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SUMMARY 
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular 
signals, including growth factors, hormones, and extracellular matrix. While these signals are 
normally tightly controlled, their dysregulation leads to phenotypic and molecular states 
associated with diverse diseases. To develop a detailed understanding of the linkage between 
molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the 
transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary 
epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. 
Systematic assessment of the molecular and cellular phenotypes induced by these ligands 
comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and 
made publicly available for community-wide analysis and development of novel computational 
methods (synapse.org/LINCS_MCF10A). In illustrative analyses, we demonstrate how this 
dataset can be used to discover functionally related molecular features linked to specific cellular 
phenotypes. 
 
INTRODUCTION 
The function of cells and their organization into tissues is controlled by interactions between 
cell-intrinsic molecular networks and cell-extrinsic signals, and dysregulation of these signals is 
associated with various diseases1. Extracellular ligands activate cell surface receptors to 
modulate chromatin, RNA, and protein networks that induce changes in multiple cellular 
phenotypes including viability2, growth rate3, motility4, polarization and differentiation state5. 
Disease-specific studies—especially those focused on cancer—have concentrated on 
understanding phenotypes related to disease progression, resistance mechanisms, therapeutic 
vulnerabilities and molecular predictors of response6-15. Several canonical signaling pathways 
have been linked to distinct normal and disease-associated cellular phenotypes, including 
MAPK16, JAK/STAT17, WNT18, and TGFB19. However, a detailed mapping of the linkage 
between multi-modal molecular and phenotypic responses underlying cell state regulation, 
developmental processes and diverse diseases is lacking. 

Two general approaches have been used to explore the role of extracellular signals in 
modulating cellular and molecular phenotypes. One approach involves systematic large-scale 
perturbation of panels of immortalized cell lines, which has yielded libraries of response 
signatures6,8-11,13,20-22. The other approach involves more focused assessment of phenotypic and 
molecular changes in more complex model systems, including engineered organoids23,24, flies25, 
worms26,27, fish28 and mice29. Together these studies indicate that comprehensive multi-omic 
assessment of perturbation responses is critical for gaining insights into molecular-phenotype 
relationships. Module analysis of multi-omic molecular data has proven a useful approach to 
identify co-regulated molecular features associated with normal30-33 and disease-associated34 
phenotypes. Such data-driven approaches require comprehensive, systematically-generated 
datasets, and in recognition of this, multiple data generation and atlasing consortia have 
emerged over the past 20 years, including ENCODE35, TCGA36, GTEx37, and HubMap38.  

The Library of Integrated Network-based Cellular Signatures (LINCS) consortium study 
presented here is a large-scale, cell line-based perturbation experiment designed to examine 
the molecular and phenotypic responses of normal cells to perturbations. Its uniqueness lies in 
the coordinated measurements of a large number of different cellular and molecular responses 
to biologically relevant ligands that, when studied together, can be used for systems-level 
analysis of microenvironmental responses. We focused on the well-characterized human 
mammary epithelial MCF10A cell line39,40, which has been extensively used to study tissue 
development41, migration42,43, and organoid formation44,45. The focus on a single cell line 
provided a controlled cell-intrinsic genetic context and also affords molecular and temporal 
density in experimental measurements. We studied responses to six ligands known to activate 
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different canonical signaling pathways of biological and clinical relevance, enabling comparison 
of distinct molecular and phenotypic effects. These data are publicly available for community 
study at synapse.org/LINCS_MCF10A. The following sections describe and evaluate the 
information content of the LINCS ME perturbation dataset and present illustrative analyses 
showing how the dataset can be used to (a) elucidate molecular and cellular phenotypes that 
are influenced by the binding of specific ligands, (b) identify ligand-induced signatures that can 
be mined for biological insights, (c) discover candidate causal or functional relationships 
between molecular features with module analysis, and (d) identify molecular programs that 
control specific cellular phenotypes.   

 
RESULTS 
Approach to generate a LINCS ME perturbation dataset    
Eight laboratories supported by the NIH LINCS program contributed to the creation and analysis 
of an MCF10A perturbation dataset to enable community study of the molecular mechanisms 
engaged by microenvironmental signals to modulate specific cellular phenotypes (Fig. 1A). 
Figure 1B shows the experimental and computational steps involved in the creation of the 
database. The process began with selection of ligands that strongly modulated phenotype. Both 
phenotypic and molecular responses to ligands were then measured over time and integrated 
computationally to identify the phenotypes and molecular modules engaged by each ligand. 
Figure 1C shows the experimental design in which multiple endpoints were measured at 
several time points after the introduction of ligands. The ligands and experimental assays are 
summarized in Figure 1D.  
 
We selected six ligands based on the results of two high-throughput microenvironment 
microarray (MEMA) screens of 3024 combinations of 63 soluble ligands and 48 insoluble ECM 
proteins46; one screen with and another without EGF, a typical component of MCF10A growth 
medium39. We focused on collagen-1 as the insoluble ECM component and selected EGF, 
HGF, and OSM as ligands that increased growth in the absence of EGF; and BMP2, IFNG, 
TGFB as ligands that decreased growth in the presence of EGF (Sup. Fig. 1A,B.). These 
ligands target highly expressed receptors that are members of different canonical receptor 
classes (Supp. Fig. 1C). Dose-response experiments identified the ligand doses necessary to 
yield maximal changes in cell numbers (Sup. Fig. 1D,E). Inclusion of EGF in combination with 
BMP2, IFNG, and TGFB ensured sufficient cell numbers for molecular profiling. 
 
The participating LINCS consortium laboratories performed systematic and large-scale analyses 
of epigenomic, transcriptomic, proteomic and phenotypic responses to each ligand at several 
time points during a 48H period after treatment (Fig. 1B,D,E). Cells for all analyses were grown 
and treated at OHSU and the treated cells or lysates were distributed to participating 
laboratories for analyses, except for those analyzed using cyclic immunofluorescence 
(cycIF)47,48. Cells for cycIF were grown and treated at HMS using cells, culture media and 
ligands supplied by one laboratory at OHSU to minimize experimental variation49 (Fig. 1E). For 
each assay, MCF10A cells were plated on collagen-1-coated cell culture dishes in their 
standard growth medium, which contains the growth factors EGF and insulin39. After 
attachment, the growth medium was replaced with medium lacking EGF and insulin, and cells 
were then treated with the ligand panel at optimized concentrations (Figure 1D).  
 
Samples were collected before and after treatment over the 48H time period beginning with a 
time 0H sample (referred to as control: CTRL, Fig. 1D). Cellular responses were measured 
using live-cell imaging, four-color fluorescence imaging and cycIF47,48.  Molecular responses 
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were assessed for changes in protein expression with reverse phase protein arrays (RPPA)50; 
chromatin profiling using an Assay for Transposase-Accessible Chromatin using sequencing 
(ATACseq) and global chromatin profiling (GCP)51; RNA expression using RNAseq and the 
L100020 transcriptomics panel designed to assess the levels of 1000 RNA transcripts selected 
to capture most of the variability in gene expression. Samples for the different assays were 
collected in three experimental collections comprised of at least three biological replicates each 
(Fig. 1E). Logistical and cost constraints resulted in some assays being applied to only a subset 
of time points. Rigorous quality assessment of all data led to the elimination of ~5% of samples 
(44/814). The resultant data and metadata are available at: synapse.org/LINCS_MCF10A.  
 
Overview of the ligand-induced cellular and molecular responses that comprise the 
LINCS ME perturbation dataset 
Cellular responses. We quantified four-color immunofluorescence images from cells 24 and 48 
hours after ligand treatment to assess cell clustering, cell density, shape, DNA content, and 
expression of proteins related to differentiation state (Fig. 2A, Supp Table 1). CycIF collected at 
all timepoints revealed additional changes in cell state and pathway activity. Consistent with our 
MEMA screen, HGF, OSM and EGF increased cell numbers and EdU incorporation (a measure 
of proliferation). BMP2 and TGFB significantly suppressed growth relative to the EGF condition; 
IFNG also reduced growth. (Fig. 2C,D). HGF, OSM, and IFNG+EGF upregulated KRT5 
expression, a marker of basal differentiation state in mammary epithelial cells52 (Fig. 2E). OSM 
caused cells to form tight clusters (Fig. 2F). Lastly, TGFB+EGF induced evenly distributed cells 
with increased size, quantified as an increase in the distance to neighboring cells (Fig. 2G).  
 
Analysis of live-cell images showed the emergence of each phenotype following ligand 
treatment (Supp Movies). OSM induced cells to undergo collective migration, a unique 
phenotype among the tested ligands. We quantified cell migration by tracking individual cells 
across the 48 hour time period and quantified migration as the total distance traversed by each 
cell lineage (Fig. 2H). In all ligand conditions, cell migration increased compared to the PBS 
condition, but to varying degrees: HGF-treated cells migrated the least while TGFB+EGF 
induced the greatest migration (Tukey’s HSD, p-value<.05). Together, the live cell imaging and 
migration analyses show the dynamic emergence of distinct phenotypic responses by each of 
the ligand treatments. 
 
Molecular responses. The responses to ligands involved numerous features in each of the 
molecular datasets. Here we demonstrate some of our key observations through analysis of the 
RPPA proteomic dataset as an exemplar use-case. We assessed the modulation of canonical 
signaling proteins downstream from each ligand (Fig. 3A). These included: IRF1, a 
transcriptional target of STAT1 downstream of IFNG; pSTAT3, a signaling pathway component 
for OSM; and phosphorylation of MET, the receptor for HGF. PAI-1 provided an assessment of 
SMAD transcriptional activity, which is downstream of TGFB and BMP2. Additionally, phospho- 
HER2 provided a readout for conditions that contained EGF in the media. Each of these 
features were modulated as expected based on prior literature, validating the robustness of the 
dataset. 
 
Unsupervised hierarchical clustering of the RPPA data set revealed dynamic changes in the 
protein landscape over time, with some responses shared by multiple ligands and others that 
were uniquely induced (Fig. 3B). All treatments that included EGF induced proteins related to 
growth factor signaling (e.g. pS6). The PBS condition, which lacks added growth factors, 
showed protein changes associated with reduced proliferation (e.g. decreased pRB) and 
induction of apoptosis (e.g. cleaved caspase 7), indicating that absence of growth factor signals 
strongly modulates phenotypic and molecular state.  
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To gain a high-level view of the six molecular assays, we performed Uniform Manifold 
Approximation and Projection (UMAP)53  dimensionality reduction for all ligand-induced 
responses (Fig. 3C). Most assays showed ligand-specific effects, as observed by samples from 
the same ligand treatment tending to group near one another. In addition, most datasets 
showed evolution over time from the starting state to another distinct state, captured by early 
time points clustering near the center of the UMAP and later time points for each ligand 
appearing in different UMAP regions. 
 
Assessment of assay variance. We applied the Measuring Association between VaRIance and 
Covariates (MAVRIC) method to systematically assess the fractional variance explained by 
each experimental covariate of ligand, time, and replicate54,55. In brief, we first performed 
principal component analysis (PCA) to reduce the dimensionality of each data set while 
preserving the variability. Next, we quantified the total variance explained by each covariate 
(ligand, time, replicate) by summing the weighted variances of all statistically significant principal 
components (PCs). For example, in the RPPA dataset, the signal in the first PC was dominated 
by ligand while the second PC was dominated by time point (Fig. 3D). Summing across all 
significant PCs from the RPPA dataset revealed that 35% of the variance could be attributed to 
ligand and 13% to time point (Fig. 3E). Variance explained by multiple co-variates is 
represented by overlap in the Venn diagram. Overall, 44% of the variance in the RPPA dataset 
could not be explained by one of these factors, suggesting signal in the data attributable to other 
factors, such as changes shared by multiple ligands. Similarly, all other assays carried signal 
attributable to ligand treatment, although to varying degrees: RNAseq (63.1%) and ATACseq  
(43.3%) contained the greatest ligand-associated signal while GCP (0.1%) contained the least 
(Fig. 3F). Datasets with both early and late time points (RPPA, GCP, cycIF) carried signal 
attributable to time. There was limited variation attributable to replicates across all assays, 
indicating modest biological and technical variation.  
 
