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Abstract

Despite recent advances in transgenic animal models and
display technologies, humanization of mouse sequences re-
mains the primary route for therapeutic antibody
development. Traditionally, humanization is manual, labori-
ous, and requires expert knowledge. Although automation
efforts are advancing, existing methods are either demon-
strated on a small scale or are entirely proprietary. To predict
the immunogenicity risk, the human-likeness of sequences
can be evaluated using existing humanness scores, but these
lack diversity, granularity or interpretability. Meanwhile,
immune repertoire sequencing has generated rich antibody
libraries such as the Observed Antibody Space (OAS) that
offer augmented diversity not yet exploited for antibody en-
gineering. Here we present BioPhi, an open-source platform
featuring novel methods for humanization (Sapiens) and hu-
manness evaluation (OASis). Sapiens is a deep learning
humanization method trained on the OAS database using
language modeling. Based on an in silico humanization
benchmark of 177 antibodies, Sapiens produced sequences
at scale while achieving results comparable to that of human
experts. OASis is a granular, interpretable and diverse hu-
manness score based on 9-mer peptide search in the OAS.
OASis separated human and non-human sequences with
high accuracy, and correlated with clinical immunogenicity.
Together, BioPhi offers an antibody design interface with
automated methods that capture the richness of natural anti-
body repertoires to produce therapeutics with desired
properties and accelerate antibody discovery campaigns.

BioPhi is accessible at https://biophi.dichlab.org and
https://github.com/Merck/BioPhi.

Introduction

Antibodies are versatile molecules that can bind diverse tar-
get antigens across the biological and chemical landscape.
Antigen recognition is mediated by somatic hypermutation
of the antibody variable region, where germline genes are
combined and mutated to generate a diverse pool of mature
sequences. Monoclonal antibodies (mAbs) represent the ma-
jority of protein-based therapeutics currently in the clinic,
with clinical treatments in cancer [1], autoimmune disease
[2], viral infection [3] etc. Commonly, mAbs are generated
by the immunization of mouse or other model animal. How-
ever, sequences derived from rodent or other non-human
sources are likely to elicit an immunogenic anti-drug anti-
body (ADA) response [4]. Therefore, the variable region of
discovery mAbs must be humanized to mitigate undesirable
clinical properties including safety risks and/or reduced effi-
ciency. To do so, the hypervariable complementarity-
determining regions (CDRs) and other essential murine
framework residues are carefully incorporated into a human
framework, producing a human-like sequence that preserves
the binding properties of the original antibody. Although al-
ternative antibody discovery approaches exist which avoid
the need for humanization by employing transgenic mice
with human B cell genes, this process is expensive and can
still produce immunogenic sequences [5]. Additionally, hu-
man-like antibodies can also be developed inexpensively in
vitro by high-throughput screening of large and diverse
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libraries using yeast or phage display technologies [6]. Nev-
ertheless, antibodies produced in this manner have not
undergone thymic selection, therefore they carry an immu-
nogenicity risk and can further cross-react with other
antigens. As a result of these caveats, mouse immunization
and subsequent humanization of the murine sequences re-
mains the primary path for antibody discovery.

Traditional humanization methods are based on
germline sequences or natural sequence libraries of limited
size. The canonical method of humanization is CDR grafting
[7], by which the parental CDRs are inserted into a human
germline sequence of choice. Additionally, positions im-
portant to the structural conformation of CDRs (known as
“Vernier zones” [8]) are frequently back-mutated to the orig-
inal parental residues. Although such residues can support
the stability of the original CDR conformations, they can also
reduce the effect of humanization. Expert knowledge is
therefore needed to carefully balance this tradeoff, which
limits the application to small numbers of sequences and is
prohibitive to researchers who are lacking such expertise.

To evaluate the human-likeness of humanized se-
quences and identify immunogenicity risks, different
“humanness scores” have been developed to date. First
scores defined humanness based on sequence identity with a
library of reference human sequences, averaged across all se-
quences in Z-score [9], or across the closest 20 sequences in
T20 score [10]. A major pathway for the identification of for-
eign proteins is their processing into short peptides which are
displayed on major histocompatibility complex (MHC) mol-
ecules and subsequently recognized by T-cell receptors.
Guided by this principle, Human String Content (HSC) [11]
derived a score from sequence identity of 9-mer peptides
compared to sequences of human antibody germline genes.
The HSC approach pioneered iterative humanization per-
formed by maximizing the HSC score, later enabling joint
optimization within the structural context [12]. Recently, the
MG score approach [13] has enabled capturing higher-order
relationships between pairs of sequence positions using a
multivariate gaussian model, which was again applied as an
optimization criterion for automated humanization. How-
ever, all of the abovementioned humanness scores have
limited applicability for humanness evaluation due to the
lack of granularity — a single score is provided for the entire
sequence. Moreover, these scores are derived from small ref-
erence libraries, which can in turn impose unnecessary
limitations on the diversity of the designed therapeutics.

The emergence of large-scale repertoires of natural
antibodies provides a novel opportunity for exploiting anti-
body diversity to improve humanization and humanness
evaluation methods. The Observed Antibody Space (OAS)
database [14] has collected more than five hundred million
human sequences from more than five hundred human sub-
jects. Such repertoires not only inform our view of response
and disease states, but also provide a diverse library of naive
and mature sequences that can be exploited for data-driven
antibody engineering. The diversity and therapeutic applica-
bility of OAS was demonstrated by its ability to recover
sequences of therapeutic mAbs with high CDR sequence
identity [15]. Furthermore, it was shown that developability
properties of natural human antibodies are comparable with
those of clinical mAbs [16]. In IgReconstruct [17], the OAS
database was used to construct a back-translation method
producing human-like DNA and evaluating humanness
based on positional nucleotide frequency. Most recently,
OAS was used in Hu-mAb [18] to train a random-forest-
based humanness score used as an optimization criterion for
iterative humanization.

The natural language processing field has demon-
strated the ability of deep learning models to learn from
enormous unlabeled bodies of text. Most recently, the Trans-
former architecture [19] has brought breakthroughs in
question answering [20] or language translation [21]. Such
progress is increasingly permeating the protein engineering
space, where large-scale corpora of unlabeled data can like-
wise be exploited for real-world challenges. This has
crystallized in AlphaFold [22], which demonstrated the ap-
plicability of large amounts of multiple sequence alignments
(MSAs) and protein structures for protein folding prediction.
Multiple methods were developed with the goal of encoding
meaningful compact representations of protein sequences by
pre-training on raw corpuses of amino acid sequences
[23][24] or MSAs [25]. Such representations can be lever-
aged for transfer learning to specific problems with limited
training sets [23]. In antibody discovery, AbLSTM [26] has
demonstrated the ability of deep learning to distinguish be-
tween human and non-human antibody sequences. Deep
learning was also able to select candidates with high affinity
for iterative binding optimization using directed mutagenesis
[27]. Recently, generative adversarial networks were trained
on antibody repertoires to generate libraries of random anti-
body sequences with favorable developability profiles [28]
or improved affinity [29].
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Figure 1: BioPhi integrated pipeline for bulk humanization (Sapiens) and humanness evaluation (OAS:is).

(A) Sapiens is trained on human variable region antibody sequences from the OAS. Random positions in unaligned amino acid se-

quences are masked or mutated, Sapiens is trained to recognize and repair them. This simulates the real-world application where

sequences with non-human residues originate from immunized mice, rabbit or other species.

(B) Sapiens recognizes non-human residues using deep learning attention mechanisms and predicts the most probable human residues

at each position given a particular input sequence, thereby humanizing it.

