewed in ).
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A key step in the analysis of scRNA-seq data is the selection of a set of representative
features, typically a subset of genes, that capture variability in the data and that can be used
in downstream analysis. Established approaches for feature selection leverage quantitative
per gene metrics that aim to identify genes that display more variability than expected by
chance across the population of cells under study. Commonly used methods for detecting
highly variable genes (HVG) utilise the relationship between mean and standard deviation of
expression levels (reviewed in ?), GiniClust leverages Gini indices 3, and M3Drop performs
dropout-based feature selection *. The number of selected genes is typically dependent on a
user-defined threshold, but ordinarily is on the order of one to a few thousand genes 2°. A
recently developed approach, scPNMF, further addresses the gene complexity problem by
leveraging a Non-Negative Matrix Factorisation (NMF)-representation of scRNA-seq, with
selected features being suggested to represent interesting biological variability in the data °.
scPNMF relies on the chosen dimension for the NMF-representation, and also does not
directly compare informativeness between different factors, thus impeding the ability to

compare the importance (i.e. gene weights) between different factors.

Framing the problem as searching for a fixed number of informative genes has recently gained
practical relevance. Specifically, recent technological advances have given rise to multiple
approaches where gene expression can be probed at single-cell resolution within a cell’s
spatial context, thus enabling the relationship between individual cells and cell types to be

studied (reviewed in 7°)

. One branch of spatial transcriptomics approaches builds on the
concept of RNA Fluorescence In Situ Hybridisation (FISH), where probes are used to assay
the number of molecules of a given gene present in a single cell '°. Newly developed
approaches, such as seqFISH ""~*, MERFISH '*~'" and DARTFISH '8 scale up classical RNA
FISH strategies, allowing the expression of dozens to hundreds of genes to be assayed in
parallel. The single-molecule resolution of these methods enables quantification of the location
of individual RNA molecules inside a single cell, which has important implications for studying
developmental, neuronal and immune biology, where cell-cell interactions are highly
informative. However, an important limitation of such methods is that the number of genes that
can be probed (gene panel) is limited (typically in the low hundreds) and this gene panel needs
to be selected prior to the experiment taking place. Additionally, carefully selected targeted

gene panels are relevant for CRISPR-seq screens '

and, more recently, targeted single-
cell gene expression assays %2 have been developed, which improves capture efficiency and

reduces experimental cost.

Current strategies that address the problem leverage prior knowledge regarding the relevance

of genes for the tissue of interest as well as using unsupervised marker selection, where
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matched scRNA-seq data is used to find genes of interest. If the goal is to identify genes that
characterise clusters present in scRNA-seq data, existing marker selection methods can be
applied, such as one-vs-all methods testing for genes that exhibit differential expression

between clusters 2228

, ranking genes by correlation with the normalized boolean vectors
corresponding to the clusters ?” or random forest classification algorithms 2%2°, In addition to
one-vs-all methods, the scGeneFit approach selects marker genes that jointly optimize cell
type recovery using a label-aware compressive classification method, and returns the optimal

set of markers given a user-defined panel size *.

The main drawback of these approaches is that they fundamentally rely on pre-determined
cell type annotation, thus relying not only on the clustering algorithm but also that the correct
granularity of clustering has been employed. By design, genes associated with intra-celltype
variation or genes that vary in expression over a subset of clustered cell types will not be
captured by such approaches. While the latter type of signal is generally deemed
uninteresting, in practice this will depend on the system and question in mind. For example,
tracing stress response and DNA damage will be relevant when analyzing cancerous samples,
and understanding proliferation rates and cell cycle state is important in numerous biological

contexts.

These fundamental limitations of most existing marker selection methods can be resolved by
deploying unsupervised selection methods that aim to capture features (genes) that describe
all sources of variability present in scRNA-seq data, both within and across cell types. One
recently developed method, SCMER, addresses this problem by aiming to find a set of genes

31 While novel and

that preserve the overall manifold structure of scRNA-seq data
algorithmically impressive, SCMER has limitations that hinder its utility in practice. First,
SCMER strives to find a selection that preserves the whole manifold and returns a scalar
estimate for how well the manifold is preserved in the form of a KL-divergence between the
‘true’ and the ‘selected’ manifolds. However, this global score reflects the overall preservation
of manifold structure and may not adequately weight or represent the local preservation of
rare cell types. Additionally, to deal with batch effects, SCMER finds common sources of
variation across most of the batches, which will be suboptimal for cell types that are present
in only a few batches. This is not an uncommon case for datasets collected from different

donors and different tissue sites.

To overcome these limitations, we have developed a novel cluster-free, batch-aware and
flexible approach, geneBasis, which takes scRNA-seq data and the number of genes to be

selected and returns a ranked gene panel of the designated size. Importantly, we provide a
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comprehensive set of metrics — at multiple levels of granularity - that can be used to assess
the completeness of the suggested panel. To incorporate expert knowledge, we allow users
to pre-select genes of interest. Additionally, by avoiding the use of predefined clusters,
geneBasis allows discovery of genes that underpin transcriptional programs within any
selected groups of cells (e.g. cell types). We demonstrate the power of our approach by
applying it in a variety of biological contexts and compare its performance to existing state-of-

the-art strategies.

Results.

An algorithm for gene selection.

For a given scRNA-seq dataset, we represent transcriptional similarities between cells using
k-nearest neighbour (k-NN) graphs (Methods). A k-NN graph that is constructed using the
entire transcriptome represents the ‘true’ relationships between cells as manifested by the
similarities in expression levels of individual genes between cells and their ‘true’ neighbours.
Subsequently we aim to find a selection of genes that yields a k-NN graph similar to the ‘true’
graph and is capable of predicting the true expression of any gene by using each cell's

neighbours.