Identification and analysis of ligand-induced molecular signatures 
Here we present a systematic assessment of molecular signatures induced by each ligand and 
provide examples of how these signatures can be analyzed and mined. Specifically, we focus 
on IFNG+EGF to examine the temporal evolution of responses across modalities and to identify 
novel immune-related molecular features. 
 
Identification of ligand-induced signatures. To create molecular signatures of ligand responses, 
we identified features from each of the 6 data types that were differentially expressed at 24H 
and 48H timepoints relative to the CTRL sample (q-value < 0.01, |logFC| ≥ 1.5) (Fig. 4A). 
Features were classified as ligand-unique if they were modulated by a single ligand or shared if 
they were induced by more than one treatment (Supp Tables 2,3). All treatments induced both 
ligand-unique and shared molecular responses. IFNG+EGF, TGFB+EGF and OSM induced the 
greatest molecular changes as measured by the combination of RNAseq, ATACseq, GCP, 
cycIF and RPPA, indicating robust shifts in molecular state. In contrast, EGF, HGF and 
BMP2+EGF showed more modest effects, consistent with maintenance of MCF10A cells in a 
pre-treated state. Cross-correlation analysis of the molecular responses revealed that 24H and 
48H responses were strongly correlated for each ligand and that responses to ligands from 
related families were more similar to one another than to other family classes (BMP2/TGFB, 
OSM/IFNG, EGF/HGF) (Fig. 4B, Supp Table 4).  
 
Motivated by our observation from the MAVRIC analysis that the ATACseq and RNAseq 
datasets carried the strongest ligand signals, we more deeply interrogated these responses. We 
analyzed ATACseq transcription factor binding motif enrichment, a measure of transcription 
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factor activity, and found that IFNG+EGF and TGFB+EGF induced the greatest number of 
enriched motifs. For example, TGFB+EGF induced SMAG, TEF-1, MAF and CREB motifs, while 
TGFB+EGF and OSM both induced changes in RUNT. (Fig. 4C). Gene set enrichment (GSEA) 
analysis56 of the RNAseq dataset revealed a unique complement of gene programs associated 
with response to each ligand treatment (Fig. 4D, Supp Table 5). To identify targeted inhibitors 
that induce similar molecular mechanisms, we compared our ligand signatures against the 
LINCS L1000 database57 of drug and other chemical response signatures (Fisher exact test, q-
value<0.2). The ligand panel activated many of the same molecular signatures as small 
molecule inhibitors profiled in the L1000 database, indicating that many small molecules induce 
similar molecular responses as the ligands. This analysis also suggests that environmental 
signals may modulate therapeutic response (Supp Fig 2, Supp Table 6). 
 
Identification of novel molecular features induced by IFNG. We analyzed responses to 
IFNG+EGF to illustrate how the LINCS ME perturbation dataset can be used to study the 
molecular mechanisms associated with ligand responses across time. IFNG is a soluble 
cytokine secreted by cells of both the innate and adaptive immune systems and has become 
increasingly scrutinized, owing to interest in understanding the role of the immune system in 
diverse pathophysiologies58 as well as cancer immunotherapies. IFNG+EGF treatment induced 
dynamic changes in canonical IFNG signaling molecules measured across assays, including: 
rapid nuclear translocation of STAT1 and induction of IRF1, followed by upregulation of PDL1 at 
the membrane and associated epigenetic changes (Supp Fig. 3A-F). These findings indicate 
that the LINCS ME perturbation dataset enables the encoding of a stimulus to be traced across 
time and molecular modalities.  
 
We observed that 66/202 Pathcards Reactome IFNG superpathway features59 were among the 
most strongly induced by IFNG+EGF treatment, indicating the induction of multiple known 
signaling responses (Supp Fig. 3G). To gain deeper insight into the ability of IFNG to influence 
both adaptive and innate immune responses through altering cytokine production by tumor cells, 
we compared the MCF10A IFNG+EGF signature, the IFNG superpathway, and a curated 
cytokine gene list60. This comparison identified 15 cytokines not already included in the IFNG 
superpathway, suggesting additional cytokines produced by tumor cells in response to IFNG 
that may interact with various immune cell subsets, including: CSF161,62, IL1563, IL12A64, 
CCL265, and CXCL266. This demonstrates how the LINCS ME dataset can be mined to gain 
novel biological insights into immune-related signaling and to prioritize molecular features for 
future study. 
 
Discovery of candidate functional relationships between molecular features  
We reasoned that the patterns of robust multi-omic molecular changes induced across the panel 
of ligands could be analyzed together to discover coordinately regulated molecular programs. 
Importantly, our use of multiple ligands that perturb cells along various phenotypic and 
molecular axes enabled distinct molecular programs to be disentangled. Below we summarize 
our assessment of the relationships between different modalities, our approach to identify 
coordinately regulated biological modules, and also illustrate the utility of the modules to provide 
insights into the molecular programs active across diverse tissues. 
 
Identification of coordinately regulated modules. We assessed coordinated responses in the 
RPPA, RNAseq, and ATACseq datasets by molecular cognates across datasets (e.g. Cyclin B1 
in RPPA and CCNB1 in RNAseq) and found broad concordance, indicating conserved 
responses across molecular modalities (Supp Fig. 4). We next used a systematic approach to 
identify modules comprised of coordinately regulated molecular features measured in the 
different assays. Specifically, we examined all molecular features that were induced by at least 
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one ligand (see Fig. 4A) and then scaled each assay dataset with an rrscale, which is a 
transformation that normalizes feature distributions, removes outliers, and z-scales feature 
values67 (Supp Fig. 5). Next, we clustered features with partitioning around medoids (PAM) 
followed by gap statistic analysis to identify the optimal number of clusters. This yielded 18 
molecular modules; highly correlated modules were combined to yield a final set of 14 molecular 
modules for interpretation (Supp Fig. 6A-C).  
 
Each module represents a unique complement of co-regulated proteomic, transcriptional, and 
chromatin features (Fig. 5A). Features from each assay were well distributed across modules, 
with RPPA and RNAseq features represented in all modules; assay features not distributed 
across all modules were those with less comprehensive coverage of diverse biological 
pathways, such as cycIF and GCP (Supp Fig. 6D, Supp Table 7). Each module showed 
distinct modulation patterns across the ligands; most modules were induced by more than one 
ligand while a few were ligand-specific, consistent with the findings in Figure 4. Reactome 
pathway enrichment analysis demonstrated that each module induced an array of transcriptional 
programs (Fig. 5B Supp Table 8). Transcription Factor enrichment via ChEA368 identified key 
molecular drivers associated with these gene programs (Fig. 5C, Supp Table 9).  
 
Assessment of molecular modules across diverse tissues. Elucidating the molecular programs 
operable across different tissue types is critical for understanding normal organ development 
and function, and also for identifying molecular programs that may go awry in the case of 
disease. We assessed RNA expression of the 14 integrated modules in the GTEx normal tissue 
dataset37 to identify molecular programs that may be most active in particular tissue types 
(Supp Fig. 7, Supp Table 10). We observed tissue-specific activation of the modules. For 
example, Module 6+16, which was enriched for immune-related programs, was highly 
expressed in multiple brain regions, consistent with the importance of immune signaling in brain 
function and neuroplasticity69. Module 10+15 included gene expression programs related to 
transcription, translation, and senescence and was highly expressed in GTEx pancreas 
samples. Supporting this, RNA processing has recently emerged as an important molecular 
function in the regulation of pancreatic beta-cells in normal and diabetic conditions70,71. Module 
5 was enriched in extracellular matrix organization and collagen formation pathways and 
proteins associated with cell adhesion (CD49b (ITGA2)). This module was highly expressed in 
artery samples, consistent with the observation that the arterial wall produces a rich and 
complex extracellular matrix that defines the mechanical properties of the vessel72,73. Additional 
features included in each of these modules may further shed light on their roles in normal and 
diseased processes in different tissues. 
 
Investigation of the relationship between molecular modules and cellular phenotype 
Elucidation of the molecular mechanisms that control cellular phenotype remains a difficult 
problem in systems biology. We illustrate here how the LINCS ME perturbation dataset can be 
analyzed to gain insights into mechanisms of phenotype control by linking cellular and molecular 
responses. We present two examples: a data-driven discovery of associations between 
quantitative phenotypic responses and module activity, followed by a detailed analysis of 
Module 2 to uncover molecular features associated with the unique cell clustering and collective 
motility phenotype induced by OSM. 
 
Data-driven discovery of phenotype-module associations. We performed correlation analysis to 
identify molecular modules that were significantly associated with features measured in 
imaging-based assays (Fig. 5D-G). We found that Module 8+17 was positively correlated with 
the phenotypic response ‘Normalized Second Neighbor Distance’, a metric that reflects both cell 
size and cell-cell spatial organization (Fig. 5G, p-value = 0.005). Several features of this module 
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suggest molecular correlates of this phenotypic response, including pathway enrichments in 
ECM-related programs and multiple phosphorylated growth factor signaling proteins. 
Additionally, the transcription factor RUNX2, which was enriched in this module, has been 
implicated in modulating cell morphology and cell spreading74. Finally, several GCP features 
suggest post-translational chromatin modifications associated with cell morphology changes.  
 
We also identified a specific and robust correlation between Module 9 expression and the 
fraction of EdU positive cells (Fig. 5D, p-value = 0.001). To explore the putative regulatory 
components of Module 9, we annotated genes that code for transcription factors, kinases, non-
coding RNA, and epigenetic regulators (Fig. 6A, Supp Table 11). This analysis revealed a suite 
of factors previously shown to play key roles in regulating cell cycle progression, including the 
transcription factors: E2F1, FOXM1, MYB, and TFDP1; and the kinases: AURKA, CDK1, PLK1, 
and BUB1. Module 9 RPPA features cyclin B, Wee1 and phosphorylated RB are canonical cell 
cycle proteins that showed temporal dynamics consistent with changes in proliferation, as well 
as lesser linked features including FOSL175-77 and PASK78,79. (Fig. 6B). ChEA3 transcription 
factor enrichment68 identified multiple cell cycle-associated transcription factors including 
FOXM1, TFDP1 and E2F isoforms (Fig. 6C). The most significantly enriched Reactome 
pathways were cell cycle, DNA replication, and DNA repair (Fig. 6D). We analyzed the top 5 
sub-pathways within each of these Reactome pathways and found the highest enrichment for 
G1/S specific transcription, PCNA-dependent base excision repair, and unwinding of DNA (Fig. 
6E). Additionally, Module 9 included 86% (37/43) of the genes in a functionally-annotated G1/S 
gene set80, with expression patterns consistent with changes in EdU incorporation (Fig. 6F). 
There is also evidence for DNA damage and potentially for replication stress in the induction 
base-excision repair, the G2M checkpoint and activation of DNA damage checkpoint associated 
kinases. In sum, Module 9 contains cell cycle-associated molecular features from multiple 
modalities. 
 
