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ABSTRACT 42 

 43 

Effective monitoring of antibiotic resistance genes and their dissemination in environmental 44 

ecosystems has been hindered by the cost and efficiency of methods available for the task. We 45 

developed a method entitled the Diversity of Antibiotic Resistance genes and Transfer Elements-46 

Quantitative Monitoring (DARTE-QM), a system implementing high-throughput sequencing to 47 

simultaneously sequence thousands of antibiotic resistant genes representing a full-spectrum of 48 

antibiotic resistance classes commonly seen in environmental systems. In this study, we demonstrated 49 

DARTE-QM by screening 662 antibiotic resistance genes within environmental samples originated 50 

from manure, soil, and animal feces, in addition to a mock-community used as a control to test 51 

performance. DARTE-QM offers a new approach to studying antibiotic resistance in environmental 52 

microbiomes, showing advantages in efficiency and the ability to scale for many samples. This method 53 

provides a means of data acquisition that will alleviate the obstacles that many researchers in this area 54 

currently face. 55 

 56 

 57 

INTRODUCTION 58 

 59 

The global spread of organisms possessing antimicrobial resistance (AMR), and their associated 60 

antibiotic resistant genes (ARGs), is posing an increasing threat to the health of both humans and 61 

animals alike1–3. Characterization of the presence and abundance of ARGs, i.e. the resistome, in 62 

environmental microbiome samples has stood as a major challenge for researchers monitoring these 63 

events4. Such studies have been impeded by the broad diversity of the genes, their low presence in most 64 

natural environments, the difficulty of extracting DNA from microbes in those environments, and their 65 
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association with mobile genetic elements accounting for approximately one-quarter of the genetic 66 

material in these microbiomes5.  67 

 68 

The genetic diversity of ARGs has made targeted sequencing approaches non-trivial and has led to the 69 

application of whole-genome shotgun metagenomic methods for the characterization resistomes6. This 70 

approach is dependent on the availability of a gene reference database to classify reads as ARGs 71 

sequences but does not require a priori knowledge of which genes constitute the resistome being 72 

investigated7. Despite being effective for the task, the cost per sample of employing metagenomic 73 

methods to elucidate resistomes often inhibits studies from scaling. Shotgun sequencing must 74 

indiscriminately sequence a genome, and often the resistome comprises only a fraction of a percent of 75 

the entire metagenome. Therefore, it is often the case that only a minute subset of the sequencing-reads 76 

produced through this method will be informative to resistomes, and ARGs are either underrepresented 77 

or undetected8, as sufficient sequencing depth and coverage is difficult to achieve.  78 

 79 

In the effort to find more efficient means for sequencing ARGs, a method of implementing bait-and-80 

capture system to identify ARG targets has been developed9. This approach uses streptavidin-coated 81 

magnetic beads to capture 80-mer bait sequences to target genes of interest. The bait-and-capture 82 

method has been well-suited for the characterization of low- and high-abundance ARGs and has 83 

demonstrated the ability to differentiate resistomes from different sample sources10. Another method of 84 

targeted gene sequencing used for ARG characterization involves custom primers for performing a 85 

PCR-based amplicon library preparation. This type of sequencing is used extensively in microbiome 86 

studies for community profiling via bacterial 16S rRNA genes and combines barcoded adapters to 87 

differentiate hundreds of samples pooled in a single library preparation11. It has previously been limited 88 

in the number of primers that could be incorporated for a single library, but a more recent version of 89 
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amplicon library preparation for multiplexed primers now exists and has been implemented for 90 

biomarker detection in clinical studies12–15.  91 

 92 

Our study demonstrates the first usage of this multiplexed amplicon library preparation for the 93 

detection of ARGs in environmental samples. We have termed our method of implementing this 94 

technology Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring 95 

(DARTE-QM). Our study was designed to demonstrate that DARTE-QM offers practical application to 96 

ARG screening through its ability to simultaneously detect and quantify hundreds of ARGs residing in 97 

samples from various environments and that it can achieve high accuracy and sensitivity identifying 98 

ARG targets.     99 

 100 

RESULTS 101 

 102 

Design of primers and samples. DARTE-QM employed 796 primer pairs designed to target 67 103 

antibiotic resistant families and 662 ARGs, as well as a synthetic oligonucleotide reference sequence 104 

and the V4 region of the 16S rRNA gene,  in a multiplexed amplicon library preparation (Supp. Table 105 