Specifically, at each iteration (i.e. given the currently selected gene panel) we compare the
graph constructed using the entire transcriptome (‘true’ k-NN graph) with a graph constructed
using the current ‘selection’ (‘selection’ graph). At a single gene level, we assess how well we
can predict a gene’s expression levels across cells, using the cells neighbours in the ‘selection’
graph compared to the ‘true’ graph, and select the gene that shows the biggest discrepancy
between the two graphs (Fig. 1). More precisely, for each gene, in the ‘true’ graph we compute,
across cells, the Minkowski distance between a gene’s expression in a given cell and its
average expression in that cell’'s k nearest neighbours. Intuitively, this provides a baseline
measure for how well a gene’s expression can be predicted by its nearest neighbours in a
best-case scenario. Similarly, we compute the Minkowski distance for each gene using the
‘selection’ graph. We then compute, for each gene, the difference in the distances between
the ‘true’ and ‘selection’ graph and add the gene with the largest difference in distance to the
selected set. This process is then repeated until the desired number of genes has been

chosen.

An important limitation of existing methods is the inability to properly assess how complete
and informative the designed gene panel is. To address this, we derived three metrics that

evaluate gene panels at different levels of granularity: cell type, cell and gene level.
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The first metric explores whether cell types can be assigned in a specific and sensitive manner.
Specifically, while geneBasis does not rely on clustering, for scRNA-seq datasets where
annotations already exist, they can be exploited. To do so, we construct a k-NN graph for all
cells using the selected gene panel, and compare for each cell, its (pre-determined) cell type
label with the (pre-determined) labels assigned to its nearest neighbours (Methods). This
allows construction of a confusion matrix that provides insight into whether cells from the same

type are grouped together in the graph constructed using the selected panel.

As a second metric, which does not rely on cell type annotation, we focused on examining
how well an individual cell’s neighbourhood is preserved. For each cell, we compute its nearest
neighbours in the ‘true’ and ‘selected’ graph. Subsequently, in the ‘true’ graph space, we
compare the distance between each cell and these two sets of nearest neighbours (Supp.
Fig. 1). Intuitively, when the set of neighbours is identical in both the ‘true’ and ‘selection’
graph, this metric will output a score of 1, whilst a score close to O indicates that a cell’s

neighbours in the ‘selection’ graph are randomly distributed across the ‘true’ manifold.

Finally, a third metric for assessing the quality of the selected gene panels focuses on
individual genes (Methods). For each gene, we compute the correlation (across cells) between
its log-normalised expression values and its average log-normalised expression values across
K nearest neighbours in a graph. We compute correlations for the ‘true graph’ and for the

‘selected graph’, and use the ratio (‘selected’/’true’) as the final gene prediction score.

geneBasis allows recovery of local and global variability.

To evaluate whether geneBasis efficiently recovers a selection of genes that preserves both
local and global structure, we applied geneBasis, as well as SCMER and scGeneFit
(Methods), to four diverse systems representing challenges that frequently arise in scRNA-
seq datasets:

1. A study of mouse embryogenesis at embryonic day (E)8.5, coinciding with early
organogenesis *. This dataset contains both abundant and rare cell types as well as
multiple differential trajectories.

2. A newly-generated dataset profiling cells from the adult human spleen. As part of the
lymphatic system, the spleen contains transcriptionally similar immune cell types that
are not straightforward to resolve with a limited number of genes.

3. Multiple independent studies of the adult human pancreas dataset, consisting of

multiple batches from various donors and experiments 3%,
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4. Transcriptional profiling of melanoma samples from 19 donors collected at different

stages of disease progression *°.

Overall, using the metrics defined above, the gene panels chosen by geneBasis (Supp. Table
1) yield better performance than those chosen by SCMER (Fig. 2A,B). This is true both in
terms of preserving cell neighbourhoods and in terms of the fraction of cells for which the
neighbourhood was poorly predicted (Fig. 2A, Supp. Fig. 3A). The effect was most noticeable
when a small number of genes were selected, with differences in performance decreasing as
the number of genes selected increased (with the exception of the spleen, where geneBasis
consistently outperforms SCMER). This is of practical relevance for designing gene panels for
FISH-based experiments, where the number of selected genes can be an important limiting

factor.

We hypothesise that the difference in performance arises due to the nature of the L1-
regularisation utilised by SCMER. In general, regularisations like Lasso tend to discourage
redundancy among the selected features. However, this may not hold if the strength of the
regularisation is chosen manually and lies above an appropriately selected range “°. We
empirically support this hypothesis by assessing the redundancy within selected gene panels
for both geneBasis and SCMER (Supp. Fig. 2). Specifically, when a low number of genes is

selected, SCMER tends to select highly co-expressed genes.

Additionally, from the beginning of the search, geneBasis prioritises genes that allow
delineation of cell types as well as scGeneFit, a method that specifically addresses the task
of cell type separation (Fig. 2B). Moreover, geneBasis robustly recovers genes that delineate
cell types even if a preselected set of genes if provided (Methods, Supp. Fig. 4). Taken
together, we suggest that geneBasis represents an efficient method to successfully resolve

cell types and to preserve the overall manifold.