(C) OAS:is evaluates humanness of an antibody sequence by chopping it into all overlapping 9-mer peptides and searching them against

the OAS to estimate their prevalence across the human population

Here we present BioPhi, a web platform for anti-
body design, humanization and humanness evaluation using
natural antibody repertoires (Figure 1). Sapiens is a deep
learning antibody humanization method trained on antibody
repertoires of 266 human subjects from the OAS. Based on
a test set of 25 humanized antibodies with known parental
sequences and a novel test set of 152 humanized antibodies
with putative parental sequences, we show that Sapiens pro-
duced humanization results comparable to those produced by
expert methods. OASis (Observed Antibody Space identity
search) is a novel antibody humanness score based on exact
9-mer peptide search in the OAS. OASis provides an inter-
pretable and granular humanness report with adjustable
stringency to allow evaluating sequences of high diversity.
BioPhi is an open and extensible platform that offers im-
proved design of humanized antibodies and will continue
growing to facilitate faster discovery and development of an-
tibody therapeutics.

Results

Peptides from antibody repertoires capture
diversity for antibody engineering

In antibody discovery and development, a large
number of candidate variants need to be explored in order to

find at least one lead candidate that satisfies the growing de-
mands from developability [30], immunogenicity [4], or
post-translational modification liability [31]. Therefore, a di-
verse antibody reference library needs to be collected and
compactly represented in order to quickly and reliably deter-
mine which engineering mutations are viable and which do
not conform to the acceptable human sequence space.

To capture the diversity of human antibodies, we
used human antibody repertoires curated in the OAS data-
base [14]. To visualize the sequence diversity, we sampled
each OAS subject for complete variable region sequences
from each V gene family. Next, we collected a germline ref-
erence of all 406 human heavy V genes and 206 light V genes
from IMGT Gene-DB [32]. We embedded these into two-
dimensional space using UMAP [33], placing sequences
closer or further apart from each other based on sequence
similarity. The dimensionality reduction revealed areas in se-
quence space that were densely covered by germline
sequences as well as diverse areas that had no germline cov-
erage (Figure 2A,B).

Inspired by HSC score [11], which relies on 9-mer
peptides from antibody germline, we relied on 9-mer pep-
tides from antibody repertoires to capture a compressed
representation of the wider antibody sequence diversity. We
extracted all overlapping 9-mer peptides from variable heavy
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and light chains found in OAS repertoires that were linked to
a single human subject (donor of the sample) and contained
at least 10,000 complete sequences. To reduce sequencing
errors and manage the peptide database size, we removed
heavy chain peptides found in only one human subject. This
yielded the OASis database comprising of 139,000,294 dis-
tinct peptides found across 118,713,869 sequences from 231
subjects from 26 studies in OAS. For each distinct peptide,
we stored the list of corresponding subjects. These records
enabled calculating the prevalence of any 9-mer peptide
across the human population, which we defined as the per-
centage of subjects in OAS that contained an exact match of
the peptide in at least one of the sequences in their antibody
repertoire.

Next, we used the OASis database to estimate the
total number of distinct 9-mer peptides shared across differ-
ent fractions of the human population, in other words the
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public repertoire diversity. We compared our public reper-
toire diversity estimate with the number of distinct 9-mer
peptides extracted from all human germline VDJ genes from
IMGT Gene-DB. Even when considering only ubiquitous
peptides found in more than 80% of human subjects in OAS,
repertoires provided a 12-fold larger sequence space than
germline in terms of the number of unique peptide “building
blocks” (Figure 2C). Furthermore, this is a lower estimate
since current sequencing depth is limited compared to esti-
mated repertoire sizes of 10!! or more unique sequences [34].

In summary, the OASis peptide database offers di-
versity and granularity that can guide antibody engineering
efforts with respect to humanization and immunogenicity de-

cisions.
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Figure 2: Diversity of human antibody germlines compared to human antibody repertoires from OAS.

(A) and (B) Diversity of antibody variable region sequences illustrated using UMAP dimensionality reduction of approx. 40,000 var-
iable heavy chain (A) and light chain (B) sequences randomly sampled from OAS. Each dot represents a complete variable region
sequence (colored by germline family), each cross represents a germline V gene sequence.

(B) Total number of distinct 9-mer peptides found in human germline compared to the number found in antibody repertoires across

different fractions of human population, calculated from repertoires of 231 human subjects in OAS. For each fraction of subjects

on the X axis, the Y axis shows the number of peptides that appear at least in the given fraction of subjects (e.g. there were 1.9x10°

distinct peptides that appeared in at least 20% of subjects).


https://doi.org/10.1101/2021.08.08.455394
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.08.455394; this version posted August 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

OASis provides a granular and interpretable
humanness evaluation

In order to provide utility for antibody engineering, the out-
put of a humanness evaluation needs to be designed with
both granularity and interpretability in mind. Granularity can
be achieved by identifying how different residues or
stretches of the sequence contribute to the overall human-
ness, as opposed to providing only one score for the whole
sequence. Interpretability can be achieved by explaining the

humanness score of a particular sequence comprehensively

to the user, for example by near reference sequence matches,
as opposed to black-box predictions.

To tackle these challenges, we developed OAS:is, a
humanness evaluation method that reports human prevalence
of individual peptides together with a single aggregated
score for an antibody as a whole. First, OASis evaluates the
humanness of each overlapping 9-mer peptide in an antibody
sequence in terms of human prevalence (Figure 3A). Such
evaluation provides a granular and interpretable humanness
report that highlights regions that present the largest risk.
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Figure 3: OASis provides a granular and interpretable humanness score that is able to separate therapeutic antibodies of

different origin.

(A) Example OAS:is peptide prevalence report of Pembrolizumab heavy chain sequence illustrating the granularity of OASis humanness

evaluation. Red gradient corresponds to number of overlapping 9-mer peptides at given position that are identified as non-human

based on user-specified prevalence threshold. Grey tooltip illustrates how prevalence is reported interactively on mouse hover.

Three nearest germline sequences are shown below, green background marks sequence identity.

®)

Ability of OASis identity to separate between human, humanized, chimeric or murine antibodies across different prevalence thresh-

olds. The X axis shows the fraction of human OAS subjects needed to contain a peptide in order for it to be considered human,

spanning from a loose prevalence of at least 1% subjects to a strict prevalence of at least 90% subjects. The Y axis shows the

fraction of peptides in an antibody that are considered human at the given threshold (OASis identity). Lines show the average of

each group, highlighted regions span between 25% and 75% quantiles.

©

Ability of OASis identity to separate between human, humanized, chimeric and murine antibodies at the medium threshold (50%

prevalence). Left Y axis shows OASis identity, right Y axis shows OASis percentile (percentile of OASis identity among thera-

peutic antibodies). Black brackets show significant differences (p < 1e-8 based on two-sided Mann-Whitney U test).

(D)

Evaluation of OASis medium identity and other humanness metrics’ ability to distinguish between human (positive) and non-

human (negative) therapeutic antibodies visualized using a ROC curve.
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In order to evaluate and compare humanness at
whole antibody level, we define the OASis identity score.
OAS:is identity is calculated for a single antibody as the frac-
tion of its peptides that pass a user-defined prevalence
threshold. The prevalence threshold determines what frac-
tion of the human population should contain a given peptide
in order for it to be considered human. We made the thresh-
old adjustable since we anticipate that future immuno-
genicity research will improve our understanding of how
prevalent a given peptide needs to be in order to be consid-
ered safe. In the BioPhi platform, the threshold is fully
customizable, but we also provide four pre-defined thresh-
olds that capture different stringency levels: loose (> 1%
subjects), relaxed (> 10% subjects), medium (> 50% sub-
jects) and strict (= 90% subjects). For example, at the loose
threshold, each peptide is identified as human if it is found
in at least 1% of subjects. And correspondingly, the OASis
loose identity score of an antibody is calculated as the frac-
tion of its peptides that are found in at least 1% of subjects.

