

1 **Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and**  
2 **non-host plants**

3

4 Lukas Hunziker<sup>1†‡</sup>, Mariana Tarallo<sup>1†</sup>, Keiko Gough<sup>2</sup>, Melissa Guo<sup>1</sup>, Cathy Hargreaves<sup>2</sup>,  
5 Trevor S. Loo<sup>1</sup>, Rebecca L. McDougal<sup>2</sup>, Carl H. Mesarich<sup>3</sup>, Rosie E. Bradshaw<sup>1\*</sup>

6

7 <sup>†</sup>These authors contributed equally to this work.

8

9 <sup>1</sup>Bio-Protection Research Centre, School of Fundamental Sciences, Massey University,  
10 Palmerston North 4474, New Zealand,

11 <sup>2</sup>Scion, New Zealand Forest Research Institute Ltd, Rotorua 3010, New Zealand

12 <sup>3</sup>Bio-Protection Research Centre, School of Agriculture and Environment, Massey  
13 University, Palmerston North 4474, New Zealand

14

15 <sup>‡</sup>Present address: Centre for Crop and Disease Management, Curtin University, Bentley 6102,  
16 Perth, Australia

17

18 \* Corresponding author R.E.Bradshaw@massey.ac.nz.

19

20

21

22 Keywords: *Dothistroma septosporum*, effectoromics, Dothideomycetes, *Nicotiana*  
23 *benthamiana*, *Nicotiana tabacum*, *Pinus radiata*, plant defence, non-host resistance

24

25

26 **Abstract**

27 Forests are under threat from pests, pathogens, and changing climate. One of the major forest  
28 pathogens worldwide is *Dothistroma septosporum*, which causes dothistroma needle blight  
29 (DNB) of pines. *D. septosporum* is a hemibiotrophic fungus related to well-studied  
30 Dothideomycete pathogens, such as *Cladosporium fulvum*. These pathogens use small  
31 secreted proteins, termed effectors, to facilitate the infection of their hosts. The same  
32 effectors, however, can be recognised by plants carrying corresponding immune receptors,  
33 resulting in resistance responses. Hence, effectors are increasingly being exploited to identify  
34 and select disease resistance in crop species. In gymnosperms, however, such research is  
35 scarce. We predicted and investigated apoplastic *D. septosporum* candidate effectors (DsCEs)  
36 using bioinformatics and plant-based experiments. We discovered secreted proteins that  
37 trigger cell death in the angiosperm *Nicotiana* spp., suggesting their recognition by immune  
38 receptors in non-host plants. In a first for foliar forest pathogens, we also developed a novel  
39 protein infiltration method to show that tissue-cultured pine shoots can respond with a cell  
40 death response to one of our DsCEs, as well as to a reference cell death-inducing protein.  
41 These results contribute to our understanding of forest pathogens and may ultimately provide  
42 clues to disease immunity in both commercial and natural forests.

43 **Introduction**

44 Pests and pathogens are a persistent threat to plant health<sup>1</sup>, and this is likely to become worse  
45 with warming climate<sup>2</sup>. Forest trees, which provide important ecosystem functions and  
46 renewable resources, and have a role in mitigating global climate change<sup>3</sup>, are not exempt  
47 from this threat. Nonetheless, these functions are often undervalued<sup>4</sup>, and gymnosperm  
48 pathology research lags behind that of short-lived angiosperm crop plants.

49

50 Dothistroma needle blight (DNB) is one of the most destructive foliar diseases of pine trees.  
51 It has been reported in 76 countries, affecting 109 different host species<sup>5</sup>. DNB is caused by  
52 the Dothideomycete fungi *Dothistroma septosporum* and *D. pini*. These fungi colonise the  
53 needles, causing premature defoliation, reduced growth rates, and sometimes tree death<sup>5,6</sup>. *D.*  
54 *septosporum* accounts for most occurrences of DNB, particularly in North America and  
55 across the Southern Hemisphere, where it has devastated commercial plantations of *Pinus*  
56 *radiata*<sup>7</sup>. The increased incidence and severity of DNB seen over the last two decades has  
57 been attributed to both natural and anthropogenic causes, including climatic changes<sup>8,9</sup>.

58 Existing DNB management strategies can counteract the disease in some cases, but huge  
59 losses are still seen in heavily affected regions, including some with native pine forests<sup>5,7</sup>.  
60

61 To counteract any pathogen, it is important to understand how the pathogen achieves  
62 compatible interactions (infections) with its host plant(s). Of central importance to this  
63 compatibility is the host apoplast, where early contact between plant and pathogen cells is  
64 made<sup>10</sup>. For invading pathogens, the apoplast is a hostile environment, with constitutively  
65 produced plant molecules, such as secondary metabolites and hydrolytic enzymes, that  
66 impede growth<sup>11</sup>. In addition to these defences, the apoplast is monitored by cell surface-  
67 localised immune receptors, termed pattern-recognition receptors (PRRs). PRRs recognise  
68 foreign or ‘damaged self’ molecules, collectively called invasion patterns (IPs), to activate  
69 their innate immune system<sup>12</sup>. Following recognition by these PRRs, a series of immune  
70 responses of varying intensity are triggered, the strongest of which is the hypersensitive  
71 response (HR)<sup>13</sup>, which involves localised cell death and a burst of reactive oxygen species  
72 (ROS) that quickly halt the invading pathogen’s growth. Given this hostility, successful  
73 pathogens must neutralise the apoplastic environment to colonise their hosts and cause  
74 disease.

75  
76 The ability to manipulate plant defences in the apoplast using secreted molecules is widely  
77 shared among microbes, including fungi<sup>14</sup>. These molecules, usually small proteins, are  
78 called effectors (virulence factors) and can evolve rapidly. However, following adaptation of  
79 the host, effectors that serve a virulence function for the pathogen may be recognised as IPs  
80 by host immune receptors and thus elicit resistance responses<sup>10</sup>. Immune receptors can also  
81 be located inside plant cells, where some effectors are delivered to perform their virulence  
82 functions. Intriguingly, some pathogens with necrotrophic stages in their lifecycles exploit  
83 plant cell death associated with IP recognition<sup>15,16</sup>. In these cases, the hosts’ attempts to  
84 prevent invasion instead favour pathogen growth by initiating cell necrosis, which provides  
85 nutrition for the pathogen.

86  
87 Plant immune receptors that provide resistance against pathogens are encoded by resistance  
88 genes, and immune receptors that are hijacked by pathogens to provide susceptibility are  
89 encoded by susceptibility genes. The discovery of resistance and susceptibility genes in  
90 plants has averted yield losses for several crop species by enabling resistant cultivars to be  
91 selected<sup>16</sup>. Fuelled by ever-growing genome, transcriptome and proteome resources, the field

92 of ‘effectoromics’, in which pathogen effectors are screened for those that elicit or suppress  
93 plant defence, has enabled the identification of hosts with resistance and susceptibility genes  
94 in a growing number of plant species<sup>15-18</sup>. Furthermore, these studies improve our  
95 understanding of host-pathogen interactions that will ultimately lead to new, more targeted,  
96 approaches to disease control.

97

98 Reports that investigate foliar pine pathogen effectors are scarce, with no efficient screening  
99 methods established involving the host species. *D. septosporum* is related to the well-studied  
100 tomato leaf mould pathogen, *Cladosporium fulvum*, with which it shares some functional  
101 effector genes<sup>19-21</sup>; both species are apoplast colonisers that do not use specialised infection  
102 structures like haustoria. The extracellular *D. septosporum* effector Ecp2-1 was recently  
103 suggested to be an avirulence factor which elicits defence responses in pine<sup>22</sup>. A recent study  
104 of *Pinus contorta* defence responses to *D. septosporum*<sup>23</sup> identified upregulation of pine  
105 genes associated with IP-triggered immunity, and candidate immune receptor (*R*) genes  
106 showing positive selection, strongly suggesting the importance of *D. septosporum* effectors in  
107 triggering host defence. Here, we focused on candidate apoplastic effectors of *D.*  
108 *septosporum* that might be involved in a successful infection and/or triggering host defence.  
109 The specific aims of our study were to a) functionally characterise *D. septosporum* candidate  
110 effectors (DsCEs) based on recognition by conserved PRRs in non-host model plants, and b)  
111 develop and provide proof of concept for a new effector protein screening method in pines,  
112 employing vacuum infiltration-mediated delivery into small tissue-culture pine shoots.

