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ABSTRACT 

Background: 

Mass spectrometry imaging (MSI) derives spatial molecular distribution maps directly from clinical 

tissue specimens. This allows for spatial characterization of molecular compositions of different 

tissue types and tumor subtypes, which bears great potential for assisting pathologists with 

diagnostic decisions or personalized treatments. Unfortunately, progress in translational MSI is 

often hindered by insufficient quality control and lack of reproducible data analysis. Raw data and 

analysis scripts are rarely publicly shared. Here, we demonstrate the application of the Galaxy 

MSI tool set for the reproducible analysis of an urothelial carcinoma dataset. 

Methods: 

Tryptic peptides were imaged in a cohort of 39 formalin-fixed, paraffin-embedded human 

urothelial cancer tissue cores with a MALDI-TOF/TOF device. The complete data analysis was 

performed in a fully transparent and reproducible manner on the European Galaxy Server. 

Annotations of tumor and stroma were performed by a pathologist and transferred to the MSI data 

to allow for supervised classifications of tumor vs. stroma tissue areas as well as for muscle-

infiltrating and non-muscle invasive urothelial carcinomas. For putative peptide identifications, m/z 

features were matched to the MSiMass list. 

Results: 

Rigorous quality control in combination with careful pre-processing enabled reduction of m/z shifts 

and intensity batch effects. High classification accuracy was found for both, tumor vs. stroma and 

muscle-infiltrating vs. non-muscle invasive tumors. Some of the most discriminative m/z features 

for each condition could be assigned a putative identity: Stromal tissue was characterized by 

collagen type I peptides and tumor tissue by histone and heat shock protein beta-1 peptides. 
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Intermediate filaments such as cytokeratins and vimentin were discriminative between the tumors 

with different muscle-infiltration status. To make the study fully reproducible and to advocate the 

criteria of FAIR (findability, accessibility, interoperability, and reusability) research data, we share 

the raw data, spectra annotations as well as all Galaxy histories and workflows. Data are available 

via ProteomeXchange with identifier PXD026459 and Galaxy results via 

https://github.com/foellmelanie/Bladder_MSI_Manuscript_Galaxy_links. 

Conclusion: 

Here, we show that translational MSI data analysis in a fully transparent and reproducible manner 

is possible and we would like to encourage the community to join our efforts. 

 

KEYWORDS: 

Mass spectrometry imaging, MALDI imaging, formalin-fixed paraffin-embedded tissues, 

reproducibility, urothelial tissue, urothelial cancer, bladder, spatial proteomics 

 

BACKGROUND: 

Mass spectrometry imaging (MSI) is a label-free and untargeted method to generate spatial 

distribution maps for hundreds to thousands of molecules directly from a single tissue section. 

The most common MSI technique is based on matrix assisted laser desorption / ionization 

(MALDI) mass spectrometry and called MALDI MSI or MALDI imaging. It allows spatial resolution 

in the low micrometer range while preserving the integrity of the measured molecules such as 

proteins, peptides, metabolites and lipids. After the MALDI measurement, the tissue section 

remains amenable to histological staining, which can be compared to the measured molecular 

distributions. Molecular histology impacts many aspects of histopathological diagnostics and 
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research and thus MSI is emerging as a powerful technology in translational studies [1,2]. In 

particular, the analysis of tumor tissues with pronounced cellular and morphological heterogeneity 

benefits from the spatially resolved MSI technology [3,4]. Common applications for MSI in cancer 

studies include tumor typing and subtyping [5–7], studying resection margins and tumor 

heterogeneity [8,9], and finding biomarkers for tumor diagnosis, prognosis or prediction [10–12]. 

 

The successes seen in translational MSI studies highlight the great potential for MSI in clinical 

settings, which require thorough quality control, good experimental design as well as standardized 

and reproducible experiments, analysis and reporting [2,13–16]. Despite their general importance 

for any omics-study, such aspects are only starting to become topics of research and 

developments in MSI. Recently, two studies emerged that demonstrated that standardized 

sample preparation protocols allow for reproducible MSI across several laboratories [14,15]. 

Suggestions for the inclusion of quality metrics into sample preparation protocol were made by 

Gustafsson et al. (use of internal peptide standards to measure and re-adjust mass accuracy [17]) 

and Erich et al. (implementation of quality controls for tryptic digestion efficiency [13]). 

In contrast, in most MSI studies the data analysis part is neither standardized, transparent nor 

reproducible, even though this part of an MSI experiment can be improved with the least effort. It 

requires publishing raw data and metadata as well as reporting the entire multistep analysis 

workflow with all fine grained parameters and settings in an accessible way. 