To facilitate easier interpretation of a particular
OAS:is identity score, we further define the OASis percentile
which converts the identity score to the 0-100% range based
on 544 therapeutic mAbs from IMGT mAb DB [35]. Then,
the 0% OASis percentile score corresponds to the least hu-
man and the 100% OASis percentile score corresponds to the
most human antibody in the clinic. In BioPhi, humanness is
reported using OASis as well as using traditional methods
based on positional residue frequency and germline sequence
identity (Supplementary Figure 1,2).

A humanness score should be able to distinguish be-
tween human antibodies and antibodies from other species.
In particular, it should enable doing so for therapeutic anti-
bodies since those are the primary subjects of humanness
analysis. Therefore, we evaluated the ability of OASis iden-
tity to separate between antibody therapeutics of different
origin extracted from IMGT mAb DB. For each group of 198
human, 229 humanized, 63 chimeric and 13 murine se-
quences, we calculated the average OASis identity across all
1%-90% prevalence thresholds (Figure 3B). These curves
visualized humanness of each group of sequences across all
prevalence thresholds, enabling humanness evaluation with
respect to any definition of what prevalence is considered
human. As expected, with increasing stringency, the curves
demonstrated a decreasing humanness trend. This was espe-
cially visible in murine sequences where 70% peptides were
considered human when prevalence in 1% subjects was re-
quired, while only 26% peptides were considered human
when prevalence in 90% subjects was required.

We further visualized OASis identity at 50% prev-
alence which confirmed significant differences in the score
distribution between different species (p < le-8, Figure 3C).
Interestingly, two outliers with low humanness were identi-
fied in the human group, at 27% and 54% OASis identity
score. The former was Elipovimab that targets HIV, the latter
was Navivumab that targets Influenza A. Both mAbs scored
low due to their long CDR3 sequences and heavily mutated
frameworks that gave rise to many non-human 9-mer pep-

tides identified across the variable region.

Granu-  Interpreta- Diversity Humanness classification Immunogenicity
Method larity bility (seqs) Accuracy (%) ROC AUC R R2
Z-score X no v yes 1073 76.5 83.7 -0.45 0.20
T20 X no v yes 1004 839 89.6 -0.41 0.16
AbLSTM X no X no 1004 87.8 93.7 -0.47 0.22
MG Score X no X no 1073 91.8 959 -0.46 0.21
IgReconstruct X no v yes 1078 92.6 96.7 -045 0.20
Germline content v yes v yes 1012 92.8 96.8 -0.50 0.25
Hu-mAb X no X no 1077 93.3 97.7 -0.58 0.34
OASis identity (loose) v yes v yes 1018 91.9 964 -0.48 0.23
OAS:is identity (relaxed) v yes v yes 1078 944 97.2 -0.51 0.26
OAS:is identity (medium) v yes v yes 1018 92.6 96.6 -0.53 0.28
OASis identity (strict) v yes v yes 1078 919 95.6 -0.53 0.28

Table 1: Evaluation of antibody humanness scores. A granular score reports how different residues or stretches of the sequence
contribute to the overall humanness. An interpretable score explains the humanness of a particular sequence comprehensively

to the user, for example by near sequence matches or prevalence statistics. Diversity is reported as the size of the reference
sequence library (in orders of magnitude). Separately for each column, values above 75% percentile are marked green, values

below 25% percentile are marked red.
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Next, we defined the humanness prediction prob-
lem as a classification task, where the positive class
contained human sequences and negative class contained se-
quences that were humanized or from other species. For
different humanness evaluation methods, there was little
consensus on what score needed to be achieved to considered
a sequence human. Therefore, we did not measure perfor-
mance at a single score cutoff but used the standard receiver
operating characteristic (ROC) curve approach that shows
how the true positive rate (TPR) changes with the false pos-
itive rate (FPR) for all different score cutoffs (Figure 3D,
Supplementary Figure 3). In this context, the TPR was the
fraction of human sequences correctly predicted as human
and FPR was the fraction of non-human sequences incor-
rectly predicted as human. OASis medium identity
outperformed (0.966 AUC) the results of traditional human-
ness scores based on homology — Z-score (0.837 AUC) and
T20 score (0.896 AUC) as well as two novel humanness
scores — AbLSTM (0.937 AUC) and MG score (0.959 AUC).
OASis performed comparably to IgReconstruct (0.967
AUC), a recent method based on back-translation and posi-
OASis

performance was also comparable to Germline content

tional nucleotide frequency. Interestingly,
(0.968 AUC), a baseline score we implemented based on per-
cent sequence identity with nearest human germline. All
methods were outperformed by Hu-mAb (0.977 AUC), a re-
cent random forest method trained on the particular task of
classifying human and non-human sequences. However,
IgReconstruct score is not granular and Hu-mAb score is nei-
ther granular nor interpretable. A comparative analysis is
provided in Table 1. All scores and the 553 sequences used
to produce them are provided in Supplementary Table 1.
Ultimately, the goal of humanness evaluation is to
capture and reduce the immunogenicity risk. Thus, we eval-
uated the ability of OASis and other humanness metrics to
predict reported anti-drug antibody response of 217 thera-
peutics curated in [18]. We measured performance using
Pearson correlation coefficient (R) and explained variance
(R?). OASis medium identity has outperformed (R = -0.53,
R?=0.28, Supplementary Figure 4A) all results except those
of Hu-mAb (R =-0.58, R*=0.34, Supplementary Figure 4B).
Although germline content was also predictive of immuno-
genicity (R=-0.50, R?=0.25), the correlation was comparable
to repertoire-based methods, supporting the assumption that
the augmented diversity provided by natural antibody reper-
toires does not compromise the immunogenicity profile.

Since immunogenicity is largely supported by the
display of peptides on MHC-II receptors, we additionally
evaluated a novel metric equal to the number of peptides that
were predicted to bind MHC-II and that were not of human
origin based on OASis. However, this has decreased the per-
formance (R = 0.44, R? = 0.01, Supplementary Figure 4C),
therefore we have not pursued this further. All scores and the
217 sequences used to produce the data are provided in Sup-
plementary Table 2.

In summary, OASis was able to estimate the hu-
manness of a sequence with high accuracy and detect the risk
of immunogenicity. When granularity and interpretability is
required, OASis outperforms all existing humanness scores.

Sapiens learns to represent antibody sequences
using language modeling

Although peptides capture the nature of human antibodies as
it relates to immunogenicity, they do not capture the long-
range dependencies between positions, while these are im-
portant for structural stability and other general viability
properties of a sequence. Therefore, we devised a separate
humanization mechanism that can capture humanness in-
cluding long-range dependencies. Moreover, such separation
of the humanization method from the humanness score en-
sures independent humanness evaluation, in contrast to
optimizing and evaluating using the same score as employed
by previous approaches [11][13][18].

We developed Sapiens, a deep neural network
based on the Transformer encoder architecture [19]. The Sa-
piens training procedure was based on masked language
modeling [20], where the input "sentences" were amino acid
sequences of antibody variable regions and the “word” to-
kens were individual amino acid residues. During training,
some of the amino acids in the input sequence were randomly
replaced with a mask token or mutated to a random amino
acid. The model was trained to recognize these replacements
and predict the original amino acids. The positions of the per-
turbed residues were not revealed to the model, therefore it
needed to learn to recognize and repair any unexpected resi-
dues based on the context. Consequently, the model was
trained only on human antibody sequences and no additional
labelling data was needed. We trained a separate heavy chain
and light chain model on a subset of 20 million heavy chain
sequences and 19 million light chain sequences from the
OAS (see Methods).
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Compared to convolutional or recurrent neural net-
works, the Transformer neural network used by Sapiens is
built exclusively on attention mechanisms. Analogous to
language modeling where attention weights reveal depend-
encies between words in a sentence, in Sapiens they reveal
dependencies between residues in an antibody sequence. In
a traditional machine learning context where residues on dif-
ferent positions in a sequence are considered input features,
attention can be thought of as feature importance, with two
important distinctions. First, unlike feature importance, at-
tention is not fixed but changes according to the input
sequence. Second, attention can be calculated for a single po-
sition (importance of position A) as well as for a pair of
positions (importance of position A in predicting position B).
Attention is defined for a given input sequence using an at-
tention matrix, which contains the importance of each
position (column) when predicting the residue at each posi-
tion (row).

