

1 Slow expanders invade by forming dented fronts in microbial 2 colonies

3 Hyunseok Lee¹, Jeff Gore¹ and Kirill S. Korolev^{*2}

4 ¹Physics of Living Systems Group, Department of Physics, Massachusetts Institute of
5 Technology, Cambridge, MA 02139

6 ²Department of Physics, Graduate Program in Bioinformatics, Biological Design Center,
7 Boston University, Boston, MA 02215

8 **Abstract**

9 **Abstract:**

10 Most organisms grow in space, whether they are viruses spreading within a host tissue or invasive
11 species colonizing a new continent. Evolution typically selects for higher expansion rates
12 during spatial growth, but it has been suggested that slower expanders can take over under
13 certain conditions. Here, we report an experimental observation of such population dynamics.
14 We demonstrate that the slower mutants win not only when the two types are intermixed at
15 the front but also when they are spatially segregated into sectors. The latter was thought to be
16 impossible because previous studies focused exclusively on the global competitions mediated by
17 expansion velocities but overlooked the local competitions at sector boundaries. We developed a
18 theory of sector geometry that accounts for both local and global competitions and describes all
19 possible sector shapes. In particular, the theory predicted that a slower, but more competitive,
20 mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were
21 indeed observed experimentally and their shapes matched up quantitatively with the theory. In
22 simulations, we further explored several mechanism that could provide slow expanders with a
23 local competitive advantage and showed that they are all well-described by our theory. Taken
24 together, our results shed light on previously unexplored outcomes of spatial competition and es-
25 tablish a universal framework to understand evolutionary and ecological dynamics in expanding
26 populations.

27 **Significance**

28 Living organisms never cease to evolve, so there is a significant interest in predicting and controlling
29 evolution in all branches of life sciences from medicine to agriculture. The most basic question is
30 whether a trait should increase or decrease in a given environment. The answer seems to be trivial
31 for traits such as the growth rate in a bioreactor or the expansion rate of a tumor. Yet, it has
32 been suggested that such traits can decrease rather than increase during evolution. Here, we report

*korolev@bu.edu

33 a mutant that outcompeted the ancestor despite having a slower expansion velocity. To explain
34 this observation, we developed and validated a theory that describes spatial competition between
35 organisms with different expansion rates and arbitrary competitive interactions.

36 Introduction

37 Population dynamics always unfold in a physical space. At small scales, microbes form tight associations
38 with each other, substrates, or host cells [1, 2]. At large scales, phyto- and zooplanktons form
39 complex patterns influenced by ecological interactions [3–5] and hydrodynamics [6, 7]. Between
40 these two extremes, populations constantly shrink and expand in response to changing conditions,
41 and there is still a great deal to be learned about how spatial structure affects ecology and evolution
42 [8–12]. Better understanding of these eco-evolutionary dynamics is essential for management
43 of invasive species [13, 14], controlling the growth of cancer [15], and preserving biodiversity [16,
44 17].

45 It is particularly important to understand how natural selection operates at the edge of expanding
46 populations. These expansion frontiers are hot spots of evolution because mutations that arise at
47 the edge can rapidly establish over large areas via allele surfing or sectoring [18–21]. Furthermore,
48 numerous studies argue that selection at the expansion front favors faster expanders and therefore
49 makes population control more difficult [22–32]. Indeed, organisms that expand faster have a head
50 start on growing into a new territory and may face weaker competition or better access to nutrients.
51 A well-known example is the evolution of cane toads which increased the expansion speed by 5 fold
52 over 50 years [33]. Yet, despite substantial empirical evidence across many systems [23–26, 28–32],
53 it has been suggested that the simple intuition of “faster runner wins the race” does not always
54 hold.

55 Two theoretical studies have found that slower dispersal could evolve in populations with a strong
56 Allee effect, i.e a negative growth rate at low population densities [34–36]. Slow mutants nevertheless
57 can take over the populations because they are less likely to disperse ahead of the front
58 into regions with low densities and negative growth rates. In a different context, both theory and
59 experiments have shown that slow cheaters could invade the growth front of fast cooperators [27,
60 37]. In this system, the production of public goods allowed cooperators to expand faster, but made
61 them vulnerable to the invasion by cheaters.

62 The examples above show that slower expanders succeed in the presence of a tradeoff between local
63 and global fitness. The global fitness is simply the expansion rate of a given species in isolation,
64 which determines how quickly it can colonize an empty territory. When two species are well-
65 separated in space, their competition is determined solely by the global fitness. In contrast, when
66 the two species are present at the same location, their competition could involve differences in
67 growth rates, production of public goods [38, 39], or secretion of toxins [40]. We refer to such local
68 competitive abilities as local fitness. It is natural to assume that slow expanders can win only if
69 they are superior local competitors, but it is not clear a priori if this is actually feasible or how to
70 integrate local and global fitness under various scenarios of spatial competition.

71 Our interest in the interplay between local and global competition was sparked by an unusual

72 spatial pattern in colonies of *Raoultella planticola* grown on agar plates. These colonies repeatedly
73 developed depressions or dents along the edge. We found that dents were produced by a spontaneous
74 mutant that expanded slower than the wildtype. Thus, we discovered a convenient platform to
75 explore the fate of slower expanders in spatial competition and to elucidate the tension between
76 local and global fitness.

77 In our experiment, the slower expander took over the colony either by increasing in frequency
78 homogeneously along the front or by forming pure, mutant-only, sectors. When mutant sectors
79 formed, they had an unusual “dented” or “V” shape. To explain this spatial pattern, we developed a
80 theory that describes all possible sector geometries. Our theory unifies local and global competitions
81 without assuming any particular mechanism for growth and dispersal. Although mechanism-free,
82 the theory makes quantitative predictions, which we confirmed experimentally. We also simulated
83 multiple mechanistic models to demonstrate that the takeover by slower expanders is generic and
84 could occur due to multiple ecological mechanisms. These simulations further confirmed that sector
85 shape prediction from geometric theory is universal. Taken together, our results establish a new
86 framework to understand evolutionary and ecological dynamics in expanding populations with
87 arbitrary frequency- and density-dependent selection.

88 Results

89 *Experimental observation of slow mutants taking over the front*

90 The strains used in our experiment were derived from a soil isolate of *Raoultella planticola*, a Gram-
91 negative, facultatively anaerobic, non-motile bacterium that is found in soil and water and can
92 occasionally lead to infections [41, 42]. We grew *R. planticola* on a hard LB agar plate (1.5% agar)
93 and noticed the formation of V-shaped dents along the front. Such dents were reproducibly observed
94 in biological replicates (Fig. S1). Suspecting that dents were caused by a mutation, we isolated
95 cells from the smooth parts of the colony edge (wildtype) and from the dents (mutant) (Fig. 1A).

96 We first characterized the expansion dynamics of the two strains in isolation by inoculating each
97 culture at the center of a hard agar plate. Both strains formed smooth, round colonies, which
98 expanded at a constant velocity (Fig. 1B, Fig. S2). The wildtype had about 50% larger expansion
99 velocity compared to the mutant. Thus, the evolved strain was a slower expander.

100 Our observations seemed paradoxical given numerous observations of invasion acceleration due to
101 genetic changes that increase expansion velocities [33, 43]. However, range expansions are known to
102 produce high genetic drift [44, 45] and, therefore, allow for the fixation of deleterious mutations [20,
103 46–49]. So, we next investigated whether the mutant has a selective advantage in competition with
104 the wildtype within the same colony.

105 We competed the two strains by inoculating an agar plate with a drop containing a 99:1 mixture
106 of the wildtype and the mutant. We used two wildtype strains (and their respective mutants) with
107 different fluorescent labels and the spatial patterns were analyzed with fluorescence microscopy
108 (see Methods). After about 48 hours of growth, a ring of mutant completely encircled the wild-
109 type (Fig. 1C). Only the mutant ring continued to expand, while the expansion of the wildtype

110 ceased (Fig. S3). Thus the mutant not only localized to the front but also achieved a greater pop-
111 ulation size. This is quite different from other microbial systems where a strain with poor motility
112 localized to the front without suppressing the growth of faster strain and without producing a
113 larger biomass [50, 51]. Thus, our experiments strongly suggest that the mutant has a competitive
114 advantage despite its lower expansion velocity.

115 *Experimental observation of slow mutants invading by forming dented fronts*

116 Our initial competition experiments did not exhibit the dents that sparked our initial interest in
117 the strains. The mutant took over uniformly across the expansion front, producing a rotationally
118 invariant spatial pattern (Fig. 1C). In fact, one might even argue that the success of the mutant
119 could have been entirely due to the transient growth dynamics, and the wildtype would prevail if
120 allowed to somehow spatially segregate from the mutant. To address both of these concerns, we
121 sought to alter the experiments so that the mutant and the wildtype grow as distinct sectors within
122 the same colony.

123 In microbial colonies, sectors emerge due to genetic drift at the growing edge. The magnitude
124 of demographic fluctuations varies widely in different systems, depending on the organism, the
125 growth conditions, and the duration of the experiment [52, 53]. To test for the effects of sectoring,
126 we needed to increase stochasticity without altering other aspects of the competition. Reducing
127 the cell density of the initial inoculant accomplished this goal. By lowering the inoculant density
128 (from 10^{-1} OD₆₀₀ to 10^{-3} OD₆₀₀), we increased the separation between cells that localized to the
129 colony edge following the drying of the inoculation drop. This in turn dramatically increased the
130 formation of monoclonal sectors (Fig. 1D).

131 Although sectoring spatially segregated the two strains and, thus, allowed the wildtype to expand
132 with a higher velocity, the slower mutant still outcompeted the wildtype (Fig. 1D, Fig. 1E). The
133 takeover of mutant was robust under different choices of initial density, initial mutant fraction, and
134 fluorescent label (Fig. S4, Fig. S5). The takeover by the mutant also produced the characteristic
135 V-shaped dents at the colony edge. These dents are the exact opposite of the bulges or protrusions
136 that one usually observes for beneficial mutations [54]. Typically, the advantageous mutants have
137 a greater expansion velocity and, therefore, outgrow the ancestors at the front. For our strains,
138 however, the winning mutant had a lower expansion velocity, and this lower expansion velocity
139 produced the opposite of the bulge—the dent.

140 *Mechanism-free theory of sector geometry*

141 Our experiments unambiguously demonstrated that a slower expander can indeed outcompete a
142 faster expander with and without sectoring. Still, we need a careful theoretical description of the
143 spatial dynamics to reconcile the apparent contradiction between the slow global expansion of the
144 mutant and its superior performance in local competition. We could approach this question by
145 simulating a specific ecological mechanism that could be responsible for the tradeoff between local
146 and global fitness. However, it is much more useful to first ask what can be said about spatial
147 competition generically and determine the range of possible sector shapes without relying on any

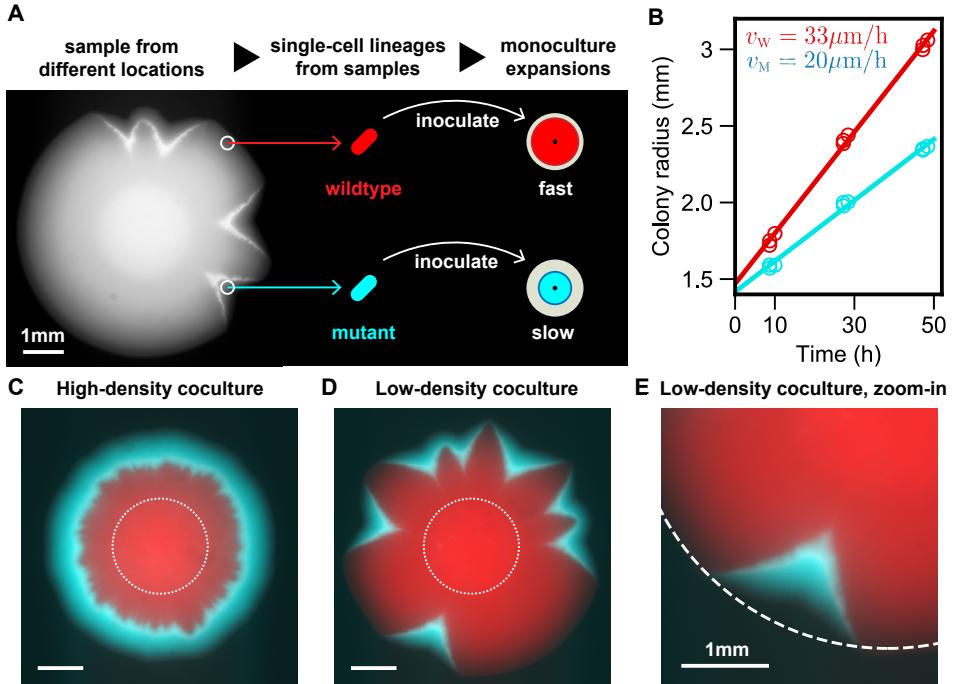


Figure 1: Slow mutant takes over the front with and without sector formation. (A) We found that wildtype *R. planticola* colonies develop V-shaped indentations; a bright-field image is shown. We sampled cells from the dents and non-dented regions and then developed strains descending from a single cell (see Methods). (B) The mutant expanded more slowly than the wildtype. The data points come from two technical replicates, and the line is a fit. (C, D) Despite its slower expansion, the mutant wins in coculture. Fluorescence images show the spatial patterns 48 hours after inoculation with a 99:1 mixture of the wildtype and mutant. A ring of mutant (cyan) outrun and encircled wildtype (red) when the mixed inoculant had a high density (OD_{600} of 10^{-1}). Mutant sectors emerged and widened over the front when the mixed inoculant had a low density (OD_{600} of 10^{-3}). Images are taken 48 hours after inoculation, and dotted lines represent initial inoculant droplets. (E) A zoomed image of a V-shaped sector (from the bottom of D). Dotted circle is a fit from wildtype expansion. The advantage of the mutant and its slower expansion is evident from the lateral expansion of the cyan sector.

