

1 **Deep learning based k_{cat} prediction enables improved enzyme constrained model**
2 **reconstruction**

3

4 Feiran Li^{1, #}, Le Yuan^{1, 2, #}, Hongzhong Lu¹, Gang Li¹, Yu Chen¹, Martin K. M. Engqvist¹, Eduard
5 J Kerkhoven^{1, 2}, Jens Nielsen^{1, 3, *}

6

7 1 Department of Biology and Biological Engineering, Chalmers University of Technology,
8 Kemivägen 10, SE-412 96 Gothenburg, Sweden

9 2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology
10 , Kemivägen 10, SE-412 96, Gothenburg, Sweden

11 3 BioInnovation Institute, Ole Måløes Vej 3, DK2200 Copenhagen N, Denmark

12

13 # These authors contributed equally to this work: Feiran Li, Le Yuan.

14 * Correspondence to: nielsenj@chalmers.se

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Enzyme turnover numbers (k_{cat} values) are key parameters to understand cell metabolism,
26 proteome allocation and physiological diversity, but experimentally measured k_{cat} data are sparse
27 and noisy. Here we provide a deep learning approach to predict k_{cat} values for metabolic enzymes
28 in a high-throughput manner with the input of substrate structures and protein sequences. Our
29 approach can capture k_{cat} changes for mutated enzymes and identify amino acid residues with great
30 impact on k_{cat} values. Furthermore, we applied the approach to predict genome scale k_{cat} values for
31 over 300 yeast species, demonstrating that the predicted k_{cat} values are consistent with current
32 evolutional understanding. Additionally, we designed an automatic pipeline using the predicted
33 k_{cat} values to parameterize enzyme-constrained genome scale metabolic models (ecGEMs)
34 facilitated by a Bayesian approach, which outperformed the default ecGEMs in predicting
35 phenotypes and proteomes and enabled to explain phenotype differences among yeast species. The
36 deep learning k_{cat} prediction approach and automatic ecGEM construction pipeline would thus be
37 a valuable tool to uncover the global trend of enzyme kinetics and physiological diversity, and to
38 further elucidate cell metabolism on a large scale.

39

40 **Key words:** genome scale metabolic modelling, enzyme constraints, turnover rates, k_{cat} values,
41 deep learning, Bayesian approach.

42

43 **Introduction**

44 Enzyme turnover number (k_{cat}), which defines the maximum chemical conversion rate of a reaction,
45 is a critical parameter for understanding metabolism, proteome allocation, growth and physiology
46 of a certain organism¹⁻³. There are large collections of k_{cat} values available in the enzyme databases

47 BRENDA⁴ and SABIO-RK⁵, which are, however, still scarce compared to the variety of existing
48 organisms and metabolic enzymes, largely due to the lack of high-throughput methods for k_{cat}
49 measurements. Additionally, the experimentally measured k_{cat} values have considerable
50 variabilities due to varying assay conditions such as pH, cofactor availability and experimental
51 methods⁶. Altogether, the sparse collection and considerable noise limit the usage of k_{cat} data for
52 global analysis and may mask the enzyme evolution trend.

53

54 In particular, enzyme-constrained genome scale metabolic models (ecGEMs), where the whole-
55 cell metabolic network is constrained by enzyme catalytic capacities and thereby able to accurately
56 simulate maximum growth ability, metabolic shifts and proteome allocations, rely heavily on
57 genome scale k_{cat} values^{2,7}. Even for well-studied organisms, the k_{cat} coverage is far less than
58 complete⁸⁻¹⁰. When data are missing, ecGEMs usually use assumed k_{cat} values from similar
59 reactions or adopt available k_{cat} values from other organisms, which could cause model predictions
60 deviating from experimental observations⁷. Thus, there is a clear requirement for obtaining a large
61 scale of k_{cat} values to improve the model accuracy and get more reliable simulations for delicate
62 phenotypes¹¹.

63

64 Previously, machine learning has been used to predict k_{cat} values based on features such as average
65 metabolic flux and the catalytic sites obtained from protein structures⁹. Due to the requirement of
66 feature data and absolute proteome data in the training dataset, this approach was only applied to
67 the most well-studied bacterium *Escherichia coli*, thus limiting its usage for large scale prediction
68 of k_{cat} values for multiple organisms. In contrast, deep learning does not rely on feature selection
69 and has been applied and shown great performance in modeling chemical space¹², gene

70 expression¹³, enzyme related parameters such as enzyme affinity¹⁴, and enzyme commission
71 numbers (EC numbers)¹⁵.

72

73 Inspired by these efforts, we developed a deep learning model and demonstrated its capability for
74 large scale prediction of k_{cat} values, as well as for identifying key amino acid residues that affect
75 these predictions. We showcased the predictive power of the deep learning model by predicting
76 genome scale k_{cat} profiles for 343 yeast/fungi species, accounting for more than 300,000 enzymes
77 and 3,000 substrates. The predicted k_{cat} profiles enabled reconstruction of 343 ecGEMs for the
78 yeast/fungi species through an automatic Bayesian based pipeline, which can accurately simulate
79 growth phenotype among yeast species and identify the phenotype related key enzymes.

80

81 **Results**

82 **Construction of a deep learning framework for k_{cat} prediction**

83 A deep learning framework was developed by combining a graph neural network (GNN)
84 for substrates and a convolutional neural network (CNN) for proteins (Fig. 1). In this framework,
85 substrates were represented as molecular graphs converted from SMILES (the simplified
86 molecular-input line-entry system) and protein sequences were split into overlapping n-gram
87 amino acids. To train the neural network, we generated a comprehensive dataset from the
88 BRENDA⁴ and the SABIO-RK database⁵. Several rounds of data preprocessing and cleaning were
89 performed to filter out incomplete entries with missing information and redundant entries across
90 databases, to ensure that the dataset contains unique entries with substrate name, substrate SMILES,
91 EC number, protein sequence, organism name and k_{cat} value information. The final dataset
92 contained 16,838 unique entries catalyzed by 7,822 unique protein sequences from 851 organisms

93 and converting 2,672 unique substrates (Supplementary Figure 1-2). This dataset was
94 randomly split into training, validation and test dataset by 80%, 10%, and 10%, respectively.

95

96 Deep learning model performance for k_{cat} prediction

97 We first evaluated the effects of different model hyperparameters on deep learning performance
98 using learning curves (Supplementary Figure 3). Note that 2-radius subgraphs and 3-gram amino
99 acids used to extract the substrate and protein vectors can considerably improve the deep learning
100 performance compared with other tested hyperparameter settings (Supplementary Figure
101 3a). When investigating the effect of vector dimensionality, we found that more highly
102 dimensional vectors used for substrates and proteins led to somewhat better performance
103 (Supplementary Figure 3b). Then, Additionally, the model performed much better when the
104 number of time steps/layers in GNN/CNN is 2 or 3 (Supplementary Figure 3c). With the settled
105 parameters (r-radius is 2, n-gram is 3, vector dimensionality is 20, number of time steps in GNN
106 is 3, and number of layers in CNN is 3), the training dataset was used to train the deep learning
107 model. We observed that the Root Mean Square Error (RMSE) of k_{cat} prediction in the validation
108 and test datasets gradually decreased with increasing epoch (Fig. 2a), where the number of epochs
109 represents iterations of the dataset passing through the neural network. A final deep learning model
110 was trained and stored for further use, when the RMSE was 0.99 and 1.06 for the validation and
111 test datasets, respectively, signifying that the predicted and measured k_{cat} values were overall
112 within one order of magnitude (Fig. 2a). As a result, the deep learning model showed a
113 high predictive accuracy on the original whole dataset and test dataset (Fig. 2b for whole dataset,
114 Pearson's $r = 0.88$; Supplementary Figure 4a for test dataset, Pearson's $r = 0.71$; Supplementary
115 Figure 4b for test dataset with substrates and enzymes that were not present in the training dataset,

116 Pearson's $r = 0.70$). To facilitate the further usage of our deep learning prediction tool, we also
117 supplied a user-friendly example for k_{cat} prediction in our GitHub repository with the input of
118 substrate and protein sequence
119 (<https://github.com/SysBioChalmers/DLKcat/tree/master/DeeplearningApproach/Code/example>).
120

121 Besides, we investigated whether the deep learning model can identify the preferred substrates for
122 promiscuous enzymes. We classified substrates with the highest k_{cat} value for promiscuous
123 enzymes as preferred substrates, and substrates with the lowest one as the alternative substrates,
124 then through comparing the predicted k_{cat} values for preferred substrates and alternative substrates
125 (Fig. 2c), we found that our deep learning model are able to predict that the enzymes do indeed
126 have a higher k_{cat} for the preferred substrates (median value = 6.45 /s) compared with alternative
127 substrates (median value = 1.49 /s) (P value < 1e-10, for promiscuous enzymes in all dataset),
128 which validates the predictive power of our deep learning model in identifying the preferred
129 substrates. The same trend was identified using the prediction for promiscuous enzymes in our test
130 dataset (Supplementary Figure 4c, P value = 0.009).

131
132 To explore the metabolic contexts for all wildtype enzymes in the original dataset, we mapped
133 these enzymes to four modules on the basis of categorization in KEGG database¹⁶: primary-CE
134 (enzymes involved in carbohydrate and energy metabolism), primary-AFN (amino acid, fatty acids
135 and nucleotide metabolism), intermediate (metabolism of common biomass components such as
136 cofactors) and secondary metabolism (condition specific metabolism or metabolism related to low
137 concentration metabolites) (Supplementary Table 1). Enzymes associated with primary-CE
138 metabolism on average exhibited a higher predicted k_{cat} value than those of primary-AFN,

139 secondary and intermediate metabolism (Fig. 2d), which is in accordance with the previous finding
140 that enzyme-substrate pairs from central carbon metabolism tend to have relatively higher
141 k_{cat} values than secondary and intermediate metabolism⁶.