To test if the link between Module 9 and cell cycle control generalized beyond MCF10A cells, 
we analyzed two publicly available independently generated breast cancer cell line data sets. 
First, we quantified mean Module 9 gene expression scores from 7 breast cancer cell lines 
treated for 24 hours with a panel of CDK4/6 inhibitors81. As expected, this showed robust down-
regulation of Module 9 in response to each of the three CDK4/6 inhibitors in the five sensitive 
cell lines, while the two resistant cell lines showed only modest changes in Module 9 expression 
(t-test, p-value < 0.0001, Fig. 6G). In a second analysis, we compared Module 9 expression for 
a panel of 65 breast cancer cell lines10 against cell doubling time, which revealed a significant 
correlation, consistent with the interpretation that Module 9 is functionally associated with the 
cell cycle (Fig. 6H, Pearson R = -0.54). All together, these analyses indicate that our data-
driven approach to module detection can identify coordinately regulated molecular features 
associated with quantitative phenotypic responses and that these findings generalize to 
independent data sets. 
 
Examination of module activity to elucidate the molecular basis of ligand-induced phenotypic 
responses. In our final analysis, we illustrate how the modules can be examined to provide 
insights into the molecular basis of complex phenotypic responses. Here, we focused on OSM, 
a member of the IL6 cytokine family implicated in immune function, developmental processes, 
and tissue remodeling82. OSM stimulated proliferation and was the only ligand in our panel that 
induced collective migration, a complex phenotype in which individual cells form tight clusters 
that undergo migration (Fig 7A, Supp Movies). 
  
To gain insight into the molecular features underlying this unique phenotype, we focused on 
modules that were strongly induced by OSM, including Modules 2, 6+16 and 12 (Supp Fig. 6). 
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Features in Module 2 were of particular interest, as this module was selectively induced by OSM 
(Fig. 7B). Module 2 includes RPPA features pSTAT3, P-Cadherin, Connexin-43, and Hif-1-
alpha as well as transcription factor enrichment in ELF3, STAT3, TP63, and FOS (Fig. 7C, 
Supp Table 7). P-Cadherin and Connexin-43 are intriguing, as they are implicated in the cell 
adhesion contacts required for mediating the observed clustering phenotype83,84. Based on the 
coordinated changes in STAT3 across modalities, we tested the functional importance of this 
axis with Ruxolitinib, a JAK/STAT inhibitor. We found that addition of Ruxolitinib in the presence 
of OSM strongly inhibited both the growth of cells and cell migration, confirming the importance 
of JAK/STAT signaling in mediating responses to OSM (Fig. 7D, Supp Movies). 

  
To probe more deeply into the Module 2 RNAseq features, we tested for enriched pathways 
using BioPlanet85 (Fig. 7E). The top pathway hit in this analysis was ‘OSM’, which serves as a 
validation of the module approach. The second hit was ‘complement and coagulation cascades’, 
two linked processes driven by a series of proteases to stimulate innate immunity and blood 
clotting86.  This suggested that protease activity may be critical for mediating OSM-induced 
cluster migration. To examine the role that proteases play in cluster migration, we treated 
MCF10A cells with OSM in the presence of a cocktail of five protease inhibitors, and found 
reduced cluster migration indicating the importance of protease activity in this phenotype (Fig. 
7F). We next tested individual components of the protease cocktail and found limited effects of 
aprotinin, E-64, and pepstatin A. However, with bestatin, an aminopeptidase inhibitor, we 
observed formation of cell clusters but a failure of these clusters to migrate and merge together 
(Fig. 7G). Thus, these functional studies developed from the module analysis implicate 
aminopeptidase activity as a critical mediator of OSM-induced collective cell motility in MCF10A 
cells. Overall, our approach to leverage responses to multiple perturbations enabled 
identification of molecular programs associated with complex phenotypic responses including 
cluster migration and cell proliferation. 
 
DISCUSSION 
Here we leveraged the LINCS Consortium framework to systematically quantify the phenotypic 
and molecular responses of MCF10A mammary epithelial cells after treatment with a diverse 
panel of ligands. Analysis of this dataset revealed robust molecular and phenotypic responses 
and enabled identification of ligand-specific signatures, integrated molecular modules, and 
linkage of phenotypic and molecular responses. These data support the idea that deeply 
examining a single model system subjected to a range of perturbations with measurements 
across multiple modalities is crucial to understanding complex biological phenomena.  
 
The robust, multimodal dataset enabled a range of computational analyses. For instance, the 
coordinated use of a diverse panel of molecular assays facilitated comparisons of the 
information carried by each assay and revealed that RNAseq and ATACseq assays had the 
greatest ligand-associated signal. Differences in information content between assays may be 
due to: intrinsic differences in molecular modalities, the signal available in a particular assay, or 
differences in the number and diversity of biologically meaningful features in each assay. These 
findings suggest that comprehensive assays such as RNAseq are well-suited for discovery-
based screens or experiments that examine large panels of perturbagens, whereas targeted 
assays such as cycIF—which can be adapted through inclusion of different biomarkers—would 
be expected to excel in focused hypothesis-driven studies47,48. 
 
In our integrated analysis, we joined epigenomic, transcriptional and proteomic changes into co-
regulated modules. Critical for this analysis was the use of ligands that stimulate diverse and 
partially overlapping pathways, as this enabled identification of molecular features that were 
subtly and variably induced by multiple ligands. We analyzed the modules to identify linkages 
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between molecular features and phenotypic responses. For instance, we identified a set of co-
regulated molecular features strongly associated with cell cycle, including both canonical 
transcriptional factors, pathways, and proteins as well as features that have been implicated but 
not confirmed in cell cycle regulation, such as PASK78,79. These analyses demonstrate how the 
LINCS ME Perturbation dataset can be used to formulate specific testable hypotheses that 
could be explored in future experimental studies. Some modules were semi-correlated and 
contained similar biological programs, as indicated by enrichment of shared pathways and TF 
programs. Alternate methods to identify modules that permit partial membership of individual 
features may allow a more nuanced identification of the relationship between molecular 
features87. Overall, this tightly controlled framework allowed molecular signals to be 
disentangled and associated with quantitated phenotypic responses.  
 
Our live-cell imaging studies revealed the induction of phenotypic responses in response to 
ligand perturbation. In particular, OSM uniquely induced MCF10A cells to form tight cell clusters 
that underwent collective migration. We used our module analysis to explore the molecular 
basis of this complex phenotypic response and examined modules that were uniquely induced 
by OSM. Experimental validation identified functional links between OSM-induced molecular 
and phenotypic responses: protease activity was required for collective cell migration while 
STAT activation was required for proliferation. Our findings add to the substantial literature that 
implicates proteases in modulating interactions between cellular and extracellular signals88. 
Future studies that examine the role of other Module 2 features will be needed for a complete 
understanding of the molecular basis of OSM-induced collective migration. Finally, additional 
complex phenotypic responses could be investigated by growing MCF10A cells as 3D 
organoids45. 
 
Together, our findings indicate that this LINCS ME perturbation dataset will serve as a robust 
and valuable resource for community-wide analysis and exploration. This resource can be 
utilized by the broader community to gain deeper insights into biological processes such as the 
molecular basis of different phenotypes, the molecular and phenotypic impact of particular 
ligands, and how particular molecular features are modulated by perturbation. Additionally, 
these data can serve as a resource for computational scientists to examine relationships 
between different molecular modalities, to develop methods for identifying molecular networks, 
or to elucidate the temporal relationships between different types of molecular changes. We 
also envision expansion of the dataset to include additional molecular measurements (e.g. 
single-cell RNAseq, single-cell ATACseq, and single-cell proteomics) and perturbation with 
different ligand combinations. 
 
 
METHODS 
Cell Culture Methods 
Cell culture: To decrease heterogeneity MCF10A cells were frozen in a single batch at the MD 
Anderson Cancer Center and used by both OHSU and HMS from the frozen batch with limited 
passaging. Cell identity was confirmed by short tandem repeat (STR) profiling, and cells tested 
negative for mycoplasma.  Cells were cultured in growth media (GM) composed of DMEM/F12 
(Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D Systems #236-
EG), 0.5 µg/ml hydrocortisone (Sigma #H-4001), 100 ng/ml cholera toxin (Sigma #C8052), 10 
µg/ml insulin (Sigma #I9278), and 1% Pen/Strep (Invitrogen #15070-063). For ligand treatments 
a growth factor free media was used, experimental media (EM), that was composed of 
DMEM/F12, 5% horse serum, 0.5 µg/ml hydrocortisone (Sigma #H-4001), 100 ng/ml cholera 
toxin (Sigma #C8052), and 1% Pen/Strep (Invitrogen #15070-063).  
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Prior to experiments, MCF10A cells were grown to 50-80% confluence in GM and detached 
using 0.05% trypsin-EDTA (Thermo Fisher Scientific 25300-054). Following detachment, 75,000 
cells were seeded into collagen-1 (Cultrex #3442-050-01) coated 8-well plates (Thermo Fisher 
Scientific 267062) in GM.  Approximately 7 hours after seeding, cells were gently washed with 
PBS and EM was added.  Following 18 hours of incubation in EM, cells were treated with ligand 
in fresh EM media as follows: 10 ng/ml EGF (R&D Systems #236-EG), 40 ng/ml HGF (R&D 
Systems #294-HG), 10 ng/ml OSM (R&D Systems #8475-OM), 20 ng/ml BMP2 (R&D Systems 
#355-BM) + 10 ng/ml EGF, 20 ng/ml IFNу (R&D Systems #258-IF) + 10 ng/ml EGF, 10 ng/ml 
TGFβ (R&D Systems #240-B) + 10 ng/ml EGF.   
 
Collagen coating protocol: Eight-well plates were coated with 20 µg/cm2 collagen-1 in a mixture 
that mimicked the buffering and structural characteristics of MEMA spots: 200 µg/ml collagen-1 
(Cultrex #3442-050-01), 10% v/v glycerol (Sigma G5516), 5 mM EDTA pH 8 (Invitrogen 15575), 
and 100 mM Tris-HCl pH 7.2 (Sigma T2069) in PBS. Plates were rocked at RT for 1 hour. 
Remaining coating mixture was gently aspirated and plates were washed twice with sterile PBS.  
Wells were allowed to dry completely by leaving the plate uncovered in a laminar flow hood 
before being stored in a benchtop desiccator for a minimum of three days and maximum of six  
months before use. 
 
Data collection batches: Samples were collected over three collection periods. The first 
collection was completed at OHSU in the Fall of 2017 when RPPA, RNAseq, ATACseq, L1000, 
and IF samples were collected. The second collection was completed at OHSU in the Winter of 
2018 and included GCP, L1000, and IF samples. The third collection was collected at HMS in 
the Summer of 2018 and included cycIF and L1000 samples.  
 
MCF10A Dose Optimization 
MCF10A cells were plated on collagen coated 24-well plates in full growth media for 7 hours at 
which point the media was exchanged for experimental media. Following 18 hours in 
experimental media, fresh experimental media was added with 7 doses of OSM, EGF, and HGF 
individually, or with seven doses of BMP2, IFNG, and TGFB in combination with 10ng/ml EGF. 
After 72 hours in ligand containing media, cells were fixed, stained with DAPI, and imaged on 
the ScanR microscope. Cell counts from the images were quantified using Cell Profiler and 
normalized based on the number of cells present in the 10ng/ml EGF condition. 
 
OSM validation experiments 
To assess responses to JAK/STAT inhibition MCF10A cells were plated in 24-well collagen 
coated plates. Following the media changes, cells were treated with 10 ng/ml OSM, 10 µM 
ruxolitinib (Selleck Chemicals #S1378) and Nuclight Rapid Red Dye (Essen Bioscience #4717) 
to label nuclei and count cells across time. Cells were then placed in the IncuCyte S3 and 
imaged every 30 minutes for 48 hours using phase contrast and red fluorescent filter sets. Cell 
number was quantified in Cell Profiler by counting the number of fluorescent nuclei in each 
frame and normalizing counts to time 0H.  
 
