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Quantitative Structure-Activity Relationship (QSAR) modeling is the most common com-
putational technique for predicting chemical toxicity, but a lack of methodological innova-
tions in QSAR have led to underwhelming performance. We show that contemporary QSAR
modeling for predictive toxicology can be substantially improved by incorporating seman-
tic graph data aggregated from open-access public databases, and analyzing those data in
the context of graph neural networks (GNNs). Furthermore, we introspect the GNNs to
demonstrate how they can lead to more interpretable applications of QSAR, and use ab-
lation analysis to explore the contribution of different data elements to the final models’
performance.

Keywords: Toxicology; Graph neural networks; Data aggregation; QSAR; Artificial intelli-
gence.

1. Introduction

Evaluating the toxicity of chemicals is an essential component of pharmaceutical and en-
vironmental research. Traditionally, the task of establishing toxicity has been accomplished
using in vivo models, where a model organism is exposed to a chemical of interest and ob-
served for toxic effects, or by performing epidemiological studies on human populations. Both
of these approaches are costly and time consuming,1 and given the hundreds of thousands
of compounds of toxicological interest, innovative alternatives are needed to rapidly screen
chemicals. In recent decades, predictive toxicology and large-scale chemical screening efforts
have emerged to address this issue.2,3

Quantitative Structure-Activity Relationship (QSAR) modeling is arguably the most
prevalent method for predicting in silico whether a chemical will cause a toxic response.4

Briefly, QSAR modeling involves collecting regularly structured quantitative descriptions of
molecular structures (known as fingerprints), and then fitting a statistical model (e.g., logis-
tic regression, random forest, etc.) to sets of chemicals where a toxic endpoint of interest is
already known.5,6 Since each data point used to train a model is itself the outcome of a single
experiment, QSAR is a meta-analysis approach that is complicated not only by the challenge
of capturing relevant structural features of chemicals, but also by errors, biases, and ambigu-
ities in the underlying experiments used to generate the training data. Consequently, QSAR
is often criticized for its disappointing performance on many tasks.7,8 The computational tox-
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icology community has long acknowledged the need for new methodological innovations to
improve QSAR performance, but few have been effectively implemented.

In this study, we address these issues by augmenting the traditional QSAR approach with
multimodal graph data aggregated from several public data sources, and analyzing those data
in the context of a heterogeneous graph convolutional neural network (GCNN) model. We
evaluate the model using 52 assays and their accompanying chemical screening data from
the Tox21 data repository, and compare its performance to two rigorously defined traditional
QSAR models consisting of random forest and gradient boosting classifiers. Our results show
that the GNN strategy significantly outperforms traditional QSAR. We further refine our
results by removing various components of the graph to explain the relative contributions of
different data sources to the GNNs’ increased performance. Finally, we discuss how GNNs
improve the interpretability of QSAR, and suggest future directions to continue this body of
work.
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Fig. 1. Overview of the graph machine learning approach used in this study. We build a toxicology-
focused graph database (named ComptoxAI) using data aggregated from diverse public databases,
and extract a subgraph for QSAR analysis containing chemicals, assays, and genes. We then train
and evaluate a graph neural network that predicts whether or not a chemical activates specific
toxicology-focused assays from the Tox21 database.

2. Methods

2.1. Obtaining toxicology assay data

We used the Tox21 dataset2—which is a freely available resource produced collaboratively by
the US National Institutes of Health, the US Food and Drug Administration, and the US
Environmental Protection Agency—to obtain a set of candidate assays for classification and
establish ‘ground truth’ relationships between specific chemicals and those assays. Each assay
in the database includes experimental screening results describing the activity of the assay in
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response to specific chemicals of toxicological interest, including pharmaceutical drugs, small
molecule metabolites, environmental toxicants, and others. We removed all chemical–assay
measurements with inconclusive or ambiguous results, as well as assays with very few (e.g.,
< 100) active chemicals.