142

143 **Prediction and interpretation of k_{cat} of mutated enzymes**

144 While the deep learning model displays an overall good performance for predicting k_{cat} values (Fig.
145 2b), we next explored whether the model could capture more details such as the effects of amino
146 acid substitutions on k_{cat} values of individual enzymes. To this end, we divided the original
147 annotated dataset into two categories: one including wildtype enzymes and the other mutated
148 enzymes with amino acid substitutions. In these two splits the median k_{cat} value of mutant enzymes
149 is lower than that for wildtype enzymes (Supplementary Figure 5a). We found that the deep
150 learning model is a good predictor of k_{cat} values for both wildtype enzymes (Fig. 3a for the whole
151 dataset, Pearson's $r = 0.87$; Supplementary Figure 5b for the test dataset, Pearson's $r = 0.65$) and
152 mutated enzymes (Fig. 3b for the whole dataset, Pearson's $r = 0.90$; Supplementary Figure 5c for
153 the test dataset, Pearson's $r = 0.78$). Next, several well-studied enzyme-substrate pairs were
154 collected from literature and original dataset from BRENDA⁴ and SABIO-RK⁵ where each
155 enzyme-substrate pair had k_{cat} values reported for at least 25 unique amino acid substitutions
156 (Supplementary Table 2). The k_{cat} values predicted by the deep learning model correlated very well
157 with the reported experimental k_{cat} values (Pearson's $r = 0.94$; Fig. 3c). We subsequently divided
158 the entries for each enzyme-substrate pair into two groups based on their experimentally measured
159 k_{cat} values: (i) within 0.5-2.0 fold change of the wildtype k_{cat} value ('wildtype-like k_{cat} '); or (ii) less
160 than 0.5 fold change of the wildtype k_{cat} value ('decreased k_{cat} '). Scarcity of mutated enzymes with
161 k_{cat} values over 2-fold of wildtype k_{cat} precluded defining the 'increased k_{cat} ' group^{17,18}. Using deep

162 learning predicted k_{cat} values, we validated that the enzymes from the ‘decreased k_{cat} ’ group indeed
163 showed significantly lower k_{cat} values compared to those of enzymes from ‘wildtype-like k_{cat} ’
164 group for all of the enzyme-substrate pairs (Fig. 3d). The deep learning model is thereby able to
165 capture the effects of small changes in protein sequences on activities of individual enzymes.

166
167 To investigate which subsequence or amino acid residues dominate enzyme activity, we applied a
168 neural attention mechanism to back-trace important signals from an output of the neural network
169 toward its input¹⁹. This approach can assign attention weights to each amino acid residue, which
170 then quantitatively describes its importance for the predicted enzyme activity, where higher
171 attention weight signifies higher importance. By this method, we calculated the attention weights
172 for all residues of the *Homo sapiens* enzyme purine nucleoside phosphorylase (PNP) with inosine
173 as substrate, as rich mutation data is available for this enzyme-substrate pair²⁰ (Fig. 3e,
174 Supplementary Table 3). Subsequently situating the mutations from the ‘wildtype-like k_{cat} ’ and
175 ‘decreased k_{cat} ’ groups (Fig. 3e) exhibit that mutations from the latter have significantly higher
176 attention weights (Fig. 3f, P value = 0.0014, Supplementary Table 4). Mutating amino acid
177 residues with higher attention weights is seemingly having a more substantial effect on enzyme
178 catalytic activity.

179
180 **k_{cat} prediction for metabolic enzyme-substrate pairs in 343 yeast/fungi species**

181 There are reconstructed GEMs for 332 yeast species plus 11 outgroup fungi²¹, but among these
182 only 14 GEMs were expanded with enzyme-constraints (ecGEMs) due to limited available k_{cat}
183 data^{2,21}. Thus, we applied the deep learning model to populate enzyme-constrained genome scale
184 metabolic models (ecGEMs). As our developed deep learning model allows prediction of almost

185 all k_{cat} values for metabolic enzymes against any substrates for any species except the pair with
186 generic substrates which does not have SMILES information, this enabled generation of ecGEMs
187 for all 343 yeast/fungi species. By using the metabolite and enzyme information extracted from
188 the 343 GEMs²¹ as the input of the deep learning model for k_{cat} prediction (Supplementary Figure
189 6), we predicted k_{cat} values for around three million protein-substrate pairs in 343 yeast/fungi
190 species.

191
192 By inspecting the global trend for the predicted k_{cat} values, we firstly found that yeast and fungal
193 enzymes from primary-CE metabolism have on average the highest k_{cat} value compared with
194 enzymes from primary-AFN, secondary and intermediate metabolism (Supplementary Figure 7a),
195 which is consistent with the global trend of all enzymes (Fig. 2c) and literature report⁶. Secondly,
196 we found that specialist enzymes (with narrow substrate specificity) have higher k_{cat} values
197 compared with generalist (promiscuous enzymes) that each catalyze more than one reaction in the
198 model (Supplementary Figure 7b). This is aligned with the hypothesis that ancestral enzymes that
199 exhibit broad substrate specificity and low catalytic efficiency improve their k_{cat} when they evolve
200 to be a specialist through processes of mutation, gene duplication and horizontal gene transfer.
201 Consistent with reports for *E. coli*²², this observation also holds for fungi. Thirdly, we investigated
202 whether sequence conservation trends with k_{cat} values. The ratio of non-synonymous over
203 synonymous substitutions, denoted as dN/dS, is commonly used to detect proteins undergoing
204 adaptation²³. Conserved enzymes with a lower dN/dS have significantly higher k_{cat} values
205 compared with relatively lesser conserved enzymes (with high dN/dS), implying that conserved
206 yeast/fungi enzymes under evolutionary pressure are adapted to have higher k_{cat} values
207 (Supplementary Figure 7c).

208

209 **Bayesian approach for 343 ecGEMs reconstruction**

210 Using the predicted k_{cat} values for 343 yeast/fungi species we generated 343 DL-ecGEMs
211 (ecGEMs parameterized with k_{cat} values derived from deep learning model prediction). Since the
212 training data for the deep learning model were primarily measured *in vitro*, this implies that also
213 *in vitro* k_{cat} values are predicted by the deep learning model, which is undesired as *in vitro* k_{cat}
214 values can be considerably different from their *in vivo* counterparts²⁴. To resolve these
215 uncertainties, we adopted a Bayesian genome scale modeling approach, which has been
216 successfully applied to resolve temperature dependence of yeast metabolism by quantifying and
217 reducing uncertainties in model parameters²⁵. Here, we used predicted k_{cat} values as mean values
218 for *Prior* distribution and used experimentally measured phenotypes to update it to *Posterior*. The
219 experimental data on yeast/fungi species were collected from literature, collating 445 entries on
220 growth data for 76 species with 16 carbon sources (Supplementary Figure 8, Supplementary Table
221 5). A sequential Monte Carlo based approximate Bayesian computation (SMC-ABC) approach²⁵
222 was implemented to sample the k_{cat} (Methods). The ecGEMs parameterized with the mean values
223 of sampled *Posterior* k_{cat} values were hereafter represented as *Posterior-mean-DL-ecGEMs*.

224

225 To test the generality of this SMC-ABC approach and monitor the training process, we first applied
226 this method to ecGEM of *S. cerevisiae*, which has the most abundant experimental data. The
227 experimental phenotype datasets for *S. cerevisiae* were split into training (50%) and test datasets
228 (50%). The training dataset was used to update the *Prior*, which would then be tested on the test
229 dataset after each generation. RMSE between the experimental measurement and prediction for
230 the test dataset was reduced proportionally with the training dataset. After 30 generations, RMSE

231 for the training dataset was 0.5 and for the test dataset was 1, which demonstrates the generalization
232 of the SMC-ABC approach (Supplementary Figure 9).

233

234 The Bayesian learning process for *S. cerevisiae* and *Y. lipolytica* are shown as examples (Fig. 4 &
235 Supplementary Figure 10). We calculated RMSE values between measurements and predictions
236 for batch and chemostat growth of *S. cerevisiae* and *Y. lipolytica* under different carbon sources.
237 After several generations, the ecGEMs parameterized with sampled *Posterior* k_{cat} achieved with a
238 RMSE lower than 0.5 (Fig. 4a & Supplementary Figure 10a), which can accurately describe the
239 experimental observations. For instance, the *S. cerevisiae* ecGEM with *Posterior* mean k_{cat} values
240 captures the metabolic shift at increasing growth rate (Fig. 4b)—known as the Crabtree effect²⁶—
241 while *Y. lipolytica* respires at its maximum growth rate (Supplementary Figure 10b). When
242 exploring which parameters were updated during the Bayesian process, a principal component
243 analysis (PCA) for all 9,500 generated k_{cat} sets (95 generations with 100 sets each) showed a
244 gradual move from the *Prior* distribution to the distinct *Posterior* distribution (Fig. 4c for *S.*
245 *cerevisiae*). The similar gradual move was also observed for *Y. lipolytica* (Supplementary Figure
246 10c). By comparing the variances of the deep learning and sampled *Posterior* k_{cat} datasets, we
247 found that the Bayesian training process mostly affected variance but not mean predicted k_{cat} values
248 (Fig. 4d-e). For *S. cerevisiae*, 2,644 enzyme-substrate pairs reduced their k_{cat} variance (Šidák adj.
249 one-tailed F-test P value < 0.01), while only 146 pairs changed their mean predicted k_{cat} (Šidák adj.
250 Welch's t test P value < 0.01). For the non-conventional yeast *Y. lipolytica*, the value is 2,721 and
251 159 (Supplementary Figure 10d-e). Consequentially, the sampled *Posterior* k_{cat} has a strong
252 correlation with the deep learning predicted k_{cat} (Pearson's $r = 0.83$, for *S. cerevisiae*, Fig. 4f;
253 Pearson's $r = 0.83$, for *Y. lipolytica*, Supplementary Fig. S10f).

254

255 **Deep learning and Bayesian approach improve ecGEMs quality**

256 We subsequently generated *Posterior*-mean-ecGEMs from corresponding DL-ecGEMs for all the
257 343 yeast/fungi species. For comparison, we also built ecGEMs for the same species with a
258 classical k_{cat} parameterization strategy that queried the BRENDA⁴ and SABIO-RK⁵ databases to
259 assign measured k_{cat} values to enzyme/reaction pair in the model^{2,27}. In case of missing data, certain
260 flexibility was introduced by matching the k_{cat} value to other substrates, organisms, or even
261 introducing wild cards in the EC number. This approach is how ecGEMs are routinely
262 parameterized with k_{cat} values, and the resulting models are hereafter referred to as Classical-
263 ecGEMs. The Classical-ecGEMs yielded k_{cat} values for ca. 40% of enzymes included in the model
264 and generated enzymatic constraints for ca. 60% of the enzyme annotated reactions, while DL-
265 ecGEMs and their derived *Posterior*-mean-ecGEMs covered k_{cat} values for ca. 80% of enzymes
266 and defined enzymatic constraints for ca. 90% of enzymatic reactions (Fig. 5a-b). While Classical-
267 ecGEMs have fewer assigned k_{cat} values, their reconstruction pipeline also relies heavily on correct
268 enzyme EC number annotations and available measured k_{cat} values in the databases, contrasting
269 with the DL-ecGEM reconstruction that relies only on protein sequences and substrate SMILES
270 while resulting in a higher coverage. The missing prediction for DL-ecGEMs and derived
271 *Posterior*-mean-ecGEMs are due to the missing k_{cat} prediction for generic substrates which does
272 not have SMILES information.

