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SUMMARY

The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular
signals, including growth factors, hormones, and extracellular matrix. While these signals are
normally tightly controlled, their dysregulation leads to phenotypic and molecular states
associated with diverse diseases. To develop a detailed understanding of the linkage between
molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the
transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary
epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2.
Systematic assessment of the molecular and cellular phenotypes induced by these ligands
comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and
made publicly available for community-wide analysis and development of novel computational
methods (synapse.org/LINCS MCF10A). In illustrative analyses, we demonstrate how this
dataset can be used to discover functionally related molecular features linked to specific cellular
phenotypes.

INTRODUCTION

The function of cells and their organization into tissues is controlled by interactions between
cell-intrinsic molecular networks and cell-extrinsic signals, and dysregulation of these signals is
associated with various diseases’. Extracellular ligands activate cell surface receptors to
modulate chromatin, RNA, and protein networks that induce changes in multiple cellular
phenotypes including viability?, growth rate®, motility*, polarization and differentiation state®.
Disease-specific studies—especially those focused on cancer—have concentrated on
understanding phenotypes related to disease progression, resistance mechanisms, therapeutic
vulnerabilities and molecular predictors of response®'®. Several canonical signaling pathways
have been linked to distinct normal and disease-associated cellular phenotypes, including
MAPK'®, JAK/STAT"", WNT'®, and TGFB'®. However, a detailed mapping of the linkage
between multi-modal molecular and phenotypic responses underlying cell state regulation,
developmental processes and diverse diseases is lacking.

Two general approaches have been used to explore the role of extracellular signals in
modulating cellular and molecular phenotypes. One approach involves systematic large-scale
perturbation of panels of immortalized cell lines, which has yielded libraries of response
signatures®®1"1320-22_The other approach involves more focused assessment of phenotypic and
molecular changes in more complex model systems, including engineered organoids?*?*, flies®®,
worms?®?’_ fish?® and mice®. Together these studies indicate that comprehensive multi-omic
assessment of perturbation responses is critical for gaining insights into molecular-phenotype
relationships. Module analysis of multi-omic molecular data has proven a useful approach to
identify co-regulated molecular features associated with normal***® and disease-associated®*
phenotypes. Such data-driven approaches require comprehensive, systematically-generated
datasets, and in recognition of this, multiple data generation and atlasing consortia have
emerged over the past 20 years, including ENCODE®®, TCGA*, GTEx*, and HubMap®.

The Library of Integrated Network-based Cellular Signatures (LINCS) consortium study
presented here is a large-scale, cell line-based perturbation experiment designed to examine
the molecular and phenotypic responses of normal cells to perturbations. Its uniqueness lies in
the coordinated measurements of a large number of different cellular and molecular responses
to biologically relevant ligands that, when studied together, can be used for systems-level
analysis of microenvironmental responses. We focused on the well-characterized human
mammary epithelial MCF10A cell line®*“°, which has been extensively used to study tissue
development*!, migration*?*®, and organoid formation***°. The focus on a single cell line
provided a controlled cell-intrinsic genetic context and also affords molecular and temporal
density in experimental measurements. We studied responses to six ligands known to activate
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different canonical signaling pathways of biological and clinical relevance, enabling comparison
of distinct molecular and phenotypic effects. These data are publicly available for community
study at synapse.org/LINCS _MCF10A. The following sections describe and evaluate the
information content of the LINCS ME perturbation dataset and present illustrative analyses
showing how the dataset can be used to (a) elucidate molecular and cellular phenotypes that
are influenced by the binding of specific ligands, (b) identify ligand-induced signatures that can
be mined for biological insights, (c) discover candidate causal or functional relationships
between molecular features with module analysis, and (d) identify molecular programs that
control specific cellular phenotypes.

RESULTS

Approach to generate a LINCS ME perturbation dataset

Eight laboratories supported by the NIH LINCS program contributed to the creation and analysis
of an MCF10A perturbation dataset to enable community study of the molecular mechanisms
engaged by microenvironmental signals to modulate specific cellular phenotypes (Fig. 1A).
Figure 1B shows the experimental and computational steps involved in the creation of the
database. The process began with selection of ligands that strongly modulated phenotype. Both
phenotypic and molecular responses to ligands were then measured over time and integrated
computationally to identify the phenotypes and molecular modules engaged by each ligand.
Figure 1C shows the experimental design in which multiple endpoints were measured at
several time points after the introduction of ligands. The ligands and experimental assays are
summarized in Figure 1D.

We selected six ligands based on the results of two high-throughput microenvironment
microarray (MEMA) screens of 3024 combinations of 63 soluble ligands and 48 insoluble ECM
proteins*®; one screen with and another without EGF, a typical component of MCF10A growth
medium®®. We focused on collagen-1 as the insoluble ECM component and selected EGF,
HGF, and OSM as ligands that increased growth in the absence of EGF; and BMP2, IFNG,
TGFB as ligands that decreased growth in the presence of EGF (Sup. Fig. 1A,B.). These
ligands target highly expressed receptors that are members of different canonical receptor
classes (Supp. Fig. 1C). Dose-response experiments identified the ligand doses necessary to
yield maximal changes in cell numbers (Sup. Fig. 1D,E). Inclusion of EGF in combination with
BMP2, IFNG, and TGFB ensured sufficient cell numbers for molecular profiling.

The participating LINCS consortium laboratories performed systematic and large-scale analyses
of epigenomic, transcriptomic, proteomic and phenotypic responses to each ligand at several
time points during a 48H period after treatment (Fig. 1B,D,E). Cells for all analyses were grown
and treated at OHSU and the treated cells or lysates were distributed to participating
laboratories for analyses, except for those analyzed using cyclic immunofluorescence
(cyclF)*"#8_ Cells for cyclF were grown and treated at HMS using cells, culture media and
ligands supplied by one laboratory at OHSU to minimize experimental variation*® (Fig. 1E). For
each assay, MCF10A cells were plated on collagen-1-coated cell culture dishes in their
standard growth medium, which contains the growth factors EGF and insulin®. After
attachment, the growth medium was replaced with medium lacking EGF and insulin, and cells
were then treated with the ligand panel at optimized concentrations (Figure 1D).

Samples were collected before and after treatment over the 48H time period beginning with a
time OH sample (referred to as control: CTRL, Fig. 1D). Cellular responses were measured
using live-cell imaging, four-color fluorescence imaging and cyclF*"*8, Molecular responses
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were assessed for changes in protein expression with reverse phase protein arrays (RPPA)%;
chromatin profiling using an Assay for Transposase-Accessible Chromatin using sequencing
(ATACseq) and global chromatin profiling (GCP)®'; RNA expression using RNAseq and the
L1000% transcriptomics panel designed to assess the levels of 1000 RNA transcripts selected
to capture most of the variability in gene expression. Samples for the different assays were
collected in three experimental collections comprised of at least three biological replicates each
(Fig. 1E). Logistical and cost constraints resulted in some assays being applied to only a subset
of time points. Rigorous quality assessment of all data led to the elimination of ~5% of samples
(44/814). The resultant data and metadata are available at: synapse.org/LINCS MCF10A.

Overview of the ligand-induced cellular and molecular responses that comprise the
LINCS ME perturbation dataset

Cellular responses. We quantified four-color immunofluorescence images from cells 24 and 48
hours after ligand treatment to assess cell clustering, cell density, shape, DNA content, and
expression of proteins related to differentiation state (Fig. 2A, Supp Table 1). CyclF collected at
all timepoints revealed additional changes in cell state and pathway activity. Consistent with our
MEMA screen, HGF, OSM and EGF increased cell numbers and EdU incorporation (a measure
of proliferation). BMP2 and TGFB significantly suppressed growth relative to the EGF condition;
IFNG also reduced growth. (Fig. 2C,D). HGF, OSM, and IFNG+EGF upregulated KRT5
expression, a marker of basal differentiation state in mammary epithelial cells® (Fig. 2E). OSM
caused cells to form tight clusters (Fig. 2F). Lastly, TGFB+EGF induced evenly distributed cells
with increased size, quantified as an increase in the distance to neighboring cells (Fig. 2G).

Analysis of live-cell images showed the emergence of each phenotype following ligand
treatment (Supp Movies). OSM induced cells to undergo collective migration, a unique
phenotype among the tested ligands. We quantified cell migration by tracking individual cells
across the 48 hour time period and quantified migration as the total distance traversed by each
cell lineage (Fig. 2H). In all ligand conditions, cell migration increased compared to the PBS
condition, but to varying degrees: HGF-treated cells migrated the least while TGFB+EGF
induced the greatest migration (Tukey’s HSD, p-value<.05). Together, the live cell imaging and
migration analyses show the dynamic emergence of distinct phenotypic responses by each of
the ligand treatments.

Molecular responses. The responses to ligands involved numerous features in each of the
molecular datasets. Here we demonstrate some of our key observations through analysis of the
RPPA proteomic dataset as an exemplar use-case. We assessed the modulation of canonical
signaling proteins downstream from each ligand (Fig. 3A). These included: IRF1, a
transcriptional target of STAT1 downstream of IFNG; pSTATS3, a signaling pathway component
for OSM; and phosphorylation of MET, the receptor for HGF. PAI-1 provided an assessment of
SMAD transcriptional activity, which is downstream of TGFB and BMP2. Additionally, phospho-
HER2 provided a readout for conditions that contained EGF in the media. Each of these
features were modulated as expected based on prior literature, validating the robustness of the
dataset.

Unsupervised hierarchical clustering of the RPPA data set revealed dynamic changes in the
protein landscape over time, with some responses shared by multiple ligands and others that
were uniquely induced (Fig. 3B). All treatments that included EGF induced proteins related to
growth factor signaling (e.g. pS6). The PBS condition, which lacks added growth factors,
showed protein changes associated with reduced proliferation (e.g. decreased pRB) and
induction of apoptosis (e.g. cleaved caspase 7), indicating that absence of growth factor signals
strongly modulates phenotypic and molecular state.
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To gain a high-level view of the six molecular assays, we performed Uniform Manifold
Approximation and Projection (UMAP)>® dimensionality reduction for all ligand-induced
responses (Fig. 3C). Most assays showed ligand-specific effects, as observed by samples from
the same ligand treatment tending to group near one another. In addition, most datasets
showed evolution over time from the starting state to another distinct state, captured by early
time points clustering near the center of the UMAP and later time points for each ligand
appearing in different UMAP regions.