By inspecting the attention patterns, we evaluated
the ability of Sapiens to capture long-range dependencies. To
calculate an average attention matrix, we selected heavy
chain sequences from IMGT mAb DB that had exactly 120
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residues and were composed of the same positions under
AHo [36] numbering. Although the average attention matrix
did not reveal many long-range residue contacts, some pat-
terns were clearly visible (Figure 4A, Supplementary Figure
5). First, we observed that positions in framework regions 1-
4 were directing their attention mostly to their respective re-
gion compared to other regions (3.8, 3.7, 4.4 and 15.0 times
higher attention on average in framework 1-4 respectively).
Second, we observed that positions in CDR2 loop were di-
recting their attention towards the CDR1 and CDR2 loops as
well as the DE loop compared to framework regions (2.4, 8.0
and 3.2 times higher on average for CDR1, CDR2 and DE
respectively). To illustrate the spatial proximity of these loop
positions, we calculated attention weights from Asparagine
on AHo position 59 of Pembrolizumab heavy chain and vis-
ualized these in the crystal structure (Figure 4B).

Since we observed increased attention between an-
tibody loops that are not neighboring in the sequence but in
the three-dimensional space, we thus concluded that Sapiens
demonstrated the ability to capture long-range dependencies
in antibody sequences.

)

Figure 4: Attention within the Sapiens neural network captures long-range dependencies between antibody loops.

(A) Attention weights of Sapiens when predicting Pembrolizumab heavy chain. Heatmap shows average of all attention heads in layer

2/4 of the Transformer encoder. The matrix defines the contribution of all positions (columns) when predicting the residue at a

given position (row) in the sequence. White rectangle highlights attention from AHo position 59 visualized in (B).

(B) Visualization of attention from Asparagine on AHo position 59 within CDR2 loop of Pembrolizumab 3D structure (PDB SB8C).
Blue beams visualize all attention connections with weight over 0.02, diameter proportional to weight.
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Sapiens achieves a balance of humanness
and parental sequence preservation

The challenge of humanization is improving humanness
while preserving as much of the parental sequence as possi-
ble in order to preserve binding and affinity. Ultimately, the
only way to evaluate reduced immunogenicity risks and pre-
served binding affinity and functional activity is through in
vitro or even in vivo assays. Nevertheless, in silico evaluation
of humanization methods is necessary at least as a primary
filter that enables comparing and selecting between multiple
humanized candidates.

In this study, we define the humanness-preserva-
tion tradeoff as a way to evaluate the mutually competing
goals of the increase in humanness and the preservation of
the parental sequence. The first component, humanness in-
crease, was measured as the absolute difference in OASis
identity score of the humanized sequence compared to the
parental sequence. The second component, parental se-
quence preservation, was measured as percentage sequence
identity between the parental and humanized sequence over-
all (Total preservation) and in Vernier zones (Vernier
preservation).

Since many humanized antibodies have been devel-
oped and tested, these can be used as standards for
comparison. Primarily, their parental sequences (original se-
quences from mouse or other model organism) are needed in
order to be able to produce and evaluate alternative human-
ized sequences. To that end, 7 pairs of parental-humanized
sequences were first curated in [13] and recently expanded
to 25 pairs in [18]. Thus, we used these 25 experimentally
validated pairs as our first humanization benchmark. Analo-
gous to existing approaches, we measured performance in
terms of overlap between the humanizing mutations made in
the predicted and the experimentally validated sequence.
Since a sequence can be successfully humanized in various
ways, even across different germlines, we could not consider
the experimentally validated sequence as a single ground
truth. Nevertheless, by highlighting the level of agreement
between the prediction and a human expert, we provided an
additional layer of confidence in our humanization method.

To define naive baselines of automated humaniza-
tion within the humanness-preservation context, we
implemented two humanization methods based on CDR
grafting. A Straight CDR graft was created by inserting the
Kabat CDR regions into nearest human germline frame-
works. Hence, this baseline prioritized humanness over

parental sequence preservation. A Vernier CDR graft was
created from the Straight CDR graft by additionally back-
mutating all Vernier zone positions to the parental residues.
Hence, this baseline prioritized parental sequence preserva-
tion over humanness improvement. An illustration is
provided in Supplementary Figure 6.

To humanize an antibody using Sapiens, we di-
rectly leveraged the "recognize and repair" functionality of
masked language modeling. First, we fed the Sapiens neural
network with a variable region amino acid sequence. Using
attention mechanisms, the network recognized non-human
residues and output a position-by-residue probability matrix
with one row for each position and one column for each of
the 20 amino acid types. All possible mutations at all posi-
tions were therefore predicted with one pass through the
network. We produced the final humanized sequence by tak-
ing the most probable predicted residue at each position,
except in CDRs, where mutations were ignored and the orig-
inal parental sequence was preserved. CDR definitions were
based on Kabat [37], but IMGT [38], Chothia [39] and North
[40] definitions are also supported in BioPhi. Multiple itera-
tions of this process can be performed to humanize the
sequence further. After one pass, we refer to a humanized
sequence as Sapiens*1, with subsequent passes as Sapi-
ens*2, Sapiens*3, and Sapiens*4.

In the BioPhi web platform, we implemented an in-
tegrated pipeline that humanizes sequences using Sapiens
(with given number of iterations) or CDR grafting and eval-
uates their humanness using OASis (Supplementary Figures
7,8). Additional back-mutations or forward mutations to the
sequence can then be performed manually by the user
through the BioPhi Designer interface, which suggests resi-
dues based on Sapiens score, positional residue frequency or
nearest germline sequence (Supplementary Figure 9).

We report the humanization results of the 25 anti-
body pairs in Figure 5. We used OASis identity curves to
report on humanness of the humanized sequences across dif-
ferent prevalence thresholds (Figure 5A). As expected, most
human-like sequences on average were produced by Straight
CDR grafting. The average OASis curve of Sapiens*3 inter-
sected with that of experimental sequences, indicating
comparable humanness, followed by Vernier CDR grafting
with marginally lower humanness. Interestingly, based on
OASis, the Hu-mAb method achieved distinctively lower
humanness compared to other methods. Since Hu-mAb se-
quences were optimized to achieve the same Hu-mAb

humanness scores as the experimental sequences, we further
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investigated this by comparing Hu-mAb scores to T20 and
OAS:is identity scores. When comparing each pair of human-
ized sequences (Hu-mAb optimized and experimentally
validated), both T20 and OASis identity were lower for the
sequence that underwent Hu-mAb score optimization, even
though they were designed to achieve the same Hu-mAb
score (Supplementary Figure 10). The discrepancy suggested
that the Hu-mAb metric was no longer an unbiased estimator
when applied to Hu-mAb-optimized sequences.

Next, we evaluated the humanness-preservation
tradeofT, visualizing the humanness increase compared to the
preservation of parental sequence. The increasing Sapiens it-
erations produced the expected trend of increased humanness
and decreased preservation. Sapiens*3 achieved the same
humanness as experimental sequences (+34% absolute in-
crease), while achieving higher preservation of the full
variable region (86% and 80% respectively, Figure 5B) and
same preservation of Vernier zones (86%, Figure 5C).

