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Abstract

Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant
responses in highly controlled environments without confounding external influences, forming the
basis for many biotechnological applications. With medicinal and recreational interests for Cannabis
sativa L. growing, research related to the optimization of in vitro practices is needed to improve
current methods while boosting our understanding of the underlying physiological processes.
Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing
approaches to optimize in vitro methods are tedious and time-consuming. Therefore, there is great
potential to use new computational methodologies for analysing data to develop improved protocols
more efficiently. Here, we first tested the effects of light qualities using assorted combinations of
Red, Blue, Far Red, and White spanning 0-100 pmol/m?s in combination with sucrose
concentrations ranging from 1-6 % (w/v), totaling 66 treatments, on in vitro shoot growth, root
development, number of nodes , shoot emergence, and canopy surface area. Collected data were then
assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and
adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis growth and
development. Based on the results, GRNN had better performance than MLP or ANFIS and was
consequently selected to link different optimization algorithms (genetic algorithm, biogeography-
based optimization, interior search algorithm, and symbiotic organisms search) for prediction of
optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions
of in vitro conditions to refine growth responses were subsequently tested in a validation experiment
and data showed no significant differences between predicted optimized values and observed data.
Thus, this study demonstrates the potential of machine learning and optimization algorithms to
predict the most favourable light combinations and sucrose levels to elicit specific developmental
responses. Based on these, recommendations of light and carbohydrate levels to promote specific
developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work showcases the
importance of light quality and carbohydrate supply in directing plant development as well as the
power of machine learning approaches to investigate complex interactions in plant tissue culture.
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I ntroduction

The multifaceted value of Cannabis sativa L. (cannabis) as a quality fiber, seed oil, and therapeutic
crop have been recognized for millennia (Hesami et al., 2020; Sandler et al., 2019). Over the past two
decades, interest relating to its medicinal applications have largely been emphasized due to the
discovery of over 500 unique secondary metabolites (EISohly and Gul, 2014). Of these compounds,
there are more than 100 cannabinoids that contribute to cannabis’ pharmacological properties
(Fathordoobady et al., 2019). Medicinal use can relieve symptoms associated with glaucoma, nausea,
irritability, epilepsy, chronic pain, etc. (Barrus et al., 2017), showing potential to revolutionize the
pharmaceutical industry, and technologies related to extraction and administration of bioactive
compounds (Fathordoobady et al., 2019; Vita et al., 2020). Due to the important industrial
implications of drug-type cannabis, it is imperative to establish methods for the production of high
quality biomass with consistent secondary metabolite profiles, which is achievable in part through
micropropagation (Chandra et al., 2020).

Since many nations have adopted the more liberal view of cannabis, it’s since gained higher
economic status as an industrial crop, and additional secondary products such as extract derivatives
are expected to further amplify economic expansion (Moher et al., 2020). The need to maintain
product consistency, while supporting innovation and development (Burgel et al., 2020) requires a
better understanding of the physiological responses of cannabis to external stimuli. Research
initiatives are needed to optimize current production strategies, enhancing our recognition of, and the
precision at which we can invoke specific physiological responses to fit an assortment of industrial
applications. Micropropagation offers unique opportunities to produce and maintain extensive
populations of genetically uniform plantlets in time and cost-effective systems (Nathiya et al., 2013).
Tissue culture techniques can be applied to examine essential plant responses to external stimuli in
highly controlled environments under axenic conditions for biotechnological (Shukla et al., 2017),
conservation (Ayuso et al., 2019) and various —omics related technologies (Andre et al., 2016). These
approaches can be re-applied to suit the needs of the emerging cannabis industry.

Until recently, cannabis micropropagation has largely been an underground effort with few peer
reviewed studies. This lack of insight concerning in vitro cannabis techniques has limited
biotechnological utility of this crop (Smykalova et al., 2019). While the current cannabis boom has
led to the emergence of numerous in vitro protocols (Galan-Avila et al., 2020; Lata et al., 2016;
Wrabel et al., 2020), a robust and efficient protocol has yet to be fully developed. Several intrinsic
(e.g., genotype, type, and age of explant) and extrinsic (e.g., basal salt medium, vitamins, plant
growth regulators (PGRs), gelling agents, carbohydrate source, additional additives, temperature, and
light) factors (Fig. 1) influence in vitro shoot growth and development and contribute to challenges in
reproducibility (Hesami and Jones, 2020). Most previous studies in cannabis have investigated the
effect of basal media, along with different types and concentrations of PGRs for shoot growth and
regeneration (Chaohua et al., 2016; Lata et al., 2016; Movahedi and Torabi, 2015). Clonal line
proliferation using apical and nodal explants on medium with reduced PGRs has been demonstrated
as an effective approach for non-medicinal cannabis, while reducing the amount of emergent genetic
variability (Wrdbel et al., 2020). A cannabis micropropagation approach truly optimized for cross-
cultivar maintenance and proliferation should allow formative physiological development on a
pathway to photoautotrophic competence, coaxed through abiotic conditioning in the absence of
PGRs. Though certain in vitro propagation, embryogenesis, and regeneration procedures rely on
PGRs, many beneficial physiological characteristics can be induced or enhanced by appropriately
adjusting light quality, quantity, and carbohydrate supply. In vitro shoot growth and development
may be achieved or enhanced by manipulating light and sugar in the absence of PGRs.
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87  Though micropropagation protocols show promise to advance certain aspects of the cannabis
88 industry, there remain issues with conventional in vitro systems. Photosynthetically incompetent
89  organs, and fragile roots are phenotypic traits commonly observed in cultures (Jha and Bansal, 2012).
90  Anatomical variations tend to be culture-induced, emerging with high humidity, elevated PGR
91  concentrations, low light intensity, and high substrate water potential, causing physiological disorders
92  such as hyperhydricity (Majada et al., 2000). These abiotic factors, along with limited culture CO,
93 availability, and potential for ethylene accumulation frequently impede photosynthetic responses
94  (Nguyen et al., 2001), complicating the ex vitro transfer of specimens (Nathiya et al., 2013). Due to
95  such limitations, new cultures must be supplied alternative carbon sources to maintain metabolic
96 activity in otherwise daunting, closed environments (Eckstein et al., 2012). Sugar occurrence allows
97  continuous plantlet development under low irradiance (Cio¢ et al., 2018), commonly used in vitro. A
98 standardized addition of 3% (w/v) sucrose to the micropropagation media helps to counteract short-
99 term, negative environmental impacts by providing substitute carbohydrates to elicit photo-
100  mixotrophic metabolism (Gago et al., 2014). In vitro sucrose levels impact plantlet physiology by
101  regulating genes relating to primary and secondary metabolic function (Yang et al., 2012). While
102  supplemental carbon supply is a necessity for early-stage explants, developing plantlets can build
103  sucrose dependence (Lembrechts et al., 2015), further limiting idealized physiological function and
104  subsequent ex vitro re-localization. Conversely, previous work has also demonstrated that sugar can
105 have positive effects on plantlet development under different environmental conditions in vitro
106  (Eckstein et al., 2012; Kozai et al., 1987; Roh and Choi, 2004).

107  Although the occurrence of sucrose often activates photomixotrophic metabolic responses, light
108 nevertheless bears high influence over in vitro success (Miler et al., 2019). Sugar and light signal
109 essential metabolic processes which govern the condition of cultured plantlets (Eckstein et al., 2012).
110  Though low light intensity in vitro hampers photosynthetic efficiency, overly high intensities can
111  limit synthesis of photo-absorptive pigments and damage certain components of the photosynthetic
112 apparatus (Cio¢ et al., 2018). Since high light levels throughout different culture stages can be
113  stressful to developing plantlets, substitute carbon sources can help elicit photo-protective responses,
114  indicating a possible sugar/light signalling pathway for photo-protection (Eckstein et al., 2012). Thus,
115  photosynthetic limitation in vitro could largely be more related sub-optimal abiotic conditions in the
116  presence of exogenous sugar, rather than the impact of the sugar itself (Arigita et al., 2002).
117  Chloroplast localization (Eckstein et al., 2012), leaf area index (Snowden et al., 2016), and leaf
118  thickness are influenced by changes in light quantity and quality. Proper development of these traits
119 can increase photoabsorption saturation point (Macedo et al., 2011), enhancing plantlet fitness.
120  Sustainable adjustment of the abiotic conditions combined with exogenous sugar can improve
121  protective and repair responses (Eckstein et al., 2012; Ticha et al., 1998), allowing plantlets to more
122  effectively sequester and utilize otherwise excessive and damaging photo-irradiation. Preliminary
123 work conducted by our lab points in this direction in the case on micropropagated cannabis.
124  Modifying abiotic factors and their interactions with sugar-related dynamics, is sometimes
125  overlooked in micropropagation (Eckstein et al., 2012). Thus, research surrounding the potential to
126  improve tissue culture protocols by optimizing abiotic influence and sugar-related dynamics should
127  be thoroughly pursued.

128  The use of light emitting diodes (LEDs) for plant tissue culture allows strategic manipulation of light
129  quality and intensity, impacting biomass and secondary metabolite accumulation of various species
130 (Cio¢ et al., 2018; Manivannan et al., 2015; Ucar et al., 2016). Cool fluorescent lights have been
131  popular for conventional micropropagation systems (Fanga et al., 2011) due to relatively low energy
132 consumption, heat dissipation, and cost. However, they deliver light at wavelengths outside of the
133  photoabsorptive range and lack control over spectral quality, which limits its power over
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134  physiological conditioning (Bello-Bello et al., 2016). There exists an established dogma that blue
135 light (B) heavily influences chloroplast development, chlorophyll production, and stomata
136  functionality, while red light (R) influences carbohydrate localization, and various anatomical
137  processes such as leaf expansion (Hung et al., 2016; Ucar et al., 2016). Various combinations of
138  these wavelengths can mutually and individually persuade shoot and root elongation (Ramirez-
139  Mosqueda et al., 2017). LED technologies hold significant potential in the pursuit of plant growth in
140  controlled environments, including plant tissue culture (Fontana et al., 2019). Control over spectral
141  composition with LEDs allows wavelength emission that match photoreceptor action spectra to more
142  directly trigger morphogenic responses (Li et al., 2010), while limiting heat dissipation, and energy
143  consumption (Zhao et al., 2020). Photomorphogenic responses are primarily prompted by light
144 quality through phytochrome reception of R and far-red light (Fr), and cryptochrome absorption of B
145  (Miler and Zalewska, 2006), which largely shape plant development and physiology (Legris et al.,
146 2019).