2.2. Aggregating publicly available multimodal graph data

The graph data used in this study come from a new data resource for computational tox-
icology, named ComptoxAIa. ComptoxAI includes a large graph database containing many
entity and relationship types that pertain to translational mechanisms of toxicity, all of which
are sourced from third-party public databases (including PubChem, Drugbank, the US EPA’s
Computational Toxicology Dashboard, NCBI Gene, and many others). We extracted the sub-
graph from ComptoxAI’s graph database defined as all nodes representing chemicals, genes,
and toxicological assays, as well as the complete set of edges linking nodes of those types.
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Fig. 2. Metagraph describing the node types, node counts, and edge types in the heterogeneous
graph. During implementation of the GNN, we also define corresponding inverse edges (e.g., assay-
TargetsGene ↔ geneTargetedByAssay) to facilitate the message-passing paradigm of the GNN.

The 3 entity types that comprise the nodes of the extracted subgraph are chemicals,
assays, and genes. We sourced the chemicals from the US EPA’s DSSTox database,9 and
further filtered them so that each one is equivalent to a distinct compound in PubChem.
We obtained genes from the NCBI Gene database,10 and assays from the Tox21 screening
repository as described above. To serve as node features for chemicals, we computed MACCS
chemical descriptor fingerprints11 for all chemicals in the graph, using their SMILES strings.
Each fingerprint is comprised of a bit-string of length 166, where each bit indicates presence
or absence of a specific chemical characteristic. These fingerprints are also reused as predictive
features in the baseline (non-GNN) QSAR models, described below. All edges in the graph
were sourced from either the Hetionet database12 or from assay–chemical annotations in Tox21.
A metagraph describing the node and edge types in the subgraph is shown in Figure 2.

aThe full graph database for ComptoxAI can be found at https://comptox.ai, and will be described
in a separate, upcoming publication.
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2.3. Heterogeneous graph neural network

We constructed a heterogeneous graph convolutional neural network (GCNN) architecture13

for the graph ML experiments. Since our graph contains multiple entity types (chemicals,
genes, and assays)—each with possibly different sets of node features, and linked by multiple
semantically distinct edge types—the architecture extends the common GCNN model to learn
separate message passing functions for each edge type. Briefly, each layer of the network
aggregates signals from adjacent nodes in the graph, such that a greater number of layers
results in signals being aggregated from an increasingly wider radius around each node. The
output of the network can be thought of as encoded representations of nodes that incorporate
information from the other nodes in their local neighborhood. The GCNN can also be thought
of as a generalization of convolutional neural networks (CNNs) used in computer vision—
instead of the convolutional operator aggregating signals from nearby pixels in an image, it
aggregates features from adjacent nodes in the graph.14

In a heterogeneous graph, different node types represent different types of entities, each
represented within a semantically distinct feature space.15 Therefore, the process of aggregat-
ing information from adjacent nodes must take those nodes’ types into account. Additionally,
different edge types (e.g., 〈chemicalUpregulatesGene〉 and 〈chemicalDownregulatesGene〉) con-
vey their own semantically distinct meanings, which can substantially effect the flow of infor-
mation through the network. To handle these two challenges, we learn separate aggregation
functions for each edge type in the graph, following the example proposed by Schlichtkrull et
al in R-GCNs (Relational Graph Convolutional Networks).16 Within the R-GCN paradigm,
the message passing process can be split into 3 sequential steps: (1.) collecting signals from
adjacent nodes using an appropriate edge type-specific message function φ, (2.) combining
each of those incoming signals (across all edge types) via a reduce function ρ, and (3.) finally
updating the target node v by applying an update function ψ. Training the network is roughly
equivalent to finding an appropriate parameterization of φ for each edge type.

A formal description of the GNN is given in Appendix A.