Assessment of assay variance. We applied the Measuring Association between VaRlance and
Covariates (MAVRIC) method to systematically assess the fractional variance explained by
each experimental covariate of ligand, time, and replicate®**°. In brief, we first performed
principal component analysis (PCA) to reduce the dimensionality of each data set while
preserving the variability. Next, we quantified the total variance explained by each covariate
(ligand, time, replicate) by summing the weighted variances of all statistically significant principal
components (PCs). For example, in the RPPA dataset, the signal in the first PC was dominated
by ligand while the second PC was dominated by time point (Fig. 3D). Summing across all
significant PCs from the RPPA dataset revealed that 35% of the variance could be attributed to
ligand and 13% to time point (Fig. 3E). Variance explained by multiple co-variates is
represented by overlap in the Venn diagram. Overall, 44% of the variance in the RPPA dataset
could not be explained by one of these factors, suggesting signal in the data attributable to other
factors, such as changes shared by multiple ligands. Similarly, all other assays carried signal
attributable to ligand treatment, although to varying degrees: RNAseq (63.1%) and ATACseq
(43.3%) contained the greatest ligand-associated signal while GCP (0.1%) contained the least
(Fig. 3F). Datasets with both early and late time points (RPPA, GCP, cyclF) carried signal
attributable to time. There was limited variation attributable to replicates across all assays,
indicating modest biological and technical variation.

Identification and analysis of ligand-induced molecular signatures

Here we present a systematic assessment of molecular signatures induced by each ligand and
provide examples of how these signatures can be analyzed and mined. Specifically, we focus
on IFNG+EGF to examine the temporal evolution of responses across modalities and to identify
novel immune-related molecular features.

Identification of ligand-induced signatures. To create molecular signatures of ligand responses,
we identified features from each of the 6 data types that were differentially expressed at 24H
and 48H timepoints relative to the CTRL sample (g-value < 0.01, |logFC| = 1.5) (Fig. 4A).
Features were classified as ligand-unique if they were modulated by a single ligand or shared if
they were induced by more than one treatment (Supp Tables 2,3). All treatments induced both
ligand-unique and shared molecular responses. IFNG+EGF, TGFB+EGF and OSM induced the
greatest molecular changes as measured by the combination of RNAseq, ATACseq, GCP,
cyclF and RPPA, indicating robust shifts in molecular state. In contrast, EGF, HGF and
BMP2+EGF showed more modest effects, consistent with maintenance of MCF10A cells in a
pre-treated state. Cross-correlation analysis of the molecular responses revealed that 24H and
48H responses were strongly correlated for each ligand and that responses to ligands from
related families were more similar to one another than to other family classes (BMP2/TGFB,
OSM/IFNG, EGF/HGF) (Fig. 4B, Supp Table 4).

Motivated by our observation from the MAVRIC analysis that the ATACseq and RNAseq
datasets carried the strongest ligand signals, we more deeply interrogated these responses. We
analyzed ATACseq transcription factor binding motif enrichment, a measure of transcription
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factor activity, and found that IFNG+EGF and TGFB+EGF induced the greatest number of
enriched motifs. For example, TGFB+EGF induced SMAG, TEF-1, MAF and CREB motifs, while
TGFB+EGF and OSM both induced changes in RUNT. (Fig. 4C). Gene set enrichment (GSEA)
analysis® of the RNAseq dataset revealed a unique complement of gene programs associated
with response to each ligand treatment (Fig. 4D, Supp Table 5). To identify targeted inhibitors
that induce similar molecular mechanisms, we compared our ligand signatures against the
LINCS L1000 database®’ of drug and other chemical response signatures (Fisher exact test, g-
value<0.2). The ligand panel activated many of the same molecular signatures as small
molecule inhibitors profiled in the L1000 database, indicating that many small molecules induce
similar molecular responses as the ligands. This analysis also suggests that environmental
signals may modulate therapeutic response (Supp Fig 2, Supp Table 6).

Identification of novel molecular features induced by IFNG. We analyzed responses to
IFNG+EGEF to illustrate how the LINCS ME perturbation dataset can be used to study the
molecular mechanisms associated with ligand responses across time. IFNG is a soluble
cytokine secreted by cells of both the innate and adaptive immune systems and has become
increasingly scrutinized, owing to interest in understanding the role of the immune system in
diverse pathophysiologies® as well as cancer immunotherapies. IFNG+EGF treatment induced
dynamic changes in canonical IFNG signaling molecules measured across assays, including:
rapid nuclear translocation of STAT1 and induction of IRF1, followed by upregulation of PDL1 at
the membrane and associated epigenetic changes (Supp Fig. 3A-F). These findings indicate
that the LINCS ME perturbation dataset enables the encoding of a stimulus to be traced across
time and molecular modalities.

We observed that 66/202 Pathcards Reactome IFNG superpathway features® were among the
most strongly induced by IFNG+EGF treatment, indicating the induction of multiple known
signaling responses (Supp Fig. 3G). To gain deeper insight into the ability of IFNG to influence
both adaptive and innate immune responses through altering cytokine production by tumor cells,
we compared the MCF10A IFNG+EGF signature, the IFNG superpathway, and a curated
cytokine gene list®. This comparison identified 15 cytokines not already included in the IFNG
superpathway, suggesting additional cytokines produced by tumor cells in response to IFNG
that may interact with various immune cell subsets, including: CSF1°"2 |L155 IL12A%,
CCL2%, and CXCL2°%. This demonstrates how the LINCS ME dataset can be mined to gain
novel biological insights into immune-related signaling and to prioritize molecular features for
future study.

Discovery of candidate functional relationships between molecular features

We reasoned that the patterns of robust multi-omic molecular changes induced across the panel
of ligands could be analyzed together to discover coordinately regulated molecular programs.
Importantly, our use of multiple ligands that perturb cells along various phenotypic and
molecular axes enabled distinct molecular programs to be disentangled. Below we summarize
our assessment of the relationships between different modalities, our approach to identify
coordinately regulated biological modules, and also illustrate the utility of the modules to provide
insights into the molecular programs active across diverse tissues.

Identification of coordinately requlated modules. We assessed coordinated responses in the
RPPA, RNAseq, and ATACseq datasets by molecular cognates across datasets (e.g. Cyclin B1
in RPPA and CCNB1 in RNAseq) and found broad concordance, indicating conserved
responses across molecular modalities (Supp Fig. 4). We next used a systematic approach to
identify modules comprised of coordinately regulated molecular features measured in the
different assays. Specifically, we examined all molecular features that were induced by at least
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one ligand (see Fig. 4A) and then scaled each assay dataset with an rrscale, which is a
transformation that normalizes feature distributions, removes outliers, and z-scales feature
values®” (Supp Fig. 5). Next, we clustered features with partitioning around medoids (PAM)
followed by gap statistic analysis to identify the optimal number of clusters. This yielded 18
molecular modules; highly correlated modules were combined to yield a final set of 14 molecular
modules for interpretation (Supp Fig. 6A-C).

Each module represents a unique complement of co-regulated proteomic, transcriptional, and
chromatin features (Fig. 5A). Features from each assay were well distributed across modules,
with RPPA and RNAseq features represented in all modules; assay features not distributed
across all modules were those with less comprehensive coverage of diverse biological
pathways, such as cyclF and GCP (Supp Fig. 6D, Supp Table 7). Each module showed
distinct modulation patterns across the ligands; most modules were induced by more than one
ligand while a few were ligand-specific, consistent with the findings in Figure 4. Reactome
pathway enrichment analysis demonstrated that each module induced an array of transcriptional
programs (Fig. 5B Supp Table 8). Transcription Factor enrichment via ChEA3°%® identified key
molecular drivers associated with these gene programs (Fig. 5C, Supp Table 9).

Assessment of molecular modules across diverse tissues. Elucidating the molecular programs
operable across different tissue types is critical for understanding normal organ development
and function, and also for identifying molecular programs that may go awry in the case of
disease. We assessed RNA expression of the 14 integrated modules in the GTEx normal tissue
dataset® to identify molecular programs that may be most active in particular tissue types
(Supp Fig. 7, Supp Table 10). We observed tissue-specific activation of the modules. For
example, Module 6+16, which was enriched for immune-related programs, was highly
expressed in multiple brain regions, consistent with the importance of immune signaling in brain
function and neuroplasticity®. Module 10+15 included gene expression programs related to
transcription, translation, and senescence and was highly expressed in GTEx pancreas
samples. Supporting this, RNA processing has recently emerged as an important molecular
function in the regulation of pancreatic beta-cells in normal and diabetic conditions’®”". Module
5 was enriched in extracellular matrix organization and collagen formation pathways and
proteins associated with cell adhesion (CD49b (ITGA2)). This module was highly expressed in
artery samples, consistent with the observation that the arterial wall produces a rich and
complex extracellular matrix that defines the mechanical properties of the vessel’>®. Additional
features included in each of these modules may further shed light on their roles in normal and
diseased processes in different tissues.

Investigation of the relationship between molecular modules and cellular phenotype
Elucidation of the molecular mechanisms that control cellular phenotype remains a difficult
problem in systems biology. We illustrate here how the LINCS ME perturbation dataset can be
analyzed to gain insights into mechanisms of phenotype control by linking cellular and molecular
responses. We present two examples: a data-driven discovery of associations between
quantitative phenotypic responses and module activity, followed by a detailed analysis of
Module 2 to uncover molecular features associated with the unique cell clustering and collective
motility phenotype induced by OSM.

Data-driven discovery of phenotype-module associations. We performed correlation analysis to
identify molecular modules that were significantly associated with features measured in
imaging-based assays (Fig. 5D-G). We found that Module 8+17 was positively correlated with
the phenotypic response ‘Normalized Second Neighbor Distance’, a metric that reflects both cell
size and cell-cell spatial organization (Fig. 5G, p-value = 0.005). Several features of this module
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suggest molecular correlates of this phenotypic response, including pathway enrichments in
ECM-related programs and multiple phosphorylated growth factor signaling proteins.
Additionally, the transcription factor RUNX2, which was enriched in this module, has been
implicated in modulating cell morphology and cell spreading’. Finally, several GCP features
suggest post-translational chromatin modifications associated with cell morphology changes.