273

274 The *Posterior*-mean-ecGEMs and DL-ecGEMs do not only have improved k_{cat} coverage but also
275 outperform Classical-ecGEMs in the prediction of exchange rates (Fig. 5c) and are able to predict
276 maximum growth rates in line with the experimentally measured maximum growth rates under

277 different carbon sources and oxygen availabilities (Fig. 5d & more detailed Supplementary Figure
278 11). Moreover, we used the three types of models to predict required protein abundances and
279 compared this with published quantitative proteomics data from three species with different carbon
280 sources, culture mode and medium setup (Supplementary Table 6). Proteome predictions from
281 *Posterior*-mean-ecGEMs had the lowest RMSE, while DL-ecGEMs already reduced the RMSE
282 by 30% when compared to Classical-ecGEMs (Fig. 5e). Combined, this showed that not only the
283 increased k_{cat} coverage but also the Bayesian learning approach contributed to ecGEMs that are
284 better representations of the 343 fungi/yeast species.

285

286 **k_{cat} profile comparison enables to identify phenotype-related enzyme**

287 The predicted k_{cat} values were furthermore able to distinguish between Crabtree positive and
288 negative yeast species. There is much interest in understanding the presence of the Crabtree
289 phenotype among yeast species^{28,29}, and a model of *S. cerevisiae* energy metabolism has been used
290 to interpret this phenotype by comparing protein efficiency, i.e. ATP produced per protein mass
291 per time, in its two energy-producing pathways. It was postulated that the Crabtree effect is related
292 to the high yield (HY) pathway (containing Embden–Meyerhof–Parnas (EMP) pathway,
293 tricarboxylic acid (TCA) cycle and electron transport chain (ETC)) having a lower protein
294 efficiency than the low yield (LY) pathway (containing EMP plus ethanol formation) (Fig. 6a)¹.
295 We here used the *Posterior*-mean-ecGEMs of 102 yeast species (of which 25 are Crabtree positive
296 and 77 are negative with experimental reported phenotype) to similarly calculate protein
297 efficiencies of HY and LY pathways. Of the 102 species we simulated, 89% follow the same trend
298 that Crabtree positive species have a higher LY efficiency while negative species have a higher
299 HY efficiency compared with its LY efficiency, which suggests that Crabtree positive yeast

300 species are more protein efficient using the LY pathway than the HY pathway for producing the
301 same amount of ATP (Supplementary Table 7). For five commonly studied species the results are
302 shown in Fig. 6b, and even though ATP yields in their HY pathways may be different in these
303 species, primarily due to the presence of Complex I, they still follow the same trend
304 (Supplementary Table 7). Inconsistencies in strains where the HY/LY protein efficiency ratio did
305 not trend with the Crabtree effects might be due to additional regulation not considered in
306 ecGEMs³⁰.

307
308 With the predicted genome scale k_{cat} profiles for yeast species, we can investigate whether key
309 enzymes show significant different k_{cat} among 25 Crabtree positive and 77 negative species. Of
310 the enzymes in the energy-producing pathways, only pyruvate kinase, citrate synthase, fumarase
311 and phosphoglucose isomerase had significantly different k_{cat} values (Fig. 6c). Since fumarase and
312 phosphoglucose isomerase can operate in reversible direction, it is hard to explain the kinetic effect
313 towards the Crabtree effect. Thus, we would not further discuss the impact of these two enzymes
314 on the Crabtree effect. The k_{cat} values of pyruvate kinase were higher in Crabtree positive species
315 compared to negative species (P value = 0.009 for deep learning predicted k_{cat} values, Fig. 6c).
316 This aligns with a report that increasing pyruvate kinase activity in the Crabtree positive species
317 *Schizosaccharomyces pombe* would increase its fermentation ratio, decrease the growth
318 dependence on respiration and provide resistance to growth inhibiting effects of antimycin A,
319 which inhibits the respiratory complex III³¹. Citrate synthase catalyzes the first and rate-limiting
320 step of the TCA cycle³², condensing acetyl-coenzyme A and oxaloacetate to form citrate. We found
321 that the k_{cat} of citrate synthase of Crabtree negative species are higher than the Crabtree positive
322 (P value = 0.008), which would benefit metabolic flux from entering the TCA cycle (Fig. 6a &

323 6c). This is consistent with ^{13}C -metabolic flux analysis results, which showed that Crabtree
324 negative species have higher TCA flux than Crabtree positive species^{33,34}.

325

326 **Discussion**

327 The diversity of biochemical reactions and organisms makes it difficult to generate genome scale
328 k_{cat} profiles. Here we presented a deep learning model to predict k_{cat} values of all metabolic
329 enzymes against all substrates, only requiring substrate SMILES and protein sequences of the
330 enzymes as input, simplifying the feature selection process required for the previous machine
331 learning model⁹. This deep learning approach can therefore be used as a versatile k_{cat} prediction
332 tool for any species as long as protein sequence and substrate SMILES are available.

333

334 Another advantage of the deep learning model is that it can capture k_{cat} changes towards precise
335 single amino acid substitutions. As amino acid substitution is a powerful technique in the enzyme
336 evolution field and is routinely used to probe the enzyme catalytic mechanism^{35,36}, it is valuable
337 that attention weight calculation with our deep learning model can identify which amino acid
338 residues have a major impact on the enzyme activity. Particularly, most amino acid substitution
339 experiments performed mutagenesis in the substrate binding site region, since it is hypothesized
340 that the binding region would have a high impact towards the catalytic activity. However, the
341 profound impact remote regions can have towards the catalytic activity has been reported^{37,38}. Here,
342 we found high attention weights for the inosine binding region of human PNP enzyme, while also
343 identifying various non-binding residue sites with high attention weight that deserve further
344 validation. In total, our deep learning model is able to predict amino acid substitutions that can
345 impact k_{cat} values and thereby serve as part of the protein engineering toolbox³⁹.

346

347 The deep learning model is able to predict genome scale k_{cat} profiles for any species. Phenotype
348 related key enzymes can be identified through comparison of k_{cat} values across groups with diverse
349 phenotypes, as done here to identify pyruvate kinase and citrate synthase as Crabtree-effect related
350 enzymes. This approach can as well be applied to identify phenotype related enzymes in other
351 species or even compare among species from different phylogenetic domains. Besides that, global
352 trends in enzyme evolution such as among generalist and specialist enzymes, can be analyzed.

353

354 On the other hand, predicted genome scale k_{cat} profiles can facilitate the reconstruction of enzyme-
355 constrained models of metabolism. Deep learning predicted k_{cat} proved to be a more comprehensive
356 but still practical alternative to matching *in vitro* k_{cat} values from BRENDA⁴ and SABIO-RK⁵
357 database as is common in Classical-ecGEMs^{2,27,40}. Besides the limitation of the EC number
358 annotation for less studied species, k_{cat} values measured for the well-studied species are also far
359 away from completeness (Supplementary Figure 1c). For the well-studied species *S. cerevisiae*,
360 only 47 k_{cat} values are fully matched with proteins and substrates in the GEM, while other k_{cat}
361 values are mostly from fuzzy matching with other substrates, organisms, or even introducing wild
362 cards in the EC number², which also can introduce considerable uncertainty in the reconstructed
363 Classical-ecGEMs. In the earlier published ecGEM reconstruction, a lot of manual work is
364 required to ensure the functionality of Classical-ecGEMs². Compared with the Classical-ecGEM
365 reconstruction, DL-ecGEMs is fully automatic, with reduced uncertainty, significantly increased
366 enzyme coverage and k_{cat} coverage for enzymatic reactions and have a more reliable proteome
367 prediction. If there are available experimental growth data, then the ecGEM reconstruction can be
368 further improved through a Bayesian approach. Here, we showed that *Posterior*-mean-ecGEMs

369 are more accurate representatives for their phenotypes and the proteome predictions are also
370 improved, which illustrates how functional ecGEMs can be automatically reconstructed.

371
372 In conclusion, we showed how a deep learning approach yields realistic k_{cat} which can be used to
373 direct future genetic engineering, understand enzyme evolution, reconstruct ecGEMs that can be
374 used to simulate metabolic flux and phenotype prediction. Besides that, we envision many other
375 possible uses of this deep learning based k_{cat} prediction tool such as a novel tool in genome mining
376 and Genome-Wide Association Studies (GWAS) analysis. We also envision this automatic
377 Bayesian ecGEM reconstruction pipeline for further usage in ecGEMs reconstruction, for omics
378 data incorporation and analysis.

379

380 **Method and materials**

381 **Preparation of the dataset for deep learning model development**

382 The dataset used for deep learning model construction was extracted from the BRENDA⁴ and
383 SABIO-RK database⁵ on 10 July 2020 by customized scripts via Application Programming
384 Interface (API). We generated a comprehensive dataset including the substrate name, organism
385 information, Enzyme Commission number (EC number), protein ID (UniProt ID), enzyme type,
386 and k_{cat} values. Besides, substrate SMILES (Simplified Molecular Input Line Entry System), a
387 string notation to represent the substrate structure, was extracted using substrate name to query the
388 PubChem compound database⁴¹, which is the largest database of chemical compound information
389 and is easy to access⁴². As different substrates usually have various synonyms in different database
390 and GEMs, we used a customized Python-based script to ensure that the same canonical SMILES

391 could be output for the same substrates with various synonyms, which is essential to help filter
392 redundant entries obtained from different databases (Supplementary Figure 2).