148 specific mechanism.

149 Our analysis follows the approach similar to geometric optics in physics [55–57] and it relies on
150 a few standard assumptions. The expansion velocities of the two strains (v_W and v_M) are as-
151 sumed to be time-independent both to simplify the calculations and to reflect experimental obser-
152 vation (Fig. 1B). We also assume, consistent with past studies [58–60], that there is little growth
153 behind the front so that the spatial pattern remains once established as in our experiments. Fi-
154 nally, we neglect long-range interactions due to the diffusion of nutrients, toxins, or signaling
155 molecules¹ [61–63].

156 The nontrivial aspect of our work is how we capture the effect of local competition between strains.
157 This can be done in a number of equivalent ways. The most intuitive one is to define a velocity u
158 with which the mutant invades laterally into the population of the wildtype. Alternatively, one can
159 consider the velocity of the boundary between the strains: v_B , which cannot be inferred solely from
160 v_W and v_M and thus contains information about local fitness. and the angles between the boundary
161 and expansion fronts. The connection between these approaches is illustrated in Fig. 2A.

162 The knowledge of the three velocities (v_W , v_M , and u) is sufficient to simulate how the shape of the
163 colony changes with time. In some situations, colony shapes can also be obtained analytically by
164 comparing the position of the front at two times t and $t + \Delta t$. We derive the equations for sector
165 shapes by requiring that all distances between the corresponding points of the two fronts are given
166 by Δt times the appropriate velocity (Fig. 2B). The details of these calculations are provided in
167 the SI (Fig. S9).

168 We found that all possible sector shapes fall into three classes. Without loss of generality, we take u
169 to be positive by calling the mutant the strain that invades locally. The shape of the sector is then
170 largely determined by v_M/v_W . When this ratio is less than one, sectors have a dented shape. In
171 the opposite case, sectors bulge outwards. The exact shape of the front of course depends on all
172 three velocities. Overall, there are the two broad classes discussed above and a special limiting case
173 when $u = \sqrt{v_M^2 - v_W^2}$ which is discussed below. In all cases, we obtained sector shapes analytically
174 for both circular and flat initial fronts (SI Fig. S10, Fig. S11). The latter are summarized in Fig. 2C
175 and are used to test the theoretical predictions.

176 The geometrical theory provides a concrete way to define local fitness advantage, u/v_W , and global
177 fitness advantage, $v_M/v_W - 1$. These two types of fitness can take arbitrary values, even with
178 opposite signs. The only condition is that a positive u needs to be larger than $\sqrt{v_M^2 - v_W^2}$ when the
179 mutant is faster than the wildtype. This constraint arises because, for large v_M/v_W , the gaining of
180 new territory due to the large global fitness advantage outpaces the gain in the new territory due
181 to a smaller local fitness advantage. The constraint on u is not relevant to dented fronts, so we
182 relegate this discussion to the SI (Fig. S8).

¹The addition of long-range interactions would provide greater modelling flexibility and therefore make it easier to observe novel spatial patterns such as a V-shaped sector. Our work shows that this extra flexibility is unnecessary and dented fronts can appear in purely local models.

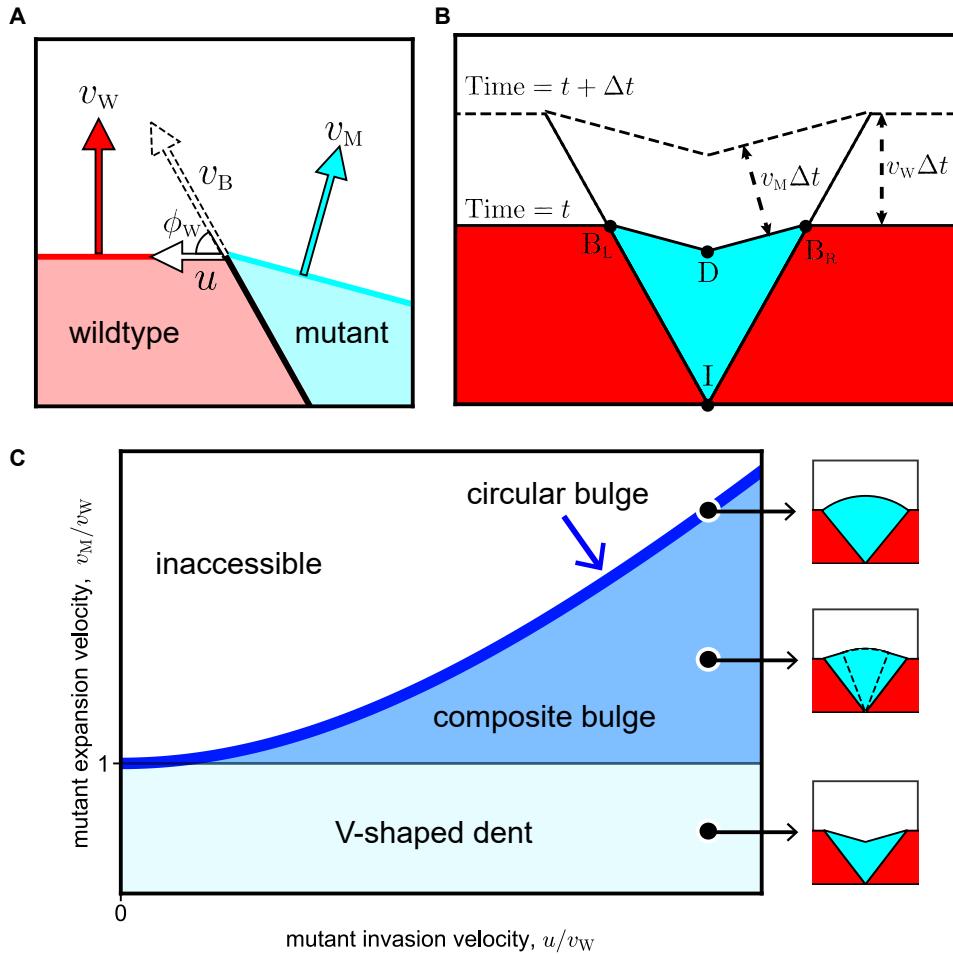


Figure 2: Geometric theory predicts sector shapes as a function of local and global fitness. Flat-front initial conditions are illustrated here, and the corresponding results for circular fronts are shown in the SI. (A) Global fitness of mutant and wildtype are defined with speeds v_W and v_M with which their fronts advance. Local fitness is defined by movement of sector boundary which advances with speed v_B at angle ϕ_W with the wildtype front. We use lateral invasion speed u to describe the local fitness, and the equivalence among v_B , ϕ_W , and u is explained in SI I.. (B) The shape of the mutant sector can be derived from geometric considerations. During a time interval Δt , the boundary points B_L and B_R move upward by $v_W \Delta t$ and laterally outward by $u \Delta t$. The position of the dent D is obtained from the requirement that both $\overline{DB_L}$ and $\overline{DB_R}$ shift by $v_M \Delta t$; the directions of the shifts are perpendicular to $\overline{DB_L}$ and $\overline{DB_R}$ respectively. Point I labels the origin of the sector. (C) The geometric theory predicts sector shapes as a function of u/v_W and v_M/v_W . When $v_M < v_W$ and $u > 0$, the mutant forms a V-shaped dented front; note that all boundaries are straight lines. When $v_M > v_W$ and $u > \sqrt{v_M^2 - v_W^2}$, the mutant forms a bulged front. The shape of the bulge consists of two regions. It is an arc of a circle near the middle and two straight lines near the two boundaries between the mutant and the wildtype. The circular region grows and the linear region shrinks as v_M/v_W increases at constant u/v_W . The bulge becomes completely circular when v_M/v_W reaches its maximal value of $\sqrt{1 + u^2/v_W^2}$ on the boundary of the accessible region. See SI for derivation and exact mathematical expressions of all sector shapes.

183 *Experimental test of the geometric theory*

184 How can we test whether the theory of sector geometry described above indeed applies to our
 185 experiments? The theory utilizes three velocities v_W , v_M , and u to predict the shape of the sector
 186 boundary and the sector front. The absolute values of the velocities determine how quickly the
 187 colony grows overall and its shape depends only on two dimensionless parameters: v_M/v_W and u/v_W .
 188 The first parameter can be obtained from the direct measurements of expansion velocities in mono-
 189 cultures. The second parameter can be inferred by fitting the shape of the sector boundary to
 190 the theory. This leaves the shape of the sector front as an independent measurement that can be
 191 compared to the theoretical prediction.

192 The linear expansion geometry greatly simplifies all the steps involved in testing the theory be-
 193 cause the shapes of both the sector boundary and the dent are determined by their opening angles.
 194 Qualitative agreement with this theoretical prediction is quite clear from the experimental im-
 195 ages (Fig. 3A), which indeed show that mutant sectors are bounded by straight lines on all sides.
 196 The opening angle of the sector boundary determines u/v_W and the opening angle of the dent serves
 197 as a testable prediction (Fig. 3B).

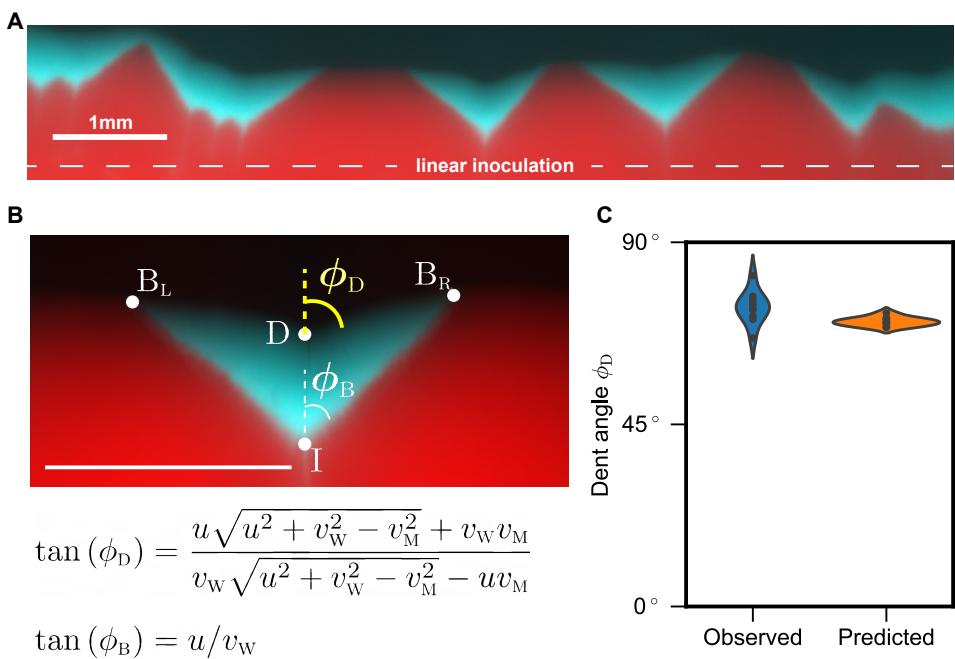


Figure 3: Empirical test of predicted sector shapes. (A) We used linear inoculations with low density and low fraction of the mutant and grew the colonies for 48 hours. (B) Top: Zoom-in image of one of the sectors. The shape of mutant sector is quantified by two opening angles: one between the two sector boundaries $2\phi_B$ and one between the two parts of the expansion front that meet at the dent $2\phi_D$. Bottom: The theory predicts ϕ_B and ϕ_D as functions of the three velocities: v_W , v_M , and u . We used ϕ_B to determine u/v_W and predict ϕ_D ; v_M/v_W is measured from monoculture expansions. (C) The observed and predicted values of ϕ_D are very close to each other.

198 Our experiments proceeded as follows. We first measured expansion velocities in monocultures by
 199 tracking the colony radius as a function of time; see Fig. 1B. Then, the data on sector shapes were

200 collected from plates inoculated along a straight line with a low-density (10^{-3} OD₆₀₀) 99:1 mixture
201 of the wildtype and the mutant. After two days of growth, five well-isolated sectors were analyzed to
202 determine ϕ_B and ϕ_D (see Methods). Since each side of the angle can be used, we effectively obtained
203 ten measurements. Figure 3C shows that observed ϕ_D is 73.93° (SD=3.81°, SEM=1.21°, n=10).
204 Predicted ϕ_D is 70.39° (SD=1.02°, SEM=0.32°, n=10). This is an excellent agreement given other
205 sources of variability in our experiment including variations in velocity between replicates and
206 potential systematic errors in fitting sector shapes. Thus the geometric theory not only provides
207 an explanation of the novel sector shape, but also describes it quantitatively.

208 Another experimental verification of our theory comes from Ref. [54] that studied sector shapes
209 in yeast colonies. Instead of dents, their strains produced circular bulges (the special case with
210 $v_M = \sqrt{v_W^2 + u^2}$). For this special case, our results fully agree with both their theoretical and
211 experimental findings (see Eq. 12, Table 1, and Figure S8 in Ref. [54]). As far as we know, the
212 intermediate case of composite bulge (see Fig. 2C) has not been observed yet. Perhaps engineered
213 strains with a tunable tradeoff between local and global fitness would enable the observation of all
214 sector shapes in a single system.