2.3.1. Node classification

Given the GCNN architecture described above, we construct a heterogeneous graph where
chemicals are labeled according to whether they do (1) or do not (0) activate an assay of
interest. Although we remove the node representing the assay of interestb, all other Tox21
assays are included in the graph, and edges between chemicals and the other assays can
therefore be used to improve the inferential capacity of the model beyond those of the baseline
QSAR models, which only have access to chemical structure. Similarly, interactions involving
genes further increase the information available to the model. We use the MACCS fingerprints
as node features, while assay and gene nodes are initialized as 1-dimensional uniform random
values that are optimized during model training, eventually serving as scalar ‘embeddings’ that
are roughly proportional to those nodes’ importance in the trained network. The procedure

bTo prevent information leakage, since conectivity to the assay would perfectly predict the node
labels.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.08.455550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455550
http://creativecommons.org/licenses/by-nc/4.0/


we use for labeling the graph is shown in Algorithm 1.

Algorithm 1 Labeled heterogeneous graph construction for toxicity assay QSAR model.

Let G be a heterogeneous graph for QSAR, a ∈ A be an assay of interest, and `(c) denote
an activity label for chemical c ∈ C w.r.t. assay a.
for each chemical c ∈ C do

if ∃ an edge (c, r, a) s.t. the edge type of r is 〈chemicalHasActiveAssay〉 then
`(c)← 1

else if ∃ an edge (c, r, a) s.t. the edge type of r is 〈chemicalHasInactiveAssay〉 then
`(c)← 0

else
`(c)← is undefined . No label available for node c

end if
end for
G?

a ← G \ a . Delete node a from the graph to prevent information leakage
return G?

a

The resulting graph G?
a containing labeled chemicals is then used as input to the GCNN,

which we train to predict the correct labels. We use an 80%/20% train/test split on the labeled
chemicals, optimize the GCNN’s parameters using the Adam algorithm (a computationally
efficient variant of stochastic gradient descent suitable for sparse gradients),17 and compute
the error between predicted and true labels via cross entropy loss.

Additional details on the node classification approach are given in Appendix B.

2.4. Baseline QSAR classifiers

To assess the relative performance of the GNN classification model, we built 2 additional
(non-NN) QSAR models that represent rigorously defined benchmarks consistent with cur-
rent practice in predictive toxicology: A random forest classifier,18 and a gradient boosting
classifier.19 Each model was trained on the aforementioned MACCS fingerprints of chemicals
computed from SMILES strings, with an 80%/20% training/testing split. We tuned 6 hyper-
parameters for each random forest model, and 5 for each gradient boosting model, as described
in Table S1. These were tuned using grid search, where the optimal hyperparameter set is
defined as the one that minimized binary cross entropy between predicted labels and true
labels on the training data.

3. Results

3.1. GNN node classification performance vs. baseline QSAR models

Of the 68 total assays in the Tox21 database, we retained 52 for analysis in the QSAR experi-
ments. The remaining 16 assays were not used due to either a low number of active chemicals
or underrepresentation of screened chemicals in the ComptoxAI graph database. Additionally,
we discarded compound labels for chemicals with inconclusive or ambiguous screening results.
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As shown in Figure 3, the GNN model significantly outperforms both the random forest
(Wilcoxon signed-rank test p-value 2.3 · 10−4) and gradient boosting (p-value 2.6 · 10−3) models
in terms of area under the receiver operating characteristic curve (AUROC), with a mean
AUROC of 0.883 (compared to 0.834 for random forest and 0.851 for gradient boosting).
This is robust evidence that the GNN model tends to substantially outperform ‘traditional’
QSAR models. A notable characteristic of the GNN AUROCs is that their distribution has
a higher variance than either the random forest or gradient boosting AUROCs. Anecdotally,
this is likely due to diminished sensitivity of the GNN model when trained on assays with
few positive examples—neural networks tend to struggle as data become more sparse, which
seems to be the case here. We also compared F1-score distributions between the 3 model types;
however, the differences between the 3 models are not statistically significant. The relatively
low F1-scores in the 3 model types is a result of the class imbalance in the QSAR toxicity
assays—all of the assays contain far more negative samples (assay is inactive) than positive
samples (assay is active), which results in any false negatives having a magnified impact on
F1. The same increased variance observed in GNN model AUROCs is shown in the GNN
F1-scores.

