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Abstract

Enzyme turnover numbers (kcar values) are key parameters to understand cell metabolism,
proteome allocation and physiological diversity, but experimentally measured ke data are sparse
and noisy. Here we provide a deep learning approach to predict kcac values for metabolic enzymes
in a high-throughput manner with the input of substrate structures and protein sequences. Our
approach can capture ke changes for mutated enzymes and identify amino acid residues with great
impact on kcat values. Furthermore, we applied the approach to predict genome scale kcas values for
over 300 yeast species, demonstrating that the predicted kca: values are consistent with current
evolutional understanding. Additionally, we designed an automatic pipeline using the predicted
kear values to parameterize enzyme-constrained genome scale metabolic models (ecGEMs)
facilitated by a Bayesian approach, which outperformed the default ecGEMs in predicting
phenotypes and proteomes and enabled to explain phenotype differences among yeast species. The
deep learning kca: prediction approach and automatic ecGEM construction pipeline would thus be
a valuable tool to uncover the global trend of enzyme kinetics and physiological diversity, and to

further elucidate cell metabolism on a large scale.

Key words: genome scale metabolic modelling, enzyme constraints, turnover rates, ke values,

deep learning, Bayesian approach.

Introduction
Enzyme turnover number (kcat), which defines the maximum chemical conversion rate of a reaction,
is a critical parameter for understanding metabolism, proteome allocation, growth and physiology

of a certain organism!~. There are large collections of ket values available in the enzyme databases
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BRENDA* and SABIO-RK?®, which are, however, still scarce compared to the variety of existing
organisms and metabolic enzymes, largely due to the lack of high-throughput methods for Aca
measurements. Additionally, the experimentally measured ke values have considerable
variabilities due to varying assay conditions such as pH, cofactor availability and experimental
methods®. Altogether, the sparse collection and considerable noise limit the usage of kcat data for

global analysis and may mask the enzyme evolution trend.

In particular, enzyme-constrained genome scale metabolic models (ecGEMs), where the whole-
cell metabolic network is constrained by enzyme catalytic capacities and thereby able to accurately
simulate maximum growth ability, metabolic shifts and proteome allocations, rely heavily on
genome scale ke values®’. Even for well-studied organisms, the kcat coverage is far less than
complete®!°. When data are missing, ecGEMs usually use assumed ket values from similar
reactions or adopt available kca: values from other organisms, which could cause model predictions
deviating from experimental observations’. Thus, there is a clear requirement for obtaining a large
scale of kcat values to improve the model accuracy and get more reliable simulations for delicate

phenotypes!!.

Previously, machine learning has been used to predict kcac values based on features such as average
metabolic flux and the catalytic sites obtained from protein structures’. Due to the requirement of
feature data and absolute proteome data in the training dataset, this approach was only applied to
the most well-studied bacterium Escherichia coli, thus limiting its usage for large scale prediction
of kcat values for multiple organisms. In contrast, deep learning does not rely on feature selection

and has been applied and shown great performance in modeling chemical space!?, gene
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expression!?, enzyme related parameters such as enzyme affinity'4, and enzyme commission

numbers (EC numbers)".

Inspired by these efforts, we developed a deep learning model and demonstrated its capability for
large scale prediction of kcat values, as well as for identifying key amino acid residues that affect
these predictions. We showcased the predictive power of the deep learning model by predicting
genome scale ke, profiles for 343 yeast/fungi species, accounting for more than 300,000 enzymes
and 3,000 substrates. The predicted kcar profiles enabled reconstruction of 343 ecGEMs for the
yeast/fungi species through an automatic Bayesian based pipeline, which can accurately simulate

growth phenotype among yeast species and identify the phenotype related key enzymes.

Results

Construction of a deep learning framework for kc.c prediction

A deep learning framework was developed by combining a graph neural network (GNN)
for substrates and a convolutional neural network (CNN) for proteins (Fig. 1). In this framework,
substrates were represented as molecular graphs converted from SMILES (the simplified
molecular-input line-entry system) and protein sequences were split into overlapping n-gram
amino acids. To train the neural network, we generated a comprehensive dataset from the
BRENDA* and the SABIO-RK database’. Several rounds of data preprocessing and cleaning were
performed to filter out incomplete entries with missing information and redundant entries across
databases, to ensure that the dataset contains unique entries with substrate name, substrate SMILES,
EC number, protein sequence, organism name and ke value information. The final dataset

contained 16,838 unique entries catalyzed by 7,822 unique protein sequences from 851 organisms
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93 and converting 2,672 unique substrates (Supplementary Figure 1-2). This dataset was

94  randomly split into training, validation and test dataset by 80%, 10%, and 10%, respectively.

95

96 Deep learning model performance for kca¢ prediction

97  We first evaluated the effects of different model hyperparameters on deep learning performance

98  using learning curves (Supplementary Figure 3). Note that 2-radius subgraphs and 3-gram amino

99  acids used to extract the substrate and protein vectors can considerably improve the deep learning
100  performance compared with other tested hyperparameter settings (Supplementary Figure
101  3a). When investigating the effect of vector dimensionality, we found that more highly
102  dimensional vectors used for substrates and proteins led to somewhat better performance
103 (Supplementary Figure 3b). Then, Additionally, the model performed much better when the
104  number of time steps/layers in GNN/CNN is 2 or 3 (Supplementary Figure 3c). With the settled
105  parameters (r-radius is 2, n-gram is 3, vector dimensionality is 20, number of time steps in GNN
106  is 3, and number of layers in CNN is 3), the training dataset was used to train the deep learning
107  model. We observed that the Root Mean Square Error (RMSE) of k¢, prediction in the validation
108  and test datasets gradually decreased with increasing epoch (Fig. 2a), where the number of epochs
109  represents iterations of the dataset passing through the neural network. A final deep learning model
110  was trained and stored for further use, when the RMSE was 0.99 and 1.06 for the validation and
111 test datasets, respectively, signifying that the predicted and measured kcac values were overall
112 within one order of magnitude (Fig. 2a). As a result, the deep learning model showed a
113 high predictive accuracy on the original whole dataset and test dataset (Fig. 2b for whole dataset,
114 Pearson’s r = 0.88; Supplementary Figure 4a for test dataset, Pearson’s r = 0.71; Supplementary

115  Figure 4b for test dataset with substrates and enzymes that were not present in the training dataset,


https://doi.org/10.1101/2021.08.06.455417
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455417; this version posted August 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