We also identified a specific and robust correlation between Module 9 expression and the
fraction of EdU positive cells (Fig. 5D, p-value = 0.001). To explore the putative regulatory
components of Module 9, we annotated genes that code for transcription factors, kinases, non-
coding RNA, and epigenetic regulators (Fig. 6A, Supp Table 11). This analysis revealed a suite
of factors previously shown to play key roles in regulating cell cycle progression, including the
transcription factors: E2F1, FOXM1, MYB, and TFDP1; and the kinases: AURKA, CDK1, PLK1,
and BUB1. Module 9 RPPA features cyclin B, Wee1 and phosphorylated RB are canonical cell
cycle proteins that showed temporal dynamics consistent with changes in proliferation, as well
as lesser linked features including FOSL17>"" and PASK’®®. (Fig. 6B). ChEA3 transcription
factor enrichment® identified multiple cell cycle-associated transcription factors including
FOXM1, TFDP1 and E2F isoforms (Fig. 6C). The most significantly enriched Reactome
pathways were cell cycle, DNA replication, and DNA repair (Fig. 6D). We analyzed the top 5
sub-pathways within each of these Reactome pathways and found the highest enrichment for
G1/S specific transcription, PCNA-dependent base excision repair, and unwinding of DNA (Fig.
6E). Additionally, Module 9 included 86% (37/43) of the genes in a functionally-annotated G1/S
gene set®®, with expression patterns consistent with changes in EdU incorporation (Fig. 6F).
There is also evidence for DNA damage and potentially for replication stress in the induction
base-excision repair, the G2M checkpoint and activation of DNA damage checkpoint associated
kinases. In sum, Module 9 contains cell cycle-associated molecular features from multiple
modalities.

To test if the link between Module 9 and cell cycle control generalized beyond MCF10A cells,
we analyzed two publicly available independently generated breast cancer cell line data sets.
First, we quantified mean Module 9 gene expression scores from 7 breast cancer cell lines
treated for 24 hours with a panel of CDK4/6 inhibitors®'. As expected, this showed robust down-
regulation of Module 9 in response to each of the three CDK4/6 inhibitors in the five sensitive
cell lines, while the two resistant cell lines showed only modest changes in Module 9 expression
(t-test, p-value < 0.0001, Fig. 6G). In a second analysis, we compared Module 9 expression for
a panel of 65 breast cancer cell lines'® against cell doubling time, which revealed a significant
correlation, consistent with the interpretation that Module 9 is functionally associated with the
cell cycle (Fig. 6H, Pearson R = -0.54). All together, these analyses indicate that our data-
driven approach to module detection can identify coordinately regulated molecular features
associated with quantitative phenotypic responses and that these findings generalize to
independent data sets.

Examination of module activity to elucidate the molecular basis of ligand-induced phenotypic
responses. In our final analysis, we illustrate how the modules can be examined to provide
insights into the molecular basis of complex phenotypic responses. Here, we focused on OSM,
a member of the IL6 cytokine family implicated in immune function, developmental processes,
and tissue remodeling®. OSM stimulated proliferation and was the only ligand in our panel that
induced collective migration, a complex phenotype in which individual cells form tight clusters
that undergo migration (Fig 7A, Supp Movies).

To gain insight into the molecular features underlying this unique phenotype, we focused on
modules that were strongly induced by OSM, including Modules 2, 6+16 and 12 (Supp Fig. 6).
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Features in Module 2 were of particular interest, as this module was selectively induced by OSM
(Fig. 7B). Module 2 includes RPPA features pSTAT3, P-Cadherin, Connexin-43, and Hif-1-
alpha as well as transcription factor enrichment in ELF3, STAT3, TP63, and FOS (Fig. 7C,
Supp Table 7). P-Cadherin and Connexin-43 are intriguing, as they are implicated in the cell
adhesion contacts required for mediating the observed clustering phenotype®*#. Based on the
coordinated changes in STAT3 across modalities, we tested the functional importance of this
axis with Ruxolitinib, a JAK/STAT inhibitor. We found that addition of Ruxolitinib in the presence
of OSM strongly inhibited both the growth of cells and cell migration, confirming the importance
of JAK/STAT signaling in mediating responses to OSM (Fig. 7D, Supp Movies).

To probe more deeply into the Module 2 RNAseq features, we tested for enriched pathways
using BioPlanet® (Fig. 7E). The top pathway hit in this analysis was ‘OSM’, which serves as a
validation of the module approach. The second hit was ‘complement and coagulation cascades’,
two linked processes driven by a series of proteases to stimulate innate immunity and blood
clotting®. This suggested that protease activity may be critical for mediating OSM-induced
cluster migration. To examine the role that proteases play in cluster migration, we treated
MCF10A cells with OSM in the presence of a cocktail of five protease inhibitors, and found
reduced cluster migration indicating the importance of protease activity in this phenotype (Fig.
7F). We next tested individual components of the protease cocktail and found limited effects of
aprotinin, E-64, and pepstatin A. However, with bestatin, an aminopeptidase inhibitor, we
observed formation of cell clusters but a failure of these clusters to migrate and merge together
(Fig. 7G). Thus, these functional studies developed from the module analysis implicate
aminopeptidase activity as a critical mediator of OSM-induced collective cell motility in MCF10A
cells. Overall, our approach to leverage responses to multiple perturbations enabled
identification of molecular programs associated with complex phenotypic responses including
cluster migration and cell proliferation.

DISCUSSION

Here we leveraged the LINCS Consortium framework to systematically quantify the phenotypic
and molecular responses of MCF10A mammary epithelial cells after treatment with a diverse
panel of ligands. Analysis of this dataset revealed robust molecular and phenotypic responses
and enabled identification of ligand-specific signatures, integrated molecular modules, and
linkage of phenotypic and molecular responses. These data support the idea that deeply
examining a single model system subjected to a range of perturbations with measurements
across multiple modalities is crucial to understanding complex biological phenomena.

The robust, multimodal dataset enabled a range of computational analyses. For instance, the
coordinated use of a diverse panel of molecular assays facilitated comparisons of the
information carried by each assay and revealed that RNAseq and ATACseq assays had the
greatest ligand-associated signal. Differences in information content between assays may be
due to: intrinsic differences in molecular modalities, the signal available in a particular assay, or
differences in the number and diversity of biologically meaningful features in each assay. These
findings suggest that comprehensive assays such as RNAseq are well-suited for discovery-
based screens or experiments that examine large panels of perturbagens, whereas targeted
assays such as cyclF—which can be adapted through inclusion of different biomarkers—would
be expected to excel in focused hypothesis-driven studies*’ 2.

In our integrated analysis, we joined epigenomic, transcriptional and proteomic changes into co-
regulated modules. Critical for this analysis was the use of ligands that stimulate diverse and
partially overlapping pathways, as this enabled identification of molecular features that were
subtly and variably induced by multiple ligands. We analyzed the modules to identify linkages
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between molecular features and phenotypic responses. For instance, we identified a set of co-
regulated molecular features strongly associated with cell cycle, including both canonical
transcriptional factors, pathways, and proteins as well as features that have been implicated but
not confirmed in cell cycle regulation, such as PASK’®"®. These analyses demonstrate how the
LINCS ME Perturbation dataset can be used to formulate specific testable hypotheses that
could be explored in future experimental studies. Some modules were semi-correlated and
contained similar biological programs, as indicated by enrichment of shared pathways and TF
programs. Alternate methods to identify modules that permit partial membership of individual
features may allow a more nuanced identification of the relationship between molecular
features®. Overall, this tightly controlled framework allowed molecular signals to be
disentangled and associated with quantitated phenotypic responses.

Our live-cell imaging studies revealed the induction of phenotypic responses in response to
ligand perturbation. In particular, OSM uniquely induced MCF10A cells to form tight cell clusters
that underwent collective migration. We used our module analysis to explore the molecular
basis of this complex phenotypic response and examined modules that were uniquely induced
by OSM. Experimental validation identified functional links between OSM-induced molecular
and phenotypic responses: protease activity was required for collective cell migration while
STAT activation was required for proliferation. Our findings add to the substantial literature that
implicates proteases in modulating interactions between cellular and extracellular signals®®.
Future studies that examine the role of other Module 2 features will be needed for a complete
understanding of the molecular basis of OSM-induced collective migration. Finally, additional
complex phenotypic responses could be investigated by growing MCF10A cells as 3D
organoids*.

Together, our findings indicate that this LINCS ME perturbation dataset will serve as a robust
and valuable resource for community-wide analysis and exploration. This resource can be
utilized by the broader community to gain deeper insights into biological processes such as the
molecular basis of different phenotypes, the molecular and phenotypic impact of particular
ligands, and how particular molecular features are modulated by perturbation. Additionally,
these data can serve as a resource for computational scientists to examine relationships
between different molecular modalities, to develop methods for identifying molecular networks,
or to elucidate the temporal relationships between different types of molecular changes. We
also envision expansion of the dataset to include additional molecular measurements (e.g.
single-cell RNAseq, single-cell ATACseq, and single-cell proteomics) and perturbation with
different ligand combinations.

