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 2 

Abstract 24 

Enzyme turnover numbers (kcat values) are key parameters to understand cell metabolism, 25 

proteome allocation and physiological diversity, but experimentally measured kcat data are sparse 26 

and noisy. Here we provide a deep learning approach to predict kcat values for metabolic enzymes 27 

in a high-throughput manner with the input of substrate structures and protein sequences. Our 28 

approach can capture kcat changes for mutated enzymes and identify amino acid residues with great 29 

impact on kcat values. Furthermore, we applied the approach to predict genome scale kcat values for 30 

over 300 yeast species, demonstrating that the predicted kcat values are consistent with current 31 

evolutional understanding. Additionally, we designed an automatic pipeline using the predicted 32 

kcat values to parameterize enzyme-constrained genome scale metabolic models (ecGEMs) 33 

facilitated by a Bayesian approach, which outperformed the default ecGEMs in predicting 34 

phenotypes and proteomes and enabled to explain phenotype differences among yeast species. The 35 

deep learning kcat prediction approach and automatic ecGEM construction pipeline would thus be 36 

a valuable tool to uncover the global trend of enzyme kinetics and physiological diversity, and to 37 

further elucidate cell metabolism on a large scale. 38 

 39 

Key words: genome scale metabolic modelling, enzyme constraints, turnover rates, kcat values, 40 

deep learning, Bayesian approach. 41 

 42 

Introduction 43 

Enzyme turnover number (kcat), which defines the maximum chemical conversion rate of a reaction, 44 

is a critical parameter for understanding metabolism, proteome allocation, growth and physiology 45 

of a certain organism1–3. There are large collections of kcat values available in the enzyme databases 46 
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BRENDA4 and SABIO-RK5, which are, however, still scarce compared to the variety of existing 47 

organisms and metabolic enzymes, largely due to the lack of high-throughput methods for kcat 48 

measurements. Additionally, the experimentally measured kcat values have considerable 49 

variabilities due to varying assay conditions such as pH, cofactor availability and experimental 50 

methods6. Altogether, the sparse collection and considerable noise limit the usage of kcat data for 51 

global analysis and may mask the enzyme evolution trend.  52 

 53 

In particular, enzyme-constrained genome scale metabolic models (ecGEMs), where the whole-54 

cell metabolic network is constrained by enzyme catalytic capacities and thereby able to accurately 55 

simulate maximum growth ability, metabolic shifts and proteome allocations, rely heavily on 56 

genome scale kcat values2,7. Even for well-studied organisms, the kcat coverage is far less than 57 

complete8–10. When data are missing, ecGEMs usually use assumed kcat values from similar 58 

reactions or adopt available kcat values from other organisms, which could cause model predictions 59 

deviating from experimental observations7. Thus, there is a clear requirement for obtaining a large 60 

scale of kcat values to improve the model accuracy and get more reliable simulations for delicate 61 

phenotypes11. 62 

 63 

Previously, machine learning has been used to predict kcat values based on features such as average 64 

metabolic flux and the catalytic sites obtained from protein structures9. Due to the requirement of 65 

feature data and absolute proteome data in the training dataset, this approach was only applied to 66 

the most well-studied bacterium Escherichia coli, thus limiting its usage for large scale prediction 67 

of kcat values for multiple organisms. In contrast, deep learning does not rely on feature selection 68 

and has been applied and shown great performance in modeling chemical space12, gene 69 
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expression13, enzyme related parameters such as enzyme affinity14, and enzyme commission 70 

numbers (EC numbers)15.  71 

 72 

Inspired by these efforts, we developed a deep learning model and demonstrated its capability for 73 

large scale prediction of kcat values, as well as for identifying key amino acid residues that affect 74 

these predictions. We showcased the predictive power of the deep learning model by predicting 75 

genome scale kcat profiles for 343 yeast/fungi species, accounting for more than 300,000 enzymes 76 

and 3,000 substrates. The predicted kcat profiles enabled reconstruction of 343 ecGEMs for the 77 

yeast/fungi species through an automatic Bayesian based pipeline, which can accurately simulate 78 

growth phenotype among yeast species and identify the phenotype related key enzymes. 79 

 80 

Results  81 

Construction of a deep learning framework for kcat prediction  82 

A deep learning framework was developed by combining a graph neural network (GNN) 83 

for substrates and a convolutional neural network (CNN) for proteins (Fig. 1). In this framework, 84 

substrates were represented as molecular graphs converted from SMILES (the simplified 85 

molecular-input line-entry system) and protein sequences were split into overlapping n-gram 86 

amino acids. To train the neural network, we generated a comprehensive dataset from the 87 

BRENDA4 and the SABIO-RK database5. Several rounds of data preprocessing and cleaning were 88 

performed to filter out incomplete entries with missing information and redundant entries across 89 

databases, to ensure that the dataset contains unique entries with substrate name, substrate SMILES, 90 

EC number, protein sequence, organism name and kcat value information. The final dataset 91 

contained 16,838 unique entries catalyzed by 7,822 unique protein sequences from 851 organisms 92 
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and converting 2,672 unique substrates (Supplementary Figure 1-2). This dataset was 93 

randomly split into training, validation and test dataset by 80%, 10%, and 10%, respectively.  94 

  95 

Deep learning model performance for kcat prediction 96 

We first evaluated the effects of different model hyperparameters on deep learning performance 97 

using learning curves (Supplementary Figure 3). Note that 2-radius subgraphs and 3-gram amino 98 

acids used to extract the substrate and protein vectors can considerably improve the deep learning 99 

performance compared with other tested hyperparameter settings (Supplementary Figure 100 

3a). When investigating the effect of vector dimensionality, we found that more highly 101 

dimensional vectors used for substrates and proteins led to somewhat better performance 102 

(Supplementary Figure 3b). Then, Additionally, the model performed much better when the 103 

number of time steps/layers in GNN/CNN is 2 or 3 (Supplementary Figure 3c). With the settled 104 

parameters (r-radius is 2, n-gram is 3, vector dimensionality is 20, number of time steps in GNN 105 

is 3, and number of layers in CNN is 3), the training dataset was used to train the deep learning 106 

model. We observed that the Root Mean Square Error (RMSE) of kcat prediction in the validation 107 

and test datasets gradually decreased with increasing epoch (Fig. 2a), where the number of epochs 108 

represents iterations of the dataset passing through the neural network. A final deep learning model 109 

was trained and stored for further use, when the RMSE was 0.99 and 1.06 for the validation and 110 

test datasets, respectively, signifying that the predicted and measured kcat values were overall 111 

within one order of magnitude (Fig. 2a). As a result, the deep learning model showed a 112 

high predictive accuracy on the original whole dataset and test dataset (Fig. 2b for whole dataset, 113 