To provide a breakdown of these average preserva-
tion results, we calculated preservation separately at each
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Kabat position (Supplementary Figure 11). We identified
slight differences in preservation of different Vernier posi-
tions, where Sapiens*3 achieved higher preservation notably
in H48, H67, H69 and H78, while achieving lower preserva-
tion notably in H27, H28, H30, H71 and H73.

Finally, we evaluated the humanizing mutation
overlap between the sequences produced by automated hu-
manization methods and those validated experimentally
(Figure 5D, Supplementary Figure 12,13). For each human-
izing mutation to the parental sequence, we determine
whether it was shared (made in predicted as well as experi-
mental sequence) or whether it was only made by either one
of the methods. Sapiens*1, *2 and *3 achieved highest frac-
tions of shared mutations (humanizing mutation precision,
Table 2). To further validate the probabilistic properties of
Sapiens predictions, we evaluated the predicted Sapiens
score of humanizing mutations and back-mutations made in
the experimental sequences. We observed that most muta-
tions achieved the first or second highest Sapiens score
(Supplementary Figure 14).
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Figure 5: Sapiens achieved a balanced humanness-preservation tradeoff on 25 antibodies with known parental sequences.

(A) Humanness of parental and humanized sequences evaluated using OASis identity curves. Each curve shows average across the 25

sequences, highlighted area spans between 25% and 75% quantiles.

B)

Humanness-preservation tradeoff. X axis shows humanness improvement — average difference in OASis medium identity of the

humanized and parental sequence. Y axis shows total parental sequence preservation (average percent sequence identity of human-

ized and parental sequence). Sapiens*1,*2,*3 and *4 refer to 1, 2, 3 and 4 humanization iterations respectively.

©

Humanness-preservation tradeoff in Vernier zones. X axis same as in (B), Y axis shows parental sequence preservation in Vernier

zones. Dashed gray line shows axis between two extremes: Straight CDR graft (all Vernier residues humanized, more human but

less preserved) and Vernier CDR graft (all Vernier residues back-mutated, less human but more preserved).

(D) Average overlap of humanizing mutations made in predicted sequence and in experimentally validated sequence.
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While we report average results, deviation across
the 25 antibodies was substantial. To facilitate readers' closer
inspection, we provide the 25 predicted humanized se-
quences in the Supplemental Information, along with the
individual antibody results of the humanness-preservation
tradeoff (Supplementary Figure 15) and T20 humanness
(Supplementary Figure 16).

Taken together, based on the in silico evaluation,
BioPhi provides a toolbox of automated humanization meth-
ods that are competitive with manual humanization by
expert. Moreover, guided by the predictive tools, users can
perform further adjustments to the final sequence and pro-

duce multiple sequence variants.

Sapiens rediscovers humanizing mutations of
152 therapeutic antibodies

To evaluate Sapiens and other humanization methods on a
larger scale, we reconstructed putative parental sequences of
152 humanized antibody therapeutics. Humanized antibod-
ies generally contain framework regions of human origin and
CDRs of parental origin (usually mouse). Therefore, we de-
veloped a parental sequence reconstruction strategy based on
sequence similarity of CDR regions against all 169,870,516
non-human sequences in OAS, and applied it to 152 human-
ized sequences from TheraSAbDab [41] (see Methods).

To evaluate the fidelity of the reconstructed paren-
tal sequences, we compared these with known parental
sequences of 22/152 antibodies which were present in the
Hu-mAb 25 pairs dataset. On average, the reconstructed se-
quences achieved 92% average heavy chain sequence
identity and 93% average light chain sequence identity with
the known parental sequences. Since each parental sequence
was already very similar to the humanized sequence that was
used to perform the reconstruction (80% heavy chain identity
and 82% light chain identity on average in the 22 pairs), total
sequence identity could overestimate the recovery perfor-
mance. Therefore, we also measured sequence identity based
only on mutated positions — positions that were different be-
tween the humanized sequence and the parental sequence. In
that regard, our strategy correctly recovered 65% mutations
in the heavy chain and 72% in the light chain (where a ran-
dom baseline would recover 5% since there are 20 residues
to choose from). Finally, we compared the CDR-based re-
covery to a strategy based on full sequence homology.
Parental sequences recovered that way achieved only 78%
and 82% sequence identity with the known heavy chain and
light chain sequences respectively, correctly recovering 37%

and 66% framework mutations respectively. Therefore, we
conducted the following analysis on the CDR-homology-
based results.

Similar to the 25 pairs dataset, we used the 152 re-
constructed parental sequences as input to each
humanization method and evaluated their ability to redis-
cover the humanized therapeutic sequences. We evaluated
each method based on two scenarios. In the first scenario, the
humanization method was not instructed with any specific
germline and needed to choose it automatically. In the sec-
ond scenario, the humanization method was instructed with
a specific germline gene corresponding to the known human-
ized therapeutic sequence, simulating a use-case when the
germline is requested manually by the user.

With automatic germline selection, each humaniza-
tion method selected the target germline in a different
fashion. In CDR grafting, we selected the germline V and J
genes with highest sequence identity to the input sequence.
In Hu-mAb, the germline family was selected based on
which of the Hu-mAb models achieves highest score on the
input sequence. In Sapiens, germline selection was implicit
— the neural network was not provided with any germline an-
notations during training, any germline knowledge was
trained directly from the repertoire sequence corpus. Conse-
quently, Sapiens predicted humanizing mutations that
maximized the likelihood of seeing the sequence in the train-
ing corpus, conditioned on the particular input sequence.
Sapiens*1 achieved the same humanness as experimental se-
quences (+30% absolute increase), while achieving higher
preservation of the full variable region (89% and 84% re-
spectively, Figure 6A) as well as in Vernier zones (89% and
87% respectively, Figure 6B). Sapiens*1 also achieved the
highest fraction of mutations shared with the experimental
sequence (Figure 6C, Table 2). Compared to other methods,
Hu-mAb achieved lower overlap due to frequently choosing
different germline genes.

With manual germline selection, the target germline
gene corresponded to the germline of the humanized thera-
peutic sequence. In this scenario, the responsibility of the
humanization method was reduced mostly to determining
which positions in the sequence should be humanized and
which should be back-mutated (remain parental), since to a
large extent, the residues themselves were already defined
based on the chosen germline. In Sapiens and CDR grafting,
we provided the germline genes (e.g. IGHV1-46 and IGHJ4
for heavy chain, IGKV1-39 and IGKJ1 for light chain), and
determined the allele based on highest sequence identity of
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each germline sequence with the humanized therapeutic se-
quence. In Hu-mAb, we provided only the V germline family
(e.g. IGHV1 and IGKV1) since more fine-grained selection
was not supported. Since Sapiens was trained on all
germlines of a given chain type combined, there was no di-
rect way to choose the target germline for Sapiens
humanization. To circumvent this issue, we generated Sapi-
ens predictions by first performing Vernier CDR grafting to
the target germline, and then applying Sapiens to humanize
the sequence further and resolve potential issues at region
boundaries. Sapiens*1 achieved higher humanness than ex-
perimental sequences (+34% and +30% absolute increase
respectively) at the cost of achieving lower preservation of
the full variable region (83% and 84% respectively, Figure
6D) as well as in Vernier zones (83% and 87% respectively,
Figure 6E). Interestingly, with manual germline assignment,
Vernier CDR grafting achieved comparable humanness to
experimental sequences (+30% absolute increase) and

Automatic germline selection
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superior preservation in full variable region (85% and 84%
respectively) and in Vernier zones (100% and 87% respec-
tively). Highest mutation overlap with experimental
sequences was achieved by Vernier CDR grafting followed
by Sapiens*1 (Figure 6F, Table 2). In eight cases, Sapiens*1
predicted a sequence that differed in only one mutation from
the experimental sequence, and in one case the sequences
were identical (Supplementary Figure 18). This was more
than Vernier CDR grafting which produced one case with
one mutation difference and one case where the sequence
was identical (Supplementary Figure 19).