215 *Concrete mechanisms of fitness tradeoff*

216 The geometric theory integrates local and global competition and quantitatively predicts the shape
217 of mutant sector in our experiment. Yet, the theory does not provide a tangible mechanism behind
218 the takeover by a slower expander. To show that dented fronts emerge readily under different
219 ecological scenarios we used the flexible framework of reaction-diffusion models, which are also
220 known as generalized Fisher-Kolmogorov equations [64–66]. A general model can be written as:

$$\begin{aligned}\partial_t n_W &= (\nabla^2 (D_W n_W) + r_W n_W) (1 - n_W - n_M), \\ \partial_t n_M &= (\nabla^2 (D_M n_M) + r_M n_M) (1 - n_W - n_M).\end{aligned}\quad (1)$$

221 Here, n_W and n_M are the population densities of the wildtype and the mutant normalized by the
222 shared carrying capacity; D_W , r_W and D_M , r_M are their respective dispersal and per capita growth
223 rates.

224 The factor of $(1 - n_W - n_M)$ ensures that there is no growth or movement behind the front. In
225 the growth term, this is a standard assumption that ensures finite carrying capacity [66]. In the
226 dispersal term, the factor of $(1 - n_W - n_M)$ has rarely been studied in mathematical biology because
227 it is specific to microbial range expansions, where there is no movement behind the front [54, 58–60].
228 In the SI, we demonstrate that dented fronts also occur with standard density-independent dispersal
229 and therefore could be relevant for range expansions of macroscopic organisms (SI appendix II.).

230 The non-spatial limit of Eq. 1 is obtained by dropping the dispersal term. This limit is analyzed
231 in the appendix III.. As population grows from any initial condition, the relative abundance of
232 the faster grower increases until the total population density reaches the carrying capacity. At
233 this point there is no further change in n_W and n_M . This neutral coexistence between the two
234 strains ensures that the population is frozen behind the front and the competition unfolds only at
235 expansion frontier.

236 The simplest spatial model takes all growth and dispersal rates to be independent of population
 237 density. It is then easy to show that there is no difference between local and global fitness; see
 238 Fig. S6 and Ref. [54]. Most of the previous work focused on this special case of so-called “pulled”
 239 waves [67] and thus could not observe the takeover by the slower expander.

240 Many organisms, however, exhibit some density dependence in their growth or dispersal dynam-
 241 ics [68–72], which can lead to a tradeoff between local and global fitness. One commonly-studied
 242 case is found in the interaction between cooperators and cheaters [27, 50, 73, 74]. To model this
 243 ecological scenario, we take

$$D_W = D_M = D, \\ r_W = r \left(1 - \alpha \frac{n_M}{n_W + n_M} \right), \quad r_M = r \left(1 - s + \alpha \frac{n_W}{n_W + n_M} \right). \quad (2)$$

244 The benefit of cooperation is specified by s , which is the difference in the growth rate of cooperators
 245 and cheaters when grown in isolation. The benefit of cheating is controlled by α ; the growth rate of
 246 cheaters increases by up to α provided cooperators are locally abundant. For simplicity, we chose
 247 a symmetric linear dependence of the growth rates on the mutant frequency and assumed that the
 248 diffusion constants are equal.

249 Numerical simulations of this model reproduced a V-shaped dented front (Fig. 4A). The dents
 250 flattened when there was no benefit to cooperate ($s = 0$) and were replaced by bulges when
 251 cooperators grew slower than cheaters ($s < 0$). We were also able to test whether these transitions
 252 in sector shape matched the predictions of the geometric theory. For this comparison between the
 253 theory and simulations, we need a mapping between the microscopic parameters of the model and
 254 the three velocities that enter our geometric theory. Fortunately, in this model, all three velocities
 255 can be calculated analytically: $v_W = 2\sqrt{rD(1+s)}$, $v_M = 2\sqrt{rD}$, and $u = \sqrt{(\alpha-s)rD}$. Therefore,
 256 we could overlay individual simulations on the phase diagram predicted by the geometric theory.
 257 The result, shown in Fig. 4A, shows the expected agreement and provides further validation for the
 258 geometric theory.

259 The geometric description is generic and should transcend the specifics of the cooperator-cheater
 260 model discussed above. To further illustrate that different ecological interactions can produce
 261 identical spatial patterns, we simulated a completely different mechanism for the tradeoff between
 262 local and global fitness. This time, we assumed that the wildtype loses the local competition
 263 because it grows slower than the mutant, but this slower growth is more than compensated by a
 264 much higher dispersal rate. This growth-dispersal tradeoff may be common in nature [29, 75–77],
 265 and is captured by the following set of parameters:

$$D_W = D_M = D_0 - D_1 \frac{n_M}{n_W + n_M}, \\ r_W = r, \quad r_M = r(1+s). \quad (3)$$

266 Here, the growth rates are density-independent, but the dispersal rates change with the local
 267 community composition. We chose $D_W = D_M$ to reflect the collective nature of movement in colonies

268 of non-motile microbes [78, 79], which are pushed outward by mechanical stressed generated by all
269 cells behind the front. In addition, this simplifying assumption enables us to calculate the velocities
270 analytically and construct a quantitative phase diagram similar to Fig. 4A. In the SI, we show that
271 dented front can also be observed in models with $D_w \neq D_m$ (Fig. S7).

272 Our simulations again exhibited dented fronts and all shape transitions in full agreement with the
273 geometric model (Fig. 4B). Thus, the geometric description is universal, i.e. a wide set of growth-
274 dispersal dynamics converges to it. This universality, however, makes it impossible to determine
275 the specifics of ecological interactions from spatial patterns alone. In other words, the observation
276 of a dented front indicates the existence of a tradeoff between local and global fitness, but does
277 not hint at any specific mechanism that is responsible for this tradeoff. For example, both models
278 (Eq. 2 and Eq. 3) produce identical sector shapes (Fig. 4) and both would provide a perfect fit to
279 our experimental data. Indeed, each model has four parameters, which is more than sufficient to
280 specify the three velocities that control all aspects of spatial patterns. Such fits of course would not
281 provide a meaningful insight into the mechanism. To determine the mechanism, one would have to
282 perform a different kind of experiments that could probe population dynamics on the spatial scale
283 of local competition.

284 Discussion

285 This study used a simple and well-controlled laboratory microcosm to elucidate the factors that
286 influence spatial competition. We found a stark contradiction to the intuitive expectation that the
287 faster runner wins the race [32]. A mutant that expanded more slowly on its own nevertheless took
288 over the expansion front when inoculated with the wildtype. This spatial takeover accompanied
289 V-shaped sectors, which are a characteristic signature of the mismatch between local and global
290 competition. To explain these observations, we developed a theory that integrates local and global
291 competition and predicts all possible sector shapes. We then confirmed the validity of the theory
292 using both further experiments and simulations.

293 Our experimental results unequivocally demonstrate that a slow expander can win with and without
294 sectoring. Under low genetic drift conditions, the slow expander took over the front uniformly across
295 the colony. This outcome can be described by one-dimensional models because the competition
296 occurs primarily along the radial direction. In contrast, stronger genetic drift resulted in sector
297 formation and produced fully two-dimensional growth dynamics. Even under these less favorable
298 conditions, the slower mutant still outcompeted the wildtype.

299 Previously, slower expanders were found to be successful only in one-dimensional models [34, 36,
300 37], and only bulged sectors of faster expanders were reported for two-dimensional growth [54].
301 The latter was true even when there was a tradeoff between local and global fitness [80], presumably
302 because local fitness advantage was not sufficiently large. Our experiments not only confirm the
303 predictions of one-dimensional models, but also expand the set of conditions under which the
304 unusual takeover by a slower mutant can be observed. In fact, the slower expanders could be
305 successful in many settings not only because the theory and simulations strongly support this
306 claim, but also because we relied on evolved mutants from natural isolates rather than genetic
307 engineering to obtain the strains.

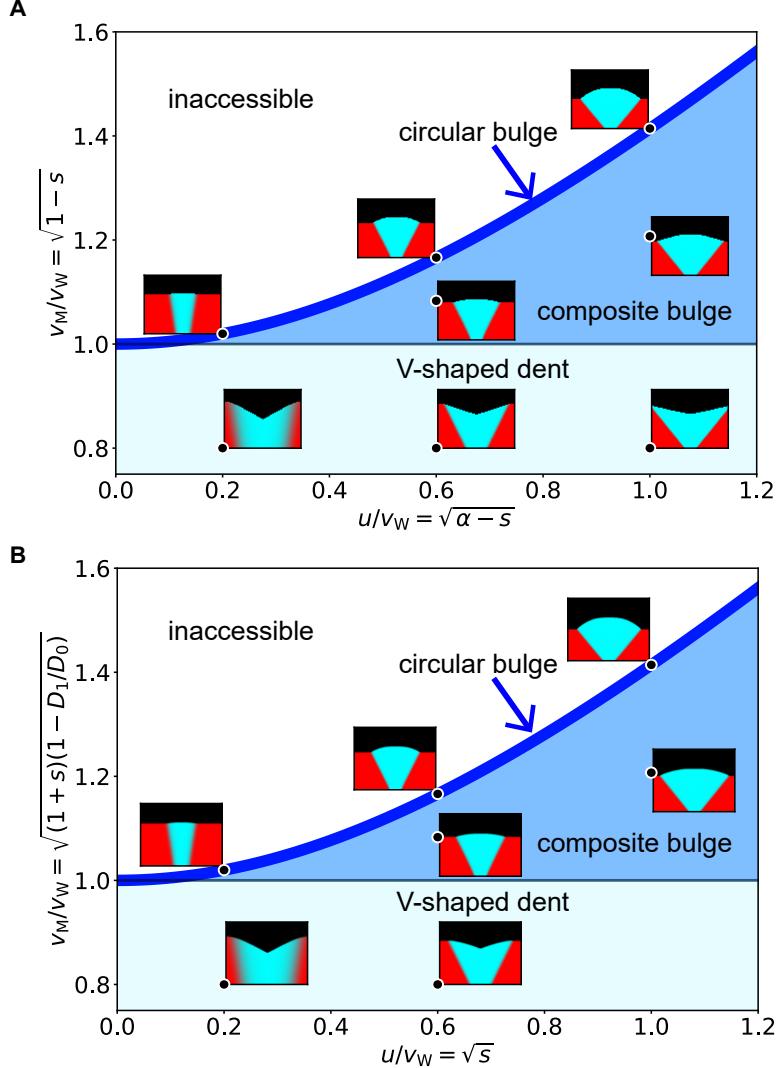


Figure 4: Sector shapes from microscopic simulations recapitulate phase diagram from the geometric theory. (A) Simulation of cooperator-cheater model (Eq. 2) is compared with the geometric theory. By varying s (benefit from cooperation) and α (strength of cheating), we explored sector shapes for different values of v_M/v_W and u/v_W . The locations of various sector shapes match the predictions of the geometric theory. In particular, V-shaped dents are observed when a cheater expands more slowly than a cooperator ($s > 0$), but has a sufficiently large advantage from cheating ($\alpha > s$). (B) Simulations of growth-dispersal tradeoff model (Eq. 3) also agree with the geometric theory. Different sector shapes were obtained by varying the the growth advantage s and and the dispersal disadvantage D_1 . See Methods for simulation parameters.

308 The observation of dented fronts clearly shows that the existing theoretical understanding of sector
309 growth is incomplete. Previously, it was assumed that the spatial pattern depends only on the
310 ratio of the mutant and wildtype velocities [54]. This simple picture holds when the fast expander
311 also has a moderate advantage in local competition. More generally, however, we found that the
312 outcome of the competition also depends on the velocity u with which one of the strains invades
313 locally. The sector shapes are completely determined by the three velocities (v_M , v_W , u) and can be
314 used to make quantitative inferences from experimental data. Nevertheless, the main contribution
315 of our theory is its ability to integrate local and global competition and predict how large scale
316 spatial patterns emerge from species interactions.

317 The geometric theory is not without limitations. This phenomenological theory cannot predict
318 whether the fast or the slow mutant wins in a given system. To answer that question, one needs
319 to consider a mechanistic model and derive how the invasion velocity u depends on microscopic
320 parameters, which we have done for specific models. The universal nature of the geometric theory
321 also precluded us from identifying the mechanism responsible for the growth dynamics observed in
322 our experiments. We left this fascinating question for future works, and instead, focused on several
323 common tradeoffs between local and global fitness. The simulations of these tradeoffs not only
324 confirmed the validity of the geometric theory, but further highlighted that slower expanders could
325 establish by a wide range of mechanisms.

326 The geometric theory also relies on a few technical assumptions such as constant expansion ve-
327 locities, negligible stochasticity, and the absence of long-range interaction due to chemotaxis or
328 nutrient depletion. Relaxing these assumptions could lead to certain quantitative changes in sector
329 shapes, but the existence of dented fronts or the possibility of a takeover by a slower expander
330 should not be affected.

331 Our work opens many directions for further investigation. We clearly showed that the expansion
332 velocity cannot be the sole determinant of the spatial competition. Therefore, it will be important to
333 examine how local interactions influence the eco-evolutionary dynamics during range expansions.
334 Such future work would bring about a more detailed description of ecological and biophysical
335 processes in growing populations. It would also greatly enhance our understanding of the tradeoffs
336 among different life-history traits and shed light on the incredible diversity of successful strategies
337 to navigate spatial environments [29, 75–77]. The geometric theory developed here provides a
338 convenient way to integrate these various aspects of population dynamics. It abstracts the main
339 features of spatial growth and should facilitate the analysis of both experiments and simulations.

340 Material and Method

341 Strains

342 Wildtype *Raoultella planticola* strains were isolated from a soil sample (MIT Killian Court, Cam-
343 bridge, MA) [81] and were tagged with two different fluorescent proteins mScarlet-I (red) and
344 mTurquoise2 (cyan) by insertion of plasmids pMRE145 and pMRE141 respectively [82]. As we grew
345 wildtype colonies on agar plates, they reproducibly developed dents after several days as shown in
346 Fig. 1A and Fig. S1. We sampled the cells from either inside the dent or on the smooth edge using

347 inoculation loops, streaked on small plates, and grown in 30°C for two days. Then we sampled
348 single colonies, grew them overnight in LB growth media, and stored as a -80°C glycerol stock.