## 113 **Results**

### 114 ***D. septosporum* candidate effectors have sequence and structural similarity to fungal 115 virulence factors.**

116

117 The *D. septosporum* genome has approximately 12,580 predicted genes, 397 of which encode  
118 putatively secreted proteins that are expressed during infection of *P. radiata* seedlings<sup>19,24,25</sup>.  
119 Using this resource, we identified apoplastic effector candidates of *D. septosporum* following  
120 the bioinformatic pipeline of Hunziker *et al* (2016)<sup>25</sup> in conjunction with transcriptomics data  
121 to determine which genes were highly expressed and/or upregulated during infection of *P.*  
122 *radiata*<sup>24</sup>. We also used EffectorP 3.0<sup>26</sup> and comparisons with the characterised apoplastic

123 secretome of *C. fulvum*<sup>21</sup> to generate a short list of 30 predicted apoplastic *D. septosporum*  
124 candidate effector proteins (DsCEs) (Fig. 1, Supplementary Table S1).

125

126 To determine if the DsCEs were conserved in other fungi with available genomes, we used  
127 BLASTp to determine the top hits based on their predicted amino acid sequence similarity.  
128 All but five of the shortlisted DsCEs (Ds19040, Ds24625, Ds72737, Ds73520 and Ds74875)  
129 had homologues in at least 10 different fungal species, while nine were predicted to have  
130 conserved functional domains (Supplementary Table S2).

131

132 We then queried whether DsCE homologues are present in other fungi associated with pine  
133 needles, including seven pathogens and one endophyte for which predicted proteomes were  
134 available (Table S3). Three DsCEs (Ds19040, Ds72737 and Ds73520) appeared to be  
135 exclusive to *D. septosporum*, with no apparent homologues present in the included/queried  
136 pine needle-associated fungi. All other DsCEs, however, had a homologue in at least one  
137 other pine pathogen investigated (Supplementary Table S3), with more than half of these  
138 possessing a homologue in both a pathogenic species and the pine endophyte species  
139 *Lophodermium nitens*. Ds52422 was unique in having no homologues in the pathogenic  
140 species, but one homologue in *L. nitens* (Supplementary Table S3).

141

142 Recent studies showed that some effector protein families share structural similarity rather  
143 than sequence similarity with effectors from different fungi<sup>27,28</sup>. Thus the DsCEs were  
144 assessed for possible structural similarities to characterised proteins using HHpred. This  
145 analysis inferred structural relationships for five of the DsCEs that had no sequence-based  
146 functional annotations. Of these five, Ds43416 and Ds70694 showed structural similarity to  
147 Alt a 1 allergen / PevD1-like proteins, Ds52422 to endoglucanase proteins, and both Ds68958  
148 and Ds72870 to polyketide cyclase proteins (Supplementary Table S1, Fig. 1). Notably, the  
149 gene encoding Ds43416 (Alt a 1 / PevD1-like) was one of the most highly expressed *and* up-  
150 regulated of the DsCEs, with a remarkably high level of expression at the late infection stage  
151 (Fig. 1, Supplementary Table S1). Among the other DsCEs assessed using HHpred, possible  
152 structural relationships were also identified with proteins that carry functional domains  
153 associated with fungal virulence, namely chitin binding (lectin), cerato-platanin (sub-group of  
154 endoglucanase-like proteins) and CAP family domains (Supplementary Table S1)<sup>29-31</sup>. In  
155 several cases, structural relationships inferred from HHpred corroborated functional

156 annotations that were previously predicted for several DsCEs based on sequence similarity  
157 (Supplementary Table S1).

158  
159 Taken together, the short list of 30 DsCE proteins (Fig. 1) included 13 with sequence and/or  
160 predicted structural similarity to fungal proteins with described functions, and 17 with only  
161 sequence similarity to yet undescribed proteins encoded in other fungal genomes (Fig. 1,  
162 Supplementary Tables S1 and S2). Twenty-five of the 30 DsCEs had at least four cysteine  
163 residues (Fig. 1). This suggests the presence of cysteine pairs forming disulphide bonds for  
164 stability in the hostile apoplast, as previously inferred for apoplastic effector proteins of *C.*  
165 *fulvum*<sup>21</sup>. Further, an overview of the *D. septosporum* reference genome, which is assembled  
166 to chromosome level<sup>19</sup>, showed no particular clustering of the 30 DsCE genes on small  
167 chromosomes or near repetitive elements (Supplementary Fig. S1, Supplementary Table S1).  
168 This corroborates earlier suggestions that, in contrast to several other Dothideomycetes,  
169 ‘pathogenesis-associated gene classes’ in *D. septosporum* were not enriched in these often-  
170 hyper-evolving regions<sup>32</sup>.

171  
172 **Six candidate effectors of *D. septosporum* induced cell death in non-host plants.**

173  
174 In previous work, the *D. septosporum* candidate effector DsEcp2-1 was shown to trigger cell  
175 death in *Nicotiana tabacum*, suggesting it might be recognised by an immune receptor in this  
176 plant species<sup>22</sup>. Similarly, small secreted proteins from the necrotrophic forest pathogen  
177 *Heterobasidion annosum* elicited cell death in *N. benthamiana*<sup>33</sup>. Thus, non-host angiosperm  
178 plants appear to recognise effector proteins from gymnosperm pathogens in a highly  
179 conserved fashion. To identify DsCEs that elicit cell death and are potentially recognised by  
180 non-host plant immune receptors, we therefore carried out *Agrobacterium tumefaciens*-  
181 mediated transient transformation assays (ATTAs) in *N. tabacum* and *N. benthamiana* with  
182 the 30 DsCEs listed in Fig. 1. In addition to DsEcp2-1, five other DsCEs induced cell death,  
183 indicative of a hypersensitive defence response (HR) (Fig. 2).

184  
185 The DsCEs differed in their ability to consistently elicit a response in *N. tabacum*. Three  
186 (DsEcp2-1, Ds70057 and Ds131885) caused cell death in at least 90% of the infiltration spots  
187 within six days post-infiltration (dpi), while Ds70694 (66%) and Ds71487 (58%) were less  
188 consistent (Fig. 2). To gauge whether the culture density of infiltrated *A. tumefaciens* played  
189 a role in plant responses to the DsCEs, we trialled ATTAs at six optical densities (ODs; 0.05

190 - 1.0) with the three most consistent cell death-inducing DsCEs. Whilst DsCEs Ds70057 and  
191 Ds131885 triggered strong cell death across all ODs, DsEcp2-1 showed much weaker cell  
192 death at lower ODs (Supplementary Fig. S2), suggesting a difference in DsCE production *in*  
193 *planta*, or possibly a different type of interaction with plant targets.

194

195 The six DsCEs also differed in their ability to elicit cell death in the non-host plant *N.*  
196 *benthamiana*. Ds74283 was unique in eliciting consistent and strong cell death in *N.*  
197 *benthamiana*, despite showing no response in *N. tabacum*. Only two of the five effectors that  
198 induced cell death in *N. tabacum* (Ds70694 and Ds70057) also consistently induced cell  
199 death in *N. benthamiana*, although it was often patchy in the infiltrated zone (Fig. 2). Of the  
200 other DsCEs, Ds71487 and Ds131885 only induced weak cell death along the perimeter of  
201 infiltration zones in less than 50% of infiltrations into *N. benthamiana*, while DsEcp2-1  
202 caused no cell death (Fig. 2).

203

204 To support the premise that the cell death responses were due to cell death elicitation by  
205 DsCEs in the apoplast, we cloned them for ATTAs without a secretion signal peptide. As  
206 expected, all of the non-secreted versions of these proteins failed to induce cell death (Fig. 2).  
207 The lack of cell death was not due to lack of DsCE production in the plant, but rather a lack  
208 of DsCE secretion to the apoplast, as each DsCE protein could be detected in infiltrated  
209 leaves by western blotting (Supplementary Fig. S3). Taken together, these results confirmed  
210 that the DsCEs need to be secreted into the apoplast to trigger cell death.