393
394 For the BRENDA database⁴, 69,140 entries could be found after downloading and simply
395 processing the accessible data, including 46,417 entries with wildtype enzymes and 22,723 entries
396 with mutated enzymes according to the classification of enzyme type. All these entries contain the
397 required information regarding substrate name, organism, EC number, UniProt ID, enzyme type
398 and k_{cat} value. Then we removed duplicates in the entries, and if there are multiple reported
399 measurements for the same enzyme, we only used the maximum value. For the SABIO-RK
400 database⁵, the same data cleaning process was performed. Besides that, we removed the entries
401 with non-standard units for k_{cat} values, such as $s^{(-1)}*g^{(-1)}$, $mol*s^{(-1)}*g^{(-1)}$, J/mol , etc. All
402 k_{cat} values were converted to the unit in $s^{(-1)}$. Available SMILES for substrates were obtained via
403 the API of the PubChem database⁴¹. Then we combined the dataset extracted from BRENDA
404 database and the SABIO-RK database. Due to high overlap between these two databases, 48,659
405 unique entries could be found after data cleaning by merging the entries with the same substrate
406 name, EC number, organism, enzyme type and k_{cat} value for both databases, and all of the entries
407 have specific substrate SMILES information. Besides the similar approach to keep the maximal
408 values for the multiple measurement, duplicates caused by different synonyms usage in these two
409 databases are filtered using the canonical SMILES. Next, protein sequences are queried with two
410 methods, for entries with UniProt ID information, the amino acid sequences could be obtained via
411 the API of the UniProt database⁴³; for entries without UniProt ID, the amino acid sequences were
412 acquired from the UniProt database⁴³ and the BRENDA database⁴ based on their EC number and
413 organism information. After that, the sequences of those entries with wildtype enzymes were

414 mapped directly and the sequences of those entries with mutated enzymes were changed according
415 to the mutated sites. Finally, 16,838 entries (including 9,411 entries with wildtype enzymes and
416 7,427 entries with mutated enzymes) were left as the high-quality dataset for deep learning model
417 construction. Detailed numbers for the data cleaning can be found in Supplementary Figure 2. Data
418 availability:

419 <https://github.com/SysBioChalmers/DLKcat/tree/master/DeeplearningApproach/Data/database>

420

421 **Construction of the deep learning pipeline**

422 In this work, we developed an approach for *in vitro* k_{cat} value prediction by combining a graph
423 neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins. The
424 integration of GNN and CNN can be naturally used to handle pairs of data with different structures,
425 i.e., molecular graphs and protein sequences. In this approach, substrates are represented as
426 molecular graphs where the vertices are atoms, the edges are chemical bonds, and proteins are
427 represented as sequences in which the characters are amino acids.

428

429 For substrates, there are just a few types of chemical atoms (e.g., carbon and hydrogen) and
430 chemical bonds (e.g., single bond and double bond). To obtain more learning parameters, we
431 employed r-radius subgraphs to get the vector representations, which are induced by the
432 neighboring vertices and edges within radius r from a vertex⁴⁴. Firstly, substrate SMILES was
433 converted to a molecular graph using RDKit (<https://www.rdkit.org>). Given a substrate graph, the
434 GNN can update each atom vector and its neighboring atom vectors transformed by the neural
435 network via a non-linear function, e.g., ReLU⁴⁵. Besides, two transitions were developed in the
436 GNN, including vertex transitions and edge transitions. The aim of transitions is to ensure that the

437 local information of vertices and edges is propagated in the graph by iterating the process and
438 summing neighboring embeddings. And the final output of the GNN is a set of real-valued
439 molecular vector representations for substrates.

440

441 Similarly, by using the CNN to scan protein sequences, we can obtain low-dimensional vector
442 representations for protein sequences transformed by the neural network via a non-linear function,
443 e.g., ReLU. To apply the CNN to proteins, we defined ‘words’ in protein sequence and split a
444 protein sequence into an overlapping n-gram ($n = 1, 2, 3$) amino acids⁴⁶. In this work, to avoid
445 low-frequency words in the learning representations, relatively smaller n-gram number of 1, 2 or
446 3 was set. Also, other important parameters of the neural networks (CNN & GNN) were set as
447 follows: number of layers in CNN: 2, 3 or 4; number of time steps in GNN: 2, 3 or 4; window size:
448 11 (fixed); r-radius: 0, 1 or 2; vector dimensionality: 5, 10 or 20. These different settings were
449 explored based on R Squared (R^2) in Equation 1 during the hypermeter tuning to find which
450 hyperparameter is better for improving the deep learning performance. And finally, we used the
451 optimal hyperparameters to train our deep learning model.

$$452 \quad R^2 = 1 - \frac{\sum_{i=1}^n (y_{ie} - y_{ip})^2}{\sum_{i=1}^n (y_{ie} - \bar{y})^2} \quad (1)$$

453 where y_{ip} is the predicted k_{cat} value, y_{ie} is the experimental k_{cat} value, n is the total number of
454 validation dataset.

455

456 After the acquisition of the substrate molecular vector representations and the protein sequence
457 vector representations, we concatenated them together and an output vector (k_{cat} value) to train the
458 deep learning framework. During the training process, all the datasets were shuffled at the first
459 step, and then were randomly split into training dataset, validation dataset and test dataset at the

460 ratio of 80%:10%:10%. Given a set of substrate-protein pairs and the k_{cat} values in the training
461 dataset, the aim of training process is to minimize its loss function. The best model was chosen
462 according to the minimal Root Mean Square Error (RMSE) in Equation 2 on the validation dataset
463 with the least spread between training dataset and validation dataset. For building and training
464 models, the PyTorch v1.4.0 software package was utilized and accessed using the python interface
465 under CUDA/10.1.243.

$$466 \quad RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_{ip} - y_{ie})^2} \quad (2)$$

467 where y_{ip} is the predicted k_{cat} value, y_{ie} is the experimental k_{cat} value, n is the total number of dataset
468 (validation dataset or test dataset).

469

470 **Analysis of experimental and deep learning-based k_{cat} values across different metabolic 471 contexts**

472 According to the classification of metabolic pathways, metabolic contexts were mainly divided
473 into four different subsystems: primary metabolism-CE (carbohydrate and energy), involving the
474 main carbon and energy metabolism, e.g., glycolysis/gluconeogenesis, TCA cycle, pentose
475 phosphate pathway, etc; primary metabolism-AFN (amino acids, fatty acids, and nucleotides);
476 intermediate metabolism, related to the biosynthesis and degradation of cellular components, such
477 as coenzymes and cofactors; and secondary metabolism, associated with metabolites that are
478 produced in specific cells or tissues, e.g., flavonoid biosynthesis, caffeine metabolism etc⁶. To
479 explore the metabolic subsystems for all of the wildtype enzymes in the experimental dataset, the
480 module in KEGG database¹⁶ was utilized to assign metabolic pathways for enzyme-substrate pairs
481 by linking the detailed metabolic pathway in KEGG API with EC number annotated in each
482 enzyme-substrate pair. Detailed classification can be found in Supplementary Table 1. Using the

483 trained deep learning model, the predicted k_{cat} values were generated for all the enzyme-substrate
484 pairs. The relationship between these predicted k_{cat} values and various metabolic contexts was
485 further analyzed, which was compared with the trends of the annotated experimental results.

486

487 **Interpretation of the reasoning of deep learning with neural attention mechanism**

488 To interpretate which subsequences or residue sites are more important for the substrate, the neural
489 attention mechanism was employed by assigning attention weights to the subsequences¹⁹. A higher
490 attention weight of one residue means that residue is more important for the enzyme activity
491 towards the specific substrate. Such attention weights were modeled based on the output of the
492 neural network.

493
$$C = \{c_1^{(t)}, c_2^{(t)}, c_3^{(t)}, \dots, c_n^{(t)}\} \quad (3)$$

494
$$h_{substrate} = f(W_{inter}y_{substrate} + b) \quad (4)$$

495
$$h_i = f(W_{inter}c_i + b) \quad (5)$$

496
$$\alpha_i = \sigma(h_{substrate}^T h_i) \quad (6)$$

497 where C is a set of hidden vectors for the protein sequence, $c_1^{(t)}$ to $c_n^{(t)}$ are the sub-hidden vectors
498 for the split subsequences, $y_{substrate}$ is the substrate molecular vector, W_{inter} and b are the weight
499 matrix and the bias vector in the neural network, respectively, f is a non-linear activation function
500 (e.g., ReLU), α_i is the final attention weight value.

501

502 For a defined protein, it could be split into overlapping n-gram amino acids and calculated as a set
503 of hidden vectors in Equation 3. Given a substrate molecular vector $y_{substrate}$ and a set of protein
504 hidden vectors, the substrate embeddings ($h_{substrate}$) and subsequence embeddings (h_i) could be
505 output based on the neural network as shown in Equation 4 and Equation 5. By considering the

506 embeddings of $y_{substrate}$, the attention weight value for each subsequence was accessible in Equation
507 6, which represents the importance signals of the protein subsequence towards the enzyme activity
508 for a certain substrate.

509

510 **Prediction of k_{cat} values for 343 yeast/fungi species**

511 The GEMs of 343 yeast/fungi species were downloaded from the GitHub repository²¹. For each
512 model, all reversible enzymatic reactions were split to forward and backward reactions. Reactions
513 catalyzed by isoenzymes were also split to multiple reactions with one enzyme complex for each
514 reaction. Substrates were extracted from the model and mapped to MetaNetX database to get
515 SMILES structure using corresponding annotated MetaNet IDs for metabolites⁴⁷. Protein IDs for
516 the enzymes were from the model.grRules. Since there are around 200 yeast species are newly
517 sequenced⁴⁸ and are not included in the UniProt database⁴³, protein sequences were queried by the
518 protein ID in the protein fasta file for each species (Supplementary Dataset). Reaction IDs,
519 substrate names, substrate SMILES and protein IDs were combined as the input file for the deep
520 learning k_{cat} prediction model.

521

522 **Analysis of k_{cat} values and dN/dS for 343 yeast/fungi species**

523 In a previous study, the genomes of 343 yeast/fungi species combined with comprehensive genome
524 annotations were publicly available⁴⁸. The gene-level dN/dS of gene sequences for pairs of
525 orthologous genes from the 343 species were calculated with yn00 from PAML v4.7⁴⁹. For this
526 computational framework, the input is the single-copy ortholog groups (OGs), and the output is
527 the gene-level dN/dS values extracted from the PAML output files. By mapping the predicted k_{cat}
528 values with the gene-level dN/dS values via the bridge of protein ID, a global analysis was

529 performed between the k_{cat} values and the dN/dS values for 343 yeast/fungi species across the
530 outgroup (11 fungal species) together with 12 major clades divided by the genus-level phylogeny
531 for 332 yeast species.

532

533 **ecGEM reconstruction**

534 ecGEMs are reconstructed by adding enzymatic constraints (Equation 7) into the basic constraints
535 of basic GEMs.

536
$$v_j \leq k_{\text{cat}}^{i,j} * [E_i] \quad (7)$$

537 where v_j stands for the metabolic flux (mmol/gDW/h) of the reaction j , $[E_i]$ stands for the enzyme
538 concentration for the enzyme i that catalyzes reaction j and $k_{\text{cat}}^{i,j}$ is the catalytic turnover number
539 for the enzyme catalyzing reaction j . This constraint is applied to all enzymatic reactions with
540 available k_{cat} values.