349 *Growth media preparation*

350 We prepared hard agar plates with 1X Luria-Bertani media (LB, 2.5% w/v; BD Biosciences-US)
351 and 1.5% w/v of agar (BD Bioscience-US). We also added 1X Chloramphenicol (Cm, 15mg/L,
352 prepared from 1000X solution) for constitutive expression of fluorescence. For each agar plate,
353 4mL of media was pipetted into a petri dish (60X15mm, sterile, with vents; Greiner Bio-one), and
354 was cooled overnight (15 hours) before inoculation.

355 *Expansion experiment*

356 For each strain, -80°C glycerol stock was streaked on a separate plate and grown for 2 days. Then
357 a colony from each strain was picked up and put into a 50mL Falcon Tube filled with 5 mL of
358 liquid media (1X LB and 1X Cm). Bacterial cultures were grown overnight at 30°C under constant
359 shaking 1350 rpm (on Titramax shakers; Heidolph). We then diluted and mixed the cultures to
360 desired total density and mutant fraction, measured in optical density (OD₆₀₀) using a Varioskan
361 Flash (Thermo Fisher Scientific) plate reader. For circular expansions, we gently placed a droplet
362 of 1.5 μ L inoculant at the center of an agar plate. For linear expansions, we dipped a long edge of
363 a sterile cover glass (24X50mm; VWR) gently into the culture and touched the agar plate with the
364 edge. After inoculation, each colony was grown at 30°C for 48 hours.

365 *Imaging*

366 At fixed times after inoculation, each plate was put on a stage of Nikon Eclipse Ti inverted light
367 microscope system. 10X magnification was used for whole-colony images, and 40X magnification
368 was used for single sector images. Fluorescent images were taken using Chroma filter sets ET-
369 dsRed (49005) and ET-CFP (49001) and a Pixis 1024 CCD camera.
370 We used scikit-image [83] for image processing in Python. Images from different fluorescent chan-
371 nels were integrated after background subtraction and normalization by respective maximum in-
372 tensity. The sector boundaries were identified as the furthest points from inoculation plane where
373 both strains' FL intensities were above respective thresholds. The codes for image analysis will
374 be available via GitHub (https://github.com/lachesis2520/dented_front_public.git) upon
375 publication.

376 *Numerical simulation*

377 Numerical simulations were performed by solving the corresponding partial differential equations
378 on a square grid using a forward-in-time finite difference scheme that is second order accurate in
379 space and first order accurate in time [84]. Python codes will be available via GitHub (<https://>

³⁸⁰ `//github.com/lachesis2520/dented_front_public.git`) upon publication.
³⁸¹ For cooperator-cheater model simulation, we used the following set of values for parameters (s, α) :
³⁸² $(-0.04, 0)$, $(-0.36, 0)$, $(-1, 0)$, $(-0.173, 0.187)$, $(-0.457, 0.543)$, $(0.36, 0.4)$, and $(0.36, 0.72)$.
³⁸³ For growth-dispersal tradeoff model simulation, we used (s, D_1) of $(0.04, 0)$, $(0.36, 0)$, $(1, 0)$, $(0.36, 0.147)$,
³⁸⁴ $(1, 0.271)$, $(0.04, 0.385)$, and $(0.36, 0.529)$.

³⁸⁵ Acknowledgements

³⁸⁶ We thank all members of the J.G. laboratory for helpful discussions. Anthony Ortiz provided the
³⁸⁷ wildtype *R. planticola* strain and Daniel R. Amor helped with preliminary work for this study.
³⁸⁸ This work was supported by NIH (R01-GM102311) and the Sloan Foundation (G-2021-16758)
³⁸⁹ to J.G. and by the Simons Foundation Grant #409704, Cottrell Scholar Award #24010, and by
³⁹⁰ NIGMS grant #1R01GM138530-01 to K.S.K. The authors also acknowledge the MIT SuperCloud
³⁹¹ and Lincoln Laboratory Supercomputing Center for providing computational resources.

392 Supplemental Information

393 **Contents**

394 I. Geometric theory and sector shapes	24
395 Introduction	24
396 Linear inoculation	26
397 Circular inoculation	29
398 II. Dispersal without carrying capacity	33
399 III. Nonspatial limit for mechanistic models	34
400 Cheater-cooperator model	34
401 Growth-dispersal tradeoff model	35

402 **Supplementary figures**

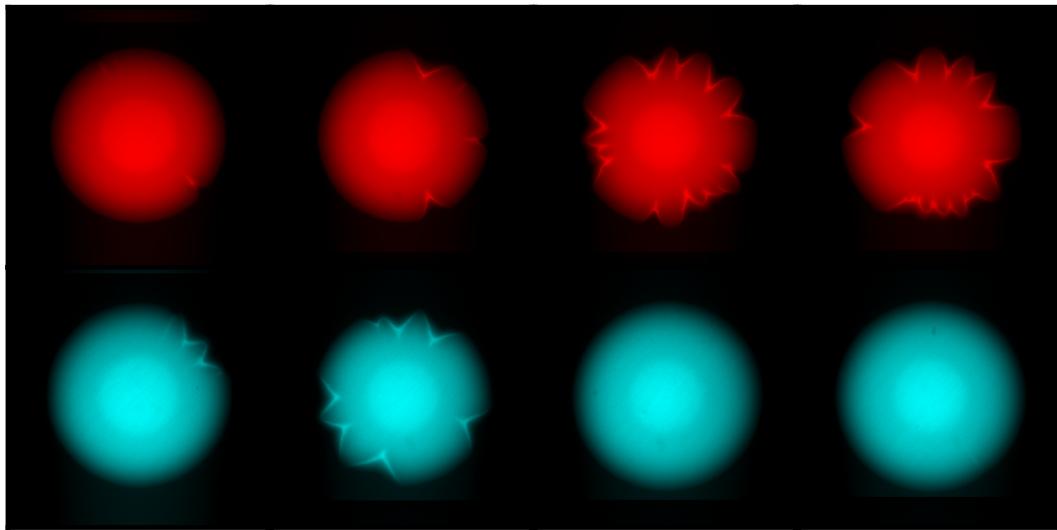
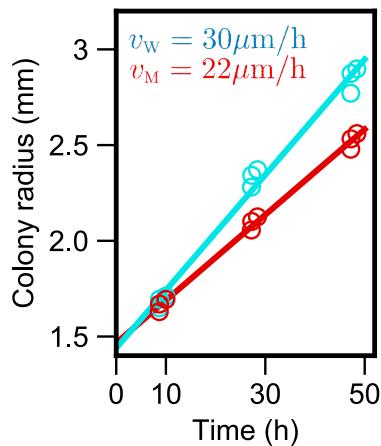


Figure S1: Emergence of dents in wildtype colonies was reproducible. Wildtype colonies were grown for 48 hours. Top: wildtype strains constitutively expressing mScarlet-I. Bottom: wildtype strains constitutively expressing mTurquoise-2.



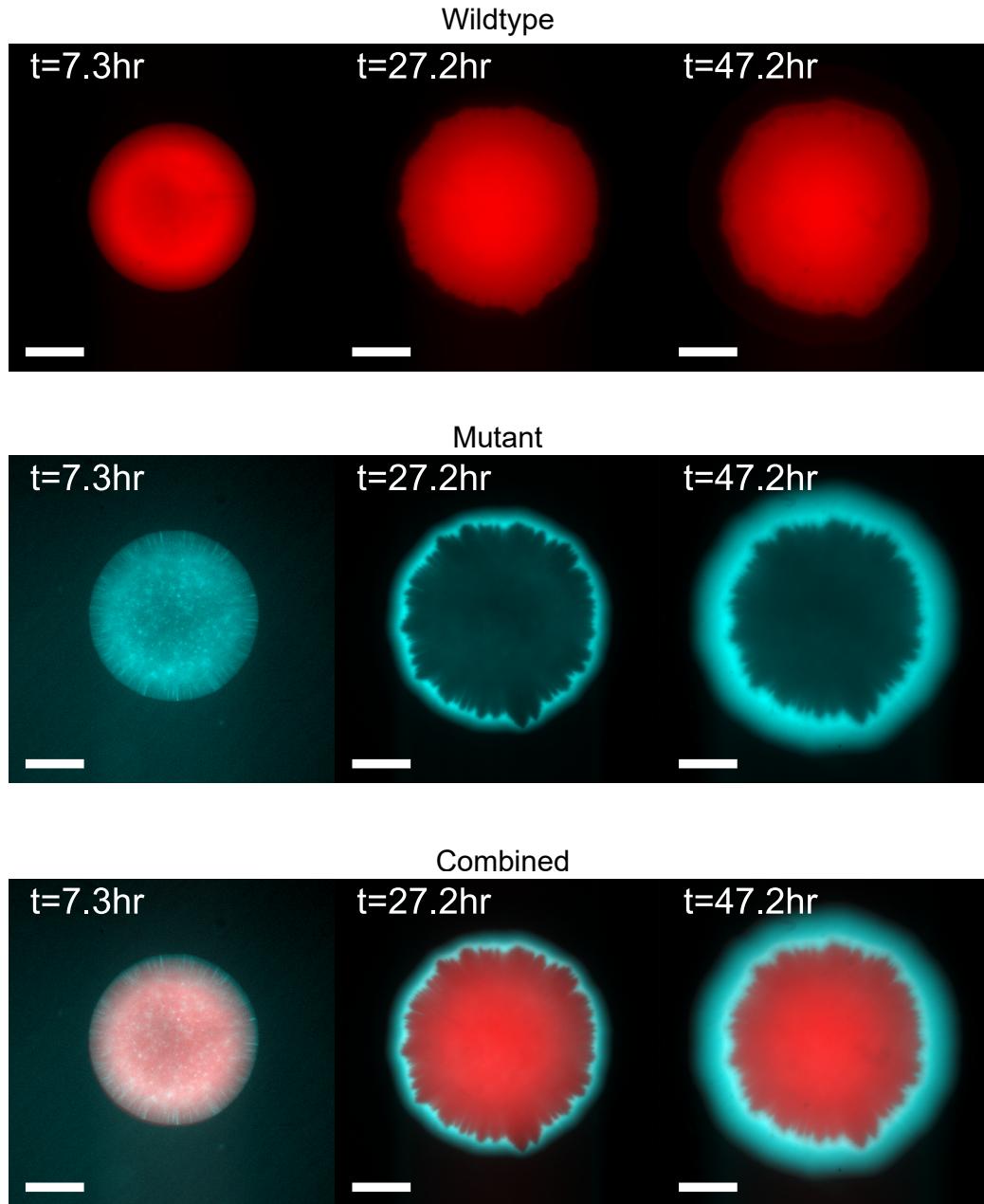


Figure S3: In co-culture experiment, wildtype did not expand after a day while mutant kept expanding. Top: Fluorescence images of wildtype cells during expansion. Middle: Fluorescence images of mutant cells during expansion. Bottom: combined.

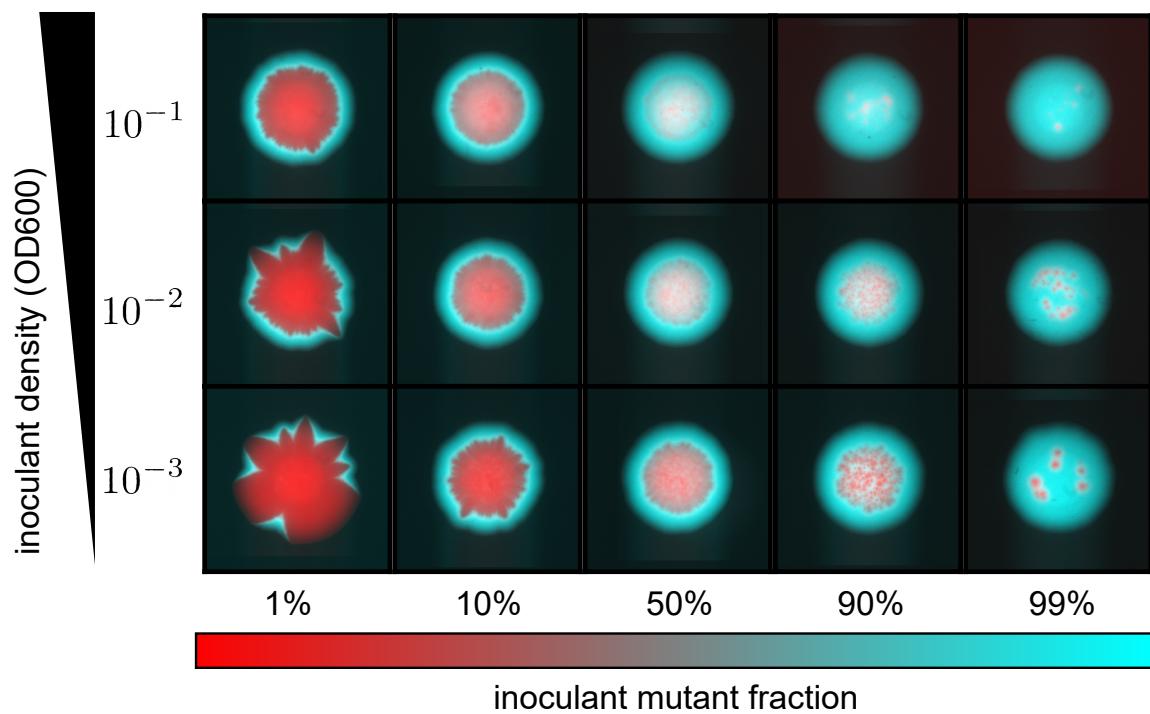


Figure S4: Mutant outcompetes wildtype under a wide range of inoculant densities and initial mutant fractions.