147  Despite the apparent simplicity of light quality and intensity, it is a complex factor comprised of
148  nearly infinite potential mixtures which interact with other factors such as sucrose levels to influence
149 in vitro shoot growth and development as a nonlinear, multifactorial, and complex process. The
150  establishment and optimization of in vitro culture protocols have been principal challenges for many
151  tissue culture researchers. Historically, micropropagation systems have been developed through serial
152 manipulation and optimization of single factors, individually. Conventional statistical methods such
153  as simple regression and ANOVA have typically been recommended for small databases with limited
154  dimensions, and are therefore inappropriate for analyzing data derived from complex and non-linear
155  processes such as light quality (Hesami et al., 2021b; Yoosefzadeh-Najafabadi et al., 2021a). The
156  high probability of overfitting is one of the main disadvantages of using conventional statistical
157  methods (Jafari and Shahsavar, 2020; Yoosefzadeh-Najafabadi et al., 2021b). Using conventional
158  statistical methods, some of the puzzle pieces of in vitro practices have been sequentially assembled.
159  However, many factors in tissue culture systems remain unoptimized. To overcome such setbacks,
160  different factors can be simultaneously optimized through precision in vitro culture techniques using
161  machine learning methods (Fig. 2). In recent years, machine learning algorithms such as artificial
162  neural networks (ANNSs) and neuro-fuzzy logic have been successfully applied for modeling and
163  predicting various in vitro culture systems such as shoot growth and development, callogenesis,
164  somatic embryogenesis, androgenesis, secondary metabolite production, and rhizogenesis (Hesami
165 and Jones, 2020; Niazian and Niedbata, 2020). However, in most plant tissue culture studies,
166  individual models were employed, and the efficiency of different machine learning algorithms has
167  not been compared (Hesami et al., 2021c).

168  There exist two general groups of optimization methods. Classical optimization algorithms include
169  dynamic programming (DP), linear programming (LP), stochastic dynamic programming (SDP)
170  which have limitations restricting their flexibility and efficiency. For instance, LP requires objective
171  function and constraint to be linear, which is not ideal for plant tissue culture. Conversely,
172  evolutionary optimization algorithms are considered more powerful mathematic methods for solving
173 complex, multidimensional problems such as designating optimal factors for micropropagation with
174  high accuracy and pace (Hesami and Jones, 2020). Although there are different types of evolutionary
175  optimization algorithms, the genetic algorithm (GA) has been applied to the vast majority of plant
176  tissue culture optimization studies relating to shoot proliferation, secondary metabolite production,
177 and somatic embryogenesis. Despite the advantages that GA imparts over classical methods,
178  premature convergence can sometimes lead to failure in obtaining a fully optimized solution
179  (Hosseini-Moghari et al., 2015). To overcome this, new evolutionary optimization algorithms,
180 including biogeography-based optimization (BBO), interior search algorithm (ISA), and symbiotic
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181  organisms search (SOS) have been developed. These approaches have been evaluated in different
182  fields of study (Bozorg-Haddad et al., 2016; Hosseini-Moghari et al., 2015; Mokhtari Fard et al.,
183  2012; Moravej and Hosseini-Moghari, 2016), and are expected to be superior in optimizing plant
184  tissue culture protocols.

185  The current study tests the combined effects of B (400-500nm), R (600-700nm), Fr (700-800nm),
186 and White (W) (400-700nm) (Figure 3, Figure 9) light at different intensities, and carbohydrate
187  concentrations on shoot length, root length, number of nodes, number of shoots, and canopy surface
188  area. Data collected were assessed using machine learning and evolutionary optimization algorithms
189  to predict and optimize these factors for cannabis maintenance and proliferation in vitro. Predictions
190  were then tested in a validation experiment to identify the best optimization algorithm for in vitro
191 plant applications. Ultimately, the research presented will facilitate development of current practices
192  for maintenance, proliferation, and acclimation of micropropagated cannabis, boosting our
193  understanding of the dynamics between light and sugar-related plantlet responses, while identifying
194  superior predictive analytic practices to guide future experimentation.

195
196 1 Materialsand Methods

197 1.1 Plant material and experimental design

198 In this study, the effects of different light qualities, intensities and sucrose concentrations were
199 evaluated for shoot growth, canopy surface area, and additional growth parameters, using the
200  medicinal strain of cannabis “UP-802" supplied by Hexo, Brantford, ON. To this end, four plantlets
201  per treatments were cultured in single Magenta boxes, allowing one experimental unit per treatment.
202  Stock UP-802 specimens were maintained in cultures supplemented with 3% (w/v) sucrose,
203  maintained under 16-hr photoperiod with 75% R, 12.5% B and 12.5% W LEDs at 50 umol/m*/s.
204  Both stock and experimental plantlets were grown at approximately 26 1. Non-experimental media
205  components included 0.53% (w/v) DKW with vitamins, 0.10% (w/v) plant preservation mixture, and
206 0.60% (w/v) agar. Media pH was adjusted to 5.7 prior to agar addition, sterilization, and use.
207  Chemicals were obtained from PhytoTech Labs.

208  To test the multivariable influences of sugar and light quality (intensity and spectrum) on in vitro
209  cannabis development, plantlets were grown for 6-weeks with alternative sucrose concentrations, in
210  compartmentalized light treatments. Programmable LED lights were used to provide light, allowing
211  different combinations of B (400-500nm), R (600-700nm), Fr (700-800nm), and W (400-700nm)
212  (Figure 3, Figure 9) light at specific intensities between 0-100 pmol/m2/s. The FinMax
213 (bigfin.github.io/Prismatic) programmable LED lighting system was developed in-house to empower
214  photobiology research with precise lighting treatments (Figure 3). The intensity of the 9
215  independently dimmable channels were programmed and calibrated at plant height using a
216  spectrometer (Li-Cor LI-180).

217 At the end of each experiment, shoot length was measured by selecting the longest shoot and
218  measuring from the root-shoot junction to apical meristem. Similarly, root length was measured from
219  the root-shoot junction to root tip of the longest root. Number of nodes was collected by counting
220  nodes on longest shoots. Shoot number was determined by counting emergent stems. Canopy surface
221  areas were obtained by dissecting leaves and processing through ImageJ. All raw data were collected
222  and processed using ImageJ software (Rueden et al., 2017).
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223  For the preliminary experiment, apical explants were collected from stock UP-802 cultures, and sub-
224 cultured to Magenta boxes with experimental media containing 1, 3 or 6% (w/v) sucrose. One culture
225  of each sucrose concentration was randomly assigned to one of 22 different light treatments listed in
226  Table 1, where they remained for 6-weeks. Data on shoot length, root length, number of shoots,
227  number of nodes, and canopy surface area that was collected from 264 plantlets, as presented in
228 Table 1, and processed with ImageJ software (Rueden et al., 2017). Raw experimental datasets were
229  then analyzed using machine learning algorithms to build an appropriate model for cannabis shoot
230  growth and development.

231 1.2 Modé€ing procedure

232 Three well-known machine learning algorithms, MLP, GRNN, and ANFIS, were applied to model
233  and predict in vitro shoot growth and development of cannabis using the collected dataset. Box-Cox
234  transformation was employed to normalize the data before using the machine learning algorithms.
235  Principal component analysis (PCA) was applied to detect outliers, but no outliers were identified. In
236  this study, the five-fold cross-validation approach, with 10 repetitions was applied to evaluate the
237  prediction accuracy of the tested machine learning algorithms.

238  Different light qualities (B, R, W, and Fr) at various intensities and different levels of Sucrose were
239  selected as input variables, while shoot length, root length, number of nodes, number of shoots, and
240  canopy surface area were considered as target (output) variables (Fig. 4a).

241  To evaluate and compare the efficiency and accuracy of the machine learning algorithms, R?

242  (coefficient of determination), mean bias error (MBE), and root mean square error (RMSE) were
243  employed based on the following equations:

_ Yie1(yi — yi)z

2 _ 1
R 1 (i —y)? @

244
RMSE = (y; — y,.)Z) /n (2)

2

245

MBE =1/n) (,~3) 3)
i=1
246

247  Where . is the value of prediction, n is the number of data, and ¥; is value of observation.
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248 2.2.1 Multi-Layer Perceptron (MLP)

249  MLP belongs to the ANNs which is inspired by the neural structure of the human brain. A neuron in
250 the human neural network receives impulses by using a number of dendrites from other neurons.
251  Based on the received impulses, a neuron through its single axon may send a signal to other neurons.
252  Like the human neural network, ANNs contain nodes, each of which receives a number of input
253  variables and produce a single target variable, where the target variable is a relatively simple function
254  of the input variables (Fig. 4b).

255 The 3-layer backpropagation MLP is a parallel and distributed algorithm that uses supervised
256  learning for the training subset. The following equation is employed to minimize the error between
257  the input and target variables:

n

1
Error = - z (s — ¥s)* (4)

n=1
258

259  Where vs is the s™ observed variable, n is the number of observations, and §; is the s™ predicted
260  variable.

261  To determine the ¥ in the model k output variables and with p neurons in the hidden layer, following
262  function is employed:

y=f z Wj-g(z WX + Wjg) +w, (5)

263

264  where w; represents the weighted input data into the j™ neuron of the hidden layer, wo equals the bias
265  connected to the neuron of output, wi; represents the weight of the direct relationship of input neuron
266 i to the hidden neuron j, x; is the i target variable, f represents activation function for the target
267  neuron, Wi shows the bias for node j™ and g shows the activation function for the hidden neuron.

268  Since the number of hidden units and the number of neurons in each node play an important role in
269  the efficiency of MLP, they should be determined. In the present investigation, trial and error-based
270  approach was used to detect the optimal neuron number in the hidden layer. Also, linear function
271  (purelin) as the transfer functions of output layer and hyperbolic tangent sigmoid function (tansig) as
272  the transfer functions of hidden layer were applied. Moreover, A Levenberg-Marquardt algorithm
273  was employed for adjusting bias and weights.

274 2.2.2 Generalized Regression Neural Network (GRNN)

275 The GRNN as another kind of ANNs consists of four layers (Fig. 4c). The node in input layer
276  completely enters the node in pattern layer. The output of each neuron in pattern layer is connected to
277  the summation neurons. The unweighted pattern neuron outputs are determined by D-summation
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278  neuron, while the weighted pattern neuron outputs are computed by S-summation neuron. Finally, the
279  following equation is employed to determine the output:

Sy i exp (- 2
i=1Yi €Xp 202

y= (6)

Sy exp (- 203
280
D= (x — x)T (x — xy) (7)

281

282  where o represents width parameter, ¥ shows the average of all the weighted observed output data, y;
283  shows the i" output variable, and D,* equals a scalar function which is based on any x and v;
284  observed data.