Pearson’s r = 0.88; Supplementary Figure 4a for test dataset, Pearson’s r = 0.71; Supplementary 114 

Figure 4b for test dataset with substrates and enzymes that were not present in the training dataset, 115 
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Pearson’s r = 0.70). To facilitate the further usage of our deep learning prediction tool, we also 116 

supplied a user-friendly example for kcat prediction in our GitHub repository with the input of 117 

substrate and protein sequence 118 

(https://github.com/SysBioChalmers/DLKcat/tree/master/DeeplearningApproach/Code/example).  119 

 120 

Besides, we investigated whether the deep learning model can identify the preferred substrates for 121 

promiscuous enzymes. We classified substrates with the highest kcat value for promiscuous 122 

enzymes as preferred substrates, and substrates with the lowest one as the alternative substrates, 123 

then through comparing the predicted kcat values for preferred substrates and alternative substrates 124 

(Fig. 2c), we found that our deep learning model are able to predict that the enzymes do indeed 125 

have a higher kcat for the preferred substrates (median value = 6.45 /s) compared with alternative 126 

substrates (median value = 1.49 /s) (P value < 1e-10, for promiscuous enzymes in all dataset), 127 

which validates the predictive power of our deep learning model in identifying the preferred 128 

substrates. The same trend was identified using the prediction for promiscuous enzymes in our test 129 

dataset (Supplementary Figure 4c, P value = 0.009). 130 

 131 

To explore the metabolic contexts for all wildtype enzymes in the original dataset, we mapped 132 

these enzymes to four modules on the basis of categorization in KEGG database16: primary-CE 133 

(enzymes involved in carbohydrate and energy metabolism), primary-AFN (amino acid, fatty acids 134 

and nucleotide metabolism), intermediate (metabolism of common biomass components such as 135 

cofactors) and secondary metabolism (condition specific metabolism or metabolism related to low 136 

concentration metabolites) (Supplementary Table 1). Enzymes associated with primary-CE 137 

metabolism on average exhibited a higher predicted kcat value than those of primary-AFN, 138 
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secondary and intermediate metabolism (Fig. 2d), which is in accordance with the previous finding 139 

that enzyme-substrate pairs from central carbon metabolism tend to have relatively higher 140 

kcat values than secondary and intermediate metabolism6.  141 

  142 

Prediction and interpretation of kcat of mutated enzymes 143 

While the deep learning model displays an overall good performance for predicting kcat values (Fig. 144 

2b), we next explored whether the model could capture more details such as the effects of amino 145 

acid substitutions on kcat values of individual enzymes. To this end, we divided the original 146 

annotated dataset into two categories: one including wildtype enzymes and the other mutated 147 

enzymes with amino acid substitutions. In these two splits the median kcat value of mutant enzymes 148 

is lower than that for wildtype enzymes (Supplementary Figure 5a). We found that the deep 149 

learning model is a good predictor of kcat values for both wildtype enzymes (Fig. 3a for the whole 150 

dataset, Pearson’s r = 0.87; Supplementary Figure 5b for the test dataset, Pearson’s r = 0.65) and 151 

mutated enzymes (Fig. 3b for the whole dataset, Pearson’s r = 0.90; Supplementary Figure 5c for 152 

the test dataset, Pearson’s r = 0.78). Next, several well-studied enzyme-substrate pairs were 153 

collected from literature and original dataset from BRENDA4 and SABIO-RK5 where each 154 

enzyme-substrate pair had kcat values reported for at least 25 unique amino acid substitutions 155 

(Supplementary Table 2). The kcat values predicted by the deep learning model correlated very well 156 

with the reported experimental kcat values (Pearson’s r = 0.94; Fig. 3c). We subsequently divided 157 

the entries for each enzyme-substrate pair into two groups based on their experimentally measured 158 

kcat values: (i) within 0.5-2.0 fold change of the wildtype kcat value (‘wildtype-like kcat’); or (ii) less 159 

than 0.5 fold change of the wildtype kcat value (‘decreased kcat’). Scarcity of mutated enzymes with 160 

kcat values over 2-fold of wildtype kcat precluded defining the ‘increased kcat’ group17,18. Using deep 161 
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learning predicted kcat values, we validated that the enzymes from the ‘decreased kcat’ group indeed 162 

showed significantly lower kcat values compared to those of enzymes from ‘wildtype-like kcat’ 163 

group for all of the enzyme-substrate pairs (Fig. 3d). The deep learning model is thereby able to 164 

capture the effects of small changes in protein sequences on activities of individual enzymes. 165 

  166 

To investigate which subsequence or amino acid residues dominate enzyme activity, we applied a 167 

neural attention mechanism to back-trace important signals from an output of the neural network 168 

toward its input19. This approach can assign attention weights to each amino acid residue, which 169 

then quantitatively describes its importance for the predicted enzyme activity, where higher 170 

attention weight signifies higher importance. By this method, we calculated the attention weights 171 

for all residues of the Homo sapiens enzyme purine nucleoside phosphorylase (PNP) with inosine 172 

as substrate, as rich mutation data is available for this enzyme-substrate pair20 (Fig. 3e, 173 

Supplementary Table 3). Subsequently situating the mutations from the ‘wildtype-like kcat’ and 174 

‘decreased kcat’ groups (Fig. 3e) exhibit that mutations from the latter have significantly higher 175 

attention weights (Fig. 3f, P value = 0.0014, Supplementary Table 4). Mutating amino acid 176 

residues with higher attention weights is seemingly having a more substantial effect on enzyme 177 

catalytic activity.  178 

  179 

kcat prediction for metabolic enzyme-substrate pairs in 343 yeast/fungi species 180 

There are reconstructed GEMs for 332 yeast species plus 11 outgroup fungi21, but among these 181 

only 14 GEMs were expanded with enzyme-constraints (ecGEMs) due to limited available kcat 182 

data2,21. Thus, we applied the deep learning model to populate enzyme-constrained genome scale 183 

metabolic models (ecGEMs). As our developed deep learning model allows prediction of almost 184 
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all kcat values for metabolic enzymes against any substrates for any species except the pair with 185 

generic substrates which does not have SMILES information, this enabled generation of ecGEMs 186 

for all 343 yeast/fungi species. By using the metabolite and enzyme information extracted from 187 

the 343 GEMs21 as the input of the deep learning model for kcat prediction (Supplementary Figure 188 