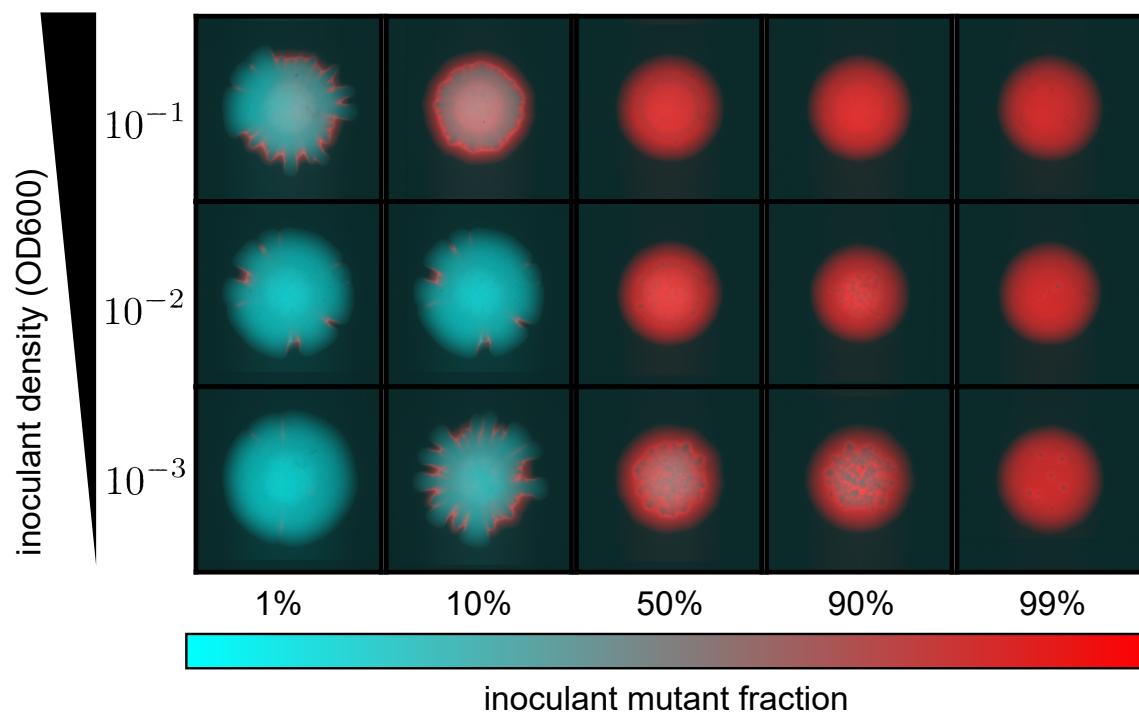


Figure S5: Mutant outcompetes wildtype under a different choice of fluorescent labels of wildtype and mutant.

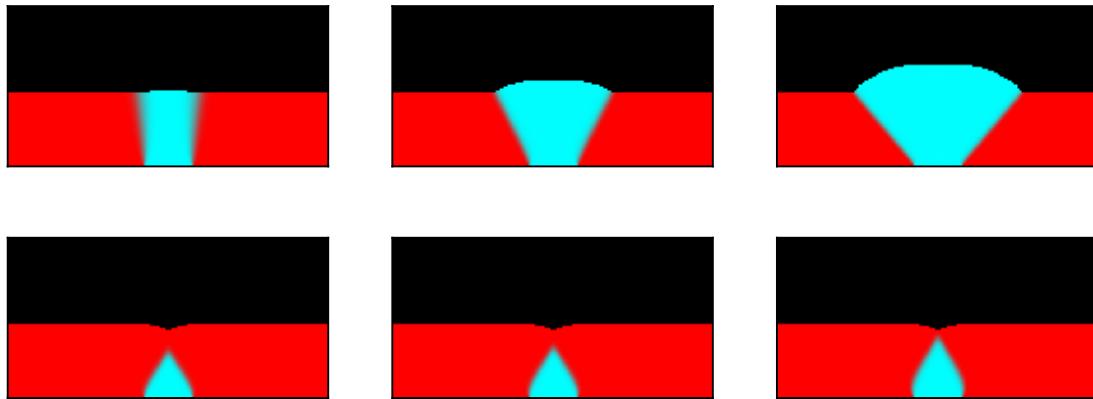


Figure S6: No dented fronts occur in simulations with density-independent growth and dispersal. In each column, the growth advantage $r_M/r_W - 1$ is the same (Left: 0.04, Middle: 0.36, Right: 1). Simulations in top row have $D_W = D_M$, so that the ratio of the expansion velocities varies with the growth rates ($v_M = v_W \sqrt{r_M/r_W}$). For the bottom row, we used $D_M = \frac{0.64r_W}{r_M} D_W$ so that $v_M = 0.8v_W$. We observed no expanding mutant sectors when its expansion velocity was less than that of the wildtype.

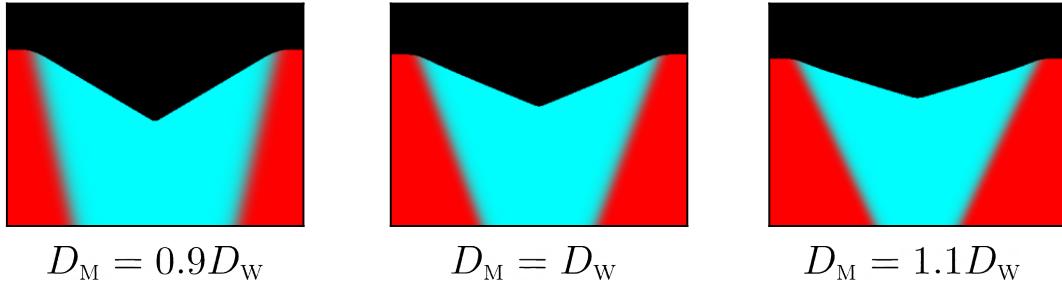


Figure S7: Dented fronts occur in simulations with $D_M \neq D_W$. We used a variation of cheater-cooperator model (Eq. 2) in which dispersal of wildtype and mutant is no longer identical. In all cases of $D_M = 0.9D_W$, $D_M = D_W$, and $D_M = 1.1D_W$ mutant developed a dented front with only quantitative changes in sector shapes. These simulations used parameters $s = 0.4$ and $\alpha = 0.6$.

403 I. Geometric theory and sector shapes

404 Introduction

405 During spatial growth in microbial colonies or other cellular aggregates, mutants appear and com-
 406 pete with each other. Previous studies [54] and common intuition suggest that advantageous
 407 mutants should form a sector that bulges out of the expansion front. In the main text, we reported
 408 experiments showing that this is not always the case. Here, we identify all possible shapes that can
 409 result from competition between two types in a growing colony.

410 To make progress, we make a number of approximations and work in the so-called geometrical
 411 optics limit. This limit assumes that the expansion front and the boundary between the types
 412 can be treated as thin lines. Neglecting sector and boundary widths is justified when these length
 413 scales are much smaller than the colony size. In small colonies, thin boundaries require strong
 414 genetic drift and slow motility. Furthermore, we assume that the expansion velocity of each type
 415 remains fixed. In particular, we neglect the effects of spatial variation in nutrient concentration
 416 due to protrusions of one type ahead of the other. This approximation is valid for high nutrient
 417 concentrations and when the size of the protrusions is small compared to the size of the mutant
 418 sector.

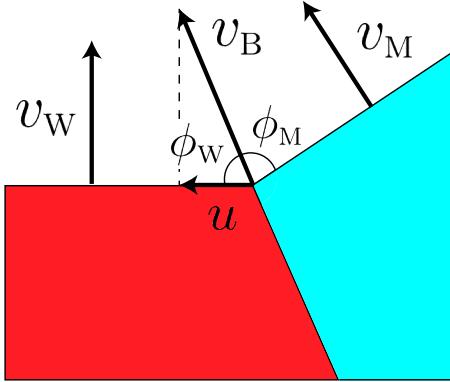


Figure S8: Geometry of the competition.

419 In the geometric-optics limit, the competition between two types is described by three velocities:
 420 the velocity of mutant v_M , the velocity of wildtype v_W , and the velocity of the boundary v_B , which
 421 are shown in Fig. S8. (Note $v_B \neq u$) Previous work [54] focused on the regime when v_B was
 422 determined by v_M and v_W ; in contrast, we make no assumptions about the relative magnitude of
 423 these three velocities.

424 In the close vicinity of the sector boundary, the two expansion fronts can be approximated as
 425 straight lines. Their position (Fig. S8) is determined by requiring that the expansion along the
 426 boundary with velocity v_B results in the same displacement of the fronts as moving perpendicular
 427 to them with velocities v_M and v_W respectively:

$$v_W = v_B \sin \phi_W, \quad (S1)$$

$$v_M = v_B \sin \phi_M. \quad (S2)$$

428 For linear inoculations, the above equations are sufficient to completely specify sector shapes be-
429 cause, as we show below, the expansion fronts are straight lines even away from the sector boundary.

430 For circular initial conditions, Eqs. (S2) provide information only about the local orientation at
431 the sector boundary, and further calculations are necessary. One way to obtain global shape is to
432 write down partial differential equations that specify how the position of the front changes and use
433 Eqs. (S2) as the boundary conditions. A much simpler approach is to use an equal time argument
434 from Ref. [54].

435 This method traces the ancestral lineage from each point along the front and requires that the time
436 traveled on that lineage is equal to the current time t . The location of the ancestral lineage is such
437 that it takes the shortest time to reach the initial population starting from a given point without
438 entering the space occupied by the other type. The details of these calculations are provided below.

439 Before proceeding, we note that, here and in the main text, we typically parameterize the problem
440 with velocity u rather than v_B . Since u is defined as the velocity of the boundary point along the
441 front of wildtype, we can obtain it by projecting the boundary velocity on the expansion front of
442 the wildtype:

$$u = v_B \cos \phi_W. \quad (S3)$$

443 From this equation and Eq. (S2), it follows that

$$v_B = \sqrt{v_W^2 + u^2}. \quad (S4)$$

444 In the following, we assume that mutant takes over the front, i.e. $u > 0$. Mutants with negative u
445 immediately become extinct at least in the deterministic model considered here.

446 Finally, we observe that Eqs. (S2) impose constraints on the values of the three velocities. In
447 particular, since sines are always less than one, the boundary velocity v_B must be greater or equal
448 than both v_M and v_W . In terms of u , this implies that

$$v_M \leq \sqrt{u^2 + v_W^2}. \quad (S5)$$

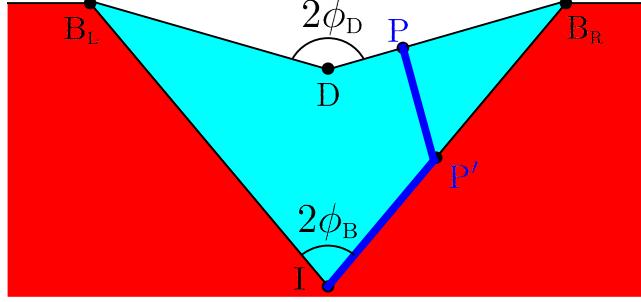


Figure S9: Sector shape for linear inoculation and $v_M < v_W$. Sectors of faster wildtype (red) and slower mutant (cyan) meet at sector boundary \overline{IB}_L and \overline{IB}_R . It takes the shortest time for the mutant to go from its initial location at I to a point on the front P by first following $\overline{IP'}$ and then $\overline{P'P}$ (blue path). The resulting geometry can be characterized by two opening angles: $2\phi_B$ for the sector boundary and $2\phi_D$ for the expansion front.

449 *Linear inoculation*

450 **Sector boundary**

451 Linear expansion geometry, the simplest situation to consider, allows us to explain the essence of
 452 the equal time argument. This geometry is illustrated in Fig. S9. Initially ($t = 0$), the colony front
 453 is located at $y = 0$, and expansion proceeds in the upper half-plane. Mutant is only present at a
 454 single point, which we put at $x = 0$; the rest of the front is occupied by the wildtype.

455 As the expansion proceeds, the region near $x = 0$ is affected by the competition between the types.
 456 From the definition of u , the extent of this region is given by $x \in (-ut, ut)$. Regions further away
 457 are however unaffected and expand as if only wildtype is present. Thus, for $|x| \geq ut$, the front is
 458 located at $y = v_W t$. From these considerations, we can further conclude that the sector boundary
 459 is described by $(ut, v_W t)$. Note that, below, we consider only the right side of the expansion; the
 460 left side is described by the mirror image with respect to the y-axis. Thus,

$$\tan \phi_B = \frac{u}{v_W}. \quad (S6)$$

461 Note that, $\phi_B = \phi_W - \pi/2$, which is clear from Figs. S8 and S9.

462 The shape of the front for $|x| < ut$ depends on the relative values of v_M , v_W , and u .

463 $v_m \leq v_w$

464 When mutant is slower than wildtype, we find that front has a V-shaped dent with an opening
 465 angle $2\phi_D$ as shown in Fig. S9. To derive this result, we take a point P on the front with yet
 466 unknown coordinates (x_p, y_p) . Note that $x_p \in (0, ut)$. Then, we should obtain the location of the
 467 ancestral lineage that connects this point to the initial location of the mutant: point I . Because
 468 the ancestral lineage is located so that to minimize the travel time, it must be a union of straight
 469 lines. Indeed, it is a well-known fact from geometrical optics that light rays travel on straight
 470 lines except where the value of the refraction index changes [85]. In our case, this means that the
 471 ancestral lineages of mutant can consist of straight lines within the mutant sector and regions of
 472 the boundary. Obviously, the ancestral lineage of the mutant cannot penetrate the region occupied
 473 by the wildtype.