A B
p = 2.6*10-3

p = 0.93 p = 0.98p = 2.3*10-4

Fig. 3. Overall performance metrics of the 3 QSAR model types on each of the Tox21 assays—
a.) area under the receiver operating characteristic curve (AUROC) and b.) F1 score. The mean
AUROC is significantly higher for the GNN model than for either of the two baseline QSAR ap-
proaches. The differences in F1 scores are not statistically significant. The GNN achieves poor F1
scores on assays with relatively few (e.g., < 100) “active” annotations in Tox21, which is consis-
tent with known performance of neural networks on data with sparse labels. p-values correspond to
Wilcoxon signed-rank tests on means, with a significance level of 0.05.

We performed further review of model performance on two selected assays of
interest: PXR agonism (labeled tox21-pxr-p1 in Tox21) and HepG2 cell viability
(tox21-rt-viability-hepg2-p1). We selected these assays for two reasons: (1.) Both are
semantically distinct from all other Tox21 assays (i.e., there are no other assays measuring
pregnane X activity or cell viability), and therefore we would not expect an information leak

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.08.455550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455550
http://creativecommons.org/licenses/by-nc/4.0/


from other highly correlated Tox21 assays present in the GNN, and (2.) both have a sufficient
number of positive chemicals such that their ROC curves attain high resolution at all values
of the decision rule across the 3 model types. Figure 4 shows that the GNN outperforms the
random forest and gradient boosting models at virtually all discrimination thresholds in both
cases. The high performance of the GNN on HepG2 cell viability is especially noteworthy—cell
viability is notoriously challenging to predict in chemical screening experiments. Many of the
other 50 Tox21 assays showed similar patterns in performance. All ROC plots are available in
Supplemental Materials.

a.) b.)

Fig. 4. Receiver operating characteristic (ROC) curves for two selected Tox21 assays: a.) PXR
agonism (tox21-pxr-p1) and b.) HepG2 cell viability (tox21-rt-viability-hepg2-p1). In both
cases, the area under the curve (AUC) is significantly higher for the GNN model than either the
Random Forest or Gradient Boosting models. AUC values are given with 95% confidence intervals.

3.2. Ablation analysis of graph components’ influence on the trained
predictive model

To better understand how the GNN model outperforms the random forest and gradient boost-
ing models, we performed an ablation analysis on the two previously mentioned assays—
pregnane X agonism and HepG2 cell viability. For both of the assays, we re-trained the model
after removing specific components from the GNN:

• All assay nodes.
• All gene nodes.
• MACCS fingerprints for chemical nodes (replacing them with dummy variables so the

structure of the network would remain the same).

ROC plots for these experiments are shown in Figure 5. For both assays, the full GNN
model performed best, although only modestly better (in terms of AUROC) than the versions
without MACCS fingerprints or gene nodes. However, the performance of the GNN drops
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substantially—barely better than guessing labels at random (which would correspond to an
AUROC of 0.50)—when assay nodes are removed from the graph. In other words, much of
the inferential capacity of the GNN models are conferred by chemicals’ connections to assays
other than the one for which activity is being predicted. Similarly, MACCS fingerprints are
not—on their own—enough for the GNN to attain equal performance to the baseline QSAR
models, which only use MACCS fingerprints as predictive features. Therefore, although the
GNN achieves significantly better performance than the two baseline models, it is only able
to do so with the added context of network relationships between chemicals, assays, and (to
a lesser degree) genes.

b.)a.)