1, Supp. Table 2). Subsequent paired-end sequencing of 150 base pair reads was conducted using the 106 

Illumina MiSeq platform (USDA, Ames, IA). To evaluate the results of DARTE-QM against a 107 

reference, we constructed a mock-community microbiome comprised of DNA extracted from 20 108 

isolates (Supp. Table 3) with completed genome sequences (Dataset 1). For each of the mock-109 

community libraries, we included varying concentrations of a synthetic oligonucleotide reference 110 

sequence to evaluate accuracy of quantification. We also examined how DARTE-QM was able to 111 

characterize true environmental resistomes associated with manure, swine fecal, and agricultural soil 112 

samples (Supp. Table 4).  113 
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 114 

Evaluation of DARTE-QM sequencing products. The sequencing data produced via DARTE-QM is 115 

unique in its high level of heterogeneity, as compared to traditional amplicon data generated from a 116 

singular DNA-primer (e.g., 16S SSU rRNA). Given numerous and diverse gene targets in the 117 

sequencing library, processing of DARTE-QM data required amendment of the traditional microbiome 118 

analysis pipelines (Figure 1). After quality control and processing, 16 of the 18 samples from the mock-119 

community were retained for downstream analysis (2 samples removed for less than 5,000 reads 120 

passing quality filters). Quality filtering also resulted in the removal of 38 of the 61 environmental 121 

samples due to sequencing coverage below 5000 reads, likely caused by PCR inhibitors common of 122 

manure and soil samples 16–18, leaving 39 samples in total to be used in the evaluation of DARTE-QM. 123 

The 16 mock-community samples yielded a mean of 192,415 reads per sample, and a mean of 44,440 124 

reads able to be aligned to ARG references (Supp. Table 5). In our environmental samples, across all 125 

sources, we observed a mean of 170,775 reads and a mean of 19,138 reads aligned to ARG references 126 

per sample. 127 

 128 

DARTE-QM successfully amplified targeted genes with high accuracy and sensitivity. Reads from 129 

each sample were demultiplexed by primer, and each read was subsequently classified as either true 130 

positive (TP), false positive (FP), false negative (FN), or true negative (TN). This classification was 131 

based on alignment to the ARG reference database, where reads were deemed to be TP when both the 132 

intended primer target and read sequence aligned to the same gene; FP when the primer target and the 133 

read sequence did not agree; FN when no primer was found but the read sequence was able to be 134 

aligned to a reference ARG; and TN reads were assigned as all reads within a sample assigned as TP 135 

outside of the primer in question, i.e., all reads that were correctly identified as not being the targeted 136 

read.  137 
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Success for DARTE-QM was evaluated on three metrics:  sensitivity (TP/[TP + FN]), specificity 138 

(TN/[TN + FP]), and accuracy ([TP + TN]/[TP + FN + TN + FP]) for each gene target (i.e., primer) and 139 

each sample (Supp. Table 6). From the 662 ARGs targeted by DARTE-QM, 235 (~35%) were identi-140 

fied in our samples. The mean sensitivity for all primers was found to be 99.6%. The mean specificity 141 

and mean accuracy were found to be > 99.9% and 99.6%, respectively, suggesting that the primers in 142 

DARTE-QM were successful in amplifying their intended target genes. 143 

 144 

We also observed a substantial number of reads in our sequencing libraries that had primers located on 145 

the 5’ end of the sequences but were unable to be aligned to any of our reference ARGs nor any posi-146 

tion in the mock-community genomes. Inspection of a subset of these reads found that they contained 147 

repeated poly-A and poly-T elements. These reads were observed as unique sequences within the da-148 

taset, implying little or no biological pattern. These artifacts accounted for 47% of all reads in samples 149 

which passed quality controls. However, in samples that failed to pass quality filters, these sequences 150 

accounted for 85% of reads. Sample source appeared to be a significant, yet likely confounded, factor 151 

in the production of these artifacts. Sequencing of samples from the mock-community had significantly 152 

lower counts for artifact reads as compared to environmental samples (soil-A, p = 0.038; manure-A + 153 

soil-A, p = 0.035; swine fecal, p < 0.001, pairwise-Wilcoxon). Across all samples, an inverse linear re-154 

lationship (R2 = 0.68) (Supp. Figure 1) was observed between the number of reads which had a primer 155 