Another essential aspect of targeted gene panel design is to determine whether enough genes
have been selected to capture variability in the dataset of interest. To this end, the cell
neighbourhood preservation metric can be exploited to investigate whether specific
transcriptional neighbourhoods are enriched for cells with low scores, suggesting that these
neighbourhoods are not preserved well by the current selection. Across the benchmarked
datasets, we illustrate this by focusing on the first 150 selected genes (Fig. 2C, Supp. Fig. 3).
We observe that although there exist subtle differences between cell types, the majority of cell
types (Fig. 2C, upper panel) and regions of the high-dimensional space (Fig. 2C, middle

panel) were well covered by the selected panels, indicative of good performance (the only
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striking exception was in the melanoma dataset, in particular for cells that could not be
assigned a clear label in the original analysis). Consistent with these results, we also observed
high imputation accuracy for the expression of genes that were not among the selected set
(Supp. Fig. 3B,C). More generally, we anticipate that a user may not necessarily want to
select an exact number of genes, but rather may have an upper limit of genes that they could
feasibly profile. In these cases, we advise running geneBasis until the limit is reached, before
assessing when the cell neighbourhood preservation and gene prediction score distributions
converge as a function of the number of genes (Fig. 2, Supp. Fig. 3). Finally, it is important
to stress that the gene panel evaluation is independent of the selection method employed, and

can be used to compare two or more panels generated by any approach.

geneBasis accounts for batch effect and handles unbalanced cell type composition.

Careful consideration and adjustment for batch effects is one of the most challenging aspects
of scRNA-seq data analysis *'. In the context of gene selection, SCMER performs gene
selection for each sample individually, and then retains features identified in all/most samples.
While this is an efficient way to discard genes that show technical variability, such an approach
might also discard genes with strong biological relevance that are only captured in a small
fraction of samples e.g. cell type markers for cell types present in <50% of the batches.

Importantly, such unbalanced cell type composition is not uncommon in practice.

To account for this, in cases where a batch is specified by a user (i.e. every cell is assigned
to a batch), we construct k-NN graphs (‘true’ and ’selection’) within each batch, thereby
assigning nearest neighbours only from the same batch and mitigating technical effects.
Minkowski distances per genes are calculated across all cells from every batch thus resulting
in a single scalar value for each gene. Importantly, if a certain cell type is present only in one
batch, cells from this cell type will be consistently ‘mismapped’ if none of its marker genes are

selected, and therefore the algorithm will select one of the marker genes.

To assess our approach, we utilized the first dataset described above, which consisted of four
independent batches (samples) from the same stage of mouse development (Supp. Fig. 5).
In each batch, a considerable fraction of cells were associated with blood lineage (11-27%,
Methods). Next, we artificially removed cells in a batch-aware manner, thus keeping cells from
the blood lineage in 1, 2 or 3 batches, as well as adding a positive control (retaining blood
lineage in all the batches) and a negative control (removing blood lineage from all the batches).
We applied geneBasis and SCMER to these different settings. geneBasis efficiently (among
first 10 genes) selected one of the blood markers for each combination except for the negative

control (Supp. Fig. 5C). SCMER identified strong markers in the positive control setting and
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when the blood lineage was retained in at least 2 of the 4 samples. However, it did not select
any blood markers when the blood lineage was retained in only one sample (overall fraction
of blood lineage cells in this combination was nearly 5%), even though the gene panel
provided by SCMER was identified by the algorithm as of satisfactory quality (all selected

genes for this case and KL divergence are listed in Supplementary Table 3).

Computation complexity of geneBasis.

With rapid increases in the size of scRNA-seq datasets, computational complexity of any
algorithm is of increasing importance. Consequently, we sought to estimate the running time
of geneBasis, to ensure its scalability. We established that three parameters are relevant for
the computational complexity of the algorithm: n - number of cells, D - number of pre-filtered
genes that undergo gene search, and p - number of genes we want to select. In practice, p
will almost never exceed a few hundreds and D will never exceed 15000-20000, meaning that
the limiting parameter is the number of cells. Accordingly, we estimated running time for a
series of spleen scRNA-seq sub-datasets (Methods), whilst varying n from ~5000 to ~30000.
We also varied D from 1000 to 10000, and p from 50 to 150. For the selected range, we
observe a linear relationship between elapsed time and number of cells, and exponential
increase in complexity as a function of p (Fig. 3A). As anticipated, change in n had a higher
effect on the running time compared to change in D (Fig. 3B). Additionally, we compared
computational complexity between geneBasis and SCMER, and established that across the
tested range of n, p and D we outperform SCMER (Fig. 3C, for the details of the comparison
see Materials and Methods). Note that this might not hold true for higher values of p, but since
for all tested datasets selections with 150 genes appeared to be sufficient and complete (Fig.
2), we suggest that p <= 150 is a reasonable assumption. We further suggest that if a greater
reduction in computational complexity is desired, appropriate downsampling strategies can be

applied (Supplementary Note 1).

geneBasis resolves rare cell types and unannotated inter-celltype variability.

Cellular identity, which is typically represented on the level of cell type, is a basic and essential
unit of information that any targeted gene panel needs to recapitulate. In other words, a
‘biologically’ complete gene panel should delineate all cell types, including rare ones, for which
statistical methods can be occasionally underpowered. However, it also should be able to
capture intra-celltype variability in cases where discrete clustering has not been performed to
the appropriate resolution, and identify genes that display gradual changes in expression
across the high dimensional space, consistent with developmental trajectories. To address

whether geneBasis satisfies the above criteria, we focused on three datasets: mouse
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embryogenesis, human spleen and human pancreas. All datasets contain annotated cell type
labels and involve combinations of abundant and rare cell types. Moreover, each dataset
contains cell types that are distinct and closely related, making them highly appropriate for the
task (Fig 4. B, H, J).

