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Abstract

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their
progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure.
While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By
contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper
we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments, to better understand the link
between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA
synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population
into four compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases
in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it
recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles
not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply
slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation
are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle when they exit the S phase. While model
predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more
uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter
estimates and validate model predictions.
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1. Introduction

The cell-cycle is one of the most fundamental and energy
consuming processes in cell biology. It is divided into four
phases: G1 (growth), S (DNA synthesis), G2 (growth and
preparation for mitosis) and M (mitosis). Transitions between
these phases are regulated by complex interactions between
cellular pathways and external stimuli which normally act to
maintain tissue homeostasis. These interactions are impaired in
transformed cells, leading to uncontrolled proliferation, which
is a key hallmark of cancer [33]. Cell-cycle dysregulation is fur-
ther linked to the hallmarks of cancer because it promotes ge-
netic instability, i.e., increasing mutation frequency [45]. Loss
of cell-cycle control also plays a significant role in the failure
of standard treatments, such as chemotherapy and radiotherapy,
where treatment relapse is driven by the emergence of small
subpopulations of resistant cells. In normal cells, the DNA
damage response (DDR) maintains genetic stability by promot-
ing cell-cycle arrest to allow time for DNA repair or, when DNA
damage is irreparable, by promoting cell death via the induction
of apoptosis. The DDR is activated early during tumourigenesis
as an anti-cancer barrier to oncogene activity and physiological
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stresses [7, 30]. However, continuous activation of the DDR re-
sults in selective pressure for the outgrowth of mutated cancer
cells, with aberrant cell-cycle progression and apoptotic control
[12, 30]. Exposure to insufficient oxygen levels, i.e., hypoxia, is
a key driver of tumorigenesis. Hypoxic regions are commonly
found in solid tumours [6, 29, 39, 40] as a result of uncon-
trolled cell proliferation and abnormal vascular structures. Ex-
posure to severe levels of hypoxia (< 0.1% O2), which are only
observed in pathophysiological conditions, leads to replication
stress and consequent activation of DDR and the pro-apoptotic
p53 tumour suppressor [27, 42, 47]. Further, conditions of less
than 0.1% O2 are associated with resistance to radiotherapy and
are therefore commonly referred to as radio-biological hypoxia
(RH) [64].

Our study is motivated by evidence that the tumour micro-
environment is characterised by highly dynamic oxygen levels.
While chronic hypoxia affects tumour regions at a significant
distance from vessels, acute/cycling hypoxia can occur close
to, and far from, blood vessels, with periods ranging from sec-
onds to hours/days [51]. While high frequency fluctuations are
usually associated with vasomotor activity, processes that occur
on longer time scales (e.g., vascular remodelling) can generate
cycles with longer periods [44]. Such periodic changes in the
environment are known to cause inflammation, which promotes
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the survival of more aggressive forms of cancer that are resis-
tant to standard treatments [4, 12, 15, 44, 52, 54].

It is possible to culture cells in vitro in controlled oxygen
environments that partially mimic the fluctuating oxygen levels
experienced by tumours in vivo. However, in vitro experiments
are limited by the range of oxygen cycles that can be tested.
By contrast, mathematical models can provide insight into a
wider range of experimental conditions. Our aim in this work is
therefore to develop a novel mechanistic model of the cell-cycle
that can be combined with in vitro experiments, to increase our
understanding of how cyclic hypoxia impacts the cell-cycle.

When exposed to radio-biological hypoxia (RH) in vitro,
progress through S phase is inhibited due to a rapid reduction
in the rate of DNA synthesis [27, 49]. This hypoxia-induced
S phase block has been attributed to impaired functioning of
the enzyme ribonucleotide reductase (RNR) [27, 46], which
mediates de novo production of deoxynucleotide triphosphates
(dNTPs). Since dNTPs are the building blocks of DNA, the de-
crease in dNTP levels in severe hypoxia causes DNA synthesis
to stall. In contrast, milder levels of hypoxia (1-2% O2) do not
impact dNTP levels [27]. Replication stress, which is defined
as any condition impacting normal DNA replication, leads to
activation of the DDR when local oxygen levels are sufficiently
low. While cells can initially survive at such low oxygen lev-
els, if severe conditions are prolonged then cell death occurs
[49]. Alternatively, if oxygen levels are restored, cells can re-
enter the cell-cycle although they may accumulate DNA dam-
age, likely associated with the accumulation of reactive-oxygen
species (ROS) during reoxygenation [44]. Depending on the
amount of damage sustained, activation of cell-cycle check-
points causes cells to accumulate in the G2-phase and prevents
damaged cells from entering mitosis [15, 31, 46]. Alternatively,
if the reoxygenated cells are unable to repair the damage accu-
mulated, they die. Periodic exposure to RH (cyclic hypoxia)
may therefore lead to cell death and strong selective pressure
for more aggressive clones with impaired checkpoint activation.

Common techniques for monitoring cell-cycle dynamics in-
clude flow cytometry and time-lapse microscopy using the
fluorescent ubiquitination-based cell-cycle indicator (FUCCI).
Both methods can be used to indirectly estimate how the frac-
tion of cells in different stages of the cell-cycle changes over
time, by measuring either DNA content (flow cytometry) or
expression of cell-cycle related proteins (FUCCI). Since we
have access to flow cytometry data, we build our mathemati-
cal model so that it can be calibrated against this type of data.
As shown in the schematic in Fig. 1, flow cytometry can dis-
tinguish cells in different stages of the cycle sorting them ac-
cording to their DNA content. While cells in the S phase are
synthesising new DNA and, therefore, have a variable amount
of DNA (from one to two copies), cells in the G1 and G2/M
phases have exactly one and two copies of DNA, respectively.
Although this method can fail to distinguish cells with similar
DNA content (i.e., cells in G1 and early S phases or, cells in the
G2/M and late S phases), bromodeoxyuridine (BrdU) labelling
can overcome this limitation. Since cells in the S phase incorpo-
rate BrdU into newly synthesised DNA, it is possible to distin-
guish these cells by measuring BrdU uptake [58]. The bivariate

distribution of cells over DNA content and BrdU labelling can
therefore be used to estimate cell-cycle distributions which are
usually presented as time series data for the evolution of the
fractions of cells in the G1, S or G2/M phases. These estimates
can be further refined by measuring the expression of proteins
involved with cell-cycle regulation, such as cyclin-dependent
kinases [18, 58].

Several mathematical formalisms have been proposed to in-
vestigate cell-cycle evolution in normal ‘healthy’ conditions, as
well as perturbed environments, for example in the context of
drug development. These formalisms encompass discrete [26,
59], continuous (either deterministic [1, 8, 10, 25, 43, 54, 53] or
stochastic [3, 63]) and hybrid approaches [2, 55]. When inter-
ested in the population scale, population balance (PB) models
are often used [8, 10, 25, 43, 53, 56]. These take the form of
age- and/or phase-structured models, where a structure variable
is introduced to track progress through the cell-cycle. Several
recent reports have focussed on developing compartment mod-
els of the cell-cycle, proliferation and migration which exploit
time-resolved FUCCI data [16, 60, 61, 62]. When analysing
flow cytometry data, instead, continuous structure variables are
commonly used. For example, in a series of papers [8, 9, 10],
Basse and coauthors developed cell-cycle models based on cou-
pled partial differential equations in which cells are structured
according to their DNA content. In these models, cells in the G1
and G2/M phases have constant DNA content (x), with x = 1
and x = 2, respectively, while x increases at a constant rate for
cells in the S phase. Given a cell DNA content x at time t, and
given its rate of DNA synthesis, it is possible to estimate the
amount of time that a cell has spent in the S phase. However,
information about the amount of time spent in the other phases
of the cycle is lost. This shortcoming has motivated the devel-
opment of age-structured models [11], in which the age of a
cell in a certain phase of the cycle corresponds to the time it has
spent in that phase. Models combining both structure variables
(i.e., DNA and cell age) have also been proposed [17], but they
are complex and difficult to validate against data. Further cell-
cycle specific properties such as size [25], or protein expression
levels [18], can also be included in this framework. PB models
can be extended to account for variability in compartment spe-
cific parameters, such as transition and/or death rates [25] and
length of cell-cycle phases [8], to capture the effect of differ-
ent drugs on cell-cycle progression. Several theoretical studies
have investigated the effect of chronic exposure to hypoxia on
cell-cycle arrest [1, 22] with particular emphasis on hypoxia-
induced G1 arrest. At the population level, quiescence is usu-
ally represented by introducing an additional phase to the stan-
dard cell-cycle: the so-called ‘G0’ (or quiescent) phase [24, 32],
which cells enter prior to committing to DNA synthesis (i.e,
prior to entering the S -phase) when the local oxygen levels are
too low (≈ 1% O2). While this extension can account for cell re-
sponses to chronic hypoxia, recent experimental findings [5, 27]
suggest that it is not sufficient to account for cell behaviours in
acute/cyclic hypoxia.

In this paper we develop a mathematical model to investi-
gate how periodic (rather than constant) radio-biological hy-
poxia (RH) influences cell-cycle dynamics. In §2 we introduce
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Figure 1: Schematic representation of flow cytometric data: at different time points (t(i,E j)) during experiment E j a subpopulation of N (the population of cells in
the chamber) is harvested and sorted via flow cytometry according to their DNA content (PI fluorescence intensity), and BrdU uptake. This allows us to extract
the fraction F1, Fs and F2 of cells in the subpopulation with one, intermediate (i.e. in between one and two), and two copies of DNA, respectively. This is an
approximation of the frequency of cells with different DNA content in the total population in the chamber N.

the experimental data from [5] and summarise the biological
mechanisms on which our model is based. In §3 we present our
5-compartment, DNA-structured, model which describes how
the number of cells in each phase of the cycle evolves over
time. Novel features of the model include a time and oxygen-
dependent rate of DNA synthesis (here denoted by v(t)) and the
introduction of two “checkpoint” compartments (C1 and C2),
where cells arrest due to unfavourable environmental conditions
or due to the accumulation of damage and stress. We further re-
duce our model to 4 ordinary differential equations coupled to a
delay-differential equation, where the delay (τS ) represents the
duration of the S phase and is not necessarily constant; rather
it depends on the environment that the cells have encountered.
In §4, we first consider model predictions in well-oxygenated
conditions. Here we recover the well-known result of cells con-
verging to a regime of balanced exponential growth. In §5, we
explore model predictions in constant and cyclic RH, highlight-
ing the distinct effects that these two types of hypoxia have on
the cell-cycle dynamics. We first show that the model can repli-
cate experimental data from [5] and then use it to investigate
the cell-cycle dynamics for modes of oxygen fluctuations not
yet tested experimentally. In §5.2, we introduce a class of mod-
els (M) of decreasing complexity by neglecting some of the
mechanisms (and complexity) included in the full model (such
as arrest in C1 or C2). In §6 we compare these models using
Bayesian model selection: we first calibrate our class of models
against experimental data by using Bayesian inference meth-
ods and then identify the “best” model structure based on the
deviance information criteria. This analysis reveals that the C1
and C2 checkpoint compartments are both necessary to describe
the experimentally observed dynamics. In §7, we use the se-
lected and calibrated model to predict cell responses to different
oxygen environments when considering uncertainty in parame-
ter estimates. We also explain how our results could inform the
design of new experiments to validate the model and/or improve

the accuracy of the parameter estimates. In §8 we conclude by
summarising our results and outlining possible directions for
future work.

2. Experimental motivation

This work is inspired by experimental data showing how the
cell-cycle of RKO (colorectal cancer) cells changes when they
are cultured in vitro as 2D monolayers and exposed to fluctuat-
ing oxygen levels [5]. As shown in Fig. 1, cells are cultured in
chambers where the oxygen levels c = c(t) (where t is time) are
carefully controlled and assumed to be spatially homogeneous.
At prescribed time points, a subset of the cells is analysed us-
ing flow cytometry to estimate the fractions of cells in the G1,
S and G2/M phases of the cycle, which we denote, respectively,
by F1, Fs and F2. Since each measurement requires cells to
be harvested, measurement errors can be taken to be indepen-
dent. In the absence of cell death, we have that by definition
F1 + Fs + F2 = 1, so only two of the three cell fractions are
needed to fully characterise the cell-cycle dynamics.

As shown in Fig. 2, two experimental protocols are tested. At
time t = 0, cells are exposed to either constant radio-biological
hypoxia (c(t) ≡ cRH ≈ 0.1% O2, t > 0) or periodic cycles of
radio-biological hypoxia (2 hr at c = cRH and 2 hr at 2% O2).
Prior to both experiments, the cells are cultured in normoxia
(21%O2) so that the measurements at time t = 0 contain infor-
mation on this condition. In normoxia, and in absence of com-
petition, the cells are typically in a regime of balanced exponen-
tial growth for which the cell fractions Fm are stationary (i.e.,
they do not change over time). Hence a single set of measure-
ments is sufficient to fully characterise the cell-cycle dynamics
in these environmental conditions. We therefore divide the data
into three different sets: E0 (normoxia), E1 (constant RH) and
E2 (cyclic RH). The histograms in Fig. 2 summarise the data
available from [5], obtained by averaging over between two and
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four replicates. As mentioned in §1, our focus is on fluctuating
environments (i.e. the scenario E2), however data from E0 and
E1 are also used to assist with parameter estimation.