identified and the percentage of those reads that were artifacts.  156 

 157 

DARTE-QM was able to consistently identify presence and distribution of ARGs. Construction of 158 

the mock-community from DNA sourced from fully-sequenced genomes allowed for comparison of a 159 

theoretical profile to our experimental observations of ARGs in these samples. In the combined 160 

genomes of the mock-community, ARGs comprised 0.03% (56 ARG targets) of the total genome by 161 
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base pair count. DARTE-QM was able to produce 55 of those 56 ARGs found in the mock-community 162 

reference genomes, consistently identifying them across all 16 samples (Figure 2). Particular resistance 163 

families that were not successfully captured by DARTE-QM included those associated with the acrA 164 

subunit of multidrug efflux pump systems, as well as genes encoding for chloramphenicol resistance 165 

(e.g., catA). While overall, target relative abundances were observed to be similar compared to 166 

theoretical, the quantification of particular ARGs, such as transposon-associated lnuC conferring 167 

resistance to lincomycin, were found in higher abundance by DARTE-QM, as others such as mecA 168 

conferring methicillin-resistance, were found to be underrepresented. With regard to the synthetic 169 

oligonucleotide, there was a strong correlation observed reads (Supp Figure 2, R2 = 0.91) between the 170 

read abundance produced by DARTE-QM and the experimental concentration. 171 

 172 

DARTE-QM differentiated resistomes between environmental sources. DARTE-QM detected 240  173 

ARG targets across all samples in this study (including 121 in Soil-A, 172 in Soil-B, 182 in Soil-C, 202 174 

in Swine Manure-A, 129 in Swine Manure-B, 178 in the Swine Fecal samples, and 156 in the mock-175 

community, Supp. Table 4). Distinctions in the composition of resistomes were detected, not just from 176 

the presence of unique ARG targets but also from the abundance of the ARGs that composed the 177 

resistomes from each environment (Figure 3a). Ordination, via principal coordinate analysis based on 178 

Bray-Curtis distances of observed ARGs targets, showed clear separation of environmental sources, 179 

with the first two eigenvalues accounting for nearly 80% of the total variation (Figure 3b). 180 

Permutational multivariate analysis of variance (PERMANOVA) was used as a non-parametric 181 

multivariate statistical test to compare the variation of samples and environmental source. The results 182 

of the PERMANOVA test corroborated the apparent findings of the PCoA, and environmental sources 183 

were associated with a significant (F=11.45, R2=0.70, p < 0.001) portion of variation observed in the 184 

resistome profiles. DARTE-QM identified specific ARG patterns which distinguished resistomes 185 
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sourced from different environmental samples, the most notable of which was within swine fecal 186 

samples where a distinctive presence of genes related to lincosamide and aminoglycoside resistance 187 

were observed. In the soils, with varied field management histories of swine and bovine manure 188 

amendment (soils B and C), we observed distinct characteristics of resistomes as well. Bovine manure-189 

associated soils were found to be enriched with genes associated with resistance to aminoglycosides 190 

and sulfanomides, whereas the swine manure-amended soils were replete with aminoglycoside, 191 

lincosamides, and erythromycin-resistance related genes. 192 

 193 

DARTE-QM produced results with comparable resolution to that of metagenomes. Soil-column 194 

samples used in this study had been previously characterized through metagenome sequencing19 (NCBI 195 

SRA Study SRP193066). DNA from the same sources were used for sequencing with DARTE-QM 196 

study for comparison of the two methods. Metagenomes from the soil samples had an average of 241 197 

ARG reads and were excluded from analysis; DARTE-QM returned a mean abundance of 5,839 ARG 198 

reads in those same samples. Four swine-manure samples from the metagenome study yielded a mean 199 

ARG abundance of 76,226 reads, and the 12 manure treated soil samples yielded an average of 7,377 200 

ARG reads. DARTE-QM produced mean abundances of 32,678 and 13,488 ARG reads in the same 201 

samples.  202 

 203 

Relative abundance of ARG classes showed similar profiles for swine-manure from both technologies. 204 

DARTE-QM reads were classified into 99 ARG families and metagenome reads to 56 ARG families. 205 