For the study of mouse embryogenesis, selecting only 20 genes accurately resolves most cell
types (Supp. Fig. 6B), with 50-100 genes being sufficient to achieve nearly perfect matching
(Fig. 4A). The minor exceptions comprise cell types that are transcriptionally similar in the
original dataset, such as the visceral endoderm and the gut as well as the caudal mesoderm
and the NMPs, where only few (if any) differentiating markers exist and cell types, and cell
type classification is made using the degree of expression of commonly shared markers.
Nevertheless, in all such cases geneBasis selects several genes that could in principle be

used to differentiate the cell types (Supp. Fig. 6D,E).

Having determined that geneBasis identifies genes that characterise annotated cell types, we
next asked whether it could find genes associated with more subtle biological signals present
in the data. To this end we exploited recently published studies focused on myocardium
development *? and gut tube formation ** (Methods). We first integrated (using all genes) cells
annotated as cardiomyocytes from the scRNA-seq atlas for the whole embryo together with
cells from *? study that were isolated from the anterior cardiac region of mouse embryos, and
assigned cluster identities to cardiomyocytes cells (Methods; Fig. 4C). As expected, all cells
were assigned to the mesodermal cardiac lineage, with the majority being assigned to the
most differentiated cardiomyocytes (Me3). Consistent with Tyser et al., 2021, the integrated
data also reveal two trajectories leading to the most differentiated Me3 cluster: an FHF-like
differentiation trajectory linking Me5, Me4 and Me3 and a SHF-like trajectory via Me7.
Importantly, when using only the first 100 genes selected by geneBasis we were able to
recapitulate this structure (Fig. 4C, D). Among the 100 genes, 13 were differentially expressed
in cardiomyocytes (Supp. Fig. 6F), including markers for the FHF-trajectory (Sfrp5), strong
markers for the differentiated Me3-state (Myl2) and contractile markers (Ttn) that exhibit
gradual expression along the differentiation trajectory of the myocardium (Supp. Fig 6G).
Similarly, when focusing on the gut tube, and using the refined annotation provided by **, we
observed that the set of genes chosen by geneBasis recovered the emerging organs arranged

across the Anterior-Posterior axis (Fig. 4E,F; Supp Fig 6H,1,K).

Next, we explored the ability of geneBasis selection to select genes that captured
heterogeneity amongst the populations of immune cells present in the adult human spleen. As

expected, compared to mouse development, the ability to discriminate between the set of
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transcriptionally similar cell types present in the spleen required more genes (Supp. Fig.
7B,C). Nevertheless, selection of 100 genes allowed most cell types to be identified in a
sensitive and specific manner (Fig. 4G, Supp Fig 7D). Similarly to mouse embryogenesis, the
occasional mismapping of cells occurred between transcriptionally similar cell types, such as
follicular and marginal zone B cells, as well as CD4+ and CD8+ T cells and innate lymphoid
cells. Of note, the difficulty of using only the transcriptome to distinguish between different
types of T cells is well known *4, and it has been suggested that a more precise annotation of
T cells can be obtained by generating paired measurements of cellular transcriptomes and

immunophenotypes *°.

Finally, we benchmarked geneBasis on a thoroughly annotated and integrated dataset of
human pancreas, containing numerous rare cell types — 8 of the 13 annotated cell types
account for less than 5% of the overall dataset. Nevertheless, and similarly to the previous
examples, we quickly and accurately predict all cell types with the exception of rare cycling

cells, which are occasionally conflated with highly abundant alpha cells (Supp. Fig. 7F,G).

geneBasis captures signals associated with cell states.

We next examined whether geneBasis could identify sources of biological variation that in
principle can be recovered from scRNA-seq data but that are frequently overlooked because
they do not contribute to cell identity per se. Examples of such genes include cell state markers
associated with transient biological processes, such as cell cycle, DNA damage repair,
oxidative stress. Depending on the biological context, this cell state information can be highly
relevant for in situ profiling. For example, cell cycle genes are typically not included in gene

panels for spatial transcriptomics experiments '*14.1

, partially due to high abundance of cyclin
mRNAs and partially due to the notion that this signal is frequently deemed to be uninteresting.
However, in the context of tumorigenesis, DNA damage, cell cycle and proliferation of
malignant cells are the hallmarks of disease progression, and mapping this information

spatially could be highly insightful.

To illustrate that geneBasis successfully and sufficiently recovers cell state genes indicative
of ongoing biological processes, we analysed the set of genes recovered for the melanoma
dataset (Fig. 5A), which consists of ~4500 cells isolated from 19 patients, containing
malignant, immune, stromal and endothelial cells. Within the first 100 genes selected, we
identified 53 markers that were differentially expressed between the annotated cell types
(Methods) and verified that these resolve all cell types, including the rare population of NK

cells that are transcriptionally similar to highly abundant T cells (Fig. 5A-C).
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The majority of the remaining genes were globally differentially expressed between malignant
and non-malignant cells (8 and 26 genes were down- and up-regulated respectively in
malignant cells). In the original study, a substantial degree of transcriptional heterogeneity was
characterised across individual cells, both malignant and healthy, mostly associated with cell
cycle, variation in MITF and AXL levels, and activation of the exhaustion program in T cells.
Importantly, among the up-regulated genes we identified markers of transcriptional programs

described in the original study such as tumour progression and cell exhaustion.