(a)

(b)

Figure 2: (a) Data are split into three sets corresponding to the three experi-
ments : normoxia (E0), constant RH (E1) and cyclic RH (E2). We plot the evo-
lution of the oxygen levels, c(t) (see blue curve), and compare it to the threshold
c∗ at which DNA synthesis is impaired (see red horizontal line). (b) Histogram
summarising the data from [5]. At each time point we report the mean cell
fractions estimated from multiple (between two and four) measurements. Error
bars indicate one standard deviation in the estimated values. The complete data
sets can be found in Appendix B.

The data in Fig. 2 show that both constant (E1) and cyclic
RH (E2) redistribute the cells along the cycle. For experiment
E1, cells tend to accumulate in the G1 phase (as seen by the
increase in the fraction F1), whereas in experiment E2, we ob-
serve a decrease in the fraction F1. In this case, cells initially
concentrate in the S phase (as seen by the increase in the frac-
tion Fs), while they accumulate in the G2/M phase at later times
(see time t = 28 hr). For experiment E1 we only consider the
early dynamics since on longer time scales (t > 20 hr) cell-
death becomes significant. By contrast, cells can survive for
longer periods in cyclic hypoxia, with cell death negligible for
up to 28 hours.

As mentioned in the introduction, and based on current ex-
perimental evidence [4, 27, 49], three mechanisms may influ-
ence the cell-cycle dynamics under cyclic hypoxia: the reduc-
tion in the rate of DNA synthesis (Mechanism 1) and variation
in the timing of the G1-S transition (Mechanism 2), both due to
dNTP shortage and, the arrest of damaged cells in the G2 phase

upon completion of the S phase (Mechanism 3). Here, we as-
sume that there is an oxygen threshold, c∗, such that dNTP lev-
els drop (due to the impaired activity of RNR enzyme) when
oxygen levels fall below c∗. Based on the experiments in [27],
we estimate that 0.1% O2 < c∗ < 2% O2. We therefore fix c∗ at
an intermediate value (i.e., c∗ ≈ 1%O2). Our aim is to develop a
mathematical model that captures these three mechanisms and
that can be used to investigate whether they can explain the ex-
perimental data in both constant RH (E1) and cyclic RH (E2)
conditions.

3. The mathematical model

We propose a 5-compartment partial differential equation
(PDE) model to describe cell-cycle dynamics in cyclic RH.
For simplicity, we assume that the cells are in a well-mixed,
spatially-homogeneous environment where the oxygen concen-
tration c = c(t) is externally prescribed. We also assume that
cell death is negligible since this is supported by the experi-
mental observations.

Figure 3: Schematic representation of the 5-compartment model of the cell-
cycle given by Equations (1). Here the two independent variables are time t
and the cell DNA content x (measured in number of copies), while P1, Ps and
P2 are as defined in Fig. 1. The sub-population P1 groups cells in the G1 and
C1 compartments, and similarly P2 comprises cells in the G2 and C2 compart-
ments. Cells in the G compartments are progressing along the cell-cycle as
usual, while the C compartments are “checkpoint” compartments where cells
arrest. The black dots on the arrows correspond to redistribution of cell fluxes
according to a given probability (for example in P1 the influx k1G1 is redis-
tributed with probability Q into C1 and 1 − Q into S ). To account for DNA
synthesis during the S -phase we structure cells in the S -compartment accord-
ing to their DNA content x, which is synthesised at velocity v.

As illustrated in Fig. 3, we subdivide the population into 5
compartments. Here G1 = G1(t) and G2 = G2(t) denote, respec-
tively, the number of cells at time t in the G1 and G2/M phases
of the cycle that are actively proceeding along their cycle. On
the other hand, C1 = C1(t) and C2 = C2(t) are, respectively, the
number of cells in the G1 and G2/M phases that are arrested at
time t. We define the latter as checkpoint compartments and as-
sume the rates of entry into and exit from these compartments
change over time in response to the current and previous envi-
ronmental conditions (i.e, oxygen levels). Finally, we structure
cells in the S phase according to their DNA content, x, so that
S = S (x, t) represents the number of cells with DNA content x
at time t. Here x is a dimensionless variable corresponding to
the relative DNA content of a cell, scaled so that 1 ≤ x ≤ 2.
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Cells start the S phase with x = 1 and exit it upon completion
of DNA duplication with x = 2.

Referring to the schematic in Fig. 3 and applying the princi-
ple of mass balance, we obtain the following system of equa-
tions for the time evolution of the model variables:

dG1

dt
= 2(k2G2 +K2(t)C2) − k1G1, t > 0, (1a)

dC1

dt
= Q(t)k1G1 − K1(t)C1, t > 0, (1b)

∂S
∂t

+
∂

∂x
(v(t)S ) = 0, x ∈ (1, 2], t > 0 , (1c)

dG2

dt
= −k2G2 + (1 − P(t))v(t)S (t, 2), t > 0, (1d)

dC2

dt
= P(t)v(t)S (t, 2) − K2(t)C2, t > 0. (1e)

The factor of 2 in Eq. (1a) arises because cell division produces
two daughter cells. The positive constants k1, k2 [hr−1] rep-
resent the rates at which cells leave G1, G2, respectively. In
Eq. (1c), we account for DNA synthesis by assuming that cells
in the S compartment are advected along the x-axis at veloc-
ity v(t) > 0 [hr−1] (i.e., they produce DNA at a rate v(t)). In
Eq. (1b), we assume that cells exiting the G1 compartment ar-
rest (i.e. enter the C1 compartment) with probability Q ∈ [0, 1],
while they proceed to enter the S phase with probability 1 − Q.
We further assume that arrested cells re-enter the cycle at rate
K1 [hr−1]. In a similar manner, in Eq. (1e) we assume that
cells exiting the S compartment arrest in C2 with probability
P ∈ [0, 1] and arrested cells may re-enter the cycle at a rate
K2 [hr−1]. We account for the effect that different oxygen lev-
els have on cell behaviour by allowing certain model param-
eters (specifically K1, K2, v, P and Q) to vary over time in
response to the oxygen levels c. The boundary condition for
Equation (1c) is derived by applying conservation of cell flux at
x = 1. Under the assumption that v(t) > 0 for all t > 0, we find:

v(t)S (t, 1) = (1 − Q(t)) k1G1(t) +K1(t)C1(t). (1f)

We close Eqs. (1a)-(1f) by imposing the following initial con-
ditions:

G1(0) = G1,0 , C1(0) = C1,0,

S (x, 0) = S 0(x) x ∈ (1, 2],
G2(0) = G2,0 , C2(0) = C2,0,

(1g)

where Gi,0, Ci,0 are constants and S 0(x) is a prescribed function.
Since cell numbers can not be negative, we have that Gi,0 ≥ 0,
Ci,0 ≥ 0 and S 0(x) ≥ 0 for all x ∈ [1, 2].

In order to compare the model output to flow cytometry data,
we need to express cell fractions (see Fig. 1) in terms of our
model variables. As shown in Fig. 1, cells can be divided in
three sub-populations depending on the cell-cycle phase they
are in: P1, Ps and P2. Cells in G1 belong to P1, cells in G2/M
to P2 and cell in S to Ps. The total number of cells, N = N(t),
is then obtained by summing the number of cells in each sub-
population:

N(t) = P1(t) + Ps(t) + P2(t), (2a)

where (as illustrated in Fig. 3)

P1(t) = C1(t) + G1(t),

Ps(t) =

∫ 2

1
S (x, t) dx,

P2(t) = G2(t) + C2(t).

(2b)

Differentiating Eq. (2a) with respect to time and using (1), we
find that N(t) satisfies:

dN
dt

= k2G2 +K2(t)C2, (3a)

with N(0) =

2∑
i=1

(Gi,0 + Ci,0) +

∫ 2

1
S 0(x) dx := N0. (3b)

The population proliferation rate, ω, is given by:

ω(t) =
1
N

dN
dt

=
k2G2 +K2C2

N
, (4)

while the cell fractions fm are defined by:

fm(t) =
Pm(t)
N(t)

, m ∈ {1, s, 2} , (5)

and correspond to the probability that a cell randomly chosen
from the total population belongs to the sub-population Pm . We
note that the fractions fm are not independent; Eq. (2) implies
that

∑
m

fm = 1. We further introduce the distribution s = s(x, t):

s(x, t) =
S (x, t)
N(t)

, 1 < x < 2, (6)

which corresponds to the probability that a cell in the sub-
population Ps has a DNA content x ∈ [1, 2] at time t. A sum-
mary of the model variables is given in Table 1.

A key feature of our model is that the velocity v is assumed to
depend on the oxygen levels c in order to account for impaired
DNA synthesis at low oxygen levels (c < c∗). In particular, we
propose the following piece-wise linear ODE to describe how
the advection velocity v adapts to changes in local oxygen levels
c(t):

dv
dt

=

−R− (v − v−) , c(t) < c∗,
R+ (v+ − v) , c(t) ≥ c∗,

(7a)

with v(0) = v0. (7b)

In Eqs. (7), R±, v0 and v± are positive constants, while c∗ is the
threshold oxygen level below which RNR activity is impaired
(see §2 for details). Here v+ and v− represent, respectively, the
equilibrium velocities in well-oxygenated (c > c∗) and severely
hypoxic (c < c∗) environments and 0 < v− < v+. It is straight-
forward to show that if v0 ∈ [v−, v+], then v(t) ∈ [v−, v+] at
all times t > 0, so that v+ and v− can also be viewed, respec-
tively, as the maximum and minimum rates of DNA synthesis.
When oxygen levels drop below the critical value c∗, the rate
of DNA synthesis decreases (i.e. dv/dt ≤ 0 for c < c∗), cap-
turing the effect of dNTP shortage. As observed in [27], cells
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Table 1: Summary of the model variables in Eqs. (1) and (8).

Description
t time [hr]
x copies of DNA in a cell (1.0 ≤ x ≤ 2.0)
c externally controlled oxygen levels [%]
G1(t) number of cells in P1 active in the cycle

C1(t) number of cells in P1 that are arrested

S (x, t) number density of cells in Ps with DNA con-
tent x

G2(t) number of cells in P2 active in the cycle

C2(t) number of cells in P2 that are arrested

N(t) total cell number

fm(t) predicted fraction of cells ( fm ∈ [0, 1]) in the
Pm sub-population m ∈ {1, s, 2}

Fm(t) experimentally measured fraction of cells
(Fm ∈ [0, 1]) in the Pm sub-population m ∈
{1, s, 2}

s(x, t) DNA distribution of cells in the Ps sub-
population

τS (t) duration of the S phase for cells that exit the S
compartment at time t [hr]

ω(t) population proliferation rate [hr−1]

maintain a minimum level of DNA synthesis even after pro-
longed exposure to severe hypoxia (c < c∗); we therefore as-
sume that v− > 0, which guarantees that S (t, 1), as defined by
Eq. (1f), remains finite. Once c > c∗, dNTP levels are restored
and the rate of DNA synthesis increases (i.e., dv/dt > 0), to-
wards its maximum value v+. The rates R± are assumed con-
stant for simplicity although, in practice, they may depend on
oxygen levels. In the absence of suitable data to identify these
dependencies, we proceed with the simplest form that captures
the currently available data and postpone investigation of more
complex functional forms to future work.

We introduce the checkpoint compartment C1 to account for
transient arrest of cells in the P1 phase due to dNTP shortage.
The rates of transition into (Q) and out of (K1) the compartment
depend on current oxygen levels. For simplicity, we adopt the
following functional forms:

K1(t) = K1Hε(c(t) − c∗), (8a)
Q(t) = q Hε(c∗ − c(t)), (8b)

where K1 and q are positive constants with q ∈ [0, 1] and c∗ is
the oxygen threshold introduced above. The function Hε is the
standard continuous approximation of the Heaviside function:

Hε(·) =
1
2

[
tanh

(
·

ε

)
+ 1

]
. (8c)

where 0 < ε � 1 is a small parameter, here set to ε = 0.01%
oxygen. Note that Eqs. (8a)-(8b) ensure that cells arrest when
c < c∗ and that they resume cycling by entering the S phase

once c > c∗. We considered alternative functional forms for
K1 and Q (such as assuming them to be proportional to v) but
found that the resulting model was unable to capture the exper-
imentally observed dynamics (results not shown).