From those, 39 ARG families were shared between the two methods and accounted for 89% and 84% 206 

of metagenome and DARTE-QM ARG families, respectively (Figure 4). In the manure-treated soil 207 

samples DARTE-QM identified 99 ARG families and metagenomes 92, sharing 50 of those that ac-208 

counted for 90% and 83%, respectively. For identifying diverse ARGs, DARTE-QM is disadvantaged 209 
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by being a targeted method. For example, the metagenomes had a noticeable presence of genes from 210 

the AMR gene families for resistance-nodulation-cell division antibiotic efflux pump (Mux and Mex 211 

ARG Classes), which were not targeted by DARTE-QM. A direct comparison of both approaches con-212 

strains the metagenomes to those targeted by the primers of DARTE-QM (Figure 4b). In this compari-213 

son, metagenomes identified 48 ARG families in the swine manure samples and 65 in the manure-214 

treated soils. Diversity measurements using the Shannon-Weiner Index of ARG classes showed similar 215 

values between the methods with DARTE-QM having H = 2.95 in swine-manure samples and H = 2.87 216 

in manure-treated soil samples, while metagenomes had H = 2.92 in swine-manure samples and H = 217 

2.84 in the manure-treated soils.  218 

 219 

DARTE-QM can distinguish gene variants through sequencing. Two high-abundance genes, erm35 220 

encoding for the macrolide-lincosamide-streptogramin and tetM for tetracycline resistance, were 221 

selected for variant analysis. DARTE-QM reads classified as either of these genes were clustered at 222 

97% nucleotide identity, resulting in three clusters for erm35 and five clusters for tetM. Each cluster 223 

contained a minimum of ten unique sequences. The primary erm35 cluster contained 4,785 reads 224 

(Supp. Table 6, Supp. Figure 3a). The other two erm35 clusters were defined by 5 to 10 base pair 225 

variations within the associated 13 and 18 reads. Similarly, from a total of 24,653 reads classified as 226 

tetM, 96% defined the primary cluster, which was identical to one of the 6 tetM primer targets. Four of 227 

the other clusters, which contained between 32 and 676 reads, were defined by 9 and 24 base pair 228 

variations (Supp. Table 6, Supp Figure 3b). Bacterial hosts associated with the observed erm35 variants 229 

were solely associated with Bacteroides coprosuis and Bacteroides spp. and is consistent with the 230 

limited diversity of known isolates carrying this gene. In contrast, the sequences associated with tetM 231 

clusters are known to originate in various taxa. The largest tetM cluster was found to be highly 232 

conserved across a broad diversity of Gram-positive and some Gram-negative isolates. In comparison, 233 
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the tetM cluster containing 676 reads, was primarily associated with plasmids found in E. coli and 234 

Salmonella. The lower abundance of this cluster in the DARTE-QM data is consistent with the low 235 

relative abundance of Enterobacterales in swine gut-associated samples20. Similarly, the other tetM 236 

clusters were associated with Streptococcus strains and found in a lower diversity of taxa compared 237 

with the largest cluster.  238 

 239 

DISCUSSION 240 

 241 

DARTE-QM was conceptualized as an approach towards more efficient characterization of ARGs 242 

found in microbiomes. Specifically, we developed DARTE-QM to address the cost limitations of 243 

metagenomic approaches for ARG monitoring in environmental samples, where ARGs of interest often 244 

require significant sequencing depth and coverage. One of the major goals was to drastically scale the 245 

number of samples able to be evaluated by leveraging the high-throughput capabilities of barcode-246 

multiplexing combined with amplicon library preparation. Similar to other amplicon-sequencing 247 

platforms, the costs of DARTE-QM are driven by the synthesis of primers and the price of sequencing. 248 

As DARTE-QM targets specified genes for amplification, it is able to enrich and detect ARGs that are 249 

present in low abundance, which is often a barrier for shotgun metagenomics. The number of samples 250 

that can be processed using DARTE-QM is limited by the number of unique barcode sequence 251 

adapters, the sequencing depth required per sample, and the number of gene targets. At the time of this 252 

study, the number of gene targets was constrained by the TruSeq platform, which currently supports 253 

1,536 primers and 96 barcoded samples. 254 

 255 

The aim of this study was to demonstrate the efficacy of DARTE-QM for characterizing ARGs from 256 

environmental samples. Our results showed that DARTE-QM had success detecting the presence of 257 
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hundreds of diverse ARGs across soil, manure, water, and our mock-community samples. While 258 