Finally, 13 genes were neither identified as cell type markers nor significantly up or down
regulated in malignant cells. Among those we found JunB, B2M and Narf2 — markers of
inflammation, cell exhaustion and melanoma oncogenic programs taking place in malignant
and T cells. Overall, we select cell state markers for all cell states characterised in the original
publication programs including MITF and AXL (Fig. 5D). We observed a low degree of co-
expression among these genes, with the exception of cell cycle genes and genes associated
with the MITF program. Low co-expression is consistent both across all cells and within
malignant cells, suggesting that these cell state genes are indicative of distinct transcriptional

programs.

Discussion.

For the last decade, scRNA-seq technology has transformed our ability to explore molecular
heterogeneity in a variety of biological systems. More recent technological advances such as
single-cell multi-omics assays, CRISPR screens and spatial transcriptomics go beyond
measuring only the transcriptome, thus facilitating a more complete understanding of the
features that underpin cellular function. In many of these cases, particularly for a large number
of spatial transcriptomics assays, selecting the set of genes to probe is an important

parameter, which in turn necessitates the emergence of appropriate computational tools.

In this study, we introduce geneBasis, which uses existing scRNA-seq data to select genes in
a cluster-free and highly flexible manner. We have shown that geneBasis outperforms existing
methods, both in terms of computational speed and in identifying relevant sets of genes, and
that geneBasis selects genes that characterise both local and global axes of variation that can
be recovered from a k-NN graph representation of transcriptional similarities. geneBasis also
allows user knowledge to be directly incorporated by selecting, a priori, a set of genes of

particular biological relevance, which are then augmented by the algorithm.

Although we have addressed several important challenges, our approach has limitations that

need to be considered, especially when designing libraries for FISH-based experiments.
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Firstly, scRNA-seq and FISH-based technologies use different approaches for assessing the
number of mMRNA molecules that are associated with a given gene, which in turn creates
discrepancies in capture efficiency between the two technologies “¢. Practically, it is observed
that FISH-based technologies capture more mRNAs per cell due to a high sequence specificity
in probe design. Consequently, genes selected using scRNA-seq will likely have higher
detection rates in FISH-based experiments. While this is beneficial for detection of cell types
that rely on a low number of selected markers, it can be a problem since FISH-based
experiments are experimentally limited by the total number of individual molecules that can be
detected in any given cell. Accordingly, it is advised to limit the number of ubiquitously or highly
expressed genes. By design, geneBasis does not perform initial pre-filtering of housekeeping
genes (since some could be highly relevant, such as markers of the cell cycle) nor it does
discard them from the selected gene panels. Therefore, we suggest that users filter out

ubiquitously expressed genes either in the initial submission or post hoc.

Another important aspect to be accounted for in the selection of gene panels is redundancy
(i.e., the presence of multiple genes that are co-expressed and that mark the same cell
type(s)). In practice, although geneBasis is not explicitly designed to completely eliminate
redundancy in the selection, we typically observed only a small number of redundant genes.
In general, this is a desirable property, since it maximises the number of distinct biological
processes that can be examined. However, for cell types of specific interest, it may be useful
to add a small number of redundant genes to the gene panel to avoid risks associated with

technical probe failure during the experiment.

Finally, since geneBasis does not rely upon clustering of the scRNA-seq data, it does not
directly capture ‘positive’ cell type markers. As an example, when examining the ability to
detect primordial germ cells (PGCs), a rare population comprising ~0.1% of cells in the mouse
embryo study, we showed above that selecting 100 genes successfully resolves all cell types
including PGCs. However, manual annotation of the selected genes revealed that we do not
select unique positive PGC markers in the selected set. Instead, we select two semi-specific
PGC markers, Ifitm1 and Phlda2, which are shared with other cell types such as somitic and
extra-embryonic mesoderm, extra-embryonic endoderm and allantois. The ability to
discriminate PGCs from the other related cell types is possible due to the inclusion of genes
that mark these related cell types as opposed to the inclusion of specific PGC marker genes
(of note, amongst the top 200 genes we include Dppa3 - a highly specific and sensitive PGC
marker). Consequently, we suggest that in cases where sensitive and specific identification of
cell types, particularly rare ones, is a high priority, that appropriate marker selection methods

are applied alongside geneBasis, thus ensuring the inclusion of specific cell type markers.
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Methods.

Detailed overview of the geneBasis algorithm.

Below we describe the workflow of the algorithm, characterise optional parameters and justify

the default settings.

Initial selection of genes.

We perform initial pre-filtering of genes by using the function scran::modelGeneVar,
var.threshold = 0. Ifthe number of variable genes exceeds n = 10000, we use the first
10000 variable genes as default. Additionally, we filter out mitochondrial genes. If a user wants
to perform more selective filtering, this can be done manually (by using scRNA-seq entries for

only pre-filtered genes) or by tuning var.threshold and n.

k-NN graph representations for ‘true’ and ‘selection’ graphs.

e We use log-normalised counts for scRNA-seq data as an input for the algorithm.

e We construct kNN-graphs, for both true and selection graphs, by using the function
BiocNeighbors::findKNN, and represent each cell’'s neighbourhood using the
first 5 neighbours. As a default, we use n.neigh=>5 as an appropriate compromise
between mitigating potential noise in scRNA-seq data together with the potential
existence of very rare cell types, where n.neigh > 5 can hide true biological
variability. The same default is used to compute the cell neighbourhood preservation
and gene prediction scores. This variable can be tuned by the user.

e For the ‘true’ graph, we first compute Principal Components by using the function
irlba::prcomp irlba, n = 50, and apply BiocNeighbors: : £indKNN on the
first 50 PCs.

e For the ‘selection’ graphs, the PCA step is optional and by default is not performed. In
practice we observed that omitting the PCA step for the construction of ‘selection’
graphs did not lead to different results when selections are generated with fewer than

250 genes (Supp. Fig. 9).