Using a personal computer with 8 cores, we were
able to humanize the 152 antibodies using the BioPhi web
interface in 5.2 minutes. We thus concluded that BioPhi was
able to humanize sequences at scale while recovering high
overlap with therapeutic sequences, with target germlines
automatically assigned or manually selected by the user.

Manual germline selection
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Figure 6: Evaluation of humanization methods on a large scale using 152 humanized therapeutic antibodies with putative
parental sequences. In automatic germline selection (A-C), target germlines were chosen by the humanization method. In
manual germline selection (D-F), target germline was set based on the germline of the humanized therapeutic sequence.

(A) and (D) Humanness-preservation tradeoff. X axis shows humanness improvement — average difference in OASis medium identity

of the humanized and parental sequence. Y axis shows total parental sequence preservation — average percent sequence identity of

humanized and parental sequence.

(B) and (E) Humanness-preservation tradeoff in Vernier zones. X axis same as in (A) and (D), Y axis shows parental sequence preser-

vation in Vernier zones. Dashed gray line shows axis between two extremes: Straight CDR graft and Vernier CDR graft.

(C) and (F) Overlap of predicted and therapeutic (experimentally validated) humanizing mutations.
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Humanizing mutation

Humanness improvement Preservation o
precision
Method OASis T20 Total Vernier Total Vernier
Experimental +34% +13% 80% 86% - -
” Sapiens*1 +30% +10% 89% 90% 77% 49%
3 Sapiens*2 +33% +12% 86% 87% 74% 42%
; Sapiens*3 +34% +12% 86% 86% 73% 40%
= Sapiens*4 +34% +13% 86% 86% 72% 40%
lz Hu-mAb +14% +6% 89% 91% 72% 54%
Straight graft +36% +14% 83% 80% 65% 35%
Vernier graft +32% +11% 85% 100% 70% -
Experimental +30% +11% 84% 87% - -
9 o  Sapiens*l +30% +10% 89% 89% 72% 48%
2 é é Hu-mAb +4% -1% 93% 94% 36% 25%
g g 5 Straight graft +33% +13% 84% 80% 64% 36%
.E <™ Vernier graft +29% +11% 87% 100% 70% -
§ o Sapiens *1 +34% +13% 83% 83% 82% 49%
lc;: § é Hu-mAb +15% +3% 90% 93% 65% 48%
- § ?o Straight graft +35% +13% 82% 76% 81% 45%
Vernier graft +30% +11% 85% 100% 89% -

Table 2: Evaluation of humanization methods. Separately for each column, values above 75% percentile are marked green,
values below 25% percentile are marked red. Humanness change was computed as average absolute difference of OASis
medium identity (or T20 score) of the humanized sequence and the parent sequence. Therefore, an increase of +34% refers to
the absolute change in the humanness score (e.g. from 40% to 74%), not a relative change. Parental preservation was calculated
as sequence identity of the parental and humanized sequence under Kabat numbering, in full sequence or Vernier regions only.
Humanizing mutation precision was calculated as number of mutations made both in predicted sequence and in experimentally
humanized sequence, divided by total number of mutations made in the predicted sequence.

Discussion

We developed BioPhi, an open platform for protein engi-
neering that integrates novel humanization and humanness
evaluation methods. The BioPhi automated humanization
workflow enables antibody humanization in bulk using a
novel humanization method based on deep learning on large-
scale natural antibody repertoires (Sapiens) or canonical hu-
manization methods based on CDR grafting. In silico
evaluation demonstrated that the sequences produced by our
humanization methods are competitive with those validated
experimentally and produced by expert methods. Humanized
sequences can further be adjusted manually using the BioPhi
Designer functionality. The BioPhi humanness report ena-
bles humanness evaluation using a novel method based on 9-
mer peptide search (OASis) and traditional methods based

on nearest germline sequence identity and positional residue

frequency. This enables identifying non-human peptides and
residues and suggest viable point mutations based on human-
ness criteria that are interpretable while exposing the vast
sequence diversity of natural antibody repertoires. As an ex-
tensible platform that integrates data-driven methods, BioPhi
is poised to grow as new datasets become available that con-
tinue to connect the two parallel lines of research — adaptive
immune repertoire sequencing and antibody engineering.
Established humanness evaluation methods can dis-
tinguish between human and non-human sequences, but lack
granularity or interpretability. Existing methods based on ho-
mology [9][10] are interpretable but lack granularity since
they only provide a single score for each chain. Moreover,
these underperformed in our analysis compared to more re-
cent approaches such as IgReconstruct [17], which could be
attributed to the modest size of their reference sequence li-
braries. Interestingly, Germline content, a baseline method
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we implemented based only on percent sequence identity to
nearest human germline performed comparably to recent
methods while providing both an interpretable and granular
score. Nevertheless, antibody germlines provide orders of
magnitude smaller sequence space than antibody repertoires,
making them more restrictive for antibody engineering ap-
plications. Although Hu-mAb [18] has outperformed all
other methods including ours by a narrow margin on human-
and 96.6% ROC AUC
respectively for Hu-mAb and OASis medium identity) and

ness classification (97.7%

on immunogenicity prediction (0.34 and 0.28 R? respec-
tively), we identified two drawbacks. Firstly, Hu-mAb
produces only a single score per chain. This could be ad-
dressed by providing the user with the change of predicted
score upon mutation, as implemented in the Hu-mAb human-
ization protocol. Secondly, the Hu-mAb score is not
interpretable. Although random forest models are robust es-
timators thanks to their randomized ensemble architecture,
this makes their individual predictions difficult to interpret.
In contrast, OASis provides a high-accuracy humanness
score that is both granular and interpretable, guided by the
principles of foreign protein recognition via the processing,
display and recognition of peptides.

To be able to compare humanization methods, in
this study we mostly reported average performance results
across multiple sequences. However, we acknowledge that
the deviation in performance across sequences is substantial.
Different methods were more successful in different cases,
further encouraging the assembly of a diverse arsenal of hu-
manization methods. We imagine this will be enabled by our
open-source BioPhi platform.

When evaluating the performance of an automated
humanization method, it is crucial to compare it to simple but
realistic baselines. Such comparison has not been performed
in previous studies [13][18]. In this study, we implemented
two baseline methods based on CDR grafting — the Straight
CDR graft, which achieved high humanness while preserv-
ing parental sequence in Kabat CDRs, and the Vernier CDR
graft, which produced less human sequences in exchange for
additionally preserving all parental residues in Vernier
zones. Both methods performed remarkably well in terms of
the overlap with experimentally validated sequences, espe-
cially when supplied with the target germline gene.

When humanizing a sequence iteratively by human-
ness score optimization, the produced sequence should be
validated by an independent humanness score, since even

small errors in humanness estimation will be amplified

during its optimization. We believe this was the cause of in-
ferior OASis and T20 scores for sequences produced by
steepest descent optimization in Hu-mAb as compared to re-
sults achieved by Sapiens or expert. This further supports our
decision to develop separate methods for humanization and
humanness evaluation.