In Eq. (7), prolonged or frequent exposure to RH slows DNA
replication and, therefore, increases the time τS that cells spend
in the S phase. More precisely, we denote by τS = τS (t) the
amount of time a cell exiting the S phase at time t has taken
to complete DNA synthesis (we will explain how τS (t) is com-
puted in §3.1). Consequently, the larger τS , the more cells have
been damaged during the S phase due to re-oxygenation and
replication stress (in RH). Since the accumulation of damage
regulates the arrest of cells in the G2 phase (here captured by
cells transitioning into the C2 compartment), we assume that
the probability, P(t), of arrest in G2 increases with τS (t). In
particular, we assume that, when cells exit the S phase, they
arrest with a probability P ∈ [0, 1] where:

P(t) = pHεp (τS (t) − T ). (8d)

In Eq. (8d), we fix the small parameter εp so that εp = 0.1 hr,
while p ∈ [0, 1] and T > 0 are unknown parameters. Here p is
the maximum probability that a cell enters the C2 compartment
while T captures the critical duration of the S phase after which
cells are likely to arrest in C2. Based on Eq. (7), the timescale
for completing the S phase, τS , satisfies v−1

+ ≤ τS ≤ v−1
− . When

oxygen levels are sufficiently high, (i.e. c(t) > c∗ for all t), ne-
glecting an initial transient in the case v0 , v+, we have that
τS ≡ v−1

+ . Since we do not expect cells to arrest in an oxygen-
rich environment we require P(t) ≈ 0 when τS (t) ≡ v−1

+ . Con-
sequently we set T � v−1

+ . As for the C1 compartment, we
assume that, once oxygen levels rise above the critical value c∗,
cells can repair any damage they have accumulated and re-enter
the cell-cycle at a rate K2:

K2(t) = K2Hε(c(t) − c∗), (8e)

where K2 is a non-negative constant and ε = 0.01% oxygen as
in Eq. (8a).

3.1. Model reduction to a system of Delay Differential Equa-
tions (DDEs)

Here we show how Eqs. (1) can be rewritten as a system of
ODEs coupled to a (state-dependent) DDE with a non-constant
delay τS (t) which we view as a state variable. Given that the ve-
locity v is always positive, shocks can not form and a straight-
forward application of the method of characteristics to Eq. (1c)
yields

S (x, t) =
S 0

(
x −

∫ t
0 v(`)d`

)
,

∫ t
0 v(`)d` ≤ x − 1,

(1 − Q)k1G1 +K1C1

v

∣∣∣∣∣
t−τ(t,x)

,
∫ t

0 v(`)d` > x − 1,

(9)

where the function τ = τ(t, x) is implicitly defined by:

x − 1 =

∫ t

t−τ(t,x)
v(`)d`, if

∫ t

0
v(`)d` > x − 1, (10)
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Figure 4: Schematic illustration of the characteristic curves in the (t, x) plane.
The bold curve divides the plane into two distinct regions: in the green region
(where

∫ t
0 v(`)d` < x − 1) the solution S (x, t) is determined by the initial data;

in the orange region (where
∫ t

0 v(`)d` > x − 1) S (x, t) is instead determined by
the boundary data.

and indicates the amount of time a cell with DNA content x at
time t has spent in the S compartment.

As illustrated in Fig. 4, the condition
∫ t

0 v(`)d` = x − 1 di-
vides the (t, x)-plane into two regions depending on whether the
characteristics propagate from the boundary data curve (orange
curve) or the initial data curve (green curve). When t > t∗ (i.e.
when S (2, t) is influenced by the boundary data) the total time
spent in the S compartment is given by τS (t) = τ(t, 2). Using
Eq. (10), we find that τS is implicitly defined by:

1 =

∫ t

t−τS (t)
v(`)d`, if t > t∗, (11a)

where t∗ is defined implicitly by the integral equation∫ t∗

0
v(`)d` = 1. (11b)

However, more information about the behaviour of cells prior
to the beginning of the experiment is needed to estimate τS (t)
for 0 ≤ t < t∗. Let us consider a cell that exits the S phase at
time t < t∗. Then, at time t = 0, its DNA content was:

x0(t) = 2 −
∫ t

0
v(`)d`, (12)

as we can write τS = t + τ0, where t denotes the time spent in
the S compartment since the beginning of the experiment and
τ0 the time spent in the S phase prior to the beginning of the
experiment. The functional form of τ0 will depend on the con-
ditions in which the cells were grown for t < 0. It is therefore
part of the initial data that must be specified in order to fully
define the model. In §4, we will show that if cells are cultured
in an oxygen-rich environment for t < 0, then τ0 depends only
on the DNA content x0(t) (i.e. τ0(t) = τ0(x0(t))). In summary
we have:

τS (t) = t + τ0(t), 0 ≤ t < t∗. (13)

Differentiating Eq. (11a) with respect to time, and given
Eq. (13), we deduce that the variable τS (t) satisfies:

dτS

dt
= 1 −

v(t)
v(t − τS )

, t ≥ t∗, (14a)

with τS (t) = t + τ0(t), 0 ≤ t ≤ t∗, (14b)

Figure 5: Schematic representation of the 4-compartment model with delay (see
equations (17)) derived by solving Eq. (1) via the method of characteristics. The
black nodes correspond to the conservation of the cell fluxes, where the input
is redistributed with probabilities P(τS ) (Q(c)) and 1 − P(τS ) (1 − Q(c)) in C2
(C1) and G2 (G1), respectively.

3.2. Summary of the cell-cycle model with delay
Before presenting the full model, we perform the following

re-scaling:

Ĝi =
Gi

N0
, Ĉi =

Ci

N0
, N̂ =

N
N0
. (15)

Since our model is linear, this re-scaling does not affect the form
of the governing equations; it only alters the initial conditions.
Consequently we can determine the system dynamics without
data on the initial cell number. This is helpful since we only
have experimental data on the initial cell fractions, while N0
is unknown. We further assume that cells are initially actively
cycling (i.e. none of them is arrested) and DNA synthesis is
proceeding at maximum speed so that:

v0 = v+, Ci,0 = 0, fi,0 =
Gi,0

N0
, i ∈ {1, 2} , (16)

where fi,0, with i ∈ {1, 2}, denote the cell fractions at time t = 0.
As discussed in §4, this is a reasonable assumption if cells are
cultured in oxygen-rich environments prior to the start of the
experiments.

Applying Eq. (15) to Eqs. (1)-(3), using Eqs. (7)-(8), (1c)
and (14) and dropping the hat notation, the governing equations
become

dG1

dt
= 2(k2G2 +K2(t)C2) − k1G1, t > 0, (17a)

dC1

dt
= Q(t)k1G1 − K1(t)C1, t > 0, (17b)

dG2

dt
= −k2G2 + (1 − P(t)) I(t − τS (t), t), t > 0, (17c)

dC2

dt
= P(t)I(t − τS (t), t) − K2(t)C2, t > 0, (17d)
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dN
dt

= k2G2 +K2(t)C2, t > 0, (17e)

dv
dt

=

−R− (v − v−) , c(t) < c∗,
R+ (v+ − v) , c(t) ≥ c∗,

, t > 0, (17f)

dτS

dt
=

v(t − τS ) − v(t)
v(t − τS )

, t ≥ t∗, (17g)

wherein

I(s, t) =


v(t)s0

(
2 −

∫ t
0 v(`)d`

)
, t < t∗,

v(t)
(1 − Q(s))k1G1(s) +K1(s)C1(s)

v(s)
, t ≥ t∗,

(17h)

K1(t) = K1Hε(c(t) − c∗), (17i)
Q(t) = q Hε(c∗ − c(t)), (17j)
P(t) = pHεp (τS (t) − T ), (17k)
K2(t) = K2Hε(c(t) − c∗), (17l)

and

v(0) = v+, τS (ξ) = ξ + τ0(ξ), 0 ≤ ξ ≤ t∗,

N(0) = 1, Gi(0) = fi,0 , Ci(0) = 0 i ∈ {1, 2} .
(17m)

In Eqs. (17h)-(17m) it remains to specify the distribution s0 =

S 0/N0 and the function τ0 (see §3.1). The former is subject to
the constraint:∫ 2

1
s0(x) dx = fs,0 = 1 − f1,0 − f2,0. (18)

In Fig. 5, we present a schematic summary of the model (as in
Fig. 3) where the S -compartment is replaced by the time delay
τS .

As listed in Table 2, our model has 12 parameters. As dis-
cussed in §2, we fix c∗ = 1% oxygen in line with experimental
evidence. Further, based on the experimental estimates of the
rate of DNA synthesis in [49], we expect v− to be small. Since
the limit v− → 0 is non-singular, it can be shown that the solu-
tion is not sensitive to the precise value of v− provided that v− ∼
O(10−3) (results not shown). We therefore fix v− = 0.005 hr−1,
which is sufficiently small to exhibit the correct qualitative be-
haviour. With c∗ = 1 and v− = 0.005, there are ten unknown
parameters, which we split into two classes. While θ=[k1, v+,
k2] comprises parameters associated with oxygen-independent
mechanisms, `=[K1,R+,R−, p, q, T , K2] contains parameters as-
sociated with oxygen-dependent mechanisms. Given the large
number of unknown parameters and the expected variability
for different cell lines, we here focus on the RKO cancer cell
line and the data in Fig. 2 to estimate the model parameters.
Discussion on how we estimate the model parameters is post-
poned to §6. First, we present some characteristic predictions
of our model obtained by solving Eqs. (17) numerically using
the Python ddeint package to integrate delay-differential equa-
tions. As we will justify in §5.2, we assume the C2 checkpoint
to be irreversible by setting K2 = 0. This is likely to be the case
for the RKO cancer cell line considered, but may not be true for
other cell lines, particularly if they are p53-deficient, given the
role of p53 in mediating G2 arrest in several cancer cells [57].

4. Cell-cycle progression in a static normoxic environment

Let us first consider the case in which cells are exposed to a
constant, oxygen-rich environment (i.e., c(t) ≡ c̄ � c∗). Given
Eqs. (17f)-(17g) and (17m), we have that v ≡ v+ and τS ≡ v−1

+ .
In this case, Q ≡ 0, P ≡ 0 and C1(t) = C2(t) ≡ 0 for all
t > 0, so that there are no arrested cells. We conclude that when
c ≡ c̄ > c∗, Eqs. (17) reduce to the following system:

dG1

dt
= 2k2G2 − k1G1, t > 0, (19a)

dG2

dt
= −k2G2 + k1G1(t − v−1

+ ), t > 0, (19b)

dN
dt

= k2G2, t > 0, (19c)

subject to

G1(ξ) =

 f1,0, ξ = 0,

v+k−1
1 s0 (2 − ξv+) , v−1

+ < ξ < 0,

N(0) = 1, G2(0) = f2,0,

(19d)

where s0 satisfies (18). We note that Eqs. (19) is analogous
to models previously proposed in the literature, such as the
model by Basse et al. [8, 9] when dispersion is neglected. Since
Eqs. (19) are linear with a constant delay, they can be solved
exactly via superposition of exponential functions eΛit where Λi

(i = 1, 2, . . .) are the complex roots of the characteristic poly-
nomial (see Eq. (A.3) in Appendix A). In the case of DDEs,
the characteristic polynomial is a transcendental equation with
an infinite number of roots so that the computation of Λi is non-
trivial. To investigate the transient dynamics, it is therefore
more convenient to solve Eqs. (19) numerically. In Fig. 6 we
present numerical solutions for two sets of initial conditions:
cells are initially synchronised in either the G1 (Fig. 6(a)) or
G2 (Fig. 6(b)) compartment. This corresponds to setting s0 ≡ 0
with f1,0 = 1 and f2,0 = 0 (for panel (a)), or f2,0 = 1 and f1,0 = 0
(for panel (b)).

As shown in Fig. 6, the evolution of the cell fractions fm in
panels (a.1) and (b.1) differs only up to time t ≈ 20 hr; after
this first transient the cell fractions evolve to constant values,
denoted by f̄m, which are independent of the initial conditions.
When looking at Fig. 6(a.2)-(b.2), we see that the evolution of
G1, G2 and N, differs even at long times. From time t > 20 hr,
the variables have a similar qualitative behaviour, but their val-
ues remain higher for scenario (b) than for scenario (a). While
cells in scenario (b) start proliferating at the beginning of the
simulations, cells in scenario (a) are delayed since they need to
complete the S -phase before they can replicate. Once cells en-
ter the G2 compartment, we see an increase in the cell number
N. We also note that from time t > 60 hr, for both scenar-
ios, N(t), G1(t) and G2(t) increase exponentially at a constant
rate. This agrees with the results in Fig. 7, which show that the
population proliferation rate ω(t) (see Eq. (4)) asymptotes to a
constant value λ for both sets of simulations.

Fig. 8 shows the evolution of the distribution s(x, t). We note
that in Fig. 8(a), cells are initially highly synchronised in the
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Table 2: Summary of the parameters that appear in Eqs. (1)-(8), together with their typical values for the RKO cancer cell line.

Description Typical value(s)
c∗ oxygen tension at which RNR activity is impaired leading to dNTP shortage ≈ 1% O2

v− minimum velocity of DNA synthesis 5 × 10−3 hr−1

v+ maximum velocity of DNA synthesis 0.083 hr−1

k1 rate at which cells exit G1 0.195 hr−1

k2 rate at which cells exit G2 0.22 hr−1

K1 rate at which cells leave C1 0.0 − 2.5 hr−1

K2 rate at which cells leave C2 0.0-2.0 hr−1

T threshold for transition to C2 checkpoint 15 − 20 hr
p maximum probability of a cell arresting in C2 0.0 − 1.0
q probability of a cell arresting in C1 in RH 0.0 − 1.0
R+ rate of change of v when c > c∗ 10−3 − 2.0 hr−1

R− rate of change of v when c < c∗ 10−3 − 2.0 hr−1

Figure 6: Numerical simulations of Eqs. (19) for two sets of initial conditions:
(a) s0 ≡ 0, f1,0 ≡ 0 and f2,0 = 1; (b) s0 ≡ 0, f1,0 ≡ 1 and f2,0 = 0. For
both simulations, the parameters k1, k2 and v+ are set as in Table 4. In panels
(a.1) and (b.1), we plot the cell-cycle dynamics with cumulative plots of the
cell fractions fm with m ∈ {1, s, 2}; in panels (a.2) and (b.2) we show instead
the predicted time evolution of the model variables G1, G2 and N on a semi-
logarithmic scale.