DARTE-QM was designed with the capacity to identify diverse ARG targets, our assessment was 259 

limited by ARGs contained in our samples. We used DNA extracted from isolates with known genomes 260 

and ARG distributions to evaluate the sensitivity and accuracy of DARTE-QM. We observed strong 261 

performance for detecting ARGs in our mock-community, having 98% of ARGs detected with high 262 

sensitivity and specificity. There was evidence of DARTE-QM’s ability to quantify ARG presence with 263 

the correlation of abundance to varying concentrations of our synthetic oligonucleotide reference in the 264 

mock-community samples. Those results, though not a perfect correlation (r2 = 0.91), illustrate that 265 

DARTE-QM is affected more by the amount of DNA available for the primer than by the competition 266 

between primers to find targets. Finally, comparisons to metagenomes suggested that DARTE-QM 267 

could detect similar measures of diversity of ARGs from samples. While the distributions of ARGs 268 

within the resistomes varied between DARTE-QM and metagenome resistomes, the differences 269 

between environmental sources could be distinguished, and broad patterns of resistance classes were 270 

similar. Combined, these results confirm that the primers used for DARTE-QM successfully amplified 271 

ARGs despite the potential for interference when simultaneously amplifying multiple gene targets in 272 

uniform conditions.  273 

 274 

In cases where DARTE-QM abundances varied the most from expected, the gene targets were often 275 

associated with plasmids and other mobile elements. Multiple copies of these genes may exist per cell 276 

and result in the underestimation of these genes. For instance, aph3-ib, aph6-id and sul2 are found on 277 

the same IncQ plasmid. This is a likely reason for the results of much higher observed copy numbers 278 

than other ARGs, as well as the theoretical estimate. The IncQ plasmid has been reported to have 279 

anywhere between 10 to 16 copies per cell.21 The gene aph(3’)-IIa, is located on an IncI2 plasmid, 280 

which conversely is a low copy number plasmid22, and is consistent with our results. The optimization 281 
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of future versions of this platform for specific gene targets is possible. In the case of plasmid-associated 282 

genes or genes for which amplification failed, PCR conditions could be varied for optimal 283 

amplification and specific gene standards could be included for absolute quantification. Further, it is 284 

possible to select primers for DARTE-QM to target specific resistance classes, rather than the broad 285 

array of targets demonstrated in this study.  286 

 287 

A limitation of DARTE-QM is the presence of biased PCR amplification and associated amplicon 288 

artifacts. These sequencing artifacts were observed in all samples in this study and could be 289 

distinguished by the presence of a primer with an untargeted sequence. While these genes could be 290 

non-specific amplification of primers targeting other biological genes, the presence of poly-A and poly-291 

T sequence patterns, like those seen in single cell amplification23, along with their majority singleton 292 

presence, suggested that they were sequencing artifacts. While these artifacts present an impediment for 293 

leveraging the sequencing coverage of DARTE-QM, we found that with at least 25,000 reads per 294 

sample, we could identify 90% of the ARGs present in mock-community samples. These sequencing 295 

artifacts also seemed to be produced by particular primers and in samples from specific environments, 296 

suggesting opportunities for optimization in future development of DARTE-QM. For instance, the 297 

primers targeting vancomycin-associated ARGs produced large number of artifact reads, and no 298 

vancomycin ARGs were expected in any of our samples. Similarly, many of the samples that produced 299 

the highest percentage of reads as artifacts were from soils, a medium known to have PCR inhibitors24. 300 

In samples where there was high-quality DNA and lower diversity (e.g., mock-community samples), it 301 

did not appear that the artifacts obstructed the production of true- positive reads. For screening of a 302 

broad range of diverse environments, artifacts are easily filtered through target alignment and 303 

classification. Future studies aimed at improving the sequencing library preparation protocols for 304 
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sample types or ineffective primers will continue to improve the platform based on the knowledge 305 

gained. 306 

 307 

The most beneficial aspect of DARTE-QM to improving microbiome ARG monitoring is its ability to 308 

detect ARGs at costs that will allow hundreds of samples to be screened simultaneously. A current 309 

challenge to antimicrobial resistance monitoring is that characterizing broad indicators are expensive, 310 

and thus it is difficult to standardize studies for monitoring. DARTE-QM is a complement to existing 311 

approaches to characterize ARGs. We envision an optimal system whereby the most relevant ARGs in a 312 

study can be detected with less bias using metagenome sequencing, and these ARGs can subsequently 313 

be targeted for numerous samples using DARTE-QM. The sequencing from DARTE-QM can then 314 

provide information on the distribution of ARGs, as well as sequence variants, in a systematic fashion, 315 

even if in low abundance. 316 

 317 

DARTE-QM is the first demonstration of simultaneous library preparation and subsequent sequencing 318 

of hundreds of unique gene targets from environmental DNA. Here, we demonstrated this application 319 

for the characterization of ARGs and associated resistomes in environmental samples, however, 320 