Due to its laborious nature, humanization is tradi-
tionally performed after the candidate pool has been reduced
to a handful of sequences by multiple rounds of binding as-
says, functional assays and basic  biophysical
characterization. As these candidate pools are growing with
the advent of high-throughput protein production and screen-
ing, automated humanization and other antibody engineering
methods can help exploring a larger and more diverse se-
quence space earlier in the process. In the first phase,
automated methods can serve as a guide for human-assisted
batch humanization and engineering. Ultimately, as their
performance improves, they can be combined with other pre-
diction tools to perform holistic in silico antibody
engineering that will enable humanizing a sequence together
with engineering desired properties. In that view, the multi-
ple stages of experimental validation would be used for
iterative optimization of the candidate pool on all required
properties at once, rather than devising separate stages for
affinity optimization, developability optimization, liability
mitigation, and de-immunization.

Sapiens is trained with a general goal of recogniz-
ing masked or mutated residues and repairing them based on
the sequence context. This mechanism could be applied in
conjunction with additional optimization criteria to explore
vast search spaces of mutations for different antibody engi-
neering tasks. For example, joint optimization of humanness
and structural stability prediction was previously used to pro-
duce successful humanized candidates [12]. Sapiens could
also be used to propose viable point mutations for post-trans-
lational modification liability mitigation, both in frameworks
and CDRs. More developable molecules could be produced
by enriching the Sapiens training set for sequences with
properties linked to favorable developability profiles [28] or
pairing Sapiens with homology modeling and structure-
based developability prediction methods [30].

Since datasets with target measurements are sparse
and the input space is enormous, the protein engineering field
has started showing interest in unsupervised or self-super-
vised learning, inspired by the recent progress in natural
language processing. By training deep neural networks on
large databases of unlabeled sequences, compact numeric
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representations of proteins can be created, enabling transfer
learning on problems with substantially smaller datasets. No-
tably, this was recently demonstrated in MSA Transformer
[25], where residue-residue contact information emerged di-
rectly from attention weights after unsupervised learning on
multiple sequence alignments. In Sapiens, we have not ob-
served any emergence of such a strong signal, although a
pattern of attention from the CDR2 loop to CDR1 and DE
loops was clearly present, corresponding to the three-dimen-
sional structure of antibody loops. More work is yet to be
done on the representation learning of antibody sequences —
curating databases of sequences with favorable properties,
optimizing neural network architectures and hyperparame-
ters, and more importantly, inventing large-scale self-
supervised tasks that are predictable yet complex enough to
force the model to create meaningful inner representations
using unlabeled data.

Analogous to natural language processing, antibody
humanization and protein engineering methods in general are
lacking a single “ground truth”, which makes their in silico
evaluation and consequently their improvement challenging.
Even though in isolation, the humanness-preservation
tradeoff achieved by Sapiens is comparable to expert, we un-
derstand that further experimental validation is necessary.
However, as artificial-intelligence-driven tools such as natu-
ral language translation have demonstrated, even before an
automated approach achieves human-level performance, it
can provide value to the community and create novel oppor-
tunities for a new generation of advanced tools and

approaches.

Methods

OAS:is peptide database Unaligned amino acid sequences
were obtained in JSON format from unpaired OAS database
(accessed Nov 2019). Next, studies with human subject in-
formation were selected. Only subjects containing at least
10,000 redundant complete sequences for given chain type
were selected, which yielded 118,713,869 sequences from
231 subjects (225 with available heavy chains, 154 with light
chains, 148 with both) from 26 studies. For each OAS sub-
ject, all overlapping 9-mer peptides were extracted from the
amino acid sequences. Heavy chain peptides that appeared
only in one subject were removed (corresponding to mini-

mum prevalence of 1% of subjects). An inverted index data

! http://www.bioinf.org.uk/abs/shab/
2 https://dm.lakepharma.com/bioinformatics

structure was created where each distinct peptide points to a
list of subjects in which it appears together with the number
of occurrences. This was stored along with a subject
metadata table in an SQLite database (22GB uncompressed)
with an index on the peptide field to speed up querying (less
than Ims per peptide single-threaded).

Diversity evaluation Germline sequences were down-
loaded from IMGT Gene-DB “F+ORF+in-frame P amino
acid sequence” for homo sapiens (containing 60 IGHD, 13
IGHJ, 406 IGHV, 9 IGKJ, 108 IGKV, 12 IGLJ and 98 IGLV
genes). Overlapping 9-mer peptides were extracted sepa-
rately from each gene.

A representative sample of OAS sequences for the
UMAP visualization was generated by randomly sampling
each OAS subject for 25 aligned sequences from each heavy
V gene family and 15 aligned sequences from each light V
gene family, only complete sequences were considered. This
yielded 39,965 variable heavy and 41,845 variable light
chain sequences. Germline V gene sequences with IMGT
gaps were collected from IMGT Gene-DB. UMAP embed-
ding [33] was generated by precomputing an all-by-all
pairwise sequence identity matrix, where only positions
shared by both sequences were considered (to handle miss-
ing J region in the germline sequences).

Evaluation of humanness metrics Therapeutic sequences
with species information were downloaded from IMGT mAb
DB [35] by querying for all records having an INN request
number and IG Receptor Type. OASis identity curves across
all prevalence thresholds were calculated for 198 human, 229
humanized, 63 chimeric and 13 murine therapeutics. Statis-
tical significance of differences in OASis medium identity
between each group was calculated using two-sided Mann-
Whitney U test.

Ability to separate human and non-human se-
quences was evaluated using a ROC curve. The expected
output was 0.0 for negative class (229 humanized, 41
humanized/chimeric, 63 chimeric, 13 mouse, 6 caninized
and 3 felinized therapeutics) and 1.0 for positive class (198
human therapeutics), the predicted output was directly the
humanness score. Humanness scores of each therapeutic
were calculated as averages of the scores of their chains.

Web services were used for Z-score', T202%, Hu-
mAb? and IgReconstruct* (January 2021). AbLSTM was

3 http://opig.stats.ox.ac.uk/webapps/humab
4 http://meilerlab.org/index.php/servers/IgReconstruct
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executed only on heavy chain sequences using the pretrained
heavy chain models from the code repository’. Germline
content was calculated by aligning the sequence using IMGT
numbering in ANARCI [42] and computing the percent se-
quence identity with a concatenation of the nearest human V
and J gene from IMGT Gene-DB [32]. MG scores were ob-
tained by correspondence with the authors. No
implementation of HSC [11] was publicly available, there-
fore it was not included in the evaluation. Humanness scores
and sequences used for evaluation are provided in Supple-
mentary Table 1.

Correlation with clinical immunogenicity was eval-
uated on a dataset curated in Hu-mAb study [18], sequences
were obtained from IMGT mAb DB [35]. Sequence for ca-
tumaxomab was not available, therefore only 217/218
therapeutics were included. Explained variance (R?) was cal-
culated after transforming each score to the output range
using a simple linear regressor. MHC II binding was pre-
dicted using netMHCIIpan 3.1 [43]. A peptide was
considered binding if it was predicted below 10 percentile in
any of DRB1*0101, 0301, 0401, 0701, 0801, 1101, 1301,
1501 (same alleles as in [28]). Reported immunogenicity
along with humanness scores and sequences used for evalu-
ation are provided in Supplementary Table 2.

OASis humanness metric First, all overlapping 9-mer pep-
tides were extracted from the input antibody and queried
against the OASis database using exact match. Next, the hu-
man prevalence of each peptide was calculated as number of
subjects containing the given peptide (at least once) divided
by the total number of subjects for the given chain type. Fi-
nally, a single OASis identity score for the input sequence
was calculated as the fraction of peptides with prevalence
over a user-specified threshold. OASis percentile score was
calculated as the percentile of the OASis identity among the
544 therapeutic antibodies collected from IMGT mAb DB.
Using a simple benchmark on a personal computer with 8
cores, BioPhi command-line interface was able to evaluate

OASis humanness of 1,000 antibodies in 14 minutes.