211

## 212 ***D. septosporum* cell death inducers are conserved among fungi.**

213

214 We queried the sequences of each DsCE protein that elicited cell death in *Nicotiana* spp. to  
215 further investigate their similarities to other fungal proteins. Some of these DsCEs are  
216 broadly conserved across different fungal classes, and even outside the Ascomycetes (Table  
217 1, Table S4). Sequences similar to Ds70057 were the most numerous, with more than half of  
218 them found in Eurotiomycete species; at the other extreme, Ds70694 only had homologues in  
219 14 Dothideomycete species. However, both Ds70694 and Ds70057 have multiple paralogues  
220 in some species, as well as in the *D. septosporum* genome, suggesting they are each members  
221 of a multi-gene family.

222

223 Among the cell-death elicitors, two were notable for their similarity to cell-death inducing  
224 proteins that have been described as PAMPs in other fungi. Based on reciprocal BLAST  
225 analyses, Ds71487 appears to be an orthologue of RcCDI1 from the barley pathogen  
226 *Rhynchosporium commune*<sup>34</sup>, with a pairwise identity of 41% and four conserved cysteine  
227 residues between the two proteins. Ds131885 is orthologous to VmE02, a cross-kingdom  
228 PAMP from the apple pathogen *Valsa mali* (Nie et al 2019), with 60% amino acid identity  
229 and ten conserved cysteine residues in both proteins.

230

### 231 **Development of a protein delivery method for pine tissue.**

232

233 Screening candidate effectors for their ability to elicit cell death in model plants is indicative  
234 of their potential functions. However, testing their functions in a pine host is critical for  
235 understanding their actual roles in disease. As a first step to achieving this, we developed a  
236 reliable, straight-forward methodology to deliver effector proteins into pine needles.  
237 Challenges included producing DsCE proteins of interest in sufficient purity and quantity,  
238 developing an effective protein delivery method, and identifying a positive control. Trials  
239 involved in the development of methods to address these challenges were discussed in detail  
240 by Hunziker (2018)<sup>35</sup>, and are briefly summarised here.

241

242 To produce the DsCE proteins of interest, we first trialled existing ATTA expression  
243 constructs and whole *N. benthamiana* leaves as expression systems for protein production.  
244 However, collection of apoplastic wash fluid (AWF), containing secreted DsCEs from  
245 infiltrated leaves, did not yield enough protein for replicated studies with pines. We then used  
246 heterologous protein expression and secretion in *Pichia pastoris*, which can be more easily  
247 up-scaled. Culture filtrates from *P. pastoris* transformed with an empty vector (negative  
248 control) elicited cell death in some *P. radiata* genotypes. Thus, to avoid this problematic  
249 background response, we purified histidine-tagged DsCEs from culture filtrates of *P. pastoris*  
250 using immobilised metal ion affinity (IMAC).

251

252 To deliver purified proteins into pine needles, we trialled several methods. Pine needles were  
253 not amenable to syringe infiltration, so vacuum infiltration, with pine tissue immersed in a  
254 DsCE protein solution, was used. After infiltration, detached needles, or groups of needles  
255 (fascicles), from pine seedlings quickly deteriorated, even when placed in moist conditions,  
256 so we chose different plant material for protein delivery assays. Here, clonal shoots of *P.*

257 *radiata* produced by tissue culture without roots and maintained on agar medium, were  
258 employed<sup>36</sup>. The shoots were vacuum-infiltrated, then returned to the agar medium for 7–10  
259 days. Vacuum infiltration of whole shoots with a neutral red dye solution suggested good  
260 uptake efficiency. A schematic of the final method is shown in Fig. 3.

261  
262 A positive control that elicits cell death when infiltrated into clonal shoots of *P. radiata* was  
263 required to confirm the efficacy of the new method. An effector protein from the broad host-  
264 range pathogen *Botrytis cinerea*, BcSSP2, was previously shown to induce strong cell death  
265 in *N. benthamiana* as well as in other plants<sup>37</sup>, so was tested in this study. Consistent with the  
266 previous study, vacuum infiltration of purified BcSSP2 protein produced by *P. pastoris*  
267 elicited cell death in three different genotypes of pine shoots within three days, providing a  
268 positive control. Importantly, the negative control (protein purification elution buffer) did not  
269 elicit a response (Fig. 4).

270  
271 **Infiltration of a DsCE protein into pine shoots induces cell death.**

272  
273 With a novel protein delivery method established using pine shoots, we tested one of the  
274 DsCE proteins, Ds70057, to investigate its capacity to trigger cell death in pine like in *N.*  
275 *tabacum*. Ds70057 was selected because it was highly expressed at the 'mid' and 'late'  
276 (necrotrophic) stages when lesions are formed by *D. septosporum* in *P. radiata*<sup>24</sup>, and as such  
277 was seen as a candidate for playing a role in the switch from biotrophic to necrotrophic  
278 growth.

279  
280 *Pinus radiata* shoots were infiltrated with the Ds70057 purified protein solution (1.3 µg/ml),  
281 alongside controls. As expected, the negative controls (elution buffer, bovine serum albumin)  
282 did not cause any damage or visible stress responses (Fig. 4). In contrast, Ds70057  
283 consistently induced cell death within seven days across all three *P. radiata* genotypes tested  
284 (S6, S11 and R4) (Fig. 4, Supplementary Fig. S4), with these responses near-identical to the  
285 positive control BcSSP2. This finding suggests that Ds70057 might be a virulence factor in  
286 the necrotrophic stage of dothistroma needle blight that helps to destroy needle tissue. More  
287 importantly, we showed that *P. radiata* needles can be screened for responses to potential  
288 effectors.

289

290 **Discussion**

291 Dothistroma needle blight (DNB) remains a threat to both commercial and native pine forests  
292 worldwide, despite decades of research into this disease and its management<sup>5,7</sup>. Although  
293 screening with pathogen effectors based on genome data (effectoromics) has fast-tracked  
294 identification of resistant angiosperm crop varieties with corresponding immune receptors, it  
295 is not known whether a similar effectoromics-based approach could be applied to improve  
296 forest health given the longer life-cycles of forest trees, and the complexity of factors  
297 affecting disease resistance<sup>38</sup>. However, a recent transcriptomics study of *Pinus contorta*  
298 responses to infection with *D. septosporum* showed up-regulation of pine genes involved in  
299 Ca<sup>2+</sup> and MAPK defence signalling pathways as well as pathogen-specific defence  
300 responses<sup>23</sup>. Signatures of selection were identified in candidate immune receptors (*R* genes),  
301 suggesting adaptation to the pathogen and the importance of specific interactions between  
302 pathogen effectors and host immune receptors in pine defence to *D. septosporum*.

303

304 Here we used an effectoromics screening approach in two non-hosts to explore the effector  
305 arsenal of *D. septosporum*. Of 30 small secreted *D. septosporum* candidate effector (DsCE)  
306 proteins that were expressed by transient transformation in *N. tabacum* or *N. benthamiana*,  
307 six induced cell death. Four of these six proteins are very highly conserved across a broad  
308 range of fungal taxa, suggesting some commonality in angiosperm and gymnosperm  
309 effectors, as also seen in some *Phytophthora* pathogens<sup>39</sup>. Most effectoromics studies include  
310 screening on host as well as non-host plants but, to the best of our knowledge, there were no  
311 methodologies in place to enable effector protein screening on pines or indeed any other  
312 gymnosperms. Thus, we developed a novel method that involves infiltration of purified  
313 effector proteins into clonal pine shoots. We validated the system using protein of a highly  
314 expressed DsCE, Ds70057, that elicited cell death in *N. tabacum*, and found that it also  
315 triggered cell death across three independent clonal genotypes of *P. radiata*, suggesting that  
316 an effectoromics screen for host resistance may be possible even in gymnosperm trees.

317

318 We built on a prior study<sup>25</sup> to identify and refine a small set of secreted proteins that are  
319 likely to play a role as effectors in the infection of *P. radiata* by *D. septosporum*. A major  
320 selection criterion for these proteins was high expression and/or up-regulation during the  
321 infection<sup>24</sup>. We mainly adhered to size and cysteine content thresholds ( $\leq 300$  aa,  $\geq 4$  Cys)

322 used in studies of angiosperm pathogens<sup>40</sup> and used the EffectorP 3.0<sup>26</sup> tool to help classify  
323 the DsCE candidates.