DARTE-QM presents the opportunity to apply this approach towards gaining sequencing information 321 

for other diverse functional genes as well. This platform is particularly suited for studies in which 322 

genes of interest are numerous and well-defined, and where sequencing information from these genes 323 

would provide benefits to understanding biological operations (e.g., point mutations or association with 324 

sequences with host information). The ability to affordably scale for numerous genes and samples 325 

provides a much-needed resource for not only the field of antimicrobial resistance but for researchers 326 

interested in scaling functional gene characterization. Finally, we recognize that this is the first 327 

evaluation of DARTE-QM and that there are significant opportunities to further develop this approach 328 
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for more targeted study. Given the simultaneous amplification of primers in DARTE-QM, we expect 329 

that the more specific the gene targets, the more optimized the library preparation can be for reliable 330 

quantification.  331 

 332 

 333 

DATA AVAILABILITY 334 

Sequence files, sample metadata, and the genome sequence for the mock-community member 335 

sequenced by the USDA facility in Ames, IA, can be found through FileShare this link 336 

https://doi.org/10.25380/iastate.14390342 337 

 338 

Alternatively, all metadata and mock genomes used it the study are available through the same 339 

repository as the code for analysis. 340 

 341 

 342 

CODE AVAILABILITY 343 

 344 

All code used for processing and analysis is open-source and can be found at  345 

https://schuyler-smith.github.io/DARTE-QM/ 346 

 347 

ONLINE METHODS 348 

 349 

Sequencing Targets and Primer Design 350 

 351 
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Antibiotic resistance gene (ARG) targets for primer design were chosen and aggregated from two 352 

sources. There were 2,472 sequences were obtained from the ResFinder database (version 3.2, 353 

November, 2016)25, associated with 67 antibiotic resistance families. ResFinder was selected on 354 

account of its manual curation of genes associated with acquired antibiotic resistance. An additional 355 

409 ARG-associated sequences chosen as well, which had previously demonstrated high prevalence in 356 

animal agriculture19. To abide with the limitation of the number of allowed primers with the Illumina 357 

TruSeq library preparation, later described, the conglomerate of the chosen sequences was ultimately 358 

curated to representative sequences that targeted genes deemed of most interest to antibiotic resistance 359 

in agriculture. A single 300 bp synthetic oligonucleotide sequence was designed for use as a reference 360 

(reference target gene in Supp. Table 1). The synthetic oligonucleotide was designed with no biological 361 

context to ensure that it would not interfere with any ARG detection, save for appropriate restriction 362 

sites that were added to allow for insertion into a pUC19 cloning vector. The sequence was compared 363 

to the entirety of the NCBI Genbank database and was confirmed to share no significant similarity to 364 

any existing records. Lastly, we included 25 sequences based on those used by the Earth Microbiome 365 

Project26 to target the V4 variable region of the 16S rRNA gene. 366 

 367 

The goal of primer design was to target the maximum number of our chosen sequences, with the 368 

highest specificity, staying within the set limit of 1,536 primers for the library preparation. Primers 369 

were designed using the Ribosomal Database Project’s EcoFunPrimer software:27 product minimum 370 

length = 220, product maximum length = 330, Oligo minimum size = 22, oligo maximum size = 30, 371 

maximum mismatch = 0, temperature minimum = 55, temperature maximum = 63, hair-pin max = 24, 372 

homo-max = 35, assaymax = 30, degenmax = 6, noTEendfileter = T, nopoly3GCfilter = T, polyrunfilter 373 

= 4, GCfilter min = 0.15 GCfilter max = 0.8. This produced 1,340 primers (Supp. Table 1) to target the 374 

ARG associated sequences, which accounted for 2,184 sequences (88.3%) from those selected (Supp. 375 
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Table 2). Two primers were created for the synthetic oligonucleotide, and 30 were included for 376 

targeting all degeneracies of the 25 16S rRNA sequences. In total, DARTE-QM used 1,372 primers 377 