474 The equal time argument then offers us two possibilities: a direct connection \overline{IP} and an indirect
 475 connection $\widehat{IP'P}$ via a point P' on the sector boundary. The times to traverse these paths are

$$T_{PI} = |PI|/v_m, \quad (S7)$$

$$T_{PP'I} = |PP'|/v_m + |P'I|/v_b. \quad (S8)$$

476 To complete the analysis, we need to choose the path with the lowest travel time and determine all
 477 locations of P for which the travel time equals t . For the direct connection, it is clear that P must
 478 lie on an arc of a circle with the radius of $v_m t$ centered at I . For the indirect connection, we first
 479 need to determine the location of P' , which must minimize the travel time.

480 Since P' lies on the sector boundary its coordinates are given by $(ut', v_w t')$ with an unknown t' .
 481 The travel time is then given by

$$T_{PP'I} = \frac{\sqrt{(x_p - ut')^2 + (y_p - v_w t')^2}}{v_m} + \frac{\sqrt{u^2 + v_w^2 t'}}{v_b}. \quad (S9)$$

482 Upon minimizing $T_{PP'I}$ with respect to t' , we find that

$$t' = \frac{u\sqrt{u^2 + v_w^2 - v_m^2} + v_m v_w}{(u^2 + v_w^2)\sqrt{u^2 + v_w^2 - v_m^2}} \left(x_p + \frac{uv_w - v_m \sqrt{u^2 + v_w^2 - v_m^2}}{u^2 - v_m^2} y_p \right), \quad (S10)$$

483 and the travel time equals

$$T_{PP'I} = \frac{(uv_m - v_w \sqrt{u^2 + v_w^2 - v_m^2})x_p + (v_m v_w + u\sqrt{u^2 + v_w^2 - v_m^2})y_p}{(u^2 + v_w^2)v_m}, \quad (S11)$$

484 which is smaller than T_{PI} as long as $v_M < v_W$. Thus, the ancestral lineages takes an indirect path
 485 that first connects point P to the sector boundary and then follows the sector boundary until I .
 486 The shape of the front is determined by setting $T_{PP'I}$ from Eq. (S11) equal to t . This results in a
 487 segment of a straight line, and a straightforward calculation shows that

$$\phi_D = \arctan \left(\frac{u\sqrt{v_W^2 + u^2 - v_M^2} + v_M v_W}{v_W \sqrt{v_W^2 + u^2 - v_M^2} - u v_M} \right). \quad (S12)$$

488 Because the front and the sector boundaries are straight, the result above also directly follows from
 489 Eqs. (S8). Indeed, a simple geometric argument shows that $\phi_D = \phi_M + \phi_W - \pi/2$.
 490 Note that, for $v_M = v_W$, the angle $\phi_D = \pi/2$ and the whole front is flat as it should if the expansion
 491 rates of the strains are identical.

492 $v_M = \sqrt{v_W^2 + u^2}$

493 In the limiting case of maximal allowed v_M , the shape of the sector is also simple and immediately
 494 follows from the calculations above. Now, as we compare the two alternative paths, we find that T_{PI}
 495 is always smaller than $T_{PP'I}$. Thus, the shape of the sector is an arc of a circle of radius $v_M t$ around I
 496 that connects to the flat front of the wild type at the sector boundary.
 497 Previous work that used the equal time argument to describe competition in microbial colonies
 498 only considered $v_M = \sqrt{v_W^2 + u^2}$ and missed other possible front shapes [54]. While it might appear
 499 that $v_M = \sqrt{v_W^2 + u^2}$ is a very special case, this relationship between the velocities holds across a
 500 wide set of conditions. Specifically, $v_M = \sqrt{v_W^2 + u^2}$ whenever local competition between the types
 501 is not strong enough to alter the priority effects due to different expansion velocities.

502 $v_W < v_M < \sqrt{v_W^2 + u^2}$

503 The remaining possibility is the hybrid of the two cases considered so far. Depending on how far P
 504 is from the sector boundary, the quickest path from P to I may be either the direct or the indirect
 505 connection. We find that the front around $x = 0$ is a semicircle of radius $v_M t$, but it is a straight
 506 line near the sector boundaries. The two segments joint smoothly. The angular half-width of the
 507 central arc, $\phi_{\text{transition}}$, and the slope of the linear segment (see Fig. S10) are given by

$$\phi_{\text{transition}} = \arctan \left(\frac{u v_M - v_W \sqrt{v_W^2 + u^2 - v_M^2}}{v_M v_W + u \sqrt{v_W^2 + u^2 - v_M^2}} \right), \quad (S13)$$

$$\text{slope} = - \frac{u v_M - v_W \sqrt{v_W^2 + u^2 - v_M^2}}{v_M v_W + u \sqrt{v_W^2 + u^2 - v_M^2}}. \quad (S14)$$

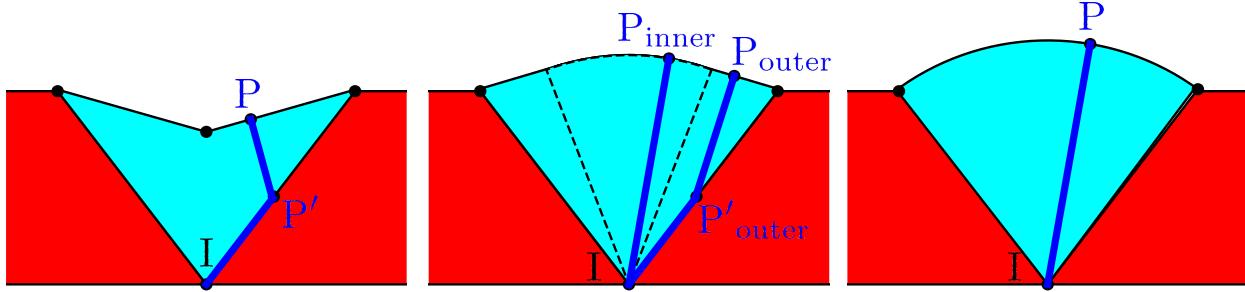


Figure S10: Possible sector shapes for linear inoculation. Left: $v_M < v_W$. The mutant sector emerging from point I has a dented front. The front consists of two straight lines. The shortest-time path follows the sector boundary and also enters the sector interior. Middle: $v_W < v_M < \sqrt{v_W^2 + u^2}$. The mutant sector is a composite bulge. The front consists of two straight lines and an arc. To reach a point P_{outer} on straight part of the expansion front, the shortest-time path first follows the sector boundary before entering the sector interior. To reach a point P_{inner} on the arc, the shortest-time path follows a straight line from I to P_{inner} . Right: $v_M > \sqrt{v_W^2 + u^2}$. The front is an arc. To reach a point P on the front, the shortest-time path follows a straight line from I to P .

508 *Circular inoculation*

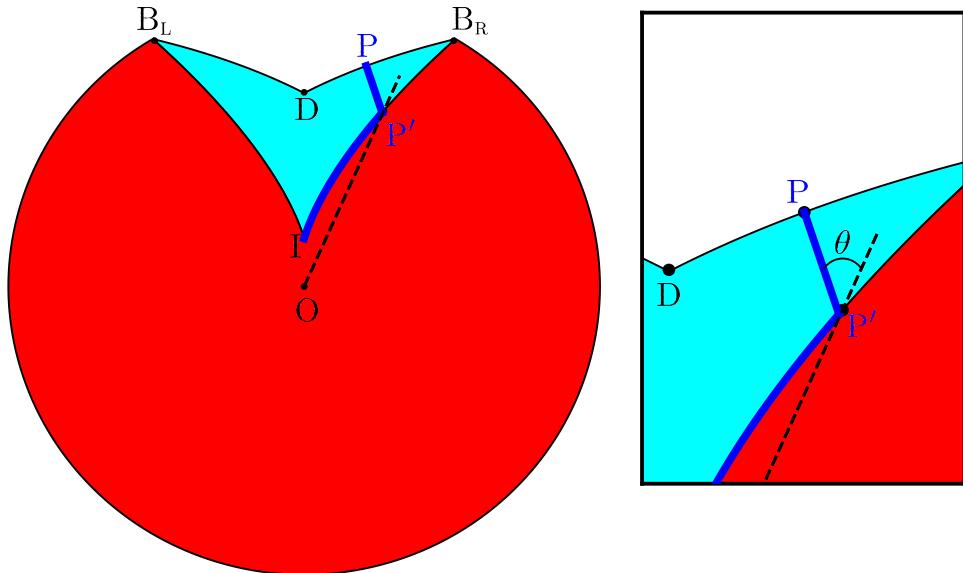


Figure S11: Circular colony with a dented front, $v_W > v_M$. The path of the shortest time follows the sector boundary from I to P' and then a straight line connecting P' and P . Note that $\overline{P'P}$ and $\overline{OP'}$ always intersect at angle θ .

509 We assume that the expansion starts at $t = 0$ when wildtype colony fills the circle with radius
 510 $r \leq r_0$, and the mutant is present only at $I = (r_0, 0)$ in polar coordinates.

511

512 **Sector boundary**

513 The boundary between the mutant and the wild type moves with linear velocity u along the front. In
 514 polar coordinates, the position of the sector boundary (r_B, ϕ_B) then obeys the following equation

$$\frac{d\phi_B}{dt} = \frac{u}{r_B}. \quad (\text{S15})$$

515 We can eliminate time by using $dr_B/dt = v_W$ to obtain

$$\phi_B(r_B) = \frac{u}{v_W} \ln\left(\frac{r_B}{r_0}\right). \quad (\text{S16})$$

516 We also find that the length of boundary at time t is $\sqrt{v_W^2 + u^2}t$, and thus

$$v_B = \sqrt{v_W^2 + u^2} \quad (\text{S17})$$

517 just as in the linear case.

518 $v_M < v_W$

519 Let us consider a point $P = (r_p, \phi_p)$ on a mutant patch with $\phi_p > 0$ for simplicity.

520 As described before, we first find $T_{PP'I}$ by minimizing $\frac{|PP'|}{v_M} + \frac{|P'I|}{v_W}$ over points P' on the sector
 521 boundary. The point $P' = (r_{P'}, \phi_{P'})$ should satisfy two equations:

$$522 \quad \phi_{P'}(r_{P'}) = \frac{u}{v_W} \ln\left(\frac{r_{P'}}{r_0}\right), \quad (\text{S18})$$

$$523 \quad \frac{d}{dr_{P'}} \left(\frac{r_{P'} - r_0}{v_W} + \frac{\sqrt{(r_p \cos \phi_p - r_{P'} \cos \phi_{P'})^2 + (r_p \sin \phi_p - r_{P'} \sin \phi_{P'})^2}}{v_M} \right) = 0. \quad (\text{S19})$$

524 Here, the first equation constrains P' to be on the sector boundary, and the second equation
 525 minimizes $T_{PP'I}$ over P' . Since there are two unknowns and two equations, we can solve for
 526 $(r_{P'}, \phi_{P'})$. The solution is conveniently written in an implicit form:

$$\begin{aligned} \frac{r_{P'} \sin \phi_{P'} - r_p \sin \phi_p}{r_{P'} \cos \phi_{P'} - r_p \cos \phi_p} &= -\tan(\theta - \phi_{P'}), \\ \theta &= \arctan \left(\frac{uv_M - v_W \sqrt{v_W^2 + u^2 - v_M^2}}{v_M v_W + u \sqrt{v_W^2 + u^2 - v_M^2}} \right). \end{aligned} \quad (\text{S20})$$

527 This tells that $\overline{PP'}$ is parallel to $(1, \theta - \phi_{P'})$; the angle between $\overline{PP'}$ and $\overline{P'O}$ is a constant θ
 528 independent of r_p, ϕ_p . Note that $\theta > 0$ for $v_M < v_W$, and thereby every point P on mutant front

529 with ϕ_p has its corresponding P' on sector boundary \widehat{IB} .

530

531 The next step toward identifying the front position at time T is to find all points P such that
532 $T_{PP'I} = T$. Using the mapping between P and P' described above, we find P by first moving along
533 sector boundary and then moving in a straight line parallel to $(1, \theta - \phi_{P'})$. By varying the time
534 t' spent along the sector boundary while keeping the total time T fixed, we obtain a parametric
535 expression for $P(T) = (x_p(T), y_p(T))$ in Cartesian coordinates:

$$\begin{aligned} x_p(T; t') &= (v_w t' + r_0) \sin\left(\frac{u}{v_w} \ln\left(\frac{r_0 + v_w t'}{r_0}\right)\right) + v_m (T - t') \sin\left(\frac{u}{v_w} \ln\left(\frac{r_0 + v_w t'}{r_0}\right) - \theta\right), \\ y_p(T; t') &= (v_w t' + r_0) \cos\left(\frac{u}{v_w} \ln\left(\frac{r_0 + v_w t'}{r_0}\right)\right) + v_m (T - t') \cos\left(\frac{u}{v_w} \ln\left(\frac{r_0 + v_w t'}{r_0}\right) - \theta\right). \end{aligned} \quad (\text{S21})$$

536 It is also possible to get a non-parametric, explicit expression by solving an equivalent partial
537 differential equation using the method of characteristics:

$$\begin{aligned} \phi_p(t, r) &= \frac{u}{v_w} \ln\left(1 + \frac{v_w t}{r_0}\right) + F\left(\frac{r}{r_0 + v_w t}\right) - F(1), \quad \text{where} \\ F(\rho) &= \frac{u}{2v_w} \ln\left(\frac{(\rho^2 v_w^2 - v_m^2) \sqrt{\rho^2 - \frac{v_m^2}{v_w^2 + u^2}} - \frac{u v_m}{v_w \sqrt{v_w^2 + u^2}}}{\sqrt{\rho^2 - \frac{v_m^2}{v_w^2 + u^2}} + \frac{u v_m}{v_w \sqrt{v_w^2 + u^2}}}\right) \\ &\quad + \arctan\left(\frac{\sqrt{v_w^2 + u^2}}{v_m} \sqrt{\rho^2 - \frac{v_m^2}{v_w^2 + u^2}}\right). \end{aligned} \quad (\text{S22})$$

538 $v_m > v_w$

539 In this regime, $\theta < 0$ and thereby some points P on the mutant front do not have a corresponding
540 P' on the sector boundary. In other words, the straight path \overline{IP} takes the shortest time. We find
541 that, when P is near the top of the bulge, the minimal path is a straight line \overline{IP} while, When P is
542 further from the top, the minimal path is a straight line $\overline{P'P}$ followed by a curved path $\widehat{IP'}$ along
543 the sector boundary.