6), we predicted kcat values for around three million protein-substrate pairs in 343 yeast/fungi 189 

species.  190 

 191 

By inspecting the global trend for the predicted kcat values, we firstly found that yeast and fungal 192 

enzymes from primary-CE metabolism have on average the highest kcat value compared with 193 

enzymes from primary-AFN, secondary and intermediate metabolism (Supplementary Figure 7a), 194 

which is consistent with the global trend of all enzymes (Fig. 2c) and literature report6. Secondly, 195 

we found that specialist enzymes (with narrow substrate specificity) have higher kcat values 196 

compared with generalist (promiscuous enzymes) that each catalyze more than one reaction in the 197 

model (Supplementary Figure 7b). This is aligned with the hypothesis that ancestral enzymes that 198 

exhibit broad substrate specificity and low catalytic efficiency improve their kcat when they evolve 199 

to be a specialist through processes of mutation, gene duplication and horizonal gene transfer. 200 

Consistent with reports for E. coli22, this observation also holds for fungi. Thirdly, we investigated 201 

whether sequence conservation trends with kcat values. The ratio of non-synonymous over 202 

synonymous substitutions, denoted as dN/dS, is commonly used to detect proteins undergoing 203 

adaptation23. Conserved enzymes with a lower dN/dS have significantly higher kcat values 204 

compared with relatively lesser conserved enzymes (with high dN/dS), implying that conserved 205 

yeast/fungi enzymes under evolutionary pressure are adapted to have higher kcat values 206 

(Supplementary Figure 7c). 207 
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 208 

Bayesian approach for 343 ecGEMs reconstruction 209 

Using the predicted kcat values for 343 yeast/fungi species we generated 343 DL-ecGEMs 210 

(ecGEMs parameterized with kcat values derived from deep learning model prediction). Since the 211 

training data for the deep learning model were primarily measured in vitro, this implies that also 212 

in vitro kcat values are predicted by the deep learning model, which is undesired as in vitro kcat 213 

values can be considerably different from their in vivo counterparts24. To resolve these 214 

uncertainties, we adopted a Bayesian genome scale modeling approach, which has been 215 

successfully applied to resolve temperature dependence of yeast metabolism by quantifying and 216 

reducing uncertainties in model parameters25. Here, we used predicted kcat values as mean values 217 

for Prior distribution and used experimentally measured phenotypes to update it to Posterior. The 218 

experimental data on yeast/fungi species were collected from literature, collating 445 entries on 219 

growth data for 76 species with 16 carbon sources (Supplementary Figure 8, Supplementary Table 220 

5). A sequential Monte Carlo based approximate Bayesian computation (SMC-ABC) approach25 221 

was implemented to sample the kcat (Methods). The ecGEMs parameterized with the mean values 222 

of sampled Posterior kcat values were hereafter represented as Posterior-mean-DL-ecGEMs.  223 

 224 

To test the generality of this SMC-ABC approach and monitor the training process, we first applied 225 

this method to ecGEM of S. cerevisiae, which has the most abundant experimental data. The 226 

experimental phenotype datasets for S. cerevisiae were split into training (50%) and test datasets 227 

(50%). The training dataset was used to update the Prior, which would then be tested on the test 228 

dataset after each generation. RMSE between the experimental measurement and prediction for 229 

the test dataset was reduced proportionally with the training dataset. After 30 generations, RMSE 230 
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for the training dataset was 0.5 and for the test dataset was 1, which demonstrates the generalization 231 

of the SMC-ABC approach (Supplementary Figure 9). 232 

 233 

The Bayesian learning process for S. cerevisiae and Y. lipolytica are shown as examples (Fig. 4 & 234 

Supplementary Figure 10). We calculated RMSE values between measurements and predictions 235 

for batch and chemostat growth of S. cerevisiae and Y. lipolytica under different carbon sources. 236 

After several generations, the ecGEMs parameterized with sampled Posterior kcat achieved with a 237 

RMSE lower than 0.5 (Fig. 4a & Supplementary Figure 10a), which can accurately describe the 238 

experimental observations. For instance, the S. cerevisiae ecGEM with Posterior mean kcat values 239 

captures the metabolic shift at increasing growth rate (Fig. 4b)—known as the Crabtree effect26—240 

while Y. lipolytica respires at its maximum growth rate (Supplementary Figure 10b). When 241 

exploring which parameters were updated during the Bayesian process, a principal component 242 

analysis (PCA) for all 9,500 generated kcat sets (95 generations with 100 sets each) showed a 243 

gradual move from the Prior distribution to the distinct Posterior distribution (Fig. 4c for S. 244 

cerevisiae). The similar gradual move was also observed for Y. lipolytica (Supplementary Figure 245 

10c). By comparing the variances of the deep learning and sampled Posterior kcat datasets, we 246 

found that the Bayesian training process mostly affected variance but not mean predicted kcat values 247 

(Fig. 4d-e). For S. cerevisiae, 2,644 enzyme-substrate pairs reduced their kcat variance (Šidák adj. 248 

one-tailed F-test P value < 0.01), while only 146 pairs changed their mean predicted kcat (Šidák adj. 249 

Welch’s t test P value < 0.01). For the non-conventional yeast Y. lipolytica, the value is 2,721 and 250 

159 (Supplementary Figure 10d-e). Consequentially, the sampled Posterior kcat has a strong 251 

correlation with the deep learning predicted kcat (Pearson’s r = 0.83, for S. cerevisiae, Fig. 4f; 252 

Pearson’s r = 0.83, for Y. lipolytica, Supplementary Fig. S10f). 253 
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 254 

Deep learning and Bayesian approach improve ecGEMs quality 255 

We subsequently generated Posterior-mean-ecGEMs from corresponding DL-ecGEMs for all the 256 

343 yeast/fungi species. For comparison, we also built ecGEMs for the same species with a 257 

classical kcat parameterization strategy that queried the BRENDA4 and SABIO-RK5 databases to 258 

assign measured kcat values to enzyme/reaction pair in the model2,27. In case of missing data, certain 259 

flexibility was introduced by matching the kcat value to other substrates, organisms, or even 260 

introducing wild cards in the EC number. This approach is how ecGEMs are routinely 261 

parameterized with kcat values, and the resulting models are hereafter referred to as Classical-262 

ecGEMs. The Classical-ecGEMs yielded kcat values for ca. 40% of enzymes included in the model 263 

and generated enzymatic constraints for ca. 60% of the enzyme annotated reactions, while DL-264 

ecGEMs and their derived Posterior-mean-ecGEMs covered kcat values for ca. 80% of enzymes 265 

and defined enzymatic constraints for ca. 90% of enzymatic reactions (Fig. 5a-b). While Classical-266 

ecGEMs have fewer assigned kcat values, their reconstruction pipeline also relies heavily on correct 267 

enzyme EC number annotations and available measured kcat values in the databases, contrasting 268 

with the DL-ecGEM reconstruction that relies only on protein sequences and substrate SMILES 269 

while resulting in a higher coverage. The missing prediction for DL-ecGEMs and derived 270 