 

We have previously established MSI tools in the Galaxy platform for reproducible MSI analyses 

[18]. Galaxy represents a highly suitable platform for reproducible biomedical data science 

allowing to track provenance, store tool names, versions and all set parameters for all analyses 

in publishable Galaxy history. Galaxy is accessible for every researcher, offers a graphical user 

interface, and comprises free access to thousands of pre-installed tools and large public 

computational resources. Galaxy also enables high levels of interoperability by implying tools of 
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different omics domains which can be connected to build (multi-omics) workflows. Also, analysis 

histories and workflows can be shared privately, with collaboration partners or publicly, allowing 

full transparent and reproducible data analyses. 

 

Here, we aim to showcase that a fully transparent and reproducible data analysis of a translational 

MSI cancer study is possible in the Galaxy framework.  

As a use case, we have imaged an urothelial tissue cohort comprising urothelial cancer, precursor 

lesions and benign tissues for their spatial tryptic peptide composition. Based on these tissues 

we established a classifier for two different tissue types, tumor and stroma. Considering the tumor, 

another classifier was built to distinguish between the two clinical relevant groups: muscle-

infiltrating urothelial carcinoma and non-muscle invasive papillary urothelial carcinoma low grade 

(pTa low). The latter classifier could be applied to estimate the molecular risk of progression for 

three non-muscle invasive papillary urothelial carcinoma high-grade (pTa high) tissues. The 

classification of tumor areas from their surrounding stroma tissue is the key for tumor specific 

analysis. Currently, most MSI tumor studies rely on the manual annotation of tumor areas by a 

pathologist, which is a bottleneck in terms of available experts and time constraints, which could 

be overcome by applying automated classification of the two tissue types. The complete analysis 

including quality control, image co-registration, filtering regions of interest (ROIs), combining files, 

pre-processing, classification, and visualization was performed in a single platform: the European 

Galaxy server [19]. This allowed for the easy sharing of all analysis histories together with all raw 

and intermediate data to enable FAIR (findable, accessible, interoperable, and re-usable) data 

sharing and full transparency and reproducibility [20]. 

METHODS: 

Patient cohort: 
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49 bladder tissue specimens from 47 patients were collected during transurethral resection at the 

University Medical Center in Freiburg. The study was approved by the Ethics Committee of the 

University Medical Center Freiburg (no. 491/16). All patients gave written informed consent. 

Before study inclusion, all patient data were pseudonymized. 

Bladder tissue specimens were formalin-fixed directly after surgical removal and paraffin-

embedded as described previously [21]. All tissue specimens were reviewed by two experienced 

pathologists. Biopsie tissue cores with 2 mm diameter were extracted from each formalin-fixed 

paraffin embedded (FFPE) tissue block and randomly assembled into two FFPE tissue 

microarrays (TMA) blocks. The following tissue cores were included into the TMA: Muscle-

infiltrating urothelial cancer (n=12), non-muscle invasive papillary urothelial carcinoma high- (pTa 

high, n=5) / low grade (pTa low, n=20), carcinoma in situ (pTis, n=2), and papillary urothelial 

neoplasm of low malignant potential (PUNLUMP, n=2), as well as inflammatory bladder 

specimens  (n=8). 6 µm thick sections were sliced with a microtome and mounted onto indium tin 

oxide (ITO) coated glass slides (Bruker Daltonik, Bremen, Germany). 

 

MSI sample preparation: 

Tissue deparaffinization was performed in xylol and ethanol/water solutions as described 

previously [21]. Tissue sections were rinsed twice in 10 mM ammonium bicarbonate (NH4HCO3) 

for 1 min. Antigen retrieval was performed in citric acid monohydrate pH 6.0, in a steamer for 1 h 

at approximately 100 °C [22]. Rinsing in ammonium bicarbonate was repeated twice and the 

samples were air dried afterwards. TPCK treated Trypsin (Worthington, Lakewood, NJ, USA) was 

sprayed onto the tissue sections using iMatrixSpray (Tardo Gmbh, Subingen, Switzerland); 60 

mm height, 1 mm line distance, 180 mm/s speed, 0.5 µl/cm3 density, 10 cycles, 10 s delay [23]. 