285 2.2.3 Adaptive Neuro-Fuzzy I nference System (ANFIS)

286  ANFIS developed by Jang (1993) is one of the most well-known neuro-fuzzy logic systems. The
287  overall ANFIS model with two Takagi and Sugeno type if-then rules can be defined as follow:

Rulel:if xisA,andyisB,then f,=px+qy+1; (8)
Rulell:if xis A and yis B, then f,=p,x+q;y+71;

288

289  Where x and y are input variables; f; and f, are the outputs within the fuzzy area determined by the
290  fuzzy rule; Aq, Az, Bs, and B; are the fuzzy sets; pi1, P2, 01, Oz, 1, and r, are the design parameters that
291  are specified during the training set. The ANFIS model is built of five layers (Fig. 4d) as follow:

292  Layer 1 (adaptive or input layer): Every adaptive (input) node i in layer 1 defines a square node with
293  anode function:

0} = pa, (%) 9

294  Where O; is the fuzzy membership grade, x is the input of adaptive node i, and g, is Gaussian
295  membership function which is deremined as follow:

_(x ;c,—)z} (10)

a (%) = exp

296  where & and c; are premise parameters.

297  Layer 2 (rule layer): Every role node in layer 2 can be considered as a circle node labeled [ where
298  the output is the result of all incoming inputs.
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w; = g, (x) X pp(x) i=1,2 (11)

299  Each node output displays the rule’s firing strength.

300 Layer 3 (average layer): Each node as a fixed node in layer 3 is labeled N. The i"™ node determines
301  the ratio of the firing strength of i" rule to the total rules’ firing strengths. The outputs of layer 3
302  (normalized firing strengths) are calculated as follow:

W= -1 2 12
l_W1+WZ o ( )

303  Where w; is output of this layer.

304  Layer 4 (consequent layer): Nodes in layer 4 are called consequent nodes. The following equation is
305 used to calculate the output of this layer.

01 =wif =wi(pix + q;y + 1)) (13)

306  Where p;, g, and r; are parameter sets and w; is output of layer 3.

307  Layer 5 (output layer): There is only one single fixed node labeled S in this layer. The final output
308 (07) of the model is calculated based on the following equation:

2
0; = ) wif; (14)
2

309 In the current study, the Gaussian membership function (between 3 and 5 membership functions for
310 different variables) was considered based on a trial and error approach. The number of epochs to train
311  the models was also set to 10. Moreover, the least-squares method and backpropagation algorithm
312  were applied to adjust the consequent and premise parameters, respectively.

313 1.3 Senditivity analysis

314  Sensitivity analysis was performed to assess the degree of importance of various forms of light (B, R,
315 W, and Fr) and exogenous carbohydrates on shoot length, root length, number of nodes, number of
316  shoots, and canopy surface area by determining the variable sensitivity ratio (VSR). VSR can be
317  defined as the ratio of variable sensitivity error (VSE) to the RMSE of the developed model. A
318  greater VSR shows a higher degree of importance.

319 14 Optimization procedure

320 In the current study, four different single-objective evolutionary optimization algorithms including
321 BBO, ISA, SOS, and GA were separately employed to find optimal levels of input variables
322  (Sucrose, B, R, W, and Fr) for maximizing each fitness function (shoot length, root length, number of
323  nodes, number of shoots, and canopy surface area). Generally, evolutionary optimization algorithms
324  consist of five main steps including creating an initial population, fithess computation, selection,
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325  creating a new generation, and displaying the best solution (Fig. 4e). The details of each algorithm
326  have been presented below.

327 2.4.1 Biogeogr aphy-Based Optimization (BBO)

328  The term "Biogeography"” refers to the study of ecosystems and the geographical distribution of
329  species. BBO introduced by Simon (2008) is based on biogeographic concepts such as migration,
330 evolution, adaptation, and extinction of organisms among habitats. In theory, appropriate regions for
331  living organism’s settlement are defined by the habitat suitability index (HSI) that depends on several
332  factors such as precipitation, temperature, area, and vegetative cover which are known as suitability
333 index variables (SIVs). Indeed, HIS as a dependent variable is determined by SIVs as independent
334  variables. Therefore, more living organisms can be accommodated in habitats with higher values of
335 HIS and vice versa, lower HSI values support fewer organisms. Subsequently, a stronger tendency
336  for living organisms to emigrate from the habitat to find new places with lower population density
337  and more suitable conditions can be seen by increasing the number of species in a habitat.

338  The highest A can be seen when there are no species in the habitat. The A decreases by increasing the
339  number of species in the habitat and, finally, the A becomes zero when the habitat capacity is
340  completed (the maximum number of species in the habitat equals Swax). On the other hand, the p
341  enhances by increasing the number of species in the habitat until the habitat becomes empty. Hence,
342  the equilibrium number of species in the habitat can be seen when A equals p. Generally, A and p can
343  be determined based on the following equations:

n=E x (ﬁ) (15)
344
a=1x(1- ) (16)
345

346  Where Sis the number of species, | shows the maximum rate of immigration, and E is the maximum
347  rate of emigration.

348 In the BBO method, habitat and SIVs play the role of solution and the decision variables,
349  respectively. Therefore, the HSI can be considered as the objective function in this optimization
350 algorithm. If there is a particular graph with E=I for each solution, HSI has a direct relationship with
351 S in which case HSI values can be used instead of S The step-by-step procedure of the ISA method
352  has been presented in Figure 5.

353  With a specific probability Pnoq, different solutions can help each other for improvement. If the § is
354  selected as an improvement, the A is employed to adjust its SIVs. Subsequently, the p relevant to
355  other solutions is applied to choose the improved solution. The SIVs of the S solution are then used
356  for randomly replacing SIVs from selected solutions. The suitable values of p can be arbitrarily
357  considered by using an arithmetic progression, with the common difference of successive members
358 equal to 1/(population size —1), between 0 and 1. After calculation of u, A can be determined as
359 A=l

10


https://doi.org/10.1101/2021.08.09.455719
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455719; this version posted August 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 InRfratpgadiFeissue cultur e of Cannabis sativa

360  For lack of elitism, all solutions should be modified at all steps. However, modifying the amount of
361 any solution is conversely related to its HSI. A roulette wheel is used for choosing the modifier
362  solution which is based on a probability proportional to the p. Transferring SIVs, as an inferior
363  strategy, from one solution to another solution restricts the search choices within the decision space.
364  Therefore, the following equation has been recommended for replacing SIVs:

SIVIZY = SIVp + & (SIV;y + SIV, 1) (17)

365

366  Where siv/iev equals m™ modified SIV of the i" solution, « is a parameter between 0 and 1, which is
367  determined by the user, siv,,, is m" SIV of the | solution, and s1v,,, equals m" SIV of the i"
368  solution.

369  Severe catastrophes such as natural hazards, the spreading of infectious diseases, and other
370 catastrophes can quickly change the HSI of a habitat. These unfavorable conditions act like mutations
371 in GA.

372 2.4.2 Interior Search Algorithm (1SA)

373  The ISA method introduced by Gandomi, (2014) is based on the concepts of interior design and
374  decoration using mirrors, such that, several mirrors can be used to create a more decorative
375  environment. To meet decoration project goals, it is necessary to satisfy the desires of the clients’
376  desires using available resources. The interior design commences with centering bounded elements to
377  create a more appealing interior vista based on client approval. The ISA method is inspired by this
378  repetitive process to solve optimization problems. With this algorithm, an element can only be moved
379  to a position allowing a more decorative view (better fitness) while satisfying customer resource and
380 need demands (constraints).

381  The most important step of interior design is positioning the mirrors by the fittest and most striking
382  elements to highlighting their attractiveness. Generally, the elements are classified in two ways (i) the
383  composition category, which is applied for composition optimization, and (ii) the mirror category,
384  which is employed for mirror search. Therefore, the ISA method can be explained as follow.

385 1) Create the position of elements between upper bound (UB) and lower bound (LB) randomly and
386  determine their fitness value.

387  2) Discover the element with minimum objective function in minimization problem (the fittest
388  element) in j™ iteration.

389  3) Apply a random variable r1 (ranging between 0 and1 for each element) and « as a threshold value
390 (a is also a value between 0 and 1) to divide other elements, except the fittest element, into mirror
391 category and composition category. Elements with o <rl go to the composition category;
392  otherwise, they go to the mirror category. Since a is the only parameter of the ISA method, it is
393  necessary to carefully tune o for obtaining balance between diversification and intensification.

394 In the current study, a linear equation from 0.1 to 0.9 was used for determining the value of o during
395  optimization iterations, meaning the « value modifies as iteration goes up towards its maximum
396  number. This method provides a parametric optimization algorithm in which the algorithm can
397  automatically adjust its parameter. As the iteration approaches the highest iteration number, the a
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398  value reaches 0.9. Subsequently, the optimization procedure slowly shifts to mirror search to promote
399 exploitation at the end of repetitions.

400  4) For the fittest element, it is beneficial to lightly change positions using the random walk for a local
401 search around the fittest element. The following equation can be used for calculating the fittest
402  element.

x;b = xf;bl +rn x 4 (18)
403  Where, x;b is the fittest element, A is scale factor = 0.01(UB 1-I1LB), and rn presents vector of

404  normally distributed random numbers.

405 5) For the composition category, each element in this category is randomly displaced. The following
406  equation is used for determining the changes in UB and LB:

xl = LB/ + (UB/ — LB)) x 12 19)

407

408  Where x/ shows i" element in the j" iteration, UB! and LB’ represent upper and lower bounds of the
409  class in j" iteration, respectively, and r2 is random value between 0 and 1.

410 6) For the mirror category, a mirror is randomly placed between the fittest element and each
411  composition element. The following equation is applied for calculating the position of a mirror for
412 thei™element of the j" iteration:

=130+ A —r3)x 2, (20)

m,i

413

414 Where x],; equals the position of a mirror for the i™ element of the j" iteration, and r3 is a random
415  value between O and 1.

416  The virtual location of the element (the image of the element in the mirror) depends on the position
417  of the mirror and is calculated based on the following equation:

¥ = 22— (21)

418

419  7) The virtual elements and fitness values of the new positions of the elements should be determined.
420  The positions should be updated if their finesses are improved. It can be calculated based on the
421  following equation (for a minimization problem):
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L (H ) < A @

j—1 .
x, " otherwise

422

423  8) If any of the termination criteria are not satisfied, the steps should be repeated from step 2. The
424 step-by-step procedure of the ISA method has been presented in Figure 6.