To assess cell responses to protease inhibitors cells were plated in 24-well collagen coated 
plates, underwent the standard media changes and then at time 0H treated with 10 ng/ml OSM 
and either a protease inhibitor cocktail at a 1:400 dilution (Sigma-Aldrich #P1860), 40 µM 
bestatin (Sigma-Aldrich # B8385), 800 nM aprotinin (Sigma-Aldrich # A1153), 10 µM E-64 
(Sigma-Aldrich # 324890), 1.45 µM pepstatin (Sigma-Aldrich # P5318 ). Cells were then placed 
in the IncuCyte S3 and imaged every 30 minutes for 48 hours.  
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Phase contrast images were registered using a custom ImageJ script and then imported into the 
Baxter Algorithms cell tracking software89. Clusters of cells with an area greater then 1000 
pixels (~5 cells) were tracked using default parameters. Cell cluster tracks were then analyzed 
to quantify migration. Speed, displacement, mean squared displacement, and the cumulative 
distance traveled was calculated for cell clusters.  
 
Live-cell imaging 
Well plates were placed in the IncuCyte FLR and phase contrast images were acquired every 
30 minutes for 48 hours. Individual cells were manually tracked using the Fiji90 plugin MtrackJ91. 
Custom R scripts were used to quantify the migratory behavior of individual cell lineages. In 
brief, starting at the last time slot of each lineage, one cell was randomly selected and traced 
back through mitotic events until T0. Migration distance for each lineage was then calculated as 
the sum of the distances in pixels along the path between each image. To compare migratory 
behavior across different ligand treatments, we performed an ANOVA followed by Tukey’s 
Honestly Significant Difference test in R. Ligand treatments with p-value < 0.05 were deemed 
significantly different. 
 
Immunofluorescence 
Prior to fixation, cells were pulsed with 10 µM EdU (Thermo Fisher Scientific C10357) for 1 hour 
under standard culture conditions. Cells were then fixed for 15 minutes with 2% 
paraformaldehyde (Electron Microscopy Sciences #15710) and permeabilized for 15 minutes 
with 0.01% Triton X-100 in PBS. Cells were then stained with CellMask (Thermo Fisher 
Scientific #H32713) for 30 minutes at RT, followed by fluorescent labeling of incorporated EdU 
for 1 hour at RT (Thermo Fisher Scientific C10357). Finally, cells were stained with a keratin 5 
polyclonal antibody (BioLegend #905501) at 1:800 overnight at 4°C, followed by an anti-rabbit 
488 secondary antibody (Thermo Fisher Scientific A21206) at 1:300 and Dapi (PromoKine PD-
CA707-40043) at 0.5 µg/µL for 1 hour at RT. 
 
Fixed cells were imaged on an Olympus ScanR microscope. DAPI channel images were 
imported into Ilastik for pixel classification92. A set of 20 images per plate were randomly 
selected and used for training. Pixels were classified as either nuclei or background using all 
default intensity, edge, and texture features, and with smoothing filters ranging from 0.3 – 10 
pixels. Probability maps were then exported from Ilastik into CellProfiler version 3.1.8 for object 
segmentation93.  Nuclei were identified using the global Otsu method with a threshold smoothing 
scale of 1.35. Clumped nuclei were separated based on intensity with a smoothing filter of 12 
pixels. Cytoplasm compartments were assigned to nuclei by a 10-pixel donut expansion from 
each nucleus. Cytoplasm and nuclear Intensity, size, and morphology data was then exported 
into RStudio (RStudio Team, 2015).  The values are analyzed as populations that have been 
median summarized from the cell-level data to the image or field level. The field level data are 
then median summarized to the well level. The EGF time course normalized values are the raw 
values divided by the corresponding EGF value at the same time point within the same replicate 
set. The preprocessing and QA script is at https://github.com/MEP-LINCS/MDD/tree/master. All 
samples passed qualitative QC inspection that the integrated DAPI intensity has the expected 
bimodal distribution. 
 
Phenotype analysis 
All phenotypic quantifications were derived from immunofluorescent cell-level data. Cell cycle 
phase was determined by analysis DAPI intensity: each cell was classified into either G1 or 
G2M cell cycle phase by clustering cells into two groups based on total nuclear DAPI intensity. 
The Forgy k-means algorithm was used for clustering (R stats package), with the number of 
centers set to two. DAPI thresholds for classification were manually inspected, and 
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multinucleated and poorly segmented cells were removed from further cell cycle analysis. KRT5 
intensity was calculated as the mean intensity value of KRT5 in the cytoplasmic cell 
compartment. 
 
Three spatial metrics were computed to quantify treatment induced changes in cell clustering 
and dispersal. The number of neighbors for each cell was calculated by quantifying the number 
of cell centroids within 100 pixels of a cell’s centroid. Cells with coordinates less than 100 pixels 
from the image border were excluded. Nearest neighbor distances were determined by 
measuring the pixel Euclidean distances of each cell centroid to the centroids of the four nearest 
cells in the imaging field. To account for variations in image cell count, the mean nearest 
neighbor distances for each image were normalized by the expected mean distance to the 
nearest neighboring cell if the cells were distributed randomly94. The number of cells per cluster 
was computed in a two-step process: first performing mean shift clustering on the cell centroid 
coordinates for each image, using the R package LPCM (v 0.47), and then computing the mean 
number of cells per cluster. 
 
To compare phenotypic responses across treatments, we analyzed quantifications of the 
immunofluorescent images 48 hours after treatment. The Kruskal-Wallis test was used to test 
for overall treatment dependent differences. Pairwise comparisons between treatments were 
then conducted using Pairwise Wilcoxon Rank Sum Tests followed by an FDR p-value 
correction. For all tests, a q-value < .05 was considered significant. 
 
Reverse Phase Protein Array 
Sample preparation: Cells were washed twice with ice-cold PBS followed by collection by 
manual scraping in 50-100 µL of lysis buffer (1% Triton X-100, 50mM HEPES pH 7.4, 150mM 
NaCL, 1.5mM MgCL2, 1mM EGTA, 100mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol, 1x 
cOmplete EDTA-free protease inhibitor cocktail (Roche #11873580001), 1x PhosSTOP 
phosphatase inhibitor cocktail (Roche #4906837001)).  Lysates were incubated on ice for 20 
minutes with gentle agitation every 5 minutes and then centrifuged at 14,000 rpm for 10 minutes 
at 4°C.  Supernatant was collected into a fresh tube, quantitated by BCA assay, and the 
appropriate volume was combined with 4X SDS sample buffer (40% glycerol, 8% SDS, 0.25M 
Tris-HCl, 10% b-Me, pH 6.8), boiled for 5 minutes, and stored at -80°C. Three sets of replicates 
were collected over three weeks and submitted to MD Anderson Cancer Center for RPPA 
testing. 
 
Pre-processing and QC: Samples underwent standard pre-processing using methods 
developed at the MD Anderson Cancer Center RPPA core95. In brief, the processing steps 
include the following: 1) Convert raw data from log2 value to linear value. 2) Determine median 
for each antibody across the sample set. 3) Calculate the median-centered ratio by dividing 
each raw linear value by the median for each antibody. 4) Assess sample quality by computing 
a correction factor (CF.1) for protein loading adjustment for each sample as the median of the 
median-centered ratio values from Step 3 for all antibodies. Samples with correction factors 
above 2.5 or below 0.25 are considered outliers and discarded. 5) Compute the normalized 
linear value by dividing the median-centered ratio from Step 3 by CF.1. All samples passed 
MDACC’s quality checks and are included in the dataset. The normalized RPPA log2 values are 
joined with their experimental metadata and stored on Synapse as level 3 data. Replicates are 
median summarized and stored as Level 4 data. 
 
RNA Sequencing 
Sample preparation and sequencing: Following treatment protocols described, at the 
appropriate timepoint wells were aspirated and cells were harvested by scraping in 600 µl of 
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RLT Plus buffer (Qiagen) plus 1% β-ME. Samples were flash frozen in liquid nitrogen and stored 
at -80°C prior to RNA extraction. Total RNA was extracted from frozen using a Qiagen RNeasy 
Mini kit. Columns were DNAse treated following the recommended protocol of the manufacturer.  
 
RNA concentration and purity was determined by UV absorption using a Nanodrop 1000 
spectrophotometer. All samples had 260/280 absorption ratios of at least 2.0, indicating 
successful isolation of RNA from other nucleic acids. RNA integrity was assessed using an 
Agilent 2100 Bioanalyzer with an RNA 6000 Nano Chip. RNA integrity numbers (RIN) were 
calculated from Bioanalyzer electropherograms using the “Eukaryotic Total RNA Nano” program 
of the Bioanalyzer 2100 Expert software (B.02.08.SI648). RIN values were in the 8.5-10 range, 
indicating high-quality RNA, with one exception (TGFB_48_C1_B; RIN = 6.9). UV absorption 
measurements and RIN values are available on Synapse 
(https://www.synapse.org/#!Synapse:syn12550434). 
 
cDNA libraries were prepared from polyA-selected RNA using an Illumina TruSeq Stranded 
mRNA library preparation kit. 100-bp single-end reads were sequenced on an Illumina HiSeq 
2500 Sequencer, with a target of 60M reads per sample.  
 
Pre-processing and QC: Sequence preprocessing and alignment was performed using a 
Docker-based pipeline96. 100-bp single-end reads were trimmed of Illumina adapter sequences 
using TrimGalore (v. 0.4.3), a wrapper for CutAdapt (v. 1.10) and FastQC (v. 0.11.5). A 
minimum of 1-bp overlap with the adapter sequence (AGATCGGAAGAGC) was required for 
trimming. After trimming, reads with a length < 35 bp were discarded. Trimmed reads were 
aligned to the GENCODE V24 (GRCh38.p5) assembly of the human genome using the Kallisto 
pseudo-alignment software (v. 0.43.0). Kallisto, using the following parameters: --bias -b 30 --
pseudobam. 
 
Gene-level quantifications were produced from transcript-level abundance estimates using the 
R (v. 3.5.0) package tximport (v. 1.8.0). Mapping between gene/transcript identifiers was done 
using the biomaRt package (biomaRt v. 2.36.1) with the ENSEMBL_MART_ENSEMBL biomart 
and the hsapiens_gene_ensembl dataset. Gene-level quantifications were imported to DESeq2 
(v. 1.24.0)97. The fpkm function of DESeq2 was used to normalize data for library size and gene 
length differences, and fpkm values were log2 transformed with an added pseudocount of 1. 
 
Transcription Factor Enrichment Scores: Single-sample enrichment scores were calculated for 
297 transcription factor target gene sets obtained from the CHEA3 ReMap_ChIP-seq68 using 
the R package GSVA (v. 1.32.0)98. A minimum expression filter was used to filter for expressed 
genes; genes were retained only if expressed at a minimum of 0.5 log2(fpkm + 1) in a minimum 
of 3 samples. Enrichment scores were calculated from filtered RNAseq data, in units of 
log2(fpkm + 1), using the argument “method = ‘ssGSEA’”.  
 