Digestion was performed for 2 h at 50°C in a digestion chamber with 97% humidity maintained by 

a saturated potassium sulfate (K2SO4) solution [14]. 10 mg/ml alpha-cyano-4-hydroxycinnamic 

acid (CHCA, Sigma-Aldrich, Munich, Germany) matrix was prepared in 50% (v/v) acetonitrile and 
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1% (v/v) trifluoroacetic acid. Matrix solution was mixed 12:1 (v/v) with an internal calibrant mix 

containing 0.08 µg/ml Angiotensin I (Anaspec, Seraing, Belgium), 0.04 µg/ml Substance P 

(Anaspec, Seraing, Belgium), 0.15 µg/µl [Glu]-Fibrinopeptide B (Sigma-Aldrich, Munich, 

Germany), and 0.30 µg/µl ACTH fragment (18-39) (Abcam, Cambridge, UK) [17]. The matrix-

calibrant mixture was sprayed onto the tissue sections using iMatrixSpray; 60 mm height, 1 mm 

line distance, 180 mm/s speed, 0.5 µl/cm3 density, 20 cycles, 5 s delay. 

 

MSI data acquisition: 

Tissue sections were measured with a 4800 MALDI-TOF/TOF Analyzer (Applied Biosystems, 

Waltham, MA, USA) using the 4000 Series Explorer software (Novartis and Applied Biosystems) 

to set instrument parameters. A squared region was imaged with 150 µm raster step size, 

averaging 500 laser shots per spectrum in a mass range from 800 to 2300 m/z in positive ion 

reflectron mode. Before starting the imaging measurement, internal calibrants in a spectrum 

outside the tissue region were used for m/z re-calibration. 

 

Tissue staining and annotation: 

Matrix was removed from the slides by rinsing with 70 % ethanol after MSI measurement. 

Afterwards, hemalum staining of the measured tissue was performed by immersing the tissue 

sections in Mayer’s acid Hemalum solution (Waldeck, Münster, Germany) for 1 minute and rinsing 

with water for 1 minute. Dehydration was performed with four short incubations in 100% ethanol 

and 2 incubations in xylol. Stained tissues were scanned at x20 magnification. A pathologist (KEA) 

annotated a coherent area within the largest tumor and stroma regions in photoshop CS5 (Adobe, 

San Jose, USA). Only annotated spectra were considered for further analysis.  

 

MSI quality control, data handling and pre-processing: 
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Analyze7.5 files were uploaded to the European Galaxy server [24], where the complete analysis 

was performed and afterwards published [18,19]. First, a quality control with the MSI qualitycontrol 

tool (m/z of interest: four internal calibrants, ppm range: 200) was performed to ensure sufficient 

quality of the data and to find appropriate parameters for the following pre-processing steps. A 

previously published Galaxy workflow [18] was slightly modified and applied for co-registration of 

the stained image and the MSI image for each TMA separately. Six visually determined 

characteristic tissue spots were used as teachmarks for affine transformation. The obtained 

warping matrix was applied to extract the coordinates corresponding to the annotated regions 

from the MSI data leading to 2169 tumor and stroma specific spectra, while all pTis and 

PUNLUMP spectra were removed. Both files were binned in 50 ppm m/z steps and cut to their 

common m/z range 800 to 2300 in the ‘MSI preprocessing’ tool (method: m/z binning, width of 

bin: 50, unit for bin: ppm, select m/z options: change m/z range, minimum value for m/z: 800, 

maximum value for m/z: 2300 and combined into one dataset using the ‘MSI combine’ tool 

(Optional annotation of pixels with tabular files: TMA1 annotations, TMA2 annotations). The 

Cardinal (v 2.6.0) [25] based ‘MSI preprocessing’ tool was used for pre-processing: gaussian 

smoothing (window: 8, standard deviation: 2), baseline reduction (blocks: 750), m/z alignment 

(tolerance: 200 ppm), peak picking (signal to noise: 5, blocks: 600, window: 10), alignment 

(tolerance: 200 ppm) and filtering (frequency: 0.01) to obtain a common m/z peak list. The m/z 

peak list was used to extract the original peptide intensity from the smoothed and baseline 

reduced dataset by peak binning (tolerance: 200 ppm) in the ‘MSI preprocessing’ tool. Mass re-

calibration (tolerance: 200 ppm) was performed based on the three internal calibrants within the 

m/z range and the most abundant tryptic autolysis peptide (m/z 405.42) using the align spectra 

function of the MALDIquant peak detection tool (tolerance: 0.0002, don't throw an error when less 

than 2 reference m/z were found in a spectrum: Yes, If TRUE the intensity values of 

MassSpectrum or MassPeaks objects with missing (NA) warping functions are set to zero: Yes, 