Fig. 5. Receiver Operator Characteristic (ROC) curves for two selected Tox21 assays using different
configurations of the GNN model. ‘GNN - full’ is the complete model as described in §2.3.1. ‘GNN
- no structure’ omits the MACCS chemical descriptors and replaces them with node embeddings
of the same dimensionality. ‘GNN - no gene’ removes gene nodes and their incident edges from the
network. ‘GNN - no assay’ removes all assay nodes and incident edges, so predictions are made solely
using chemicals, genes, the remaining edges, and the MACCS chemical descriptors as chemical node
features. AUC values are given with 95% confidence intervals.

4. Discussion

4.1. GNNs versus traditional ML for QSAR modeling

The toxicology community largely agrees that QSAR underperforms on many tasks, and that
new methodological advances are desperately needed. In this study, we demonstrate that
GNNs significantly outperform the current gold-standard techniques in the field. Aside from
the fact that neural networks can more easily adapt to nonlinear objectives than non-neural
network models,20 this is likely a natural consequence of incorporating biomedical knowledge
that goes beyond chemical structure characteristics. Gene interactions provide clues about
how chemicals influence metabolic and signaling pathways in vivo, and non-target assays (i.e.,
other assays in the graph aside from the one currently being predicted) may correlate with
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activity of the target assay.

4.2. Interpretability of GNNs in QSAR

Chemical fingerprints—such as MACCS, which we use in this study—provide a valuable ap-
proach to representing chemicals that is suitable for machine learning. However, models based
on fingerprints are challenging to interpret.7,21 Although each field of a MACCS fingerprint
corresponds to meaningful chemical properties (such as whether the chemical contains mul-
tiple aromatic rings, or at least one nitrogen atom), the fingerprint is largely inscrutable in
QSAR applications, since biological activity is the result of many higher-order interactions
between the chemical of interest and biomolecules.

In this study, the knowledge representation-based heterogeneous graph data represent eas-
ily interpretable relationships between entity types that mediate toxic responses to chemicals.
Although not implemented in this particular study, a GNN architecture known as a graph
attention network explicitly highlights portions of a graph that are influential in predictions,
providing a logical next step for continuing this body of work on GNNs in QSAR modeling.
Other, simpler approaches also provide avenues for exploring interpretability, such as visual-
izing the edge weights for edges starting at assay nodes in the trained GNN. Often, the sheer
size of graphs make this approach intractable, but since our graph only contains 52 assays it is
relatively straightforward to inspect their weights. For example, the highest weighted assays
for the HepG2 cell viability prediction task are HepG2 Caspase-3/7 mediated cytotoxicity and
NIH/3T3 Sonic hedgehog antagonism (a marker of developmental toxicity). The first of these
makes sense from an intuitive standpoint, as it measures toxic response in the same cell line
as the predicted assay. The second, on the other hand, does not have an immediately obvious
connection to the predicted assay, but may be linked to the fact that Shh antagonists can
induce apoptosis.22 Either way, it is easy to see that assay weights can be used to generate
specific hypotheses for future targeted studies of mechanisms that underlie toxicity.

We provide all assay weights for the two above-mentioned assays in Supplemental Ma-
terials.

4.3. Sources of bias and their effects on QSAR for toxicity prediction

Like any meta-analysis technique, QSAR is subject to multiple sources of bias that can be
introduced at several levels, not the least of which is in the original experiments used to
generate toxic activity annotations for training data samples. This was a greater issue his-
torically, when known activities for chemicals were compiled either from published scientific
journal article results or from reporting guidelines for in vivo experiments.23 Publication bias
caused negative activity annotations to be extremely incomplete, and techniques for imputing
negative annotations were inconsistent. Older QSAR studies often did not state the original
sources of their data, so verification and reproducibility of results are immensely challenging
(if not impossible).