324

325 Functional predictions and screens for homology usually rely on comparisons of primary  
326 amino acid sequences using BLASTp. In our study, we also used HHpred to infer possible  
327 structural relationships between the 30 DsCEs and proteins with characterized tertiary  
328 structures. Notably, HHpred predictions largely supported the BLASTp results, but also  
329 uncovered potential functions for five additional DsCEs. One of these five, Ds70694, induced  
330 cell death in *Nicotiana* spp. and was predicted to have structural similarity to proteins with  
331 the major human allergen Alt a 1 fold<sup>41</sup>, with the top HHpred hit to the PAMP-like effector  
332 protein PevD1 from *Verticillium dahliae*<sup>42</sup>. Another protein with an Alt a1 fold, the  
333 *Magnaporthe oryzae* HR-inducing protein 1 (MoHrip1), is highly induced during the  
334 infection of its rice host and has been implicated in promoting disease<sup>43</sup>. Notably, it has been  
335 shown that, like Ds70694, both PevD1 and MoHrip1 can trigger cell death in *Nicotiana*  
336 species<sup>42-44</sup>. This is despite the fact that *Nicotiana* species are not hosts for *D. septosporum*,  
337 *V. dahliae* or *M. oryzae*, suggesting that all three proteins share a conserved function in  
338 promoting cell death and/or they possess a conserved epitope that is recognised as a PAMP  
339 by these plant species.

340

341 Another of the cell-death inducing DsCEs, Ds131885, is an orthologue of VmE02, a cross-  
342 kingdom PAMP from the necrotrophic apple pathogen *Valsa mali*<sup>45</sup> that also elicits cell death  
343 in *Nicotiana* spp.. *VmE02* mutants had reduced numbers of pycnidia, suggesting the protein  
344 may be involved in pathogen conidiation. A similar function for Ds131885 would concur  
345 with its upregulated expression at the mid and late stages of infection. Recently a receptor-  
346 like protein (RLP) in *N. benthamiana* was identified that mediates VmE02-triggered  
347 immunity to fungal and oomycete pathogens<sup>46</sup>.

348

349 Ds71487 is homologous to a *Rhynchosporium commune* protein, RcCDI1, which induced cell  
350 death in *N. benthamiana*, *N. sylvestris*, and two other Solanaceae species, but not in its host  
351 barley<sup>34</sup>. RcCDI1 homologues in three other pathogens also induced cell death in *N.*  
352 *benthamiana*, and the authors concluded that the protein is a PAMP<sup>34</sup>. Given this context,  
353 Ds71487 inducing cell death in *N. tabacum* is not surprising and this response might also be  
354 found in other plants. However, it is unclear why this protein only triggered a weak response  
355 in *N. benthamiana*.

356

357 The *D. septosporum* effector protein DsEcp2-1 was already known to elicit cell death in *N.*  
358 *tabacum* from a previous study<sup>22</sup>. In that work, *DsEcp2-1*-deficient mutants showed increased  
359 virulence on *P. radiata* compared to an *Ecp2-1*-containing wild-type strain, suggesting a  
360 possible avirulence role for DsEcp2-1 in eliciting a defence response by the plant. This  
361 suggestion supports the concept that *D. septosporum* effectors could, through adaptation of  
362 the host, become a warning signal (avirulence effector) similar to those of biotrophic  
363 pathogens<sup>47,48</sup>.

364

365 The remaining DsCEs that caused cell death in non-host plants in our study were not  
366 affiliated with any known functions, but were highly conserved across a broad range of  
367 fungal taxa (Table 1). Effectors with conserved core functions shared among plant pathogens  
368 could be important in elicitation of plant resistance as they are likely to be essential for the  
369 microbes' survival. Mutation or loss of essential conserved pathogen effector genes to escape  
370 recognition by a specific plant host immune receptor would most likely lower pathogen  
371 viability. It is possible that highly conserved 'core' effectors may have been overrepresented  
372 in our results because we screened gymnosperm pathogen effectors in angiosperm non-host  
373 plants. However, our results strongly affirm an earlier study that suggests conservation of  
374 core effectors between pathogens of angiosperms and gymnosperms<sup>39</sup>. The matching cell-  
375 death responses of pine and *Nicotiana* sp. to infiltration with Ds70057 and the control *B.*  
376 *cinerea* SSP2 proteins in our study also suggest similarities in the physiological responses of  
377 these disparate plant groups. Similarly, Chen et al. (2015)<sup>49</sup> found that infiltration of the  
378 cerato-platanin protein (CPP) HaCPL2 from *Heterobasidion annosum* induced cell death in  
379 both the host *Pinus sylvestris* when applied to roots *in vitro* as well as in *N. tabacum* leaves.

380

381 Effectors can sometimes have opposing roles depending on the host context. Whilst they are  
382 mainly exploited in effectoromics studies on the basis of a role in avirulence, in which their  
383 recognition by a specific plant immune receptor elicits defence, they can have important roles  
384 in virulence that may be indispensable for fitness, causing conflicting selection pressures. At  
385 the same time, the induction of cell death by the plant host as part of its defence mechanism  
386 is beneficial for necrotrophic pathogens, such as *Parastagonospora nodorum* that causes  
387 Septoria blotch of wheat<sup>15</sup>. The *P. nodorum*-wheat interaction is regarded as a model  
388 pathosystem for understanding the 'inverse gene-for-gene' relationship between effectors and  
389 their corresponding plant targets, which are termed susceptibility factors. For both biotrophic

390 and 'inverse' necrotrophic interactions, germplasm can be screened with effector proteins for  
391 a resistant or susceptible reaction, respectively, and accordingly selected or deselected for  
392 breeding<sup>16</sup>. However, the situation with hemibiotrophs, such as that of *D. septosporum*, is  
393 more complex and requires accurate understanding of the disease.

394

395 The DsCE Ds70057 is of interest due to its very high expression and up-regulation in the mid  
396 and late (necrotrophic) stages of disease caused by *D. septosporum* on *P. radiata*<sup>24</sup> and its  
397 ability to elicit cell death in three genotypes of *P. radiata* as well as in *N. tabacum*. We  
398 suggest it may be a necrotrophic effector triggering cell death that assists the pathogen by  
399 eliciting the destruction of needle tissue. This action would augment that of dothistromin  
400 which is required for disease lesion expansion, but not for initial elicitation of cell death<sup>50</sup>.  
401 Further studies with Ds70057, including construction and analysis of knockout mutants, will  
402 help to determine if Ds70057 is acting as a necrotrophic effector, in which case we would  
403 expect mutants to have decreased virulence.

404

405 An aim of our work was to develop a method to screen putative effectors of conifer  
406 pathogens directly in their host using a protein infiltration approach, with the long-term goal  
407 of identifying corresponding immune receptors for the effectors, and thus assisting breeding  
408 for disease resistance. There were several challenges associated with protein delivery into  
409 pines. In an earlier study on *P. sylvestris*, roots took up purified protein from a root pathogen  
410 via filter paper strips, resulting in root cell death<sup>49</sup>. By submerging pine shoots into solutions  
411 containing purified candidate effector proteins, and applying a vacuum pressure, we were  
412 able to develop a robust and reliable infiltration process that did not harm the pine needle  
413 tissue. We identified a positive control that can be used as a reference in future studies and  
414 showed that a secreted protein of *D. septosporum* induced cell death symptoms in pine shoots  
415 as well as *Nicotiana* leaves.

416

417 This novel method of effector delivery to gymnosperm tissue would be well suited for  
418 medium-scale screening of multiple pine genotypes with a small number of effector proteins.  
419 If the effector-screening process was to be scaled up for high-throughput commercial use  
420 with a large number of effector proteins, the time used to grow and prepare fresh purified  
421 effector proteins in the *P. pastoris* system as used here could be a limiting factor. An  
422 alternative delivery method might be through *Agrobacterium*-based transformation of pines,  
423 in which the effector genes rather than the proteins are delivered to the host plant.

424 *Agrobacterium*-based transformation of *P. radiata* and other *Pinus* spp. has been  
425 achieved<sup>51,52</sup>, but it is a slow, technically challenging process. Despite this, future efforts to  
426 establish reliable transient transformation of pines may be worthwhile.