Should empty spectra be removed: Yes). Afterwards the processed imzML data was converted 
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into a continuous file with the ‘MSI preprocessing’ tool (Processed imzML file: Yes, mass accuracy 

to which the m/z values will be binned: 0.005, unit of the mass accuracy: mz; preprocessing 

method: peak filtering, minimum frequency 0.01). Potential contaminant m/z features were 

removed with the ‘MSI filtering’ tool (Select m/z feature filtering option: remove m/z, tabular file 

with m/z features to remove: potential contaminant list, window in which all m/z will be removed: 

200, units: ppm). The potential contaminant list was built based on the internal calibrants as well 

as CHCA matrix peaks and bovine trypsin peptides. The m/z of the latter two were obtained from 

the MALDI contaminant list published by Keller [26]. Finally, intensity normalization to the total ion 

current (TIC) of each spectrum was performed in the ‘MSI preprocessing’ tool. Between and after 

the pre-processing steps eight times a quality control was performed with the ‘MSI qualitycontrol’ 

tool using the three internal calibrants, a 200 ppm range and spectra annotation information to 

summarize either the properties of each TMA or of each patient tissue core. 

 

MSI statistical modelling, visualizations and identification: 

The pre-processed file was subjected to spectra classification using Cardinal’s spatial shrunken 

centroids (SSC) algorithm [27] in the ‘MSI classification’ tool. For tumor vs. stroma classification, 

stroma of non-malignant tissues and tumor tissues were not separated. All 39 patients were split 

randomly 80:20 into training (n=31) and test group (n=8). The patients of the training group were 

split into ten random groups. The scikit learn [28] based Split Dataset tool was used for all the 

patient grouping steps and the ‘MSI filtering’ tool in order to separate all training and test spectra 

into separate imzML files. First, 10-fold cross validation was performed on the training file in the 

‘MSI classification’ tool (Pixel coordinates and their classes: file from Split Dataset tool that 

contains the spectra conditions and folds of the training data, select the method for classification: 

spatial shrunken centroids, analysis step to perform: cvApply, write out best r and s values: yes, 

r: 2, s: 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40, method to use to calculate the 

spatial smoothing kernels: adaptive) to find optimal classification parameters. The optimized 
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parameters (r=2, s=18) were applied to build a classifier on the training data with the ‘MSI 

classification’ tool (Pixel coordinates and their classes: file from Split Dataset tool that contains 

the spectra conditions of the training data, select the method for classification: spatial shrunken 

centroids, analysis step to perform: spatial shrunken centroids, r: 2, s: 18, method to use to 

calculate the spatial smoothing kernels: adaptive, Results as .RData output: yes). The classifier 

obtained as .RData file was then applied to the test data in the ‘MSI classification’ tool (Analysis 

step to perform: prediction, which classification method was used: SSC_classifier, load 

annotations: use annotations, load tabular file with pixel coordinates and the new response: file 

from Split Dataset tool that contains the spectra conditions of the test data). 

For muscle-infiltrating vs. non-muscle invasive pTa low-grade tumor classification, only tumor 

ROIs from muscle-infiltrating urothelial cancer and non-muscle invasive low-grade papillary 

urothelial cancer were included into the analysis (more details in table1). Patients were randomly 

assigned 80:20 into training (n=20) and test group (n=6). The training group was further split into 

five random groups and 5-fold cross validation was performed to find optimal classification 

parameters. Again, the scikit learn based Split Dataset tool was used for all the patient grouping 

steps and the ‘MSI filtering’ tool in order to separate all training and test spectra into separate 

imzML files. First, 5-fold cross validation was performed on the training file in the ‘MSI 

classification’ tool (Pixel coordinates and their classes: file from Split Dataset tool that contains 

the spectra conditions and folds of the training data, select the method for classification: spatial 

shrunken centroids, analysis step to perform: cvApply, write out best r and s values: yes, r: 2, s: 

0,2,4,6,8,10,12,14,16,18,20, method to use to calculate the spatial smoothing kernels: adaptive) 

to find optimal classification parameters. The optimized parameters (r=2, s=4) were used to build 

a classifier on the training data with the ‘MSI classification’ tool (Pixel coordinates and their 

classes: file from Split Dataset tool that contains the spectra conditions of the training data, select 

the method for classification: spatial shrunken centroids, analysis step to perform: spatial 

shrunken centroids, r:2, s:4, method to use to calculate the spatial smoothing kernels: adaptive, 
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Results as .RData output: yes). The classifier obtained as .RData file was then applied to the test 

data in the ‘MSI classification’ tool (Analysis step to perform: prediction, which classification 

method was used: SSC_classifier, load annotations: use annotations, load tabular file with pixel 

coordinates and the new response: file from Split Dataset tool that contains the spectra conditions 

of the test data). 