Posterior-mean-ecGEMs are due to the missing kcat prediction for generic substrates which does 271 

not have SMILES information. 272 

 273 

The Posterior-mean-ecGEMs and DL-ecGEMs do not only have improved kcat coverage but also 274 

outperform Classical-ecGEMs in the prediction of exchange rates (Fig. 5c) and are able to predict 275 

maximum growth rates in line with the experimentally measured maximum growth rates under 276 
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different carbon sources and oxygen availabilities (Fig. 5d & more detailed Supplementary Figure 277 

11). Moreover, we used the three types of models to predict required protein abundances and 278 

compared this with published quantitative proteomics data from three species with different carbon 279 

sources, culture mode and medium setup (Supplementary Table 6). Proteome predictions from 280 

Posterior-mean-ecGEMs had the lowest RMSE, while DL-ecGEMs already reduced the RMSE 281 

by 30% when compared to Classical-ecGEMs (Fig. 5e). Combined, this showed that not only the 282 

increased kcat coverage but also the Bayesian learning approach contributed to ecGEMs that are 283 

better representations of the 343 fungi/yeast species. 284 

 285 

kcat profile comparison enables to identify phenotype-related enzyme 286 

The predicted kcat values were furthermore able to distinguish between Crabtree positive and 287 

negative yeast species. There is much interest in understanding the presence of the Crabtree 288 

phenotype among yeast species28,29, and a model of S. cerevisiae energy metabolism has been used 289 

to interpret this phenotype by comparing protein efficiency, i.e. ATP produced per protein mass 290 

per time, in its two energy-producing pathways. It was postulated that the Crabtree effect is related 291 

to the high yield (HY) pathway (containing Embden–Meyerhof–Parnas (EMP) pathway, 292 

tricarboxylic acid (TCA) cycle and electron transport chain (ETC)) having a lower protein 293 

efficiency than the low yield (LY) pathway (containing EMP plus ethanol formation) (Fig. 6a)1. 294 

We here used the Posterior-mean-ecGEMs of 102 yeast species (of which 25 are Crabtree positive 295 

and 77 are negative with experimental reported phenotype) to similarly calculate protein 296 

efficiencies of HY and LY pathways. Of the 102 species we simulated, 89% follow the same trend 297 

that Crabtree positive species have a higher LY efficiency while negative species have a higher 298 

HY efficiency compared with its LY efficiency, which suggests that Crabtree positive yeast 299 
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species are more protein efficient using the LY pathway than the HY pathway for producing the 300 

same amount of ATP (Supplementary Table 7). For five commonly studied species the results are 301 

shown in Fig. 6b, and even though ATP yields in their HY pathways may be different in these 302 

species, primarily due to the presence of Complex I, they still follow the same trend 303 

(Supplementary Table 7). Inconsistencies in strains where the HY/LY protein efficiency ratio did 304 

not trend with the Crabtree effects might be due to additional regulation not considered in 305 

ecGEMs30.  306 

 307 

With the predicted genome scale kcat profiles for yeast species, we can investigate whether key 308 

enzymes show significant different kcat among 25 Crabtree positive and 77 negative species. Of 309 

the enzymes in the energy-producing pathways, only pyruvate kinase, citrate synthase, fumarase 310 

and phosphoglucose isomerase had significantly different kcat values (Fig. 6c). Since fumarase and 311 

phosphoglucose isomerase can operate in reversible direction, it is hard to explain the kinetic effect 312 

towards the Crabtree effect. Thus, we would not further discuss the impact of these two enzymes 313 

on the Crabtree effect. The kcat values of pyruvate kinase were higher in Crabtree positive species 314 

compared to negative species (P value = 0.009 for deep learning predicted kcat values, Fig. 6c). 315 

This aligns with a report that increasing pyruvate kinase activity in the Crabtree positive species 316 

Schizosaccharomyces pombe would increase its fermentation ratio, decrease the growth 317 

dependence on respiration and provide resistance to growth inhibiting effects of antimycin A, 318 

which inhibits the respiratory complex III31. Citrate synthase catalyzes the first and rate-limiting 319 

step of the TCA cycle32, condensing acetyl-coenzyme A and oxaloacetate to form citrate. We found 320 

that the kcat of citrate synthase of Crabtree negative species are higher than the Crabtree positive 321 

(P value = 0.008), which would benefit metabolic flux from entering the TCA cycle (Fig. 6a & 322 
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6c). This is consistent with 13C-metabolic flux analysis results, which showed that Crabtree 323 

negative species have higher TCA flux than Crabtree positive species33,34.  324 

 325 

Discussion  326 

The diversity of biochemical reactions and organisms makes it difficult to generate genome scale 327 

kcat profiles. Here we presented a deep learning model to predict kcat values of all metabolic 328 

enzymes against all substrates, only requiring substrate SMILES and protein sequences of the 329 

enzymes as input, simplifying the feature selection process required for the previous machine 330 

learning model9. This deep learning approach can therefore be used as a versatile kcat prediction 331 

tool for any species as long as protein sequence and substrate SMILES are available. 332 

 333 

Another advantage of the deep learning model is that it can capture kcat changes towards precise 334 

single amino acid substitutions. As amino acid substitution is a powerful technique in the enzyme 335 

evolution field and is routinely used to probe the enzyme catalytic mechanism35,36, it is valuable 336 

that attention weight calculation with our deep learning model can identify which amino acid 337 

residues have a major impact on the enzyme activity. Particularly, most amino acid substitution 338 

experiments performed mutagenesis in the substrate binding site region, since it is hypothesized 339 

that the binding region would have a high impact towards the catalytic activity. However, the 340 

profound impact remote regions can have towards the catalytic activity has been reported37,38. Here, 341 

we found high attention weights for the inosine binding region of human PNP enzyme, while also 342 

identifying various non-binding residue sites with high attention weight that deserve further 343 

validation. In total, our deep learning model is able to predict amino acid substitutions that can 344 

impact kcat values and thereby serve as part of the protein engineering toolbox39. 345 
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 346 

The deep learning model is able to predict genome scale kcat profiles for any species. Phenotype 347 

related key enzymes can be identified through comparison of kcat values across groups with diverse 348 

phenotypes, as done here to identify pyruvate kinase and citrate synthase as Crabtree-effect related 349 

enzymes. This approach can as well be applied to identify phenotype related enzymes in other 350 

species or even compare among species from different phylogenetic domains. Besides that, global 351 

trends in enzyme evolution such as among generalist and specialist enzymes, can be analyzed.  352 