Identification of the first gene.

To select the first gene, we generate a random gene count matrix thus mimicking a random
transcriptional relationship between cells. Subsequently, we use this matrix to compute a

random ‘selection’ graph. Subsequently, to calculate the per gene Minkowski distance in the
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random ‘selection’ graph, we compute the distance between the actual log-normalized
expression values and the average of the ‘true’ log-normalized expression values across
neighbours in the random ‘selection’ graph. To select the first gene we choose the gene with
the largest difference between Minkowski distance in the random ‘selection’ graph and the
‘true’ graph. We repeat this procedure five times and select the most frequently occurring
gene. In the unlikely scenario of ties (5 different genes are calculated from 5 random graphs),

we select the gene from the first random graph.

Adding a new gene to the current gene panel.

To add the next gene to the current gene panel (selection), we compare the graph constructed
using the entire transcriptome (‘true’ k-NN graph, computed once) with a graph constructed
using the current ‘selection’ (‘selection’ graph, recomputed for every updated selection). For
each gene in the ‘true’ graph we compute, across cells, the Minkowski distance between a
gene’s expression in a given cell and its average expression in that cell’s k nearest neighbours.
Similarly, we compute the Minkowski distance for each gene using the ‘selection’ graph. To
add the next gene to the current gene panel, for each gene we calculate the difference in

stance between ‘selection’ and ‘true’ graph, and add the gene with the largest difference.

Batch correction.

In cases where a batch is specified by a user (i.e. every cell is assigned to a distinct batch),
we construct k-NN graphs (‘true’ and ‘selections’) per batch thus identifying nearest
neighbours only from the same batch. To calculate a per gene Minkowski distance between
cells and their neighbours, we use cells from all batches. Note that the same accounting of
the batch is performed to compute cell neighbourhood preservation and gene prediction

Scores.

Default order for Minkowski distance.

The Minkowski distance of order p (p is an integer) between two vectors X = (xq, x5, ..., x5,)

andY = (y1,¥,...,¥n) € R" is defined as:

n 1/p
DEX,Y) = (2 I —yi|p>

i=1

The choice of p provides a balance between how much the computed distance weighs the

number of cells that are currently ‘mismapped’ (i.e. the assigned neighbours in the selection
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graph show different expression values from what would be expected from the ‘true’ graph)
against the magnitude of this ‘mismapping’ (i.e. how much different). For example, when the
Minkowski distance is calculated between vectors X and Y and p — oo, then D(X,Y) - (|X; —
Y;]) thus prioritising the magnitude of mismapping. By contrast, if p = 0 then the Minkowski

distance emphasises the number of mismapped cells regardless of the magnitude.

To select an appropriate p, we applied geneBasis for therangep = 1,2, 3, 4, 5 (Supp. Fig.
8).Overall, we observe that different orders of Minkowski distance return robust selections
that do not substantially affect either cell neighbourhood preservation or gene prediction
scores (Supp. Fig. 8A,B). We next sought to determine the degree of expression resolution
that can be achieved for a given range of p. In other words, we assessed, for each value of p
and varying number of selected genes, what is the most rarely expressed gene (measured as
a fraction of cells in which non-zero counts are observed) can be achieved. We observe that
for all benchmarked datasets p > 2 gives highly similar results and using p > 2 allows the
selection of relevant genes that are expressed in only ~0.1% of cells (Supp. Fig. 8C). Applying
geneBasis with p = 1,2 shows less flexibility and does not select genes beyond a certain
threshold of expression. As default, we thus select p = 3 as a good tradeoff between the

number of mismapped cells and the size of the discrepancy.

Gene prediction score (‘gene score’).

To calculate the gene score for the selected library, we exploit the ‘selection’ and ‘true’ graphs.
For each gene, we compute the Spearman correlation (across cells) between its log-
normalised expression value in each cell and its average expression across (each cell’s) first
5 nearest neighbours. We perform this calculation separately for the ‘selection’ and ‘true’
graphs and compute the ratio [correlation in ‘selection’]/[correlation in ‘true’]. We discard genes
with correlation in the ‘true’ graph below 0.25 (i.e. we omit genes unstructured expression

across the manifold).

Cell neighbourhood preservation score (‘cell score’).

To calculate the cell score, we exploit the “True k-NN graph’. In the “True k-NN graph’ for each
cell we compare the vector of distances to the assigned neighbours from the ‘true graph’ and
assigned neighbours from the ‘selection graph’ (Supp. Fig. 2). To normalize vectors and
provide an interpretable metric, for each cell we z-transform the distribution of distances to all
other cells and multiply the vector by -1, thus higher distances reflect more transcriptionally
similar cells. For each cell, the ‘cell score’ is calculated as the ratio of the median of the scaled

distances to the first K neighbours from the ‘selection’ graph to the median across of the scaled
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distances to the first K neighbours from the ‘true’ graph (we use K = 5). The upper limit for the
score of 1 arises if a cell’'s neighbourhood perfectly overlaps between the ‘true’ and the
‘selection’ graph, while a score of 0 suggests that a cell’s neighbours from the ‘selection’ graph

are distributed randomly across the manifold.

Cell type mapping.