Furthermore, this classifier was applied to the tumor ROIs of the three non-muscle invasive high-

grade papillary urothelial cancers to predict their invasiveness potential by using the ‘MSI 

classification’ tool (Analysis step to perform: prediction, which classification method was used: 

SSC_classifier, load annotations: use annotations, load tabular file with pixel coordinates and the 

new response: file from Split Dataset tool that contains the spectra conditions of the high-grade 

tumors). The most discriminative m/z features were selected according to the highest t-statistic 

values and their abundances in the different groups were visualized. Ion images were plotted with 

the ‘MSI mz images’ tool (plusminus m/z: 0.25, contrast enhancement ‘histogram’) on the binned, 

filtered, and combined data, which was TIC normalized in the ‘MSI preprocessing’ tool in a 

separate step only for visualization purposes. Average mass spectra plots per group were 

generated from binned, filtered, combined and smoothed MSI data with the ‘MSI plot spectra’ tool 

(choose spectra: plot single spectra, load tabular file with pixel coordinates: combined spectra 

annotations, separate plot per spectrum or overlaid plot with average spectra per annotation 

group: overlaid spectra plots, zoomed in m/z range: tabular file with mz of interest, m/z value to 

subtract from m/z values in tabular file: 1, m/z value to add to m/z values in tabular file: 4, load 

tabular file with m/z values: file with top mz value per condition). All m/z features that were part of 

one of the two classifiers (t-statistic value above zero) were matched with the Join two files tool 

(Choose the metrics of your distance: ppm, allowed distance between the two values that will 

trigger a merge: 200) to the downloaded MSiMass list [29] to obtain putative identifications. For 

figures 2 to 5, pdf files from Galaxy were imported into Adobe Illustrator CS2 to arrange subfigures 

and adjust the label sizes. 
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RESULTS: 

Overview of the urothelial cancer cohort 

The urothelial cancer cohort consisted of two TMAs comprising 49 bladder tissue cores derived 

from 47 patients. Two tissue cores were lost during sample preparation and in three tissue cores, 

neither tumor nor stroma regions were withdrawn during TMA construction. Due to the insufficient 

sample size number one pTis and two PUNLUMP were excluded from the analysis. The exclusion 

of these tissues led to a final cohort of 39 tissue cores from 39 patients (Table 1) and 2169 mass 

spectra out of which 1076 were annotated as tumor and 1093 as stroma. 

 

Table 1: Overview of the patients and regions of interest (ROIs) of the urothelial cancer cohort 

Tissue type Number 

patients 

Number 

Tumor ROIs 

Number 

Stroma ROIs 

Average 

age 

Muscle-infiltrating urothelial cancer 11 11 6 70.8 

Non-muscle invasive high-grade 

papillary urothelial cancer (pTa 

high) 

3 3 1 70.0 

Non-muscle invasive low-grade 

papillary urothelial cancer (pTa low) 

18 15 9 70.2 

Non-cancerous benign 

malignancies 

7 0 7 65.4 

Sum 39 29 23  
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Transparency and reproducibility of the MSI data analysis in the Galaxy framework 

Both TMAs were imaged for tryptic peptides, hematoxylin and eosin stained and annotated for 

tumor and stroma ROIs. Raw data and spectra annotation information have been published via 

the PRIDE repository (identifier:PXD026459) [30]. The complete data analysis was performed on 

the European Galaxy server and was separated into seven different analysis histories, to keep 

the histories clearly arranged according to the different analysis steps: Co-registrations, data 

preparation and preprocessing, classifications, visualizations, and identification (Fig. 1a). To 

achieve full reproducibility and transparency of the study we published all Galaxy histories, which 

contain raw and intermediate files together with the tool name, tool version and all set parameters. 

For each of the first five analysis steps, Galaxy workflows were built and published to enable re-

running the same analysis in a standardized and automated way. The pre-processing workflow is 

depicted as an example in Fig. 1b. 
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Fig. 1: Overview of the data analysis pipeline. a) Overview of the performed analysis steps and 

their corresponding Galaxy histories. b) Galaxy workflow for pre-processing was built in a 

stepwise manner and combined with regular quality control steps. All Galaxy histories and 

workflows are published, links to them can be found in the ‘Availability of data and materials’ 

section. 