 353 

On the other hand, predicted genome scale kcat profiles can facilitate the reconstruction of enzyme-354 

constrained models of metabolism. Deep learning predicted kcat proved to be a more comprehensive 355 

but still practical alternative to matching in vitro kcat values from BRENDA4 and SABIO-RK5 356 

database as is common in Classical-ecGEMs2,27,40. Besides the limitation of the EC number 357 

annotation for less studied species, kcat values measured for the well-studied species are also far 358 

away from completeness (Supplementary Figure 1c). For the well-studied species S. cerevisiae, 359 

only 47 kcat values are fully matched with proteins and substrates in the GEM, while other kcat 360 

values are mostly from fuzzy matching with other substrates, organisms, or even introducing wild 361 

cards in the EC number2, which also can introduce considerable uncertainty in the reconstructed 362 

Classical-ecGEMs. In the earlier published ecGEM reconstruction, a lot of manual work is 363 

required to ensure the functionality of Classical-ecGEMs2. Compared with the Classical-ecGEM 364 

reconstruction, DL-ecGEMs is fully automatic, with reduced uncertainty, significantly increased 365 

enzyme coverage and kcat coverage for enzymatic reactions and have a more reliable proteome 366 

prediction. If there are available experimental growth data, then the ecGEM reconstruction can be 367 

further improved through a Bayesian approach. Here, we showed that Posterior-mean-ecGEMs 368 
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are more accurate representatives for their phenotypes and the proteome predictions are also 369 

improved, which illustrates how functional ecGEMs can be automatically reconstructed. 370 

 371 

In conclusion, we showed how a deep learning approach yields realistic kcat which can be used to 372 

direct future genetic engineering, understand enzyme evolution, reconstruct ecGEMs that can be 373 

used to simulate metabolic flux and phenotype prediction. Besides that, we envision many other 374 

possible uses of this deep learning based kcat prediction tool such as a novel tool in genome mining 375 

and Genome-Wide Association Studies (GWAS) analysis. We also envision this automatic 376 

Bayesian ecGEM reconstruction pipeline for further usage in ecGEMs reconstruction, for omics 377 

data incorporation and analysis.  378 

 379 

Method and materials 380 

Preparation of the dataset for deep learning model development 381 

The dataset used for deep learning model construction was extracted from the BRENDA4 and 382 

SABIO-RK database5 on 10 July 2020 by customized scripts via Application Programming 383 

Interface (API). We generated a comprehensive dataset including the substrate name, organism 384 

information, Enzyme Commission number (EC number), protein ID (UniProt ID), enzyme type, 385 

and kcat values. Besides, substrate SMILES (Simplified Molecular Input Line Entry System), a 386 

string notation to represent the substrate structure, was extracted using substrate name to query the 387 

PubChem compound database41, which is the largest database of chemical compound information 388 

and is easy to access42. As different substrates usually have various synonyms in different database 389 

and GEMs, we used a customized Python-based script to ensure that the same canonical SMILES 390 
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could be output for the same substrates with various synonyms, which is essential to help filter 391 

redundant entries obtained from different databases (Supplementary Figure 2).  392 

 393 

For the BRENDA database4, 69,140 entries could be found after downloading and simply 394 

processing the accessible data, including 46,417 entries with wildtype enzymes and 22,723 entries 395 

with mutated enzymes according to the classification of enzyme type. All these entries contain the 396 

required information regarding substrate name, organism, EC number, UniProt ID, enzyme type 397 

and kcat value. Then we removed duplicates in the entries, and if there are multiple reported 398 

measurements for the same enzyme, we only used the maximum value. For the SABIO-RK 399 

database5, the same data cleaning process was performed. Besides that, we removed the entries 400 

with non-standard units for kcat values, such as s^(-1)*g^(-1), mol*s^(-1)*g^(-1), J/mol, etc. All 401 

kcat values were converted to the unit in s^(-1). Available SMILES for substrates were obtained via 402 

the API of the PubChem database41. Then we combined the dataset extracted from BRENDA 403 

database and the SABIO-RK database. Due to high overlap between these two databases, 48,659 404 

unique entries could be found after data cleaning by merging the entries with the same substrate 405 

name, EC number, organism, enzyme type and kcat value for both databases, and all of the entries 406 

have specific substrate SMILES information. Besides the similar approach to keep the maximal 407 

values for the multiple measurement, duplicates caused by different synonyms usage in these two 408 

databases are filtered using the canonical SMILES. Next, protein sequences are queried with two 409 

methods, for entries with UniProt ID information, the amino acid sequences could be obtained via 410 

the API of the UniProt database43; for entries without UniProt ID, the amino acid sequences were 411 

acquired from the UniProt database43 and the BRENDA database4 based on their EC number and 412 

organism information. After that, the sequences of those entries with wildtype enzymes were 413 
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mapped directly and the sequences of those entries with mutated enzymes were changed according 414 

to the mutated sites. Finally, 16,838 entries (including 9,411 entries with wildtype enzymes and 415 

7,427 entries with mutated enzymes) were left as the high-quality dataset for deep learning model 416 

construction. Detailed numbers for the data cleaning can be found in Supplementary Figure 2. Data 417 

availability: 418 

https://github.com/SysBioChalmers/DLKcat/tree/master/DeeplearningApproach/Data/database 419 

 420 

Construction of the deep learning pipeline 421 

In this work, we developed an approach for in vitro kcat value prediction by combining a graph 422 

neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins. The 423 

integration of GNN and CNN can be naturally used to handle pairs of data with different structures, 424 

i.e., molecular graphs and protein sequences. In this approach, substrates are represented as 425 

molecular graphs where the vertices are atoms, the edges are chemical bonds, and proteins are 426 

represented as sequences in which the characters are amino acids. 427 

 428 

For substrates, there are just a few types of chemical atoms (e.g., carbon and hydrogen) and 429 

chemical bonds (e.g., single bond and double bond). To obtain more learning parameters, we 430 

employed r-radius subgraphs to get the vector representations, which are induced by the 431 

neighboring vertices and edges within radius r from a vertex44. Firstly, substrate SMILES was 432 

converted to a molecular graph using RDKit (https://www.rdkit.org). Given a substrate graph, the 433 

GNN can update each atom vector and its neighboring atom vectors transformed by the neural 434 

network via a non-linear function, e.g., ReLU45. Besides, two transitions were developed in the 435 

GNN, including vertex transitions and edge transitions. The aim of transitions is to ensure that the 436 
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local information of vertices and edges is propagated in the graph by iterating the process and 437 

summing neighboring embeddings. And the final output of the GNN is a set of real-valued 438 

molecular vector representations for substrates. 439 

 440 

Similarly, by using the CNN to scan protein sequences, we can obtain low-dimensional vector 441 

representations for protein sequences transformed by the neural network via a non-linear function, 442 

e.g., ReLU. To apply the CNN to proteins, we defined ‘words’ in protein sequence and split a 443 

protein sequence into an overlapping n-gram (n = 1, 2, 3) amino acids46. In this work, to avoid 444 

low-frequency words in the learning representations, relatively smaller n-gram number of 1, 2 or 445 