ATACseq 
Sample preparation and sequencing: ATACseq samples were collected following the Omni-
ATAC protocol99. Briefly, MCF10A cells were washed once with PBS and detached from the 
plate using trypsin. Cells were then counted using a Countess (Invitrogen), and 50,000 cells per 
condition were distributed to 1.5 ml centrifuge tubes and spun at 500 RCF for 5 min. The 
supernatant was removed and the cell pellet was resuspended in 500 µl of PBS and spun again 
at 500 RCF for 5 min. The supernatant was removed again, and the cell pellet was resuspended 
in 50 µl of cold ATAC resuspension buffer (RSB) containing 0.1% NP40, 0.1% Tween-20, and 
0.01% digitonin by pipetting up and down three times. After 3 min on ice, 1 ml of cold RSB 
containing 0.1% Tween-20 was added, and the tube was inverted three times to mix. The nuclei 
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were then pelleted by centrifugation at 500 RCF for 10 min at 4°C. The supernatant was then 
carefully aspirated and the nuclei were resuspended in 50 µl of transposition buffer (25 µl 2x TD 
buffer (Illumina), 2.5 µl transposase (Illumina), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% 
Tween-20, and 5 µl H2O). Samples were then placed in a pre-warmed (37°C)  thermomixer and 
mixed for 30 min at 100 RPM. Transposed fragments were then purified using a Qiagen 
MinElute column and frozen at -80°C for further processing.  
 
The remaining steps of the Omni-ATAC protocol were performed by the OHSU Massively 
Parallel Sequencing Shared Resource. Transposed fragments were pre-amplified with 5 rounds 
of PCR. Afterward, 5 µl of the pre-amplified mixture was used for a qPCR reaction to determine 
the concentration of tagmented DNA. After calculating the concentration of tagmented DNA, 
pre-amplified samples were diluted with elution buffer to a final concentration of 5 µM. Six 
samples had an undiluted DNA concentration below 5 µM and were not diluted. 5 µM pre-
amplified samples were amplified for 3 additional PCR cycles. 
 
Tagmented DNA was pre-amplified with 5 rounds of PCR (72ºC for 5 min, 98ºC for 30 seconds, 
then 5 cycles of [98ºC for 10 sec, 63ºC for 30 sec, 72ºC for 1 min]). PCR reactions contained 20 
µl eluate, 25 µl NEBNext 2x MasterMix, 2.5 µl 25 µM i5 primer and 2.5 µl 25 µM i7 primer.  
 
The DNA concentration of the pre-amplified samples was assessed by qPCR. 5 µl of pre-
amplified mix was added to 3.76 µl sterile water, 0.5 µl 25 µM i5 primer, 0.5 µl 25 µM i7 primer, 
5 µl 2x NEBNext master mix, and 0.24 µl 25x SYBR Gold (in DMSO). Samples were amplified 
for 20 cycles of [98ºC for 10 sec, 63ºC for 30 sec, 72ºC for 1 min]. DNA concentration was 
calculated, and pre-amplified samples were diluted to a final concentration of 5 µM. Six samples 
had an undiluted DNA concentration below 5 µM and were not diluted. 5 µM pre-amplified 
samples were amplified for 3 additional PCR cycles. 100bp PE reads were sequenced on an 
Illumina HiSeq 2500 Sequencer by the OHSU Massively Parallel Sequencing Shared Resource 
with a target of 20M reads per sample.  
 
Pre-processing and QC: ATACseq files were processed and aligned using the “ATACseq (1 -> 
3)” workflow on the AnswerALS Galaxy server (answer.csbi.mit.edu). Reads were trimmed of 
adapter sequences and low-quality bases using Trimmomatic (Galaxy version 0.36.5). Reads 
were trimmed of low-quality bases (Phred score < 15) at the read start or end, and Nextera 
adapter sequences (CTGTCTCTTATA) were trimmed from read ends (minimum of a 2-bp 
overlap required for trimming). Reads were aligned to the human genome (hg38) using Bowtie2 
(Galaxy version 2.3.4.1) in paired-end mode with otherwise default settings. BAM files were 
filtered to remove secondary alignments, unmapped reads, and mitochondrial DNA alignments 
using ngsutils bam filter (Galaxy version 0.5.9). PCR duplicates were detected and removed 
using Picard MarkDuplicates (Galaxy version 2.7.1.2). The de-duplicated, filtered BAM file was 
used for peak calling and quantification. Peaks were called using MACS2 (Galaxy Version 
2.1.1.20160309.5) using the following parameters: -format BAMPE -nomodel -extsize 200 -shift 
-100 -qvalue 0.01. 
 
ATACseq sample quality was assessed by calculating the fraction of reads in peaks (FRiP). 
Before calculating FRiP, a consensus peakset was generated for all samples by taking the 
union of all peaks called in all samples and merging any overlapping peaks, using the R (v. 
3.6.1) package DiffBind (v. 2.12.0)100. For each sample, FRiP was then calculated by counting 
the proportion of reads in the de-duplicated, filtered BAM file that align within the consensus 
peakset. A minimum FRiP threshold of 0.15 was applied to remove samples with low levels of 
chromatin enrichment. 
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Construction of chromatin accessibility matrix: DiffBind (v. 2.12.0) was used to generate a peak 
accessibility matrix for the QC-passing samples. First, a consensus peakset was re-generated 
after removal of low-FRiP samples. The dba.count function was then used to count the number 
of reads in the de-duplicated, filtered BAM files that overlap with each peak in the consensus 
peakset. The dba.count argument "score = DBA_SCORE_TMM_READS_EFFECTIVE" was 
used to output TMM counts normalized to each sample's effective library size, which is equal to 
the de-duplicated, filtered library size multiplied by the FRiP. A peak accessibility matrix in units 
of unnormalized counts was also generated using the dba.count function with the argument 
"score = DBA_SCORE_READS". 
 
Motif Enrichment: Transcription factor motif enrichment scores were generated from the TMM-
normalized chromatin accessibility data using the R package chromVAR (v. 1.6.0)101. ATACseq 
peaks were annotated with GC content using the addGCBias function of chromVAR and the 
BSgenome.Hsapiens.UCSC.hg38 genome annotation package. Transcription factor motif 
position frequency matrices were obtained from the “JASPAR CORE 2018 Homo sapiens” set 
of motifs102. ATACseq peaks were matched to JASPAR motifs using the R package motifmatchr 
(v. 1.6.0). The expected fraction of reads per ATAC-seq peak was calculated using the 
chromVAR function computeExpectations, with the argument “norm = TRUE”. Each sample’s 
deviation from the expected fraction of peaks in each annotated category was calculated using 
the function computeDeviations, and deviations were converted to Z-scores using the function 
deviationScores. 
 
Global Chromatin Profiling 
The GCP assay was performed as previously described in Creech et al51 and Litichievskiy et 
al11 Cells were washed with ice-cold PBS, then collected by manual scraping in 200 µl of cold 
PBS. Cells were then pelleted by centrifugation at 1500 RCF at 4°C for 5 min, resuspended in 
1mL of cold PBS, and spun again as specified.  The resultant cell pellets were then flash frozen 
in liquid nitrogen and stored at -80°C until further processing. Pellets were thawed and lysed 
with nucleus buffer, followed by histone extraction by sulfuric acid and precipitation using 
trichloroacetic acid. Sample input was normalized to 10 µg of histone in H2O before being 
propionylated, desalted (Oasis HLB 5mg Plate) and digested by Promega trypsin overnight. A 
second round of propionylation, followed by desalting using C18 Sep-Pak cartridges (Waters) 
was employed after digestion. Propionylations and digestion were done in an automated fashion 
on an LT-Bravos system (Agilent). Isotopically labeled synthetic peptides from histones H3 and 
H4 were added as a reference to each sample prior to MS analysis. Peptides were separated 
on a C18 column (EASY-nLC 1000, Thermo Scientific) and analyzed by MS in a PRM mode (Q 
ExactiveTM-plus, Thermo Scientific) as previously described51. Detailed protocols of sample 
preparation steps can be found in 
https://panoramaweb.org/labkey/wiki/LINCS/Overview%20Information/page.view?name=sops. 
 
L1000 
Sample preparation: L1000 samples were collected as part of three collections. The first L1000 
sample collection was generated in parallel to the ATACseq samples. MCF10A cells were 
washed once with PBS and detached from the plate using trypsin. Cells were then counted 
using a Countess (Invitrogen) and 50,000 cells per condition were distributed to 1.5 ml 
centrifuge tubes and spun at 500 RCF for 5 minutes. The supernatant was removed and the cell 
pellet was resuspended in TCL buffer (Qiagen) containing 1% β-Me. For the second and third 
collections, cells were washed with PBS followed by the addition of TCL buffer (Qiagen) 
containing 1% β-Me. The cell and buffer mixture was allowed to sit for 30 minutes and then 
frozen at -80°C for further processing. Samples from the first and second sample collections 
were frozen in 1.5ml tubes. Samples from the third data collection were frozen in their original 
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96-well plates. In total there were eighteen plates from the third HMS collection, which 
contained 21 samples per plate, and there were 190 samples from the first two OHSU 
collections. All samples were shipped to the BROAD for simultaneous processing on the L1000 
platform. The source plates containing original samples were re-arrayed into six 96-well master 
plates. These master plates contained 21 samples from each of three original source plates, 
and 32 samples plated directly from tubes. In each of the six master plates, well A1 was left 
empty to accommodate for internal technical control spike-ins. The six 96-well master plates 
were then re-arrayed into the final 384 well v-bottom PCR Plates (Eppendorf #951020702). 
 
Ligation Mediated Amplification: Complete methods for L1000 Ligation Mediated Amplification 
can be found elsewhere20. In brief: crude cell lysates were transferred from source plates to 384 
well v-bottom PCR Plates (Eppendorf #951020702) assay plates. Oligo dT coated magnetic 
particles (GE Healthcare #38152103010150) were added to capture mRNA. Plates were then 
incubated at room temperature on shaker tables for 10 minutes. The beads were then spun 
down onto flat magnets and unbound lysate was evacuated by centrifuging upside down on 
magnet to 800RPM for 30 seconds. 15µl of reverse transcription master mix containing 
SuperScript IV reverse transcriptase was added to the plates and the plates were incubated at 
55 °C for 10 minutes. Plates were again spun down, beads were pelleted on a flat magnet, and 
the remaining master mix was spun out. Probes were annealed to the first-strand cDNA by 
addition of 15µl of Probe Bind master mix, containing 100 fmole of each probe and Taq ligase 
buffer. Samples were denatured at 95 °C for 5 minutes, then transferred to a ramping water 
bath that decreased temperature from 70 °C to 40 °C over six hours. The following day, beads 
were again spun down on a flat magnet and master mix was evacuated. To ligate probe pairs, 
15 µL of Ligation Master Mix was added, containing Taq DNA ligase and ligase buffer. Plates 
were sealed and incubated at 45°C for 60 minutes. Plates were spun down on magnets and 
ligation master mix was evacuated as with previous steps. 15µl PCR master mix containing 0.5 
mmole of each primer (T3 and 50-biotinylated T7 universal primers), dNTPs , and  PlatinumTaq 
polymerase in reaction buffer was added to each well, and plates were subjected to 29 cycle 
PCR. This process yielded biotinylated gene and bead (barcode) specific amplicons.  
 
Each barcode corresponds to a complementary sequence on a Luminex bead, allowing the 
PCR product to be hybridized to a mixture containing per well ~100 each of 500 Luminex 
analyte colors. The plate was then denatured at 95°C for 5 minutes and incubated at 45°C for 
18 hours. Beads were pelleted and stained with streptavidin R-phycoerythrin conjugate for ten 
minutes. Finally, plates were read on Luminex FlexMap 3D Flow cytometers that detected 
analyte color (transcript identity) and fluorescence intensity (transcript abundance) for all 
analytes detected in all wells.  
 
Pre-processing: To account for differences across the various cell collections, we adapted our 
standard data processing pipeline in several ways. L1000 data typically use a population-based 
normalization scheme, known as plate control, as described in Subramanian et al20. Here, the 
EGF treated wells served as the vehicle when conducting vehicle normalization. The standard 
data processing pipeline was followed, except for the changes at Level 1 and Level 4, described 
below. 
 