 

 

Quality control and preprocessing 

The acquired data showed pronounced intensity batch effects and m/z shifts, which could be 

removed through careful adjustment of the preprocessing steps. Key to observe and overcome 

these technical issues was the usage of internal calibrants [17] together with the Galaxy ‘MSI 

qualitycontrol’ tool, which generated more than 30 different descriptive plots. Both TMAs showed 

systematically increasing m/z values for the internal calibrants during the course of the 

measurement (Fig. 2a). This suggests that the TOF tube of the near-antique mass spectrometer, 

which was not built to acquire tens of thousands of spectra in a row, heated up during the 

measurement. These m/z shifts could be removed by aligning each spectrum to the mean 

spectrum and re-calibrating the m/z positions via the internal calibrants (Fig. 2b). 

Intensity batch effects were observed between the two measurements with higher intensities in 

TMA2 (Fig. 2a). As the baseline was already removed during data acquisition, TIC normalization 

could not be performed on the raw data as suggested by Deininger et al. [31]. Instead we were 

able to reduce the batch effects (Fig. 2b) by performing TIC normalization after peak picking and 

contaminant removal as suggested by Fonville [32]. 
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Fig. 2: Data properties accessed by the ‘MSI qualitycontrol’ tool. a) Mass and intensity shifts 

before pre-processing. b) Mass and intensity shifts could be reduced through careful adjustment 

of pre-processing steps and parameters.  

 

 

Classification of Tumor and Stroma Spectra 

In several cancers, tumor cells are intermingled or surrounded by connective tissue, the so-called 

tumor stroma, which is part of the tumor microenvironment. To distinguish tumor and stroma 

tissue types, we have built a classifier, which reached 94 % on the training and 99 % on the test 

datasets with high sensitivity and specificity (Table 2). To avoid overfitting, we generated training 

and test datasets by splitting patients randomly into the two groups and thus guarantee that all 

spectra of the same patient are present only in one of the two groups. Despite these precautions, 

the classification accuracy is likely too optimistic due to the small amount of samples. During 

classification, feature selection was performed by shrinking the number of m/z features that are 

included into the classifier to a minimum. 77 m/z features were included in the classifier (t-statistic 
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> 0) out of which 37 were describing tumor and 40 stroma spectra (Fig. 3a). m/z 901.49 and 

868.47 had the highest t-statistics for tumor and stroma respectively and were therefore the most 

discriminative m/z features (Fig.3b, c). 

 

Table 2: Classification results tumor vs. stroma tissues 

 Accuracy Sensitivity Specificity 

Training 0.94 0.94 0.94 

Test 0.99 1 0.98 

 

 

 

Fig. 3: Classification results tumor vs. stroma and visualizations of the top m/z features of tumor 

and stroma respectively. a) Classification included feature selection based on t-statistics values 

above zero reveals 37 tumor specific and 40 stroma specific m/z features. b) Average mass 

spectra plots for the top m/z feature per group on binned, filtered, combined and smoothed MSI 

data. c)  Ion images of the top m/z feature per group were plotted on five tissue cores with contrast 

enhancement ‘histogram’ on binned, filtered, combined and TIC normalized data. 
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Classification of infiltration behavior 

Next, we were interested in classifying tumors according to their infiltration status. Only spectra 

corresponding to muscle-infiltrating urothelial cancer (n = 11, 731 spectra) and non-muscle 

invasive low-grade papillary urothelial cancer (n = 15, 312 spectra) were included to compare 

both tumor subtypes. Classification accuracies for the training data were 96 % and 99 % for the 

test data with high sensitivity and specificity (Table 3). Again, the classification accuracy is likely 

too optimistic due to the small amount of samples. The classifier included 35 m/z features to 

classify muscle-infiltrating and 36 m/z features to classify non-muscle invasive tumors (Fig. 4a). 

The m/z feature 944.53 was the most discriminative for muscle-infiltrating tumor and m/z 1104.57 

for non-infiltrating tumors (Fig. 4b, c). 

 

Table 3: Classification results muscle-infiltrating vs. non-infiltrating carcinomas 

 Accuracy Sensitivity Specificity 

Training 0.96 0.95 0.99 

Test 0.99 1 0.94 
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Fig. 4: Classification results muscle-infiltrating vs. non-muscle infiltrating tumors and 

visualizations of their top m/z features. a) Classification included feature selection based on t-

statistics values above zero reveals 35 muscle-infiltrating specific and 36 non-muscle infiltrating 

specific m/z features. b) Average mass spectra plots for the top m/z feature per group on binned, 

filtered, combined and smoothed MSI data. c)  Ion images of the top m/z feature per group were 

plotted on five tissue cores with contrast enhancement ‘histogram’ on binned, filtered, combined 

and TIC normalized data. 