3 was set. Also, other important parameters of the neural networks (CNN & GNN) were set as 446 

follows: number of layers in CNN: 2, 3 or 4; number of time steps in GNN: 2, 3 or 4; window size: 447 

11 (fixed); r-radius: 0, 1 or 2; vector dimensionality: 5, 10 or 20. These different settings were 448 

explored based on R Squared (R2) in Equation 1 during the hypermeter tuning to find which 449 

hyperparameter is better for improving the deep learning performance. And finally, we used the 450 

optimal hyperparameters to train our deep learning model. 451 

𝑅! = 1 −	
		# (%&'(%&))

!"
#$%

# (%&'(%+)
!"

#$%
  (1) 452 

where yip is the predicted kcat value, yie is the experimental kcat value, n is the total number of 453 

validation dataset. 454 

 455 

After the acquisition of the substrate molecular vector representations and the protein sequence 456 

vector representations, we concatenated them together and an output vector (kcat value) to train the 457 

deep learning framework. During the training process, all the datasets were shuffled at the first 458 

step, and then were randomly split into training dataset, validation dataset and test dataset at the 459 
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ratio of 80%:10%:10%. Given a set of substrate-protein pairs and the kcat values in the training 460 

dataset, the aim of training process is to minimize its loss function. The best model was chosen 461 

according to the minimal Root Mean Square Error (RMSE) in Equation 2 on the validation dataset 462 

with the least spread between training dataset and validation dataset. For building and training 463 

models, the PyTorch v1.4.0 software package was utilized and accessed using the python interface 464 

under CUDA/10.1.243.		465 

𝑅𝑀𝑆𝐸 = ),
-
* (y𝑖𝑝 − y𝑖𝑒)!

-
&.,    (2) 466 

where yip is the predicted kcat value, yie is the experimental kcat value, n is the total number of dataset 467 

(validation dataset or test dataset). 468 

 469 

Analysis of experimental and deep learning-based kcat values across different metabolic 470 

contexts 471 

According to the classification of metabolic pathways, metabolic contexts were mainly divided 472 

into four different subsystems: primary metabolism-CE (carbohydrate and energy), involving the 473 

main carbon and energy metabolism, e.g., glycolysis/gluconeogenesis, TCA cycle, pentose 474 

phosphate pathway, etc; primary metabolism-AFN (amino acids, fatty acids, and nucleotides); 475 

intermediate metabolism, related to the biosynthesis and degradation of cellular components, such 476 

as coenzymes and cofactors; and secondary metabolism, associated with metabolites that are 477 

produced in specific cells or tissues, e.g., flavonoid biosynthesis, caffeine metabolism etc6. To 478 

explore the metabolic subsystems for all of the wildtype enzymes in the experimental dataset, the 479 

module in KEGG database16 was utilized to assign metabolic pathways for enzyme-substrate pairs 480 

by linking the detailed metabolic pathway in KEGG API with EC number annotated in each 481 

enzyme-substrate pair. Detailed classification can be found in Supplementary Table 1. Using the 482 
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trained deep learning model, the predicted kcat values were generated for all the enzyme-substrate 483 

pairs. The relationship between these predicted kcat values and various metabolic contexts was 484 

further analyzed, which was compared with the trends of the annotated experimental results. 485 

 486 

Interpretation of the reasoning of deep learning with neural attention mechanism 487 

To interpretate which subsequences or residue sites are more important for the substrate, the neural 488 

attention mechanism was employed by assigning attention weights to the subsequences19. A higher 489 

attention weight of one residue means that residue is more important for the enzyme activity 490 

towards the specific substrate. Such attention weights were modeled based on the output of the 491 

neural network. 492 

C = 2c1
(/)	, c2

(/), c3
(/), … , c𝑛

(/)9  (3) 493 

h𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 𝑓(W𝑖𝑛𝑡𝑒𝑟y𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 + b)  (4) 494 

h𝑖 = 𝑓(W𝑖𝑛𝑡𝑒𝑟c𝑖 + b)  (5) 495 

𝛼𝑖 = 𝜎(h0𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒h𝑖)  (6) 496 

where C is a set of hidden vectors for the protein sequence, c1(t) to cn(t) are the sub-hidden vectors 497 

for the split subsequences, ysubstrate is the substrate molecular vector, Winter and b are the weight 498 

matrix and the bias vector in the neural network, respectively, f is a non-linear activation function 499 

(e.g., ReLU), αi is the final attention weight value.  500 

 501 

For a defined protein, it could be split into overlapping n-gram amino acids and calculated as a set 502 

of hidden vectors in Equation 3. Given a substrate molecular vector ysubstrate and a set of protein 503 

hidden vectors, the substrate embeddings (hsubstrate) and subsequence embeddings (hi) could be 504 

output based on the neural network as shown in Equation 4 and Equation 5. By considering the 505 
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embeddings of ysubstrate, the attention weight value for each subsequence was accessible in Equation 506 

6, which represents the importance signals of the protein subsequence towards the enzyme activity 507 

for a certain substrate. 508 

 509 

Prediction of kcat values for 343 yeast/fungi species 510 

The GEMs of 343 yeast/fungi species were downloaded from the GitHub repository21. For each 511 

model, all reversible enzymatic reactions were split to forward and backward reactions. Reactions 512 

catalyzed by isoenzymes were also split to multiple reactions with one enzyme complex for each 513 

reaction. Substrates were extracted from the model and mapped to MetaNetX database to get 514 

SMILES structure using corresponding annotated MetaNet IDs for metabolites47. Protein IDs for 515 

the enzymes were from the model.grRules. Since there are around 200 yeast species are newly 516 

sequenced48 and are not included in the UniProt database43, protein sequences were queried by the 517 

protein ID in the protein fasta file for each species (Supplementary Dataset). Reaction IDs, 518 

substrate names, substrate SMILES and protein IDs were combined as the input file for the deep 519 

learning kcat prediction model.  520 

 521 

Analysis of kcat values and dN/dS for 343 yeast/fungi species 522 

In a previous study, the genomes of 343 yeast/fungi species combined with comprehensive genome 523 

annotations were publicly available48. The gene-level dN/dS of gene sequences for pairs of 524 

orthologous genes from the 343 species were calculated with yn00 from PAML v4.749. For this 525 

computational framework, the input is the single-copy ortholog groups (OGs), and the output is 526 

the gene-level dN/dS values extracted from the PAML output files. By mapping the predicted kcat 527 

values with the gene-level dN/dS values via the bridge of protein ID, a global analysis was 528 
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performed between the kcat values and the dN/dS values for 343 yeast/fungi species across the 529 

outgroup (11 fungal species) together with 12 major clades divided by the genus-level phylogeny 530 

for 332 yeast species. 531 

 532 

ecGEM reconstruction 533 

ecGEMs are reconstructed by adding enzymatic constraints (Equation 7) into the basic constraints 534 

of basic GEMs. 535 

𝑣1 ≤	𝑘23/
&,1 ∗ [𝐸&] (7) 536 

where 𝑣1 stands for the metabolic flux (mmol/gDW/h) of the reaction j, [𝐸&] stands for the enzyme 537 

concentration for the enzyme i that catalyzes reaction j and 𝑘23/
&,1  is the catalytic turnover number 538 

for the enzyme catalyzing reaction j. This constraint is applied to all enzymatic reactions with 539 

available kcat values.  540 

 541 

We used two formats of ecGEMs in the reconstruction process: we adopted the sMOMENT27 542 

format in the Bayesian modeling process to speed up the kcat mapping process and linear problem 543 

construction in the SMC-ABC search; while in the model evaluation and final format, we used the 544 

