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8 Abstract

9 Abstract:

10 Most organisms grow in space, whether they are viruses spreading within a host tissue or inva-
1 sive species colonizing a new continent. Evolution typically selects for higher expansion rates
12 during spatial growth, but it has been suggested that slower expanders can take over under
13 certain conditions. Here, we report an experimental observation of such population dynamics.
14 We demonstrate that the slower mutants win not only when the two types are intermixed at
15 the front but also when they are spatially segregated into sectors. The latter was thought to be
16 impossible because previous studies focused exclusively on the global competitions mediated by
17 expansion velocities but overlooked the local competitions at sector boundaries. We developed a
18 theory of sector geometry that accounts for both local and global competitions and describes all
19 possible sector shapes. In particular, the theory predicted that a slower, but more competitive,
20 mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were
21 indeed observed experimentally and their shapes matched up quantitatively with the theory. In
2 simulations, we further explored several mechanism that could provide slow expanders with a
23 local competitive advantage and showed that they are all well-described by our theory. Taken
24 together, our results shed light on previously unexplored outcomes of spatial competition and es-
25 tablish a universal framework to understand evolutionary and ecological dynamics in expanding
26 populations.

» Significance

s Living organisms never cease to evolve, so there is a significant interest in predicting and controlling
20 evolution in all branches of life sciences from medicine to agriculture. The most basic question is
30 whether a trait should increase or decrease in a given environment. The answer seems to be trivial
a1 for traits such as the growth rate in a bioreactor or the expansion rate of a tumor. Yet, it has
32 been suggested that such traits can decrease rather than increase during evolution. Here, we report
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33 a mutant that outcompeted the ancestor despite having a slower expansion velocity. To explain
3¢ this observation, we developed and validated a theory that describes spatial competition between
35 organisms with different expansion rates and arbitrary competitive interactions.

s Introduction

37 Population dynamics always unfold in a physical space. At small scales, microbes form tight associa-
s tions with each other, substrates, or host cells |1} [2]. At large scales, phyto- and zooplanktons form
3 complex patterns influenced by ecological interactions [3-5] and hydrodynamics [6 |7]. Between
20 these two extremes, populations constantly shrink and expand in response to changing conditions,
a1 and there is still a great deal to be learned about how spatial structure affects ecology and evolu-
2 tion [8-12]. Better understanding of these eco-evolutionary dynamics is essential for management
53 of invasive species [13| [14], controlling the growth of cancer [15], and preserving biodiversity [16,
w [17].

a5 It is particularly important to understand how natural selection operates at the edge of expanding
s populations. These expansion frontiers are hot spots of evolution because mutations that arise at
a7 the edge can rapidly establish over large areas via allele surfing or sectoring [18-21]. Furthermore,
45 numerous studies argue that selection at the expansion front favors faster expanders and therefore
s makes population control more difficult [22H32]. Indeed, organisms that expand faster have a head
50 start on growing into a new territory and may face weaker competition or better access to nutrients.
51 A well-known example is the evolution of cane toads which increased the expansion speed by 5 fold
sz over 50 years [33]. Yet, despite substantial empirical evidence across many systems [23-26], 28-32],
53 it has been suggested that the simple intuition of “faster runner wins the race” does not always
s« hold.

55 'T'wo theoretical studies have found that slower dispersal could evolve in populations with a strong
s Allee effect, i.e a negative growth rate at low population densities [34-36]. Slow mutants never-
57 theless can take over the populations because they are less likely to disperse ahead of the front
ss  into regions with low densities and negative growth rates. In a different context, both theory and
so experiments have shown that slow cheaters could invade the growth front of fast cooperators [27,
0 [37]. In this system, the production of public goods allowed cooperators to expand faster, but made
61 them vulnerable to the invasion by cheaters.

62 The examples above show that slower expanders succeed in the presence of a tradeoff between local
63 and global fitness. The global fitness is simply the expansion rate of a given species in isolation,
64 which determines how quickly it can colonize an empty territory. When two species are well-
65 separated in space, their competition is determined solely by the global fitness. In contrast, when
66 the two species are present at the same location, their competition could involve differences in
s7 growth rates, production of public goods [38, 139], or secretion of toxins [40]. We refer to such local
6 competitive abilities as local fitness. It is natural to assume that slow expanders can win only if
60 they are superior local competitors, but it is not clear a priori if this is actually feasible or how to
70 integrate local and global fitness under various scenarios of spatial competition.

71 Our interest in the interplay between local and global competition was sparked by an unusual
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72 spatial pattern in colonies of Raoultella planticola grown on agar plates. These colonies repeatedly
73 developed depressions or dents along the edge. We found that dents were produced by a spontaneous
74 mutant that expanded slower than the wildtype. Thus, we discovered a convenient platform to
75 explore the fate of slower expanders in spatial competition and to elucidate the tension between
76 local and global fitness.

77 In our experiment, the slower expander took over the colony either by increasing in frequency
7 homogeneously along the front or by forming pure, mutant-only, sectors. When mutant sectors
79 formed, they had an unusual “dented” or “V” shape. To explain this spatial pattern, we developed a
s theory that describes all possible sector geometries. Our theory unifies local and global competitions
g1 without assuming any particular mechanism for growth and dispersal. Although mechanism-free,
&2 the theory makes quantitative predictions, which we confirmed experimentally. We also simulated
83 multiple mechanistic models to demonstrate that the takeover by slower expanders is generic and
8¢« could occur due to multiple ecological mechanisms. These simulations further confirmed that sector
ss shape prediction from geometric theory is universal. Taken together, our results establish a new
8 framework to understand evolutionary and ecological dynamics in expanding populations with
&7 arbitrary frequency- and density-dependent selection.

s Results

s Fxperimental observation of slow mutants taking over the front

o0 The strains used in our experiment were derived from a soil isolate of Raoultella planticola, a Gram-
o1 negative, facultatively anaerobic, non-motile bacterium that is found in soil and water and can
e occasionally lead to infections [41, 42]. We grew R. planticola on a hard LB agar plate (1.5% agar)
o3 and noticed the formation of V-shaped dents along the front. Such dents were reproducibly observed
o in biological replicates (Fig. . Suspecting that dents were caused by a mutation, we isolated
o5 cells from the smooth parts of the colony edge (wildtype) and from the dents (mutant) (Fig. [[JA).

96 We first characterized the expansion dynamics of the two strains in isolation by inoculating each
o7 culture at the center of a hard agar plate. Both strains formed smooth, round colonies, which
¢ expanded at a constant velocity (Fig. , Fig. . The wildtype had about 50% larger expansion
99 velocity compared to the mutant. Thus, the evolved strain was a slower expander.

10  Our observations seemed paradoxical given numerous observations of invasion acceleration due to
1 genetic changes that increase expansion velocities [33, 43]. However, range expansions are known to
102 produce high genetic drift [44, 45| and, therefore, allow for the fixation of deleterious mutations 20,
103 46-49]. So, we next investigated whether the mutant has a selective advantage in competition with
104 the wildtype within the same colony.