116  Pearson’s r = 0.70). To facilitate the further usage of our deep learning prediction tool, we also
117  supplied a user-friendly example for kca prediction in our GitHub repository with the input of
118  substrate and protein sequence
119 (https://github.com/SysBioChalmers/DLK cat/tree/master/Deeplearning Approach/Code/example).
120

121 Besides, we investigated whether the deep learning model can identify the preferred substrates for
122 promiscuous enzymes. We classified substrates with the highest kca value for promiscuous
123 enzymes as preferred substrates, and substrates with the lowest one as the alternative substrates,
124 then through comparing the predicted kc.c values for preferred substrates and alternative substrates
125  (Fig. 2¢), we found that our deep learning model are able to predict that the enzymes do indeed
126  have a higher kca for the preferred substrates (median value = 6.45 /s) compared with alternative
127  substrates (median value = 1.49 /s) (P value < le-10, for promiscuous enzymes in all dataset),
128  which validates the predictive power of our deep learning model in identifying the preferred
129  substrates. The same trend was identified using the prediction for promiscuous enzymes in our test
130  dataset (Supplementary Figure 4c, P value = 0.009).

131

132 To explore the metabolic contexts for all wildtype enzymes in the original dataset, we mapped
133 these enzymes to four modules on the basis of categorization in KEGG database!®: primary-CE
134 (enzymes involved in carbohydrate and energy metabolism), primary-AFN (amino acid, fatty acids
135  and nucleotide metabolism), intermediate (metabolism of common biomass components such as
136  cofactors) and secondary metabolism (condition specific metabolism or metabolism related to low
137  concentration metabolites) (Supplementary Table 1). Enzymes associated with primary-CE

138  metabolism on average exhibited a higher predicted Aca value than those of primary-AFN,
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139  secondary and intermediate metabolism (Fig. 2d), which is in accordance with the previous finding
140  that enzyme-substrate pairs from central carbon metabolism tend to have relatively higher
141 kea values than secondary and intermediate metabolism®.

142

143 Prediction and interpretation of k... of mutated enzymes

144 While the deep learning model displays an overall good performance for predicting kca: values (Fig.
145  2b), we next explored whether the model could capture more details such as the effects of amino
146  acid substitutions on kca values of individual enzymes. To this end, we divided the original
147  annotated dataset into two categories: one including wildtype enzymes and the other mutated
148  enzymes with amino acid substitutions. In these two splits the median kcar value of mutant enzymes
149  is lower than that for wildtype enzymes (Supplementary Figure 5a). We found that the deep
150  learning model is a good predictor of kca: values for both wildtype enzymes (Fig. 3a for the whole
151  dataset, Pearson’s r = 0.87; Supplementary Figure 5b for the test dataset, Pearson’s r = 0.65) and
152  mutated enzymes (Fig. 3b for the whole dataset, Pearson’s r = 0.90; Supplementary Figure 5c for
153  the test dataset, Pearson’s r = 0.78). Next, several well-studied enzyme-substrate pairs were
154 collected from literature and original dataset from BRENDA* and SABIO-RK® where each
155  enzyme-substrate pair had ke values reported for at least 25 unique amino acid substitutions
156  (Supplementary Table 2). The ke values predicted by the deep learning model correlated very well
157  with the reported experimental ke, values (Pearson’s r = 0.94; Fig. 3c). We subsequently divided
158  the entries for each enzyme-substrate pair into two groups based on their experimentally measured
159 ket values: (i) within 0.5-2.0 fold change of the wildtype kcat value (‘wildtype-like kcai’); or (ii) less
160  than 0.5 fold change of the wildtype kcac value (‘decreased kca’). Scarcity of mutated enzymes with

161 kea values over 2-fold of wildtype kcat precluded defining the ‘increased kcai” group!”!8. Using deep
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162  learning predicted kca: values, we validated that the enzymes from the ‘decreased kcai’ group indeed
163  showed significantly lower kca values compared to those of enzymes from ‘wildtype-like kcat’
164  group for all of the enzyme-substrate pairs (Fig. 3d). The deep learning model is thereby able to
165  capture the effects of small changes in protein sequences on activities of individual enzymes.

166

167  To investigate which subsequence or amino acid residues dominate enzyme activity, we applied a
168  neural attention mechanism to back-trace important signals from an output of the neural network
169  toward its input!®. This approach can assign attention weights to each amino acid residue, which
170  then quantitatively describes its importance for the predicted enzyme activity, where higher
171  attention weight signifies higher importance. By this method, we calculated the attention weights
172 for all residues of the Homo sapiens enzyme purine nucleoside phosphorylase (PNP) with inosine
173 as substrate, as rich mutation data is available for this enzyme-substrate pair®® (Fig. 3e,
174  Supplementary Table 3). Subsequently situating the mutations from the ‘wildtype-like kca” and
175  ‘decreased kca® groups (Fig. 3e) exhibit that mutations from the latter have significantly higher
176  attention weights (Fig. 3f, P value = 0.0014, Supplementary Table 4). Mutating amino acid
177  residues with higher attention weights is seemingly having a more substantial effect on enzyme
178  catalytic activity.

179

180  kcat prediction for metabolic enzyme-substrate pairs in 343 yeast/fungi species

181  There are reconstructed GEMs for 332 yeast species plus 11 outgroup fungi?!, but among these
182  only 14 GEMs were expanded with enzyme-constraints (ecGEMs) due to limited available Aca
183  data®?!. Thus, we applied the deep learning model to populate enzyme-constrained genome scale

184  metabolic models (ecGEMs). As our developed deep learning model allows prediction of almost
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185  all kear values for metabolic enzymes against any substrates for any species except the pair with
186  generic substrates which does not have SMILES information, this enabled generation of ecGEMs
187  for all 343 yeast/fungi species. By using the metabolite and enzyme information extracted from
188  the 343 GEMs?! as the input of the deep learning model for ke prediction (Supplementary Figure
189  6), we predicted kcar values for around three million protein-substrate pairs in 343 yeast/fungi

190  species.