S compartment, with the formation of a front that propagates
at velocity vmax (note the steep gradient in the profiles at time
t = 5 and t = 10). This is because of the discontinuity in
the initial data for G1 (when f1,0 = 1 and S 0 ≡ 0, G1(ξ) in
Eqs. (19) is discontinuous at ξ = 0). The discontinuity prop-
agates along the x axis but it quickly smooths out, due to the
de-synchronisation of cells in the G1 and G2 compartments. By
contrast, in Fig. 8(b), there is no discontinuity in the initial data
for G1 and therefore the profile of s is smoother. Despite these
large differences in the distributions at early times, s eventually
evolves to the same stationary distribution (in Fig. 8, the curves
for t = 60 and t = 80 are almost indistinguishable) and the time
scales required to approach the stationary distribution for the
two initial conditions are comparable.

Figure 7: Comparison of the population proliferation rate ω (see Eq. (4)) for the
two scenarios in Fig. 6. We see that on the long time scale, the proliferation rate
settles to a constant value, λ, independently of the initial conditions chosen.

Following the notation introduced in [54], we term the
asymptotic solution of the model a phase stationary solution
(PSS) to indicate that, in this regime, the cell fractions f1,
fs and f2, and the distribution s(x, t) remain constant in time.
This is similar to predictions from other models in the litera-
ture [8, 10, 13, 21, 54] in the context of unperturbed growth;
this regime is usually referred to as balanced, or asynchronous,
exponential growth [9, 14]. As mentioned previously, we can
write the solution to Eqs. (19) as a superposition of exponential
functions eΛit. At long times, the behaviour is dominated by the
exponential whose eigenvalue Λi has the largest real part (here
denoted by λ). It is possible to prove that this eigenvalue λ is
real and positive (see Appendix A for details). We conclude
that for t � 1 the system approaches a regime of exponential
growth (as observed in the numerical results in Fig. 6) in which
the model variables take the form:

G1,2(t) ≈ f̄1,2 ξNeλt,

N(t) ≈ ξNeλt,

S (x, t) ≈ k1 f̄1v−1
+ e−λv−1

+ (x−1)ξNeλt,

t � 1. (20)

where f̄1,2 ≥ 0 and ξN > 0 are constant. Substituting Eqs. (20)
into Eqs. (5), we obtain that for t � 1, fm(t) → f̄m for
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Figure 8: Evolution of the distribution of cells in Ps with respect to x. We esti-
mate the distribution s(x, t) by numerically solving Eq. (9) for the two cases in
Fig. 6: (a) initial synchronisation in G2 (as in Fig. 6a) and (b) initial synchro-
nisation in G1 (as in Fig. 6b). We compare the long time behaviour with the
analytically computed solution from the phase stationary solution (see black
dashed line). Here the colour scheme in (a) and (b) is the same.

m ∈ {1, s, 2}. Therefore f̄1, f̄s and f̄2 indicate, respectively, the
stationary values of cell fraction in the G1, S and G2/M phase of
the cycle. Focusing on the distribution of cells s(x, t), this con-
verges to the stationary distribution s̄(x) = v−1

+ k1 f̄1e−λv−1
+ (x−1),

which is monotonically decreasing in x (see black line in
Fig. 8). This indicates that, for t � 1, cells in S phase are more
likely to be starting DNA synthesis (with x ≈ 1) rather than
close to completing it (with x ≈ 2). We note that the longer
the duration of the S phase, or equivalently the smaller v+, the
steeper is the s̄(x) curve and, therefore, the larger is the number
of cells in Ps that are concentrated around x ≈ 1. In the limit
where the DNA synthesis velocity is high, i.e. λv−1

+ → 0, the
distribution s̄(x) flattens and cells are equally spread along the
Ps phase.

We remark that while such balanced exponential growth is
difficult to observe in vivo, where non-linear effects due to com-
petition affecting cell proliferation, it can be observed experi-
mentally when cells are grown in a nutrient-rich environment
in the absence of contact inhibition [8, 54].

5. Cell-cycle progression in a dynamic environment

Having discussed the model predictions for a well-
oxygenated environment, we now investigate the behaviour it
exhibits under radio-biological hypoxia (RH). We start by com-
paring how continuous (E1) and cyclic RH (E2) affect RKO
cells originally in a regime of exponential growth (i.e., the
phase stationary solution computed in §4). To replicate the oxy-
gen dynamics in the experiments from [5], we use the following

functional form for the oxygen levels c = c(t) at time t > 0:

c(t) = c+ + (c+ − cRH)
∑
i=1

[
Hε(t − t(R)

i ) − Hε(t − t(H)

i )
]
, (21)

where Hε is defined in Eq. (8c), t(H)

i and t(R)

i are the times at
which oxygen levels decrease and increase across the threshold
c = c∗, respectively. By fixing t(R)

i = 4(i−1)+2 and t(H)

i = 4(i−1),
cRH ≈ 0.1% oxygen and c+ = 2% oxygen, we can reproduce the
2hr+2hr cycle corresponding to experiment E2 in Fig. 2. Fixing
t(H)

1 = 0 and t(R)

1 = ∞, we obtain the constant RH (E1) conditions
with c < c∗ for t > 0.

Initial conditions. Under standard culture conditions, cells in
vitro are typically in a regime of balanced growth. We therefore
initiate our simulations by assuming that cells are growing ac-
cording to Eqs. (20). Recalling that we have re-scaled the model
so that N(0) = 1, we have the following initial conditions:

G1(0) = f̄1, s0(x) = τsk1 f̄1e−λτs(x−1),

G2(0) = f̄2, C1,2(0) = 0.
(22a)

Finally, to complete Eqs. (14), we must specify the function τ0
(see §3.1). Since we assume DNA is synthesised at a constant
rate v+ for t < 0, it is straightforward to show that cells with
DNA content x at time t = 0 have spent a period τ0(s) = s−1

v+
in

the S phase. Using Eq. (12), we have that

τ0(t) =
1
v+

(
1 −

∫ t

0
v(`)d`

)
, t ≤ 0. (22b)

5.1. Numerical results
We start by considering scenario E1 where cells are exposed

to constant RH for about 15 hours (see Fig. 9a and pink curve
in Fig. 10). As mentioned in §2, at longer times, cell start dying
and our model stops being valid, therefore we run simulations
only up to this time. Fig. 10(a.1) shows that f1(t) rapidly in-
creases in the first 5 hours, while it appears to settle to a value of
≈ 50% at longer times. This suggests that cells tend to accumu-
late in the G1 phase. By contrast, both fs(t) and f2(t) decrease.
While fs(t) decreases monotonically over time, the decrease in
f2(t) is delayed by a couple of hours, during which time its
value remains approximately constant. Focussing now on the
evolution of the model variables (see Fig. 10(a.2)), we see that
the number of cells in the C1 compartment increases monotoni-
cally, but the rate of increase tends to slow after about 10 hours.
By contrast, G1(t) slightly increases in the first few hours (≈ 4
hours) while it decreases rapidly at later times. Similarly, the
G2 compartment starts to empty only after a couple of hours
from the beginning of the simulation. As the velocity v de-
creases (see Fig.10(b)), the flux of cells out of the S phase (see
Eqs. (17)) also decreases, contributing to the reduction in G2(t).
Even though τS quickly increases above the threshold T ≈ 17
(see Fig.10(d)), cells do not accumulate in C2. They instead re-
main trapped in the S phase due to the reduction in the rate of
DNA synthesis. As expected, given the trend in G2(t), the over-
all proliferation rate decreases monotonically (see Fig.10(a)),
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Figure 9: Numerical simulations of cell-cycle evolution as predicted by
Eqs. (17) and (21)-(22) in constant RH (a) and cyclic RH (b). The top row
illustrates the evolution of the oxygen levels c in the two simulations. The cell-
cycle dynamics are shown in the middle row panels where we plot the evolution
of cell fractions over time in the form of a cumulative diagram. The white lines
indicate the composition at time t = 0, i.e., the phase stationary solution f̄1,
f̄s and f̄2. Panels (a.2) and (b.2) presents the predicted evolution of cell num-
bers in the different model compartments: G1(t), C1(t), G2(t) and C2(t). The
parameters k1, v± and k2 are as in Table 1 while K2 = 0 and the remaining pa-
rameter values are the estimated mean parameter values for modelM1 reported
in Table C.9.

driving the gradual flattening of the population growth curve
N(t) (see Fig.10(c)).

In the case of cyclic RH (E2), the dynamics are quite differ-
ent. As shown in Fig. 9(b), while initially fs(t) increases and
f2(t) decreases, the opposite occurs at later times (t ≈ 25 hr)
when f2(t) increases while f1(t) decreases. Overall, the fraction
f1(t) decreases, albeit non-monotonically, so that, at the end of
the simulation, its value is almost negligible (i.e., 0 < f1 � 1).
Looking at the evolution of the number of cells in each com-
partment illustrated in Fig. 9(b.2), we see that cells transiently
accumulate in the C1 compartment during exposure to RH (light
blue curve) and resume cycling during re-oxygenation. The
evolution of G2 and G1 is qualitatively similar; both remain ap-
proximately constant up to t ≈ 15 hr, after which time they start
to decrease. At the same time, the C2 checkpoint is activated
(Fig. 10(d) shows that τS (t) ≈ T = 17.03 hr so that P ≈ p/2 for
t ≈ 15 hr). Since the C2 checkpoint prevents cells from replicat-
ing, its activation results in a rapid decrease in the population
proliferation rate ω (see the blue curve in Fig. 10(a)-(b)). Under
cyclic conditions, the rate of DNA synthesis falls below v+ but
remains well above its minimum value v− ≈ 5 × 10−3. Despite
the marked fluctuations in the velocity v, τS increases almost
steadily (albeit at a lower rate than for E1) until it plateaus at a
maximum value of ≈ 22 hours.

As shown in Fig. 11, constant and cyclic RH also affect the
evolution of the distribution s(x, t). Under constant RH (E1, see
pink curves), cells tend to accumulate near x ≈ 1. Due to the
low rate of DNA synthesis, the profile appears approximately
stationary. In particular, comparison of the pink curves in pan-

Figure 10: We compare the predicted population dynamics for the two simula-
tions in Fig. 9: (a) population proliferation rate ω as defined by Eq. (4), (b) the
total cell number N, (c) the DNA synthesis velocity v and (d) the duration of
the S phase τS . The parameters are chosen as in Fig. 9.

els (b) and (c) suggests that the discontinuity in the profile has
not moved significantly. While for E1, s(x, t) is characterised
by a single slow-moving front, for E2 (see blue curves) the
front is followed by a series of asymmetric spikes which prop-
agates along the x-axis with a faster velocity v (see Fig. 9(e)).
Each spike corresponds to cells in the C1 compartment quickly
re-entering the cell-cycle at the S phase after re-oxygenation;
these cells remain highly synchronised as they proceed through
the S phase. Since there is no re-oxygenation in E1, spikes are
not observed. Focusing on the blue curve in Fig. 11(c), and
moving from left (x = 1) to right (x = 2), the peak value de-
creases (as the spikes become wider). However, at later times
(see Fig. 11(e)), the left-most spikes have lower peaks due to
the depletion of cells in the P1 population (see Fig. 9).

Overall, our results suggest that, while both constant and
cyclic RH lead to inhibition of proliferation, the mechanisms
driving arrest are distinct. In the first case, cells arrest in the C1
compartment and DNA synthesis is almost completely inhib-
ited. On the other hand, under cyclic hypoxia (E2), DNA syn-
thesis proceeds, albeit at a lower rate. This leads to an increase
in τS and cell accumulation in the S phase. Despite being able
to complete the S phase, cells later arrest in the C2 checkpoint.
This, however, is evident only at long times (≈ 24 hr), when we
see a large accumulation of diploid cells. Our findings are in
line with the experimental data in Fig. 2 (which are taken from
[5]), indicating that our model can capture the experimentally
observed cell-cycle dynamics.