Sapiens training corpus Unaligned variable region amino
acid sequences were downloaded from OAS database (ac-
cessed Nov 2019). A heavy chain training set was extracted
by sampling 20 million unaligned redundant amino acid se-
quences from all 38 human heavy chain OAS studies from
2011-2017. The training sequences originated from 24%

5 https://eithub.com/vkola-lab/peds2019

unsorted, 10% IGHA, 1% IGHD, 1% IGHE, 35% IGHG and
30% IGHM isotypes. A validation set was extracted by sam-
pling 20 million sequences from all 5 human heavy chain
studies from 2018. The validation sequences originated from
33%unsorted, 16% IGHA, 1% IGHD, 1% IGHE, 20% IGHG
and 28% IGHM isotypes. A light chain training set was ex-
tracted by taking all 19,054,615 sequences from all 14
human light chain OAS studies from 2011-2017. A valida-
tion set was extracted by taking all 33,133,386 sequences
from both 2 human light chain OAS studies from 2018. Stud-
ies from 2019 were left out to enable future comparison with
new methods on an independent test set.

Sapiens architecture and training procedure Sapiens was
implemented and trained using fairseq [44] and its RoOBERTa
module [45]. The Transformer encoder contained 4 layers, 8
attention heads, embedding dimensionality of 128, feed for-
ward network embedding dimensionality of 256. Other
parameters of the network were based on RoOBERTa defaults.
In total, the network contained 568,857 tunable weights.
Training procedure was based on “masked Im” training task
with 15% masking probability. Label-smoothed cross-en-
tropy with epsilon of 0.1 was used to avoid penalizing the
model for making incorrect yet plausible predictions, reflect-
ing the inherent unpredictability of the sequence. A 10%
dropout and variable rates of weight decay were used to
avoid overfitting. Separate models were trained for the heavy
chain and the light chain. The heavy chain model was trained
for 700 epochs (166 epochs with learning rate of le-4, then
further with learning rate of 1e-3) using Adam with default
parameters. The light chain model was trained for 300
epochs with learning rate of 1e-04. No hyperparameter tun-
ing was performed. Towards the end of the training
procedure, the increase of validation performance started
slowing down, but still did not plateau, suggesting that addi-
tional training or less conservative regularization techniques
could improve performance further.

Although antibody sequences are commonly num-
bered and aligned for machine learning applications
[13][18][26], unaligned sequences were used for three rea-
sons. First, such alignment is only applicable to antibodies
and T-cell receptors, so it would render the method inappli-
cable to other domains in the future. Second, while alignment
can help relate conserved positions to each other, it can also
conceal motifs found in a particular sequence by fragmenting
it with artificial gaps. Thirdly, by using an unaligned
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sequence, the model was forced to recognize the conserved
positions on its own and therefore learn a richer inner repre-
sentation. Nevertheless, evaluation of alternative training
and validation schemes was not performed in this study, so
aligned sequence input as well as other subsampling and val-
idation split strategies could also be considered.

Sapiens attention visualization Attention weights were
collected from 64 heavy chain sequences from IMGT mAb
DB that were 120 amino acids in length and were composed
of the following AHo positions: 1-7, 9-27, 29-33, 39-61, 65-
113, 133-149. Attention weights for each of the 64 sequences
were extracted from the Sapiens network, averaged across
subjects and attention heads in each layer. An increase in at-
tention to a given region was calculated by comparing mean
attention to all positions in the given region compared to
mean attention to all positions in other regions. Attention
weights for Pembrolizumab heavy chain were visualized in
its PDB structure SB8C using ProVis [46] and nglview [47].

CDR grafting IMGT-aligned human germline V and J gene
sequences were collected from IMGT Gene-DB. The graft-
ing process consisted of five steps. First, the input sequence
was IMGT-aligned using ANARCI. Next, the nearest human
V and J gene sequences were selected based on sequence
identity (optionally filtered for sequences from specified
gene or gene family), and merged into a single sequence with
IMGT gaps. Next, the input and germline sequences were re-
numbered to a user-specified numbering scheme (Kabat by
default). In Straight CDR grafting, CDR residues from the
input sequence (now based on the renumbered scheme) were
inserted at the corresponding positions in the germline se-
quence. In Vernier CDR grafting, parental Vernier zone
residues are grafted along with the CDRs, in other words,
these were additional “back-mutations”. Vernier zones were
defined based on [8]. Both methods were released in a new
open-source package AbNumber®.

Humanization methods evaluation Validation set of 25
humanized sequences paired with their known parental se-
quences and Hu-mAD predictions was acquired from the Hu-
mAb study [18]. Hu-mAb predictions from the 152 putative
parental sequences were generated using the Hu-mAb web
server (March 2021). Humanness of predicted sequences
was evaluated using OASis and the T20 web server. Human-
ness change was computed as average absolute difference of

6 https://github.com/prihoda/AbNumber

OASis medium identity of the humanized sequence and the
parental sequence. Parental preservation was calculated as
average sequence identity of the parental and humanized se-
quence under Kabat numbering. To produce Venn diagrams
that evaluate humanizing mutation overlap between the ex-
perimentally validated sequence and a predicted sequence,
all mutations from parent to the experimental or predicted
sequence were pooled together and classified into three cat-
egories: 1) Shared mutations were made in both the
experimental and the humanized sequence (identical resi-
dues on the same Kabat position) 2) Experimental only
mutations were made only in the experimental sequence 3)
Predicted only mutations were made only in the predicted
sequence. Finally, humanizing mutation precision was cal-
culated as number of shared mutations divided by total
number of predicted mutations. Using a simple benchmark
on a personal computer with 8 cores, BioPhi command-line
interface was able to humanize 1,000 antibodies in 2.3
minutes (using Sapiens without OASis evaluation).

Recovering 152 putative parental sequences Records with
“-zumab” suffix were collected from TheraSAbDab, totaling
164 humanized therapeutics. To estimate which positions
(apart from CDRs) in the humanized therapeutic sequences
came from their parental sequence, framework residues with
<1% positional frequency were identified. The frequency
was calculated based on a subset of 4 million human OAS
sequences created by sampling 10,000 complete sequences
from each OAS subject. On average there were 1.3 rare
framework residues in the heavy chain and 1.0 in the light
chain.

Each humanized sequence was IMGT-aligned us-
ing ANARCI and compared against all 169,870,516 non-
human IMGT-aligned sequences from OAS (94.3% from
mouse, 2.5% from rat, 1.8% from rabbit, 0.8% from rhesus
and 0.7% from camel). The putative parental sequence tem-
plate was selected based on highest sequence identity in
CDRs. In case multiple sequences with same CDR identity
were found, the one with highest framework identity was se-
lected. To preserve only high-confidence matches,
therapeutics with less than 60% CDR identity with the near-
est match in heavy or light chain were discarded, yielding
152 final pairs. The final putative parental sequence was as-
sembled by grafting CDRs and the identified non-human
residues of the humanized sequence into the parental OAS
hit, essentially performing reverse CDR grafting. This
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produced a fully non-human sequence with CDRs and other
non-human residues from the humanized therapeutic and
frameworks from the non-human OAS hit. For 22/152 ther-
apeutics, known parental sequences were obtained from [18].
Sequence identity was calculated as percentage of identical
residues in the known and recovered parental sequence using
Kabat numbering. Recovery mutation accuracy was calcu-
lated as number of framework positions that agreed between
the two parental sequences while being mutated in the hu-
manized sequence, divided by the total number of mutated
positions. Putative parental sequences are provided in Sup-
plementary Table 3.

Availability

BioPhi web application is available at
https://biophi.dichlab.org

BioPhi code repository is available at
https://github.com/Merck/BioPhi

The code and data supporting this analysis are available at
https://github.com/Merck/BioPhi-2021-publication
and in the Supplementary Information.
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