425 2.4.3 Symbiotic organisms sear ch (SOS) algorithm

426  The SOS introduced by Cheng and Prayogo (2014) can be considered a nature-inspired optimization
427  method. The SOS algorithm simulates three various interactions of symbioses amongst species of an
428  ecosystem. Much like the majority of evolutionary optimization algorithms, SOS creates an
429  ecosystem as an initial population plus particular operators through an iterative method to find a
430  near-optimal solution among candidate organisms as possible solutions within the promising space of
431  asearch area. However, the SOS method does not reproduce offspring. Step-by-step SOS procedure
432  methods are presented in Figure 7.

433  After defining the maximal number of iterations and the number of species, the initial ecosystem is
434 specified by generating a uniform random number between the upper and lower values of ecosystem
435 size and a design variable (D) number. After that, Xpes as the best current solution should be
436  determined. In a process, named mutualism, two randomly chosen species along with Xpeg participate
437  in a dialectic relationship that is profitable for both. New candidate solutions are generated based on
438  the following equations:

Xinew = X; +rand (0,1) X (Xpesy — MV X BF4) (23)
439
Xjnew = X; +rand (0,1) X (Xpee — MV X BF,) (24)

440  Where rand (0,1) shows a vector of random numbers, and the mutual vector (MV) equals the average
441  value of x; and x; which enables the organisms to be updated concurrently rather than separately. In a
442  mutualistic symbiosis between two species within nature, one species might gain a great advantage
443  while the other receives no significant profit. This is presented by BF; and BF,, which are randomly
444  specified as either 1 or 2 ([BF; = Rand (rand (0, 1) +1]; i = 1 and 2) to display the level of profits
445  obtained from the relationship.

446 In the next step, the entire population is updated. Subsequently, the old candidate solutions x; and x;
447  are compared with the new ones. More fit organisms are chosen as new solutions for the next
448 iteration. The selections and comparisons start and end with the counter 1 and the counter equal to
449  the population size (npop), respectively. For each i, the solution j is randomly chosen within the new
450  population. Afterward, fitter organisms take part in the next step which is named commensalism. In
451  commensalism, although one organism gains profits, the other remains neutral. Similar to the
452 previous step, X is randomly chosen from the population to interact with x. While x; attempts to get
453  profits from the engagement, X; remains unaffected. If the new fitness value shows better
454  performance than the previous one, the following equation is employed for updating xi:
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Xinew = X; +rand (0,1) x (x,,est —x,-) (25)

455

456  In the third step, which is named parasitism, the mutation operator of the SOS is required. In this
457  step, x; and x; are the artificial host and parasite, respectively. In parasitism, one organism receives
458  profits while the other is harmed. The sign of the parasite vector (PV) is that it competes with other
459  randomly chosen dimensions instead of its parent with a series between upper and lower bounds. In
460  this step, an initial parasite vector is produced by multiplying organism x;. Some of the decision
461  variables from the parasite vector are randomly changed to recognize the parasite vector from x. A
462  random number should be produced in the range of [1, decision variable number] to describe the total
463  number of changed variables. A uniform random number is produced for each dimension to achieve
464  the position of the changed variables. Finally, a uniform distribution within the search area is needed
465  for changing the variables and providing a parasite vector for the parasitism step. If the parasite
466  vector displays better performance than x; it becomes part of the population, whereas if x; is not
467  outperformed the parasite vector, PV eliminates from the population. The parasite vector is produced
468 by changing x in random dimensions with random numbers rather than making small modifications
469  inx. If the current x; and parasite vector are not the last member of the population, the SOS returns to
470  the mutualism step that chosen Xpest until obtaining a specified stopping criterion.

471 2.4.4 Genetic algorithm (GA)

472  The GA, introduced by Holland (1992) is based on the Darwinian concepts of genetics and natural
473  selection. Before applying the GA, some parameters such as crossover fraction, selection method,
474  mutation rate, etc... should be specified. Subsequently, a set of possible answers are generated. The
475  GA considers a set of chromosomes containing genes as an initial population. The genes represent
476  the number of problem dimensions. During the optimization process, the genetic operators (e.g.,
477  Roulette Wheel and Tournament Selection) of the mutation and crossovers improve these genes.

478  Based on the competence of the chromosomes’ corresponding objective function, genes are selected
479  to transfer to the next generation. The crossover operator replaces a number of genes from two
480 chromosomes with each other. Moreover, the mutation operator changes some genes randomly. The
481  elitism parameter is used to improve the chance of choosing the best chromosomes, then increase the
482  convergence of the algorithm. When creating each new generation, three operators (i.e., crossover,
483  selection, and mutation) regulate the optimization process in a way that the generated chromosomes
484  improve the objective function value at each repetition until the optimization process will be
485  completed by satisfying one of the termination criteria. The step-by-step procedure of the GA method
486  has been presented in Figure 8.

487 1.5 Validation experiment

488  To evaluate the efficiency and reliability of the hybrid GRNN-evolutionary optimization algorithms,
489  the predicted-optimized treatments obtained from evolutionary optimization algorithms (GA, ISA,
490 SOS, and BBO) were separately evaluated in the lab as the validation experiment (Figure 9). The
491  validation experiment was performed based on a completely randomized design with 4 replications.
492  Effectiveness of optimized treatments were assessed by comparing error bars, representing standard
493  error of means, as presented in Figure 4g,h.

494 2 Results
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495 2.1 Effectsof light and carbohydrate sour ceson cannabis shoot growth and development

496  While this experiment was designed specifically for machine learning applications and standard
497  statistical comparisons cannot be made, a wide range of responses were observed through the
498  different treatments applied (Table 1). For instance, the greatest shoot length was acquired from 25
499  pmol/m?s W + 25 umol/m?/s Fr + 3 % Sucrose (154.68 + 51.228 mm), while shoot length was most
500  stunted when grown with 100 umol/m%s B + 1 % Sucrose (27.70 + 2.311 mm). Greatest root length
501  was achieved with 33.33 pmol/m?/s R + 33.33 umol/m?/s B + 33.33 umol/m?/s Fr + 3 % Sucrose
502  (477.10 + 287.094 mm), though no roots emerged from 100 pmol/m?%s B + 1 % Sucrose, or 50
503  pmol/m?/s W + 50 umol/m?/s Fr + 1 % Sucrose specimens, and lowest root lengths were observed
504  from those of the 100 umol/m?/s W + 1 % Sucrose (4.36 + 4.363 mm) treatment. Plantlets developing
505  the most nodes came from 33.33 umol/m?/s R + 33.33 pmol/m%s B + 33.33 umol/m?/s Fr + 3 %
506  Sucrose (11.50 + 2.901), while the fewest nodes were observed in 100 pmol/m?s B + 1 % Sucrose
507 (5.75 + 0.479) treated plantlets. The largest canopy surface area was attained by plantlets grown
508 under 50 pmol/m?s R + 50 umol/m®/s B + 3 % Sucrose (13061.97 + 10839.642 mm?), whereas
509  smallest canopy was observed in 100 pmol/m?%s B + 1 % Sucrose (493.01 + 111.615 mm?), 100
510  umol/m%s W + 1 % Sucrose (519.06 + 182.411 mm?). Results for the preliminary experiment are
511 outlined in Table 1. Treatments consisted of single experimental units with 4 biological replicates
512  each, which satisfied the models used, with high accuracy.

513  Based on our observations (Table 1), a general trend is observed for appreciable shoot length when
514  sucrose concentration is 3% (w/v), irradiance levels are in range of 50-100 pmol/m?/s, and when W is
515 included in multi-spectral treatments. These treatments allowed long shoot length that developed
516  between 32.44 + 7.036 - 154.68 + 51.228mm. Additionally, there was a broad tendency for multi-
517  spectral treatments with 75-100 pmol/m?%s that included R and 3% (w/v) sucrose to develop large
518  canopy surface areas, which ranged from 2483.71 + 627.011 - 13061.97 + 10839.642 mm? (Table 1).

519  Of the 66 treatments tested, 50 pmol/m%*s W + 50 umol/m%s Fr + 1 % Sucrose noticeably
520 accumulated phenolic compounds in the media, which was not observed in any other treatment.
521  Additionally, 12 cultures produced plantlets with floral organs despite being grown under a long day
522  photoperiod. Cultures included 25 umol/m?/s B + 25 umol/m%s W + 1 % Sucrose, 25 umol/m?/s R +
523 75 pmol/m%s B + 1 % Sucrose, 25 umol/m?s R + 75 pmol/m%s B + 3 % Sucrose, 33.33 umol/m?/s
524 R+ 33.33 +33.33 Fr + 1 % Sucrose, 33.33 R + 33.33 B + 33.33 Fr + 3 % Sucrose, 25 umol/m?/s R
525 + 75 umol/m?¥s B + 6 % Sucrose, 25 umol/m?/s R + 25 umol/m?/s B + 25 umol/m?/s Fr + 25
526  umol/m?/s W + 6 % Sucrose, 25 umol/m?/s R + 25 umol/m?/s B + 6 % Sucrose, 100 umol/m?/s B + 6
527 % Sucrose, 50 umol/m?%s B + 6 % Sucrose, 25 umol/m?/s B + 25 umol/m%s W + 6 % Sucrose, 50
528  pmol/m?/s + 6 % Sucrose, 50 umol/m?/s R + 50 umol/m?s B + 3 % Sucrose, 50 pmol/m?/s W + 50
529  umol/m?/s Fr + 3 % Sucrose.

530 50 pmol/m?/s B treatments, for the most part, showed higher values relating to developmental
531  features than 100 umol/m?s B (Table 1). This is likely due to malfunctioning 100 umol/m?/s B
532 lights, which were repaired within a few days. However, we nonetheless attribute the delayed
533  development of 100 umol/m%s B treatments to the brief period of light malfunction.

534 2.2 Datamodeling through MLP, GRNN, and ANFIS

535  Machine learning algorithms including MLP, GRNN, and ANFIS were employed to model and
536  predict cannabis shoot growth and development traits (shoot length, root length, number of nodes,
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537  number of shoots, and canopy surface area) as target variables based on five input variables (Sucrose,
538 B, R, W, and Fr). R?, RMSE, and MBE were used to assess the prediction performance of the
539  developed machine learning algorithms (Table 2). The GRNN model presented higher R? as one of
540  the most important performance indices in comparison to MLP or ANFIS in both training and testing
541  processes for all shoot growth and development traits including shoot length (R*> 0.96 for GRNN vs.
542 R?> 0.58 for ANFIS or RZ > 0.95 for MLP), root length (R* > 0.91 for GRNN vs. R? > 0.58 for
543  ANFIS or R*> 0.89 for MLP), number of nodes (R*> 0.74 for GRNN vs. R?> 0.54 for ANFIS or R?
544 > 0.39 for MLP), number of shoots (R?> 0.71 for GRNN vs. R? > 0.50 for ANFIS or R? > 0.42 for
545  MLP), and canopy surface area (R?> 0.94 for GRNN vs. R?> 0.64 for ANFIS or R*> 0.92 for MLP)
546  (Table 2). Also, higher RMSE and MBE for GRNN in comparison to MLP and ANFIS for all studied
547  traits indicated that the assessed results were highly accurate and correlated, showing the good
548  performance of the developed GRNN models (Table 2). Moreover, the regression lines displayed a
549 good fit correlation between experimental and predicted data for all the shoot growth and
550 development traits in both training and testing processes (Fig. 10).