427  
428 This study has broad implications for our understanding of fungal pathogens of gymnosperm  
429 trees and how these species interact with each other at the molecular level. Importantly, the  
430 high level of conservation of effectors across fungal taxa, and conservation of plant responses  
431 across angiosperms and gymnosperms suggests that much of what the scientific community  
432 has learned about plant-pathogen interactions involving angiosperm systems may also be  
433 relevant to gymnosperms. A similar conclusion was reached by studying pine responses to *D.*  
434 *septosporum* infection<sup>23</sup>. There also appear to be common 'core' interactions that could be  
435 exploited to give broad host-range resistance. Another implication of our work relates to the  
436 pine screening method which could be adapted for use with other gymnosperm tree species  
437 and other plant hosts that are not amenable to the usual screening methods. Finally, this type  
438 of screening method has the potential, along with expression data and pathogen gene  
439 knockout studies, to identify necrotrophic effectors that could in turn identify susceptibility  
440 gene targets, leading to durable resistance.

441

## 442 Methods

443 **Bacterial strains and plants.** *Escherichia coli* DH5 $\alpha$  was used for gene cloning and plasmid  
444 propagation. *A. tumefaciens* GV3101<sup>53</sup> was used, in conjunction with *N. tabacum* Wisconsin  
445 38 and *N. benthamiana*, for ATTA experiments. *P. pastoris* GS115 was used for  
446 heterologous protein expression in liquid culture. *P. radiata* clonal shoots without roots,  
447 grown from embryo cotyledon tissue under sterile conditions on LPch agar<sup>36</sup>, were used for  
448 protein infiltration experiments.

449  
450 **DsCE identification and homology searches.** Genes encoding conserved candidate secreted  
451 apoplastic effector proteins were identified in the *D. septosporum* genome<sup>19</sup>, based on a  
452 bioinformatic pipeline published previously<sup>25</sup>. A shortlist of 30 putative apoplastic effector  
453 proteins was determined based on predictions that they were secreted<sup>25</sup>, apoplastic - as  
454 determined using EffectorP3.0<sup>26</sup> and expressed during the infection of *Pinus radiata*  
455 seedlings<sup>24</sup>.

456

457 BLASTp was used to identify the top homologs of the 30 DsCE proteins in the National  
458 Center for Biotechnology Information (NCBI) and Joint Genome Institute (JGI) databases,  
459 with an Expected (E)-value threshold of 1E-02. This included a specific query against the  
460 foliar pine pathogens *Fusarium circinatum* (PRJNA565749), *Lecanosticta acicola*  
461 (PRJNA212329), *Cronartium ribicola* (PRJNA190829), *Pseudocercospora pini-densiflorae*  
462 (PRJNA212512), *Cronartium quercuum* f. sp. *fusiforme* (PRJNA67371), *Elytroderma*  
463 *deformans* (PRJNA537175), *Gremmeniella abietina* (PRJNA347218) and *Cyclaneusma*  
464 *minus* (R. McDougal, Scion, unpublished), as well as the pine endophyte *Lophodermium*  
465 *nitens* (PRJNA335148) (Supplementary Table S3). BLASTp was also used to determine the  
466 level of conservation for each of the cell death-eliciting DsCEs across fungal species in JGI,  
467 with an E-value threshold of 1E-05. Here, only one isolate per species was examined, with all  
468 paralogs from each species retained. Conserved functional domains in the DsCE proteins  
469 were identified using the Conserved Domain Database (CDD) in NCBI.

470

471 HHpred<sup>54</sup> was used to infer possible structural relationships between the 30 DsCEs and  
472 proteins of characterized tertiary structure present in the RCSB (Research Collaboratory for  
473 Structural Bioinformatics) protein databank. Here, only the top hit was retained. Structural  
474 relationships were deemed to be significant if they had a probability score of 95%, an E-value  
475 score <1E-03, and an overall score of >50. Despite not meeting these criteria, Ds43416 and  
476 Ds70694 were also deemed to have significant structural relationships with homologous  
477 proteins of *C. fulvum* through additional support from previous structural predictions<sup>21</sup>.

478

479 **Generation of DsCE expression vectors for *Agrobacterium tumefaciens*-mediated**  
480 **transient transformation assays (ATTA).** DsCE ATTA expression vectors were generated  
481 using a method described previously<sup>22</sup>. Briefly, *DsCE* genes, without their native signal  
482 peptide sequence, were PCR-amplified from *D. septosporum* NZE10 genomic DNA or  
483 cDNA (derived from *in vitro* or *in planta*-grown fungus<sup>24</sup>) using custom primers  
484 (Supplementary Table S5; Integrated DNA Technologies) with *Bsa*I recognition sites and  
485 overhangs required for modular assembly using the Golden Gate approach<sup>55</sup>. PCR amplicons  
486 were then directly used as entry modules for cloning into the ATTA expression vector  
487 pICH86988, which contains a CaMV 35S promoter and octopine synthase terminator  
488 flanking *Bsa*I insertion sites<sup>56</sup>, using Golden Gate assembly, along with an entry module  
489 encoding an N-terminal PR1 $\alpha$  signal peptide for secretion into the apoplast and an N-terminal  
490 3 X FLAG tag for detection by western blotting. Cell death-eliciting DsCEs were also

491 assembled into expression vectors as above without a PR1 $\alpha$  signal peptide. DsCE ATTA  
492 expression vectors were then transformed into *E. coli*, and inserts confirmed by sequencing.  
493 Finally, the DsCE ATTA expression vectors, along with the INF1 ATTA expression vector  
494 (an extracellular elicitin from *Phytophthora infestans*<sup>57</sup>), were transformed into *A.*  
495 *tumefaciens* by electroporation as described previously<sup>22</sup>.

496

497 ***Agrobacterium tumefaciens*-mediated transient transformation assays (ATTAs).** DsCEs  
498 were screened for their ability to elicit cell death in the non-host plants *N. tabacum* and *N.*  
499 *benthamiana* using an ATTA, as previously described<sup>22,33</sup>. Here, single colonies of *A.*  
500 *tumefaciens* transformed with a DsCE expression vector were first incubated in selective  
501 lysogeny broth (LB) at 28°C overnight. Cells were then collected by centrifugation at 3000 $\times$   
502 *g* for 5 min, resuspended in infiltration buffer (10 mM MgCl<sub>2</sub>, 10 mM MES (Sigma-Aldrich,  
503 St. Louis, MO, USA) in KOH, pH 5.6, 0.2 mM acetosyringone (Sigma-Aldrich, St. Louis,  
504 MO, EUA) to an OD<sub>600</sub> of 0.5. Resuspended cultures were incubated at room temperature  
505 (RT) for at least 2 h, and infiltrated into the abaxial side of 5–6-week-old *N. tabacum* and *N.*  
506 *benthamiana* leaves. At least 12–24 infiltration zones were tested for each treatment  
507 (consisting of two leaves from each of two plants x 3–6 repeat experiments). In these ATTAs,  
508 INF1 was used as a positive control, while the empty pICH86988 vector was used as a  
509 negative control.

510

511 To verify the presence of DsCE proteins in agro-infiltrated *N. benthamiana* leaves, western  
512 blotting was carried out as described previously<sup>39</sup>. Here, total protein extracts from the leaves  
513 were separated by SDS-PAGE (12% bis-tris-acrylamide) and transferred onto PVDF  
514 membranes. Mouse anti-FLAG(R) antibodies (Sigma Aldrich) and chicken anti-mouse  
515 antibodies conjugated with horseradish peroxidase (Santa Cruz Biotechnology, Dallas, TX,  
516 USA) were used for detection by an Azure c600 imager (Azure Biosystems, Dublin, CA,  
517 USA) after incubation with SuperSignal<sup>TM</sup> West Dura Extended Duration Signal Substrate  
518 (Thermo Fisher Scientific, Waltham, MA, USA).

519 **Heterologous candidate effector protein expression in *P. pastoris* and protein**  
520 **purification.** For the heterologous expression of Ds70057 in *P. pastoris*, the cDNA sequence  
521 encoding the protein, without its native signal peptide, was PCR-amplified from the  
522 previously generated ATTA expression vector. The cDNA sequence for BcSSP2 was  
523 amplified from the plasmid pPICZ $\alpha$ -BcSSP2<sup>37</sup>. The primers used are shown in

524 Supplementary Table S5. Resulting PCR amplicons from both candidates were cloned into  
525 the expression vector pPic9-His<sub>6</sub> (Invitrogen, Carlsberg, CA, USA) behind the  $\alpha$ -factor signal  
526 peptide sequence using *Sma*I/*Eco*RI restriction enzymes and T4 DNA ligase (New England  
527 Biolabs, Beverly, MA, USA). Here, the PCR 5' primer was designed to incorporate a flag-tag  
528 for subsequent detection by western blotting. *P. pastoris* expression vectors were  
529 subsequently transformed into *E. coli*, and their sequence confirmed, as described above.  
530 Finally, the expression cassettes were linearized with *Sac*I or *Sal*II restriction enzymes (New  
531 England Biolabs) and transformed into *P. pastoris* according to Kombrink (2012)<sup>58</sup>.