 

 

 

 

 

Prediction of muscle-infiltration potential of high-grade carcinomas 

pTa high-grade urothelial cancers are not muscle invasive but are considered high-risk tumors as 

their risk of progression ranges from 15% to 40% and is thus much higher compared to pTa low-

grade cancers [33]. The tissue cohort included three non-muscle invasive high-grade papillary 

urothelial cancer tissues (33 spectra), which were not included into the classification analysis 

because of their low sample number and being present only in one of the two TMAs. 

Instead, we determined their muscle-infiltration potential by classifying them with the previously 

built classifier into muscle-infiltrating and non-muscle invasive cancers. With a total of only three 

patients, this analysis step is rather illustrative. The majority of spectra of all three tissue cores 

was classified as non-muscle invasive but in one tissue 2 out of 15 spectra were classified as 

muscle-infiltrating and several other spectra were classified only with low probabilities as non-

muscle invasive, suggesting that this cancer might have the molecular potential to transition into 

a muscle-infiltrating cancer (Fig. 5). Unfortunately this hypothesis could not be verified by clinical 

data because the patient was lost to follow up. 
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Fig. 5: Prediction of high-grade urothelial carcinomas as non-muscle infiltrating and muscle-

infiltrating cancers. 

 

Assigning identities to m/z features 

To obtain an idea about the identity of the measured peptides, we assigned tentative 

identifications via the MSiMass list [29]. Out of 123 unique m/z features that were part of the two 

classifiers (t-statistics >0), 16 were matched to an entry of the MSiMass list within 200 ppm mass 

tolerance (Table 4). Most tentative collagen peptides were found in stromal regions and most 

keratin peptides in tumor regions, which is their expected location in tumor tissues. 

The tentative m/z identifications of the tumor-stroma classifier point towards ubiquitous peptides 

that are likely to be found in other solid tumors and their surrounding stroma as well. Histone 2A 

and H4 were part of the tumor classification and likely indicators of increased cell density in the 

urothelium (transitional epithelium) compared to stroma tissue, because their abundance is 

proportional to the amount of DNA [34]. Another hit for the tumor classifier was heat shock protein 

beta-1, which is a member of the heat shock protein family, which has been linked to (urothelial) 

cancers before [35,36]. Stroma is connective tissue and therefore characterized by protein fibrils 

made for example out of collagens. This intrinsically corroborates collagen alpha-1(1) and alpha-
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2(1) chain precursors, which we found to be important for stromal classification. Cytokeratin 16 

has been associated with ureter, bladder and urethra and also keratinization of urothelial 

carcinomas [37]. However, as an epithelial cell specific intermediate filament, it is probably a mis-

identification as it was part of the stromal classifier. 

The obtained tentative identities for the muscle-infiltrating vs. non-muscle infiltrating classifier 

showed that several cytokeratins are associated with non-muscle invasive low-grade urothelial 

cancer, while histone 2A, histone H4, vimentin and glutathione S-transferase P were predictors 

for muscle-infiltrating urothelial carcinoma. 

 

 

 

 

Table 4: Peptide m/z matches obtained via the MSiMass list 

Tentative 

protein 

identity 

Tentative peptide 

sequence 

Measured 

m/z§ 

MSiMass 

list m/z 

Mass 

error§ 

[ppm] 

In classifier 

condition 

Collagen 

alpha-1(1) 

chain 

precursor 

GVVGLPGQR 

(Hydroxylated) 

898.51 898.48 33.40 Stroma 

Histone 2A AGLQFPVGR 944.53 944.54 10.56 Tumor & 

infiltrating 

Keratin, type STFSTNYR 975.51 975.45 61.52 Non-infiltrating 
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1 cytoskeletal 

18 

Heat schock 

protein beta-1 

RVPFSLLR 987.53 987.54 5.09 Tumor 

Keratin, type 

1 cytoskeletal 

19 

DAEAWFTSR 1082.59 1082.52 64.63 Non-infiltrating 

Collagen 

alpha-1(1) 

chain 

precursor 

GVQGPPGPAGPR 

(Hydroxylated) 