Next, we use our model to investigate modes of cyclic RH
not yet tested in the laboratory. For example, in Fig. 12, we fix
the length of the RH phase to 2 hours and compare the growth
curves for different periods of reoxygenation. We find that
when the reoxygenation periods are significantly longer than
the time cells spend in RH, cells have time to recover and con-
tinue proliferating, albeit at a lower rate. As shown in Fig. 13,
even when cyclic RH does not result in inhibition of prolifera-
tion (i.e., cycles 2+6 and 2+8 in Fig. 12), it can still affect the
cell-cycle distribution when compared to the predictions for the
phase stationary solution (represented by the dashed line). For
the example in Fig 13(a), cyclic RH eventually leads to fs(t)
being above its initial value f̄s. This is relevant when thinking
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Figure 11: Evolution of the DNA distribution s(x, t) computed by numerically solving Eq. (9) for the two cases in Fig. 9: acute RH (pink curve-E1) and cyclic RH
(blue curve-E2). The parameters are chosen as in Fig. 9.
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Figure 12: Evolution of the total cell number N(t) for different oxygen cycles
as predicted by Eqs. (17). While the time spent in RH is constant for all exper-
iments (i.e., 2 hr), we change the length of the reoxygenation phase (from 2 hr
as in Fig. 9(b) to 8 hr). We also include, as a control case, the PSS (black dotted
line). Parameters are chosen as in Fig. 9.

about cell-cycle specific treatment. Since cyclic RH changes
the distribution of cells along the cycle, it can impair or favour
treatment efficacy. For example, we know that cells in differ-
ent phases of the cell-cycle have different responses to radio-
therapy [48]. In this case, cells in the G2/M phase have been
shown to be the most sensitive to radiotherapy [48]. Referring
to Fig. 13(a), we note that persistent exposure to cyclic hypoxia
biases the cell-cycle distribution to the S phase. As such, it
could decrease the overall sensitivity of cells to RT, even dur-
ing reoxygenation, when oxygen levels do not directly increase
cell radio-resistance. When considering longer re-oxygenation
periods, such as in Fig. 13(b), we observe larger fluctuations in
the cell fractions. Towards the end of the re-oxygenation phase,
f2 is just above the value f̄2. This suggests that applying treat-
ment at this time could improve treatment efficacy. However,
if treatment is not timed accurately and it is applied when f2
is at its minimum or when cells are in RH, then cyclic hypoxia
could instead favour radio-resistance. This highlights the possi-
ble use of mathematical models to predict cell-cycle dynamics
and how this can affect treatment outcomes when testing proto-
cols in vitro accounting also for other mechanisms (such as oxy-
gen) that can affect treatment outcomes. In order to achieve this,
robust calibration of the model to experimental data is needed.

5.2. A class of models: comparison of different modelling as-
sumptions

The model defined by Eqs. (17) is complex in its response to
variable oxygen levels. Based on experimental evidence from

Figure 13: Evolution of the phase fraction fm (see solid lines) with m ∈ {1, s, 2}
as predicted by the model for two different cyclic protocols in Fig. 12: (a) 2
hr (< 0.2%) + 6 hr (2%) or (b) 2 hr (< 0.2%) + 8 hr (2%). We compare
the dynamics in cyclic RH with the PSS ( f̄m) indicated by the dotted line. The
parameters are chosen as in Fig. 9.

[5, 27, 49], we argued in §2 that three distinct mechanisms play
a key role in determining cell-cycle evolution in cycling RH.
While we have shown that the model agrees qualitatively with
the experimental data, it is unclear whether all three mecha-
nisms are necessary to recapitulate the data. Further, in §5, we
fixed K2 = 0 based on experimental observations; now we want
to test whether this assumption is justified, based on the data
available. To answer these questions, we construct a class of
models, M, obtained by systematically reducing the complex-
ity of the full model. A list of the models considered is pre-
sented in Table 3. While all models reduce to Eqs. (19) under
normoxia, they differ under RH. The alternative models are de-
rived from the full model, namedM0, by setting K2 = 0 (M1)
and fixing either C1 ≡ 0 (M2) or C2 ≡ 0 (M3). Here mod-
elsM2 andM3 test whether the checkpoint compartments are
needed to describe the data. The last two rows of Table 3 list the
unknown model parameters associated with each model; while
all models share the parameters θ, they vary in the number of
parameters `(k) associated with RH. In particular, the number of
unknown parameters associated with modelMk decreases as k
increases (i.e., as the model complexity reduces). As we will
detail in §6, we calibrate our models to the data in Fig. 2, and,
in Fig. 14 and Fig. 15, we compare the resulting fits.

In Fig. 14, we compare predictions when cells are exposed
to constant RH (E1). In this case all models, except M2, pre-
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Table 3: Schematics showing the biological mechanisms (see §3 for the explanation of the mechanisms (1)-(3)) included in each modelM belonging to the class of
models M. We also indicate the list of unknown parameter sets θ and Θ associated to each modelMk where the first set determines the phase stationary solution,
while the second set plays a role in the oxygen dependent mechanisms (Mechanism 1)-(Mechanism 3). The full model,M0, has the largest number of parameters
(i.e. higher complexity) but it accounts for all the mechanisms we expect to play a role in cell-cycle dynamics under cyclic hypoxia.

Mechanism 1 True True True True
Mechanism 2 True True False (C1 ≡ 0) True
Mechanism 3 True True (K2 = 0) True (K2 = 0) False (C2 ≡ 0)

θ [k1, v+, k2] [k1, v+, k2] [k1, v+, k2] [k1, v+, k2]
Θ [K1,R+,R−, p, q,T,K2] [K1,R+,R−, p, q,T ] [R+,R−, p,T ] [K1,R+,R−, q]

Figure 14: Comparison of the cell-cycle dynamics predicted by solving nu-
merically the models listed in Table 3 for constant RH (scenario E1). We here
use the best fit obtained for each model. The white dotted lines in the panels
indicate the evolution predicted by model M0 (see first panel) here used as a
reference. The parameters k1, v± and k2 are as in Table 1 while the oxygen-
dependent parameters ` are taken to be the estimated mean values reported in
Table C.9.

dict that f1 increases in line with the experimental observations
from [5]. In contrast, model M2 (Fig. 14(c)) is incompatible
with the experimental data, predicting a monotonic decrease in
f1(t) and cell accumulation in the S phase (observe the large in-
crease in fs(t) over time). This suggests that in constant RH,
the C1 checkpoint plays a key role while the C2 checkpoint
can be neglected given that modelM3 qualitatively reflects the
same trends observed experimentally. However, neglecting the
C1 checkpoint would not significantly impact predictions under
cyclic RH. Indeed, looking at Fig. 15(c), we note that modelM2
is in good agreement with modelM0 andM1 (indicated by the
white dotted line). While M2 does not capture the rapid fluc-
tuations in f1(t) predicted byM0, the overall trend is the same,
with f1(t) decreasing after each cycle. Focusing on Fig. 15(d),
we see good agreement betweenM3 andM0 only for the first
20 hours. At later times,M3 predicts values for f2 significantly
lower than those predicted byM0 and observed experimentally
(see Fig. 2). This suggests that the C2 checkpoint is needed for
the model to capture the delayed accumulation of cells in the
G2/M phase observed experimentally.

Figure 15: Comparison of the cell-cycle dynamics predicted by solving numer-
ically the models listed in Table 3 for cyclic RH (scenario E2). We here use
the characteristic fits obtained for each model (see Table in Appendix C). The
white dotted lines in the panels indicate the evolution predicted by modelM0
(see first panel) here used as a reference. Parameters are chosen as in Fig. 14.

The results from Figs. 14 and 15 highlight the inability of
modelsM2 andM3 to recapitulate the experimental data. Fur-
ther, the predictions from M0 and M1 are indistinguishable,
which suggests that the value of the parameter K2 does not
significantly influence the dynamics. Discriminating between
models M0 and M1 is, therefore, not straightforward and re-
quires consideration of other metrics, in addition to how well
the model fits the experimental data. These questions will be
addressed in the next section where we implement Bayesian
model selection.

6. Parameter fitting and model selection

So far we have presented model predictions for point esti-
mates of the model parameter values. In this section, we explain
how such estimates were obtained and investigate how the re-
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sults in §5 change when we account for uncertainty in the esti-
mates of “oxygen-dependent” parameters. We start by using the
data from the balanced exponential growth experiments (E0) to
determine the “oxygen-independent” parameters θ using the re-
sults from §4. As mentioned in §5.2, all modelsM ∈M reduce
to the same set of equations (Eqs. (19)) in normoxia. As such,
they share the same value θ. We then focus on estimating the
remaining parameters Θ, which determine the system response
to dynamic oxygen conditions. Here we will compare different
modelling assumptions by applying model selection methods.
We start by fitting each model Mk in Table 3 to experimental
data from both E1 and E2 simultaneously, using Bayesian in-
ference and Monte Carlo methods to estimate the posterior dis-
tribution, πps, for the parameters Θ (more details follow). We
then select the “best” candidate model by using the deviance in-
formation criterion (DIC) as an estimate of model performance
and briefly discuss parameter identifiability based on posterior
profiles.

6.1. Estimation of oxygen independent parameters
We recall from §4, that the regime of unperturbed expo-

nential growth is characterised by the value of the constants
( f̄1, f̄2, λ). As explained further in Appendix A, these constants
uniquely define the values of the parameters (k1, k2, v+) given by
Eqs. (A.7). In practice, we can estimate the stationary values f̄1
and f̄2 using flow cytometry data. However, additional data are
needed to determine the proliferation rate λ. This parameter can
be related to the population doubling time, Tdoub [8], which is
known for most cell lines when cultured in standard media and
in the absence of competition (i.e., low confluence). Indeed, it
is straightforward to show that Tdoub = λ−1 ln 2.

Given that, prior to any of the experiments in [5], the cells
were cultured at 21% O2, with re-plating in order to minimise
any effects due to contact inhibition, we assume that initially the
cells are undergoing exponential growth. We can, therefore, use
the cell fractions data reported at time t = 0 in Fig. 2 to estimate
the values of f̄1 and f̄2. For simplicity, we suppose that median
values provide a good approximation to the ‘true’ cell fractions
so that f̄1 ∼ 0.29 and f̄2 ∼ 0.15. In this way, we can obtain
point estimates for θ which facilitates the identification of the
remaining model parameters Θ. In previous experiments, the
doubling time of RKO cells has been estimated to be about 21
hours [65]. The corresponding parameter estimates (obtained

Table 4: Estimates of the cell-cycle parameters for the RKO cell line obtained
using the phase stationary solution (PSS) and the experimental data from [5].

transition rates
[1/hr]

average time in the com-
partment [hr]

cell fractions
(from [5])

G1 k1 = 0.195 τ1 ≈ k−1
1 ≈ 5.14 f̄1 = 0.29

S v+ = 0.083 τS = v−1
+ ≈ 12 f̄s = 0.56

G2/M k2 = 0.22 τ2 ≈ k−1
2 ≈ 4.54 f̄2 = 0.15

using Eq. (A.7)) are listed in Table 4 together with estimates of
the duration of each cell cycle phase (given by the inverse of
the rates of k1, k2 and v+ [8]). We note that the RKO cell line

is characterised by a particularly long S phase. By contrast,
the durations of the G1 and G2/M phases are almost half the
duration of the S phase, with G2/M being the shortest.

6.2. Calibration of the candidate models to time-series flow-
cytometry data

The second step concerns estimation of the parameters Θ
which are associated with the oxygen-dependent mechanisms.
Here we use Bayesian inference techniques [41], which allow
us to account for measurement errors and to assess uncertainty
in the parameter estimates.

Given the small amount of data available, we calibrate the
model by pooling the data from all of the experiments in con-
stant RH (E1) and cyclic RH (E2). We therefore postpone
model validation until more data will be available. In Fig. 2, for
each time point, we reported the mean and standard deviation
for multiple repeats of the experiment; however, for the estima-
tion of Θ we consider individual experimental measurements,
instead of summary statistics. The complete data set can be
found in Appendix B. We denote by F(i, j) the i-th measurement
performed at time t(i, j) during experiment E j with j ∈ {1, 2}.
Given that F1, Fs and F2 are not independent (recall Fs =

1−F1−F2), we define the values of F = [F1, F2] ∈ R2. We col-
lect the data in the set E =

{
(t(i,1), F(i,1))

}L1

i=1
∪

{
(t(i,2), F(i,2))

}L2

i=1
,

where L1 = 4 and L2 = 14 are the number of measurements in
sets E1 and E2, respectively.

The error model. Details of the error between the experimental
measurements and the predictions of the mathematical model
M, with model parameters Θ, are captured in the likelihood
function L. We assume the measurement errors are addi-
tive and independent of the oxygen protocol c = c(t) used in
the in vitro experiments. We further suppose that the differ-
ence between each measurement and model prediction (e(i, j) =

F(i, j) − M(t(i, j);Θ, c j)) to be independent and normally dis-
tributed, with covariance matrix Σ, i.e., e(t) ∼ N(0,Σ); there-
fore L has the form:

L(E|Θ,Σ,M) =

(
1

2πσ1σ2

)L1+L2

exp
[
−
χ2

2

]
, (23a)

χ2 =

2∑
j=1

L j∑
i=1

e(i, j) · (Σ−1e(i, j)). (23b)

Here the covariance matrix Σ is considered to be constant in
time and diagonal (i.e., Σ = diag (σ2

1, σ
2
2)), as we assume inde-

pendence between errors in the fractions F1 and F2. Instead of
specifying the values of σ1 and σ2, we treat them as unknown
parameters that are learnt from the data. Since the cell frac-
tions are normalised, we assume that σ1 and σ2 are uniformly
distributed in [0, 1] (πpr(Σ) ∼ U(0, 1) ×U(0, 1)).