Fortunately, modern large-scale screening efforts (including Tox21) were created to directly
address these and other issues.24 While our training data are still subject to batch effects, bias
in selecting assays and chemicals for screening, and other systematic and experimental errors
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that are propagated along to the final QSAR model, we are relatively confident that pub-
lication bias, reporting bias, and other issues that plagued early QSAR studies have been
substantially decreased. Furthermore, our GNN approach to QSAR modeling may be more
robust to these sources of bias than non-GNN approaches, because (a.) the graph incorporates
multiple levels of biological knowledge that can ‘fill in gaps’ left by incomplete or inaccurate
data at other levels and (b.) GNNs—and heterogeneous GNNs in particular—exhibit proper-
ties that make them inherently robust to noise.25,26

5. Conclusions

In this study, we introduce a novel GNN-based approach to QSAR modeling for toxicity
prediction, and evaluate it on data from 52 assays to show that it significantly outperforms
existing methods. GNNs comprise an incredibly active emerging topic within artificial intelli-
gence research, and as one of the first GNN applications in computational toxicology we hope
that our results serve as a ‘jumping off point’ for a vast body of similar work. We plan to eval-
uate graph attention networks, new data modalities, and network regulization techniques in
the near future, and encourage contributions from the toxicology and informatics communities
at-large to improve predictive toxicology’s overall data ecosystem.

6. Code availability

All source code pertaining to this study is available on GitHub at https://github.com/

EpistasisLab/qsar-gnn. A frozen copy of the code at the time of writing is available at
https://doi.org/10.5281/zenodo.5154055.

7. Supplemental Materials

Supplemental tables and figures are available on FigShare at https://doi.org/10.6084/m9.
figshare.15094083.
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Appendix A. Graph convolutional network architecture

Our GCNN implementation uses a message-passing paradigm that combines aspects of the
GraphSAGE27 and R-GCN16 architectures. Let G = (V, E ,R) be a heterogeneous graph con-
sisting of nodes vi ∈ V, edges (vi, r, vj) ∈ E, and a set of edge types r ∈ R. Each edge is labeled
with exactly one edge type. All chemical nodes (represented below as h0) are represented
by a bit string of length 166 corresponding to the chemical’s MACCS fingerprint, while all
other nodes (assays and genes) are represented by a single decimal-valued ‘embedding fea-
ture’ that is learned during optimization. The magnitude of an assay or gene’s embedding is
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roughly equivalent that node’s importance in the network, and can be introspected for model
interpretation.

Each layer of the network is defined as an edge-wise aggregation of adjacent nodes:

h
(l)
i = σ

(∑

r∈R
ρj∈N r

i

(
W (l−1)

r h
(l−1)
j +W

(l−1)
0 h

(l−1)
i

))
. (A.1)

where hli is the hidden representation of node i in layer l, N (i) is the set of immediate neighbors
of node i, and σ is a nonlinear activation function (either softmax or leaky ReLU, as explained
in Appendix B). ρ can be any differential ‘reducer’ function that combines messages passed
from incident edges of a single type; in the case of this study we use summation. Since our
graph contains relatively few edge types, regularization of the weight matrices W is not needed.

Appendix B. Node classification model

For classifying chemicals as active or inactive with regards to an assay of interest, we stack 2
GCN layers in the form given by (A.1), with a leaky ReLU activation between the two layers
and softmax applied to the second layer’s output. Since we only classify chemical nodes, we
ignore outputs for all other node types (and for chemicals with undefined labels); labels are
generated via Algorithm 1 We train the network by minimizing binary cross-entropy between
the network’s softmax outputs and true activity values:

L = −
∑

i∈Y
`(h

(0)
i ) · lnh(2)i + (1− `(h(0)i )) · ln(1− h(2)i ). (B.1)

where Y is the set of all labeled nodes, `(h(0)i ) is the true label of node i, and h
(2)
i is the final

layer output of node i.
The relatively shallow architecture of the network allows us to optimize the model using

the Adam algorithm applied to the entire training data set, but the model can be adapted to
mini-batch training when appropriate or necessary.
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