METHODS

Cell Culture Methods

Cell culture: To decrease heterogeneity MCF10A cells were frozen in a single batch at the MD
Anderson Cancer Center and used by both OHSU and HMS from the frozen batch with limited
passaging. Cell identity was confirmed by short tandem repeat (STR) profiling, and cells tested
negative for mycoplasma. Cells were cultured in growth media (GM) composed of DMEM/F 12
(Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D Systems #236-
EG), 0.5 pg/ml hydrocortisone (Sigma #H-4001), 100 ng/ml cholera toxin (Sigma #C8052), 10
pg/ml insulin (Sigma #19278), and 1% Pen/Strep (Invitrogen #15070-063). For ligand treatments
a growth factor free media was used, experimental media (EM), that was composed of
DMEM/F12, 5% horse serum, 0.5 ug/ml hydrocortisone (Sigma #H-4001), 100 ng/ml cholera
toxin (Sigma #C8052), and 1% Pen/Strep (Invitrogen #15070-063).
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Prior to experiments, MCF10A cells were grown to 50-80% confluence in GM and detached
using 0.05% trypsin-EDTA (Thermo Fisher Scientific 25300-054). Following detachment, 75,000
cells were seeded into collagen-1 (Cultrex #3442-050-01) coated 8-well plates (Thermo Fisher
Scientific 267062) in GM. Approximately 7 hours after seeding, cells were gently washed with
PBS and EM was added. Following 18 hours of incubation in EM, cells were treated with ligand
in fresh EM media as follows: 10 ng/ml EGF (R&D Systems #236-EG), 40 ng/ml HGF (R&D
Systems #294-HG), 10 ng/ml OSM (R&D Systems #8475-OM), 20 ng/ml BMP2 (R&D Systems
#355-BM) + 10 ng/ml EGF, 20 ng/ml IFNy (R&D Systems #258-IF) + 10 ng/ml EGF, 10 ng/ml
TGFB (R&D Systems #240-B) + 10 ng/ml EGF.

Collagen coating protocol: Eight-well plates were coated with 20 pug/cm? collagen-1 in a mixture
that mimicked the buffering and structural characteristics of MEMA spots: 200 ug/ml collagen-1
(Cultrex #3442-050-01), 10% v/v glycerol (Sigma G5516), 5 mM EDTA pH 8 (Invitrogen 15575),
and 100 mM Tris-HCI pH 7.2 (Sigma T2069) in PBS. Plates were rocked at RT for 1 hour.
Remaining coating mixture was gently aspirated and plates were washed twice with sterile PBS.
Wells were allowed to dry completely by leaving the plate uncovered in a laminar flow hood
before being stored in a benchtop desiccator for a minimum of three days and maximum of six
months before use.

Data collection batches: Samples were collected over three collection periods. The first
collection was completed at OHSU in the Fall of 2017 when RPPA, RNAseq, ATACseq, L1000,
and IF samples were collected. The second collection was completed at OHSU in the Winter of
2018 and included GCP, L1000, and IF samples. The third collection was collected at HMS in
the Summer of 2018 and included cyclF and L1000 samples.

MCF10A Dose Optimization

MCF10A cells were plated on collagen coated 24-well plates in full growth media for 7 hours at
which point the media was exchanged for experimental media. Following 18 hours in
experimental media, fresh experimental media was added with 7 doses of OSM, EGF, and HGF
individually, or with seven doses of BMP2, IFNG, and TGFB in combination with 10ng/ml EGF.
After 72 hours in ligand containing media, cells were fixed, stained with DAPI, and imaged on
the ScanR microscope. Cell counts from the images were quantified using Cell Profiler and
normalized based on the number of cells present in the 10ng/ml EGF condition.

OSM validation experiments

To assess responses to JAK/STAT inhibition MCF10A cells were plated in 24-well collagen
coated plates. Following the media changes, cells were treated with 10 ng/ml OSM, 10 uM
ruxolitinib (Selleck Chemicals #S1378) and Nuclight Rapid Red Dye (Essen Bioscience #4717)
to label nuclei and count cells across time. Cells were then placed in the IncuCyte S3 and
imaged every 30 minutes for 48 hours using phase contrast and red fluorescent filter sets. Cell
number was quantified in Cell Profiler by counting the number of fluorescent nuclei in each
frame and normalizing counts to time OH.

To assess cell responses to protease inhibitors cells were plated in 24-well collagen coated
plates, underwent the standard media changes and then at time OH treated with 10 ng/ml OSM
and either a protease inhibitor cocktail at a 1:400 dilution (Sigma-Aldrich #P1860), 40 uM
bestatin (Sigma-Aldrich # B8385), 800 nM aprotinin (Sigma-Aldrich # A1153), 10 uM E-64
(Sigma-Aldrich # 324890), 1.45 uM pepstatin (Sigma-Aldrich # P5318 ). Cells were then placed
in the IncuCyte S3 and imaged every 30 minutes for 48 hours.
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Phase contrast images were registered using a custom ImagedJ script and then imported into the
Baxter Algorithms cell tracking software®®. Clusters of cells with an area greater then 1000
pixels (~5 cells) were tracked using default parameters. Cell cluster tracks were then analyzed
to quantify migration. Speed, displacement, mean squared displacement, and the cumulative
distance traveled was calculated for cell clusters.

Live-cell imaging

Well plates were placed in the IncuCyte FLR and phase contrast images were acquired every
30 minutes for 48 hours. Individual cells were manually tracked using the Fiji®® plugin MtrackJ®".
Custom R scripts were used to quantify the migratory behavior of individual cell lineages. In
brief, starting at the last time slot of each lineage, one cell was randomly selected and traced
back through mitotic events until TO. Migration distance for each lineage was then calculated as
the sum of the distances in pixels along the path between each image. To compare migratory
behavior across different ligand treatments, we performed an ANOVA followed by Tukey’s
Honestly Significant Difference test in R. Ligand treatments with p-value < 0.05 were deemed
significantly different.

Immunofluorescence

Prior to fixation, cells were pulsed with 10 uM EdU (Thermo Fisher Scientific C10357) for 1 hour
under standard culture conditions. Cells were then fixed for 15 minutes with 2%
paraformaldehyde (Electron Microscopy Sciences #15710) and permeabilized for 15 minutes
with 0.01% Triton X-100 in PBS. Cells were then stained with CellMask (Thermo Fisher
Scientific #H32713) for 30 minutes at RT, followed by fluorescent labeling of incorporated EAU
for 1 hour at RT (Thermo Fisher Scientific C10357). Finally, cells were stained with a keratin 5
polyclonal antibody (BioLegend #905501) at 1:800 overnight at 4°C, followed by an anti-rabbit
488 secondary antibody (Thermo Fisher Scientific A21206) at 1:300 and Dapi (PromoKine PD-
CA707-40043) at 0.5 pg/uL for 1 hour at RT.

Fixed cells were imaged on an Olympus ScanR microscope. DAPI channel images were
imported into llastik for pixel classification®®. A set of 20 images per plate were randomly
selected and used for training. Pixels were classified as either nuclei or background using all
default intensity, edge, and texture features, and with smoothing filters ranging from 0.3 — 10
pixels. Probability maps were then exported from llastik into CellProfiler version 3.1.8 for object
segmentation®®. Nuclei were identified using the global Otsu method with a threshold smoothing
scale of 1.35. Clumped nuclei were separated based on intensity with a smoothing filter of 12
pixels. Cytoplasm compartments were assigned to nuclei by a 10-pixel donut expansion from
each nucleus. Cytoplasm and nuclear Intensity, size, and morphology data was then exported
into RStudio (RStudio Team, 2015). The values are analyzed as populations that have been
median summarized from the cell-level data to the image or field level. The field level data are
then median summarized to the well level. The EGF time course normalized values are the raw
values divided by the corresponding EGF value at the same time point within the same replicate
set. The preprocessing and QA script is at https://github.com/MEP-LINCS/MDD/tree/master. All
samples passed qualitative QC inspection that the integrated DAPI intensity has the expected
bimodal distribution.

Phenotype analysis

All phenotypic quantifications were derived from immunofluorescent cell-level data. Cell cycle
phase was determined by analysis DAPI intensity: each cell was classified into either G1 or
G2M cell cycle phase by clustering cells into two groups based on total nuclear DAPI intensity.
The Forgy k-means algorithm was used for clustering (R stats package), with the number of
centers set to two. DAPI thresholds for classification were manually inspected, and
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multinucleated and poorly segmented cells were removed from further cell cycle analysis. KRT5
intensity was calculated as the mean intensity value of KRT5 in the cytoplasmic cell
compartment.

Three spatial metrics were computed to quantify treatment induced changes in cell clustering
and dispersal. The number of neighbors for each cell was calculated by quantifying the number
of cell centroids within 100 pixels of a cell’s centroid. Cells with coordinates less than 100 pixels
from the image border were excluded. Nearest neighbor distances were determined by
measuring the pixel Euclidean distances of each cell centroid to the centroids of the four nearest
cells in the imaging field. To account for variations in image cell count, the mean nearest
neighbor distances for each image were normalized by the expected mean distance to the
nearest neighboring cell if the cells were distributed randomly®*. The number of cells per cluster
was computed in a two-step process: first performing mean shift clustering on the cell centroid
coordinates for each image, using the R package LPCM (v 0.47), and then computing the mean
number of cells per cluster.

To compare phenotypic responses across treatments, we analyzed quantifications of the
immunofluorescent images 48 hours after treatment. The Kruskal-Wallis test was used to test
for overall treatment dependent differences. Pairwise comparisons between treatments were
then conducted using Pairwise Wilcoxon Rank Sum Tests followed by an FDR p-value
correction. For all tests, a g-value < .05 was considered significant.

Reverse Phase Protein Array

Sample preparation: Cells were washed twice with ice-cold PBS followed by collection by
manual scraping in 50-100 uL of lysis buffer (1% Triton X-100, 50mM HEPES pH 7.4, 150mM
NaCL, 1.5mM MgCL,, 1mM EGTA, 100mM Na pyrophosphate, 1mM NasVOs, 10% glycerol, 1x
cOmplete EDTA-free protease inhibitor cocktail (Roche #11873580001), 1x PhosSTOP
phosphatase inhibitor cocktail (Roche #4906837001)). Lysates were incubated on ice for 20
minutes with gentle agitation every 5 minutes and then centrifuged at 14,000 rpm for 10 minutes
at 4°C. Supernatant was collected into a fresh tube, quantitated by BCA assay, and the
appropriate volume was combined with 4X SDS sample buffer (40% glycerol, 8% SDS, 0.25M
Tris-HCI, 10% B-Me, pH 6.8), boiled for 5 minutes, and stored at -80°C. Three sets of replicates
were collected over three weeks and submitted to MD Anderson Cancer Center for RPPA
testing.