15 We competed the two strains by inoculating an agar plate with a drop containing a 99:1 mixture
w6 of the wildtype and the mutant. We used two wildtype strains (and their respective mutants) with
107 different fluorescent labels and the spatial patterns were analyzed with fluorescence microscopy
w08 (see Methods). After about 48 hours of growth, a ring of mutant completely encircled the wild-
0o type (Fig. ) Only the mutant ring continued to expand, while the expansion of the wildtype
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o ceased (Fig. . Thus the mutant not only localized to the front but also achieved a greater pop-
1 ulation size. This is quite different from other microbial systems where a strain with poor motility
12 localized to the front without suppressing the growth of faster strain and without producing a
us larger biomass [50, [51]. Thus, our experiments strongly suggest that the mutant has a competitive
14 advantage despite its lower expansion velocity.

us  Fxperimental observation of slow mutants invading by forming dented fronts

16 Our initial competition experiments did not exhibit the dents that sparked our initial interest in
u7  the strains. The mutant took over uniformly across the expansion front, producing a rotationally
us invariant spatial pattern (Fig. ) In fact, one might even argue that the success of the mutant
1o could have been entirely due to the transient growth dynamics, and the wildtype would prevail if
120 allowed to somehow spatially segregate from the mutant. To address both of these concerns, we
121 sought to alter the experiments so that the mutant and the wildtype grow as distinct sectors within
122 the same colony.

123 In microbial colonies, sectors emerge due to genetic drift at the growing edge. The magnitude
124 of demographic fluctuations varies widely in different systems, depending on the organism, the
125 growth conditions, and the duration of the experiment [52, [53]. To test for the effects of sectoring,
126 we needed to increase stochasticity without altering other aspects of the competition. Reducing
127 the cell density of the initial inoculant accomplished this goal. By lowering the inoculant density
s (from 10~! ODggg to 1073 ODg0o), we increased the separation between cells that localized to the
120 colony edge following the drying of the inoculation drop. This in turn dramatically increased the
1o formation of monoclonal sectors (Fig. [ID).

131 Although sectoring spatially segregated the two strains and, thus, allowed the wildtype to expand
122 with a higher velocity, the slower mutant still outcompeted the wildtype (Fig. , Fig. ) The
133 takeover of mutant was robust under different choices of initial density, initial mutant fraction, and
134 fluorescent label (Fig. Fig. [S)). The takeover by the mutant also produced the characteristic
135 V-shaped dents at the colony edge. These dents are the exact opposite of the bulges or protrusions
16 that one usually observes for beneficial mutations [54]. Typically, the advantageous mutants have
137 a greater expansion velocity and, therefore, outgrow the ancestors at the front. For our strains,
138 however, the winning mutant had a lower expansion velocity, and this lower expansion velocity
130 produced the opposite of the bulge—the dent.

uw  Mechanism-free theory of sector geometry

111 Our experiments unambiguously demonstrated that a slower expander can indeed outcompete a
12 faster expander with and without sectoring. Still, we need a careful theoretical description of the
143 spatial dynamics to reconcile the apparent contradiction between the slow global expansion of the
12« mutant and its superior performance in local competition. We could approach this question by
us  simulating a specific ecological mechanism that could be responsible for the tradeoff between local
s and global fitness. However, it is much more useful to first ask what can be said about spatial
17 competition generically and determine the range of possible sector shapes without relying on any
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Figure 1: Slow mutant takes over the front with and without sector formation. (A) We found
that wildtype R. planticola colonies develop V-shaped indentations; a bright-field image is shown.
We sampled cells from the dents and non-dented regions and then developed strains descending
from a single cell (see Methods). (B) The mutant expanded more slowly than the wildtype. The
data points come from two technical replicates, and the line is a fit. (C, D) Despite its slower
expansion, the mutant wins in coculture. Fluorescence images show the spatial patterns 48 hours
after inoculation with a 99:1 mixture of the wildtype and mutant. A ring of mutant (cyan) outrun
and encircled wildtype (red) when the mixed inoculant had a high density (ODggg of 10~!). Mutant
sectors emerged and widened over the front when the mixed inoculant had a low density (ODggo
of 1073). Images are taken 48 hours after inoculation, and dotted lines represent initial inoculant
droplets. (E) A zoomed image of a V-shaped sector (from the bottom of D). Dotted circle is a fit
from wildtype expansion. The advantage of the mutant and its slower expansion is evident from
the lateral expansion of the cyan sector.
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s specific mechanism.

19 Our analysis follows the approach similar to geometric optics in physics [55-57] and it relies on
10 a few standard assumptions. The expansion velocities of the two strains (vy and vy) are as-
151 sumed to be time-independent both to simplify the calculations and to reflect experimental obser-
12 vation (Fig. ) We also assume, consistent with past studies [58-60], that there is little growth
153 behind the front so that the spatial pattern remains once established as in our experiments. Fi-
15« nally, we neglect long-range interactions due to the diffusion of nutrients, toxins, or signaling
155 moleculesﬂ [61-63].

156 The nontrivial aspect of our work is how we capture the effect of local competition between strains.
157 This can be done in a number of equivalent ways. The most intuitive one is to define a velocity u
158 with which the mutant invades laterally into the population of the wildtype. Alternatively, one can
150 consider the velocity of the boundary between the strains: vy, which cannot be inferred solely from
160 Uy and vy and thus contains information about local fitness. and the angles between the boundary
11 and expansion fronts. The connection between these approaches is illustrated in Fig. [2JA.

12 The knowledge of the three velocities (vy, vy, and u) is sufficient to simulate how the shape of the
163 colony changes with time. In some situations, colony shapes can also be obtained analytically by
164 comparing the position of the front at two times ¢t and ¢ + At. We derive the equations for sector
165 shapes by requiring that all distances between the corresponding points of the two fronts are given
16 by At times the appropriate velocity (Fig. ) The details of these calculations are provided in
17 the SI (Fig. [S9)).

168 We found that all possible sector shapes fall into three classes. Without loss of generality, we take u
160 to be positive by calling the mutant the strain that invades locally. The shape of the sector is then
7o largely determined by vy /vw. When this ratio is less than one, sectors have a dented shape. In
i1 the opposite case, sectors bulge outwards. The exact shape of the front of course depends on all
12 three velocities. Overall, there are the two broad classes discussed above and a special limiting case
173 when u = /v — v2, which is discussed below. In all cases, we obtained sector shapes analytically
174 for both circular and flat initial fronts (SI Fig. m Fig. . The latter are summarized in Fig.
175 and are used to test the theoretical predictions.

176 The geometrical theory provides a concrete way to define local fitness advantage, u/vy, and global
177 fitness advantage, vy/vw — 1. These two types of fitness can take arbitrary values, even with
78 opposite signs. The only condition is that a positive u needs to be larger than /v — v2, when the
179 mutant is faster than the wildtype. This constraint arises because, for large vy /vy, the gaining of
180 new territory due to the large global fitness advantage outpaces the gain in the new territory due
181 to a smaller local fitness advantage. The constraint on « is not relevant to dented fronts, so we
12 relegate this discussion to the SI (Fig. S8).