532 Production of DsCE proteins in liquid culture using *P. pastoris* was performed according to  
533 Weidner et al. (2010)<sup>59</sup>. Here, expression of candidate proteins was induced by incubation of  
534 *P. pastoris* in 200 mL of BMMY (Buffered Methanol-complex Medium)<sup>59</sup> for 72 h, with the  
535 successive addition of methanol every 24 h to increase the final concentration by 0.5% (v/v).  
536 Following incubation, *P. pastoris* cells were collected by centrifugation at 4500 g for 30 min.  
537 The supernatant, containing the secreted protein of interest, was sterilised through a 0.22  $\mu$ m  
538 filter (ReliaPrep, Ahlstrom, Helsinki, Finland) and adjusted to pH 8 through the addition of  
539 NaOH.

540

541 Secreted candidate proteins were purified by immobilized metal ion affinity (IMAC) using Ni  
542 Sepharose 6 Fast Flow (GE Healthcare, Chicago, IL, EUA) according to the manufacturer's  
543 protocol. Before loading, the column (Glass Econo-Column, BioRad, Hercules, CA, EUA)  
544 was packed with 5 mL of resin and was equilibrated by washing with binding buffer (20 mM  
545 sodium phosphate, 0.5 M NaCl, pH 7.4). The culture filtrate was added to the column and  
546 passed through at 1 mL/min. The protein was eluted with an elution buffer (20 mM sodium  
547 phosphate, 0.5 M NaCl and 500 mM imidazole, pH 7.4). The elution fractions were mixed,  
548 and elution buffer was added to a final volume of 50 mL to obtain enough volume to  
549 vacuum-infiltrate pine shoots. A western blot was performed, as above, to determine the  
550 presence of the proteins in *P. pastoris* culture filtrate and after purification.

551

552 **Pine infiltration with purified proteins.** An overview of the pine infiltration method is  
553 shown in Fig. 3. Clonal rootless pine shoots were produced by adventitious shoot production  
554 from cotyledons<sup>36</sup>. The shoots were kept in LPch agar<sup>36</sup> in glass jars, with each jar containing  
555 between six and eight shoots and three jars used for each treatment. For our experiment, two  
556 susceptible (S6 and S11) and one resistant (R4) genotype (based on field data) were used.

557 The shoots were completely submerged in approx. 50 mL of each purified DsCE or BcSSP2  
558 protein solution, or in elution buffer or bovine serum albumin (BSA) (Thermo Fisher  
559 Scientific) as negative controls. Samples were exposed to vacuum in a glass chamber for 5  
560 min, prior to gentle release of the vacuum to allow infiltration of the solution. Shoots were  
561 then rinsed in sterile MQ water, briefly air-dried, then placed back in the agar medium in the  
562 glass jar. The shoots were maintained in a 22°C room with natural light. Photos were taken 7  
563 days after infiltration (dai) using a Nikon D7000 camera.

564

## 565 **Data Availability**

566 The datasets analysed during the current study are available in the Joint Genome Institute and  
567 NCBI databases repository [<https://genomes.jgi.doe.gov> and  
568 <https://www.ncbi.nlm.nih.gov/genbank>]. All data generated during this study are included in  
569 this published article and its Supplementary Information files.

570

## 571 **References**

- 572 1 Fisher, M. C., Gow, N. A. & Gurr, S. J. Tackling emerging fungal threats to animal  
573 health, food security and ecosystem resilience. *Phil. Trans.R. Soc. B* **371**, 20160332  
574 (2016).
- 575 2 Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move  
576 polewards in a warming world. *Nat. Clim. Change* **3**, 985-988 (2013).
- 577 3 Liebhold, A. M. *et al.* Biological invasions in forest ecosystems. *Biol. Invasions* **19**,  
578 3437-3458 (2017).
- 579 4 Wingfield, M. J., Brockerhoff, E. G., Wingfield, B. D. & Slippers, B. Planted forest  
580 health: The need for a global strategy. *Science* **349**, 832-836 (2015).
- 581 5 Drenkhan, R. *et al.* Global geographic distribution and host range of *Dothistroma*  
582 species: a comprehensive review. *Forest Pathol.* **46**, 408 - 442 (2016).
- 583 6 Gibson, I. A. S. Impact and control of *Dothistroma* blight of pines. *Eur. J. Forest  
584 Pathol.* **4**, 89-100 (1974).
- 585 7 Bulman, L. S. *et al.* A worldwide perspective on the management and control of  
586 *Dothistroma* needle blight. *Forest Pathol.* **46**, 472 - 488 (2016).
- 587 8 Welsh, C., Lewis, K. J. & Woods, A. J. Regional outbreak dynamics of *Dothistroma*  
588 needle blight linked to weather patterns in British Columbia, Canada. *C. J. Forest Res.*  
589 **44**, 212-219 (2014).

- 590 9 Woods, A. J. *et al.* Dothistroma needle blight, weather and possible climatic triggers for  
591 the disease's recent emergence. *Forest Pathol.* **46**, 443-452 (2016).
- 592 10 Rocafort, M., Fudal, I. & Mesarich, C. H. Apoplastic effector proteins of plant-  
593 associated fungi and oomycetes. *Curr. Opin. Plant Biol.* **56**, 9-19 (2020).
- 594 11 Doehlemann, G. & Hemetsberger, C. Apoplastic immunity and its suppression by  
595 filamentous plant pathogens. *New Phytol.* **198**, 1001–1016 (2013).
- 596 12 Cook, D. E., Mesarich, C. H. & Thomma, B. P. H. J. Understanding plant immunity as  
597 a surveillance system to detect invasion. *Ann. Rev. Phytopathol.* **53**, 541-563 (2015).
- 598 13 Heath, M. C. Hypersensitive response-related death in *Programmed Cell Death in*  
599 *Higher Plants* (eds Lam E., Fukuda H., & Greenberg J.) 77-90 (Springer, Dordrecht.,  
600 2000).
- 601 14 Lo Presti, L. *et al.* Fungal Effectors and Plant Susceptibility. *Ann. Rev. Plant Biol.* **66**,  
602 513-545 (2015).
- 603 15 Friesen, T. L., Zhang, Z. C., Solomon, P. S., Oliver, R. P. & Faris, J. D.  
604 Characterization of the interaction of a novel *Stagonospora nodorum* host-selective  
605 toxin with a wheat susceptibility gene. *Plant Physiol.* **146**, 682-693 (2008).
- 606 16 Vleeshouwers, V. G. A. A. & Oliver, R. P. Effectors as tools in disease resistance  
607 breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. *Mol.*  
608 *Plant Microbe Interact.* **27**, 196-206 (2014).
- 609 17 Lenman, M. *et al.* Effector-driven marker development and cloning of resistance genes  
610 against *Phytophthora infestans* in potato breeding clone SW93-1015. *Theor. Appl.*  
611 *Genet.* **129**, 105-115 (2016).
- 612 18 Stassen, J. H. *et al.* Specific *in planta* recognition of two GKLR proteins of the downy  
613 mildew *Bremia lactucae* revealed in a large effector screen in lettuce. *Mol. Plant*  
614 *Microbe Interact.* **26**, 1259-1270 (2013).
- 615 19 de Wit, P. J. G. M. *et al.* The genomes of the fungal plant pathogens *Cladosporium*  
616 *fulvum* and *Dothistroma septosporum* reveal adaptation to different hosts and lifestyles  
617 but also signatures of common ancestry. *PLoS Genet.* **8**, e1003088 (2012).
- 618 20 Mesarich, C. H. *et al.* A conserved proline residue in Dothideomycete Avr4 effector  
619 proteins is required to trigger a Cf-4-dependent hypersensitive response. *Mol. Plant*  
620 *Pathol.* **17**, 84-95 (2016).
- 621 21 Mesarich, C. H. *et al.* Specific hypersensitive response-associated recognition of new  
622 apoplastic effectors from *Cladosporium fulvum* in wild tomato. *Mol. Plant Microbe*  
623 *Interact.* **31**, 145-162 (2018).