191

192 By inspecting the global trend for the predicted kca: values, we firstly found that yeast and fungal
193  enzymes from primary-CE metabolism have on average the highest k.. value compared with
194  enzymes from primary-AFN, secondary and intermediate metabolism (Supplementary Figure 7a),
195  which is consistent with the global trend of all enzymes (Fig. 2c) and literature report®. Secondly,
196 we found that specialist enzymes (with narrow substrate specificity) have higher ke values
197  compared with generalist (promiscuous enzymes) that each catalyze more than one reaction in the
198  model (Supplementary Figure 7b). This is aligned with the hypothesis that ancestral enzymes that
199  exhibit broad substrate specificity and low catalytic efficiency improve their kc.c when they evolve
200 to be a specialist through processes of mutation, gene duplication and horizonal gene transfer.
201  Consistent with reports for E. coli??, this observation also holds for fungi. Thirdly, we investigated
202  whether sequence conservation trends with kca values. The ratio of non-synonymous over
203  synonymous substitutions, denoted as dN/dS, is commonly used to detect proteins undergoing
204  adaptation’>. Conserved enzymes with a lower dN/dS have significantly higher k. values
205  compared with relatively lesser conserved enzymes (with high dN/dS), implying that conserved
206  yeast/fungi enzymes under evolutionary pressure are adapted to have higher ke values

207  (Supplementary Figure 7c¢).
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208
209  Bayesian approach for 343 ecGEMs reconstruction

210  Using the predicted kcar values for 343 yeast/fungi species we generated 343 DL-ecGEMs
211  (ecGEMs parameterized with ke, values derived from deep learning model prediction). Since the
212 training data for the deep learning model were primarily measured in vitro, this implies that also
213 in vitro kea values are predicted by the deep learning model, which is undesired as in vitro kcat
214 values can be considerably different from their in vivo counterparts?*. To resolve these
215  uncertainties, we adopted a Bayesian genome scale modeling approach, which has been
216  successfully applied to resolve temperature dependence of yeast metabolism by quantifying and
217  reducing uncertainties in model parameters®>. Here, we used predicted kcat values as mean values
218  for Prior distribution and used experimentally measured phenotypes to update it to Posterior. The
219  experimental data on yeast/fungi species were collected from literature, collating 445 entries on
220  growth data for 76 species with 16 carbon sources (Supplementary Figure 8, Supplementary Table
221  5). A sequential Monte Carlo based approximate Bayesian computation (SMC-ABC) approach?®
222 was implemented to sample the kca (Methods). The ecGEMs parameterized with the mean values

223 of sampled Posterior kcat values were hereafter represented as Posterior-mean-DL-ecGEMs.
224

225  To test the generality of this SMC-ABC approach and monitor the training process, we first applied
226  this method to ecGEM of S. cerevisiae, which has the most abundant experimental data. The
227  experimental phenotype datasets for S. cerevisiae were split into training (50%) and test datasets
228  (50%). The training dataset was used to update the Prior, which would then be tested on the test
229  dataset after each generation. RMSE between the experimental measurement and prediction for

230  the test dataset was reduced proportionally with the training dataset. After 30 generations, RMSE

10
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231  for the training dataset was 0.5 and for the test dataset was 1, which demonstrates the generalization

232 of the SMC-ABC approach (Supplementary Figure 9).
233

234  The Bayesian learning process for S. cerevisiae and Y. lipolytica are shown as examples (Fig. 4 &
235  Supplementary Figure 10). We calculated RMSE values between measurements and predictions
236  for batch and chemostat growth of S. cerevisiae and Y. lipolytica under different carbon sources.
237  After several generations, the ecGEMs parameterized with sampled Posterior kea achieved with a
238  RMSE lower than 0.5 (Fig. 4a & Supplementary Figure 10a), which can accurately describe the
239  experimental observations. For instance, the S. cerevisiae ecGEM with Posterior mean kcat values
240  captures the metabolic shift at increasing growth rate (Fig. 4b)—known as the Crabtree effect?t—
241  while Y. lipolytica respires at its maximum growth rate (Supplementary Figure 10b). When
242  exploring which parameters were updated during the Bayesian process, a principal component
243  analysis (PCA) for all 9,500 generated kca sets (95 generations with 100 sets each) showed a
244  gradual move from the Prior distribution to the distinct Posterior distribution (Fig. 4c for S.
245  cerevisiae). The similar gradual move was also observed for Y. lipolytica (Supplementary Figure
246 10c). By comparing the variances of the deep learning and sampled Posterior kc.. datasets, we
247  found that the Bayesian training process mostly affected variance but not mean predicted kcac values
248  (Fig. 4d-e). For S. cerevisiae, 2,644 enzyme-substrate pairs reduced their ke variance (Sidak adj.
249  one-tailed F-test P value < 0.01), while only 146 pairs changed their mean predicted ke (Sidak adj.
250  Welch’s t test P value <0.01). For the non-conventional yeast Y. lipolytica, the value is 2,721 and
251 159 (Supplementary Figure 10d-e). Consequentially, the sampled Posterior kca has a strong
252 correlation with the deep learning predicted kcar (Pearson’s r = 0.83, for S. cerevisiae, Fig. 4f;

253  Pearson’s r = 0.83, for Y. lipolytica, Supplementary Fig. S10f).

11
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254
255  Deep learning and Bayesian approach improve ecGEMs quality

256  We subsequently generated Posterior-mean-ecGEMs from corresponding DL-ecGEMs for all the
257 343 yeast/fungi species. For comparison, we also built ecGEMs for the same species with a
258  classical kcar parameterization strategy that queried the BRENDA* and SABIO-RK® databases to
259  assign measured kcat values to enzyme/reaction pair in the model®?. In case of missing data, certain
260 flexibility was introduced by matching the kca value to other substrates, organisms, or even
261  introducing wild cards in the EC number. This approach is how ecGEMs are routinely
262  parameterized with kca values, and the resulting models are hereafter referred to as Classical-
263  ecGEMs. The Classical-ecGEMs yielded kca values for ca. 40% of enzymes included in the model
264  and generated enzymatic constraints for ca. 60% of the enzyme annotated reactions, while DL-
265 ecGEMs and their derived Posterior-mean-ecGEMs covered kca: values for ca. 80% of enzymes
266  and defined enzymatic constraints for ca. 90% of enzymatic reactions (Fig. Sa-b). While Classical-
267  ecGEMs have fewer assigned kcac values, their reconstruction pipeline also relies heavily on correct
268  enzyme EC number annotations and available measured kca values in the databases, contrasting
269  with the DL-ecGEM reconstruction that relies only on protein sequences and substrate SMILES
270  while resulting in a higher coverage. The missing prediction for DL-ecGEMs and derived
271  Posterior-mean-ecGEMs are due to the missing kca: prediction for generic substrates which does

272  not have SMILES information.
273

274  The Posterior-mean-ecGEMs and DL-ecGEMs do not only have improved k... coverage but also
275  outperform Classical-ecGEMs in the prediction of exchange rates (Fig. 5c¢) and are able to predict