541

542 We used two formats of ecGEMs in the reconstruction process: we adopted the sMOMENT²⁷
543 format in the Bayesian modeling process to speed up the k_{cat} mapping process and linear problem
544 construction in the SMC-ABC search; while in the model evaluation and final format, we used the
545 GECKO format to compile all k_{cat} values in the model S matrix which would be compatible with
546 all developed GECKO functions^{2,50}. There is a developed customized function
547 convertToGeckoModel to facilitate the conversion for these two formats.

548

549 Classical-ecGEM reconstruction queries k_{cat} values from BRENDA database by matching the EC
550 number, which is heavily relied on the database EC number annotation for the specific species^{2,27}.
551 Since more than 200 out of 343 yeast/fungi species are not annotated in UniProt⁴³ and KEGG¹⁶,

552 EC numbers for orthologs annotated in *S. cerevisiae* were borrowed to facilitate Classical-ecGEM
553 reconstruction process for all these 343 species. The k_{cat} extraction process used the criteria from
554 the process 13 in the reconstruction methods of the reference⁴⁰.

555

556 DL-ecGEM reconstruction extracts all k_{cat} values from the deep learning predicted file. To assign
557 k_{cat} value for each metabolic reaction, we follow the criteria below 1) k_{cat} values predicted for
558 currency metabolites such as H₂O, H⁺ were excluded; 2) If there are multiple substrates in the
559 reaction, maximum values among substrates were kept; 3) If multiple subunits exist in the enzyme
560 complex, we used the maximum values among all subunits to represent the k_{cat} for the complex.

561

562 *Posterior*-mean-ecGEM reconstruction uses mean values for accepted *Posterior* distribution. The
563 k_{cat} values in the DL-ecGEMs combined with the RMSE (which is 1 in log10 scale) of the k_{cat}
564 prediction were used as mean values and variance to make the *Prior* distribution. Each k_{cat} value
565 was described with a log normal distribution $N(k_{\text{cat}}_i, 1)$. This *Prior* iteratively morphs into a
566 *Posterior* through multiple generations²⁵. For each generation, we sampled 128 k_{cat} datasets within
567 the distribution, and 100 among those 128 datasets with smaller distance (see next section for the
568 SMC-ABC distance calculation) between phenotype measurements and predictions which can
569 better represent the phenotype were kept to make the distribution for the next generation. Until the
570 distance is lower than the cutoff (RMSE of 0.5), then we accepted the final distribution as *Posterior*
571 distribution²⁵.

572

573 **SMC-ABC distance function**

574 Experimental growth data and related exchange rates in batch and chemostat conditions were
575 collected for yeast/fungi species, which are available at Supplementary Table 5. The distance
576 function was designed as RMSE between simulated and experimental values for maximal growth
577 simulations and exchange rates simulations. As for maximal growth simulation, the medium was
578 set in the model by allowing the free uptake of composition, and the objective function was set to
579 maximizing growth. The RMSE was calculated for the simulated and measured growth rates. For
580 the exchange rates simulation, the carbon source uptake rates were constrained based on
581 experimental measurements, and the objective function was also set to maximizing growth. The
582 RMSE was calculated for the simulated and measured exchange rates of all measured exo-
583 metabolites. All measured and simulated rates were normalized by the carbon numbers of the
584 corresponding metabolites before calculation of RMSE. The carbon number for biomass is 41
585 (mean value for the molecular wight of 1 Cmol biomass of yeast is ~24.42 g⁵¹, the biomass equals
586 to 1000 mg). Note that if the substrate or byproduct does not contain any carbon such as O₂, then
587 the normalizing number is 1. Then the average RMSE of both simulations was used to represent
588 the distance. SMC-ABC search would stop once the RMSE reaches the accepted value or reaches
589 the maximum generation. The accepted value for the distance is set to be lower than 0.5 and the
590 maximum generation is set to be 150.

591

592 **Simulations with ecGEMs**

593 We performed different kinds of simulations using the ecGEMs including simulations of growth
594 and protein abundance. Different mediums and growth conditions were set to match the
595 experiment measurement condition, e.g., using xylose as the carbon source or anaerobic condition.
596 Since there are no measured total protein abundance in the biomass for all yeast/fungi species, we

597 used the protein content mass to serve as the total protein abundance for each species and used a
598 sigma factor of 0.5 to serve as the ratio of metabolic protein ratio in total protein abundance.

599

600 **Statistical tests for comparison between sampled *Prior* and *Posterior* dataset**

601 Sampled *Prior* and *Posterior* k_{cat} datasets were compared for the difference in the mean values and
602 the variance. Welch's t test was used to test the significance for the mean values, while one-tailed
603 F-test was used for the reduced variances. The cutoff for the significance was set to 0.01 for the
604 adjusted P value corrected by the Šidák method.

605

606 **Proteome data collection**

607 All collected proteome data are available in the GitHub repository
608 (https://github.com/SysBioChalmers/DLKcat/tree/master/BayesianApporach/Data/Proteome_ref.xlsx). For relative proteome datasets, we normalized by the identical condition of the absolute
609 proteome data from the literature following the same method as^{52,53}. Reference absolute datasets
610 for those relative proteome datasets were documented in the same file.
611

612

613 **Calculation of protein cost and efficiency**

614 To calculate the protein cost of the HY pathway, the glucose uptake rate was fixed at 1
615 mmol/gDW/h, and the non-growth associated maintenance energy (NGAM) reaction was
616 maximized. The total protein pool reaction was then minimized with fixing the NGAM reaction at
617 the maximized value. The minimized flux through the total protein pool reaction is the protein cost
618 of the HY pathway for converting one glucose to ATP. As for the protein cost calculation of LY
619 pathway, glucose uptake rate was fixed at 1 mmol/gDW/h, the ethanol production was maximized.

620 Then the ethanol exchange rate was fixed at the maximized value, and NGAM was maximized.
621 After that, NGAM was also fixed at the maximized value, and total protein pool was minimized
622 to calculate the protein cost for LY pathway. We also examined the flux distribution to ensure that
623 other energy producing pathways are all inactive during this simulation. Protein efficiency is
624 defined as the protein cost for producing one flux ATP in both pathways.

625

626 **Code and data availability**

627 To facilitate further usage, we provide all codes, example and detailed instruction in GitHub
628 repository: <https://github.com/SysBioChalmers/DLKcat>. Protein sequence fasta files, deep
629 learning predicted k_{cat} values, classcial-ecGEMs, DL-ecGEMs and *Posterior-mean-ecGEMs* for
630 343 yeast/fungi species are available as Supplementary Dataset on the zenodo:
631 <https://doi.org/10.5281/zenodo.5164210>.

632

633 **Author contribution**

634 F.L, L.Y., H.L. and J.N. designed the research. F.L. and L.Y. performed the research. F.L, L.Y.,
635 Y.C., G.L., E.K. and J.N. analyzed the data. L.Y. and M.E. collected the k_{cat} data. F.L, L.Y., H.L,
636 G.L., Y.C., M.E., E.K. and J.N. wrote the paper. All authors approved the final paper.

637

638 **Acknowledgement**

639 This project has received funding from the Novo Nordisk Foundation (grant no.
640 NNF10CC1016517), the Knut and Alice Wallenberg Foundation, and the European Union's
641 Horizon 2020 research and innovation program with projects DD-DeCaF (grant no. 686070). The
642 computations were enabled by resources provided by the Swedish National Infrastructure for

643 Computing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE) and
644 High Performance Computing Center North (HPC2N), partially funded by the Swedish Research
645 Council through grant agreement no. 2018-05973.

646

647 **Competing interests**

648 The authors declare no competing interests.

649

650 **Reference:**

- 651 1. Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and
652 allocation. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 17592–17597 (2019).
- 653 2. Sánchez, B. J. *et al.* Improving the phenotype predictions of a yeast genome-scale
654 metabolic model by incorporating enzymatic constraints. *Mol. Syst. Biol.* **13**, 935 (2017).
- 655 3. Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and
656 cell growth. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 16754–16759 (2013).
- 657 4. Schomburg, I. *et al.* The BRENDa enzyme information system—From a database to an
658 expert system. *J. Biotechnol.* **261**, 194–206 (2017).
- 659 5. Wittig, U., Rey, M., Weidemann, A., Kania, R. & Müller, W. SABIO-RK: an updated
660 resource for manually curated biochemical reaction kinetics. *Nucleic Acids Res.* **46**,
661 D656–D660 (2018).
- 662 6. Bar-Even, A. *et al.* The moderately efficient enzyme: evolutionary and physicochemical
663 trends shaping enzyme parameters. *Biochemistry* **50**, 4402–4410 (2011).
- 664 7. Chen, Y. & Nielsen, J. Mathematical modelling of proteome constraints within
665 metabolism. *Curr. Opin. Syst. Biol.* (2021).

666 8. Davidi, D. & Milo, R. Lessons on enzyme kinetics from quantitative proteomics. *Curr.*
667 *Opin. Biotechnol.* **46**, 81–89 (2017).

668 9. Heckmann, D. *et al.* Machine learning applied to enzyme turnover numbers reveals
669 protein structural correlates and improves metabolic models. *Nat. Commun.* **9**, 1–10
670 (2018).

671 10. Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic models of protein allocation call for
672 the kinetome. *Cell Syst.* **5**, 538–541 (2017).

673 11. Kitchin, J. R. Machine learning in catalysis. *Nat. Catal.* **1**, 230–232 (2018).

674 12. Shrivastava, A. D. & Kell, D. B. FragNet, a Contrastive Learning-Based Transformer
675 Model for Clustering, Interpreting, Visualizing, and Navigating Chemical Space.
676 *Molecules* **26**, (2021).

677 13. Zrimec, J. *et al.* Deep learning suggests that gene expression is encoded in all parts of a
678 co-evolving interacting gene regulatory structure. *Nat. Commun.* **11**, 6141 (2020).

679 14. Kroll, A., Heckmann, D. & Lercher, M. J. Prediction of Michaelis constants from
680 structural features using deep learning. *Preprint at*
681 <https://doi.org/10.1101/2020.12.01.405928> (2020).

682 15. Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning enables high-quality and high-
683 throughput prediction of enzyme commission numbers. *Proc. Natl. Acad. Sci.* 201821905
684 (2019).

685 16. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new
686 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.* **45**, D353–
687 D361 (2017).

688 17. Yep, A., Kenyon, G. L. & McLeish, M. J. Saturation mutagenesis of putative catalytic

689 residues of benzoylformate decarboxylase provides a challenge to the accepted
690 mechanism. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 5733–5738 (2008).

691 18. Lin, Y.-H. T., Huang, C. L. V., Ho, C., Shatsky, M. & Kirsch, J. F. A general method to
692 predict the effect of single amino acid substitutions on enzyme catalytic activity. *Preprint*
693 at <https://doi.org/10.1101/236265> (2017).