- 624 22 Guo, Y. *et al.* DsEcp2-1 is a polymorphic effector that restricts growth of *Dothistroma*  
625 *septosporum* in pine. *Fungal Genet. Biol.* **135**, 103300 (2020).
- 626 23 Lu, M. *et al.* Comparative gene expression analysis reveals mechanism of *Pinus*  
627 *contorta* response to the fungal pathogen *Dothistroma septosporum*. *Mol. Plant*  
628 *Microbe Interact.* **34**, 397-409 (2021).
- 629 24 Bradshaw, R. E. *et al.* Genome-wide gene expression dynamics of the fungal pathogen  
630 *Dothistroma septosporum* throughout its infection cycle of the gymnosperm host *Pinus*  
631 *radiata*. *Mol. Plant Pathol.* **17**, 210-224 (2016).
- 632 25 Hunziker, L., Mesarich, C. H., McDougal, R. L. & Bradshaw, R. E. Effector  
633 identification in the pine pathogen *Dothistroma septosporum*. *N. Z. Plant Protect.* **69**,  
634 94-98 (2016).
- 635 26 Sperschneider, J. & Dodds, P. N. EffectorP 3.0: prediction of apoplastic and  
636 cytoplasmic effectors in fungi and oomycetes. *bioRxiv* 2021.07.28.454080 (2021).
- 637 27 Lazar, N. *et al.* A new family of structurally conserved fungal effectors displays  
638 epistatic interactions with plant resistance proteins. *bioRxiv*, 2020.2012.2017.423041  
639 (2021).
- 640 28 Seong, K. & Krasileva, K. V. Computational structural genomics unravels common  
641 folds and predicted functions in the secretome of fungal phytopathogen *Magnaporthe*  
642 *oryzae*. *bioRxiv* 2021.01.25.427855 (2021).
- 643 29 Sanchez-Vallet, A. *et al.* Fungal effector Ecp6 outcompetes host immune receptor for  
644 chitin binding through intrachain LysM dimerization. *eLife* **2**, e00790 (2013).
- 645 30 Yang, G. *et al.* A cerato-platanin protein SsCP1 targets plant *PR1* and contributes to  
646 virulence of *Sclerotinia sclerotiorum*. *New Phytol.* **217**, 739-755 (2018).
- 647 31 Darwiche, R., Mène-Saffrané, L., Gfeller, D., Asojo, O. A. & Schneiter, R. The  
648 pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a  
649 fatty acid-binding protein. *J. Biol. Chem.* **292**, 8304-8314 (2017).
- 650 32 Ohm, R. A. *et al.* Diverse lifestyles and strategies of plant pathogenesis encoded in the  
651 genomes of eighteen Dothideomycetes fungi. *PLoS Pathog.* **8**, e1003037-e1003037  
652 (2012).
- 653 33 Raffaello, T. & Asiegbu, F. O. Small secreted proteins from the necrotrophic conifer  
654 pathogen *Heterobasidion annosum* sl.(HaSSPs) induce cell death in *Nicotiana*  
655 *benthamiana*. *Sci. Rep.* **7**, 8000 (2017).

- 656 34 Franco-Orozco, B. *et al.* A new proteinaceous pathogen-associated molecular pattern  
657 (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. *New Phytol.*  
658 **214**, 1657-1672 (2017).
- 659 35 Hunziker, L. *Effector delivery and effector characterisation in Dothistroma needle*  
660 *blight of pines* PhD thesis, Massey University, New Zealand (2018).
- 661 36 Hargreaves, C. *et al.* Cryopreservation of *Pinus radiata* zygotic embryo cotyledons:  
662 effect of storage duration on adventitious shoot formation and plant growth after 2  
663 years in the field. *Can. J. Forest Res.* **34**, 600-608 (2004).
- 664 37 Denton-Giles, M. *et al.* Conservation and expansion of a necrosis-inducing small  
665 secreted protein family from host-variable phytopathogens of the Sclerotiniaceae. *Mol.*  
666 *Plant Pathol.* **21**, 512-526 (2020).
- 667 38 Fraser, S. *et al.* A review of Pinaceae resistance mechanisms against needle and shoot  
668 pathogens with a focus on the *Dothistroma*–*Pinus* interaction. *Forest Pathol.* **46**, 453-  
669 471 (2016).
- 670 39 Guo, Y. *et al.* Functional analysis of RXLR effectors from the New Zealand kauri  
671 dieback pathogen *Phytophthora agathidicida*. *Mol. Plant Pathol.* **21**, 1131-1148  
672 (2020).
- 673 40 Sperschneider, J. *et al.* Advances and challenges in computational prediction of  
674 effectors from plant pathogenic fungi. *PLoS Pathog.* **11** (2015).
- 675 41 Chruszcz, M. *et al.* *Alternaria alternata* allergen Alt a 1: a unique  $\beta$ -barrel protein  
676 dimer found exclusively in fungi. *J. Allergy Clin. Immunol.* **130**, 241-247. e249 (2012).
- 677 42 Han, L., Liu, Z., Liu, X. & Qiu, D. Purification, crystallization and preliminary X-ray  
678 diffraction analysis of the effector protein PevD1 from *Verticillium dahliae*. *Acta*  
679 *Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.* **68**, 802-805 (2012).
- 680 43 Zhang, Y. *et al.* The *Magnaporthe oryzae* Alt A 1-like protein MoHrip1 binds to the  
681 plant plasma membrane. *Biochem. Biophys. Res. Commun.* **492**, 55-60 (2017).
- 682 44 Zhou, R. *et al.* The asparagine-rich protein NRP interacts with the *Verticillium* effector  
683 PevD1 and regulates the subcellular localization of cryptochrome 2. *J. Exp. Bot.* **68**,  
684 3427-3440 (2017).
- 685 45 Nie, J., Yin, Z., Li, Z., Wu, Y. & Huang, L. A small cysteine-rich protein from two  
686 kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern.  
687 *New Phytol.* **222**, 995-1011 (2019).
- 688 46 Nie, J. *et al.* A receptor-like protein from *Nicotiana benthamiana* mediates VmE02  
689 PAMP-triggered immunity. *New Phytol.* **229**, 2260-2272 (2021).

- 690 47 Joosten, M. H. A. J., Vogelsang, R., Cozijnsen, T. J., Verberne, M. C. & de Wit, P. J.  
691 G. M. The biotrophic fungus *Cladosporium fulvum* circumvents *Cf-4*-mediated  
692 resistance by producing unstable AVR4 elicitors. *Plant Cell* **9**, 367-379 (1997).
- 693 48 van den Burg, H. A., Harrison, S. J., Joosten, M. H., Vervoort, J. & de Wit, P. J.  
694 *Cladosporium fulvum* Avr4 protects fungal cell walls against hydrolysis by plant  
695 chitinases accumulating during infection. *Mol. Plant Microbe Interact.* **19**, 1420-1430  
696 (2006).
- 697 49 Chen, H., Quintana, J., Kovalchuk, A., Ubhayasekera, W. & Asiegbu, F. O. A cerato-  
698 platanin-like protein HaCPL2 from *Heterobasidion annosum* sensu stricto induces cell  
699 death in *Nicotiana tabacum* and *Pinus sylvestris*. *Fungal Genet. Biol.* **84**, 41-51 (2015).
- 700 50 Kabir, M. S., Ganley, R. J. & Bradshaw, R. E. Dothistromin toxin is a virulence factor  
701 in dothistroma needle blight of pines. *Plant Pathol.* **64**, 225-234 (2015).
- 702 51 Grace, L. J., Charity, J. A., Gresham, B., Kay, N. & Walter, C. Insect-resistant  
703 transgenic *Pinus radiata*. *Plant Cell Rep.* **24**, 103-111 (2005).
- 704 52 Maleki, S. S., Mohammadi, K. & Ji, K. S. Study on factors influencing transformation  
705 efficiency in *Pinus massoniana* using *Agrobacterium tumefaciens*. *Plant Cell, Tissue*  
706 *Organ Culture (PCTOC)* **133**, 437-445 (2018).
- 707 53 Holsters, M. *et al.* The functional organization of the nopaline *A. tumefaciens* plasmid  
708 pTiC58. *Plasmid* **3**, 212-230 (1980).
- 709 54 Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein  
710 homology detection and structure prediction. *Nucleic Acids Res.* **33**, W244-W248  
711 (2005).
- 712 55 Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning  
713 method with high throughput capability. *PLoS One* **3**, e3647 (2008).
- 714 56 Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning  
715 system for standardized assembly of multigene constructs. *PLoS One* **6**, e16765 (2011).
- 716 57 Kamoun, S., van West, P., Vleeshouwers, V. G., de Groot, K. E. & Govers, F.  
717 Resistance of *Nicotiana benthamiana* to *Phytophthora infestans* is mediated by the  
718 recognition of the elicitor protein INF1. *Plant Cell* **10**, 1413-1425 (1998).
- 719 58 Kombrink, A. Heterologous production of fungal effectors in *Pichia pastoris* in *Plant*  
720 *Fungal Pathogens* (eds Bolton M., & Thomma, B.) 209-217 (Springer, 2012).
- 721 59 Weidner, M., Taupp, M. & Hallam, S. J. Expression of recombinant proteins in the  
722 methylotrophic yeast *Pichia pastoris*. *JoVE (J. Visualized Exp.)*, e1862 (2010).