276  maximum growth rates in line with the experimentally measured maximum growth rates under

12
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277  different carbon sources and oxygen availabilities (Fig. 5d & more detailed Supplementary Figure
278  11). Moreover, we used the three types of models to predict required protein abundances and
279  compared this with published quantitative proteomics data from three species with different carbon
280  sources, culture mode and medium setup (Supplementary Table 6). Proteome predictions from
281  Posterior-mean-ecGEMs had the lowest RMSE, while DL-ecGEMs already reduced the RMSE
282 by 30% when compared to Classical-ecGEMs (Fig. 5e). Combined, this showed that not only the
283  increased kcar coverage but also the Bayesian learning approach contributed to ecGEMs that are

284  better representations of the 343 fungi/yeast species.
285
286  kcat profile comparison enables to identify phenotype-related enzyme

287  The predicted kcar values were furthermore able to distinguish between Crabtree positive and
288  negative yeast species. There is much interest in understanding the presence of the Crabtree

289  phenotype among yeast species?®?

, and a model of S. cerevisiae energy metabolism has been used
290 to interpret this phenotype by comparing protein efficiency, i.e. ATP produced per protein mass
291  per time, in its two energy-producing pathways. It was postulated that the Crabtree effect is related
292  to the high yield (HY) pathway (containing Embden—Meyerhof—Parnas (EMP) pathway,
293  tricarboxylic acid (TCA) cycle and electron transport chain (ETC)) having a lower protein
294  efficiency than the low yield (LY) pathway (containing EMP plus ethanol formation) (Fig. 6a)'.
295  We here used the Posterior-mean-ecGEMs of 102 yeast species (of which 25 are Crabtree positive
296 and 77 are negative with experimental reported phenotype) to similarly calculate protein
297  efficiencies of HY and LY pathways. Of the 102 species we simulated, 89% follow the same trend

298  that Crabtree positive species have a higher LY efficiency while negative species have a higher

299  HY efficiency compared with its LY efficiency, which suggests that Crabtree positive yeast

13
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300  species are more protein efficient using the LY pathway than the HY pathway for producing the
301  same amount of ATP (Supplementary Table 7). For five commonly studied species the results are
302  shown in Fig. 6b, and even though ATP yields in their HY pathways may be different in these
303  species, primarily due to the presence of Complex I, they still follow the same trend
304  (Supplementary Table 7). Inconsistencies in strains where the HY/LY protein efficiency ratio did
305 not trend with the Crabtree effects might be due to additional regulation not considered in

306 ecGEMs*.
307

308  With the predicted genome scale kcar profiles for yeast species, we can investigate whether key
309  enzymes show significant different kcar among 25 Crabtree positive and 77 negative species. Of
310  the enzymes in the energy-producing pathways, only pyruvate kinase, citrate synthase, fumarase
311  and phosphoglucose isomerase had significantly different k... values (Fig. 6¢). Since fumarase and
312 phosphoglucose isomerase can operate in reversible direction, it is hard to explain the kinetic effect
313  towards the Crabtree effect. Thus, we would not further discuss the impact of these two enzymes
314  on the Crabtree effect. The ke values of pyruvate kinase were higher in Crabtree positive species
315  compared to negative species (P value = 0.009 for deep learning predicted kcat values, Fig. 6¢).
316  This aligns with a report that increasing pyruvate kinase activity in the Crabtree positive species
317  Schizosaccharomyces pombe would increase its fermentation ratio, decrease the growth
318  dependence on respiration and provide resistance to growth inhibiting effects of antimycin A,
319  which inhibits the respiratory complex III*!. Citrate synthase catalyzes the first and rate-limiting
320  step of the TCA cycle®?, condensing acetyl-coenzyme A and oxaloacetate to form citrate. We found
321  that the kca of citrate synthase of Crabtree negative species are higher than the Crabtree positive

322 (P value = 0.008), which would benefit metabolic flux from entering the TCA cycle (Fig. 6a &

14


https://doi.org/10.1101/2021.08.06.455417
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455417; this version posted August 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

323 6c¢). This is consistent with *C-metabolic flux analysis results, which showed that Crabtree

324  negative species have higher TCA flux than Crabtree positive species®>34.

325
326  Discussion

327  The diversity of biochemical reactions and organisms makes it difficult to generate genome scale
328 ket profiles. Here we presented a deep learning model to predict kcar values of all metabolic
329  enzymes against all substrates, only requiring substrate SMILES and protein sequences of the
330  enzymes as input, simplifying the feature selection process required for the previous machine
331 learning model®. This deep learning approach can therefore be used as a versatile kcat prediction
332 tool for any species as long as protein sequence and substrate SMILES are available.

333

334  Another advantage of the deep learning model is that it can capture kca changes towards precise
335  single amino acid substitutions. As amino acid substitution is a powerful technique in the enzyme
336  evolution field and is routinely used to probe the enzyme catalytic mechanism?®>-3¢, it is valuable
337  that attention weight calculation with our deep learning model can identify which amino acid
338  residues have a major impact on the enzyme activity. Particularly, most amino acid substitution
339  experiments performed mutagenesis in the substrate binding site region, since it is hypothesized
340  that the binding region would have a high impact towards the catalytic activity. However, the
341  profound impact remote regions can have towards the catalytic activity has been reported*’-8, Here,
342 we found high attention weights for the inosine binding region of human PNP enzyme, while also
343  identifying various non-binding residue sites with high attention weight that deserve further
344  validation. In total, our deep learning model is able to predict amino acid substitutions that can

345  impact kcat values and thereby serve as part of the protein engineering toolbox>°.
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346

347  The deep learning model is able to predict genome scale kca profiles for any species. Phenotype
348 related key enzymes can be identified through comparison of ke, values across groups with diverse
349  phenotypes, as done here to identify pyruvate kinase and citrate synthase as Crabtree-effect related
350  enzymes. This approach can as well be applied to identify phenotype related enzymes in other
351  species or even compare among species from different phylogenetic domains. Besides that, global

352 trends in enzyme evolution such as among generalist and specialist enzymes, can be analyzed.
353