!The addition of long-range interactions would provide greater modelling flexibility and therefore make it easier to
observe novel spatial patterns such as a V-shaped sector. Our works shows that this extra flexibility is unnecessary
and dented fronts can appear in purely local models.
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Figure 2: Geometric theory predicts sector shapes as a function of local and global fitness. Flat-
front initial conditions are illustrated here, and the corresponding results for circular fronts are
shown in the SI. (A) Global fitness of mutant and wildtype are defined with speeds vy and vy with
which their fronts advance. Local fitness is defined by movement of sector boundary which advances
with speed vy at angle ¢y with the wildtype front. We use lateral invasion speed u to describe
the local fitness, and the equivalence among vg, ¢w, and u is explained in SI (B) The shape of
the mutant sector can be derived from geometric considerations. During a time interval At, the
boundary points B, and By move upward by vywAt and laterally outward by uAt. The position of
the dent D is obtained from the requirement that both DB, and DBy shift by vy, At; the directions
of the shifts are perpendicular to DB, and DBy respectively. Point I labels the origin of the sector.
(C) The geometric theory predicts sector shapes as a function of u/vy and vy /vy. When vy < vy
and v > 0, the mutant forms a V-shaped dented front; note that all boundaries are straight lines.
When vy > vy and u > /v3 — v, the mutant forms a bulged front. The shape of the bulge
consists of two regions. It is an arc of a circle near the middle and two straight lines near the two
boundaries between the mutant and the wildtype. The circular region grows and the linear region
shrinks as vy /vy increases at constant u/vy. The bulge becomes completely circular when vy /vy
reaches its maximal value of /1 +u2/v2 on the boundary of the accessible region. See SI for
derivation and exact mathematical expressions of all sector shapes.
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183 Faperimental test of the geometric theory

18« How can we test whether the theory of sector geometry described above indeed applies to our
185 experiments? The theory utilizes three velocities vy, vy, and u to predict the shape of the sector
186 boundary and the sector front. The absolute values of the velocities determine how quickly the
17 colony grows overall and its shape depends only on two dimensionless parameters: vy /vy and u/vy.
188 The first parameter can be obtained from the direct measurements of expansion velocities in mono-
180 cultures. The second parameter can be inferred by fitting the shape of the sector boundary to
10 the theory. This leaves the shape of the sector front as an independent measurement that can be
101 compared to the theoretical prediction.

192 The linear expansion geometry greatly simplifies all the steps involved in testing the theory be-
103 cause the shapes of both the sector boundary and the dent are determined by their opening angles.
¢ Qualitative agreement with this theoretical prediction is quite clear from the experimental im-
105 ages (Fig. ), which indeed show that mutant sectors are bounded by straight lines on all sides.
1ws The opening angle of the sector boundary determines u/vy and the opening angle of the dent serves
17 as a testable prediction (Fig. BB).

Dent angle ¢p
N
[6)]
l

uy/u? + v2 — v2 + vy vy

tan (¢p) =

vw/ U2+ vg — v — uvy
00
|

T
tan (¢p) = u/vy Observed  Predicted

Figure 3: Empirical test of predicted sector shapes. (A) We used linear inoculations with low
density and low fraction of the mutant and grew the colonies for 48 hours. (B) Top: Zoom-in
image of one of the sectors. The shape of mutant sector is quantified by two opening angles: one
between the two sector boundaries 2¢; and one between the two parts of the expansion front that
meet at the dent 2¢,. Bottom: The theory predicts ¢s and ¢, as functions of the three velocities:
Uw, Uy, and u. We used ¢p to determine u/vy and predict ¢p; vy /vy is measured from monoculture
expansions. (C) The observed and predicted values of ¢y, are very close to each other.

18 Our experiments proceeded as follows. We first measured expansion velocities in monocultures by
190 tracking the colony radius as a function of time; see Fig. [IB. Then, the data on sector shapes were
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200 collected from plates inoculated along a straight line with a low-density (1072 ODggg) 99:1 mixture
201 of the wildtype and the mutant. After two days of growth, five well-isolated sectors were analyzed to
202 determine ¢ and ¢ (see Methods). Since each side of the angle can be used, we effectively obtained
203 ten measurements. Figure shows that observed ¢y is 73.93° (SD=3.81°, SEM=1.21°, n=10).
24 Predicted ¢p is 70.39° (SD=1.02°, SEM=0.32°, n=10). This is an excellent agreement given other
205 sources of variability in our experiment including variations in velocity between replicates and
206 potential systematic errors in fitting sector shapes. Thus the geometric theory not only provides
207 an explanation of the novel sector shape, but also describes it quantitatively.

28 Another experimental verification of our theory comes from Ref. [54] that studied sector shapes
200 in yeast colonies. Instead of dents, their strains produced circular bulges (the special case with
20 vy = /vZ +u?). For this special case, our results fully agree with both their theoretical and
2 experimental findings (see Eq. 12, Table 1, and Figure S8 in Ref. [54]). As far as we know, the
212 intermediate case of composite bulge (see Fig. ) has not been observed yet. Perhaps engineered
213 strains with a tunable tradeoff between local and global fitness would enable the observation of all
214 sector shapes in a single system.

a5 Concrete mechanisms of fitness tradeoff

216 The geometric theory integrates local and global competition and quantitatively predicts the shape
217 of mutant sector in our experiment. Yet, the theory does not provide a tangible mechanism behind
218 the takeover by a slower expander. To show that dented fronts emerge readily under different
219 ecological scenarios we used the flexible framework of reaction-diffusion models, which are also
20 known as generalized Fisher-Kolmogorov equations [64H66]. A general model can be written as:

8tnw = (vz (DW’)’LW) + Twnw) (1 — Ny — nM), (1)

8tnM = (VZ (DMnM) + TMnM) (1 — Nw — nM)~
21 Here, nyw and n, are the population densities of the wildtype and the mutant normalized by the
22 shared carrying capacity; Dy, rw and Dy, ry are their respective dispersal and per capita growth
23 rates.

22 The factor of (1 — nyw — ny) ensures that there is no growth or movement behind the front. In
225 the growth term, this is a standard assumption that ensures finite carrying capacity [66]. In the
26 dispersal term, the factor of (1 —ny —ny) has rarely been studied in mathematical biology because
227 it is specific to microbial range expansions, where there is no movement behind the front [54, 58-60].
28 In the SI, we demonstrate that dented fronts also occur with standard density-independent dispersal
220 and therefore could be relevant for range expansions of macroscopic organisms (SI appendix .

230 The non-spatial limit of Eq. [I] is obtained by dropping the dispersal term. This limit is analyzed
21 in the appendix [[TL] As population grows from any initial condition, the relative abundance of
232 the faster grower increases until the total population density reaches the carrying capacity. At
233 this point there is no further change in ny and ny. This neutral coexistence between the two
234 strains ensures that the population is frozen behind the front and the competition unfolds only at
235 expansion frontier.
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236 The simplest spatial model takes all growth and dispersal rates to be independent of population
237 density. It is then easy to show that there is no difference between local and global fitness; see
28 Fig. and Ref. [54]. Most of the previous work focused on this special case of so-called “pulled”
230 waves [67] and thus could not observe the takeover by the slower expander.