544 Note that the straight path is tilted by a fixed angle θ from $\overline{OP'}$, pointing inwards to the cen-
545 ter of the sector compared to the tangent line except when $v_m = \sqrt{v_w^2 + u^2}$. In the latter case,
546 $\theta = -\arctan\left(\sqrt{\frac{v_m^2}{v_w^2} - 1}\right)$, and the straight path is tangent to the sector boundary, as described
547 in [54].

548

549 The boundary between the two regions of the front lies angle $\phi_{\text{transition}}$ way from the center. This
550 angle is given by

$$\phi_{\text{transition}} = \arctan\left(\frac{u v_m - v_w \sqrt{v_w^2 + u^2} - v_m^2}{v_m v_w + u \sqrt{v_w^2 + u^2} - v_m^2}\right). \quad (\text{S23})$$

551 Thus, the bulge is an arc of a circle near the center and is described by Eq. (S21) near the sector
552 boundary.

553 II. Dispersal without carrying capacity

554 In the main text, we considered two mechanistic models that produce all possible sector shapes. For
 555 both models, we assumed that the dispersal term has a factor of $(1 - n_w - n_m)$ so that the dispersal
 556 ceases when population reaches the carrying capacity. Without the carrying capacity factor, any
 557 spatial patterns should eventually vanish because the populations continue to intermix behind the
 558 expanding front. Accordingly, sectors exist only in the transient timescale between expansion and
 559 diffusion. Nevertheless, the $(1 - n_w - n_m)$ factor does not affect the ratios between three velocities
 560 v_w , v_m and u , and since these ratios determine the sector shape in geometric theory, we expect
 561 that the absence of the $(1 - n_w - n_m)$ factor does not affect the sector shape observed in transient
 562 timescales. To verify this idea, we simulated a microscopic model without carrying capacity on
 563 diffusion:

$$\begin{aligned}\partial_t n_w &= D \nabla^2 n_w + r \left(1 - \alpha \frac{n_m}{n_w + n_m}\right) n_w (1 - n_w - n_m), \\ \partial_t n_m &= D \nabla^2 n_m + r \left(1 - s + \alpha \frac{n_w}{n_w + n_m}\right) n_m (1 - n_w - n_m).\end{aligned}\quad (S24)$$

564 The simulation demonstrated that the sector shape was not affected by carrying capacity factor
 565 from dispersal (Fig. S12). The sector boundaries were blurred by the nonzero dispersal behind the
 front, but the overall shape of the sector remained the same.

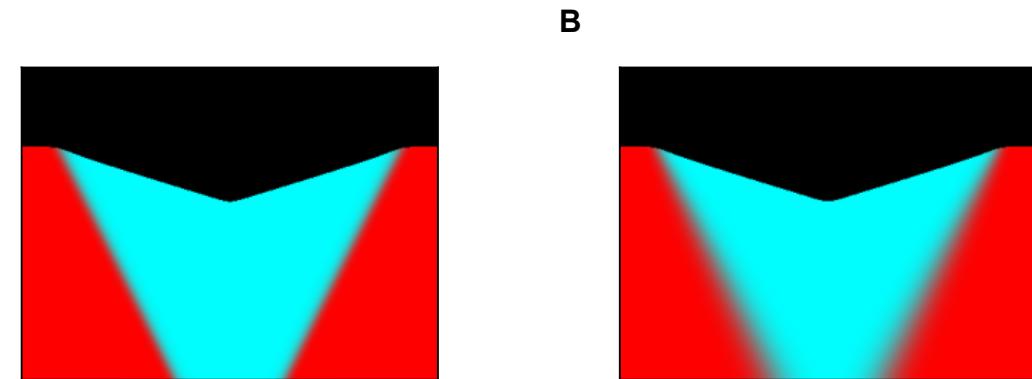


Figure S12: Dented front in a model with density-independent dispersal. Formation of dented sectors in simulations with different models of dispersal. (A) The model from the main text Eq. 1. (B) A model with density-independent dispersal Eq. S24. Note the blurry sector boundaries due to continued intermixing after growth ceases behind the front.

566

567 III. Nonspatial limit for mechanistic models

568 In the main text, we considered two mechanistic models that produce all possible sector shapes.
 569 Here, we analyze these models in the nonspatial, i.e. well-mixed, limit, which describes local
 570 competition.

571 *Cheater-cooperator model*

572 The model reads

$$\begin{aligned}\partial_t n_W &= \left(D \nabla^2 n_W + r \left(1 - \alpha \frac{n_M}{n_W + n_M} \right) n_W \right) (1 - n_W - n_M), \\ \partial_t n_M &= \left(D \nabla^2 n_M + r \left(1 - s + \alpha \frac{n_W}{n_W + n_M} \right) n_M \right) (1 - n_W - n_M).\end{aligned}\quad (S25)$$

573 In the well-mixed limit, the partial differential equations above reduce to a set of ordinary differential
 574 equations:

$$\begin{aligned}\frac{dn_W}{dt} &= r \left(1 - \alpha \frac{n_M}{n_W + n_M} \right) n_W (1 - n_W - n_M), \\ \frac{dn_M}{dt} &= r \left(1 - s + \alpha \frac{n_W}{n_W + n_M} \right) n_M (1 - n_W - n_M).\end{aligned}\quad (S26)$$

575 We only consider $s < 1$ and $-1 < \alpha < 1$ and assume that initial populations densities are positive
 576 and their sum is below the carrying capacity. With these assumptions, it is clear that the population
 577 densities remain positive for any $t \geq 0$ since $\frac{dn_W}{dt}$ and $\frac{dn_M}{dt}$ are positive. The monotonic increase
 578 of the population densities also ensures that $\lim_{t \rightarrow \infty} n_W + n_M = 1$ because both time derivatives
 579 switch sign when $n_W + n_M$ exceeds unity. In fact, it follows directly from Eqs. (S26) that any pair
 580 of positive n_W and n_M that sum up to one is a fixed point.

581 This line of fixed points is a direct consequence of our assumption that population dynamics are
 582 frozen behind the front. In a generic Lotka-Volterra system, the differences in the competitive
 583 abilities at high population densities would break this degeneracy and lead to the takeover by one
 584 of the types (stable coexistence is also possible) [54, 66]. Microbial populations however grow only
 585 until the nutrients are exhausted, and the two types could, therefore, remain at an arbitrary ratio
 586 once the growth ceases.

587 Further insights into the behavior of Eq. (S26) can be derived from its first integral (a conserved
 588 quantity), which we obtain by dividing the two equations:

$$\frac{dn_W}{dn_M} = \frac{\left(1 - \alpha \frac{n_M}{n_W + n_M}\right) n_W}{\left(1 - s + \alpha \frac{n_W}{n_W + n_M}\right) n_M}. \quad (S27)$$

589 The equation above can be integrated after both sides are multiplied by $dn_M(1 - s + \alpha n_W/(n_W +$
 590 $n_M))/n_W$. This procedure yields the following conserved quantity:

$$C = \frac{(n_W + n_M)^\alpha n_W^{1-s}}{n_M}, \quad (S28)$$

591 which we can use to understand the temporal dynamics of the two types. It is convenient to recast
 592 Eq. (S28) in terms of total population density $n = n_W + n_M$ and mutant frequency $f = n_M/n$:

$$\frac{f}{(1 - f)^{1-s}} = \frac{n^{\alpha-s}}{C}. \quad (S29)$$

593 The left-hand side is a monotonically increasing function of f , and the right hand-side is a monotonic
 594 function of n , which is increasing for $\alpha > s$ and decreasing otherwise. Thus, f increases with n
 595 for $\alpha > s$ and decreases for $\alpha < s$. Since n is always increasing (assuming it is less than one
 596 initially), we conclude that the relative abundance of the mutant increases when $\alpha > s$ and decreases
 597 otherwise. Numerical simulations confirm this conclusion; see Fig. S13A.

598 In the spatial model, $u = \sqrt{\alpha - s}$, so the mutant can invade only when $s < \alpha$, which is consistent
 599 with the local well-mixed competition that we just described.

600 *Growth-dispersal tradeoff model*

601 The well-mixed limit for the growth-dispersal tradeoff model reads

$$\begin{aligned} \frac{n_W}{dt} &= rn_W(1 - n_W - n_M), \\ \frac{n_M}{dt} &= r(1 + s)n_M(1 - n_W - n_M). \end{aligned} \quad (S30)$$

602 The qualitative behavior of this system of equations is identical to that of the cheater-cooperator
 603 model. Any population below the carrying capacity with positive densities of the two types evolves
 604 to one of the neutral fixed points on $n_M + n_W = 1$. The change of the mutant fraction can be
 605 determined from the following first integral

$$\frac{n_W^{1+s}}{n_M} = n^s \frac{(1 - f)^{1+s}}{f} = C. \quad (S31)$$

606 The analysis, identical to the one we just described, shows that the frequency of the mutant increases
 607 as long as $s > 0$. This is consistent both with the expansion velocity $u = 2\sqrt{Ds}$ and numerical
 608 simulations (Fig. S13).

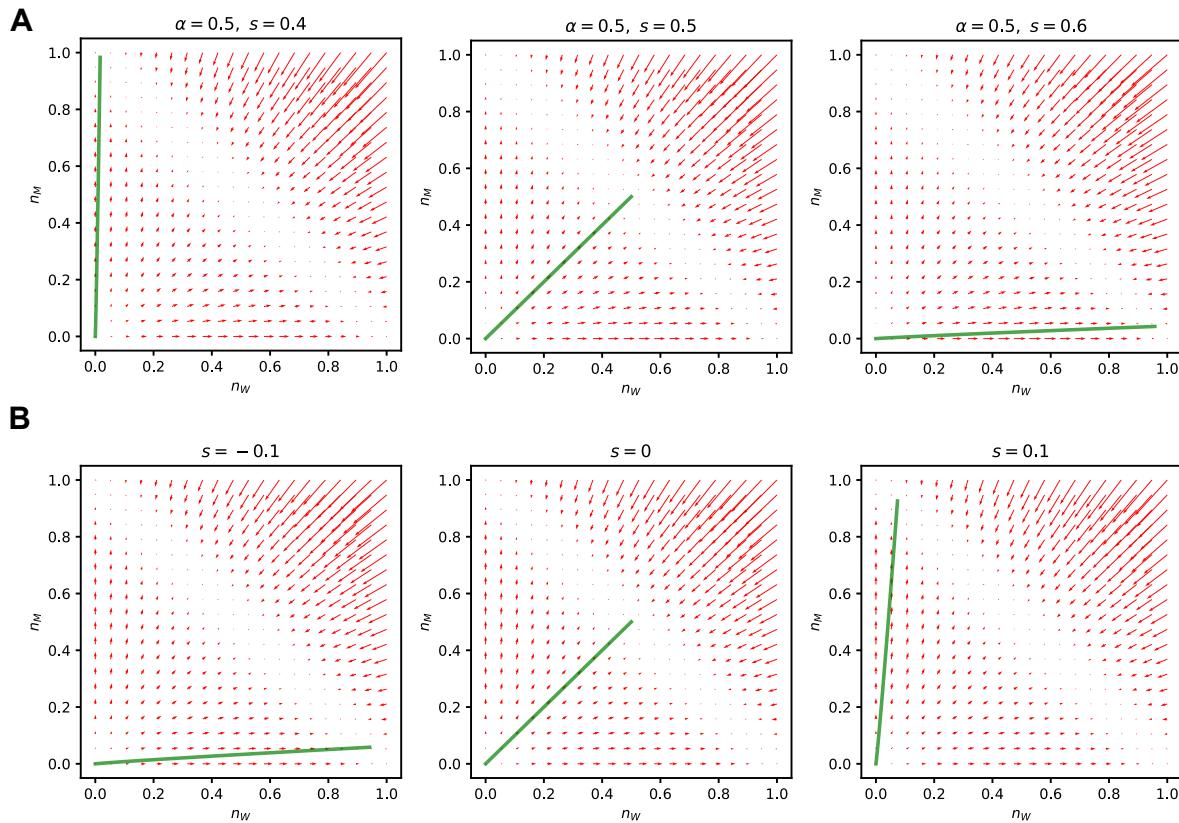


Figure S13: Phase portraits of ODE dynamics. In each panel, red arrows represent $(dn_W/dt, dn_M/dt)$ and green curve shows the trajectory from small initial population $(n_W, n_M) = (10^{-12}, 10^{-12})$. (A) Phase portraits for cheater-cooperator interaction model. (B) Phase portraits for growth-dispersal tradeoff model.