551 2.3 Determiningtheimportance of each input on cannabis shoot growth and development

552  To determine the importance of each input variable on the objective function (studied parameter
553 including shoot length, root length, number of nodes, number of shoots, and canopy surface area)
554  sensitivity analysis was performed by calculating VSR. The results showed that both shoot length
555 and node number were more sensitive to Sucrose followed by B, Fr, R, and W, while root length was
556  more sensitive to Sucrose followed by R, Fr, W, and B light (Table 3). Also, the results demonstrated
557  more sensitivity of shoot number to Sucrose followed by B, red, Fr, and W color (Table 3).
558  Moreover, Sucrose> R> B> W> Fr were ranked for canopy surface area (Table 3).

559 2.4 Optimization processvia GA, SOS, ISA, and BBO

560 In the present study, four different evolutionary optimization algorithms including BBO, ISA, SOS,
561 and GA were separately used to determine the optimal level of Sucrose, B, R, W, and Fr for
562  maximizing each fitness function (shoot length, root length, number of nodes, number of shoots, and
563  canopy surface area). Although all optimization algorithms predicted the same best fitness function
564  value, they found a different optimal level of inputs for each fitness function (Table 4). For instance,
565 the maximum shoot length (160.78 mm) would be achieved from 15.412 umol/m%s B + 9.412
566  pmol/m?/s R + 15.997 umol/m?%s W + 43.271 pumol/m?/s Fr + 3.142 % Sucrose based on the BBO,
567  4.460 umol/m%s B + 19.051 umol/m?/s R + 27.337 umol/m?/s W + 39.472 umol/m%s Fr light +
568  3.157 % Sucrose based on the SOS, 0.439 umol/m?/s B + 18.494 pmol/m%/s R + 36.234 pmol/m?/s W
569  + 33.122 pmol/m?%s Fr + 3.319 % Sucrose based on the ISA, or 2.937 pmol/m%s B + 0.270
570  pmol/m?/s R + 13.036 pmol/m?/s W + 30.605 pmol/m?/s Fr light + 3.505 % Sucrose based on the GA
571  (Table 4). Also, 52.563 pmol/m®s B + 84.052 pmol/m%s R + 26.262 pmol/m®s W + 22.456
572 pmol/m?/s Fr light + 3.809 % Sucrose based on the BBO, 54.688 umol/m?/s B + 95.974 umol/m?/s R
573 + 30.099 pumol/m?/s W + 24.543 pmol/m?/s Fr light + 3.664 % Sucrose based on the SOS, 44.889
574  pmol/m?/s B + 99.642 pumol/m?/s R + 49.994 pmol/m?/s W + 24.674 umol/m?/s Fr light + 3.285%
575  Sucrose based on the ISA, or 37.646 pmol/m?/s B + 83.928 umol/m?%/s R + 17.507 pumol/m?/s W +
576  1.811 pmol/m?/s Fr + 3.083 % Sucrose based on the GA would result in the highest canopy surface
577  area (7168.05 mm?) (Table 4).

578 2.5 Determiningthereliability of the developed models

579  The optimized-predicted results from each evolutionary optimization algorithm for shoot length and
580 canopy surface area as fitness functions were experimentally tested in a validation experiment to
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581 evaluate the reliability of the developed models. Based on the validation experiment results, the
582  differences among evolutionary optimization algorithms (GA, ISA, BBO, and SOS) and optimized-
583  predicted results for both shoot length (Fig. 4f) and canopy surface area (Fig. 4g) were negligible,
584  which demonstrated the reliability of the developed models. However, the maximum shoot length
585  (206.76 + 41.542 mm) (Fig. 4h) and canopy surface area (8193.49+2102.624 mm?) (Fig. 4i) were
586  achieved from the GRNN-SOS, while GRNN-BBO resulted in the lowest shoot length (181.83 +
587  39.676 mm) and canopy surface area (5745.34 + 919.848 mm?). Therefore, it seems that the SOS has
588  Dbetter performance than the other optimization algorithms.

589 3 Discussion

590 As with any in vitro culture system, many intrinsic (e.g., genotype, type and age of explant) and
591 extrinsic (e.g., basal salt medium, vitamins, PGRs, gelling agent, carbohydrate source, additives,
592  temperature, and light) factors influence in vitro shoot growth and development. Fortunately, due to
593 the highly controlled nature of plant tissue culture, most of these factors can be manipulated to
594  evaluate their impact on system optimization. Historically, micropropagation systems were refined
595 using traditional statistical models to sequentially manipulate and optimize single factors. This
596 approach often requires hundreds or even thousands of treatments to be tested, and even then
597  sequential optimization does not account for interactions and can miss the best combinations (Garcia-
598  Pérez et al., 2020; Hameg et al., 2020). Due to the cost and time requirements, most species are
599  cultured in conditions optimized for other species with minor modifications and are not fully
600  optimized for any given application. In our study, we demonstrate that specific growth responses of
601 in vitro cannabis can be directed by manipulating abiotic factors such as light intensity, spectrum,
602 and exogenous carbon availability, and that machine learning approaches provide an effective
603  approach to optimize these factors for specific outcomes. It is possible that these modifications could
604  trigger developmental changes by regulating photosynthetic activity (Hdider and Desjardins, 1994),
605 or by regulating intrinsic concentrations of phytohormones (Premkumar et al., 2001). Additional
606  experiments must be completed to indicate the precise mechanisms by which dynamic physiological
607  responses occur. Ultimately, we clearly show that plant growth and development can be influenced
608 by light quality and sucrose levels in the absence of PGRs.

609  Efficient protocol development is a long-standing challenge in the field and more advanced statistical
610  models using surface response curves have been applied with some success (Niedz and Evens, 2016;
611 Niedz and Marutani-Hert, 2018; Pence et al., 2020). While these methods are more efficient than
612  sequential optimization and can account for interactions among factors, they are still limited in the
613  number of factors that can be included in a single experiment, require several assumptions to be met
614  that are often not possible to achieve, require significant numbers of treatments, and rely on relatively
615 simple interactions that can be compared using regression analyses. An alternative to address the
616  inherent complexity of plant tissue culture systems is to apply machine learning methodology. This
617  approach leverages modern computing power and developments in artificial intelligence to efficiently
618  recognize patterns in complex and disorderly datasets, typical of what is observed in plant tissue
619  culture (Hesami et al., 2021; Hesami and Jones, 2020). Machine learning algorithms can then be
620 combined with optimization algorithms to decipher complex interactions and predict theoretically
621  optimized combinations of factors for desired outcomes. The combination of machine learning and
622  optimization algorithms has the potential to overcome many of the challenges associated with
623  optimizing in vitro plant systems and enable development of more effective protocols using fewer
624  treatments. Ultimately, this approach can be used to change the face of plant tissue culture
625 advancements by enhancing the viability of optimization for specific species, or even individual
626  genotypes.
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627  Here, ANNs (MLP and GRNN) and neuro-fuzzy logic (ANFIS) were employed and compared to
628  model and predict the effects of light quality and carbohydrate supply on growth and development of
629 in vitro cannabis plants. Based on our results, using the stated parameters, GRNN had better
630 performance than either MLP or ANFIS. Although there are no studies in plant tissue culture
631 comparing the predictive performances of neuro-fuzzy logic systems and ANNSs, several studies in
632  other fields have demonstrated that GRNN often performs better than MLP or ANFIS. For instance,
633  Sridharan (2021) reported that the prediction accuracy of GRNN was better than MLP and ANFIS
634  for modeling and predicting global solar irradiance. Similar results were also reported by Ausati and
635 Amanollahi (2016) who showed GRNN performed better than ANFIS and MLP for modeling and
636  predicting air pollution.

637 In the present study, four evolutionary optimization algorithms (BBO, GA, ISA, and SOS) were
638 individually linked to the GRNN to determine optimal levels of Sucrose, B, R, W, and Fr for
639  maximizing each fitness function (shoot length, root length, number of nodes, number of shoots, and
640 canopy surface area). Based on mean standard errors reported in our results, there is no difference in
641 the predicted values of fitness functions among different optimization algorithms. Although the
642 results of the validation experiments showed that the differences in the performance of the
643  optimization algorithms were negligible, SOS led to the highest level of studied fitness functions. For
644  instance, GRNN-SOS showed that using the theoretical optimal combination of light quality and
645  sucrose levels, average shoot length and canopy surface area were 206.76 + 41.542 mm and 8193.49
646  + 2102.624 mm?, respectively. Although no studies exist for using and comparing dissimilar
647  optimization algorithms for in vitro culture optimization, several studies previously showed that SOS
648 can be considered one of the most powerful of the evolutionary optimization approaches (Bozorg-
649 Haddad et al., 2016; Cheng and Prayogo, 2014). Bozorg-Haddad et al., (2016) compared GA and
650 SOS for optimization of reservoir operation. They run these two algorithms 10 times and reported
651 that there was no significant difference between the performances of GA and SOS, however, SOS
652  calculated higher fitness function values than GA in all 10 runs. Similar to this result, the results of
653 our validation experiment showed that SOS resulted in a higher value of fitness function in
654  comparison with other algorithms.

655 Based on the sensitivity analysis, sucrose was the most important factor for all traits studied (shoot
656  length, root length, shoot number, node number, and canopy surface area). This likely reflects the
657  mixotrophic nature of in vitro plants and limitations the sealed environment (depletion of CO2, high
658 relative humidity, etc.) places upon their photosynthetic capacity (De La Vifia et al., 1999; Nguyen et
659 al., 2001; Shin et al., 2013). Due to these limitations, supplemental sucrose appears to be critical to
660  support plant growth and development. It is likely that different results may be obtained if this
661  experiment were conducted using vented lids or forced air, which would improve potential
662  photosynthesis and increase the relative importance of light quality.