1105.59 1105.58 13.54 Stroma & non-

infiltrating 

Keratin, type 

1 cytoskeletal 

17 or 19$ 

TKFETEQALR 1222.64 1222.64 0.01 Non-infiltrating 

Keratin, type 

1 cytoskeletal 

16 

NHEEEMLALR 1241.70 1241.6 80.50 Stroma 

Histone H4 DNIQGITKPAIR 1325.75 1325.72 18.85 Tumor & 

infiltrating 

Glutathione 

S-transferase 

P 

PPYTVVYFPVR 1337.73 1337.7 22.41 Infiltrating 
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Keratin, type 

2 cytoskeletal 

7 

SIHFSSPVFTSR  

Acetyl (Protein N-term) 

1406.68 1406.71 24.85 Non-infiltrating 

Keratin, type 

2 cytoskeletal 

6A* 

ADTLTDEINFLR 1407.69 1407.71 14.25 Non-infiltrating 

Vimentin SLYASSPGGVYATR 1428.71 1428.71 0.03 Infiltrating 

Collagen 

alpha-1(1) 

chain 

precursor 

GSAGPPGATGFPGA

GR (Hydroxylated) 

1459.69 1459.71 13.74 Stroma 

Keratin, type 

1 cytoskeletal 

19 

QSSATSSFGGLGGG

SVR 

1554.74 1554.75 6.44 Non-infiltrating 

Collagen 

alpha-2(1) 

chain 

precursor 

GETGPSGPVGPAGA

VGPR 

1562.79 1562.8 6.37 Stroma 

 

§ - rounded two 2 decimals; $ same peptide shared by two proteins 

* potential isotope of the 1 m/z lighter m/z feature 
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DISCUSSION: 

We successfully conduct a fully transparent and reproducible analysis of a urothelial cancer MSI 

study in the Galaxy framework. The complete analysis was performed on a single platform, the 

European Galaxy Server. The previously established Galaxy MSI tools [18] allowed for all 

necessary analysis steps to classify different tissue types and tumor subtypes of an urothelial 

cancer cohort. This included co-registration of optical and MSI images, thorough quality controls, 

pre-processing as well as statistical modelling and peptide identification. Technical artifacts such 

as intensity batch effects and m/z shifts could be observed and removed via the ‘MSI 

qualitycontrol’ tool in combination with an adjusted pre-processing. Classification of different 

tissue types as well as different urothelial tumor subtypes was achieved with high accuracy and 

a few m/z features could be assigned to tentative identifications, which mainly were in line with 

the biological context. 

All Galaxy analysis histories were published. They contain raw, meta and intermediate results 

data, as well as all tool names, tool versions, and all set tool parameters. Thus, every detail of the 

performed analysis can be re-traced and reproduced. In a copy of the Galaxy histories, 

researchers can adjust the analysis procedure according to their interest and inspect how 

changing different steps or parameters will change the outcome. Even though the Galaxy analysis 

history alone enables full reproducibility, we published all raw data including pathological 

annotations of stained tissues in the PRIDE proteomics data repository. This allows re-use of the 

data for new urothelial carcinoma studies and fosters future bioinformatic investigations since it 

represents the first human peptide imaging study that contains different disease groups and 

releases spectra wise pathological annotations for a complete patient cohort. While we have used 

the European Galaxy server for the analysis, studies with stricter data security restrictions could 

perform the analysis via ready to use docker containers on their local computing infrastructure 

[18]. However, to increase the trust in published MSI studies and to forward the MSI field it will 
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become increasingly important to share raw data and analysis code, which requires to include 

data sharing into ethic approvals and patient consent forms from the beginning on. 

CONCLUSION: 

We have performed the complete analysis of an urothelial cancer cohort in a single platform, the 

European Galaxy server. Having used an outdated mass spectrometer, our study shows the 

importance of quality controls and pre-processing adjustment in order to detect and remove 

technical artifacts. Afterwards, we were able to classify tumor and stroma tissues as well as 

muscle-infiltrating and non-muscle invasive urothelial carcinomas based on their tryptic peptide 

composition with high accuracy and biologically explainable peptide identifications. In addition to 

the translational and biological findings, we highlight the potential for translational MSI studies 

and set new levels in terms of reproducibility and transparency by sharing all raw data and spectra 

annotations as well as the complete analysis histories. We would like to encourage the community 

to join our efforts to lay the foundation for advancing MSI towards clinical settings. 

 

 

Abbreviations 

FAIR: findability, accessibility, interoperability, and reusability 

MALDI: matrix assisted laser desorption/ionization 

MS: mass spectrometry 

MSI: mass spectrometry imaging 

FFPE: formalin-fixed paraffin embedded 

SSC = spatial shrunken centroids 

TMA: tissue microarrays 

TOF: time of flight 
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