354  On the other hand, predicted genome scale k.. profiles can facilitate the reconstruction of enzyme-
355  constrained models of metabolism. Deep learning predicted kca: proved to be a more comprehensive
356  but still practical alternative to matching in vitro kea values from BRENDA* and SABIO-RK?
357  database as is common in Classical-ecGEMs*?7#°, Besides the limitation of the EC number
358  annotation for less studied species, kcat values measured for the well-studied species are also far
359  away from completeness (Supplementary Figure 1c). For the well-studied species S. cerevisiae,
360  only 47 keat values are fully matched with proteins and substrates in the GEM, while other Acat
361  values are mostly from fuzzy matching with other substrates, organisms, or even introducing wild
362  cards in the EC number?, which also can introduce considerable uncertainty in the reconstructed
363  Classical-ecGEMs. In the earlier published ecGEM reconstruction, a lot of manual work is
364  required to ensure the functionality of Classical-ecGEMs?2. Compared with the Classical-ecGEM
365  reconstruction, DL-ecGEMs is fully automatic, with reduced uncertainty, significantly increased
366  enzyme coverage and ke coverage for enzymatic reactions and have a more reliable proteome
367  prediction. If there are available experimental growth data, then the ecGEM reconstruction can be

368  further improved through a Bayesian approach. Here, we showed that Posterior-mean-ecGEMs
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369 are more accurate representatives for their phenotypes and the proteome predictions are also

370  improved, which illustrates how functional ecGEMs can be automatically reconstructed.

371

372  In conclusion, we showed how a deep learning approach yields realistic kca Which can be used to
373  direct future genetic engineering, understand enzyme evolution, reconstruct ecGEMs that can be
374  used to simulate metabolic flux and phenotype prediction. Besides that, we envision many other
375  possible uses of this deep learning based k.. prediction tool such as a novel tool in genome mining
376  and Genome-Wide Association Studies (GWAS) analysis. We also envision this automatic
377  Bayesian ecGEM reconstruction pipeline for further usage in ecGEMs reconstruction, for omics
378  data incorporation and analysis.

379

380  Method and materials

381  Preparation of the dataset for deep learning model development

382  The dataset used for deep learning model construction was extracted from the BRENDA* and
383 SABIO-RK database® on 10 July 2020 by customized scripts via Application Programming
384  Interface (API). We generated a comprehensive dataset including the substrate name, organism
385  information, Enzyme Commission number (EC number), protein ID (UniProt ID), enzyme type,
386  and kca values. Besides, substrate SMILES (Simplified Molecular Input Line Entry System), a
387  string notation to represent the substrate structure, was extracted using substrate name to query the
388  PubChem compound database*!, which is the largest database of chemical compound information
389  and is easy to access*’. As different substrates usually have various synonyms in different database

390 and GEMs, we used a customized Python-based script to ensure that the same canonical SMILES
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391  could be output for the same substrates with various synonyms, which is essential to help filter
392 redundant entries obtained from different databases (Supplementary Figure 2).

393

394  For the BRENDA database*, 69,140 entries could be found after downloading and simply
395  processing the accessible data, including 46,417 entries with wildtype enzymes and 22,723 entries
396  with mutated enzymes according to the classification of enzyme type. All these entries contain the
397  required information regarding substrate name, organism, EC number, UniProt ID, enzyme type
398  and kcar value. Then we removed duplicates in the entries, and if there are multiple reported
399  measurements for the same enzyme, we only used the maximum value. For the SABIO-RK
400 database’, the same data cleaning process was performed. Besides that, we removed the entries
401  with non-standard units for kca: values, such as s™(-1)*g”"(-1), mol*s”(-1)*g”(-1), J/mol, etc. All
402  kcat values were converted to the unit in s(-1). Available SMILES for substrates were obtained via
403  the API of the PubChem database*'. Then we combined the dataset extracted from BRENDA
404  database and the SABIO-RK database. Due to high overlap between these two databases, 48,659
405  unique entries could be found after data cleaning by merging the entries with the same substrate
406  name, EC number, organism, enzyme type and kcar value for both databases, and all of the entries
407  have specific substrate SMILES information. Besides the similar approach to keep the maximal
408  values for the multiple measurement, duplicates caused by different synonyms usage in these two
409  databases are filtered using the canonical SMILES. Next, protein sequences are queried with two
410  methods, for entries with UniProt ID information, the amino acid sequences could be obtained via
411  the API of the UniProt database*’; for entries without UniProt ID, the amino acid sequences were
412 acquired from the UniProt database** and the BRENDA database* based on their EC number and

413  organism information. After that, the sequences of those entries with wildtype enzymes were
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414  mapped directly and the sequences of those entries with mutated enzymes were changed according
415  to the mutated sites. Finally, 16,838 entries (including 9,411 entries with wildtype enzymes and
416 7,427 entries with mutated enzymes) were left as the high-quality dataset for deep learning model
417  construction. Detailed numbers for the data cleaning can be found in Supplementary Figure 2. Data
418  availability:

419  https://github.com/SysBioChalmers/DLK cat/tree/master/Deeplearning Approach/Data/database
420

421  Construction of the deep learning pipeline

422  In this work, we developed an approach for in vitro kca value prediction by combining a graph
423 neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins. The
424 integration of GNN and CNN can be naturally used to handle pairs of data with different structures,
425  i.e., molecular graphs and protein sequences. In this approach, substrates are represented as
426  molecular graphs where the vertices are atoms, the edges are chemical bonds, and proteins are
427  represented as sequences in which the characters are amino acids.

428

429  For substrates, there are just a few types of chemical atoms (e.g., carbon and hydrogen) and
430  chemical bonds (e.g., single bond and double bond). To obtain more learning parameters, we
431  employed r-radius subgraphs to get the vector representations, which are induced by the
432 neighboring vertices and edges within radius r from a vertex*. Firstly, substrate SMILES was

433  converted to a molecular graph using RDKit (https://www.rdkit.org). Given a substrate graph, the

434 GNN can update each atom vector and its neighboring atom vectors transformed by the neural
435  network via a non-linear function, e.g., ReLU*. Besides, two transitions were developed in the

436  GNN, including vertex transitions and edge transitions. The aim of transitions is to ensure that the
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437  local information of vertices and edges is propagated in the graph by iterating the process and
438  summing neighboring embeddings. And the final output of the GNN is a set of real-valued
439  molecular vector representations for substrates.