Calibration and model selection. In brief, given a mathemati-
cal model M ∈ M, the main goal of Bayesian inference is to
sample, via Monte Carlo methods, from the posterior proba-
bility distribution for the model (Θ) and error parameters (Σ)
conditioned to the data (E) (i.e., πps(Θ,Σ|E,M)). Using Bayes’
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Theorem, the posterior distribution can be expressed in terms
of the likelihood function (L(E|Θ,Σ,M)) and the prior distri-
butions (πpr(Θ), πpr(Σ)):

πps =
πpr(Θ)πpr(Σ)L(E|Θ,Σ,M)

π(E|M)
∼ πpr(Θ)πpr(Σ)L(E|Θ,Σ,M),

(24a)

where π(E) is a normalising factor, πpr is the prior knowledge
on parameter values, and L is as defined in (23b).

In the absence of prior information about the values of model
parameters Θ, we assume that each component of the vector Θ
(i.e., Θi for i = 1, . . . , κ), is uniformly distributed on the inter-
vals [Θmin

i ,Θmax
i ], where the extremes of the intervals are taken

from Table 2; hence πpr(Θ) is given by:

πpr(Θ) =

κ∏
i=1

(
Θmax

i − Θmin
i

)−1
. (24b)

Due to the dimensions of our parameter space, it is not pos-
sible to compute Eqs. (24a) analytically. Instead we rely on
Markov Chain Monte Carlo (MCMC) methods to estimate πps

using the python package PINTS (Probabilistic Inference on
Noisy Time-Series) for Bayesian inference [19]. More details
on the numerical technique are included in Appendix C.

For model selection among the class of models M, we com-
pute the deviance information criterion (DIC) [28, 41]. The
DIC represents a trade-off between model complexity (as mea-
sured by the over-fitting bias kDIC) and model accuracy (as mea-
sured by the likelihood). Given a modelM, the DIC is defined
as follows [41]:

DIC(M) = 2kDIC − 2 ln(L̂(M)), (25a)
with kDIC = 2Var[lnL|E,M], (25b)

where L̂(M) = L(E|Θ̂, Σ̂,M) is the likelihood value estimated
at the expected value of the parameters, (i.e., Θ̂ = E[Θ|E,M]
and Σ̂ = E[Σ|E,M]) and Var is the variance of the log-
likelihood, lnL, here approximated via sampling from the es-
timated posterior. We note that the DIC penalises models with
large values of kDIC , to account for the fact that complex models
are more likely to fit data well. At the same time, more complex
models tend to have more parameters which can lead to higher
posterior uncertainty if the model is too complex for the data
(i.e., it is over-fitted) [41]. This results in a larger variability in
the expected log-likelihood (i.e., larger kDIC). In other words,
the term kDIC in Eq. (25a) corrects for over-fitting. When com-
paring models, we are interested in the relative value of the DIC,
and favour the model with the smaller DIC.

For a model M, predictive posterior estimates are obtained
by sampling 800 parameter sets, (Θ(i),Σ(i)), from the estimated
posterior πps. For each set, we run the model Mk forwards to
generate 800 predictive curves for each phase fraction f (i)

m (t)
with m ∈ {1, 2} and i = 1, . . . , 800. This gives posterior distri-
butions for the “true” cell fraction. To obtain posterior dis-
tributions for the measured cell fractions F(i)

1,2(t), we add to
the simulated cell fractions f (i)

1 (t) and f (i)
2 (t) the corresponding

measurement errors e(t) ∼ N(0,Σ(i)). We then estimate F(i)
s as

F(i)
s = 1−F(i)

1 −F(i)
2 and f (i)

s as f (i)
s = 1− f (i)

1 − f (i)
2 . At each time

point, we compute the mean of the 800 predictive curves (for
either the “true” or measured fractions) and the corresponding
68%- and 95%-confidence intervals. For the plots in §5 and
§5.2, we used the expected values Θ̂ = E[Θ|E,M] as repre-
sentative of characteristic model fits. Additional results on the
estimated posterior distributions can be found in Appendix C.

6.2.1. Numerical results
The estimated DICs for the models M ∈ M are reported in

Table 5. Based on these estimates, model M1 has the lowest
DIC and is, therefore, the “best” model in the class M. As ex-
pected from the results presented in §5.2 (see Fig. 14 and 15),
M2 andM3 have the worst performance. In this case, the dif-
ference in the estimated DICs is rooted in the value of L̂(M),
which is markedly reduced forM2 andM3, suggesting that the
two models fail to fit the experimental data. We conclude that
including the C1 and C2 compartments (i.e. cell-cycle arrest in
the G1 and G2 phases) is necessary for our model to reproduce
the experimental cell-cycle dynamics. However, we can not
exclude the possibility that other mechanisms (i.e., modelling
assumptions) not considered here, might also explain the data.

Table 5: Comparison based on the deviation information criterion (DIC) of the
models in class M that were introduced in §5.2. The last column indicates the
relative DIC score with respect to modelM0, i.e., ∆DIC=DIC(M)-DIC(M0).

kDIC ln(L̂(M)) DIC ∆DIC

M0 6.10 65.73 -119.27 0
M1 5.13 65.33 -120.41 -1.73
M2 6.04 43.83 -75.58 43.62
M3 4.25 45.84 -83.18 37.35

Focusing now onM0, we see that its performance is similar
to that of M1, whose DIC is only slightly smaller. While the
two models yield similar values of L̂(M), the larger estimated
value of kDIC forM0 is the main source of the discrepancy. This
suggests that the additional complexity due to the introduction
of the parameter K2 is not balanced by a sufficient improvement
in the description of the data. This interpretation is confirmed
by the profile of the marginal posterior for K2 (see Fig. 16(a)).
The latter is approximately uniform, suggesting that its value
can not be identified, given the available data. As shown in
Fig. 16(b), the posterior predictions for f2 have larger confi-
dence intervals at longer times. This suggests that experiments
run over longer time periods could improve the estimates of pa-
rameter K2. In the absence of such data, we view modelM1 as
the best candidate.

Candidate model M1 is in good agreement with the experimen-
tal data. Our analysis shows that model M1 gives the best fit
to the experimental data. Referring to the posterior predictions
in Fig. 17, we note thatM1 captures the experimental data from
both experiments E1 and E2, with all experimental data points
falling within the 95%-confidence interval of the posterior pre-
dictions for the “measured” fractions, F1, Fs and F2.
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Figure 16: Analysis of the fitting of modelM0: (a) marginal posterior distribu-
tion for parameter K2; (b) posterior prediction of the time evolution of f2, i.e.,
the fraction of cells in the P2 phase. The mean (red curve) and 68%-confidence
intervals (red shaded area) are computed as outlined in the section on “Calibra-
tion and model selection”.

Figure 17: Posterior prediction distribution of the selected model M1 for
(a) chronic RH and (b) cyclic RH. For both scenarios we plot the predicted
‘true’ cell fractions fm(t) and the predicted measured fractions Fm(t) with
m ∈ {1, s, 2}; the predicted evolution of Fm is compared with the experimen-
tal data (dots). For each model output, we plot the expected values, together
with the 68%- and 95%- confidence intervals, as indicated by the dark and light
shaded areas, respectively. The top panels indicate the prescribed oxygen ten-
sion c(t) associated with the two experiments.

Fig. 18 shows that M1 can also capture the qualitative
shape of the flow cytometric distribution (D f ) reported in [5],
which indicates cell number over PI-fluorescence intensity (see
Fig. 1). Here we estimate D f using output from the numerical
solution of Eqs. (17) as follows: based on [10], we assume that
a population of cells with the same DNA content x gives rise
to a Gaussian-like flow cytometric output (see Fig 1); conse-

Figure 18: Posterior prediction for the distribution D f as defined by Eq. (26a)
for cyclic RH (E2). The dark line indicates the average over 800 parameter
sets sampled from the estimated posterior, while the shaded grey area indicates
the 68% confidence interval. At each time point, we compare the theoretical
prediction (bottom panels) with the experimentally measured distribution from
Fig. 3 in Bader et al. [5] (top panels). Fluorescence readings of PI = 200 and
PI = 400 correspond, respectively, to x ≈ 1 and x ≈ 2. This comparison is
qualitative, as the vertical axes for the theoretical (bottom panels) and experi-
mental (top panels) distributions are different since D f is re-scaled by the initial
number of cells N0, while the experimental output is in terms of absolute cell
counts.

quently, we model the flow cytometric output D f as

D f (PI, t) =

∫ 2

1
f (PI|x)D(x, t)dx, (26a)

where

D(x, t) = P1(t)δ(x − 1) + S (x, t) + P2(t)δ(x − 2), (26b)

where δ(x − y) is the delta function, (i.e., δ = 1 if x = y and δ =

0 otherwise). The term f (PI|x) in Eq. (26a) is the probability
of recording a fluorescence intensity PI for a cell with DNA
content x and has the form

f (PI|x) =
1

√
2παγ(x)

exp
[
−

(PI − αx)2

2α2γ(x)2

]
. (26c)

In Eq. (26c), we assume that the mean PI fluorescence is pro-
portional to the DNA content x, with constant of proportion-
ality α = 200 PI, so that x = 1 corresponds to a fluorescence
intensity PI = 200. Following [10] again, we suppose that the
variance γ depends linearly on x (i.e., γ = (γ2 − γ1)(x− 1) + γ1,
with γ1,2 being the variances associated with DNA contents of
x = 1 and x = 2, respectively). In general, γ1 and γ2 will de-
pend on the cell line of interest. Since here we are interested in
qualitative comparisons, we set γ1 = 0.04 and γ2 = 0.08, for
consistency with the estimates from [10].

While the calibration only uses information about cell frac-
tions, we see that our theoretical estimates for D f are in good
agreement with the experimental observations (see Fig. 18).
However, there are some discrepancies, particularly at time
t = 20 hr. The model predicts a higher percentage of cells in the
late S phase, so that the peak corresponding to PI = 400 is not
isolated; in contrast the experimental profile tends to flatten in
the vicinity of PI ≈ 350, so that the peak at PI ≈ 400 is isolated.
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However, we note that the experimental observations relate to
only one realisation, whereas we illustrate the expected profile
over several model realisations.

Model Identifiability. We end our discussion on model calibra-
tion by briefly considering practical identifiability of the un-
known parameters. Following [23, 35], we define a parame-
ter as practically identifiable if we can constrain its value to a
reasonably small region of parameter space, i.e., the posterior
distribution has compact support.

Figure 19: Marginal posterior distributions πps(Θ|M1,E) for the model pa-
rameters Θ ∈ {K1, q,R+,R−,T, p} and the error parameters πps(σi |M1,E) for
i = 1, 2. The red vertical line indicates the mean value as reported in Table C.9.
We see that for most parameters the posterior distribution has a compact sup-
port. This is not the case for K1 (see (a)) where the large support of the posterior
is a sign of practical non-identifiability.

Looking at the profile of the marginal posterior distribu-
tions for the different parameters (see Fig. 19), we see that the
marginal posteriors have a bell-like shape, with a unique, well-
defined, maximum for most parameters. However, the posterior
distribution for parameter K1 tends to flatten at large values,

where K1 > 1 (see Fig. 19(a)). This indicates greater uncer-
tainty in the estimation of K1 for which we can identify only a
lower, but not an upper, bound. From Eq. (8a), we note that K1
is only relevant in data from experiment E2 (i.e., when oxygen
levels c are above the threshold c∗). If we consider, for exam-
ple, the first time at which this happens (i.e., time t(R)

1 = 2hr),
then, over the period t(R)

1 = 2hr < t < t(H)

2 = 4hr, Q(t) ≈ 0 and
the evolution of C1(t) can be determined explicitly by solving
Eq. (17b) to obtain:

C1(t) = C1(t(R)

1 )e−K1(t−t(R)
1 ), t ∈ (t(R)

1 , t
(H)

2 ). (27)

Thus, when the first measurement is taken, C1(t(H)

2 ) =

C1(t(R)

1 )e−2K1 . If K1 > 1, then e−2K1 � 1 and compartment C1
rapidly empties after re-oxygenation. Therefore, unless C1 is
very large, C1(t(H)

2 ) ≈ 0, independently of the value of K1 > 1.
In order to resolve this fast time-scale we would need to col-
lect experimental data at an earlier time point, say t∗, for which
t∗ − t(R)

1 < K−1
1 ; alternatively, we could choose an oxygen cycle

for which a larger number of cells accumulate in the C1 com-
partment. This could be achieved by prolonging the period for
which the cells are exposed to severe hypoxia (i.e., c < c∗).

7. Model predictions in the presence of uncertainty

To conclude, we use the calibrated model from §6 to make
predictions on cell-cycle dynamics in different environmental
conditions. We start by considering the oxygen cycles in Fig. 13
but now account for uncertainty in our parameter estimates.

Figure 20: Posterior estimates for the cell fractions fm for the two cyclic pro-
tocols considered in Fig. 13: (a) cyclic RH with 2 hr in RH + 6 hr in an oxy-
genated environment; (b) cyclic RH with 2 hr in RH + 8 hr in an oxygenated
environment. We plot mean estimates and indicate the 68%-confidence inter-
vals by the shaded regions.