20 Many organisms, however, exhibit some density dependence in their growth or dispersal dynam-
2ann ics [68H72], which can lead to a tradeoff between local and global fitness. One commonly-studied
22 case is found in the interaction between cooperators and cheaters |27, 50, 73, 74]. To model this
243 ecological scenario, we take

Dy =Dy=D,
2
TW:T'(l—anM , TM=T l—s—i—anw>. @)
Nw + Ny Nw + Ny

24 The benefit of cooperation is specified by s, which is the difference in the growth rate of cooperators
25 and cheaters when grown in isolation. The benefit of cheating is controlled by «; the growth rate of
26 cheaters increases by up to «a provided cooperators are locally abundant. For simplicity, we chose
27 a symmetric linear dependence of the growth rates on the mutant frequency and assumed that the
2s  diffusion constants are equal.

220 Numerical simulations of this model reproduced a V-shaped dented front (Fig. ) The dents
20 flattened when there was no benefit to cooperate (s = 0) and were replaced by bulges when
251 cooperators grew slower than cheaters (s < 0). We were also able to test whether these transitions
252 in sector shape matched the predictions of the geometric theory. For this comparison between the
253 theory and simulations, we need a mapping between the microscopic parameters of the model and
254 the three velocities that enter our geometric theory. Fortunately, in this model, all three velocities
255 can be calculated analytically: vy = 21/rD(1 + s), vy = 2v/rD, and u = /(o — s)rD. Therefore,
256 we could overlay individual simulations on the phase diagram predicted by the geometric theory.
257 The result, shown in Fig. [@JA, shows the expected agreement and provides further validation for the
28 geometric theory.

20 The geometric description is generic and should transcend the specifics of the cooperator-cheater
260 model discussed above. To further illustrate that different ecological interactions can produce
261 identical spatial patterns, we simulated a completely different mechanism for the tradeoff between
262 local and global fitness. This time, we assumed that the wildtype loses the local competition
263 because it grows slower than the mutant, but this slower growth is more than compensated by a
26+ much higher dispersal rate. This growth-dispersal tradeoff may be common in nature |29, |75-77],
265 and is captured by the following set of parameters:

Tom
Nw + Mg (3)
rw=r, ry=1(1+s).

DW:DM :DO_Dl

266 Here, the growth rates are density-independent, but the dispersal rates change with the local
267 community composition. We chose Dy, = Dy, to reflect the collective nature of movement in colonies

10
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268 of non-motile microbes |78} |79], which are pushed outward by mechanical stressed generated by all
260 cells behind the front. In addition, this simplifying assumption enables us to calculate the velocities
20 analytically and construct a quantitative phase diagram similar to Fig. [A. In the SI, we show that
o1 dented front can also be observed in models with Dy, # Dy (Fig. [S7).

oz Our simulations again exhibited dented fronts and all shape transitions in full agreement with the
213 geometric model (Fig. ) Thus, the geometric description is universal, i.e. a wide set of growth-
a74  dispersal dynamics converges to it. This universality, however, makes it impossible to determine
a5 the specifics of ecological interactions from spatial patterns alone. In other words, the observation
276 of a dented front indicates the existence of a tradeoff between local and global fitness, but does
277 not hint at any specific mechanism that is responsible for this tradeoff. For example, both models
s (Eq. [2[ and Eq. |3) produce identical sector shapes (Fig. [4) and both would provide a perfect fit to
279 our experimental data. Indeed, each model has four parameters, which is more than sufficient to
280 specify the three velocities that control all aspects of spatial patterns. Such fits of course would not
251 provide a meaningful insight into the mechanism. To determine the mechanism, one would have to
232 perform a different kind of experiments that could probe population dynamics on the spatial scale
253 of local competition.

w4  Discussion

285 This study used a simple and well-controlled laboratory microcosm to elucidate the factors that
286 influence spatial competition. We found a stark contradiction to the intuitive expectation that the
287 faster runner wins the race [32]. A mutant that expanded more slowly on its own nevertheless took
288 over the expansion front when inoculated with the wildtype. This spatial takeover accompanied
280 V-shaped sectors, which are a characteristic signature of the mismatch between local and global
200 competition. To explain these observations, we developed a theory that integrates local and global
201 competition and predicts all possible sector shapes. We then confirmed the validity of the theory
202 using both further experiments and simulations.

203 Our experimental results unequivocally demonstrate that a slow expander can win with and without
204 sectoring. Under low genetic drift conditions, the slow expander took over the front uniformly across
205 the colony. This outcome can be described by one-dimensional models because the competition
206 occurs primarily along the radial direction. In contrast, stronger genetic drift resulted in sector
207 formation and produced fully two-dimensional growth dynamics. Even under these less favorable
208 conditions, the slower mutant still outcompeted the wildtype.

200 Previously, slower expanders were found to be successful only in one-dimensional models [34, 36,
s00 37], and only buldged sectors of faster expanders were reported for two-dimensional growth [54].
s The latter was true even when there was a tradeoff between local and global fitness [80], presumably
32 because local fitness advantage was not sufficiently large. Our experiments not only confirm the
33 predictions of one-dimensional models, but also expand the set of conditions under which the
304 unusual takeover by a slower mutant can be observed. In fact, the slower expanders could be
305 successful in many settings not only because the theory and simulations strongly support this
s6 claim, but also because we relied on evolved mutants from natural isolates rather than genetic
307 engineering to obtain the strains.
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Figure 4: Sector shapes from microscopic simulations recapitulate phase diagram from the geometric
theory. (A) Simulation of cooperator-cheater model (Eq. [2) is compared with the geometric theory.
By varying s (benefit from cooperation) and « (strength of cheating), we explored sector shapes for
different values of vy /vy and u/vy. The locations of various sector shapes match the predictions
of the geometric theory. In particular, V-shaped dents are observed when a cheater expands more
slowly than a cooperator (s > 0), but has a sufficiently large advantage from cheating (o > s).
(B) Simulations of growth-dispersal tradeoff model (Eq. [3]) also agree with the geometric theory.
Different sector shapes were obtained by varying the the growth advantage s and and the dispersal
disadvantage D;. See Methods for simulation parameters.
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s0s The observation of dented fronts clearly shows that the existing theoretical understanding of sector
300 growth is incomplete. Previously, it was assumed that the spatial pattern depends only on the
si0 ratio of the mutant and wildtype velocities [54]. This simple picture holds when the fast expander
s also has a moderate advantage in local competition. More generally, however, we found that the
312 outcome of the competition also depends on the velocity u with which one of the strains invades
si3 locally. The sector shapes are completely determined by the three velocities (vy, vw, u) and can be
314 used to make quantitative inferences from experimental data. Nevertheless, the main contribution
s1is of our theory is its ability to integrate local and global competition and predict how large scale
316 spatial patterns emerge from species interactions.

s7 The geometric theory is not without limitations. This phenomenological theory cannot predict
sis  whether the fast or the slow mutant wins in a given system. To answer that question, one needs
319 to consider a mechanistic model and derive how the invasion velocity u depends on microscopic
30 parameters, which we have done for specific models. The universal nature of the geometric theory
321 also precluded us from identifying the mechanism responsible for the growth dynamics observed in
32 our experiments. We left this fascinating question for future works, and instead, focused on several
323 common tradeoffs between local and global fitness. The simulations of these tradeoffs not only
324 confirmed the validity of the geometric theory, but further highlighted that slower expanders could
35 establish by a wide range of mechanisms.