To compute confusion matrices for cell type labelling using the selection, we use log-
normalised counts of the selected genes, perform PCA and use the first 50 components to
build a k-NN graph. If batch is not provided, PCA is performed using the prcomp irlba
function from the irlba package. If batch is provided, we first perform PCA using the
multiBatchPCA function from the batchelor package, and then perform MNN-correction
using the reducedMnN function from the batchelor package. For each cell we assign the
mapped cell type as the most frequent cell type label across the first 5 neighbours (in case of

the ties, we assign the cell type label of the closest cell from tied cell types).

Benchmarking.
Datasets:

e Mouse embryogenesis. The dataset was downloaded using the
32

MouseGastrulationData package in R, which contains data generated for
Further we selected samples for stage E8.5 and discarded cells annotated as doublets
or stripped. The final dataset consists of 4 samples (i.e. batches), and we use the field
“sample” as a batch identification for gene selection methods. For cell type mappings
we discard extremely rare cell types that are present only at earlier developmental
stages: Paraxial Mesoderm, Notochord and Rostral Neuroectoderm (< 10 cells in the
E8.5 dataset).

e Spleen. scRNA-seq for spleen is downloaded from the HubMap portal *’

(https://portal.hubmapconsortium.org). The HuBMAP dataset IDs are as follows:

HBM984.GRBB.858

HBM472.NTNN.543

HBM556.QMSM.776

HBM336.FWTN.636

HBM252.HMBK.543

HBM749.WHLC.649.

Raw counts were SCTtransformed and integrated using Seurat RPCA workflow.

Annotation of cell types was performed using a manually curated list of previously

characterised cell type markers (Supplementary Table 2 contains the list of spleen
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markers and full annotations). Cells that could not be confidently assigned to a single
cell type based on these markers were denoted as "Unknown." The dataset consists
of samples from 6 donors (i.e. batches), and we use the field “donor” as a batch
identifier for gene selection methods.

e Pancreas. Annotated scRNA-seq datasets for the pancreas were obtained from the
Azimuth portal 8. The integrated dataset contains data from 6 individual studies 3*-
3 with each individual study also being composed of several batches or samples. We
use a combination of study and batch within study as a meta-batch variable (20 in
total).

e Melanoma. The melanoma dataset described by 3°

was downloaded from
ncbi.nim.nih.gov with accession number GSE72056. The dataset consists of samples
from 19 donors at different stages of metastasis. Considering the highly variable and
overall low number of cells per each donor (4645 cells across 19 donors), and, more
importantly, substantial transcriptional variability across donors, we decided to perform
gene selections for this study without performing batch correction. For cell type

mappings, we only use annotated non-malignant cells.

Pre-processing.

To obtain log-normalised counts we first calculated size factors using
scran: :quickCluster to cluster cells and subsequently scran: : computeSumFactors
to compute size factors. Log-normalisation was then performed using

batchelor: :multiBatchNorm.

Benchmarked methods.

e SCMER and scGene-Fit require initial pre-selection of genes. We used HVG-based
gene screening with defaults from SCMER and manually increased the search range
for spleen due to the observation that the defaults in SCMER selected an insufficient
number of genes that poorly represented the overall manifold. Other parameters of the
algorithms were left as default.

e For SCMER, we used the same batch identifications as for geneBasis. To get a range
of gene selections for SCMER, we generated a coarse grid for regularisation strength
(the parameter that directly affects number of genes selected) and applied the method
on the generated grid.

e In order to perform a faithful comparison between scGene-Fit and geneBasis, for
scGene-Fit we discarded the Unknown cell type for the spleen data and Paraxial
Mesoderm, Notochord and Rostral Neuroectoderm cell types for the Mouse embryo

data. For all 4 datasets, we used the option “centers”.
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Estimation of computation complexity for geneBasis and SCMER.

geneBasis and SCMER use distinct computational strategies that required us to approach the
estimation of computational complexity separately for each method. To vary the number of
cells, we used the spleen dataset containing samples from 6 donors (henceforth referred as
samples). We applied both methods to subsets of the spleen dataset by varying which
samples we included in the subsets. Below we explain how we then assessed computational
complexity for both methods.

e geneBasis. To vary the initial number of genes we performed highly variable gene
selection and selected the top 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or
10000 highly variable genes. We then ran the algorithm to select the first 150 genes,
and accordingly for every added gene, recorded the elapsed time.

e SCMER. SCMER requires the regularization strength A to be inputted. Subsequently,
given this parameter, a selected set of genes are returned. Alternatively, it can take a
number of genes to be selected as an input, in which case it will run SCMER on the
coarse grid of various values for A, select an optimal A to achieve the desired number
of genes, and return the selection. By design, the latter takes longer to run since the
algorithm has to first perform a grid search. Accordingly, to achieve a more faithful
comparison, we selected the appropriate grid for A ourselves, and for each value of the
grid, we recorded the selected number of genes and elapsed time. The initial
preselection of genes is not part of SCMER, and we varied the number of initial genes
by selecting highly variable genes with scanpy.pp.highly variable genes with
different values formin disp (0, 0.25, 0.5).

Generation of semi-random initial selections (for Supplementary Figure 4).
To perform semi-random initial selections, for each dataset, we randomly chose half of the cell
types and for each cell type we randomly selected a gene that was upregulated in the

corresponding cell type. A union of these genes was used as initial selections.

Integration with lineage-specific datasets for mouse embryo development.