Pre-processing and QC: Samples underwent standard pre-processing using methods
developed at the MD Anderson Cancer Center RPPA core®. In brief, the processing steps
include the following: 1) Convert raw data from log2 value to linear value. 2) Determine median
for each antibody across the sample set. 3) Calculate the median-centered ratio by dividing
each raw linear value by the median for each antibody. 4) Assess sample quality by computing
a correction factor (CF.1) for protein loading adjustment for each sample as the median of the
median-centered ratio values from Step 3 for all antibodies. Samples with correction factors
above 2.5 or below 0.25 are considered outliers and discarded. 5) Compute the normalized
linear value by dividing the median-centered ratio from Step 3 by CF.1. All samples passed
MDACC'’s quality checks and are included in the dataset. The normalized RPPA log2 values are
joined with their experimental metadata and stored on Synapse as level 3 data. Replicates are
median summarized and stored as Level 4 data.

RNA Sequencing
Sample preparation and sequencing: Following treatment protocols described, at the
appropriate timepoint wells were aspirated and cells were harvested by scraping in 600 pl of
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RLT Plus buffer (Qiagen) plus 1% B-ME. Samples were flash frozen in liquid nitrogen and stored
at -80°C prior to RNA extraction. Total RNA was extracted from frozen using a Qiagen RNeasy
Mini kit. Columns were DNAse treated following the recommended protocol of the manufacturer.

RNA concentration and purity was determined by UV absorption using a Nanodrop 1000
spectrophotometer. All samples had 260/280 absorption ratios of at least 2.0, indicating
successful isolation of RNA from other nucleic acids. RNA integrity was assessed using an
Agilent 2100 Bioanalyzer with an RNA 6000 Nano Chip. RNA integrity numbers (RIN) were
calculated from Bioanalyzer electropherograms using the “Eukaryotic Total RNA Nano” program
of the Bioanalyzer 2100 Expert software (B.02.08.S1648). RIN values were in the 8.5-10 range,
indicating high-quality RNA, with one exception (TGFB_48 C1_B; RIN = 6.9). UV absorption
measurements and RIN values are available on Synapse
(https://www.synapse.org/#!Synapse:syn12550434).

cDNA libraries were prepared from polyA-selected RNA using an lllumina TruSeq Stranded
mRNA library preparation kit. 100-bp single-end reads were sequenced on an lllumina HiSeq
2500 Sequencer, with a target of 60M reads per sample.

Pre-processing and QC: Sequence preprocessing and alignment was performed using a
Docker-based pipeline®. 100-bp single-end reads were trimmed of lllumina adapter sequences
using TrimGalore (v. 0.4.3), a wrapper for CutAdapt (v. 1.10) and FastQC (v. 0.11.5). A
minimum of 1-bp overlap with the adapter sequence (AGATCGGAAGAGC) was required for
trimming. After trimming, reads with a length < 35 bp were discarded. Trimmed reads were
aligned to the GENCODE V24 (GRCh38.p5) assembly of the human genome using the Kallisto
pseudo-alignment software (v. 0.43.0). Kallisto, using the following parameters: --bias -b 30 --
pseudobam.

Gene-level quantifications were produced from transcript-level abundance estimates using the
R (v. 3.5.0) package tximport (v. 1.8.0). Mapping between gene/transcript identifiers was done
using the biomaRt package (biomaRt v. 2.36.1) with the ENSEMBL_MART_ENSEMBL biomart
and the hsapiens_gene_ensembl dataset. Gene-level quantifications were imported to DESeq2
(v. 1.24.0)”". The fpkm function of DESeq2 was used to normalize data for library size and gene
length differences, and fpkm values were log2 transformed with an added pseudocount of 1.

Transcription Factor Enrichment Scores: Single-sample enrichment scores were calculated for
297 transcription factor target gene sets obtained from the CHEA3 ReMap_ChlIP-seq®® using
the R package GSVA (v. 1.32.0)®. A minimum expression filter was used to filter for expressed
genes; genes were retained only if expressed at a minimum of 0.5 log2(fpkm + 1) in @ minimum
of 3 samples. Enrichment scores were calculated from filtered RNAseq data, in units of
log2(fpkm + 1), using the argument “method = ‘ssGSEA”".

ATACseq

Sample preparation and sequencing: ATACseq samples were collected following the Omni-
ATAC protocol®®. Briefly, MCF10A cells were washed once with PBS and detached from the
plate using trypsin. Cells were then counted using a Countess (Invitrogen), and 50,000 cells per
condition were distributed to 1.5 ml centrifuge tubes and spun at 500 RCF for 5 min. The
supernatant was removed and the cell pellet was resuspended in 500 ul of PBS and spun again
at 500 RCF for 5 min. The supernatant was removed again, and the cell pellet was resuspended
in 50 pl of cold ATAC resuspension buffer (RSB) containing 0.1% NP40, 0.1% Tween-20, and
0.01% digitonin by pipetting up and down three times. After 3 min on ice, 1 ml of cold RSB
containing 0.1% Tween-20 was added, and the tube was inverted three times to mix. The nuclei
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were then pelleted by centrifugation at 500 RCF for 10 min at 4°C. The supernatant was then
carefully aspirated and the nuclei were resuspended in 50 pl of transposition buffer (25 pl 2x TD
buffer (lllumina), 2.5 pl transposase (lllumina), 16.5 pyl PBS, 0.5 pl 1% digitonin, 0.5 pl 10%
Tween-20, and 5 pyl H20). Samples were then placed in a pre-warmed (37°C) thermomixer and
mixed for 30 min at 100 RPM. Transposed fragments were then purified using a Qiagen
MinElute column and frozen at -80°C for further processing.

The remaining steps of the Omni-ATAC protocol were performed by the OHSU Massively
Parallel Sequencing Shared Resource. Transposed fragments were pre-amplified with 5 rounds
of PCR. Afterward, 5 ul of the pre-amplified mixture was used for a gPCR reaction to determine
the concentration of tagmented DNA. After calculating the concentration of tagmented DNA,
pre-amplified samples were diluted with elution buffer to a final concentration of 5 uM. Six
samples had an undiluted DNA concentration below 5 yM and were not diluted. 5 uM pre-
amplified samples were amplified for 3 additional PCR cycles.

Tagmented DNA was pre-amplified with 5 rounds of PCR (72°C for 5 min, 98°C for 30 seconds,
then 5 cycles of [98°C for 10 sec, 63°C for 30 sec, 72°C for 1 min]). PCR reactions contained 20
ul eluate, 25 pl NEBNext 2x MasterMix, 2.5 pl 25 pM i5 primer and 2.5 pl 25 yM i7 primer.

The DNA concentration of the pre-amplified samples was assessed by qPCR. 5 pl of pre-
amplified mix was added to 3.76 pl sterile water, 0.5 pl 25 uyM i5 primer, 0.5 pl 25 yM i7 primer,
5 pl 2x NEBNext master mix, and 0.24 ul 25x SYBR Gold (in DMSO). Samples were amplified
for 20 cycles of [98°C for 10 sec, 63°C for 30 sec, 72°C for 1 min]. DNA concentration was
calculated, and pre-amplified samples were diluted to a final concentration of 5 yM. Six samples
had an undiluted DNA concentration below 5 yM and were not diluted. 5 uM pre-amplified
samples were amplified for 3 additional PCR cycles. 100bp PE reads were sequenced on an
lllumina HiSeq 2500 Sequencer by the OHSU Massively Parallel Sequencing Shared Resource
with a target of 20M reads per sample.

Pre-processing and QC: ATACseq files were processed and aligned using the “ATACseq (1 ->
3)” workflow on the AnswerALS Galaxy server (answer.csbi.mit.edu). Reads were trimmed of
adapter sequences and low-quality bases using Trimmomatic (Galaxy version 0.36.5). Reads
were trimmed of low-quality bases (Phred score < 15) at the read start or end, and Nextera
adapter sequences (CTGTCTCTTATA) were trimmed from read ends (minimum of a 2-bp
overlap required for trimming). Reads were aligned to the human genome (hg38) using Bowtie2
(Galaxy version 2.3.4.1) in paired-end mode with otherwise default settings. BAM files were
filtered to remove secondary alignments, unmapped reads, and mitochondrial DNA alignments
using ngsutils bam filter (Galaxy version 0.5.9). PCR duplicates were detected and removed
using Picard MarkDuplicates (Galaxy version 2.7.1.2). The de-duplicated, filtered BAM file was
used for peak calling and quantification. Peaks were called using MACS2 (Galaxy Version
2.1.1.20160309.5) using the following parameters: -format BAMPE -nomodel -extsize 200 -shift
-100 -gvalue 0.01.

ATACseq sample quality was assessed by calculating the fraction of reads in peaks (FRIiP).
Before calculating FRIiP, a consensus peakset was generated for all samples by taking the
union of all peaks called in all samples and merging any overlapping peaks, using the R (v.
3.6.1) package DiffBind (v. 2.12.0)'%. For each sample, FRiP was then calculated by counting
the proportion of reads in the de-duplicated, filtered BAM file that align within the consensus
peakset. A minimum FRIP threshold of 0.15 was applied to remove samples with low levels of
chromatin enrichment.
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Construction of chromatin accessibility matrix: DiffBind (v. 2.12.0) was used to generate a peak
accessibility matrix for the QC-passing samples. First, a consensus peakset was re-generated
after removal of low-FRIiP samples. The dba.count function was then used to count the number
of reads in the de-duplicated, filtered BAM files that overlap with each peak in the consensus
peakset. The dba.count argument "score = DBA_SCORE_TMM_READS_EFFECTIVE" was
used to output TMM counts normalized to each sample's effective library size, which is equal to
the de-duplicated, filtered library size multiplied by the FRIiP. A peak accessibility matrix in units
of unnormalized counts was also generated using the dba.count function with the argument
"score = DBA_SCORE_READS".

Motif Enrichment: Transcription factor motif enrichment scores were generated from the TMM-
normalized chromatin accessibility data using the R package chromVAR (v. 1.6.0)'°". ATACseq
peaks were annotated with GC content using the addGCBias function of chromVAR and the
BSgenome.Hsapiens.UCSC.hg38 genome annotation package. Transcription factor motif
position frequency matrices were obtained from the “JASPAR CORE 2018 Homo sapiens” set
of motifs'®?. ATACseq peaks were matched to JASPAR motifs using the R package motifmatchr
(v. 1.6.0). The expected fraction of reads per ATAC-seq peak was calculated using the
chromVAR function computeExpectations, with the argument “norm = TRUE”. Each sample’s
deviation from the expected fraction of peaks in each annotated category was calculated using
the function computeDeviations, and deviations were converted to Z-scores using the function
deviationScores.