(668 forward-primers, 704 reverse-primers) for 796 primer pairs to be used with Illumina's TruSeq 378 

Custom Amplicon Low Input library preparation. These primers targeted representative sequences of 379 

all 67 antibiotic resistant families and 662 ARGs.  380 

 381 

Library Prep 382 

Oligonucleotide primers were created in Illumina Design Studio and ordered through Illumina (Supp. 383 

Table 1). Paired-end libraries for each sample were prepared using the TruSeq Custom Amplicon Low 384 

Input Kit (Illumina) according to the manufacturer's instructions. This kit allows generation of up to 385 

1536 amplicon targets over 96 samples. All DNA was diluted to 10 ng/uL during library preparation, or 386 

prepared with no dilution where concentrations were less than 10 ng/uL. An Agilent High Sensitivity 387 

D1000 ScreenTape System (Agilent Technologies) was used for measuring DNA concentration of pre-388 

pared libraries. For sequencing, the MiSeq Reagent Kit v2 (300-cycles) (Illumina) reagents were used 389 

with the MiSeq sequencing platform.  390 

Samples 391 

 392 

Mock-community 393 

A mock-community composed of 20 cultured isolates28 was created for purpose of assessing the 394 

effectiveness of DARTE-QM. Nineteen of the genomes were available from the NCBI GenBank, and a 395 

single genome was sequenced at the USDA Animal Research (Ames, Iowa) (Supp. Dataset 1). The 396 

ARGs found within the genomes were annotated using ResFam and also the Comprehensive Antibiotic 397 
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Resistance Database (CARD, version 2.0.1)29. We included 6 mock-community samples sequenced in 398 

triple replicates with 0, 0.0025, 0.009, 0.025, 0.12, 0.25 ng of the synthetic oligonucleotide reference. 399 

 400 

To evaluate the practical implementation of DARTE-QM using environmental samples, we used 19 401 

environmental samples originating from intrinsic and manure-amended soils, swine manures, effluent 402 

from manure-amended soils, and swine fecal samples that passed quality filters. Samples were selected 403 

from two previously published studies. In the first study, laboratory soil columns and rainfall 404 

simulations were used to evaluate the influence of swine manure amendment on soils and effluent19 405 

(Supp. Table 4). In the second study, fecal samples from swine with varying antibiotic usage and routes 406 

of administration were used30. Samples from a subsequent laboratory soil column experiment designed 407 

to evaluate the influence of either swine or beef manure on soils and effluent were also included. 408 

Metagenomes were available for 14 samples (NCBI SRA database Bioproject PRJNA533779) were 409 

used for comparisons to DARTE-QM results.  410 

 411 

Data Analysis 412 

 413 

All analysis was done in the statistical language R, unless otherwise stated. DARTE-QM sequences 414 

were quality checked using FastQC (v0.11.9)31 (Figure 1). Reads were demultiplexed by primer, which 415 

were identified and removed using Cutadapt (v2.10)32 with an error tolerance of 0.1 and a phred-score 416 

quality threshold of 2032. High-quality paired-end reads were merged using PEAR (v0.9.8)33, requiring 417 

a minimum overlap of 10 bp. Merged reads were aligned against our database of targeted sequences 418 

using BLAST (v2.10)34. Successful alignment required a minimum of 90 bp and 98% similarity. For 419 

paired-end reads that were not able to be merged, each was aligned to the target-database individually. 420 

If both reads aligned to the same target, the read with the longest alignment was selected as the repre-421 
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sentative sequence. We defined a successful amplification as a read for which a primer sequence was 422 

present, and the amplified sequence aligned to the primer’s intended target with at least 90 bp length 423 

and at least 95% identity. Reads identified as having 16S rRNA primers were classified using the RDP 424 

Classifier35 with default parameters, and then unpaired reads selected in the same manner as for ARGs. 425 