663  In our experiment, evolutionary optimization algorithms predicted that ~3 % sucrose would result in
664  the highest shoot growth and development. A plethora of previous studies have found 2-4 %
665  sucrose, in particular 3 % (w/v), to be optimal for various species and this has become a standard for
666  most micropropagation systems (reviewed by Yaseen et al., 2013). For instance, the results of
667 GRNN-SOS showed that 3.157 % sucrose would lead to the highest shoot length. Similar to our
668  results, Romano et al. (1995) and Baskaran and Jayabalan (2016) respectively studied different levels
669  of in vitro sucrose on shoot growth and development of Quercus suber L. and Eclipta alba (L.)
670 Hassk. They reported that 3% sucrose was optimal for maximizing shoot length in vitro. Although
671 the effect of sucrose concentration on cannabis micropropagation needs more attention, previous
672  reports generally use 3% (w/v) for shoot growth and development (reviewed by Hesami et al., 2021).
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673  These results support the standard use of 3% sucrose for micropropagation, but more importantly
674  demonstrate the ability of machine learning techniques to optimize environmental factors in tissue
675 culture systems using a relatively small number of treatments.

676  Though sucrose is identified as the most important factor in plant growth and development in this
677  study, light intensity and spectrum also play important roles for in vitro morphogenic and
678  developmental processes (Batista et al., 2018). Different photoreceptors recognize the quality and
679  quantity of light (e.g., phytochromes absorb red and far-red, phtotropins and cryptochromes absorb
680  blue light), and subsequently use this information to direct photomorphogenic functions (Li et al.,
681 2012; Parihar et al., 2016). Several studies have previously shown the impact of light quality and
682  quantity on different tissue culture systems for shoot growth and development (Hung et al., 2016 ),
683  somatic embryogenesis (Ferreira et al., 2017; Hesami et al., 2019), rhizogenesis (Gago et al., 2014),
684 and secondary metabolite production (Dutta Gupta and Karmakar, 2017; Silva et al., 2017).
685  However, each in vitro developmental stage requires a specific light condition (Batista et al., 2018).
686  Our sensitivity analysis showed that, among light treatments, B was the most important factor for
687  shoot length, shoot number, and node number, while R had the highest degree of importance on root
688 length and canopy surface area. The importance of B and R on in vitro shoot growth and
689  development has been previously confirmed in different plants such as Myrtus communis L. (Cio¢ et
690 al., 2018), Plectranthus amboinicus (Lour.) Spreng (Silva et al., 2017), Pfaffia glomerata (Spreng.)
691  Pedersen (Silva et al., 2020), Achillea millefolium L. (Alvarenga et al., 2015), and Stevia rebaudiana
692  Bertoni (Ramirez-Mosqueda et al., 2017).

693  Light intensity is another important parameter that should be optimized for each in vitro culture
694  stage. Through GRNN-SOS, the predicted optimal spectrum included 4.460 pmol/m?/s B + 19.051
695  pmol/m?/s R + 27.337 umol/m%s W + 39.472 umol/m%s Fr light + 3.157 % Sucrose to maximize
696  shoot length. In total, this provides about 50.8 umol/m%s PAR plus 39.472 umol/m?%s Fr. In line
697  with our results, Silva et al. (2017) reported that light intensity below 51 pumol/m%/s resulted in the
698  highest shoot length in P. amboinicus. Similar results were also reported by Alvarenga et al (2015)
699  for A. millefolium. However, using GRNN-SOS to predict the optimal spectrum to maximize canog)y
700  surface area, the conditions included 54.688 pmol/m?/s B + 95.974 umol/m%s R + 30.099 pmol/m?/s
701 W + 24.543 pmol/m%s Fr + 3.664 % sucrose, for a total of 180.8 pmol/m?/s PAR plus 24.5
702 pmol/m?/s Fr. Alternatively, GRNN-BBO conditions included 52.563 pumol/m%*s B + 84.052
703 pmol/m?/s R + 26.262 pmol/m?/s W + 22.465 pmol/m?/s Fr + 3.809 % sucrose, totaling 162.9 PAR +
704  22.5 pmol/m?/s Fr, which ultimately resulted in the lowest canopy surface areas. Here, the difference
705  between GRNN-SOS and GRNN-BBO relating to Fr fluence is 2.1 pmol/m®s, while the total
706  difference in PAR fluence is 17.9 pmol/m%s, 11.9 pumol/m%s of which is the dissimilarity of R
707  intensity. This leads us to speculate that PAR intensity, specifically R, is an important factor
708 governing canopy development. This is confirmed with the sensitivity analysis ranking, as R is the
709  most important spectra for this growth parameter. Alternative wavelengths of light can be efficiently
710  absorbed at different depths within the leaf tissue. This can also be enhanced with increasing light
711  intensity. While certain wavelengths of green light can penetrate deeper into leaves, R and B can
712  effectively be absorbed toward the leaf surface (Zheng and Van Labeke, 2017), triggering
713  phytochrome and cryptochrome -—mediated re-localization of phytohormones for photo-
714 morphogenesis (Miler and Zalewska, 2006). Although the optimal light intensity varies by species,
715  most micropropagation systems use light levels ranging from 40-80 umol/m?s PAR (Miler et al.,
716  2019; Murphy and Adelberg, 2021; Nhut et al., 2003). However, some species perform better at
717  higher fluence rates, for example, Actinidia deliciosa (Gago et al., 2014), Lippia gracilis (Lazzarini et
718 al., 2018), and Solanum tuberosum (Kulchin et al., 2018). In general, cannabis is known to grow best
719  in vivo under higher light levels (Murphy and Adelberg, 2021; Wrobel et al., 2020), with yields
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720  increasing linearly up to at least 1600 umol/m%s PAR (Chandra et al., 2008; Lata et al., 2016;
721  Rodriguez-Morrison et al., 2021), depending on the culture system. As such, the prediction to use
722  such high light levels may reflect the nature of the species. Our validation experiment demonstrates
723  that cannabis responded to these high light levels as predicted.

724 Similarly, in our initial experiment, we observed higher intensities of R in combination with equal or
725  lower intensity of B or W to be beneficial to canopy development in the presence of 3 % Sucrose.
726 Unlike some other treatments, 50 pmol/m%s R + 50 pmol/m?/s B + 3 % Sucrose, with the largest
727  canopy surface area, did not give largest averages in any additional growth parameters measured.
728  This is counterintuitive on the premise that canopy surface area is a metric of leaf size in addition to
729  leaf number. We might expect highest canopy surface area treatments to be mutually high in other
730  shoot growth parameters such as shoot length, number of nodes, or number of shoots. R significantly
731  impacts endogenous action of gibberellic acid which is involved in cell elongation, root inhibition,
732 and stimulating mitosis in meristematic cells (Manivannan et al., 2015) for replication. Gibberellic
733 acid action is known to trigger anisotropic responses for leaf expansion in monocots (Sprangers et al.,
734 2020; Xu et al., 2016), though R can impart different effects on leaf morphology for different plants
735 invitro. B increased leaf thickness, leaf numbers and leaf areas compared to R, which reduced leaf
736  thickness and area in cultured Alternanthera brasiliana (Macedo et al., 2011). Similarly, B mutually
737  amplified leaf thickness and leaf area of Ficus benjamina (Zheng and Van Labeke, 2017), and
738  Cucumis sativus in vivo, as well as micropropagated Solanum tuberosum L. (Chen et al., 2020). B
739  also had a tendency to increase leaf area of Cordyline australis and Snningia speciosa in vivo (Zheng
740 and Van Labeke, 2017). Since we observed opposite influences of B, we can speculate that
741  influences of this spectrum to be species-dependent. Wei et al. (2021) found that LED-treated hemp
742  plants produced smaller leaf areas than high pressure sodium treatments, though the LED treatments
743  with higher R:B at higher intensities produced larger leaf areas than treatments of lower R:B ratios at
744 higher or lower intensities. They also found leaf areas to bear a significantly positive correlation leaf
745  number, though no additional growth responses or treatments were significantly correlated with leaf
746  area (Wei et al., 2021). These results correspond more similarly with the data obtained in our study,
747  though it’s difficult to imply for certain if in vitro medicinal cannabis responds to light quality and
748 intensity with the same general trend when influenced by sucrose in a sub-optimal gaseous
749  environment. It is also difficult to infer molecular mechanisms for such in vitro plant responses, since
750  they are beyond the scope of the presented study. Thus, subsequent experiments should be devised to
751  test molecular mechanisms of the growth parameters measured to further elucidate the molecular
752  devises contributing to the factors observed.

753 Our preliminary experiment also indicated shade avoidance-like responses observed when comparing
754 R + B + Fr + 3 % Sucrose treatments at different light intensities. Higher light intensity generally
755  produced shorter shoots with more nodes versus longer shoots with fewer nodes when irradiance was
756  lower. At higher light intensities, R + B + Fr + 6 % Sucrose specimens also averaged longer stems
757  with more nodes than at 1% Sucrose, though at low light intensity R + B + Fr + 1 % Sucrose grew
758  longer stems with more nodes than 6 % plants of the same light treatment. These observations imply
759 that that there is a complex interaction between sugar and light signaling whereby the impact of sugar
760 can allow plants to dynamically adjust to higher light intensities (Ticha et al., 1998), or impede
761  certain physiological responses when exogenous carbon is too high and abiotic factors are sub-
762  optimal (Roh and Choi, 2004). However, in all cases, greatest averages were achieved with 3 %
763  sucrose, which suggests that sugar concentrations above 4 % and below 2 % can have diminishing
764  returns on shoot development and number (Sivanesan and Park, 2015). This observation supports the
765  widespread practice of using 3% sucrose in plant tissue culture systems, and the results of our
766  sensitivity analysis. Gago et al. (2014) modeled 14 growth parameters of in vitro kiwifruit based on
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767  Sucrose concentration and irradiance, using Neuro-fuzzy logic. They found an in vitro sucrose
768  concentration of 2.3 % or higher to be indispensable in achieving many of the optimal growth
769  parameters investigated, either independently or in interaction with light intensity. Dynamic
770 interactions between light and exogenous sugar are important for evoking many additional
771  physiological responses relating to light attenuation and metabolism (Gago et al., 2014; Roh and
772  Choi, 2004; Ticha et al., 1998).