694 19. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to
695 align and translate. *Preprint* at <https://arxiv.org/abs/1409.0473v7> (2014).

696 20. Erion, M. D. *et al.* Purine nucleoside phosphorylase. 1. Structure-function studies.
697 *Biochemistry* **36**, 11725–11734 (1997).

698 21. feiranl, hongzhonglu, Domenzain, I. & Yuan, L. SysBioChalmers/Yeast-Species-GEMs:
699 Yeast-Species-GEM. (2021). data sets. zenodo <https://doi:10.5281/zenodo.4568962>

700 22. Nam, H. *et al.* Network context and selection in the evolution to enzyme specificity.
701 *Science* **337**, 1101–1104 (2012).

702 23. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. *PLoS Genet.* **4**,
703 e1000304 (2008).

704 24. Ringe, D. & Petsko, G. A. Biochemistry. How enzymes work. *Science* **320**, 1428–1429
705 (2008).

706 25. Li, G. *et al.* Bayesian genome scale modelling identifies thermal determinants of yeast
707 metabolism. *Nat. Commun.* **12**, 1–12 (2021).

708 26. Van Hoek, P. I. M., Van Dijken, J. P. & Pronk, J. T. Effect of specific growth rate on
709 fermentative capacity of baker's yeast. *Appl. Environ. Microbiol.* **64**, 4226–4233 (1998).

710 27. Bekiaris, P. S. & Klamt, S. Automatic construction of metabolic models with enzyme
711 constraints. *BMC Bioinformatics* **21**, 19 (2020).

712 28. Pfeiffer, T. & Morley, A. An evolutionary perspective on the Crabtree effect. *Front. Mol.*
713 *Biosci.* **1**, 17 (2014).

714 29. de Alteriis, E., Cartenì, F., Parascandola, P., Serpa, J. & Mazzoleni, S. Revisiting the
715 Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-
716 induced cell death. *Cell Cycle* **17**, 688–701 (2018).

717 30. Ata, Ö. *et al.* A single Gal4-like transcription factor activates the Crabtree effect in
718 *Komagataella phaffii*. *Nat. Commun.* **9**, 1–10 (2018).

719 31. Kamrad, S. *et al.* Pyruvate kinase variant of fission yeast tunes carbon metabolism, cell
720 regulation, growth and stress resistance. *Mol. Syst. Biol.* **16**, e9270 (2020).

721 32. Krebs, H. A. Rate control of the tricarboxylic acid cycle. *Adv. Enzyme Regul.* **8**, 335–353
722 (1970).

723 33. Christen, S. & Sauer, U. Intracellular characterization of aerobic glucose metabolism in
724 seven yeast species by ¹³C flux analysis and metabolomics. *FEMS Yeast Res.* **11**, 263–272
725 (2011).

726 34. Blank, L. M., Lehmbeck, F. & Sauer, U. Metabolic-flux and network analysis in fourteen
727 hemiascomycetous yeasts. *FEMS Yeast Res.* **5**, 545–558 (2005).

728 35. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. *Nat. Catal.* **3**,
729 203–213 (2020).

730 36. Markel, U. *et al.* Advances in ultrahigh-throughput screening for directed enzyme
731 evolution. *Chem. Soc. Rev.* **49**, 233–262 (2020).

732 37. Loeb, D. D. *et al.* Complete mutagenesis of the HIV-1 protease. *Nature* **340**, 397–400
733 (1989).

734 38. Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure.

735 *Chem. Rev.* **111**, 7595–7624 (2011).

736 39. Tong, H., Küken, A., Razaghi-Moghadam, Z. & Nikoloski, Z. Characterization of effects
737 of genetic variants via genome-scale metabolic modelling. *Cell. Mol. Life Sci.* **78**, 5123–
738 5138 (2021).

739 40. Chen, Y., Li, F., Mao, J., Chen, Y. & Nielsen, J. Yeast optimizes metal utilization based
740 on metabolic network and enzyme kinetics. *Proc. Natl. Acad. Sci.* **118**, (2021).

741 41. Kim, S. *et al.* PubChem Substance and Compound databases. *Nucleic Acids Res.* **44**,
742 D1202-13 (2016).

743 42. Chen, F., Yuan, L., Ding, S., Tian, Y. & Hu, Q.-N. Data-driven rational biosynthesis
744 design: from molecules to cell factories. *Brief. Bioinform.* **21**, 1238–1248 (2020).

745 43. The UniProt Consortium. UniProt: the universal protein knowledgebase. *Nucleic Acids
746 Res.* **45**, D158–D169 (2017).

747 44. Tsubaki, M., Tomii, K. & Sese, J. Compound-protein interaction prediction with end-to-
748 end learning of neural networks for graphs and sequences. *Bioinformatics* **35**, 309–318
749 (2019).

750 45. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. *Nature* **521**, 436–444 (2015).

751 46. Dong, Q.-W., Wang, X.-L. & Lin, L. Application of latent semantic analysis to protein
752 remote homology detection. *Bioinformatics* **22**, 285–290 (2006).

753 47. Moretti, S., Tran, V. D. T., Mehl, F., Ibberson, M. & Pagni, M. MetaNetX/MNXref:
754 unified namespace for metabolites and biochemical reactions in the context of metabolic
755 models. *Nucleic Acids Res.* **49**, D570–D574 (2021).

756 48. Shen, X.-X. *et al.* Tempo and mode of genome evolution in the budding yeast subphylum.
757 *Cell* **175**, 1533–1545 (2018).

758 49. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* **24**,
759 1586–1591 (2007).

760 50. Domenzain, I. *et al.* Reconstruction of a catalogue of genome-scale metabolic models with
761 enzymatic constraints using GECKO 2.0. *Preprint* at
762 <https://doi.org/10.1101/2021.03.05.433259> (2021).

763 51. Popovic, M. Thermodynamic properties of microorganisms: determination and analysis of
764 enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32
765 microorganism species. *Helixon* **5**, e01950 (2019).

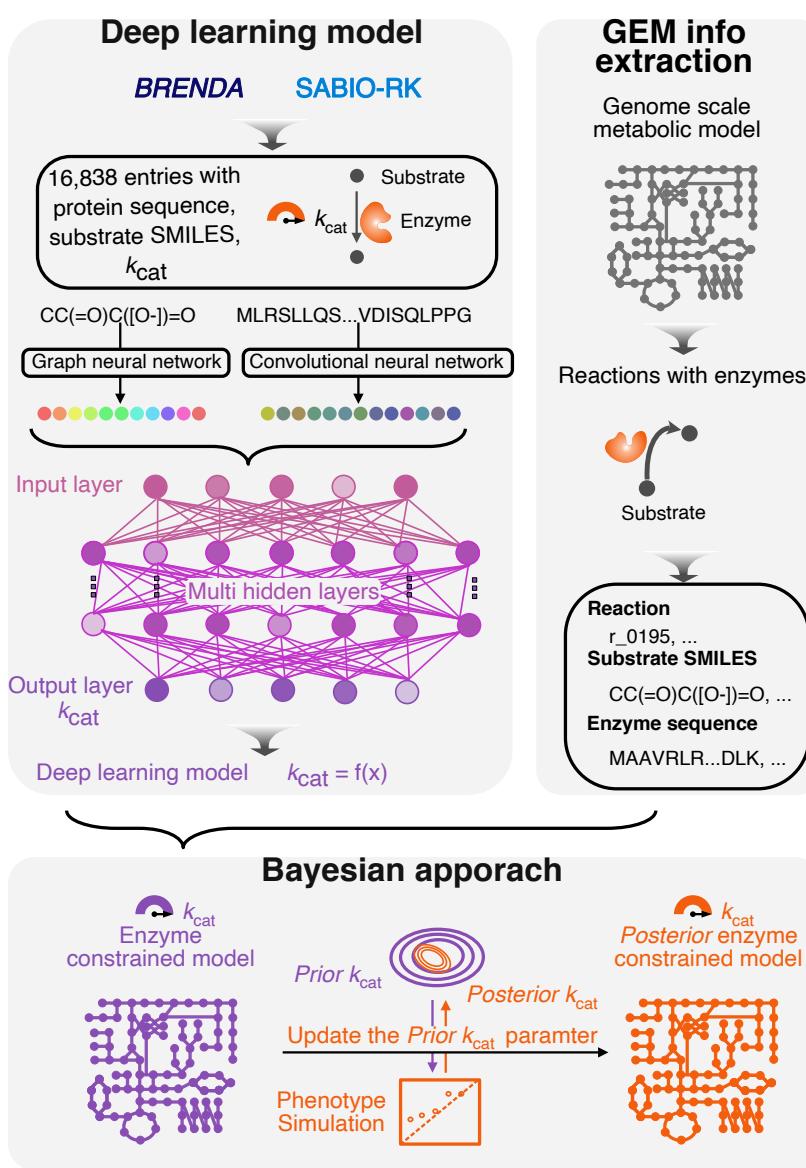
766 52. Yu, R. *et al.* Nitrogen limitation reveals large reserves in metabolic and translational
767 capacities of yeast. *Nat. Commun.* **11**, 1881 (2020).

768 53. Metzl-Raz, E. *et al.* Principles of cellular resource allocation revealed by condition-
769 dependent proteome profiling. *Elife* **6**, (2017).