326 The geometric theory also relies on a few technical assumptions such as constant expansion ve-
327 locities, negligible stochasticity, and the absence of long-range interaction due to chemotaxis or
a8 nutrient depletion. Relaxing these assumptions could lead to certain quantitative changes in sector
30 shapes, but the existence of dented fronts or the possibility of a takeover by a slower expander
s should not be affected.

331 Our work opens many directions for further investigation. We clearly showed that the expansion
32 velocity cannot be the sole determinant of the spatial competition. Therefore, it will be important to
;33 examine how local interactions influence the eco-evolutionary dynamics during range expansions.
3¢ Such future work would bring about a more detailed description of ecological and biophysical
335 processes in growing populations. It would also greatly enhance our understanding of the tradeoffs
336 among different life-history traits and shed light on the incredible diversity of successful strategies
s37  to navigate spatial environments [29, 75-77]. The geometric theory developed here provides a
333 convenient way to integrate these various aspects of population dynamics. It abstracts the main
330 features of spatial growth and should facilitate the analysis of both experiments and simulations.

w0 Material and Method

a1 Strains

sz Wildtype Raoultella planticola strains were isolated from a soil sample (MIT Killian Court, Cam-
ss  bridge, MA) [81] and were tagged with two different fluorescent proteins mScarlet-I (red) and
s mTurquois2 (cyan) by insertion of plasmids pMRE145 and pMRE141 respectively [82]. As we grew
s wildtype colonies on agar plates, they reproducibly developed dents after several days as shown in
s Fig. and Fig. [SI We sampled the cells from either inside the dent or on the smooth edge using
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a7 inoculation loops, streaked on small plates, and grown in 30°C for two days. Then we sampled
as  single colonies, grew them overnight in LB growth media, and stored as a —80°C glycerol stock.

s Growth media preparation

350 We prepared hard agar plates with 1X Luria-Bertani media (LB, 2.5% w/v; BD Biosciences-US)
1 and 1.5% w/v of agar (BD Bioscience-US). We also added 1X Chloramphenicol (Cm, 15mg/L,
32 prepared from 1000X solution) for constitutive expression of fluorescence. For each agar plate,
353 4mL of media was pipetted into a petri dish (60X15mm, sterile, with vents; Greiner Bio-one), and
s« was cooled overnight (15 hours) before inoculation.

355 Frpansion expertment

ss6  For each strain, —80°C glycerol stock was streaked on a separate plate and grown for 2 days. Then
357 a colony from each strain was picked up and put into a 50mL Falcon Tube filled with 5 mL of
358 liquid media (1X LB and 1X Cm). Bacterial cultures were grown overnight at 30°C under constant
350 shaking 1350 rpm (on Titramax shakers; Heidolph). We then diluted and mixed the cultures to
s0  desired total density and mutant fraction, measured in optical density (ODggg) using a Varioskan
ss1  Flash (Thermo Fisher Scientific) plate reader. For circular expansions, we gently placed a droplet
32 of 1.5 uL inoculant at the center of an agar plate. For linear expansions, we dipped a long edge of
363 a sterile cover glass (24X50mm; VWR) gently into the culture and touched the agar plate with the
64 edge. After inoculation, each colony was grown at 30°C for 48 hours.

s Imaging

66 At fixed times after inoculation, each plate was put on a stage of Nikon Eclipse Ti inverted light
s67  microscope system. 10X magnification was used for whole-colony images, and 40X magnification
ss was used for single sector images. Fluorescent images were taken using Chroma filter sets ET-
s0  dsRed (49005) and ET-CFP (49001) and a Pixis 1024 CCD camera.

so - We used scikit-image [83] for image processing in Python. Images from different fluorescent chan-
sn nels were integrated after background subtraction and normalization by respective maximum in-
sz tensity. The sector boundaries were identified as the furthest points from inoculation plane where
313 both strains’ FL intensities were above respective thresholds. The codes for image analysis will
s+ be available via GitHub (https://github.com/lachesis2520/dented_front_public.git) upon
375 publication.

sie - Numerical simulation

377 Numerical simulations were performed by solving the corresponding partial differential equations
373 on a square grid using a forward-in-time finite difference scheme that is second order accurate in
sre space and first order accurate in time [84]. Python codes will be available via GitHub (https:
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30 |//github.com/lachesis2520/dented_front_public.git) upon publication.

ss1 For cooperator-cheater model simulation, we used the following set of values for parameters (s, «):

2 (—0.04,0), (—0.36,0), (—1,0), (—0.173,0.187), (—0.457,0.543), (0.36,0.4), and (0.36,0.72).

33 For growth-dispersal tradeoff model simulation, we used (s, D7) of (0.04,0), (0.36,0), (1,0), (0.36,0.147),
s (1,0.271), (0.04,0.385), and (0.36,0.529).
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« Supplementary figures

Figure S1: Emergence of dents in wildtype colonies was reproducible. Wildtype colonies were grown
for 48 hours. Top: wildtype strains constitutively expressing mScarlet-I. Bottom: wildtype strains
constitutively expressing mTurquois-2.
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Figure S2: Mutant expands more slowly regardless of the choice of fluorescent labels. Wildtype
with mTurquoise-2 fluorescence protein expanded with vy, = 30 pm/h while mutant with mScarlet-I
fluorescence protein expanded with vy = 22 pm/h.
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Wildtype

t=47.2hr

Combined

Figure S3: In co-culture experiment, wildtype did not expand after a day while mutant kept
expanding. Top: Fluorescence images of wildtype cells during expansion. Middle: Fluorescence
images of mutant cells during expansion. Bottom: combined.
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Figure S4: Mutant outcompetes wildtype under a wide range of inoculant densities and initial
mutant fractions.
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Figure S5: Mutant outcompetes wildtype under a different choice of fluorescent labels of wildtype
and mutant.
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Figure S6: No dented fronts occur in simulations with density-independent growth and dispersal.
In each column, the growth advantage ry/rw — 1 is the same (Left: 0.04, Middle: 0.36, Right:1).
Simulations in top row have Dy = D), so that the ratio of the expansion velocities varies with the
growth rates (vy = vwy/7m/7w). For the bottom row, we used Dy = %:‘:"WDW so that vy = 0.8vy.
We observed no expanding mutant sectors when its expansion velocity was less than that of the
wildtype.
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Figure S7: Dented fronts occur in simulations with Dy # Dy,. We used a variation of cheater-
cooperator model (Eq. [2)) in which dispersal of wildtype and mutant is no longer identical. In all
cases of Dy = 0.9Dyw, Dy = Dy, and Dy = 1.1Dy mutant developed a dented front with only
quantitative changes in sector shapes. These simulations used parameters s = 0.4 and « = 0.6.
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w I. Geometric theory and sector shapes

a4 Introduction

205 During spatial growth in microbial colonies or other cellular aggregates, mutants appear and com-
106 pete with each other. Previous studies and common intuition suggest that advantageous
207 mutants should form a sector that bulges out of the expansion front. In the main text, we reported
108 experiments showing that this is not always the case. Here, we identify all possible shapes that can
400 result from competition between two types in a growing colony.