440

441  Similarly, by using the CNN to scan protein sequences, we can obtain low-dimensional vector
442  representations for protein sequences transformed by the neural network via a non-linear function,
443  e.g., ReLU. To apply the CNN to proteins, we defined ‘words’ in protein sequence and split a
444  protein sequence into an overlapping n-gram (n = 1, 2, 3) amino acids*. In this work, to avoid
445  low-frequency words in the learning representations, relatively smaller n-gram number of 1, 2 or
446 3 was set. Also, other important parameters of the neural networks (CNN & GNN) were set as
447  follows: number of layers in CNN: 2, 3 or 4; number of time steps in GNN: 2, 3 or 4; window size:
448 11 (fixed); r-radius: 0, 1 or 2; vector dimensionality: 5, 10 or 20. These different settings were
449  explored based on R Squared (R?) in Equation 1 during the hypermeter tuning to find which
450  hyperparameter is better for improving the deep learning performance. And finally, we used the

451  optimal hyperparameters to train our deep learning model.

452 R? = 1— ZimVieVip” ()
zi=1(yie_7)2

453  where y;, is the predicted kcar value, yie is the experimental ke value, n is the total number of
454  validation dataset.

455

456  After the acquisition of the substrate molecular vector representations and the protein sequence
457  vector representations, we concatenated them together and an output vector (kca: value) to train the
458  deep learning framework. During the training process, all the datasets were shuffled at the first

459  step, and then were randomly split into training dataset, validation dataset and test dataset at the
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460  ratio of 80%:10%:10%. Given a set of substrate-protein pairs and the kcac values in the training
461  dataset, the aim of training process is to minimize its loss function. The best model was chosen
462  according to the minimal Root Mean Square Error (RMSE) in Equation 2 on the validation dataset
463  with the least spread between training dataset and validation dataset. For building and training
464  models, the PyTorch v1.4.0 software package was utilized and accessed using the python interface

465  under CUDA/10.1.243.

1 n
466 RMSE = \[z Zi=1(yip —Vie)? (2)

467  wherey, is the predicted kca value, yie is the experimental kca¢ value, n is the total number of dataset
468  (validation dataset or test dataset).

469

470  Analysis of experimental and deep learning-based kca¢ values across different metabolic
471  contexts

472 According to the classification of metabolic pathways, metabolic contexts were mainly divided
473 into four different subsystems: primary metabolism-CE (carbohydrate and energy), involving the
474  main carbon and energy metabolism, e.g., glycolysis/gluconeogenesis, TCA cycle, pentose
475  phosphate pathway, etc; primary metabolism-AFN (amino acids, fatty acids, and nucleotides);
476  intermediate metabolism, related to the biosynthesis and degradation of cellular components, such
477  as coenzymes and cofactors; and secondary metabolism, associated with metabolites that are
478  produced in specific cells or tissues, e.g., flavonoid biosynthesis, caffeine metabolism etc®. To
479  explore the metabolic subsystems for all of the wildtype enzymes in the experimental dataset, the
480  module in KEGG database!'® was utilized to assign metabolic pathways for enzyme-substrate pairs
481 by linking the detailed metabolic pathway in KEGG API with EC number annotated in each

482  enzyme-substrate pair. Detailed classification can be found in Supplementary Table 1. Using the

21


https://doi.org/10.1101/2021.08.06.455417
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455417; this version posted August 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

483  trained deep learning model, the predicted kca values were generated for all the enzyme-substrate
484  pairs. The relationship between these predicted kcar values and various metabolic contexts was
485  further analyzed, which was compared with the trends of the annotated experimental results.

486

487  Interpretation of the reasoning of deep learning with neural attention mechanism

488  To interpretate which subsequences or residue sites are more important for the substrate, the neural
489  attention mechanism was employed by assigning attention weights to the subsequences'®. A higher
490  attention weight of one residue means that residue is more important for the enzyme activity
491  towards the specific substrate. Such attention weights were modeled based on the output of the

492  neural network.

493 C= {Cl(t) , Cz(t)' C3(t), . Cn(t)} (3)

494 hsubstrate = f(WinterySubstrate + b) (4)
495 h; = f(Winterci +b) (5)

496 a; = o(h" g pstrarehi) (6)

497  where C is a set of hidden vectors for the protein sequence, ¢/ to ¢, are the sub-hidden vectors
498  for the split subsequences, Ysupsirare 1S the substrate molecular vector, Wi and b are the weight
499  matrix and the bias vector in the neural network, respectively, f is a non-linear activation function
500  (e.g., ReLU), a;is the final attention weight value.

501

502  For a defined protein, it could be split into overlapping n-gram amino acids and calculated as a set
503  of hidden vectors in Equation 3. Given a substrate molecular vector ysussirare and a set of protein
504  hidden vectors, the substrate embeddings (hsussirare) and subsequence embeddings (h;) could be

505  output based on the neural network as shown in Equation 4 and Equation 5. By considering the
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506  embeddings of yussirare, the attention weight value for each subsequence was accessible in Equation
507 6, which represents the importance signals of the protein subsequence towards the enzyme activity
508  for a certain substrate.

509

510  Prediction of kca¢ values for 343 yeast/fungi species

511 The GEMs of 343 yeast/fungi species were downloaded from the GitHub repository?!. For each
512 model, all reversible enzymatic reactions were split to forward and backward reactions. Reactions
513  catalyzed by isoenzymes were also split to multiple reactions with one enzyme complex for each
514  reaction. Substrates were extracted from the model and mapped to MetaNetX database to get
515  SMILES structure using corresponding annotated MetaNet IDs for metabolites*’. Protein IDs for
516  the enzymes were from the model.grRules. Since there are around 200 yeast species are newly
517  sequenced*® and are not included in the UniProt database*, protein sequences were queried by the
518 protein ID in the protein fasta file for each species (Supplementary Dataset). Reaction IDs,
519  substrate names, substrate SMILES and protein IDs were combined as the input file for the deep
520  learning kca prediction model.

521

522 Analysis of kcac values and dN/dS for 343 yeast/fungi species

523 Inaprevious study, the genomes of 343 yeast/fungi species combined with comprehensive genome
524  annotations were publicly available*®. The gene-level dN/dS of gene sequences for pairs of
525  orthologous genes from the 343 species were calculated with yn00 from PAML v4.7%. For this
526  computational framework, the input is the single-copy ortholog groups (OGs), and the output is
527  the gene-level dN/dS values extracted from the PAML output files. By mapping the predicted Acat

528  values with the gene-level dN/dS values via the bridge of protein ID, a global analysis was
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529  performed between the ke values and the dN/dS values for 343 yeast/fungi species across the
530  outgroup (11 fungal species) together with 12 major clades divided by the genus-level phylogeny
531  for 332 yeast species.

532

533 ecGEM reconstruction

534  ecGEMs are reconstructed by adding enzymatic constraints (Equation 7) into the basic constraints
535  of basic GEMs.