770

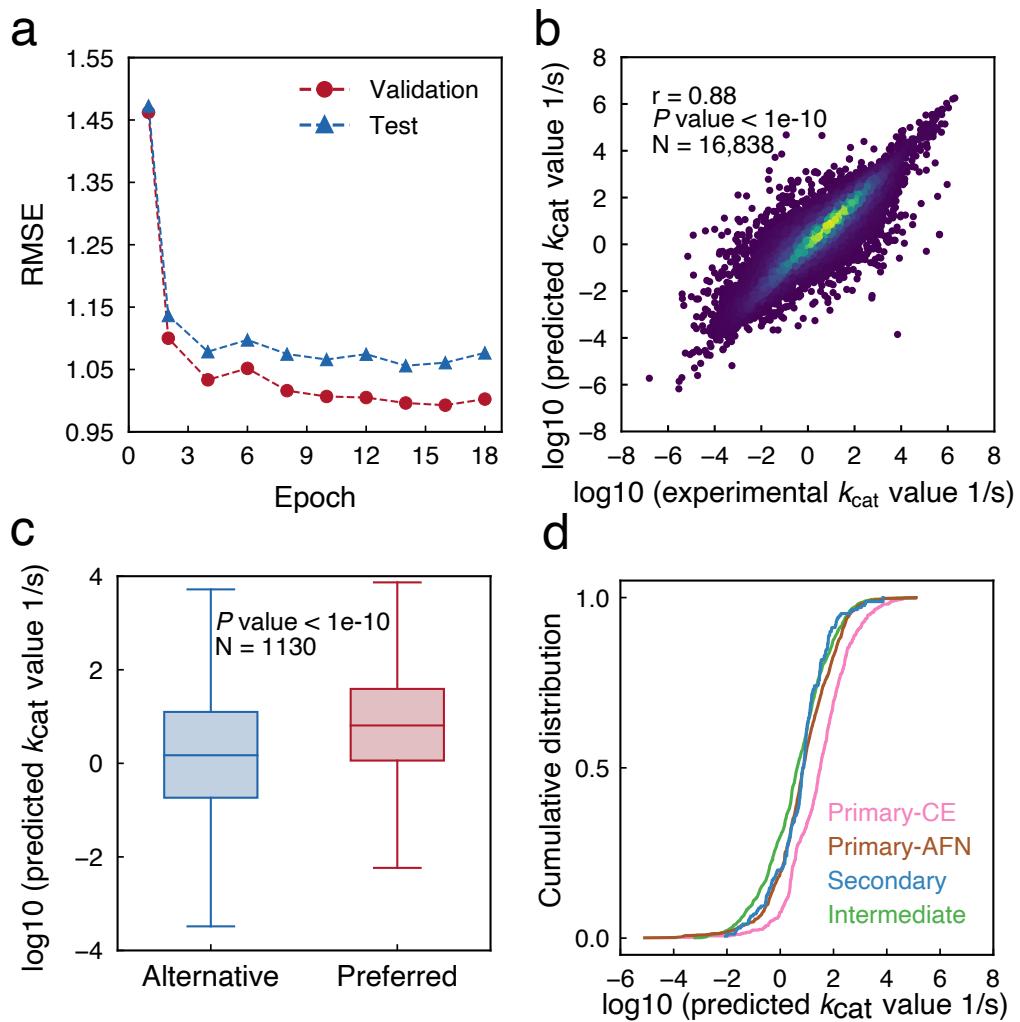
771

772 **Figures**



773

774 **Figure 1** Deep learning of enzyme turnover numbers (k_{cat}) for genome scale metabolic model (GEM) parameterization. Firstly, we developed an approach for k_{cat} prediction by combining a graph neural network (GNN) for substrates and a convolutional neural network (CNN) for proteins. Secondly, we extracted information from GEMs as the input for the deep learning model to predict k_{cat} values. Thirdly, we developed a Bayesian facilitated pipeline to reconstruct enzyme-constrained GEMs (ecGEMs) using the predicted k_{cat} profiles from deep learning model.

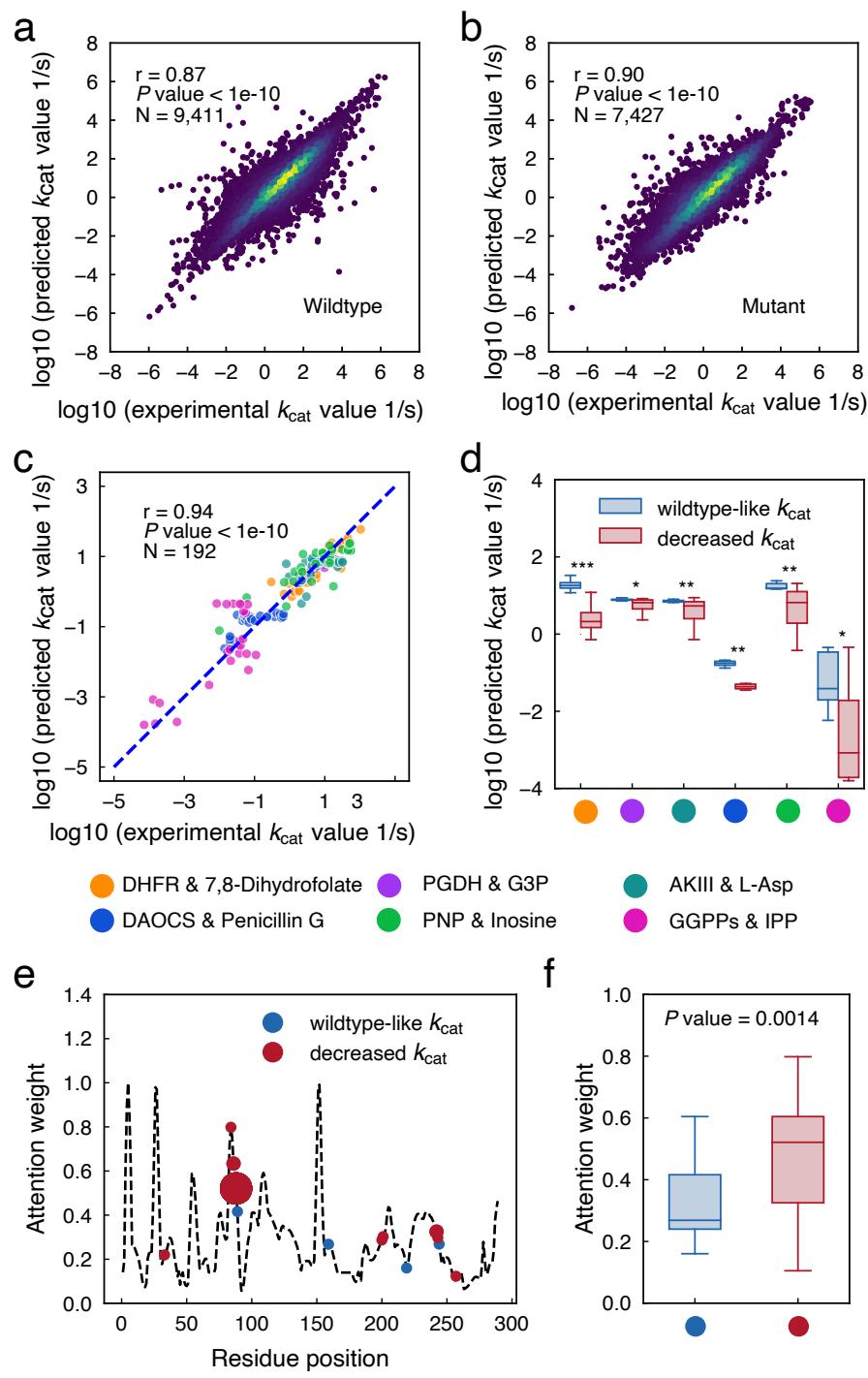


780

781

782 **Figure 2** Deep learning model performance for k_{cat} prediction. (a) The RMSE of k_{cat} prediction
783 during the training process. (b) Performance of the final deep learning model trained by GNN and
784 CNN. The correlation between predicted k_{cat} value and those present in the whole dataset was
785 evaluated. The brightness of color represents the density of data points. (c) Enzyme promiscuity
786 analysis on the whole dataset. For enzymes with multiple substrates, we divided the substrates as
787 preferred and alternative by their experimental measured k_{cat} , then used the predicted k_{cat} values
788 for this boxplot. A two-sided Wilcoxon rank sum test was used to calculate P value. (d) Cumulative
789 distribution of deep learning-based k_{cat} values for enzyme-substrate pairs belonging to different
790 metabolic contexts. Abbreviations: CE, carbohydrate and energy; AFN, amino acids, fatty acids,
791 and nucleotides.