a0 To make progress, we make a number of approximations and work in the so-called geometrical
a1 optics limit. This limit assumes that the expansion front and the boundary between the types
412 can be treated as thin lines. Neglecting sector and boundary widths is justified when these length
413 scales are much smaller than the colony size. In small colonies, thin boundaries require strong
as  genetic drift and slow motility. Furthermore, we assume that the expansion velocity of each type
as remains fixed. In particular, we neglect the effects of spatial variation in nutrient concentration
a6 due to protrusions of one type ahead of the other. This approximation is valid for high nutrient
a7 concentrations and when the size of the protrusions is small compared to the size of the mutant
418 sector.

Figure S8: Geometry of the competition.

419 In the geometric-optics limit, the competition between two types is described by three velocities:
420 the velocity of mutant vy, the velocity of wildtype vy, and the velocity of the boundary wvg, which
421 are shown in Fig. (Note vy # u) Previous work focused on the regime when vy was
422 determined by vy and vyw; in contrast, we make no assumptions about the relative magnitude of
423 these three velocities.

424 In the close vicinity of the sector boundary, the two expansion fronts can be approximated as
a5 straight lines. Their position (Fig. is determined by requiring that the expansion along the
426 boundary with velocity vy results in the same displacement of the fronts as moving perpendicular
427 to them with velocities vy, and vy respectively:
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Vw = vUg Sin Py, (S1)
Uy = Vg SiN Py (52)

For linear inoculations, the above equations are sufficient to completely specify sector shapes be-
cause, as we show below, the expansion fronts are straight lines even away from the sector boundary.
For circular initial conditions, Eqgs. provide information only about the local orientation at
the sector boundary, and further calculations are necessary. One way to obtain global shape is to
write down partial differential equations that specify how the position of the front changes and use
Eqgs. as the boundary conditions. A much simpler approach is to use an equal time argument
from Ref. [54].

This method traces the ancestral lineage from each point along the front and requires that the time
traveled on that lineage is equal to the current time ¢. The location of the ancestral lineage is such
that it takes the shortest time to reach the initial population starting from a given point without
entering the space occupied by the other type. The details of these calculations are provided below.
Before proceeding, we note that, here and in the main text, we typically parameterize the problem
with velocity w rather than vg. Since wu is defined as the velocity of the boundary point along the

front of wildtype, we can obtain it by projecting the boundary velocity on the expansion front of
the wildtype:

U = Vg COS Py (S3)

From this equation and Eq. , it follows that

vg = \/vZ + u?. (S4)

In the following, we assume that mutant takes over the front, i.e. u > 0. Mutants with negative u
immediately become extinct at least in the deterministic model considered here.

Finally, we observe that Eqs. (S2|) impose constraints on the values of the three velocities. In
particular, since sines are always less than one, the boundary velocity vy must be greater or equal
than both vy and vy. In terms of u, this implies that

vy < Vu? 403, (S5)
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Figure S9: Sector shape for linear inoculation and vy < vy. Sectors of faster wildtype (red) and
slower mutant (cyan) meet at sector boundary IB; and IBy. It takes the shortest time for the
mutant to go from its initial location at I to a point on the front P by first following 7P’ and then
P’P (blue path). The resulting geometry can be characterized by two opening angles: 2¢y for the
sector boundary and 2¢y, for the expansion front.

Linear inoculation
Sector boundary

Linear expansion geometry, the simplest situation to consider, allows us to explain the essence of
the equal time argument. This geometry is illustrated in Fig. Initially (¢ = 0), the colony front
is located at y = 0, and expansion proceeds in the upper half-plane. Mutant is only present at a
single point, which we put at = 0; the rest of the front is occupied by the wildtype.

As the expansion proceeds, the region near x = 0 is affected by the competition between the types.
From the definition of u, the extent of this region is given by = € (—ut, ut). Regions further away
are however unaffected and expand as if only wildtype is present. Thus, for |z| > ut, the front is
located at y = vwt. From these considerations, we can further conclude that the sector boundary
is described by (ut,vwt). Note that, below, we consider only the right side of the expansion; the
left side is described by the mirror image with respect to the y-axis. Thus,

tan ¢p = = (S6)

Uw
Note that, ¢y = ¢w — 7/2, which is clear from Figs. and

The shape of the front for |x| < ut depends on the relative values of vy, vy, and w.
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63 Um < Uy

464 When mutant is slower than wildtype, we find that front has a V-shaped dent with an opening
s angle 2¢p, as shown in Fig. [S9 To derive this result, we take a point P on the front with yet
a6 unknown coordinates (z,,y,). Note that z, € (0,ut). Then, we should obtain the location of the
467 ancestral lineage that connects this point to the initial location of the mutant: point I. Because
468 the ancestral lineage is located so that to minimize the travel time, it must be a union of straight
40 lines. Indeed, it is a well-known fact from geometrical optics that light rays travel on straight
a0 lines except where the value of the refraction index changes [85]. In our case, this means that the
a1 ancestral lineages of mutant can consist of straight lines within the mutant sector and regions of
42 the boundary. Obviously, the ancestral lineage of the mutant cannot penetrate the region occupied
4713 by the wildtype.

s The equal time argument then offers us two possibilities: a direct connection TP and an indirect

a5 connection IP'P via a point P’ on the sector boundary. The times to traverse these paths are

Tp[ = ‘PI‘/UM, (S?)
Tppy = ’PP/‘/’UM—F’P/I‘/’UB. (88)

476 'To complete the analysis, we need to choose the path with the lowest travel time and determine all
a7 locations of P for which the travel time equals ¢. For the direct connection, it is clear that P must
478 lie on an arc of a circle with the radius of vyt centered at I. For the indirect connection, we first
a9 need to determine the location of P’, which must minimize the travel time.

a0 Since P’ lies on the sector boundary its coordinates are given by (ut’, vwt') with an unknown ¢'.
41 The travel time is then given by

V(@p = ut') + (yp — vwt')? i Vu? + o3t
Um Ub ‘

Tppy = (S9)

sz Upon minimizing Tpp/; with respect to ¢/, we find that

2 _
u (%Yt

, unu? 4 v — 02 4 vyoyw Uy — vy u? + v3 — v
= | Tp T 5 Up | (S10)
(u? + 03 )V u? + vg, — v