536 v < k2« [E](7)

537  where v; stands for the metabolic flux (mmol/gDW/h) of the reaction j, [E;] stands for the enzyme

Lj

538  concentration for the enzyme i that catalyzes reaction j and k;,

is the catalytic turnover number
539  for the enzyme catalyzing reaction j. This constraint is applied to all enzymatic reactions with
540  available kca values.

541

542 We used two formats of ecGEMs in the reconstruction process: we adopted the SMOMENT?’
543  format in the Bayesian modeling process to speed up the kcae mapping process and linear problem
544  construction in the SMC-ABC search; while in the model evaluation and final format, we used the
545  GECKO format to compile all kcat values in the model S matrix which would be compatible with
546 all developed GECKO functions>°. There is a developed customized function
547  convertToGeckoModel to facilitate the conversion for these two formats.

548

549  Classical-ecGEM reconstruction queries ket values from BRENDA database by matching the EC

550  number, which is heavily relied on the database EC number annotation for the specific species®?’.

551  Since more than 200 out of 343 yeast/fungi species are not annotated in UniProt** and KEGG'®,
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552  EC numbers for orthologs annotated in S. cerevisiae were borrowed to facilitate Classical-ecGEM
553  reconstruction process for all these 343 species. The kca extraction process used the criteria from
554  the process 13 in the reconstruction methods of the reference®.

555

556  DL-ecGEM reconstruction extracts all kcar values from the deep learning predicted file. To assign
557 ket value for each metabolic reaction, we follow the criteria below 1) kca values predicted for
558  currency metabolites such as H,O, H* were excluded; 2) If there are multiple substrates in the
559  reaction, maximum values among substrates were kept; 3) If multiple subunits exist in the enzyme
560  complex, we used the maximum values among all subunits to represent the kcar for the complex.
561

562  Posterior-mean-ecGEM reconstruction uses mean values for accepted Posterior distribution. The
563  kcat values in the DL-ecGEMs combined with the RMSE (which is 1 in logl10 scale) of the kcat
564  prediction were used as mean values and variance to make the Prior distribution. Each ke, value
565  was described with a log normal distribution N(kcat; , 1). This Prior iteratively morphs into a
566  Posterior through multiple generations?. For each generation, we sampled 128 kcat datasets within
567  the distribution, and 100 among those 128 datasets with smaller distance (see next section for the
568 SMC-ABC distance calculation) between phenotype measurements and predictions which can
569  better represent the phenotype were kept to make the distribution for the next generation. Until the
570  distance is lower than the cutoff (RMSE of 0.5), then we accepted the final distribution as Posterior
571  distubiton®,

572

573 SMC-ABC distance function
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574  Experimental growth data and related exchange rates in batch and chemostat conditions were
575  collected for yeast/fungi species, which are available at Supplementary Table 5. The distance
576  function was designed as RMSE between simulated and experimental values for maximal growth
577  simulations and exchange rates simulations. As for maximal growth simulation, the medium was
578  set in the model by allowing the free uptake of composition, and the objective function was set to
579  maximizing growth. The RMSE was calculated for the simulated and measured growth rates. For
580  the exchange rates simulation, the carbon source uptake rates were constrained based on
581  experimental measurements, and the objective function was also set to maximizing growth. The
582 RMSE was calculated for the simulated and measured exchange rates of all measured exo-
583  metabolites. All measured and simulated rates were normalized by the carbon numbers of the
584  corresponding metabolites before calculation of RMSE. The carbon number for biomass is 41
585  (mean value for the molecular wight of I Cmol biomass of yeast is ~24.42 g°!, the biomass equals
586  to 1000 mg). Note that if the substrate or byproduct does not contain any carbon such as O, then
587  the normalizing number is 1. Then the average RMSE of both simulations was used to represent
588  the distance. SMC-ABC search would stop once the RMSE reaches the accepted value or reaches
589  the maximum generation. The accepted value for the distance is set to be lower than 0.5 and the
590 maximum generation is set to be 150.

591

592  Simulations with ecGEMs

593  We performed different kinds of simulations using the ecGEMs including simulations of growth
594  and protein abundance. Different mediums and growth conditions were set to match the
595  experiment measurement condition, e.g., using xylose as the carbon source or anaerobic condition.

596  Since there are no measured total protein abundance in the biomass for all yeast/fungi species, we
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597  used the protein content mass to serve as the total protein abundance for each species and used a
598  sigma factor of 0.5 to serve as the ratio of metabolic protein ratio in total protein abundance.

599

600  Statistical tests for comparison between sampled Prior and Posterior dataset

601  Sampled Prior and Posterior k.. datasets were compared for the difference in the mean values and
602  the variance. Welch’s t test was used to test the significance for the mean values, while one-tailed
603  F-test was used for the reduced variances. The cutoff for the significance was set to 0.01 for the
604  adjusted P value corrected by the Siddk method.

605

606  Proteome data collection

607 All  collected proteome data are available in the  GitHub  repository
608  (https://github.com/SysBioChalmers/DLKcat/tree/master/BayesianApporach/Data/Proteome_ref.
609  xlIsx). For relative proteome datasets, we normalized by the identical condition of the absolute

52,53

610  proteome data from the literature following the same method as’~>>. Reference absolute datasets

611  for those relative proteome datasets were documented in the same file.

612

613  Calculation of protein cost and efficiency

614  To calculate the protein cost of the HY pathway, the glucose uptake rate was fixed at 1
615 mmol/gDW/h, and the non-growth associated maintenance energy (NGAM) reaction was
616  maximized. The total protein pool reaction was then minimized with fixing the NGAM reaction at
617  the maximized value. The minimized flux through the total protein pool reaction is the protein cost
618  of the HY pathway for converting one glucose to ATP. As for the protein cost calculation of LY

619  pathway, glucose uptake rate was fixed at 1 mmol/gDW/h, the ethanol production was maximized.
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620  Then the ethanol exchange rate was fixed at the maximized value, and NGAM was maximized.
621  After that, NGAM was also fixed at the maximized value, and total protein pool was minimized
622  to calculate the protein cost for LY pathway. We also examined the flux distribution to ensure that
623  other energy producing pathways are all inactive during this simulation. Protein efficiency is
624  defined as the protein cost for producing one flux ATP in both pathways.