 426 

Each read was classified as either true positive (TP), false positive (FP), false negative (FN), or true 427 

negative (TN). This classification was based on alignment to the ARG reference database, where reads 428 

were deemed to be TP when both the intended primer target and read sequence aligned to the same 429 

gene; FP when the primer target and the read sequence did not agree; FN when no primer was found 430 

but the read sequence was able to be aligned to a reference ARG; and TN reads were assigned as all 431 

reads within a sample assigned as TP outside of the primer in question, i.e., all reads that were correctly 432 

identified as not being the targeted read. Success for DARTE-QM was evaluated on three metrics:  sen-433 

sitivity (TP/[TP + FN]), specificity (TN/[TN + FP]), and accuracy ([TP + TN]/[TP + FN + TN + FP]) 434 

for each gene target (i.e., primer) and each sample.  435 

 436 

The ability of DARTE-QM to quantify ARG presence was tested by comparing observed counts of the 437 

synthetic oligonucleotide to the expected concentrations. Samples were normalized by rarefying to a 438 

sequence count of 5,000. Samples with a sequence count less than 5,000 were discarded. Alpha 439 

diversity, richness, of ARGs was calculated using Shannon’s index. Principal coordinate analysis was 440 

conducted to evaluate the variations of resistome profile in samples. Based on the relative abundance of 441 

ARGs in each sample, Bray-Curtis distances were calculated for each pair of samples, and the first two 442 

components of the eigenvalue decomposition were plotted. Permutational multivariate analysis of 443 

variance (PERMANOVA) was used to identify the significant factors (e.g., experiments, source-444 
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matrices) which contributed to the observed resistome variation. Cluster analysis was performed using 445 

k-means. 446 

 447 

Variant Analysis 448 

 449 

To evaluate the presence of gene sequence variants, the observations of variants were estimated for 450 

sequences associated with the erm35 and tetM genes. The forward reads of sequences which aligned to 451 

the DARTE-QM gene targets were clustered at 97% sequence similarity with CD-HIT (v4.6.7)36. 452 

Clusters containing greater than ten sequences were considered in our results, with representative 453 

sequences for each cluster determined by CD-HIT. Alignment was performed and visualized with 454 

JalView using ClustalW (v2.11.1.3)37. 455 

 456 

 457 
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Figure 1. Summary of DARTE-QM read 

processing pipeline. Data-boxes color blued 

represent reads kept within the pipeline, red 

boxes were discarded reads, and green are 

the finalized reads for analysis. Reads were 

filtered by quality-score and demultiplexed 

by the presence of primer sequences. To 

classify ARGs, both merged and unmerged 

reads were required to align to known genes 

in ResFam and CARD ARG reference 

databases. In the case of unmerged reads, if 

both the forward and the reverse read 

aligned to the same target, the shorter 

alignment from the pair was discarded. 
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Figure 2. Presence and distribution 

of known ARGs within mock 

community samples. A.) Proportion 

of the resistome represented by each 

ARG Class. b.) Heatmap showing 

the log-transformed normalized 

abundance of each ARG Family 

from each mock sample, as well as 

the theoretical distribution.

a b
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a

b

Figure 3. ARG profiles by source matrix. a) Relative abundance of 

ARG classes identified for all mock community, swine fecal, soil, 

swine manure, and manure-treated soils. b) Principal coordinate 

analysis based on Bray-Curtis distances of for resistomes, for 

samples passing all QC-filtering.
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Supp Figure 1. Linear correlation of 

the percentage of artifacts reads 

present in a sample to the total 

number of reads in the sample. Reads 

were defined as sequencing artifacts 

if a primer was located on the 5’ end 

of the sequences and the read did not 

align to any of reference ARGs or any 

other location in the mock-

community genomes. The percentage 

of sequencing artifacts observed was 

higher for environmental samples 

relative to mock community samples 

and was also inversely correlated (R2

= 0.68) to the number of reads in a 

sample.
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Supp Figure 2.  Linear correlation 
between the concentration of the 
reference sequence added to mock 
community samples and the 
number of reads which aligned to 
the reference sequence. The linear 
model found there there to be a 
strong correlation (R2 = 0.91), 
indicating DARTE-QM iwas
sensitive to DNA quantity.
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Supp Figure 3. a) Alignment of gene targets 
and  sequences identified by DARTE-QM 
gene target for a) erm35 and [continued on 
next slide]
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Supp Figure 3. b) tetM genes.   Sequences are representative sequences 
identified for clusters of reads by 97% sequence identity (see also Supp. 
Table 7).  The presence of gene variants are shown in the corresponding 
three clusters for erm35 (erm35_C1-C3) and five clusters for tetM
(tetM_C1-C5).  Genes targeted by DARTE-QM are also shown.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.06.455440doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455440
http://creativecommons.org/licenses/by-nc-nd/4.0/