GECKO format to compile all kcat values in the model S matrix which would be compatible with 545 

all developed GECKO functions2,50. There is a developed customized function 546 

convertToGeckoModel to facilitate the conversion for these two formats.  547 

 548 

Classical-ecGEM reconstruction queries kcat values from BRENDA database by matching the EC 549 

number, which is heavily relied on the database EC number annotation for the specific species2,27. 550 

Since more than 200 out of 343 yeast/fungi species are not annotated in UniProt43 and KEGG16, 551 
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EC numbers for orthologs annotated in S. cerevisiae were borrowed to facilitate Classical-ecGEM 552 

reconstruction process for all these 343 species. The kcat extraction process used the criteria from 553 

the process 13 in the reconstruction methods of the reference40.  554 

 555 

DL-ecGEM reconstruction extracts all kcat values from the deep learning predicted file. To assign 556 

kcat value for each metabolic reaction, we follow the criteria below 1) kcat values predicted for 557 

currency metabolites such as H2O, H+ were excluded; 2) If there are multiple substrates in the 558 

reaction, maximum values among substrates were kept; 3) If multiple subunits exist in the enzyme 559 

complex, we used the maximum values among all subunits to represent the kcat for the complex.  560 

 561 

Posterior-mean-ecGEM reconstruction uses mean values for accepted Posterior distribution. The 562 

kcat values in the DL-ecGEMs combined with the RMSE (which is 1 in log10 scale) of the kcat 563 

prediction were used as mean values and variance to make the Prior distribution. Each kcat value 564 

was described with a log normal distribution N(𝑘𝑐𝑎𝑡& , 1). This Prior iteratively morphs into a 565 

Posterior through multiple generations25. For each generation, we sampled 128 kcat datasets within 566 

the distribution, and 100 among those 128 datasets with smaller distance (see next section for the 567 

SMC-ABC distance calculation) between phenotype measurements and predictions which can 568 

better represent the phenotype were kept to make the distribution for the next generation. Until the 569 

distance is lower than the cutoff (RMSE of 0.5), then we accepted the final distribution as Posterior 570 

distubiton25.  571 

 572 

SMC-ABC distance function 573 
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Experimental growth data and related exchange rates in batch and chemostat conditions were 574 

collected for yeast/fungi species, which are available at Supplementary Table 5. The distance 575 

function was designed as RMSE between simulated and experimental values for maximal growth 576 

simulations and exchange rates simulations. As for maximal growth simulation, the medium was 577 

set in the model by allowing the free uptake of composition, and the objective function was set to 578 

maximizing growth. The RMSE was calculated for the simulated and measured growth rates. For 579 

the exchange rates simulation, the carbon source uptake rates were constrained based on 580 

experimental measurements, and the objective function was also set to maximizing growth. The 581 

RMSE was calculated for the simulated and measured exchange rates of all measured exo-582 

metabolites. All measured and simulated rates were normalized by the carbon numbers of the 583 

corresponding metabolites before calculation of RMSE. The carbon number for biomass is 41 584 

(mean value for the molecular wight of 1 Cmol biomass of yeast is ~24.42 g51, the biomass equals 585 

to 1000 mg). Note that if the substrate or byproduct does not contain any carbon such as O2, then 586 

the normalizing number is 1. Then the average RMSE of both simulations was used to represent 587 

the distance. SMC-ABC search would stop once the RMSE reaches the accepted value or reaches 588 

the maximum generation. The accepted value for the distance is set to be lower than 0.5 and the 589 

maximum generation is set to be 150. 590 

 591 

Simulations with ecGEMs 592 

We performed different kinds of simulations using the ecGEMs including simulations of growth 593 

and protein abundance. Different mediums and growth conditions were set to match the 594 

experiment measurement condition, e.g., using xylose as the carbon source or anaerobic condition. 595 

Since there are no measured total protein abundance in the biomass for all yeast/fungi species, we 596 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.455417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455417
http://creativecommons.org/licenses/by/4.0/


 27 

used the protein content mass to serve as the total protein abundance for each species and used a 597 

sigma factor of 0.5 to serve as the ratio of metabolic protein ratio in total protein abundance. 598 

  599 

Statistical tests for comparison between sampled Prior and Posterior dataset 600 

Sampled Prior and Posterior kcat datasets were compared for the difference in the mean values and 601 

the variance. Welch’s t test was used to test the significance for the mean values, while one-tailed 602 

F-test was used for the reduced variances. The cutoff for the significance was set to 0.01 for the 603 

adjusted P value corrected by the Šidák method. 604 

 605 

Proteome data collection 606 

All collected proteome data are available in the GitHub repository 607 

(https://github.com/SysBioChalmers/DLKcat/tree/master/BayesianApporach/Data/Proteome_ref.608 

xlsx). For relative proteome datasets, we normalized by the identical condition of the absolute 609 

proteome data from the literature following the same method as52,53. Reference absolute datasets 610 

for those relative proteome datasets were documented in the same file. 611 

 612 

Calculation of protein cost and efficiency 613 

To calculate the protein cost of the HY pathway, the glucose uptake rate was fixed at 1 614 

mmol/gDW/h, and the non-growth associated maintenance energy (NGAM) reaction was 615 

maximized. The total protein pool reaction was then minimized with fixing the NGAM reaction at 616 

the maximized value. The minimized flux through the total protein pool reaction is the protein cost 617 

of the HY pathway for converting one glucose to ATP. As for the protein cost calculation of LY 618 

pathway, glucose uptake rate was fixed at 1 mmol/gDW/h, the ethanol production was maximized. 619 
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Then the ethanol exchange rate was fixed at the maximized value, and NGAM was maximized. 620 