625

626  Code and data availability

627  To facilitate further usage, we provide all codes, example and detailed instruction in GitHub
628  repository: https://github.com/SysBioChalmers/DLKcat. Protein sequence fasta files, deep
629  learning predicted kca values, classcial-ecGEMs, DL-ecGEMs and Posterior-mean-ecGEMs for
630 343 yeast/fungi species are available as Supplementary Dataset on the zenodo:
631  https://doi.org/10.5281/zenodo.5164210.
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774  Figure 1 Deep learning of enzyme turnover numbers (kcat) for genome scale metabolic model
775  (GEM) parameterization. Firstly, we developed an approach for ke prediction by combining a
776  graph neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins.
777  Secondly, we extracted information from GEMs as the input for the deep learning model to predict
778  kea values. Thirdly, we developed a Bayesian facilitated pipeline to reconstruct enzyme-

779  constrained GEMs (ecGEMs) using the predicted kca profiles from deep learning model.
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Figure 2 Deep learning model performance for kca prediction. (a) The RMSE of kcar prediction
during the training process. (b) Performance of the final deep learning model trained by GNN and
CNN. The correlation between predicted kcac value and those present in the whole dataset was
evaluated. The brightness of color represents the density of data points. (¢) Enzyme promiscuity
analysis on the whole dataset. For enzymes with multiple substrates, we divided the substrates as
preferred and alternative by their experimental measured kca, then used the predicted kca values
for this boxplot. A two-sided Wilcoxon rank sum test was used to calculate P value. (d) Cumulative
distribution of deep learning-based kcac values for enzyme-substrate pairs belonging to different
metabolic contexts. Abbreviations: CE, carbohydrate and energy; AFN, amino acids, fatty acids,

and nucleotides.
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795  Figure 3 Deep learning model for the prediction and interpretation of kcac of mutated enzymes. (a)
796  Prediction performance of ke values for all of the wildtype enzymes via deep learning model. The
797  brightness of color represents the density of data points. (b) Prediction performance of ke values
798  for all of the mutated enzymes via deep learning model. The brightness of color represents the
799  density of data points. (¢) Comparison between predicted and measured kca: values for several well-
800  studied enzyme-substrate pairs with rich experimental mutagenesis data. Enzyme abbreviations:
801 DHFR, dihydrofolate reductase; PGDH, D-3-phosphoglycerate dehydrogenase; AKIII,
802  aspartokinase III; DAOCS, deacetoxycephalosporin C synthase; PNP, purine nucleoside
803  phosphorylase; GGPPs, geranylgeranyl pyrophosphate synthase. Substrate abbreviations: G3P,
804  glycerate 3-phosphate; L-Asp, L-Aspartate; IPP, isopentenyl diphosphate. (d) Comparison of
805  predicted kcar values on several mutated enzyme-substrate pairs between ‘wildtype-like kca” and
806  enzymes with ‘decreased kcai’. P value < 0.05 (*), P value < 0.01 (**) and P value < 0.001 (***).
807  (e) Attention weight of sequence position in the wildtype PNP enzyme using inosine as the
808  substrate. The mutated enzymes (enzymes with ‘wildtype-like kca” and enzymes with ‘decreased
809  kca’) were marked on the curve according to their mutated position. The dot size indicates the
810  number of mutated enzymes occurring in that mutated position. (f) Comparisons of the overall
811  attention weight for the PNP — Inosine pair between enzymes with ‘wildtype-like kca:” and enzymes
812  with ‘decreased kcai’. For two group comparisons in subfigure d and f, a two-sided Wilcoxon rank

&13  sum test was used to calculate P value.
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817  Figure 4 Bayesian modeling training performance for S. cerevisiae ecGEM. (a) RMSE for
818  phenotype measurement and prediction during Bayesian training process. (b) Simulated exchange

819  rates by Posterior-mean-ecGEM (line) compared with experimental data (dot). kca values in the

820  Posterior-mean-ecGEMs here is mean values from 100 sampled Posterior datasets after the
821  Bayesian training process. (¢) Principal component analysis (PCA) for kc.c datasets sampled in the
822  Bayesian training approach. Each parameter in the set was standardized by subtracting the mean
823  and then divided by the standard deviation before PCA. Sampled 100 Prior datasets are
824  highlighted in blue, while sampled 100 Posterior datasets are highlighted in red. All other datasets
825  were termed as “intermediate” and marked in gray. (d) The number of enzymes with a significantly
826  changed mean values (Sidak adjusted Welch’s t test P value <0.01, two-sided) and variance
827  (Siddk adjusted one-tailed F-test P value <0.01) between sampled Prior and Posterior ke
828  datasets. (e) Variance distribution comparison for Prior and Posterior distribution. (f) Correlation
829  between deep learning predicted kcar and Posterior mean keat.
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Figure 5 Evaluation of three ecGEM modelling frameworks including Classical-ecGEM, DL-
ecGEMs and Posterior-mean-ecGEMs. Enzymatic constraint coverage comparison for (a)
enzymes and (b) enzymatic reactions. (¢c) RMSE for the phenotype prediction. (d) Growth
prediction for Posterior-mean-ecGEMs. (e) Performance of three types of ecGEMs in predicting
quantitative proteome data, Classical-ecGEM, DL-ecGEM and Posterior-mean-ecGEM are shown.
RMSE is shown on log10 scale. Classical-ecGEM is constructed following the pipeline to extract
kear profiles from BRENDA and SABIORK, DL-ecGEMs are constructed using the kcar profiles
predicted from the deep learning model. Posterior-mean-ecGEMs here were parameterized by the
kear profiles of the mean values from 100 Posterior datasets after the Bayesian training process.
Detailed conditions for those proteome datasets can be found in the Supplementary Table 6 and

collected proteome dataset are available in GitHub repository.
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a Hy LY b Species  S. cerevisiae L. kluyveri S. pombe K. marxianus Y. lipolytica
Crabtree Positive Positive Positive Negative Negative
HY-efficiency 0.279 0.366 0.257 0.396 0.374
LY-efficiency 0.647 0.489 0.281 0.159 0.116
Pyruvate | | PEP . 3
kinase PYR 4 % o
onA l Ethanol 3 5
@
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845 ATP [ Crabtree positive Crabtree negative

846  Figure 6 Explanation of the Crabtree effect by energy metabolism. (a) High-yield (HY) and low-
847  yield (LY) pathway definition. (b) Model-inferred protein efficiency of energy metabolism in
848  several common yeast species. Protein efficiency: ATP produced per protein mass per time (Unit:
849  mmolATP/gProtein/h). (c) Enzymes with significantly different k. values between Crabtree

850  positive and negative species. A two-sided Wilcoxon rank sum test was used to calculate P value.
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