L1000 utilizes 10 sets of invariant genes, similar to ‘housekeeping’ genes, to assess quality and 
in later normalization steps. These gene sets, each containing 8 genes, represent control values 
that span the spectrum of gene expression, and are ordered according to their overall level of 
expression, the first level corresponding to the lowest expressing genes, and the 10th 
corresponding to the highest expressors. 
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Plates were computationally split at Level 1 (LXB) into subpopulations of wells, each containing 
only samples from a given time-point and collection combination. The fluorescence intensity 
values associated with each bead color were subjected to the peak deconvolution step, which 
separates the two genes associated with each bead color (Level 2). Data were then normalized 
via L1000 invariant set scaling (LISS), which scales the expression levels of the 978 measured 
landmarks in each well to the 80 control genes in the invariant gene set (Level 3). Next, we 
calculated differential expression using EGF as the vehicle control. Robust z-scoring was used 
to calculate differential expression values for each gene, where gene x is compared only to the 
vector of normalized gene expression of gene x across all EGF samples in that collection/time-
point population (Level 4). Finally, individual biological and technical replicates were collapsed 
into a consensus signature by computing a pairwise Spearman correlation matrix between each 
replicate signature. The weights for each replicate were calculated by the sum of their 
correlations to the remaining replicates, summing to 1. The consensus signatures were 
generated by the linear combination of the replicate signatures using each signature’s weight as 
the coefficient (Level 5). 
 
L1000 QC: We used several approaches to assess data quality. First, to assess the quality in 
each detection plate, we visually inspected and measured the slope of the invariant gene 
calibration curve for each sample; outliers were omitted. Second, to assess plate effects, we 
plotted median fluorescence intensity and interquartile range of invariant set 10 across the 
entire plate. This allowed identification of failed (low signal) wells, tissue culture related plate 
effects, or wells with abnormally wide ranges in expression across each gene set. Third, to 
assess the efficacy of the deconvolution algorithm, we determined the number of well/analyte 
combinations where two peaks were clearly discernible.  
 
In addition, we computed a transcriptional activity score (TAS) as a composite measure of 
L1000 transcriptional response. Here signature strength (SS) was computed as the number of 
genes with a z-score greater than or equal to 2 for each sample, and replicate correlation (CC) 
was computed as the 7th quantile of the spearman correlation between all pairwise 
combinations of replicates. TAS is calculated as the geometric mean of SS and CC for a 
signature, and scaled by the square root of the number of landmark genes, yielding a final score 
between 1 and 0. QC metrics are available on Synapse 
(https://www.synapse.org/#!Synapse:syn19416843). 
 
Finally, within each sample collection (C1, C2, and C3), we clustered samples based on the 
Euclidian distances between expression of the 978 measured landmark genes in the Level 3 
data, using the R function hclust. Each collection had a small number of outlier samples that 
showed markedly aberrant expression of the 978 landmark genes and clustered apart from all 
other samples, in a pattern that was not explained by sample treatment; these samples were 
removed. In total, 17 L1000 samples were removed (3 from C1, 1 from C2, and 13 from C3). 
 
Cyclic Immunofluorescence (CyCIF) 
Sample preparation and imaging: MCF10A cells were seeded 4000 cells/well in 200 µl of GM in 
collagen coated (as described above) 96 well plates (NUNC, 165305) in technical (multiple wells 
on the same plate) and biological (experiments separated by a minimum of one cell passage) 
triplicates. Eight hours after seeding, the cells were washed once with PBS using an EL405x 
plate washer (BioTek), and 200 µl of EM was added per well. Following an additional 16 hours 
(24 hours after initial plating), one plate was fixed (time = 0 hours) and EM was aspirated from 
all wells in the remaining plates using the plate washer, and replaced with 200 µl of the 
appropriate ligand or control treatment. 
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The treated plates were fixed following incubations of 1, 4, 8, 24, and 48 hours. Cells were fixed 
in 4% formaldehyde for one hour at room temperature, and washed with PBS. Plates were 
sealed and stored at 4°C until all replicates were collected. CycIF was performed as described 
previously47,48. In brief, cells were permeabilized with ice cold methanol for ten minutes, blocked 
in Odyssey buffer (LI-COR) for one hour, pre-stained with secondary antibodies, bleached, and 
imaged to register background intensities prior to beginning cycIF. For each cycle, cells were 
stained with three conjugated antibodies, unless otherwise specified, and Hoechst 33342 
overnight at 4°C, washed with PBS, and imaged with an IN Cell Analyzer 6000 (nine fields of 
view per well, 20x/0.45NA air objective, 2x2 binning) (GE Healthcare Life Sciences). Following 
image acquisition, fluorophores were chemically inactivated as described47,48, and cells then 
entered the next staining cycle. Refer to Supp Table 12 for antibody metadata. 
 
Pre-processing and image analysis: A flat field correction profile, generated from all fields on 
one plate using the BaSiC ImageJ plugin103, was normalized to a mean value of one and each 
image was then divided by it. Image registration was performed with a custom ImageJ script. 
Segmentation of the nuclei (based on Hoechst staining), and cytoplasm (based on β-catenin 
staining) was performed with a custom MATLAB (MathWorks) script. Each cell was then divided 
into four subcellular masks: nucleus, peri-nuclear ring, cytoplasm, and cell membrane for 
feature extraction, a fifth region including all of the cytoplasm (peri-nuclear ring, cytoplasm, and 
cell membrane together) was also defined. Segmentation was performed on the images 
acquired in cycle 4 only; the masks were then overlaid on all other cycles for feature extraction. 
Intensity, texture, and morphology features were extracted for each mask, as appropriate (see 
Supp Table 13 for feature definitions). 
 
CycIF QC: Quality control was performed in two steps. In the first step, cells that were washed 
away over the course of the experiment and those near the edges of the imaging fields that 
were incompletely captured cycle to cycle due to microscope stage drift were identified and 
excluded from subsequent analyses. These cells were identified by their high variation in 
nuclear Hoechst signal between successive cycles (https://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/Section2.1_Intensity%20based%20QC.ipyn
b). If more than 90% of the cells in a field of view failed this QC step, the entire field was 
removed. The median fraction of lost cells was ~15 % for fields 1-8 whereas an average of 60% 
of cells were lost from field 9, with a significant number of instances where the fraction of lost 
cells exceeded 90%. Field 9 was therefore excluded entirely from subsequent analyses. 
Additionally, for unknown reasons, most of the wells occupying row E on plate 18 exhibited cell 
loss in excess of 90% leading to the exclusion of all data from those wells in downstream 
analyses. In the second quality control step, cells with failed cytoplasm segmentation as 
identified by multinucleation were removed. Multi-nucleated cells were identified by re-
segmenting each mask using the Python implementation of Opencv 
(https://github.com/skvark/opencv-python) and counting the nuclei; cells with two or more nuclei 
were excluded from downstream analyses (https://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/Section2.2_image_based_qc.ipynb). 
Although masks with two nuclei can represent failed segmentation or truly binucleated cells, 
visual inspection led us to conclude that these cases were primarily segmentation errors and 
were therefore excluded from downstream analyses.  
 
Identification of differentially-expressed genes For each ligand treatment, we performed a 
differential expression analysis on the RNAseq gene-level summaries with the R package 
DESeq2 (1.24.0), with shrunken log2 fold change estimates calculated using the apeglm 
method. We used the Benjamini-Hochberg method to correct p-values for multiple comparisons 
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and set a threshold of q-value < 0.05 and shrunken log2 fold change > 1.5 or < -1.5 to indicate 
significance.  
 
Pathway enrichment of ligand-induced signatures We used Gene Set Enrichment Analysis 
(GSEA) to identify the pathways enriched by each ligand treatment. Specifically, we used Gene 
Set Enrichment Analysis 4.1.0 downloaded from https://www.gsea-msigdb.org/gsea/index.jsp to 
assess enrichment of the MsigDB Hallmark Pathways in the Level 3 data. For each 24H ligand 
treatment sample, we computed log2 fold-change against CTRL_0 from the Level 3 RNAseq 
data. 
 
L1000 drug signature comparison To compare our results to existing L1000 transcriptional 
drug signatures20 we used the L1000 FWD tool104 available at 
https://maayanlab.cloud/L1000FWD/. We used as input the top 200 most strongly up-regulated 
and top 200 most strongly down-regulated genes at 24 H relative to CTRL_0. We considered 
drug signatures with Fisher exact test q-values < 0.2 to be significantly correlated or anti-
correlated with our ligand signatures. Finally, we summarized the number of drugs with similar 
mechanisms of action to identify common patterns. 
 
Multi-omic module detection To identify coordinately regulated multi-omic modules, we 
performed normalization, data scaling, feature selection and cluster analysis on molecular 
features induced by ligand treatments.  
 
Data normalization and scaling: For the GCP, RPPA and cycIF datasets we used limma to 
normalize to CTRL_0 and summarize across the replicates; we used DESeq2 to analyze the 
RNAseq data in a similar manner. We used chromVAR to aggregate chromatin accessibility 
peaks that share common motifs and then mean summarized the motif family values. We 
applied the rrscale transformation to each assay data set to minimize assay-specific data 
distributions67. In brief, each assay’s T0 CTRL normalized data was rrscaled independently with 
Box Cox negative and asinh transformations using an infinite z score cutoff.  
 
Feature selection: We selected a subset of highly variant and biologically interpretable features 
from the 24H and 48H samples from each assay. In GCP and RPPA assays, features in the 
lowest variance quartile were removed. For the cycIF, RNAseq, and GCP assays, features were 
retained if, for any condition, the absolute log fold change was greater than 1.5 and the p-value 
was less than 0.05.  For the RPPA assay, we used a log fold-change threshold of 0.75 to 
account for differences in the RPPA data distribution. All ATACseq motif family scores were 
retained.  
 
Clustering: We performed k-means clustering using partitioning around medoids and a gap 
statistic analysis using the firstSEmax method to identify the optimal number of clusters (R 
package cluster, version 2.1.2). In brief, the gap statistic method runs PAM clustering on the 
integrated data matrix once for each k value, where k=2:25. Then for each k, we performed 
PAM clustering on 100 randomized permutations of the data that have structure similar to the 
actual data. At each k, the gap is calculated as the difference in the log of the within-groups sum 
of squares of the actual versus randomized data. We further refined these clusters by identifying 
and collapsing highly correlated clusters. In brief, we calculated the mean expression of features 
in each cluster for each condition and then computed Pearson correlations between all pairs of 
clusters. Next, we then used the R hclust function and the dendextend cutree function on the 
distance matrix of the correlations to identify highly correlated clusters. This resulted in 
combining 4 pairs of clusters to yield a final set of 14 modules for further analysis. 
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Module TF enrichment analysis We identified transcription factors enriched in the integrated 
modules by submitting all RNAseq features from each integrated module to the ChEA3 web-
based transcription factor enrichment tool ChEA368, which identifies transcription factors 
enriched for a list of genes using Fisher’s exact test. We limited our analyses to transcription 
factor targets in the ReMap ChIP-Seq library and considered transcription factors significantly 
enriched if the FDR-corrected q-value was less than 0.2.  
 
Module pathway enrichment analysis To identify pathways enriched in each module, we used 
the Reactome pathway enrichment analysis tool (https://reactome.org/) to analyze the genes in 
each module. In brief, this analysis performs a binomial test of each gene set of 2516 curated 
pathways in the Reactome database. We identified significantly enriched pathways as those 
with FDR q-values < 0.1, gene ratios > 0.1, and pathways that included a minimum of 5 and 
maximum of 500 genes.   
 