To integrate scRNA-seq data of the whole mouse embryo *2 together with the lineage specific

t42

dataset for cardiac development *°, we concatenated log-normalised counts for cells from 32

annotated as ‘Cardiomyocytes’ and cells from #2. To integrate scRNA-seq data of the whole
mouse embryo ? together with lineage specific dataset for endodermal development *3, we

2

concatenated log-normalised counts for cells from *2 annotated as ‘Gut’ and cells collected at

E8.75 from .
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For both integrations, we performed cosine normalisation of log-normalised counts using
batchelor: :cosineNorm, and performed PCA using batchelor: :multiBatchNorm,
20 PCs (using combination of + dataset + corresponding to the dataset batch entity as meta-
batch). Mapping was then calculated using BiocNeighbors: : £indKNN. For each cell, we

assigned the most common cluster across the first 5 neighbours.
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Figure 1. Schematic overview of geneBasis. Below we describe the steps of the
algorithm.

1. ‘True’ k-NN graph is constructed, which represents the ‘ground truth’ relationship
between cells. Colours correspond to celltypes for visualisation but are not used by
the algorithm. For each gene (Narf and Hba-a1 are used as examples) we calculate
the Minkowski distance between two vectors: the first vector corresponds to log-
normalised expression for each cell (referred to as measured); the second vector
corresponds to the average log-normalised expressions across the first K neighbours
for each cell (referred to as predicted).

2. For the current selection the ‘Selection’ graph is constructed to represent the
relationship between cells using currently selected genes. As in 1., for each gene we
calculate the Minkowski distance between measured and predicted counts.

3. The Minkowski distances are compared for each gene, and the gene with the biggest
difference between Selected and True graphs (in the schematic - Hba-a7) is added to
the current selection.

4. Steps 2-3 are repeated until the number of selected genes reaches the desired
value.
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Figure 2. geneBasis preserves local and global structure. Each column represents the
results for a different biological system.

(A) Upper panel: The overall convergence of cell neighbourhood preservation
distributions for geneBasis (in red) and SCMER (in blue) as a function of the number
of selected genes. Lower panel: the weight of tails of the distributions (i.e. fraction of
cells with neighborhood preservation score < 0.5). Values are rescaled as In(x + 1).
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(B) The fraction of cells mapped to the correct cell type for geneBasis (in red) and
scGenefFit (in orange) as a function of number of genes in the selection.

(C) Upper panel: The distribution of neighbourhood preservation scores (calculated for
the first 150 genes) per celltype. Middle panel: UMAP representation coloured by
neighbourhood preservation score (calculated for the first 150 genes). UMAP
coordinates themselves were calculated using the whole transcriptome. For
visualisation purposes, cell neighbourhood preservation scores lower than 0 were set
equal to 0. Lower panel: UMAP representation coloured by celltype labels. Colours
correspond to cell type labels and match colors in the upper panel.
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Figure 3. Estimation of computational complexity.
(A) Distribution of elapsed time as a function of number of geneBasis selected genes (X-
axis) and number of cells present in a scRNA-seq dataset (in colour).
(B) Distribution of elapsed time as a function of number of geneBasis selected genes (X-
axis) and initial number of genes (in colour).
(C) Distribution of elapsed time as a function of number of selected genes (in facets) and
number of cells (X-axis). Colours correspond to different methods.
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Figure 4. geneBasis delineates celltypes regardless of their abundance and resolves
unannotated inter-celltype variability.
Panels A-F correspond to mouse embryogenesis; G-H correspond to spleen, and I-J

correspond to pancreas analysis.
(A) Celltype confusion matrix for the first 100 selected genes (prog. = progenitors; mes. =
mesoderm; Brain = Forebrain/Midbrain/Hindbrain).
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(B) Ordered bar plot representing relative celltype abundance.

(C) Upper panel: UMAP representation of Cardiomyocytes, coloured by clusters from
Tyser et al, when integration between datasets was performed using all genes.
Lower panel: UMAP representation of Cardiomyocytes, coloured by mapped cardiac
clusters, when integration between datasets was performed using selection from
geneBasis. UMAP-coordinates themselves were calculated using the whole
transcriptome.

(D) Confusion matrix for cardiac clusters, where the mapping using all genes is used to
assign true identity and mapping using the geneBasis selection is used to represent
a mapped cluster.

(E) Upper panel: UMAP representation of Gut tube, coloured by mapped organs
(Nowotschin et al.), when integration between datasets was performed using all
genes. Lower panel: UMAP representation of the Gut tube, coloured by mapped
organs, when integration between datasets was performed using the selection from
geneBasis. UMAP-coordinates themselves were calculated using the whole
transcriptome.

(F) Confusion matrix for the emerging organs present along the gut tube, where mapping
using all genes are used to assign cells to a true cluster and the geneBasis selection
is used to represent a mapped cluster.

(G) Celltype confusion matrix generated using the first 100 selected genes. For cell types
in spleen we use abbreviations, see Supplementary Table 2 for full annotations.

(H) Ordered bar plot representing relative celltype abundance.

(I) Celltype confusion matrix for the first 100 selected genes.

(J) Ordered bar plot representing relative celltype abundance.
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Figure 5. geneBasis identifies cell state genes relevant for heterogeneity across
multiple celltypes in the context of cancer.
(A) UMAP representation, coloured by malignancy status and annotated celltypes.
UMAP-coordinates themselves were calculated using the whole transcriptome.
(B) Celltype confusion matrix for non-malignant cells.
(C) Ordered bar plot for celltype abundance.
(D) Co-expression (within all cells, left panel; within malignant cells, right panel) for
selected genes associated with various transcriptional programs identified in the
original publication. Colours correspond to detected programs, corresponding legend

is on the right.
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