After that, NGAM was also fixed at the maximized value, and total protein pool was minimized 621 

to calculate the protein cost for LY pathway. We also examined the flux distribution to ensure that 622 

other energy producing pathways are all inactive during this simulation. Protein efficiency is 623 

defined as the protein cost for producing one flux ATP in both pathways. 624 

 625 

Code and data availability 626 

To facilitate further usage, we provide all codes, example and detailed instruction in GitHub 627 

repository: https://github.com/SysBioChalmers/DLKcat. Protein sequence fasta files, deep 628 

learning predicted kcat values, classcial-ecGEMs, DL-ecGEMs and Posterior-mean-ecGEMs for 629 

343 yeast/fungi species are available as Supplementary Dataset on the zenodo: 630 

https://doi.org/10.5281/zenodo.5164210. 631 
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Figures 772 

 773 

Figure 1 Deep learning of enzyme turnover numbers (kcat) for genome scale metabolic model 774 

(GEM) parameterization. Firstly, we developed an approach for kcat prediction by combining a 775 

graph neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins. 776 

Secondly, we extracted information from GEMs as the input for the deep learning model to predict 777 

kcat values. Thirdly, we developed a Bayesian facilitated pipeline to reconstruct enzyme-778 

constrained GEMs (ecGEMs) using the predicted kcat profiles from deep learning model.  779 
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Figure 2 Deep learning model performance for kcat prediction. (a) The RMSE of kcat prediction 782 

during the training process. (b) Performance of the final deep learning model trained by GNN and 783 

CNN. The correlation between predicted kcat value and those present in the whole dataset was 784 

evaluated. The brightness of color represents the density of data points. (c) Enzyme promiscuity 785 

analysis on the whole dataset. For enzymes with multiple substrates, we divided the substrates as 786 

preferred and alternative by their experimental measured kcat, then used the predicted kcat values 787 

for this boxplot. A two-sided Wilcoxon rank sum test was used to calculate P value. (d) Cumulative 788 

distribution of deep learning-based kcat values for enzyme-substrate pairs belonging to different 789 

metabolic contexts. Abbreviations: CE, carbohydrate and energy; AFN, amino acids, fatty acids, 790 

and nucleotides.  791 
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Figure 3 Deep learning model for the prediction and interpretation of kcat of mutated enzymes. (a) 795 

Prediction performance of kcat values for all of the wildtype enzymes via deep learning model. The 796 

brightness of color represents the density of data points. (b) Prediction performance of kcat values 797 

for all of the mutated enzymes via deep learning model. The brightness of color represents the 798 

density of data points. (c) Comparison between predicted and measured kcat values for several well-799 

studied enzyme-substrate pairs with rich experimental mutagenesis data. Enzyme abbreviations: 800 

DHFR, dihydrofolate reductase; PGDH, D-3-phosphoglycerate dehydrogenase; AKIII, 801 

aspartokinase III; DAOCS, deacetoxycephalosporin C synthase; PNP, purine nucleoside 802 

phosphorylase; GGPPs, geranylgeranyl pyrophosphate synthase. Substrate abbreviations: G3P, 803 

glycerate 3-phosphate; L-Asp, L-Aspartate; IPP, isopentenyl diphosphate. (d) Comparison of 804 

predicted kcat values on several mutated enzyme-substrate pairs between ‘wildtype-like kcat’ and 805 

enzymes with ‘decreased kcat’. P value < 0.05 (*), P value < 0.01 (**) and P value < 0.001 (***). 806 

(e) Attention weight of sequence position in the wildtype PNP enzyme using inosine as the 807 

substrate. The mutated enzymes (enzymes with ‘wildtype-like kcat’ and enzymes with ‘decreased 808 

kcat’) were marked on the curve according to their mutated position. The dot size indicates the 809 

number of mutated enzymes occurring in that mutated position. (f) Comparisons of the overall 810 

attention weight for the PNP – Inosine pair between enzymes with ‘wildtype-like kcat’ and enzymes 811 

with ‘decreased kcat’. For two group comparisons in subfigure d and f, a two-sided Wilcoxon rank 812 

sum test was used to calculate P value. 813 
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Figure 4 Bayesian modeling training performance for S. cerevisiae ecGEM. (a) RMSE for 817 

phenotype measurement and prediction during Bayesian training process. (b) Simulated exchange 818 

rates by Posterior-mean-ecGEM (line) compared with experimental data (dot). kcat values in the 819 

Posterior-mean-ecGEMs here is mean values from 100 sampled Posterior datasets after the 820 

Bayesian training process. (c) Principal component analysis (PCA) for kcat datasets sampled in the 821 

Bayesian training approach. Each parameter in the set was standardized by subtracting the mean 822 

and then divided by the standard deviation before PCA. Sampled 100 Prior datasets are 823 

highlighted in blue, while sampled 100 Posterior datasets are highlighted in red. All other datasets 824 

were termed as “intermediate” and marked in gray. (d) The number of enzymes with a significantly 825 

changed mean values (Šidák adjusted Welch’s t test P value < 0.01, two-sided) and variance 826 

(Šidák adjusted one-tailed F-test P value < 0.01) between sampled Prior and Posterior kcat 827 

datasets. (e) Variance distribution comparison for Prior and Posterior distribution. (f) Correlation 828 

between deep learning predicted kcat and Posterior mean kcat. 829 
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Figure 5 Evaluation of three ecGEM modelling frameworks including Classical-ecGEM, DL-833 

ecGEMs and Posterior-mean-ecGEMs. Enzymatic constraint coverage comparison for (a) 834 

enzymes and (b) enzymatic reactions. (c) RMSE for the phenotype prediction. (d) Growth 835 

prediction for Posterior-mean-ecGEMs. (e) Performance of three types of ecGEMs in predicting 836 

quantitative proteome data, Classical-ecGEM, DL-ecGEM and Posterior-mean-ecGEM are shown. 837 

RMSE is shown on log10 scale. Classical-ecGEM is constructed following the pipeline to extract 838 

kcat profiles from BRENDA and SABIORK, DL-ecGEMs are constructed using the kcat profiles 839 

predicted from the deep learning model. Posterior-mean-ecGEMs here were parameterized by the 840 

kcat profiles of the mean values from 100 Posterior datasets after the Bayesian training process. 841 

Detailed conditions for those proteome datasets can be found in the Supplementary Table 6 and 842 

collected proteome dataset are available in GitHub repository. 843 
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 845 

Figure 6 Explanation of the Crabtree effect by energy metabolism. (a) High-yield (HY) and low-846 

yield (LY) pathway definition. (b) Model-inferred protein efficiency of energy metabolism in 847 

several common yeast species. Protein efficiency: ATP produced per protein mass per time (Unit: 848 

mmolATP/gProtein/h). (c) Enzymes with significantly different kcat values between Crabtree 849 

positive and negative species. A two-sided Wilcoxon rank sum test was used to calculate P value. 850 
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