Module expression scores To calculate the expression of modules across different samples in 
our MCF10A dataset, we computed the mean expression of features in each module. To assess 
expression of the modules in external datasets (e.g. GTEx), we focused on the RNAseq 
features in each module and computed their mean expression. An unpaired two-sample t-test 
was used to compare mean module 9 expression scores between control and CDKi-treated 
breast cancer cell lines. 
 
Set analysis Set analysis was used to identify features significantly induced by a single ligand 
(ligand-specific) or multiple ligands (shared). The input to the set analysis was the integrated 
and scaled matrix of log fold change values derived from the multi-omic module analysis. Each 
feature in the multi-omic matrix was labelled either ‘Unique’ or ‘Shared’. Features that were 
significantly perturbed by only a single ligand were labelled ‘Unique.’ Features that were 
regulated by two or more ligands were labelled ‘Shared.’  
 
SOFTWARE  
Unless otherwise stated, analyses were performed in R (https://www.R-project.org). R packages 
used in analyses included: tidyverse105 (version 1.3.1), ComplexHeatmap (version2.8.0), httr 
(version 1.4.2) and rmarkdown (version 2.9). A complete list of packages and their versions can 
be found in analysis scripts available at https://github.com/MEP-LINCS/MDD 
 
DATA AVAILABILITY  
Data, metadata and additional analysis reports are available at: 
https://www.synapse.org/#!Synapse:syn21577710/wiki/601042. 
Raw RNA and ATAC sequencing data generated for this study can be accessed from the Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152410). 
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FIGURE LEGENDS 
 
Figure 1. Overview of experimental approach to assess the impact of microenvironmental 
factors 
(A) Map of LINCS data generation and analysis centers. (B) Schematic illustrating the 
experimental and analytical approaches to link molecular and cellular phenotypes. (C) 
Schematic of the experimental design, cell culture protocol, and sample harvest time points. (D) 
The experimental treatments, dosages, and assays deployed to generate the LINCS ME 
perturbation datasets. (E) Summary of the assays, timepoints, and features for the three 
experimental collections.  
 
Figure 2.  Ligand treatments induce diverse phenotypic responses 
(A) Representative immunofluorescent images of ligand-induced cellular phenotypes at 48 
hours. MCF10A cells were stained with Cell Mask to visualize cytoplasm. (B) Cartoon showing 
the image-based cellular phenotypes assessed from the immunofluorescence and live cell 
imaging assays. (C-G) Boxplots summarizing cellular phenotypes at time 0H (CTRL) and 48H 
after ligand addition from 8 biological replicates. Individual datapoints represent well-level 
means normalized to 0H. Circles are from collection 1 and triangles are from collection 2. Note 
that EdU positive proportion was not measured at 0H. (H) Accumulated cell migration (colored 
lines) from 0-48H for 25 cell lineages (individual cells and one of their progeny if they divided). 
Circles indicate mitotic events. The solid black lines indicate the population average; the dotted 
gray line shows the average TGFB+EGF induced migration at 48H, which was the treatment 
that induced the greatest increase in cell migration.  
 
Figure 3.  Six molecular assays reveal diverse dynamic responses to treatments  
Line graphs show dynamic responses for 12 RPPA proteins under the different ligand 
treatments. (B) Heatmap of protein abundances as measured by RPPA. Rows represent 
abundance of 295 (phosphor)proteins and are median-centered and hierarchically clustered. 
Columns represent individual replicate samples, ordered by treatment and time. Callouts show 
the 12 proteins from panel A. (C) UMAPs for each of the six molecular assays. Each dot 
represents data from an individual sample and is the 2-dimensional embedding of all features 
measured in the assay. Color indicates ligand treatment and size indicates time point. (D) Plot 
of the first two principal components of RPPA assay. Variance in PC1 and PC2 is largely driven 
by ligand treatment and experimental timepoint, respectively. (E) MAVRIC analysis of RPPA 
covariates reveals the proportion of variance explained by sample replicate, experimental 
timepoint, and ligand treatment for each of the top seven principal components of the RPPA 
dataset. (F) Stacked bar graph shows a comparison of the information content contained within 
each molecular assay, as assessed by MAVRIC.  
 
Figure 4. Assessment of ligand-induced molecular change (A) Barplot showing the number 
of features significantly modulated by each ligand treatment. Shading indicates whether induced 
features are unique to a particular treatment (dark) or induced by multiple treatments (light). 
Numbers above bars indicate the number of features uniquely induced over the total number of 
features induced. (B) Heatmap showing pairwise correlations between molecular features 
induced by each ligand. Ligand responses from similar families are more highly correlated than 
those from unrelated families. (C) UpSet plot showing overlaps of induced ATACseq 
transcription factor motifs among ligand treatments. Column heights represent the number of 
transcription factor motifs induced by the ligand(s) indicated with filled dots. (D) Hallmark 
Geneset enrichment scores computed from RNAseq data. 
 
Figure 5. Integrated analysis identifies co-regulated molecular modules  
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(A) Heatmap showing the 14 integrative molecular modules for each ligand at 24H and 48H. 
Features are grouped by cluster. Biological interpretation for modules is indicated on the left; 
feature callouts for RPPA (R), cycIF (C), ATACseq (A) are shown to the right. (B) Bubble plot 
shows the top enriched Reactome pathways in each module, computed from RNAseq features. 
Dot size indicates the gene ratio; dot color indicates FDR value. (C) Heatmap shows results of 
ChEA3 transcription factor enrichment analysis computed for the RNAseq features in each 
module. Red indicates the top 5 TFs (by p-value) per module that met a p-value threshold of 
0.05. (D-G) Scatterplots show the relationships between module activity and quantitative 
phenotypic responses for selected pairs. Dot color indicates the ligand treatment and dot size 
indicates the time point. The black dotted line shows the linear fit, and the q-value of the fit is 
shown at the bottom of the plot.  
 
Figure 6. Module 9 is associated with cell cycle progression 
(A) Donut plot showing distribution of Module 9 features across assays. Transcription factors 
and kinases in the RNA gene set are called out to the right of the plot. (B) Line plot showing 6 of 
the Module 9 RPPA features. (C) Plot of the top 10 most significantly enriched transcription 
factors inferred from the Module 9 RNA gene set. (D) Bar plot showing the enrichment of 
Reactome superpathways from the Module 9 RNA gene set. (E) Bubble plot showing the top 5 
enriched Reactome subpathways from the Reactome Cell Cycle, DNA Repair, and DNA 
Replication superpathways. Dot color indicates q-value; dot size indicates the number of genes 
in Module 9 that are found in each gene set. (F) Heat map showing the expression of the Seurat 
G1/S cell cycle gene set, sorted based on the EdU positive proportion. (G) Plot of mean Module 
9 gene expression for a panel of breast cancer cell lines treated with three CDK4/6 inhibitors for 
24H or an untreated control. Data from Hafner, et al 2019. (H) Dot plot of mean Module 9 gene 
expression from 65 human breast cancer cell lines graphed against their mean doubling time. 
Cell lines are colored based on their breast cancer subtype classification. The line indicates the 
linear fit across all cell lines. Data from Heiser, et al 2012. 
 
Figure 7. Analysis of molecular modules identifies functional relationships between 
molecular and phenotypic responses to OSM 
(A) OSM induces the formation of cell clusters that undergo collective migration and merge to 
form large clusters. Representative tracks of OSM-induced cluster migration are shown from 24 
hours to 48 hours after OSM treatment. Cluster outlines are colored by experimental timepoint. 
All images are set to the same scale. (B) Barplot shows the mean Module 2 expression for the 
six ligand treatments. (C) Barplot showing the top 10 enriched transcription factors inferred for 
the Module 2 genes in Chea3. (D) The JAK/STAT inhibitor Ruxolitinib inhibits cell growth in the 
presence of OSM. Line graph shows the relative number of cells across time. PBS (phosphate 
buffered saline) treatment serves as a control. (E) Barplot of the top 10 enriched pathways in 
Bioplanet using the module 2 RNAseq gene set (F) OSM-induced collective migration is 
mediated by protease activity. Line graph shows the accumulated cluster migration distance 
after OSM +/- a protease inhibitor cocktail and its individual components including bestatin, E-
64, aprotonin, and pepstatin A. Solid lines show the population average and gray shaded 
regions indicate 95% confidence intervals of the mean distance travelled at each timepoint. (G) 
False color phase contrast images at 48H show that bestatin inhibits the formation of large cell 
clusters in the presence of OSM. Cells have been colored red and the background has been 
colored gray.  
 
Figure S1. Experimental and bioinformatic approaches to identify high impact ligands 
(A) Microenvironmental assay (MEMA) to identify ligands that modulate MCF10A cell numbers. 
Cells were treated with ligands in experimental media lacking EGF and cell numbers were 
counted after 72H. (B) MEMA assay results for MCF10A cells treated with ligands in 
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experimental media containing EGF. (C) MCF10A transcript expression from three receptor 
classes: Tyrosine kinase, cytokine, and TGFB/BMP. Transcript values are drawn from RNAseq 
measures for untreated cells in exponential growth. The primary receptors for the six ligands are 
highlighted HGF: MET (Blue), EGF:EGFR/ERBB2 (Red), BMP2:BMPR1B/BMPR1A (Green), 
TGFB: TGFBR1/TGFBR2 (Yellow), OSM: IL6ST/OSMR (Orange), and IFNG:IFNGR1/IFNGR2 
(Purple). (D) Cell count dose-responses after treatment with EGF, HGF, and OSM. Cell counts 
at 72H were normalized to the 10 ng/ml EGF condition. (E) Cell count dose responses for 
TGFB1, IFNG, and BMP2. Each of the ligands were supplemented with 10 ng/ml EGF. Cells 
counts at 72H were normalized to the EGF condition with no secondary ligand.  
 
Figure S2. Comparison of ligand and small molecule inhibitor signatures 
We leveraged the LINCS L1000 database57 of drug response signatures to identify targeted 
inhibitors that are shared by each ligand signature. Heatmap represents the number of 
compounds that have correlated (red) or anti-correlated (blue) signatures with each ligand 
(Fisher exact test, q-value<0.2). The ligand panel activated many of the same signatures as 
small molecule inhibitors, indicating that shared molecular responses can be elicited by these 
distinct perturbagen classes.  
 
Figure S3. IFNG responses are dynamically encoded across multiple molecular 
modalities 
(A) Cartoon of canonical STAT pathway activation after treatment with IFNG ligand. (B) Line 
graphs show induction of pSTAT1, IRF1 and PDL1 protein expression following IFNG treatment, 
as measured by cycIF and RPPA assays. (C,D) Cyclic immunofluorescence images show 
changes in STAT1 and PDL1 protein abundance and localization induced by IFNG+EGF 
treatment. (E) Line graphs show enrichment of STAT-family and IRF-family motifs inferred from 
ATACseq chromatin accessibility data for IFNG+EGF and EGF conditions. (F) Chromatin 
accessibility near the IRF1 and PDL1 gene loci. The local gene region for IRF1 showed a new 
peak in the promoter region and a large accessibility change in the 3’ region. IFNG did not 
induce new ATAC peaks in PDL1, however IFNG induced a new peak in the adjacent PDL2 
gene (PDCD1LG2). DNA regions with changes in accessibility are marked with a red 
background. (G) Venn diagram showing the overlap between the Reactome IFNG pathway, 
curated cytokine gene lists and, and genes induced by IFNG+EGF treatment. The 15 cytokines 
induced by IFNG+EGF are listed on the right.   
 