609 References

- 610 1. Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth
611 and interactions. *Applied and environmental microbiology* **69**, 3500–3509 (2003).
- 612 2. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions
613 lead to rapid micro-scale successions on model marine particles. *Nature communications* **7**,
614 1–7 (2016).
- 615 3. Durrett, R. & Levin, S. Spatial aspects of interspecific competition. *Theoretical population
616 biology* **53**, 30–43 (1998).
- 617 4. Ben-Jacob, E., Cohen, I. & Levine, H. Cooperative self-organization of microorganisms. *Advances in Physics* **49**, 395–554 (2000).
- 618 5. Lima-Mendez, G. *et al.* Determinants of community structure in the global plankton interactome. *Science* **348** (2015).
- 619 6. Abraham, E. R. The generation of plankton patchiness by turbulent stirring. *Nature* **391**,
620 577–580 (1998).
- 621 7. Pigolotti, S., Benzi, R., Jensen, M. H. & Nelson, D. R. Population genetics in compressible
622 flows. *Physical review letters* **108**, 128102 (2012).
- 623 8. Skellam, J. G. Random dispersal in theoretical populations. *Biometrika* **38**, 196–218 (1951).
- 624 9. Levin, S. A. Dispersion and population interactions. *The American Naturalist* **108**, 207–228
625 (1974).
- 626 10. Hanski, I. Metapopulation dynamics. *Nature* **396**, 41–49 (1998).
- 627 11. Lin, Y. T., Kim, H. & Doering, C. R. Demographic stochasticity and evolution of dispersion
628 I. Spatially homogeneous environments. *Journal of mathematical biology* **70**, 647–678 (2015).
- 629 12. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in
630 biofilms. *Nature Reviews Microbiology* **14**, 589–600 (2016).
- 631 13. Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. *Proceedings of
632 the National Academy of Sciences* **98**, 5446–5451 (2001).
- 633 14. Sakai, A. K. *et al.* The population biology of invasive species. *Annual review of ecology and
634 systematics* **32**, 305–332 (2001).
- 635 15. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. *Nature
636 Reviews Cancer* **14**, 371–380 (2014).
- 637 16. Hastings, A. *et al.* The spatial spread of invasions: new developments in theory and evidence.
638 *Ecology Letters* **8**, 91–101 (2005).
- 639 17. Jeschke, J. M. & Heger, T. *Invasion biology: hypotheses and evidence* (CABI, 2018).
- 640 18. Barton, N. H. & Charlesworth, B. Genetic revolutions, founder effects, and speciation. *Annual
641 review of ecology and systematics* **15**, 133–164 (1984).
- 642 19. Klopstein, S., Currat, M. & Excoffier, L. The fate of mutations surfing on the wave of a range
643 expansion. *Molecular biology and evolution* **23**, 482–490 (2006).
- 644 20. Hallatschek, O. & Nelson, D. R. Gene surfing in expanding populations. *Theoretical population
645 biology* **73**, 158–170 (2008).
- 646 21. Hallatschek, O. & Fisher, D. S. Acceleration of evolutionary spread by long-range dispersal.
647 *Proceedings of the National Academy of Sciences* **111**, E4911–E4919 (2014).

650 22. Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading
651 organisms. *Ecology* **77**, 2027–2042 (1996).

652 23. Thomas, C. D. *et al.* Ecological and evolutionary processes at expanding range margins. *Nature*
653 **411**, 577–581 (2001).

654 24. Bénichou, O., Calvez, V., Meunier, N. & Voituriez, R. Front acceleration by dynamic selection
655 in Fisher population waves. *Physical Review E* **86**, 041908 (2012).

656 25. Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes
657 through space rather than through time. *Proceedings of the National Academy of Sciences*
658 **108**, 5708–5711 (2011).

659 26. Van Ditmarsch, D. *et al.* Convergent evolution of hyperswarming leads to impaired biofilm
660 formation in pathogenic bacteria. *Cell reports* **4**, 697–708 (2013).

661 27. Korolev, K. S. The fate of cooperation during range expansions. *PLoS Comput Biol* **9**,
662 e1002994 (2013).

663 28. Yi, X. & Dean, A. M. Phenotypic plasticity as an adaptation to a functional trade-off. *Elife*
664 **5**, e19307 (2016).

665 29. Fraebel, D. T. *et al.* Environment determines evolutionary trajectory in a constrained pheno-
666 typic space. *Elife* **6**, e24669 (2017).

667 30. Ni, B. *et al.* Evolutionary remodeling of bacterial motility checkpoint control. *Cell reports* **18**,
668 866–877 (2017).

669 31. Shih, H.-Y., Mickalide, H., Fraebel, D. T., Goldenfeld, N. & Kuehn, S. Biophysical constraints
670 determine the selection of phenotypic fluctuations during directed evolution. *Physical biology*
671 **15**, 065003 (2018).

672 32. Deforet, M., Carmona-Fontaine, C., Korolev, K. S. & Xavier, J. B. Evolution at the edge of
673 expanding populations. *The American Naturalist* **194**, 291–305 (2019).

674 33. Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in
675 toads. *Nature* **439**, 803–803 (2006).

676 34. Travis, J. M. & Dytham, C. Dispersal evolution during invasions. *Evolutionary Ecology Re-
677 search* **4**, 1119–1129 (2002).

678 35. Taylor, C. M. & Hastings, A. Allee effects in biological invasions. *Ecology Letters* **8**, 895–908
679 (2005).

680 36. Korolev, K. S. Evolution arrests invasions of cooperative populations. *Physical review letters*
681 **115**, 208104 (2015).

682 37. Datta, M. S., Korolev, K. S., Cvijovic, I., Dudley, C. & Gore, J. Range expansion promotes co-
683 operation in an experimental microbial metapopulation. *Proceedings of the National Academy of
684 Sciences* **110**, 7354–7359 (2013).

685 38. Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. *Elife* **2**, e01169
686 (2013).

687 39. Bauer, M. & Frey, E. Multiple scales in metapopulations of public goods producers. *Physical
688 Review E* **97**, 042307 (2018).

689 40. Stempler, O. *et al.* Interspecies nutrient extraction and toxin delivery between bacteria. *Nature
690 communications* **8**, 1–9 (2017).

691 41. Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. Phylogenetic analyses of Klebsiella species
692 delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica
693 comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. *International*
694 *journal of systematic and evolutionary microbiology* **51**, 925–932 (2001).

695 42. Ershadi, A., Weiss, E., Verduzco, E., Chia, D. & Sadigh, M. Emerging pathogen: a case and
696 review of Raoultella planticola. *Infection* **42**, 1043–1046 (2014).

697 43. Simmons, A. D. & Thomas, C. D. Changes in dispersal during species' range expansions. *The*
698 *American Naturalist* **164**, 378–395 (2004).

699 44. Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: density-dependent processes
700 structure biodiversity. *Trends in ecology & evolution* **28**, 78–85 (2013).

701 45. Birzu, G., Matin, S., Hallatschek, O. & Korolev, K. S. Genetic drift in range expansions is
702 very sensitive to density dependence in dispersal and growth. *Ecology Letters* **22**, 1817–1827
703 (2019).

704 46. Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. *Annual Review*
705 *of Ecology, Evolution, and Systematics* **40**, 481–501 (2009).

706 47. Roques, L., Garnier, J., Hamel, F. & Klein, E. K. Allee effect promotes diversity in traveling
707 waves of colonization. *Proceedings of the National Academy of Sciences* **109**, 8828–8833 (2012).

708 48. Slatkin, M. & Excoffier, L. Serial founder effects during range expansion: a spatial analog of
709 genetic drift. *Genetics* **191**, 171–181 (2012).

710 49. Bosshard, L. *et al.* Accumulation of deleterious mutations during bacterial range expansions.
711 *Genetics* **207**, 669–684 (2017).

712 50. Yan, J., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Extracellular-matrix-
713 mediated osmotic pressure drives *Vibrio cholerae* biofilm expansion and cheater exclusion.
714 *Nature communications* **8**, 1–11 (2017).

715 51. Xiong, L. *et al.* Flower-like patterns in multi-species bacterial colonies. *Elife* **9**, e48885 (2020).

716 52. Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding
717 frontiers promotes gene segregation. *Proceedings of the National Academy of Sciences* **104**,
718 19926–19930 (2007).

719 53. Korolev, K. S., Avlund, M., Hallatschek, O. & Nelson, D. R. Genetic demixing and evolution
720 in linear stepping stone models. *Reviews of modern physics* **82**, 1691 (2010).

721 54. Korolev, K. S. *et al.* Selective sweeps in growing microbial colonies. *Physical Biology* **9**, 026008
722 (2012).

723 55. Bressan, A. Differential inclusions and the control of forest fires. *Journal of Differential Equa-*
724 *tions* **243**, 179–207 (2007).

725 56. Horowitz, J. M. & Kardar, M. Bacterial range expansions on a growing front: Roughness,
726 fixation, and directed percolation. *Physical Review E* **99**, 042134 (2019).

727 57. Lipson, A., Lipson, S. G. & Lipson, H. *Optical physics* (Cambridge University Press, 2010).

728 58. Korolev, K. S., Xavier, J. B., Nelson, D. R. & Foster, K. R. A quantitative test of population
729 genetics using spatiogenetic patterns in bacterial colonies. *The American Naturalist* **178**, 538–
730 552 (2011).

731 59. Müller, M. J., Neugeboren, B. I., Nelson, D. R. & Murray, A. W. Genetic drift opposes mutu-
732 alism during spatial population expansion. *Proceedings of the National Academy of Sciences*
733 **111**, 1037–1042 (2014).

734 60. Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong inter-population cooperation
735 leads to partner intermixing in microbial communities. *elife* **2**, e00230 (2013).

736 61. Prindle, A. *et al.* Ion channels enable electrical communication in bacterial communities. *nature* **527**, 59–63 (2015).

738 62. Mitri, S., Clarke, E. & Foster, K. R. Resource limitation drives spatial organization in microbial
739 groups. *The ISME journal* **10**, 1471–1482 (2016).

740 63. Cremer, J. *et al.* Chemotaxis as a navigation strategy to boost range expansion. *Nature* **575**,
741 658–663 (2019).

742 64. Fisher, R. A. The wave of advance of advantageous genes. *Annals of eugenics* **7**, 355–369
743 (1937).

744 65. Kolmogorov, A. N. A study of the equation of diffusion with increase in the quantity of matter,
745 and its application to a biological problem. *Moscow University Bulletin of Mathematics* **1**, 1–
746 25 (1937).

747 66. Murray, J. D. *Mathematical Biology* (Berlin: Springer, 2003).

748 67. Birzu, G., Hallatschek, O. & Korolev, K. S. Fluctuations uncover a distinct class of traveling
749 waves. *Proceedings of the National Academy of Sciences* **115**, E3645–E3654 (2018).

750 68. Levin, D. A. & Kerster, H. W. The dependence of bee-mediated pollen and gene dispersal
751 upon plant density. *Evolution*, 560–571 (1969).

752 69. Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee
753 effect. *Trends in ecology & evolution* **14**, 405–410 (1999).

754 70. Matthysen, E. Density-dependent dispersal in birds and mammals. *Ecography* **28**, 403–416
755 (2005).

756 71. Kearns, D. B. A field guide to bacterial swarming motility. *Nature Reviews Microbiology* **8**,
757 634–644 (2010).

758 72. Peischl, S. & Gilbert, K. J. Evolution of dispersal can rescue populations from expansion load.
759 *The American Naturalist* **195**, 349–360 (2020).

760 73. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and
761 the evolution of cooperation. *PLoS Comput Biol* **6**, e1000716 (2010).

762 74. Cremer, J. *et al.* Cooperation in microbial populations: theory and experimental model sys-
763 tems. *Journal of molecular biology* **431**, 4599–4644 (2019).

764 75. Tilman, D. Competition and biodiversity in spatially structured habitats. *Ecology* **75**, 2–16
765 (1994).

766 76. Bonte, D. *et al.* Costs of dispersal. *Biological reviews* **87**, 290–312 (2012).

767 77. Gude, S. *et al.* Bacterial coexistence driven by motility and spatial competition. *Nature* **578**,
768 588–592 (2020).

769 78. Farrell, F., Hallatschek, O., Marenduzzo, D & Waclaw, B. Mechanically driven growth of
770 quasi-two-dimensional microbial colonies. *Physical review letters* **111**, 168101 (2013).

771 79. Warren, M. R. *et al.* Spatiotemporal establishment of dense bacterial colonies growing on hard
772 agar. *Elife* **8**, e41093 (2019).

773 80. Van Dyken, J. D., Müller, M. J., Mack, K. M. & Desai, M. M. Spatial population expansion
774 promotes the evolution of cooperation in an experimental prisoner’s dilemma. *Current Biology*
775 **23**, 919–923 (2013).

776 81. Kehe, J. *et al.* Massively parallel screening of synthetic microbial communities. *Proceedings of*
777 *the National Academy of Sciences* **116**, 12804–12809 (2019).

778 82. Schlechter, R. O. *et al.* Chromatic Bacteria – A Broad Host-Range Plasmid and Chromosomal
779 Insertion Toolbox for Fluorescent Protein Expression in Bacteria. *Frontiers in Microbiology*
780 **9**, 3052. ISSN: 1664-302X (2018).

781 83. Van der Walt, S. *et al.* scikit-image: image processing in Python. *PeerJ* **2**, e453. ISSN: 2167-
782 8359 (2014).

783 84. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. *Numerical recipes 3rd*
784 *edition: The art of scientific computing* (Cambridge university press, 2007).

785 85. Born, M. & Wolf, E. *Principles of optics: electromagnetic theory of propagation, interference*
786 *and diffraction of light* (Elsevier, 2013).