43 and the travel time equals

(uvy — vw/u? + 02 — )Ty + (Vnvw + U/ u? + 03 — V) Yp ($11)

A
PP'I (’LL2 + ’U\QN)’UM )
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42 which is smaller than Tp; as long as vy < vyw. Thus, the ancestral lineages takes an indirect path
485 that first connects point P to the sector boundary and then follows the sector boundary until 1.
a6 The shape of the front is determined by setting Tpp/; from Eq. equal to ¢t. This results in a
457 segment of a straight line, and a straightforward calculation shows that

/o2 w2 — o2 - v
¢p = arctan (u Uy U U vaW) . (S12)

Vw/ V3 + u? — v — uvy

4s  Because the front and the sector boundaries are straight, the result above also directly follows from
a9 Eqgs. . Indeed, a simple geometric argument shows that ¢, = ¢y + Pw — 7/2.

a0 Note that, for vy = vy, the angle ¢, = 7/2 and the whole front is flat as it should if the expansion
a1 rates of the strains are identical.

102 Um = /02, + u?

203 In the limiting case of maximal allowed vy, the shape of the sector is also simple and immediately
a4 follows from the calculations above. Now, as we compare the two alternative paths, we find that Tp;
105 18 always smaller than Tpp/;. Thus, the shape of the sector is an arc of a circle of radius vyt around I
406 that connects to the flat front of the wild type at the sector boundary.

497 Previous work that used the equal time argument to describe competition in microbial colonies
a8 only considered vy = y/v2, 4+ u? and missed other possible front shapes [54]. While it might appear
w0 that vy = \/v2 + u? is a very special case, this relationship between the velocities holds across a
so0 wide set of conditions. Specifically, vy, = \/v2, + u? whenever local competition between the types
s is not strong enough to alter the priority effects due to different expansion velocities.

502 Vw < Um < UVQV 4 u?

503 The remaining possibility is the hybrid of the two cases considered so far. Depending on how far P
s04 is from the sector boundary, the quickest path from P to I may be either the direct or the indirect
s05 connection. We find that the front around x = 0 is a semicircle of radius vyt, but it is a straight
so6 line near the sector boundaries. The two segments joint smoothly. The angular half-width of the
so7 central arc, Ggransition, and the slope of the linear segment (see Fig. are given by

¢transition = arctan (

uvy — Vwy/ V3 + u? — v (513)
oy + U2, Fu? — v |

Uy — Vw /U3 + u? — v ($14)
Vnw + /02 + uZ — v

slope = —
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Figure S10: Possible sector shapes for linear inoculation. Left: vy, < vw. The mutant sector
emerging from point I has a dented front. The front consists of two straight lines. The shortest-time
path follows the sector boundary and also enters the sector interior. Middle: vy < vy < \/v3 + u?.
The mutant sector is a composite bulge. The front consists of two straight lines and an arc. To
reach a point P,,te, on straight part of the expansion front, the shortest-time path first follows
the sector boundary before entering the sector interior. To reach a point Pj,,e- on the arc, the
shortest-time path follows a straight line from I to Pjppner. Right: vy > /03, + u?. The front is an
arc. To reach a point P on the front, the shortest-time path follows a straight line from I to P.

ss  Clircular inoculation

B, Br

v

Figure S11: Circular colony with a dented front, vy > vy. The path of the shortest time follows
the sector boundary from I to P’ and then a straight line connecting P’ and P. Note that P'P
and OP' always intersect at angle 6.
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so0  We assume that the expansion starts at ¢ = 0 when wildtype colony fills the circle with radius
si0 1 < rg, and the mutant is present only at I = (79, 0) in polar coordinates.

511

512 Sector boundary

513 The boundary between the mutant and the wild type moves with linear velocity u along the front.In
siu - polar coordinates, the position of the sector boundary (rg, ¢s) then obeys the following equation

dog U
dos _ u 1
dt s (815)
515 We can eliminate time by using drg/dt = vy to obtain
u r
¢s(rp) = — In(—). (S16)

Vw To

si6 - We also find that the length of boundary at time ¢ is \/v3, 4+ u?t, and thus

vg = /v + u? (S17)

517 just as in the linear case.

518 Um < Uw

s.9 Let us consider a point P = (rp, ¢,) on a mutant patch with ¢, > 0 for simplicity.

520 As described before, we first find Tpp/; by minimizing % + “Z—WI' over points P’ on the sector

sz boundary. The point P’ = (rp/, ¢ps) should satisfy two equations:

522

u rpr
Gpr(rpr) = —In(—), (518)
Vw To
523
d <TP’ — g . \/(’rp o8 ¢, — 1pr cos ¢pr)2 + (rpsingpr — rpr sin ¢P/)2> —0. (S19)
drp Uw O

s« Here, the first equation constrains P’ to be on the sector boundary, and the second equation
55 minimizes Tpp; over P'. Since there are two unknowns and two equations, we can solve for
s26  (rpr, ¢pr). The solution is conveniently written in an implicit form:

rprsingpr — rpsing, — tan(6 — op)
Tpr COS Ppr — T COS P P
vy — vy V% + U — 02 (S20)
6 = arctan '
UpUw + u\/m

so7 This tells that PP’ is parallel to (1,0 — ¢p/); the angle between PP’ and P’O is a constant 6
s26  independent of r,, ¢,. Note that § > 0 for vy < vw, and thereby every point P on mutant front
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s20  with ¢, has its corresponding P’ on sector boundary IB.

530

531 The next step toward identifying the front position at time 7 is to find all points P such that
s2 Tppr; = T. Using the mapping between P and P’ described above, we find P by first moving along
533 sector boundary and then moving in a straight line parallel to (1,0 — ¢ps). By varying the time
s t' spent along the sector boundary while keeping the total time T fixed, we obtain a parametric
s35 expression for P(T") = (z,(T"),y,(T)) in Cartesian coordinates:

t/ t/
2y (T5t) = (vwt’ + 1) sin(i ln(m)) + o (T —t) sin(i ln(m) —0),
Uw To Vw To (821)
’ / U ro + vwt’ , U ro + vwt’
yp(T5t") = (vwt' + 1o) cos(— In(————)) + vu (T — t) cos(— In(————) — 0).
Vw To Vw 7o

s3 It is also possible to get a non-parametric, explicit expression by solving an equivalent partial
s37 - differential equation using the method of characteristics:

Pp(t, 1) = L n (1 + UWt> +F <T> — F(1), where

Uw To 7o + vwl

p2 _ 2'”1?1 5 — UV
U Viytu Vw \/vz—i-uz
—_ In ( 2,02 _ U2 ) W
2
F(p) = 3 P Uy — Uy
Uw 2 U UVM

- +
P v +u? vw/ V2 4u?
2 2 2
Vuy Tu 2 Um
YW 2 M)
Unm

2 2
vy T u

(S22)

-+ arctan (

538 U > Uw

530 In this regime, § < 0 and thereby some points P on the mutant front do not have a corresponding
ss0 P’ on the sector boundary. In other words, the straight path I P takes the shortest time. We find
sa0  that, when P is near the top of the bulge, the minimal path is a straight line I P while, When P is

se2  further from the top, the minimal path is a straight line P’P followed by a curved path I P’ along
543 the sector boundary.

sae - Note that the straight path is tilted by a fixed angle 6 from OP’, pointing inwards to the cen-
sas ter of the sector compared to the tangent line except when vy = /v3 + u?. In the latter case,

2
56 0 = —arctan( % — ), and the straight path is tangent to the sector boundary, as described
sa7 in [54].