773  Lalge et al. (2017) observed that taller cannabis clones developed with W compared to B + R LEDs
774 when grown in controlled climates. The optimal levels of R:Fr in promoting stem elongation has
775  been well documented (Ballaré and Pierik, 2017; Ma and Li, 2019; Trupkin et al., 2014). Though B
776  also impacts stem growth (Ma and Li, 2019; Magagnini et al., 2018; Snowden et al., 2016), it can
777  sometimes have the opposite influence of R:Fr, resulting in more compact phenotypes (Magagnini et
778 al., 2018). The optimized combinations R:Fr in addition to B could have ultimately impacted shoot
779  elongation of the treatments assessed (Cope and Bugbee, 2013). Emission of low B from warm W
780  LEDs can amplify stem elongation and leaf expansion, while high B from cold W LEDs can have the
781  opposite effect, resulting in more compact specimens. Results from our preliminary experiment
782  provide evidence that appropriate levels of R:Fr can greatly influence stem elongation to a greater
783  degree than B (Magagnini et al., 2018). The reduction of photosynthetically active radiation resulting
784  from shading limits the amount of R, B, and Fr received by the canopy, though the degree of R
785  reduction tends to be far greater than that of Fr (Xu et al., 2020). Hence, low irradiance and
786  wavelength perception work mutually to allow shoot elongation, perhaps in combination with the
787  influence of exogenous sucrose. In agreement with these principles, the predicted optimal conditions
788  for shoot elongation included low R:Fr ratios, including Fr intensities ranging from 30.6 — 43.3
789  pmol/m?/s and R between 0.3 — 19.1 pmol/m?/s. Likewise, shoot elongation was maximized under
790 relatively low PAR light levels from 15.7 — 80.8 pmol/m?/s, while canopy area and number of nodes
791  were predicted to be greater with low levels of Fr (1.8 — 24.7 umol/m%s and 8.8 — 19.9 umol/m?s,
792  respectively) and higher PAR (139.1 — 194.5 umol/m?/s, and 150.3 — 203.8 pmol/m?/s, respectively)
793  fluence rates. As with previous literature, it appears that in vitro cannabis plants produce longer
794  stems with fewer nodes and more narrow leaves when cultured at low light levels and higher amounts
795  of Fr. These results demonstrate that in vitro cannabis plants respond to light signals similar to what
796  would be expected in vivo. Further, the ability of machine learning and optimization algorithms to
797  make predictions that agree with the general body of literature further supports the ability to
798  recognize complex patterns using relatively quickly with few treatments. Thus, balances between
799 alternative light spectra, their intensities and exogenously supplied carbohydrates are critical factors
800  determining the outcome of many plantlet responses in vitro.

801  The effect of light quantity and quality studied together in vitro has been perused for many years in
802  micropropagation but have been hampered due to the limitations of lighting systems and difficulties
803 in proper replication (Kim et al., 2004; Miler et al., 2019; Tanaka et al., 1998). Many previous
804  experiments explored the influences of single or binary combinations light spectra and their
805 intensities on in vitro plantlet development (Lian et al., 2002; Manivannan et al., 2015; Shukla et al.,
806  2017). Our study enlists novel LED technology combined with machine learning and optimization
807  algorithms in an innovative system that assesses a vast assortment of sucrose concentrations and the
808 cumulative impact of four different light qualities at a wide array of intensities to devise precision
809 tissue culture protocols. Furthermore, for the first time, we suggest a superior machine learning and
810  optimization algorithm approach for future plant tissue culture studies. Additionally, the results of the
811  preliminary experiment exemplify that specific growth responses of in vitro cannabis can be directed
812 by manipulating abiotic factors such as light intensity and quality in addition to exogenous carbon
813  availability. This is further demonstrated by the results of the validation experiment. Such discoveries
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814  have valuable implications for the development of cannabis tissue culture techniques in the absence
815 of PGRs.

816 Conclusion

817  This machine learning —assisted, multivariable micropropagation study has demonstrated that distinct
818  growth responses in cannabis can be shaped by changing the influences of sugar and light dynamics
819 in the absence of PGRs. The development of alternative protocols to guide plant growth toward
820  specific responses shows endless value for numerous in vitro applications. For instance, protocols to
821 induce long stems, large internodes, many nodes, or many stems could be implemented when
822  growing cultures for clonal propagation and sub-culturing, while cultures developing large root
823 masses and large canopies could very well be more suited for ex vitro transfer. In addition,
824  culmination of the protocols devised could be implemented, perhaps to trigger different
825  developmental responses during different growth phases. Finally, the results obtained from this
826  experiment allows us to recommend GRNN-SOS to be a more efficacious algorithm to study
827  dynamic plant responses to multivariable stimuli in vitro for development of new methods, and
828  optimization of current protocols. Rather than using traditional statistics to evaluate large datasets for
829  making optimization predictions for tissue culture applications, the use of effective machine learning
830 strategies for optimization of in vitro protocols should further be assessed as an alternative, or in
831 combination with traditional statistical approaches to allow precision tissue culture practices.
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Table 1. Effect of light and carbohydrate on in vitro Cannabis shoot growth and development.

Input variables

Output variables

Blue Red White Far-red Sucrose Shoot length Root length Node Shoot Canopy surface area
(umol/m?/s)  (umol/m?s)  (umol/m?s) (umol/m?/s) (%) (mm) (mm) number number (mm?)
25 0 25 0 1 38.77+8.101 108.87+10.097 8.50+0.645 1.00+0.000 2309.42+314.907
25 0 25 0 3 32.44+7.036 42.47+29.857 8.00+0.408 2.25+0.479 2028.24+598.380
25 0 25 0 6 63.26+16.667 117.06+20.197 8.00+0.408 2.25+0.479 1885.75+385.882
50 0 0 0 1 32.94+2.406 26.45+23.515 7.25+0.750 1.000.000 1848.11+214.644
50 0 0 0 3 44.35+20.174 24.56+15.198 7.25+1.601 1.500.500 1495.87+757.315
50 0 0 0 6 39.03+10.839 142.17+45.483 7.50+0.866 1.250.250 1589.48+578.975
50 0 50 0 1 31.2045.443 151.40+35.982 8.25+0.629 1.00+0.000 1717.804582.898
50 0 50 0 3 40.91+13.542 82.77+17.954 8.50+0.500 1.25+0.250 1802.86+390.860
50 0 50 0 6 53.83+13.807 112.46+26.505 9.000.707 1.75+0.479 1880.05+744.967
100 0 0 0 1 23.43+2.634 0.00+0.000 5.75+0.479 1.250.250 493.01+111.615
100 0 0 0 3 22.95+2.991 15.04+8.855 6.75+0.479 1.000.000 650.45+126.813
100 0 0 0 6 33.42+11.272 102.47460.796 6.50+0.500 2.00£0.577 890.63+444.374
125 125 125 125 1 43.13+9.839 97.61+34.009 7.25+0.479 1.50+0.289 2442.354506.213
125 125 125 125 3 59.60+10.319 89.45+31.042 7.75+0.854 1.75+0.250 3193.41+888.482
125 125 125 125 6 64.51+38.597 63.48+34.099 8.25+2.016 1.75+0.479 2594.11+1648.261
375 125 0 0 1 47.40+11.309 63.68+24.567 7.00+0.816 1.5040.289 1519.41+345.197
375 125 0 0 3 66.39:£16.880 136.61+28.052 8.00+1.080 2.25+0.629 2177.63+519.451
375 125 0 0 6 38.415.652 100.51+37.320 7.75+0.479 1.50+0.289 1698.48+448.503
16.69 16.69 0 16.69 1 106.24+35.988 127.38+40.798 8.00+0.707 1.25+0.250 3350.76+789.191
16.69 16.69 0 16.69 3 142.22+36.056 101.97+41.471 9.75+0.750 2.50+0.866 4355.61+1395.277
16.69 16.69 0 16.69 6 38.89+11.084 46.67+29.388 6.75+0.854 1.25+0.250 1360.77+155.798
25 25 0 0 1 57.72+14.566 149.92+35.873 8.75+1.181 1.000.000 3776.96+1017.968
25 25 0 0 3 56.83+32.880 105.16+44.817 7.500.645 1.750.250 1737.36+1056.285
25 25 0 0 6 61.38+9.666 38.72+23.529 8.25+0.946 2.00+0.408 1216.37+114.887
25 25 25 25 1 87.11+22.707 134.47+48.218 8.75+0.854 1.75+0.250 6340.05+1284.607
25 25 25 25 3 56.06+12.648 72.80+36.452 9.25+0.250 1.00+0.000 3117.44+887.353
25 25 25 25 6 59.93+24.137 146.00+54.432 7.00£0.707 1.25+0.250 1829.20+645.785
75 25 0 0 1 33.3045.883 65.71+42.275 7.5041.041 1.000.000 2560.02:£620.724
75 25 0 0 3 103.74+44.839 112.05+16.975 105042021  2.00+0.408 3964.16+1336.336
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41.43+£1.379
36.42+6.816
98.40+44.716
85.94+16.989
49.05+14.862
32.11+3.359
50.48+11.078
77.72+11.483
99.81+31.278
46.90+1.499
29.51+6.815
68.50+£16.044
55.40+24.082
63.01+11.807
130.47+48.757
91.80461.557
55.39+6.538
73.49+16.669
78.72+27.594
49.02+6.926
78.73+21.040
55.71£17.245
48.72+17.838
101.24+32.678
84.14+37.295
76.46+34.634
154.68+51.228
86.78+29.794
39.50+5.238
35.85+6.990
82.77+43.133
38.61+6.648

29.16+13.225
150.89+51.445
477.10+287.094
147.32+7.069
120.84+70.678
10.84+10.841
122.62+37.803
97.43+36.702
158.00+58.672
35.98+20.840
77.13+45.344
73.50£26.470
29.79+29.794
87.61+55.464
152.19+40.475
132.78492.911
47.25+33.256
159.08+45.374
91.01+34.488
121.57+43.981
79.38+39.101
75.76+27.694
152.42+43.433
207.67+41.674
143.37+84.434
160.01+49.307
171.42+17.863
86.57+38.613
128.04+12.026
74.44+27.158
72.39+41.802
0.00+0.000

7.50+0.645
8.75+0.854
11.50+2.901
9.25+0.854
7.75+0.854
7.00+0.000
8.25+0.479
8.25+0.479
7.75+0.946
8.50+0.289
8.50+0.866
8.75+0.629
9.00+0.707
9.00+0.707
9.75+1.181
9.50+1.555
8.50+0.866
9.50+0.645
8.50+0.500
8.50+0.866
10.50+1.190
9.00+0.408
8.00+0.816
7.50+0.289
8.25+0.854
7.7520.750
8.50+1.041
8.00+0.408
8.50+0.289
8.25+0.479
8.00+1.000
8.75+0.479

1.25+0.250
1.25+0.250
1.00+0.000
1.75+0.250
1.25+0.250
2.00+0.408
2.25+0.946
1.25+0.250
1.75+0.479
1.50+0.289
1.25+0.250
2.25+0.479
2.00+0.408
1.50+0.289
1.25+0.250
1.75+0.750
1.00+0.000
1.75+0.479
1.50+0.289
1.00+0.000
1.00+0.000
1.25+0.250
1.25+0.250
1.25+0.250
2.00+0.408
1.25+0.250
1.50+0.289
1.25+0.250
1.25+0.250
1.50+0.289
1.50+0.289
1.00+0.000

813.38+188.339
2091.81+525.087
2483.71+627.011
7136.78+1770.492
3232.08+1237.421
2505.37+374.173
1992.30+318.378
2500.70+678.427
3148.87+1255.456
1383.03+349.575
2447.43+737.653

13061.97+10839.642

1963.27+1336.004
2763.95+630.766
6939.43+2672.142
3000.23+1620.640
3123.43+594.904
5721.65+2203.448
3337.97+1156.575
3843.37+1073.415
6154.32+1303.577
2682.36+913.655
1642.67+438.197
1529.03+407.505
915.09+717.054
2370.35+467.347
2707.43+652.476
2782.91+1022.655
2751.85+906.598
1706.28+611.107
2249.33+1412.720
2169.51+649.210
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136.64+29.794
36.78+0.374
27.70+2.311
39.88+3.684

101.32+35.475

148.92+23.789
4.40+4.396
4.36+4.363
9.05+5.546

177.03+26.461

8.75+0.629
8.00+0.408
7.25+0.479
8.00+0.707
8.00+1.080

2.00+0.408
1.25+0.250
1.50+0.289
1.00+0.000
3.00£0.577

3411.27+345.452
859.96+78.081
519.06+182.411
1954.42+506.636
2593.13+526.681

Values in each column represent means +Standard error.