Figure S4. Comparison of RPPA, RNAseq and ATACseq assays reveals concordance 
across molecular modalities in response to ligand treatment 
(A) Scatter plots of paired RPPA and RNAseq measurements, showing three classes of 
observed relationships: linear, ligand-specific, and no change. (B) Heatmaps show genes and 
proteins with significantly up- or down-regulated expression after ligand treatment. (Left): 
Heatmap of significantly up- or down-regulated genes assessed by RNAseq (FDR p ≤ 0.01; 
log2FC ≥ |1|). (Right): Heatmap of significantly up- or down-regulated proteins assessed by 
RPPA (FDR p < 0.01; log2FC ≥ |0.5|). (C) Euler diagram showing intersections of differentially 
expressed RPPA proteins and RNAseq genes. The majority of features that were induced in 
both assays showed concordant responses, defined as both modalities induced in the same 
direction. (D,E) Dot plot showing the relationship between ATACseq transcriptional start site 
(TSS) accessibility and gene expression in the CTRL and EGF 48H samples. Note the switch-
like relationship between gene expression and accessibility at the TSS, as has been described 
previously. The horizontal dotted line indicates the threshold for a gene being defined as 
expressed. 
 
FigureS5. Integrated analysis methods 
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Pre-processed data from each assay are summarized, filtered, and scaled before being 
combined into a single matrix. PAM clustering with gap analysis was used to identify the optimal 
number of clusters represented in the integrated data matrix, which resulted in 18 modules. 
Pearson correlation analysis was used to identify pairs of clusters that showed similar 
expression patterns; two pairs of modules were combined to yield a final set of 14 modules. 
 
Figure S6. Identification and characterization of integrative molecular modules 
(A) Bar plot showing the number of features for each assay included in the integrative modules; 
note log 10 scale. (B) Gap analysis used to identify the optimal number of modules. (C) Module 
correlation matrix showing Pearson correlation values. Highly correlated cluster pairs 8+17, 3+4,  
6+16, and 10+15 were combined to yield 14 clusters. (D) Bar plot showing the distribution of 
features for each assay across modules.(E) Bar plot showing the mean module expression for 
each of the ligand treatments.  
 
Figure S7. GTEX Module expression analysis 
(A) Heatmap showing GTEX tissue expression of the 14 integrative molecular modules reveals 
tissue-specific expression, suggesting molecular programs that may be particularly important for 
mediating normal and diseased functions across tissues. 
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Fig. 2 Ligand treatments induce diverse phenotypic responses
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Fig. 3 Six molecular assays reveal diverse dynamic responses to treatments
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Fig. 5 Integrated analysis identifies co-regulated molecular modules

c

d

ba

f

e

OSM
Enriched

IFNG
Enriched

Cell
Cycle

Apoptosis
Anti-Cell Cycle

Growth Factor
Signaling

Cytokine

ECM
Adhesion

Cell Stress

g

Collagen Related

Reactome Pathway Enrichments

ChEA3 Transcription Factor Enrichments

18
14
13
12
11

10+15
9

8+17
7

6+16
5

3+4
2
1

M
od

ul
e

FA
P2

C
CE

BP
B

CE
BP

A
TF

DP
1

E2
F4

EL
F3

FO
S

FO
SL

1
G

RH
L2

O
NE

CU
T1

IR
F1

PR
DM

1
NF

KB
2

NF
IC

TP
63

RU
NX

2
SM

AD
3

ST
AT

3
ST

AT
2

ST
AT

1
ES

R1
ES

R2
KL

F5
PC

G
F2

M
BD

3
=+

;�
PG

R
FA

P2
A

ES
RR

A
KL

F6
KL

F4
E2

F5
FO

XM
1

G
LY

R1
TE

AD
1

Ed
U

 P
os

iti
ve

 P
ro

po
rt

io
n

ï�

0

1

ï��� ï��� 0.0 0.5
Module 9 Expression

ï�

0

1

2

ï��� ï��� 0.0 0.5 1.0 1.5
Module 10+15 Expression

M
ea

n 
ce

lls
 p

er
 c

lu
st

er

ï�

0

1

2

ï��� 0.0 0.5 1.0 1.5
Module 11 Expression

M
ea

n 
ce

lls
 p

er
 c

lu
st

er

ï�

0

1

ï��� ï��� ï��� 0.0 0.5 1.0
Module 8+17 Expression

N
or

m
al

iz
ed

 S
ec

on
d 

N
ei

gh
bo

r D
is

t

Time
24
48

Ligand
BMP2+EGF
EGF
HGF
IFNG+EGF
OSM
TGFB+EGF

MCF10A Integrative Molecular Modules

q-value: 0.039 q-value: 0.039

q-value: 0.039 q-value: 0.09

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.06.455429doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455429
http://creativecommons.org/licenses/by-nc-nd/4.0/


Immune System
Extracellular Matrix Organization

Cell Communication
Muscle Contraction

Signal Transduction
Hemostasis

DevelopmentalBiology
Chromatin Organization

Vesicle Mediated Transport
Metabolismof Proteins

NeuronalSystem
Protein Localization

Programmed CellDeath
Metabolism

Transport of Small Molecules
Organelle Biogenesis and Maintenance

Autophagy
Reproduction

Gene Expression Transcription.
Metabolism of RNA

Cellular Responses to External Stimuli
DNA Repair

DNA Replication
Cell Cycle

-Log10 (FDR)
0 5 10 15

PLK1CDK1

Wee1 Rb_pS807_S811

&\FOLQï%� FoxM1

0 8 24 480 8 24 48

ï�
ï�
ï�
0

ï�
ï�
ï�
0

ï���
ï���
0.0
0.4

ï�ï�
ï�0

ï�ï�
ï�ï�
0

ï���
ï���
ï���
0.0
0.2

Time (hours)
In

te
ns

ity
 (A

U
)

Ligand
PBS

HGF
OSM

EGF
BMP2+EGF

IFNG+EGF
TGFB+EGF

Module 9 RPPA Features
a

E2F1

FOXM1

E2F5

E2F4

GLYR1

TFDP1
,5)�

CEBPZ

KMT2B
NFYB

E2F7
=%7%��

SMAD5
ELK4

0.0

2.5

5.0

7.5

5 10 15
Transcription Factor Rank

ïO
RJ

��
�)
'
5
�

ChEA3 Enriched ReMap Transcription Factors

NFYA

f

g h

Fig. 6 Module 9 is associated with cell cycle progression

U� �ï����
T� ��Hï��

8.0 8.5 9.0 9.5

��

100

���

Mean Module 9 Gene Expression 

M
ed

ia
n 

C
el

l D
ou

bl
in

g 
Ti

m
e 

(H
)

Breast Cancer Subtype
Basal
&ODXGLQïOow
Luminal

1RQïPDOLJQDQW
NA

b

d

9 18 ��514

500

Category RNA
lncRNA

Epigenetic
Kinase

Transcription Factor
RPPA Features

Module 9 Kinases (16)
AURKA AURKB PASK
PLK1 PLK4 PKYMT1
CDK1 CDK4 CDKL1
BUB1 BUB1B TTK
MYLK2 MELK PBK
CDC7

Transcription Factors (18)
E2F1 E2F8  TFDP1
ETV1 ETV4 ETV5
MYB MYBL2 LHX1
FOXM1 FOSL1 FLI1
=1)���� =1)�����=1)���
ZNF 124  TCF19 PDX1

Module 9 Feature Set
c

Module 9 Reactome Superpathway Enrichment

Human Breast Cancer Cell Line

e

Mitotic G1 phase and G1/S
transition

G1/S Transition

Activation of ATR in response toreplication stress

G0 and Early G1
*��6ï6SHFLILF�Transcription

Homologous DNA Pairing and
Strand Exchange

Recognition of DNA damage by
3&1$ïFRQWDLQLQJ�UHSOLFDWLRQ�FRPSOH[

*DSïILOOLQJ�'1$�UHSDLU�V\QWKHVLV
DQG�OLJDWLRQ�LQ�**ï1(5

Resolution of AP sites via the multiple-nucleotide patch replacement pathway

3&1$ï'HSHQGHQW�/RQJ�Patch Base
Excision Repair

DNA Replication
Leading Strand Synthesis

ActivDWLRQ�RI�WKH�SUHï
replicative complex

DNA strand elongation
Unwinding of DNA

0.4 ��� 0.8 1.0
Gene Ratio

0.2
0.4
���

FDR

Genes
10
20
��
40
50

C
el

l C
yc

le
D

N
A 

R
ep

ai
r

D
N

A 
R

ep
lic

at
io

n

Module 9 Reactome Sub-Pathway Enrichment

Mean Module 9 Gene Expression: Heiser et al, 2012 

USP1
POLA1
MSH2
MCM4
PCNA
TIPIN
GMNN
CASP8AP2
RPA2
UBR7
NASP
32/'�
PRIM1
E2F8
FEN1
:'5��
CLSPN
RFC2
BLM
CHAF1B
TYMS
CDC45
EXO1
HELLS
MCM2
GINS2
DSCC1
0&0�
RRM2
MCM5
UHRF1
RAD51
DTL
&'&�
BRIP1
RAD51AP1
CENPU
ATAD2
SLBP
CCNE2
CDCA7
RRM1
UNG

Ligand

Time
EdU Proportion

0HDQïFHQWHUHG
log2(fpkm + 1)

ï�
ï�
0
2
4

Ligand
PBS
HGF
OSM
EGF
BMP2+EGF
IFNG+EGF
TGFB+EGF

Time (H)
24
48

EdU Proportion

0.0
0.1
0.2
���

G1/S Cell Cycle Genes

Control
Abemaciclib
Palbociclib
Ribociclib

Treatment

Mean Module 9 Gene Expression: Hafner et al, 2019 

M
ea

n 
Ex

pr
es

si
on

 M
od

ul
e 

9

���

���

4.0

4.5

T4
7D

M
CF

7

HC
C1

41
9

BT
20

+
&
&
��
��

BT
54

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.06.455429doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455429
http://creativecommons.org/licenses/by-nc-nd/4.0/


Oncostatin M - Collective Cell Migration
a

24H 30H 36H 42H 48H 24-48H Combined
24H

48H

36H

b
200 uM

0

1

2

3

4

5

0 12 24 36 48

No
rm

al
iz

ed
 C

el
l N

um
be

r

Time (Hr)

OSM
OSM+Ruxolutinib
PBS
PBS+Ruxolutinib

Treatment

0

1

BM
P2

+E
G

F

EG
F

HG
F

IF
NG

+E
G

F

O
SM

TG
FB

+E
G

F

M
ea

n 
M

od
ul

e 
2 

Ex
pr

es
si

on

c d

e f g
OSM

OSM + Bestatin

0.6 1 1.4 1.8 2.2

ELF3
STAT3

FOS
TP63

FOXO1
ESR1

PRDM1
NCOA2

LYL1
ARNT

-Log10 (FET p-value)

ChEA3: Module 2 Top Transcription Factor Enrichments

Cells Background

48H

48H

Module 2 Enriched BioPlanetPathways

Complement and coagulation cascades

Oncostatin M

TGF-beta regulation of extracellular matrix

Amoebiasis

Leukotriene receptors
HIF-1 transcriptional activity in hypoxia

Interleukin-4 regulation of apoptosis

Interleukin-11 pathway

Phosphatidylglycerol biosynthesis

Corticotropin releasing hormone pathway

-log10 (p-value)
0 1 2 3 4 5

0

250

500

750

1000

1250

0 12 24 36 48
Time (H)

7R
WD
O�&

OX
VW
HU
�0
LJ
UD
WLR

Q�
'
LV
WD
QF
H�
�ѥ
P
�

�

Treatment
OSM

OSM + Aprotonin

OSM + Bestatin
OSM + Protease Inhibitor Cocktail

OSM + E-64

OSM + Pepstatin A

  
Fig. 7 Analysis of molecular modules identifies functional relationships between molecular and 
phenotypic responses to OSM 
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