548

se9  The boundary between the two regions of the front lies angle ¢¢ransition Way from the center. This

sso  angle is given by
uvy — vwy/ V% + u? — vZ
. 523
UyOw + Uy V3 + u? — v (523)

31
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ss1 Thus, the bulge is an arc of a circle near the center and is described by Eq. (S21)) near the sector
52 boundary.
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s II. Dispersal without carrying capacity

554 In the main text, we considered two mechanistic models that produce all possible sector shapes. For
55 both models, we assumed that the dispersal term has a factor of (1 —nw —ny) so that the dispersal
556 ceases when population reaches the carrying capacity. Without the carrying capacity factor, any
ss7 - spatial patterns should eventually vanish because the populations continue to intermix behind the
ss8 expanding front. Accordingly, sectors exist only in the transient timescale between expansion and
ss0  diffusion. Nevertheless, the (1 — nyw — ny) factor does not affect the ratios between three velocities
s60 Uy, Uy and u, and since these ratios determine the sector shape in geometric theory, we expect
se1  that the absence of the (1 — ny — ny) factor does not affect the sector shape observed in transient
se2  timescales. To verify this idea, we simulated a microscopic model without carrying capacity on
se3  diffusion:

LY

Onw = DVny + 1 <1 —«
Nw + N

) (1 — 1y — 1), o

n
Oy = DV?ny + 7 <1 — s+ aw) (1l — nyw — ny).
Nw 7 Nyt
se¢  The simulation demonstrated that the sector shape was not affected by carrying capacity factor

ses from dispersal (Fig.[S12)). The sector boundaries were blurred by the nonzero dispersal behind the
front, but the overall shape of the sector remained the same.

A B

Figure S12: Dented front in a model with density-independent dispersal. Formation of dented
sectors in simulations with different models of dispersal. (A) The model from the main text Eq.
(B) A model with density-independent dispersal Eq. Note the blurry sector boundaries due
to continued intermixing after growth ceases behind the front.

566
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» 1II. Nonspatial limit for mechanistic models

s6¢  In the main text, we considered two mechanistic models that produce all possible sector shapes.
se0 Here, we analyze these models in the nonspatial, i.e. well-mixed, limit, which describes local
570 competition.

s Cheater-cooperator model

s2 The model reads

Oy = <DV2nW +7r <1 — oan) nw> (1 —nw — ny),
T T (525)

Oy = <DV2nM +r <1 — 5+ anw> nM> (1 —nw — ny).
Nw T Ny

573 In the well-mixed limit, the partial differential equations above reduce to a set of ordinary differential
574 equations:

dt Nw + N
dny
dt

dnw =7 (1 — anM) nw(l — nw — ny),
(526)

Nw
=r{l—-s+a——— ) ny(l —nw — ny).
< . +nM> (1= g — 1)

575, We only consider s < 1 and —1 < a < 1 and assume that initial populations densities are positive
s76  and their sum is below the carrying capacity. With these assumptions, it is clear that the population
577 densities remain positive for any ¢t > 0 since dgtw and dgt“" are positive. The monotonic increase
s7s of the population densities also ensures that lim; ., nw 4+ ny = 1 because both time derivatives
579 switch sign when ny + ny exceeds unity. In fact, it follows directly from Eqgs. that any pair

ss0  of positive ny and ny that sum up to one is a fixed point.

ssi This line of fixed points is a direct consequence of our assumption that population dynamics are
s2  frozen behind the front. In a generic Lotka-Volterra system, the differences in the competitive
ss3  abilities at high population densities would break this degeneracy and lead to the takeover by one
ssa  of the types (stable coexistence is also possible) [54) |66]. Microbial populations however grow only
s until the nutrients are exhausted, and the two types could, therefore, remain at an arbitrary ratio
56 once the growth ceases.

ss7  Further insights into the behavior of Eq. (S26)) can be derived from its first integral (a conserved
ss8  quantity), which we obtain by dividing the two equations:
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e (e -
dn - W .
M (]_ — S+ Oénwz_nm) Ny

The equation above can be integrated after both sides are multiplied by dny (1l — s + any/(nw +
ny))/nw. This procedure yields the following conserved quantity:

¢ = ) (28)

LY

which we can use to understand the temporal dynamics of the two types. It is convenient to recast
Eq. (S28) in terms of total population density n = ny + ny and mutant frequency f = ny/n:

f na—s

1=pHt—= C

(S29)

The left-hand side is a monotonically increasing function of f, and the right hand-side is a monotonic
function of n, which is increasing for @ > s and decreasing otherwise. Thus, f increases with n
for a > s and decreases for & < s. Since n is always increasing (assuming it is less than one
initially), we conclude that the relative abundance of the mutant increases when o > s and decreases
otherwise. Numerical simulations confirm this conclusion; see Fig. [SI3A.

In the spatial model, © = v/a — s, so the mutant can invade only when s < «, which is consistent
with the local well-mixed competition that we just described.

Growth-dispersal tradeoff model

The well-mixed limit for the growth-dispersal tradeoff model reads

n

% :rnw<1 _nw_nM)7

i (S30)
E :74(1+8)nM<1 _nW_nM).

The qualitative behavior of this system of equations is identical to that of the cheater-cooperator
model. Any population below the carrying capacity with positive densities of the two types evolves
to one of the neutral fixed points on ny + nw = 1. The change of the mutant fraction can be
determined from the following first integral

1+s 1+s
Nw (1 - f)
=nps_ 2 _ (. S31
e 7 (S31)
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606 The analysis, identical to the one we just described, shows that the frequency of the mutant increases

607 as long as s > 0. This is consistent both with the expansion velocity v = 2v/Ds and numerical
s0s simulations (Fig. [S13]).

A a=0.

1.0 oy
-

Q
I
o
©n
]
o
o

1.0 oy
C ey

0.81 03-:

0.6

: = TR Ce . B

. » I P

nm

0.4 1

0.2 1

0.0 1

0.0

1.0

0.8

0.6 1

nm

0.4

0.2 1

0.01

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure S13: Phase portraits of ODE dynamics. In each panel, red arrows represent (dny, /dt, dny/dt)
and green curve shows the trajectory from small initial population (ny,ny) = (10712,10712).

(A) Phase portraits for cheater-cooperator interaction model. (B) Phase portraits for growth-
dispersal tradeoff model.
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