32

"9suUd2I| [eUORRWIBIU| O AN-DN-AG-DD® Japun a|qe|ieAe
apeuw sl ‘Aunadiad uluudaid ayy Aejdsip 01 asuadl| e AIxHoIq pajuelh sey oym ‘1spunyioyine ayi si (mainal 1aad Aq paijiniad Jou sem Yyaiym)

widaud siys Joy Jepjoy WbuAdod 8yl "TZ0z ‘0T 1snbny paisod uoisiaA iy} :6T2SSY 60°80 T20Z/TOTT 0T/BI0"10p//:sdny :1op jundaid Aixyoiq


https://doi.org/10.1101/2021.08.09.455719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2. Performance indices of different machine learning algorithms (MLP, GRNN, and ANFIS) for modeling and predicting shoot length, root length, number of
nodes, number of shoots, and canopy surface area of Cannabis.

Model Performance Shoot length Shoot number Node number Root length Canopy surface area
index Training  Testing Training  Testing Training  Testing Training  Testing Training Testing
R? 0.972 0.954 0.625 0.421 0.717 0.390 0.938 0.900 0.953 0.928
MLP RMSE 4.929 6.927 0.396 0.632 0.702 1.202 15.112 15.956 277.487 340.538
MBE -0.090 1.673 0.009 -0.001 0.017 0.260 0.001 2.259 30.952 25.016
R? 0.983 0.964 0.733 0.714 0.791 0.744 0.941 0.914 0.962 0.944
GRNN  RMSE 3.879 6.081 0.347 0.606 0.594 0.933 14.754 14.972 248.737 300.911
MBE 0.001 1.540 0.001 0.012 -0.001 0.063 0.001 2.581 0.001 2.388
R? 0.770 0.590 0.647 0.501 0.767 0.549 0.781 0.589 0.733 0.644
ANFIS  RMSE 17.538 23.327 0.407 0.557 0.650 0.942 41.881 39.007 1282.011  1282.697
MBE -4.549 -5.508 0.006 -0.065 -0.003 0.037 5.962 8.546 -26.525 -32.037

ANFIS: adaptive neuro-fuzzy inference system; GRNN: generalized regression neural network; MBE: mean bias error; MLP: multi-layer perceptron; R*: coefficient of
determination; RMSE: root mean square error.
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Table 3. Importance degree of light (blue, red, white, and far-red) and carbohydrate sources on shoot length, root length,
number of nodes, number of shoots, and canopy surface area of Cannabis through sensitivity analysis.

Trait Item Blue Red White Far-red Sucrose

VSR 3.005 1.957 1.647 2.141 5.191
Shoot length

Rank 2 4 5 3 1

VSR 1.54 2.211 1.669 1.909 3.887
Root length

Rank 5 2 4 3 1

VSR 1.379 1.257 1.065 1.288 1.597
Node number

Rank 2 4 5 3 1

VSR 1.554 1.217 1.105 1.168 1.651
Shoot number

Rank 2 3 5 4 1
Canopy surface VSR 1.662 2.616 1.657 1.622 3.693
area Rank 3 2 4 5 1

VSR: variable sensitivity ratio
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Table 4. The results of optimization process via different evolutionary optimization algorithms (BBO, SOS, ISA, and GA).

Optimal level of input variables

E
ST
— - - - - X
Fitness function Og)ltlrgrlizt?]tr:;)n Blue Red White Far-red Sucrose Predicted C;?Ezs function §§
g (umol/m?/s) (umol/m?/s) (umol/m?/s) (umol/m?/s) (%) 38
BBO 15.412 9.412 15.997 43.271 3.142 160.78 23
Shoot length (mm) SOS 4.460 19.051 27.337 39.472 3.157 160.78 %8
ISA 0.439 18.494 36.234 33.122 3.319 160.78 et
GA 2.937 0.270 13.036 30.605 3.505 160.78 ;?
BBO 5.756 87.381 31.523 19.343 3.504 262.21 gg
Root length (mm) SOS 0.508 79.897 4.733 17.209 3.673 262.21 32
ISA 3.779 81.519 25.386 13.321 3.634 262.21 oS
GA 5.797 98.198 36.208 1.237 3.507 262.21 = =
BBO 62.998 92.238 48.520 8.830 3.709 12.25 ) §§
Node number SOS 57.682 87.192 45.468 19.924 3.711 12.25 f—,g N
ISA 46.845 90.135 20.969 16.824 3.220 12.25 TR
GA 50.960 88.355 11.000 11.673 3.709 12.25 S8
BBO 16.581 36.686 0.592 19.995 2.909 3.75 358
Shoot number SOS 15.930 21.183 9.723 24.304 2.372 3.75 8 §
ISA 21.336 29.584 0.332 17.387 2.174 3.75 8%;‘
GA 25.303 25471 0.262 18.125 3.160 3.75 <o
BBO 52.563 84.052 26.262 22.456 3.809 7168.05 583
Canopy surface area SOS 54.688 95.974 30.099 24.543 3.664 7168.05 gs §
(mm?) ISA 44.889 99.642 49.994 24.674 3.285 7168.05 . 3o
GA 37.646 83.928 17.507 1811 3.083 7168.05 523
BBO: biogeography-based optimization; GA: genetic algorithm; ISA: interior search algorithm; SOS: symbiotic organisms search. ggé
552
53¢
55
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1141  Figure Captions
1142  Figure 1. A schematic representation of factors influencing in vitro culture.
1143  Figure 2. A schematic representation of different classes of machine learning algorithms.

1144  Figure 3. Spectral analyses of light treatments from the initial experiment. Images indicate relative
1145  amounts of fluencies emitted per treatment. Light spectra presented were obtained using Li-Cor LI-
1146 180 spectrometer. Presented are (a) 25 pmol/m%s B + 25 pmol/m%s W, (b) 50 pmol/m%s B + 50
1147  umol/m?/s W, (c) 50 pmol/m?/s B, (d) 100 umol/m?/s B, (e) 12.5 pmol/m%s R + 12/5 umol/m?/s B +
1148  12.5 pmol/m%s Fr + 12.5 umol/m?%s W, (f) 12.5 umol/m%s R + 37.5 umol/m?/s B, (g) 16.67
1149  pmol/m?/s R + 16.67 umol/m%s B + 16.67 umol/m?/s Fr, (h) 25 pmol/m%s R + 25 umol/m%/s B + 25
1150  umol/m?/s Fr + 25 pmol/m?%s W, (i) 25 pmol/m%s R + 25 pmol/m%s B, (j) 25 pmol/m?/s R + 75
1151  pmol/m?/s B, (k) 25 umol/m%s R + 25 pmol/m?/s W, (1) 33.33 umol/m%s R + 33.33 umol/m%s B +
1152 33.33 pmol/m%s Fr, (m) 37.5 umol/m?s R + 12.5 pmol/m%s B, (n) 50 pmol/m?/s R + 50 pmol/m?/s
1153 B, (0) 50 umol/m?/s R + 50 pmol/m%s W, (p) 50 pmol/m%s R, (q) 75 umol/m%s R + 25 pmol/m?/s
1154 B, (r) 100 pmol/m?/s R, (s) 25 pmol/m%s W + 25 umol/m%s Fr, (t) 50 pmol/m?/s W + 50 pmol/m?/s
1155  Fr, (u) 50 pmol/m%s W, and (v) 100 pmol/m?%/s W.

1156  Figure 4. Step-by-step methodology of the current study, including (a) data obtained, (b-d) data
1157  modeling through multilayer perceptron (MLP), generalized regression neural networks (GRNN),
1158 and adaptive neuro-fuzzy inference system (ANFIS), respectively, (e) main steps of optimization
1159  process through different optimization algorithms, (f,g) results of the validation experiment for shoot
1160 growth and canopy surface area, respectively, and (h,i) shoot growth and canopy surface area
1161  obtained from symbiotic organisms search (SOS).

1162  Figure 5. A schematic representation of biogeography-based optimization (BBO) algorithm.
1163  Figure 6. A schematic representation of interior search algorithm (ISA) algorithm.

1164  Figure 7. A schematic representation of symbiotic organisms search (SOS) algorithm.

1165  Figure 8. A schematic representation of genetic algorithm (GA).

1166  Figure 9. Spectral analyses of light treatments from the validation experiment. Images demonstrate
1167  relative amounts of fluencies emitted per treatment. Light spectra presented were obtained using Li-
1168  Cor LI-180 spectrometer. Presented are optimized light treatments for (a) GA shoot length, (b) GA
1169  canopy surface area, (¢) GA number of shoots, (d) GA number of nodes, (e) BBO canopy surface
1170 area, (f) BBO shoot length, (g) ISA shoot length, (h) ISA number of nodes, (i) ISA root length, (j)
1171 ISA number of shoots, (k) SOS shoot length, (1) ISA canopy surface area, (m) SOS root length, (n)
1172 BBO number of nodes, (0) SOS canopy surface area, (p) SOS number of nodes, (q) BBO number of
1173  shoots, and (r) SOS number of shoots.

1174
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1175  Figure 10. Scatter plot of experimental data versus predicted data of (a) shoot length, (b) root length,
1176  (c) node number, (d) shoot number, and (e) canopy surface area in in vitro Cannabis shoot growth
1177  and development, using generalized regression neural network (GRNN) in both training and testing
1178  subsets.
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