792

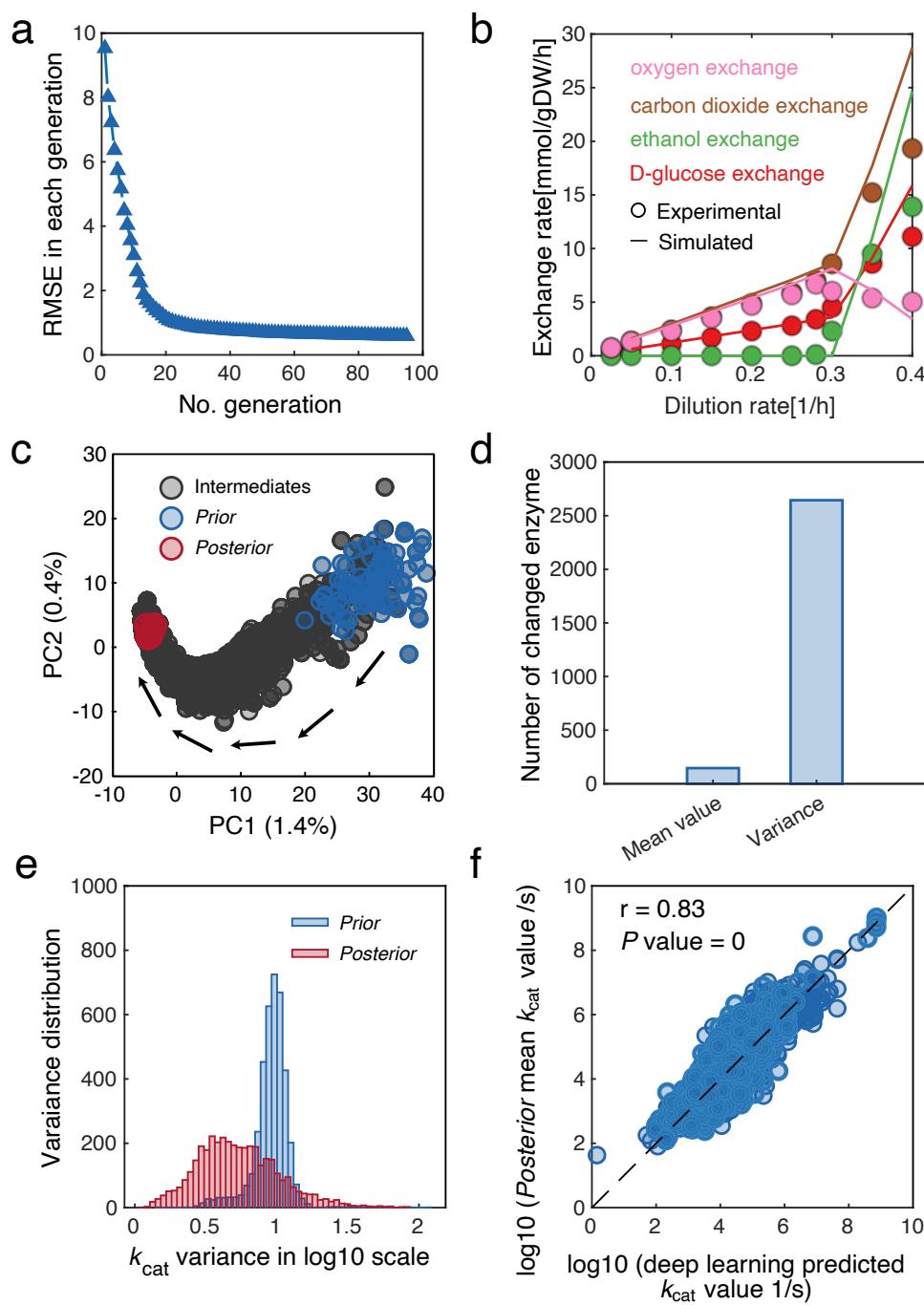


793

794

795 **Figure 3** Deep learning model for the prediction and interpretation of k_{cat} of mutated enzymes. (a)
796 Prediction performance of k_{cat} values for all of the wildtype enzymes via deep learning model. The
797 brightness of color represents the density of data points. (b) Prediction performance of k_{cat} values
798 for all of the mutated enzymes via deep learning model. The brightness of color represents the
799 density of data points. (c) Comparison between predicted and measured k_{cat} values for several well-
800 studied enzyme-substrate pairs with rich experimental mutagenesis data. Enzyme abbreviations:
801 DHFR, dihydrofolate reductase; PGDH, D-3-phosphoglycerate dehydrogenase; AKIII,
802 aspartokinase III; DAOCS, deacetoxycephalosporin C synthase; PNP, purine nucleoside
803 phosphorylase; GGPPs, geranylgeranyl pyrophosphate synthase. Substrate abbreviations: G3P,
804 glycinate 3-phosphate; L-Asp, L-Aspartate; IPP, isopentenyl diphosphate. (d) Comparison of
805 predicted k_{cat} values on several mutated enzyme-substrate pairs between ‘wildtype-like k_{cat} ’ and
806 enzymes with ‘decreased k_{cat} ’. P value < 0.05 (*), P value < 0.01 (**) and P value < 0.001 (***).
807 (e) Attention weight of sequence position in the wildtype PNP enzyme using inosine as the
808 substrate. The mutated enzymes (enzymes with ‘wildtype-like k_{cat} ’ and enzymes with ‘decreased
809 k_{cat} ’) were marked on the curve according to their mutated position. The dot size indicates the
810 number of mutated enzymes occurring in that mutated position. (f) Comparisons of the overall
811 attention weight for the PNP – Inosine pair between enzymes with ‘wildtype-like k_{cat} ’ and enzymes
812 with ‘decreased k_{cat} ’. For two group comparisons in subfigure d and f, a two-sided Wilcoxon rank
813 sum test was used to calculate P value.

814

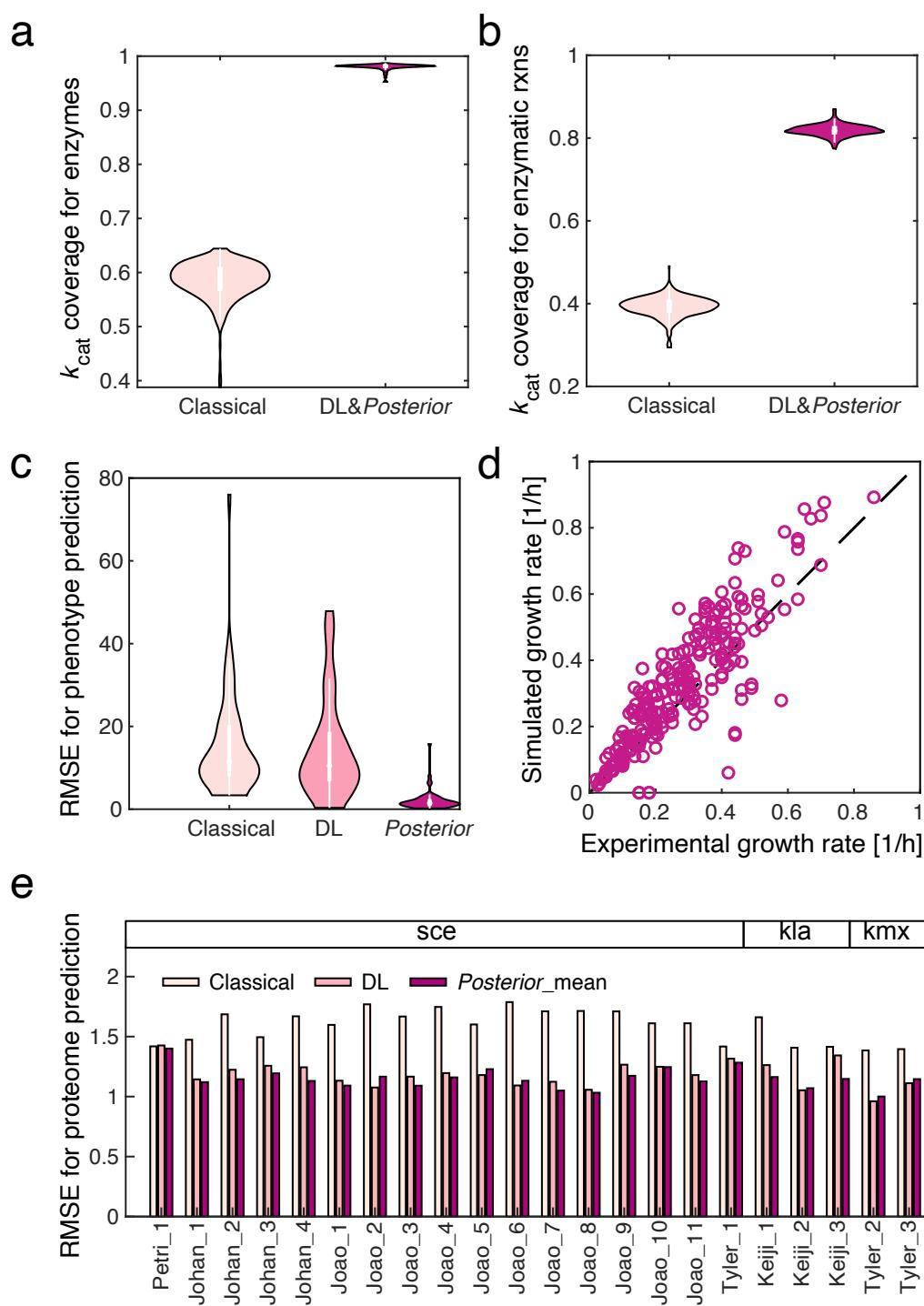


815

816

817 **Figure 4** Bayesian modeling training performance for *S. cerevisiae* ecGEM. (a) RMSE for
818 phenotype measurement and prediction during Bayesian training process. (b) Simulated exchange
819 rates by *Posterior*-mean-ecGEM (line) compared with experimental data (dot). k_{cat} values in the
820 *Posterior*-mean-ecGEMs here is mean values from 100 sampled *Posterior* datasets after the
821 Bayesian training process. (c) Principal component analysis (PCA) for k_{cat} datasets sampled in the
822 Bayesian training approach. Each parameter in the set was standardized by subtracting the mean
823 and then divided by the standard deviation before PCA. Sampled 100 *Prior* datasets are
824 highlighted in blue, while sampled 100 *Posterior* datasets are highlighted in red. All other datasets
825 were termed as “intermediate” and marked in gray. (d) The number of enzymes with a significantly
826 changed mean values (Šidák adjusted Welch’s t test P value < 0.01 , two-sided) and variance
827 (Šidák adjusted one-tailed F-test P value < 0.01) between sampled *Prior* and *Posterior* k_{cat}
828 datasets. (e) Variance distribution comparison for *Prior* and *Posterior* distribution. (f) Correlation
829 between deep learning predicted k_{cat} and *Posterior* mean k_{cat} .

830

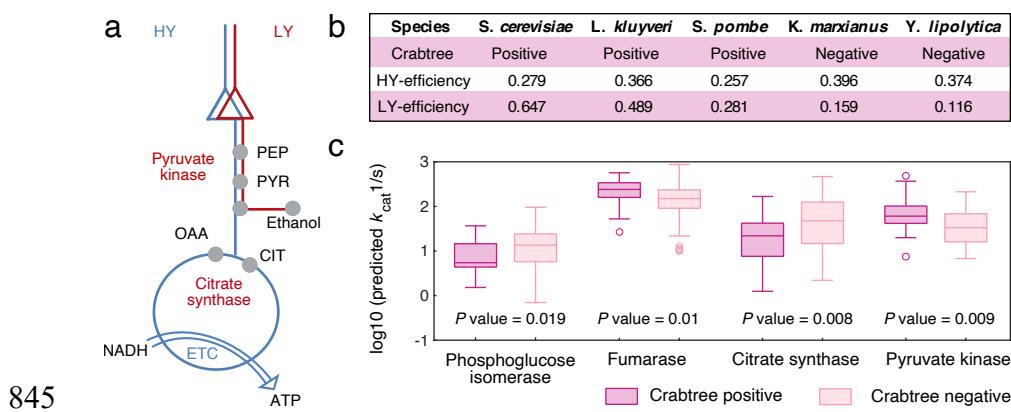


831

832

833 **Figure 5** Evaluation of three ecGEM modelling frameworks including Classical-ecGEM, DL-
834 ecGEMs and *Posterior*-mean-ecGEMs. Enzymatic constraint coverage comparison for (a)
835 enzymes and (b) enzymatic reactions. (c) RMSE for the phenotype prediction. (d) Growth
836 prediction for *Posterior*-mean-ecGEMs. (e) Performance of three types of ecGEMs in predicting
837 quantitative proteome data, Classical-ecGEM, DL-ecGEM and *Posterior*-mean-ecGEM are shown.
838 RMSE is shown on log10 scale. Classical-ecGEM is constructed following the pipeline to extract
839 k_{cat} profiles from BRENDA and SABIORK, DL-ecGEMs are constructed using the k_{cat} profiles
840 predicted from the deep learning model. *Posterior*-mean-ecGEMs here were parameterized by the
841 k_{cat} profiles of the mean values from 100 *Posterior* datasets after the Bayesian training process.
842 Detailed conditions for those proteome datasets can be found in the Supplementary Table 6 and
843 collected proteome dataset are available in GitHub repository.

844



846 **Figure 6** Explanation of the Crabtree effect by energy metabolism. (a) High-yield (HY) and low-
847 yield (LY) pathway definition. (b) Model-inferred protein efficiency of energy metabolism in
848 several common yeast species. Protein efficiency: ATP produced per protein mass per time (Unit:
849 mmolATP/gProtein/h). (c) Enzymes with significantly different k_{cat} values between Crabtree
850 positive and negative species. A two-sided Wilcoxon rank sum test was used to calculate P value.