For the 2hr+6hr cycle in Fig. 20(a), in the absence of uncer-
tainty, we predicted a systematic increase in the fraction of cells
in the S phase, with no activation of the C2 compartment (see
Fig. 13(a)). When uncertainty is taken into account, we find
large variability in model predictions at longer times (t > 25
hr). In particular, the 68%-confidence interval encompasses the
possibility of fs(t) both increasing or decreasing compared to
its initial value when t � 1. Further, activation of C2 cannot
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be ruled out, as indicated by the value of f2(80), which ranges
between 0 / f2(80) / 0.6 (see Fig. 20(a.3)). Despite the large
uncertainty in the value of f2(t), the confidence interval on f1(t)
remains reasonably small. We observe similar behaviour for cy-
cles with a longer re-oxygenation phase (see 2hr+8hr cycle in
Fig. 20(b)). Again, uncertainty in fs and f2 increases over time,
even though it is less pronounced than in Fig. 20(a). Again,
the 68%-confidence interval allows for the possibility of acti-
vation of the C2 checkpoint (see increase in f2 as t � 1) even
though this is less probable than in the scenario depicted by
Fig. 20(a). For both oxygen cycles considered, the uncertainty
in the cell-cycle distribution is reflected in the predictions for
the number of cells N(t) (see Fig. 21). This is particularly evi-
dent in Fig. 21(a) where N(80), the number of cells at the final
time, t = 80 hr, ranges between 3.5 / N(80) / 10.

Figure 21: Posterior estimates for the total cell number N(t) for the two cyclic
protocols in Fig. 20: (a) cyclic RH with 2 hr in RH + 6 hr in an oxygenated
environment; (b) cyclic RH with 2 hr in RH + 8 hr in an oxygenated environ-
ment. We plot mean estimates and indicate the 68%-confidence intervals by the
shaded regions.

Based on the results in Fig. 20, we conclude that we can use
our calibrated model to predict cell-cycle dynamics on short
time scales (0 < t < 25 hr); thereafter the increased uncertainty
prevents us from making reliable predictions for the cell-cycle
distribution at longer times. However, the predicted uncertainty
is still informative when considering experimental design. In
this case, the objective is twofold. On the one hand, we want
to identify experiments that could facilitate model validation.
From this point of view, we focus on times at which the uncer-
tainty in our predictions is small (e.g., on the short time scale
for experiments in Fig. 20). On the other hand, we aim also to
propose experiments that could improve the accuracy of model
parameter estimates. In this case, our attention focuses on sce-
narios where uncertainty in the model predictions is large and,
therefore, new measurements can refine parameter estimates
(such as for the long time dynamics in Fig. 20). From this point
of view, a scenario like Fig. 20(a) is adequate since it can ac-
count for both the validation and refinement steps. Our model
also suggests that, if such experiments were performed, infor-
mation about the total number of cells N(t) may improve model
calibration, given the large variation predicted in its value at the
end of treatment.

Experimentally, it might be difficult to study scenarios for
which oxygen levels change on timescales faster than two hours
due to the time required for oxygen levels to equilibrate in vitro

Figure 22: Numerically-estimated values of the cell fractions fm and cell num-
ber N for different cyclic protocols. We report values of the variables at 5 time
points; for each variable we report the expected value based on the estimated
posterior (coloured dots) and the corresponding 68%-confidence interval indi-
cated by the vertical lines. Different colours correspond to different oxygen
dynamics, i.e., a different choice of ta.

[50]. This, however, is not a limitation of our model. Indeed,
we can consider what happens when a 4 hour cycle (as in E2)
is split into asymmetric periods of RH and re-oxygenation by
setting t(R)

i = t(H)

i + ta and t(H)

i = 4(i − 1) in Eq. (21), where
ta ∈ (0, 4). If ta > 2, then the cells spend more time exposed to
low oxygen levels (c < c∗) than to normal values (c > c∗); the
opposite holds when 0 < ta < 2. We run numerical simulations
up to t = 28 hr and report predictions of the true cell fractions,
fm with m ∈ {1, s, 2} and total cell number, N, at 5 time points.

The results from these numerical simulations are summarised
in Fig. 22. We observe that, at all time points considered, the
larger the value of ta the lower is the total number of cells, N,
(see Fig. 22(d)). When ta = 2.5hr (see light green dots), DNA
synthesis is so slow that at the final time (t = 28 hr) only a
small fraction of cells has completed duplication and entered
the G2/M phase. As a result, the fraction fs is larger than
for the smaller values of ta while the fraction f2 is smaller. In
this case, the variability in the model predictions remains small
(even smaller than for the case ta = 2 hr which was used for the
in vitro experiments). Therefore, our model predicts that, on
short time scales (≈ 30 hr), cycles with longer periods of RH
than re-oxygenation favour the accumulation of cells in the S
phase. In particular, exposing cells to cycles with ta = 2.5 for
20 hours may be sufficient to synchronise them in the S phase
of the cell-cycle. By contrast, when we decrease the value of ta,
our model predicts only a 5% increase in the fraction of cells
in the S phase. In line with our intuition, as ta decreases, fewer
cells are impacted by cyclic levels of oxygen and, therefore,
their distribution is more concentrated at specific phases of the
cell-cycle. We note, however, that for smaller values of ta (e.g.,
ta = 1 or ta = 1.25), there is greater uncertainty in the predic-
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tions of f1 and f2 at t = 28 hr, due to the uncertainty in whether
the C2 checkpoint will be activated or not (results not shown).
This, again, hints at the need to refine our parameter estimates
by performing new experiments (such as the cycle experiment
in Fig. 20) to obtain more accurate predictions for environmen-
tal conditions that deviate from those used here to calibrate our
model.

8. Discussion and Future Work

In this paper, we have presented a five-compartment model
for the cell-cycle which accounts for cell response to variable
oxygen levels. We have focussed on the impact of dNTP short-
ages (in conditions of radio-biological hypoxia) on rates of
DNA synthesis. This was achieved by introducing a variable
rate, v(t), of DNA synthesis and allowing transient cell-cycle
arrest in the late G1 phase by transition to a checkpoint com-
partment C1. A second checkpoint compartment, C2, accounts
for cell-cycle arrest in the G2 phase due to accumulation of
replication stress and damage. Under constant oxygen-rich con-
ditions the model reduces to a linear, three-compartment model
and analytic expressions for the long time dynamics can be de-
rived (see §4). This analysis predicts that, in the absence of
competition, cells evolve to a regime of balanced exponential
growth, a result which is consistent with other cell-cycle mod-
els [8, 10, 13, 21, 54]. The main novelty of the work is the
investigation of the cell-cycle dynamics in cyclic hypoxia (see
§5). We show first that the model can recapitulate the exper-
imental data from [5]. We then explore different oxygen dy-
namics and, in so doing, show different ways in which cyclic
hypoxia can dis-regulate cell-cycle dynamics, and lead to a re-
distribution of cells across the phases of the cell cycle. Further,
we identify scenarios in which cyclic hypoxia leads to complete
inhibition of proliferation and scenarios in which proliferation
is only slowed down. This is of relevance when thinking about
cell-cycle specific treatment, for which changes in cell-cycle
distribution (even if they are transient), can have a large impact
on treatment efficacy. However, in order to use our model as
a predictive tool, accurate and robust predictions are needed.
In the remainder of the paper, we therefore showed how our
modelling framework can be used to predict cell-cycle dynam-
ics and inform the design of in vitro experiments (see §3). We
started by deriving a class of candidate models M based on
Eqs. (17) by systematically decreasing model complexity (i.e.,
the number of unknown parameters). Here our aim was to test
different assumptions on the mechanisms driving cell response
to cyclic hypoxia. In §6, we used Bayesian model selection
to identify the best candidate model from M and showed that
this model can indeed recapitulate the dynamic data from [5].
Furthermore, by constructing our class of models and applying
Bayesian modelling selection we were able to systematically
show that the inclusion of the C1 and C2 compartments in our
model is necessary for it to capture the cell-cycle dynamics ob-
served experimentally. In §7, we used our calibrated model to
revisit the results from §5 where we account for uncertainty
in parameter estimates. While the model makes precise predic-
tions on short time scales (t ≈ 30 hr), we observed a large uncer-

tainty in the cell-cycle dynamics at longer times. We therefore
discussed how our model could be used to inform the efficient
and effective design of future experiments to refine our parame-
ter estimates, as well as to validate predictions of the calibrated
model.

In this work we showed that our model can recapitulate the
response to cyclic hypoxia of a specific cancer cell line (i.e.,
RKO cancer cell line). For this cell line, our model predicts
that both constant and cyclic radio-biological hypoxia (RH) per-
turb the cell-cycle dynamics, but in different ways. In constant
RH, cells tend to accumulate in the late G1 phase and prolif-
eration is rapidly alted. During cyclic RH, we predict instead
a more diverse range of responses depending on the oxygen
dynamics. We can identify regimes where proliferation is in-
hibited due to accumulation of cells in the G2/M phase. By
contrast, when the duration of the re-oxygenation phase is in-
creased, population growth is only mildly slowed down and the
fractions of cells in S phase is up-regulated. It would be inter-
esting to test whether our findings can be generalised to other
cell lines and how much variability there is in their response to
similar cyclic protocols. Based on these observations, an inter-
esting future research direction emerges, namely, investigating
the role that cyclic RH can have on the response to cell-cycle
dependent treatment, such as radiotherapy. Given that cyclic
RH can change the distribution of cells around the phases of
the cell-cycle, we expect a differential response to radiotherapy.
This could be investigated by extending our model to include
radiotherapy and to account for changes in radio-sensitivity in
different phases of the cell-cycle. From this point of view, a
natural question is whether cell-cycle redistribution is sufficient
to explain the increase in radio-resistance due to cyclic hypoxia
as reported in the literature [35, 36, 37].

In this paper, our focus was on constructing a minimal model
to describe the influence of cyclic hypoxia on the cell-cycle
which could be validated against existing experimental data.
This guided our assumption that the rates R± at which cells ad-
just their rates of DNA synthesis, v, to be constant. In practice,
these rates may also depend on the level of damage and replica-
tion stress accumulated by the cell during cyclic hypoxia. Our
model could easily be extended to account for these effects but
at the cost of increasing the number of unknown model param-
eters. In silico hypothesis testing (using a Bayesian framework,
as in §6), could be used to compare different modelling as-
sumptions (i.e., constant vs variable rates), and to investigate
the design of future experiments that can distinguish between
the alternative mathematical models.

In several instances we have mentioned that DNA damage
plays a key role in mediating cell-cycle progression and cell-
cycle arrest in cyclic hypoxia. However, for simplicity, we have
accounted for it only implicitly. In principle, our model could
be extended by introducing DNA damage as an additional struc-
tural variable to describe the cell state. While being more re-
alistic (and of interest from a mathematical perspective), the
increased model complexity would make it difficult to fit the
model to experimental data. Moreover, introducing DNA dam-
age into the model would enable us to account for radiotherapy
in a more realistic manner. Analogously to re-oxygenation, ra-
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diotherapy also causes DNA damage. Such a model extension
could be used to investigate whether cyclic hypoxia selects for
radio-resistant clones, which are less sensitive to damage accu-
mulation. Further model extensions could account for spatial
heterogeneity, and bring the model closer to in vivo conditions.
In this light, we view our work as a first step towards developing
a theoretical framework for investigating cyclic hypoxia and its
effect on cell-cycle progression, particularly in the context of
solid tumours.

Appendix A. Exponential steady state uniqueness

Starting from Eqs. (19), we note that the evolution of the
number of cells, N, decouples from the equations for G1 and
G2 so that we can consider the reduced model:

dG1

dt
= 2k2G2 − k1G1, (A.1a)

dG2

dt
= −k2G2 + k1G1(t − τS ). (A.1b)

Since Eqs. (A.1) form a system of linear delay differential
equations, their solutions can be written as a superposition of
exponential functions eΛt with corresponding eigenvalue Λ ∈

C. We therefore know that the long time behaviour of the sys-
tem will be dominated by the eigenvalue Λ with largest real
part, here denoted by λ. Unlike for ordinary differential equa-
tions, the number of eigenvalues Λ for a delay differential equa-
tion is infinite and they are defined by the characteristic equa-
tion:

det(A(Λ) − ΛI) = 0, A(Λ) =

[
−k1 2k2

k1e−ΛτS −k2

]
(A.2)

where I is the identity matrix in R2×2. Evaluating the determi-
nant explicitly we obtain the following transcendental equation,
whose roots correspond to the eigenvalues Λ of Eqs. (A.1):

P(Λ) ≡ −(Λ + k1)(Λ + k2) + 2k1k2e−Λτs = 0. (A.3)

It can be shown that this system has at least one root with
Re(Λ) > 0 so that the solution will blow up in time, i.e.
lim
t→∞

G1,G2 = ∞. We also have that the spectrum of eigenvalues
is bounded above, in the sense that there exists an upper limit
to the values of Re(Λ). This is analogous to the system investi-
gated by Crivelli et al. in [21]. Lemma 1 summarises some of
their results as adapted to our model.

Lemma 1. For any value of k1 > 0, k2 > 0 and τs > 0, the
right-most root of P(Λ) as defined by Eq. (A.3) is real and pos-
itive.