Global Chromatin Profiling

The GCP assay was performed as previously described in Creech et al’' and Litichievskiy et
al'' Cells were washed with ice-cold PBS, then collected by manual scraping in 200 pl of cold
PBS. Cells were then pelleted by centrifugation at 1500 RCF at 4°C for 5 min, resuspended in
1mL of cold PBS, and spun again as specified. The resultant cell pellets were then flash frozen
in liquid nitrogen and stored at -80°C until further processing. Pellets were thawed and lysed
with nucleus buffer, followed by histone extraction by sulfuric acid and precipitation using
trichloroacetic acid. Sample input was normalized to 10 ug of histone in H.O before being
propionylated, desalted (Oasis HLB 5mg Plate) and digested by Promega trypsin overnight. A
second round of propionylation, followed by desalting using C18 Sep-Pak cartridges (Waters)
was employed after digestion. Propionylations and digestion were done in an automated fashion
on an LT-Bravos system (Agilent). Isotopically labeled synthetic peptides from histones H3 and
H4 were added as a reference to each sample prior to MS analysis. Peptides were separated
on a C18 column (EASY-nLC 1000, Thermo Scientific) and analyzed by MS in a PRM mode (Q
Exactive™-plus, Thermo Scientific) as previously described®'. Detailed protocols of sample
preparation steps can be found in
https://panoramaweb.org/labkey/wiki/LINCS/Overview%20Information/page.view?name=sops.

L1000

Sample preparation: L1000 samples were collected as part of three collections. The first L1000
sample collection was generated in parallel to the ATACseq samples. MCF10A cells were
washed once with PBS and detached from the plate using trypsin. Cells were then counted
using a Countess (Invitrogen) and 50,000 cells per condition were distributed to 1.5 ml
centrifuge tubes and spun at 500 RCF for 5 minutes. The supernatant was removed and the cell
pellet was resuspended in TCL buffer (Qiagen) containing 1% B-Me. For the second and third
collections, cells were washed with PBS followed by the addition of TCL buffer (Qiagen)
containing 1% B-Me. The cell and buffer mixture was allowed to sit for 30 minutes and then
frozen at -80°C for further processing. Samples from the first and second sample collections
were frozen in 1.5ml tubes. Samples from the third data collection were frozen in their original
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96-well plates. In total there were eighteen plates from the third HMS collection, which
contained 21 samples per plate, and there were 190 samples from the first two OHSU
collections. All samples were shipped to the BROAD for simultaneous processing on the L1000
platform. The source plates containing original samples were re-arrayed into six 96-well master
plates. These master plates contained 21 samples from each of three original source plates,
and 32 samples plated directly from tubes. In each of the six master plates, well A1 was left
empty to accommodate for internal technical control spike-ins. The six 96-well master plates
were then re-arrayed into the final 384 well v-bottom PCR Plates (Eppendorf #951020702).

Ligation Mediated Amplification: Complete methods for L1000 Ligation Mediated Amplification
can be found elsewhere?. In brief: crude cell lysates were transferred from source plates to 384
well v-bottom PCR Plates (Eppendorf #351020702) assay plates. Oligo dT coated magnetic
particles (GE Healthcare #38152103010150) were added to capture mRNA. Plates were then
incubated at room temperature on shaker tables for 10 minutes. The beads were then spun
down onto flat magnets and unbound lysate was evacuated by centrifuging upside down on
magnet to 800RPM for 30 seconds. 15l of reverse transcription master mix containing
SuperScript IV reverse transcriptase was added to the plates and the plates were incubated at
55 °C for 10 minutes. Plates were again spun down, beads were pelleted on a flat magnet, and
the remaining master mix was spun out. Probes were annealed to the first-strand cDNA by
addition of 15ul of Probe Bind master mix, containing 100 fmole of each probe and Taq ligase
buffer. Samples were denatured at 95 °C for 5 minutes, then transferred to a ramping water
bath that decreased temperature from 70 °C to 40 °C over six hours. The following day, beads
were again spun down on a flat magnet and master mix was evacuated. To ligate probe pairs,
15 uL of Ligation Master Mix was added, containing Taq DNA ligase and ligase buffer. Plates
were sealed and incubated at 45°C for 60 minutes. Plates were spun down on magnets and
ligation master mix was evacuated as with previous steps. 15ul PCR master mix containing 0.5
mmole of each primer (T3 and 50-biotinylated T7 universal primers), dNTPs , and PlatinumTaq
polymerase in reaction buffer was added to each well, and plates were subjected to 29 cycle
PCR. This process yielded biotinylated gene and bead (barcode) specific amplicons.

Each barcode corresponds to a complementary sequence on a Luminex bead, allowing the
PCR product to be hybridized to a mixture containing per well ~100 each of 500 Luminex
analyte colors. The plate was then denatured at 95°C for 5 minutes and incubated at 45°C for
18 hours. Beads were pelleted and stained with streptavidin R-phycoerythrin conjugate for ten
minutes. Finally, plates were read on Luminex FlexMap 3D Flow cytometers that detected
analyte color (transcript identity) and fluorescence intensity (transcript abundance) for all
analytes detected in all wells.

Pre-processing: To account for differences across the various cell collections, we adapted our
standard data processing pipeline in several ways. L1000 data typically use a population-based
normalization scheme, known as plate control, as described in Subramanian et a’°. Here, the
EGF treated wells served as the vehicle when conducting vehicle normalization. The standard
data processing pipeline was followed, except for the changes at Level 1 and Level 4, described
below.

L1000 utilizes 10 sets of invariant genes, similar to ‘housekeeping’ genes, to assess quality and
in later normalization steps. These gene sets, each containing 8 genes, represent control values
that span the spectrum of gene expression, and are ordered according to their overall level of
expression, the first level corresponding to the lowest expressing genes, and the 10th
corresponding to the highest expressors.
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Plates were computationally split at Level 1 (LXB) into subpopulations of wells, each containing
only samples from a given time-point and collection combination. The fluorescence intensity
values associated with each bead color were subjected to the peak deconvolution step, which
separates the two genes associated with each bead color (Level 2). Data were then normalized
via L1000 invariant set scaling (LISS), which scales the expression levels of the 978 measured
landmarks in each well to the 80 control genes in the invariant gene set (Level 3). Next, we
calculated differential expression using EGF as the vehicle control. Robust z-scoring was used
to calculate differential expression values for each gene, where gene x is compared only to the
vector of normalized gene expression of gene x across all EGF samples in that collection/time-
point population (Level 4). Finally, individual biological and technical replicates were collapsed
into a consensus signature by computing a pairwise Spearman correlation matrix between each
replicate signature. The weights for each replicate were calculated by the sum of their
correlations to the remaining replicates, summing to 1. The consensus signatures were
generated by the linear combination of the replicate signatures using each signature’s weight as
the coefficient (Level 5).

L1000 QC: We used several approaches to assess data quality. First, to assess the quality in
each detection plate, we visually inspected and measured the slope of the invariant gene
calibration curve for each sample; outliers were omitted. Second, to assess plate effects, we
plotted median fluorescence intensity and interquartile range of invariant set 10 across the
entire plate. This allowed identification of failed (low signal) wells, tissue culture related plate
effects, or wells with abnormally wide ranges in expression across each gene set. Third, to
assess the efficacy of the deconvolution algorithm, we determined the number of well/analyte
combinations where two peaks were clearly discernible.

In addition, we computed a transcriptional activity score (TAS) as a composite measure of
L1000 transcriptional response. Here signature strength (SS) was computed as the number of
genes with a z-score greater than or equal to 2 for each sample, and replicate correlation (CC)
was computed as the 7th quantile of the spearman correlation between all pairwise
combinations of replicates. TAS is calculated as the geometric mean of SS and CC for a
signature, and scaled by the square root of the number of landmark genes, yielding a final score
between 1 and 0. QC metrics are available on Synapse
(https://www.synapse.org/#!Synapse:syn19416843).

Finally, within each sample collection (C1, C2, and C3), we clustered samples based on the
Euclidian distances between expression of the 978 measured landmark genes in the Level 3
data, using the R function hclust. Each collection had a small number of outlier samples that
showed markedly aberrant expression of the 978 landmark genes and clustered apart from all
other samples, in a pattern that was not explained by sample treatment; these samples were
removed. In total, 17 L1000 samples were removed (3 from C1, 1 from C2, and 13 from C3).

Cyclic Immunofluorescence (CyCIF)

Sample preparation and imaging: MCF10A cells were seeded 4000 cells/well in 200 ul of GM in
collagen coated (as described above) 96 well plates (NUNC, 165305) in technical (multiple wells
on the same plate) and biological (experiments separated by a minimum of one cell passage)
triplicates. Eight hours after seeding, the cells were washed once with PBS using an EL405x
plate washer (BioTek), and 200 pl of EM was added per well. Following an additional 16 hours
(24 hours after initial plating), one plate was fixed (time = 0 hours) and EM was aspirated from
all wells in the remaining plates using the plate washer, and replaced with 200 pl of the
appropriate ligand or control treatment.
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The treated plates were fixed following incubations of 1, 4, 8, 24, and 48 hours. Cells were fixed
in 4% formaldehyde for one hour at room temperature, and washed with PBS. Plates were
sealed and stored at 4°C until all replicates were collected. CyclF was performed as described
previously*”*®_ In brief, cells were permeabilized with ice cold methanol for ten minutes, blocked
in Odyssey buffer (LI-COR) for one hour, pre-stained with secondary antibodies, bleached, and
imaged to register background intensities prior to beginning cyclF. For each cycle, cells were
stained with three conjugated antibodies, unless otherwise specified, and Hoechst 33342
overnight at 4°C, washed with PBS, and imaged with an IN Cell Analyzer 6000 (nine fields of
view per well, 20x/0.45NA air objective, 2x2 binning) (GE Healthcare Life Sciences). Following
image acquisition, fluorophores were chemically inactivated as described*’*®, and cells then
entered the next staining cycle. Refer to Supp Table 12 for antibody metadata.

Pre-processing and image analysis: A flat field correction profile, generated from all fields on
one plate using the BaSiC ImageJ plugin'®, was normalized to a mean value of one and each
image was then divided by it. Image registration was performed with a custom ImageJ script.
Segmentation of the nuclei (based on Hoechst staining), and cytoplasm (based on B-catenin
staining) was performed with a custom MATLAB (MathWorks) script. Each cell was then divided
into four subcellular masks: nucleus, peri-nuclear ring, cytoplasm, and cell membrane for
feature extraction, a fifth region including all of the cytoplasm (peri-nuclear ring, cytoplasm, and
cell membrane together) was also defined. Segmentation was performed on the images
acquired in cycle 4 only; the masks were then overlaid on all other cycles for feature extraction.
Intensity, texture, and morphology features were extracted for each mask, as appropriate (see
Supp Table 13 for feature definitions).

CyclF QC: Quality control was performed in two steps. In the first step, cells that were washed
away over the course of the experiment and those near the edges of the imaging fields that
were incompletely captured cycle to cycle due to microscope stage drift were identified and
excluded from subsequent analyses. These cells were identified by their high variation in
nuclear Hoechst signal between successive cycles (https://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/Section2.1_Intensity%20based%20QC.ipyn
b). If more than 90% of the cells in a field of view failed this QC step, the entire field was
removed. The median fraction of lost cells was ~15 % for fields 1-8 whereas an average of 60%
of cells were lost from field 9, with a significant number of instances where the fraction of lost
cells exceeded 90%. Field 9 was therefore excluded entirely from subsequent analyses.
Additionally, for unknown reasons, most of the wells occupying row E on plate 18 exhibited cell
loss in excess of 90% leading to the exclusion of all data from those wells in downstream
analyses. In the second quality control step, cells with failed cytoplasm segmentation as
identified by multinucleation were removed. Multi-nucleated cells were identified by re-
segmenting each mask using the Python implementation of Opencv
(https://github.com/skvark/opencv-python) and counting the nuclei; cells with two or more nuclei
were excluded from downstream analyses (https://github.com/yunguan-
wang/cycif_analysis_suite/blob/MCF10A/notebooks/Section2.2_image_based_qc.ipynb).
Although masks with two nuclei can represent failed segmentation or truly binucleated cells,
visual inspection led us to conclude that these cases were primarily segmentation errors and
were therefore excluded from downstream analyses.

Identification of differentially-expressed genes For each ligand treatment, we performed a
differential expression analysis on the RNAseq gene-level summaries with the R package
DESeq2 (1.24.0), with shrunken log2 fold change estimates calculated using the apegim
method. We used the Benjamini-Hochberg method to correct p-values for multiple comparisons
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and set a threshold of g-value < 0.05 and shrunken log2 fold change > 1.5 or < -1.5 to indicate
significance.

Pathway enrichment of ligand-induced signatures We used Gene Set Enrichment Analysis
(GSEA) to identify the pathways enriched by each ligand treatment. Specifically, we used Gene
Set Enrichment Analysis 4.1.0 downloaded from https://www.gsea-msigdb.org/gseal/index.jsp to
assess enrichment of the MsigDB Hallmark Pathways in the Level 3 data. For each 24H ligand
treatment sample, we computed log2 fold-change against CTRL_O from the Level 3 RNAseq
data.

L1000 drug signature comparison To compare our results to existing L1000 transcriptional
drug signatures® we used the L1000 FWD tool'* available at
https://maayanlab.cloud/L1000FWD/. We used as input the top 200 most strongly up-regulated
and top 200 most strongly down-regulated genes at 24 H relative to CTRL_0. We considered
drug signatures with Fisher exact test g-values < 0.2 to be significantly correlated or anti-
correlated with our ligand signatures. Finally, we summarized the number of drugs with similar
mechanisms of action to identify common patterns.

Multi-omic module detection To identify coordinately regulated multi-omic modules, we
performed normalization, data scaling, feature selection and cluster analysis on molecular
features induced by ligand treatments.

Data normalization and scaling: For the GCP, RPPA and cyclF datasets we used limma to
normalize to CTRL_0 and summarize across the replicates; we used DESeq2 to analyze the
RNAseq data in a similar manner. We used chromVAR to aggregate chromatin accessibility
peaks that share common motifs and then mean summarized the motif family values. We
applied the rrscale transformation to each assay data set to minimize assay-specific data
distributions®’. In brief, each assay’s TO CTRL normalized data was rrscaled independently with
Box Cox negative and asinh transformations using an infinite z score cutoff.

Feature selection: We selected a subset of highly variant and biologically interpretable features
from the 24H and 48H samples from each assay. In GCP and RPPA assays, features in the
lowest variance quartile were removed. For the cyclF, RNAseq, and GCP assays, features were
retained if, for any condition, the absolute log fold change was greater than 1.5 and the p-value
was less than 0.05. For the RPPA assay, we used a log fold-change threshold of 0.75 to
account for differences in the RPPA data distribution. All ATACseq motif family scores were
retained.

Clustering: We performed k-means clustering using partitioning around medoids and a gap
statistic analysis using the firstSEmax method to identify the optimal number of clusters (R
package cluster, version 2.1.2). In brief, the gap statistic method runs PAM clustering on the
integrated data matrix once for each k value, where k=2:25. Then for each k, we performed
PAM clustering on 100 randomized permutations of the data that have structure similar to the
actual data. At each k, the gap is calculated as the difference in the log of the within-groups sum
of squares of the actual versus randomized data. We further refined these clusters by identifying
and collapsing highly correlated clusters. In brief, we calculated the mean expression of features
in each cluster for each condition and then computed Pearson correlations between all pairs of
clusters. Next, we then used the R hclust function and the dendextend cutree function on the
distance matrix of the correlations to identify highly correlated clusters. This resulted in
combining 4 pairs of clusters to yield a final set of 14 modules for further analysis.
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Module TF enrichment analysis We identified transcription factors enriched in the integrated
modules by submitting all RNAseq features from each integrated module to the ChEA3 web-
based transcription factor enrichment tool ChEA3%, which identifies transcription factors
enriched for a list of genes using Fisher’s exact test. We limited our analyses to transcription
factor targets in the ReMap ChIP-Seq library and considered transcription factors significantly
enriched if the FDR-corrected g-value was less than 0.2.

Module pathway enrichment analysis To identify pathways enriched in each module, we used
the Reactome pathway enrichment analysis tool (https://reactome.org/) to analyze the genes in
each module. In brief, this analysis performs a binomial test of each gene set of 2516 curated
pathways in the Reactome database. We identified significantly enriched pathways as those
with FDR g-values < 0.1, gene ratios > 0.1, and pathways that included a minimum of 5 and
maximum of 500 genes.

Module expression scores To calculate the expression of modules across different samples in
our MCF10A dataset, we computed the mean expression of features in each module. To assess
expression of the modules in external datasets (e.g. GTEX), we focused on the RNAseq
features in each module and computed their mean expression. An unpaired two-sample t-test
was used to compare mean module 9 expression scores between control and CDKi-treated
breast cancer cell lines.

Set analysis Set analysis was used to identify features significantly induced by a single ligand
(ligand-specific) or multiple ligands (shared). The input to the set analysis was the integrated
and scaled matrix of log fold change values derived from the multi-omic module analysis. Each
feature in the multi-omic matrix was labelled either ‘Unique’ or ‘Shared’. Features that were
significantly perturbed by only a single ligand were labelled ‘Unique.’ Features that were
regulated by two or more ligands were labelled ‘Shared.’

SOFTWARE

Unless otherwise stated, analyses were performed in R (https://www.R-project.org). R packages
used in analyses included: tidyverse'® (version 1.3.1), ComplexHeatmap (version2.8.0), httr
(version 1.4.2) and rmarkdown (version 2.9). A complete list of packages and their versions can
be found in analysis scripts available at https://github.com/MEP-LINCS/MDD

DATA AVAILABILITY

Data, metadata and additional analysis reports are available at:
https://www.synapse.org/#!Synapse:syn21577710/wiki/601042.

Raw RNA and ATAC sequencing data generated for this study can be accessed from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152410).
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FIGURE LEGENDS

Figure 1. Overview of experimental approach to assess the impact of microenvironmental
factors

(A) Map of LINCS data generation and analysis centers. (B) Schematic illustrating the
experimental and analytical approaches to link molecular and cellular phenotypes. (C)
Schematic of the experimental design, cell culture protocol, and sample harvest time points. (D)
The experimental treatments, dosages, and assays deployed to generate the LINCS ME
perturbation datasets. (E) Summary of the assays, timepoints, and features for the three
experimental collections.

Figure 2. Ligand treatments induce diverse phenotypic responses

(A) Representative immunofluorescent images of ligand-induced cellular phenotypes at 48
hours. MCF10A cells were stained with Cell Mask to visualize cytoplasm. (B) Cartoon showing
the image-based cellular phenotypes assessed from the immunofluorescence and live cell
imaging assays. (C-G) Boxplots summarizing cellular phenotypes at time OH (CTRL) and 48H
after ligand addition from 8 biological replicates. Individual datapoints represent well-level
means normalized to OH. Circles are from collection 1 and triangles are from collection 2. Note
that EdU positive proportion was not measured at OH. (H) Accumulated cell migration (colored
lines) from 0-48H for 25 cell lineages (individual cells and one of their progeny if they divided).
Circles indicate mitotic events. The solid black lines indicate the population average; the dotted
gray line shows the average TGFB+EGF induced migration at 48H, which was the treatment
that induced the greatest increase in cell migration.

Figure 3. Six molecular assays reveal diverse dynamic responses to treatments

Line graphs show dynamic responses for 12 RPPA proteins under the different ligand
treatments. (B) Heatmap of protein abundances as measured by RPPA. Rows represent
abundance of 295 (phosphor)proteins and are median-centered and hierarchically clustered.
Columns represent individual replicate samples, ordered by treatment and time. Callouts show
the 12 proteins from panel A. (C) UMAPSs for each of the six molecular assays. Each dot
represents data from an individual sample and is the 2-dimensional embedding of all features
measured in the assay. Color indicates ligand treatment and size indicates time point. (D) Plot
of the first two principal components of RPPA assay. Variance in PC1 and PC2 is largely driven
by ligand treatment and experimental timepoint, respectively. (E) MAVRIC analysis of RPPA
covariates reveals the proportion of variance explained by sample replicate, experimental
timepoint, and ligand treatment for each of the top seven principal components of the RPPA
dataset. (F) Stacked bar graph shows a comparison of the information content contained within
each molecular assay, as assessed by MAVRIC.