Proof. Let us first consider the existence of a real and positive
root Λ = Λ0. This is straightforward to prove since P(Λ) is
continuous and P(0) > 0 while limΛ→∞ P(Λ) < 0. Given that
for Λ > 0, dP/dΛ < 0, i.e. P is strictly monotonically de-
creasing, we have that the zero Λ = Λ0 is unique. This implies
that for any choice of parameters, the trivial steady state (0, 0)
is unstable.

Let us now consider the complex solution Λ = ΛR + iΛI for
the function P where ΛI ∈ R \ {0}:

(ΛR + iΛI + k1)(ΛR + iΛI + k2) = 2k1k2e−(ΛR+iΛI )τs . (A.4)

Taking absolute values of the above we obtain that:

2k1k2e−ΛRτs =

√
((ΛR + k1)2 + Λ2

I )((ΛR + k2)2 + Λ2
I )

⇒ 2k1k2e−ΛRτs > (ΛR + k1)(ΛR + k2),
(A.5)

which implies that P(ΛR) > 0 = P(Λ0), where Λ0 is the unique
real root of P(Λ). Since P is strictly monotonically decreasing
we therefore have that ΛR > Λ0. We therefore have that the
rightmost eigenvalue is real and it is positive.

Based on Lemma 1, we know that for any choice of model
parameters, under unperturbed growth, cells will eventually
reach a regime in which they grow exponentially. This is a com-
mon result of many cell-cycle models for in vitro systems and it
is usually referred to as balanced or asynchronous exponential
growth:

G1,2(t) ≈ ξ1,2eλt, t � 1, (A.6a)

where ξ1,2 are positive constants and the character ḡ is used
to indicate the asymptotic solution. Having characterised the
long time behaviour of G1(t) and G2(t), let us discuss what this
implies for the other model variables, i.e. the distribution S (x, t)
and the total number of cells, N. Using Eq. (9) we find that, in
the case of unperturbed growth and assuming t > τs, the long
time distribution S (x, t) takes the form:

S (x, t) ≈ τsk1
ξ1

ξn
e−λτs(x−1)ξneλt, t � 1, (A.6b)

which can be written by separating the DNA and time compo-
nents, as S (x, t) ≈ s̄(x)ξneλt. This implies that the population Ps

also grows exponentially, Ps(t) = ξseλt where ξs =
∫ 2

1 s̄(x)dx.
Combining this with Eq. (A.6a), we can compute the total num-
ber of cells and the cell fractions:

N(t) ≈ (ξ1 + ξ2 + ξs)eλt = ξNeλt, t � 1, (A.6c)

f j(t) ≈ f̄ j =
ξ j

ξN
, j ∈ {1, s, 2} , t � 1. (A.6d)

We therefore find that the long time behaviour is characterised
by a stationary DNA-distribution, s̄(x), of cells in the S phase,
and constant cell fractions, f̄ j. Following [54] we will denote
this specific regime as the steady phase solution to highlight the
fact that the fraction of cells in each phase of the cycle remains
constant.

We now discuss how this steady phase solution of the model
can be used to estimate the model parameters. Assume that the
cells are left growing in an unperturbed environment for suffi-
ciently long time so as to reach the regime of balanced expo-
nential growth. Provided that we know the fraction of cells, f̄ j,
and proliferation rate, λ, of the population of cells (which can
be approximated using the doubling time as given in the main
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text, Tdoub = λ−1 ln 2), we can uniquely identify the parame-
ters k1, k2, τs in the model. Let us substitute the solution (A.6)
into (19) and, upon re-writing ḡi = f̄iξNeλt, we obtain the fol-
lowing algebraic system:

λ f̄2 = −k2 f̄2 + f̄1k1e−τsλ, (A.7a)
λ f̄1 = 2k2 f̄2 − k1 f̄1, (A.7b)

λ = k2 f̄2. (A.7c)

Looking at Eq. (A.7c) it is apparent that k2 is uniquely identified
and it is positive. Substituting k2 into Eq. (A.7b), we obtain an
equation for k1:

k1 =
2 − f̄1

f̄1
λ, (A.8)

where we note that k1 > 0 since, by definition, f̄1 ≤ 1. Sub-
stituting now the forms of k1 and k2 into (A.7a) we obtain an
expression for τs:

τs =
1
λ

ln
(

2 − f̄1
f̄2 + 1

)
(A.9)

where the physical constraint f̄1 + f̄2 ≤ 1 guarantees that the
argument of the logarithm is always positive. Hence, given the
measurements of f̄1, f̄2, τs we can uniquely identify the constant
parameters appearing in the model (19) for unperturbed growth.

Appendix B. Experimental data

Here we present the raw-data for the cell-cycle dynamics in
RKO cancer cells as measured in the experiments from [5] dis-
cussed in §2 of the main text. Table B.6 summarises the value
of the cell fractions in normoxia (E0), while Table B.7 and Ta-
ble B.8 represent the time series data obtained when cells are
exposed to constant (E1) and cyclic (E2) RH, respectively.

Table B.6: Raw experimental data for the stationary cell-cycle dynamics of
RKO cancer cells when exposed to normoxia (E0) for sufficiently long time.

F1 Fs F2

0.291222313 0.557013946 0.151763741
0.297764120 0.533750132 0.168485748
0.276288660 0.602061856 0.121649485
0.391933816 0.475698035 0.132368149
0.270000000 0.540000000 0.190000000
0.353889645 0.498481834 0.147628521
0.296387429 0.515714126 0.187898445
0.289529012 0.571414043 0.139056945
0.291841004 0.560669456 0.147489540

Table B.7: Raw experimental data for the cell-cycle dynamics of RKO cancer
cells when exposed to constant RH (E1).

Time [hr] F1 Fs F2

4 0.491356731 0.297537978 0.207438449
4 0.497400877 0.36815819 0.131485068

8 0.513138837 0.334160977 0.147941237
8 0.563423645 0.325328407 0.104679803

Table B.8: Raw experimental data for the cell-cycle dynamics of RKO cancer
cells when exposed to cyclic RH (E2).

Time [hr] F1 Fs F2

4 0.330630725 0.546067179 0.120037907
4 0.266513378 0.632211538 0.098035117
4 0.297175141 0.534011299 0.164971751

8 0.220709571 0.731332508 0.044657591
8 0.191676374 0.754315366 0.050937202

20 0.159383033 0.702313625 0.133676093
20 0.093743547 0.777617179 0.125954987
20 0.144138373 0.711189408 0.140935298
20 0.100658314 0.726587386 0.168825653
20 0.184611856 0.635248251 0.171998624
20 0.145497026 0.713785047 0.13700085

28 0.060079664 0.712547024 0.21132994
28 0.044509303 0.647087438 0.29916089
28 0.03960499 0.676611227 0.280665281
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Appendix C. MCMC sampling algorithm and results

In order to estimate the posterior distribution (see Eq. (24a)), we use Markov Chain Monte Carlo (MCMC) methods, employing
the freely available implementation in the python package PINTS [19]. As suggested by Johnstone et al. [38], prior to starting our
MCMC routine, we compute a good initial guess by maximizing the likelihood function L (see Eq. (23b)). Based on Eq. (24a)
and the choice of a uniform prior, maximising the posterior is equivalent to maximising the likelihood function. Sampling random
initial guesses from πpr, we solve the optimisation problem for the log-likelihood using the CMA-ES algorithm [19, 34]. We then
use the output of the optimization routine to initiate the MCMC simulation (we compute, in total, three chains). We sample from
the posterior distribution by using HaarioBardenet MCMC, which is a Metropolis-Hastings algorithm with adaptive covariance,
where the first 8000 iterations are performed without adaptation (as suggested by [38]). We compute up to 30000 iterations for each
chain and discard the first 10000 as “warm-up”. As in [20], we assess the convergence of the MCMC chains by estimating R̂ [41,
chapter 13], where we accept the sampled posterior if R̂ < 1.05 (note that R̂→ 1 as the algorithm converges).

In Figs. C.23-C.26, we show the estimated posterior distributions for our class of models M (see Table 3). Summary statistics of
the marginal posterior distributions are listed in Table C.9. For the point estimates of parameter values in §5, we use the mean of
the marginal posterior distributions (see Table C.9).

Table C.9: Summary statistics for the marginal posterior distributions for the family of models M listed in Table 3 in §5.2. We here report the mean and standard
deviation together with the quantiles (Qi) of the distribution. The last column shows the value of R̂ used to estimate the convergence of the MCMC algorithm, where
convergence corresponds to R̂ < 1.05.

Model mean std Q25% Q50% Q75% R̂

M0

α1 1.57 0.50 1.17 1.55 1.96 1.01
R+ 0.25 0.11 0.17 0.24 0.32 1.01
R− 0.28 0.10 0.21 0.27 0.34 1.01
p 0.83 0.11 0.77 0.85 0.91 1.02
q 0.89 0.06 0.86 0.90 0.94 1.01
T 16.89 1.16 16.21 17.02 17.74 1.01
K2 1.04 0.55 0.59 1.06 1.51 1.00
σ1 0.04 0.01 0.03 0.04 0.04 1.01
σ2 0.05 0.01 0.03 0.05 0.05 1.01

M1

α1 1.53 0.50 1.13 1.50 1.94 1.00
R+ 0.26 0.12 0.17 0.25 0.33 1.00
R− 0.30 0.13 0.22 0.28 0.58 1.00
p 0.83 0.11 0.76 0.85 0.91 1.00
q 0.90 0.06 0.86 0.91 0.95 1.00
T 16.93 1.18 16.21 17.05 17.78 1.00
σ1 0.04 0.01 0.03 0.04 0.04 1.00
σ2 0.05 0.01 0.04 0.05 0.05 1.00

M2

R+ 0.11 0.08 0.05 0.10 0.15 1.01
R− 0.14 0.06 0.10 0.13 0.17 1.00
p 0.71 0.16 0.59 0.71 0.83 1.01
T 15.29 0.87 14.75 15.27 15.86 1.01
σ1 0.14 0.02 0.14 0.15 0.19 1.00
σ2 0.04 0.01 0.04 0.04 0.05 1.00

M3

α1 1.63 0.53 1.22 1.66 2.08 1.01
R+ 0.21 0.19 0.08 0.16 0.27 1.04
R− 0.53 0.31 0.32 0.45 0.66 1.03
q 0.93 0.05 0.89 0.93 0.97 1.01
σ1 0.04 0.01 0.04 0.04 0.05 1.01
σ2 0.12 0.02 0.11 0.12 0.14 1.01
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Figure C.23: Approximation of the joint (surface plot) and marginal (last row) posterior distributions for modelM0 from Table 3. The distributions were obtained
by using the MCMC samples generated as discussed in the text. In the surface plot for joint distributions, yellow areas correspond to higher posterior probability
in contrast to the blue areas which correspond to low probability. In the last row, the red vertical line indicates the mean of the marginal posterior distribution as
reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given.
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Figure C.24: Approximation of the joint (surface plot) and marginal (last row) posterior distributions for modelM1 from Table 3. The distributions were obtained
by using the MCMC samples generated as discussed in the text. In the surface plot for joint distributions, yellow areas correspond to higher posterior probability
in contrast to the blue areas which correspond to low probability. In the last row, the red vertical line indicates the mean of the marginal posterior distribution as
reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given.
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Figure C.25: Approximation of the joint (surface plot) and marginal (last row) posterior distributions for modelM2 from Table 3. The distributions were obtained
by using the MCMC samples generated as discussed in the text. In the surface plot for joint distributions, yellow areas correspond to higher posterior probability
in contrast to the blue areas which correspond to low probability. In the last row, the red vertical line indicates the mean of the marginal posterior distribution as
reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given.
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Figure C.26: Approximation of the joint (surface plot) and marginal (last row) posterior distributions for modelM3 from Table 3. The distributions were obtained
by using the MCMC samples generated as discussed in the text. In the surface plot for joint distributions, yellow areas correspond to higher posterior probability
in contrast to the blue areas which correspond to low probability. In the last row, the red vertical line indicates the mean of the marginal posterior distribution as
reported in Table C.9, where additional summary statistics extrapolated from the marginal distribution are also given.
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[21] Crivelli, J.J., Földes, J., Kim, P.S., Wares, J.R., 2012. A mathematical
model for cell cycle-specific cancer virotherapy. Journal of Biological
Dynamics 6, 104–120. doi:10.1080/17513758.2011.613486.

[22] Csikász-Nagy, A., 2009. Computational systems biology of the cell cycle.
Briefings in Bioinformatics 10, 424–434. doi:10.1093/bib/bbp005.

[23] Daly, A.C., Gavaghan, D., Cooper, J., Tavener, S., 2018. Inference-
based assessment of parameter identifiability in nonlinear biologi-
cal models. Journal of The Royal Society Interface 15, 20180318.
doi:10.1098/rsif.2018.0318.

[24] Ducrot, A., Le Foll, F., Magal, P., Murakawa, H., Pasquier, J., Webb, G.F.,
2011. An in vitro cell population dynamics model incorporating cell size,
quiescence, and contact inhibition. Mathematical Models and Methods in
Applied Sciences 21, 871–892. doi:10.1142/S0218202511005404.

[25] Fadda, S., Cincotti, A., Cao, G., 2012. A novel population balance
model to investigate the kinetics of in vitro cell proliferation: Part I.
model development. Biotechnology and Bioengineering 109, 772–781.
doi:10.1002/bit.24351.
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