Figure 4. Assessment of ligand-induced molecular change (A) Barplot showing the number
of features significantly modulated by each ligand treatment. Shading indicates whether induced
features are unique to a particular treatment (dark) or induced by multiple treatments (light).
Numbers above bars indicate the number of features uniquely induced over the total number of
features induced. (B) Heatmap showing pairwise correlations between molecular features
induced by each ligand. Ligand responses from similar families are more highly correlated than
those from unrelated families. (C) UpSet plot showing overlaps of induced ATACseq
transcription factor motifs among ligand treatments. Column heights represent the number of
transcription factor motifs induced by the ligand(s) indicated with filled dots. (D) Hallmark
Geneset enrichment scores computed from RNAseq data.

Figure 5. Integrated analysis identifies co-regulated molecular modules
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(A) Heatmap showing the 14 integrative molecular modules for each ligand at 24H and 48H.
Features are grouped by cluster. Biological interpretation for modules is indicated on the left;
feature callouts for RPPA (R), cyclF (C), ATACseq (A) are shown to the right. (B) Bubble plot
shows the top enriched Reactome pathways in each module, computed from RNAseq features.
Dot size indicates the gene ratio; dot color indicates FDR value. (C) Heatmap shows results of
ChEAS transcription factor enrichment analysis computed for the RNAseq features in each
module. Red indicates the top 5 TFs (by p-value) per module that met a p-value threshold of
0.05. (D-G) Scatterplots show the relationships between module activity and quantitative
phenotypic responses for selected pairs. Dot color indicates the ligand treatment and dot size
indicates the time point. The black dotted line shows the linear fit, and the g-value of the fit is
shown at the bottom of the plot.

Figure 6. Module 9 is associated with cell cycle progression

(A) Donut plot showing distribution of Module 9 features across assays. Transcription factors
and kinases in the RNA gene set are called out to the right of the plot. (B) Line plot showing 6 of
the Module 9 RPPA features. (C) Plot of the top 10 most significantly enriched transcription
factors inferred from the Module 9 RNA gene set. (D) Bar plot showing the enrichment of
Reactome superpathways from the Module 9 RNA gene set. (E) Bubble plot showing the top 5
enriched Reactome subpathways from the Reactome Cell Cycle, DNA Repair, and DNA
Replication superpathways. Dot color indicates g-value; dot size indicates the number of genes
in Module 9 that are found in each gene set. (F) Heat map showing the expression of the Seurat
G1/S cell cycle gene set, sorted based on the EdU positive proportion. (G) Plot of mean Module
9 gene expression for a panel of breast cancer cell lines treated with three CDK4/6 inhibitors for
24H or an untreated control. Data from Hafner, et al 2019. (H) Dot plot of mean Module 9 gene
expression from 65 human breast cancer cell lines graphed against their mean doubling time.
Cell lines are colored based on their breast cancer subtype classification. The line indicates the
linear fit across all cell lines. Data from Heiser, et al 2012.

Figure 7. Analysis of molecular modules identifies functional relationships between
molecular and phenotypic responses to OSM

(A) OSM induces the formation of cell clusters that undergo collective migration and merge to
form large clusters. Representative tracks of OSM-induced cluster migration are shown from 24
hours to 48 hours after OSM treatment. Cluster outlines are colored by experimental timepoint.
All images are set to the same scale. (B) Barplot shows the mean Module 2 expression for the
six ligand treatments. (C) Barplot showing the top 10 enriched transcription factors inferred for
the Module 2 genes in Chead. (D) The JAK/STAT inhibitor Ruxolitinib inhibits cell growth in the
presence of OSM. Line graph shows the relative number of cells across time. PBS (phosphate
buffered saline) treatment serves as a control. (E) Barplot of the top 10 enriched pathways in
Bioplanet using the module 2 RNAseq gene set (F) OSM-induced collective migration is
mediated by protease activity. Line graph shows the accumulated cluster migration distance
after OSM +/- a protease inhibitor cocktail and its individual components including bestatin, E-
64, aprotonin, and pepstatin A. Solid lines show the population average and gray shaded
regions indicate 95% confidence intervals of the mean distance travelled at each timepoint. (G)
False color phase contrast images at 48H show that bestatin inhibits the formation of large cell
clusters in the presence of OSM. Cells have been colored red and the background has been
colored gray.

Figure S1. Experimental and bioinformatic approaches to identify high impact ligands
(A) Microenvironmental assay (MEMA) to identify ligands that modulate MCF10A cell numbers.
Cells were treated with ligands in experimental media lacking EGF and cell numbers were
counted after 72H. (B) MEMA assay results for MCF10A cells treated with ligands in
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experimental media containing EGF. (C) MCF10A transcript expression from three receptor
classes: Tyrosine kinase, cytokine, and TGFB/BMP. Transcript values are drawn from RNAseq
measures for untreated cells in exponential growth. The primary receptors for the six ligands are
highlighted HGF: MET (Blue), EGF:EGFR/ERBB2 (Red), BMP2:BMPR1B/BMPR1A (Green),
TGFB: TGFBR1/TGFBR2 (Yellow), OSM: IL6ST/OSMR (Orange), and IFNG:IFNGR1/IFNGR2
(Purple). (D) Cell count dose-responses after treatment with EGF, HGF, and OSM. Cell counts
at 72H were normalized to the 10 ng/ml EGF condition. (E) Cell count dose responses for
TGFB1, IFNG, and BMP2. Each of the ligands were supplemented with 10 ng/ml EGF. Cells
counts at 72H were normalized to the EGF condition with no secondary ligand.

Figure S2. Comparison of ligand and small molecule inhibitor signatures

We leveraged the LINCS L1000 database®” of drug response signatures to identify targeted
inhibitors that are shared by each ligand signature. Heatmap represents the number of
compounds that have correlated (red) or anti-correlated (blue) signatures with each ligand
(Fisher exact test, g-value<0.2). The ligand panel activated many of the same signatures as
small molecule inhibitors, indicating that shared molecular responses can be elicited by these
distinct perturbagen classes.

Figure S3. IFNG responses are dynamically encoded across multiple molecular
modalities

(A) Cartoon of canonical STAT pathway activation after treatment with IFNG ligand. (B) Line
graphs show induction of pSTAT1, IRF1 and PDL1 protein expression following IFNG treatment,
as measured by cyclF and RPPA assays. (C,D) Cyclic immunofluorescence images show
changes in STAT1 and PDL1 protein abundance and localization induced by IFNG+EGF
treatment. (E) Line graphs show enrichment of STAT-family and IRF-family motifs inferred from
ATACseq chromatin accessibility data for IFNG+EGF and EGF conditions. (F) Chromatin
accessibility near the IRF1 and PDL1 gene loci. The local gene region for IRF1 showed a new
peak in the promoter region and a large accessibility change in the 3’ region. IFNG did not
induce new ATAC peaks in PDL1, however IFNG induced a new peak in the adjacent PDL2
gene (PDCD1LG2). DNA regions with changes in accessibility are marked with a red
background. (G) Venn diagram showing the overlap between the Reactome IFNG pathway,
curated cytokine gene lists and, and genes induced by IFNG+EGF treatment. The 15 cytokines
induced by IFNG+EGF are listed on the right.

Figure S4. Comparison of RPPA, RNAseq and ATACseq assays reveals concordance
across molecular modalities in response to ligand treatment

(A) Scatter plots of paired RPPA and RNAseq measurements, showing three classes of
observed relationships: linear, ligand-specific, and no change. (B) Heatmaps show genes and
proteins with significantly up- or down-regulated expression after ligand treatment. (Left):
Heatmap of significantly up- or down-regulated genes assessed by RNAseq (FDR p < 0.01;
log2FC = [1]). (Right): Heatmap of significantly up- or down-regulated proteins assessed by
RPPA (FDR p < 0.01; log2FC = |0.5]). (C) Euler diagram showing intersections of differentially
expressed RPPA proteins and RNAseq genes. The maijority of features that were induced in
both assays showed concordant responses, defined as both modalities induced in the same
direction. (D,E) Dot plot showing the relationship between ATACseq transcriptional start site
(TSS) accessibility and gene expression in the CTRL and EGF 48H samples. Note the switch-
like relationship between gene expression and accessibility at the TSS, as has been described
previously. The horizontal dotted line indicates the threshold for a gene being defined as
expressed.

FigureS5. Integrated analysis methods
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Pre-processed data from each assay are summarized, filtered, and scaled before being
combined into a single matrix. PAM clustering with gap analysis was used to identify the optimal
number of clusters represented in the integrated data matrix, which resulted in 18 modules.
Pearson correlation analysis was used to identify pairs of clusters that showed similar
expression patterns; two pairs of modules were combined to yield a final set of 14 modules.

Figure S6. Identification and characterization of integrative molecular modules

(A) Bar plot showing the number of features for each assay included in the integrative modules;
note log 10 scale. (B) Gap analysis used to identify the optimal number of modules. (C) Module
correlation matrix showing Pearson correlation values. Highly correlated cluster pairs 8+17, 3+4,
6+16, and 10+15 were combined to yield 14 clusters. (D) Bar plot showing the distribution of
features for each assay across modules.(E) Bar plot showing the mean module expression for
each of the ligand treatments.

Figure S7. GTEX Module expression analysis

(A) Heatmap showing GTEX tissue expression of the 14 integrative molecular modules reveals
tissue-specific expression, suggesting molecular programs that may be particularly important for
mediating normal and diseased functions across tissues.
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Fig. 1 Overview of experimental approach to assess the impact of microenvironmental factors
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Fig. 2 Ligand treatments induce diverse phenotypic responses
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Fig. 3 Six molecular assays reveal diverse dynamic responses to treatments
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Fig. 4 Assessment of Iigand-induceda molecular ¢ anges
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Fig. 6 Module 9 is associated with cell cycle progression
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Fig. 7 Analysis of molecular modules identifies functional relationships between molecular and

phenotypic responses to OSM
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