723 60 Krzywinski, M. *et al.* Circos: an information aesthetic for comparative genomics.  
724 *Genome Res.* **19**, 1639-1645 (2009).

725

## 726 **Acknowledgements**

727 This research was funded by Scion (NZFRI, Ltd.) through the Resilient Forests Research  
728 Program via Strategic Science Investments Funds from the New Zealand Ministry of  
729 Business Innovation and Employment (MBIE) and New Zealand Forest Grower Levy Trust  
730 funding. We thank the Kee Sohn Lab (formerly School of Agriculture and Environment,  
731 Massey University, New Zealand) for providing several *A. tumefaciens* strains and advice on  
732 the Golden Gate system. Paul Watson from the Radiata Pine Breeding Company is  
733 acknowledged for permissions to use pine material.

734

## 735 **Author contributions**

736 RB, RM, MG and CM conceived and guided the study. LH and MT designed and performed  
737 experiments and analysed data. LH, MT and RB led manuscript writing. RM, CH and KG  
738 assisted with sourcing of pine materials and designing pine assays. CM and TL assisted with  
739 experiments. All authors contributed to the manuscript.

740

## 741 **Competing interests**

742 The authors declare that they have no competing interests.

743

## 744 **Figure Legends**

745

### 746 **Figure 1: Cloned *Dothistroma septosporum* candidate effectors.**

747 Description and expression of the 30 shortlisted *D. septosporum* effector candidates used in  
748 this study.

749 <sup>a</sup>Protein ID numbers refer to those at JGI  
750 ([https://mycocosm.jgi.doe.gov/Dothistroma\\_septosporum/Dothistroma\\_septosporum.home.html](https://mycocosm.jgi.doe.gov/Dothistroma_septosporum/Dothistroma_septosporum.home.html)). An asterisk indicates a non-  
751 apoplastic localisation prediction according to EffectorP3.0.

752 <sup>b</sup>Function predictions were based on BLASTp (E<1e-05) and HHpred. A dagger indicates  
753 that no sequence homologues were found in other foliar pine pathogens for which predicted  
754 proteomes were available.

755 <sup>c</sup>Mature protein length (predicted N-terminal signal peptide removed) in amino acids;  
756 number of cysteine residues shown in brackets.

757 <sup>d</sup>*D. septosporum* gene expression in culture (FM; fungal mycelium) and *in planta* (*Pinus*  
758 *radiata*) at Early, Mid, Late infection stages <sup>24</sup>. Left, Reads Per Million per Kilobase  
759 (RPKM); right, heatmap representing fold ( $\log_2$ ) changes relative to FM expression.

760

761 **Figure 2: *Dothistroma septosporum* NZE10 candidate effectors (DsCEs) induce cell death**  
762 **responses in non-host plants.** Genes encoding DsCEs, with a PR1 $\alpha$  signal peptide for  
763 secretion to the plant apoplast, were introduced into *Nicotiana tabacum* (Nt; top row of  
764 images) and *N. benthamiana* (Nb; middle row of images) by agro-infiltration. Cell death  
765 responses were observed at 6 days post-infiltration. Representative images are shown, along  
766 with the percentages of all infiltrations where cell death occurred (n = 12 - 24 infiltration  
767 zones, from at least three independent experiments). Ds43416 is included as a representative  
768 of DsCEs that did not elicit a cell death response in either of the plant species tested. The  
769 bottom row of images shows the results of agro-infiltration of DsCE proteins lacking a PR1 $\alpha$   
770 signal peptide ( $\Delta$ SP; no secretion into the apoplast) in *N. tabacum* (DsEcp2-1, Ds70694,  
771 Ds70057, Ds71487 and Ds131885) or *N. benthamiana* (Ds74283). INF1, *Phytophthora*  
772 *infestans* elicitin positive control; EV, empty vector negative control.

773

774 **Figure 3: Overview of the pine shoot vacuum infiltration method developed in this**  
775 **study.** *Dothistroma septosporum* candidate effector Ds70057 and positive control *Botrytis*  
776 *cinerea* effector BcSSP2 proteins were produced through heterologous expression and  
777 secretion by *Pichia pastoris* (1,2). The proteins were purified by immobilized metal affinity  
778 chromatography (IMAC) (3) then vacuum-infiltrated into clonal microshoots of *Pinus radiata*  
779 (4). Infiltrated shoots were returned to LPch media for up to 7 days after infiltration (5). 1%  
780 neutral red was infiltrated to assess the efficiency of vacuum infiltration (6) in the different  
781 pine genotypes Sus6 (S6), Sus11 (S11) and Res4 (R4).

782

783 **Figure 4: The *Dothistroma septosporum* candidate effector (DsCE) Ds70057 induces cell**  
784 **death in *Pinus radiata* shoots following vacuum infiltration.** Whole shoots of *P. radiata*  
785 genotypes that are susceptible (S6 and S11) or tolerant (R4) to *D. septosporum* infection were  
786 infiltrated with purified *Botrytis cinerea* SSP2 (positive control) or DsCE Ds70057 protein  
787 produced by heterologous expression in *Pichia pastoris*. Negative controls were elution  
788 buffer only and solutions of bovine serum albumin (BSA). Representative photos (from 18-  
789 24 pine shoots for each treatment) were taken 7 days after infiltration. The top panel shows  
790 infiltrations of the respective solutions into *Nicotiana tabacum* (Nt) for reference.

791

792 **Supplementary Figure Legends**

793

794 **Figure S1: Locations of the 30 cloned *Dothistroma septosporum* candidate effector**

795 **(DsCE) genes in the NZE10 genome.** The 14 chromosome-level scaffolds of *D.*

796 *septosporum* NZE10<sup>19</sup> are represented by the outer bars. Each minor tick represents 5,000 bp

797 from the start of the scaffold; yellow stripes indicate the location of curated repetitive

798 elements >200 bp in length<sup>32</sup>. Outer numbers are protein IDs corresponding to the 30 DsCEs,

799 with cell death-inducing DsCEs in bold font. For reference, the positions of the dothistromin

800 biosynthesis genes<sup>19</sup> are also shown (chromosome 12, grey labels). Within the inner rings,

801 grey bars represent the 875 genes encoding putatively secreted proteins, and green bars

802 (innermost) represent the 397 *in planta*-expressed (>50 Reads Per Million per Kilobase)

803 secreted proteins. The figure was created using CIRCOS (<http://circos.ca/software/><sup>60</sup>).

804

805 **Figure S2: Optical density (OD) range trial of *Agrobacterium tumefaciens* cultures.**

806 Concentration thresholds are indicated for cell death elicitation by DsEcp2-1, but not

807 Ds70057 and Ds131885. The yellow numbers show the used culture OD<sub>600</sub>; the positive

808 (INF1) and negative (EV) controls were infiltrated at an OD<sub>600</sub> of 0.6. In the Ds131885 panel,

809 INF1 was trialled at 0.05 to 0.6 (top to bottom).

810

811 **Figure S3: Western blots of *Dothistroma septosporum* candidate effector proteins.**

812 Western blots showed that DsCEs triggering cell death in *Nicotiana benthamiana* were

813 expressed in the plant tissue regardless of the presence of a secretion signal peptide and

814 absence of a cell death response (constructs with deleted signal peptide sequences are

815 shown). Immuno-detection was based on primary anti-FLAG antibody.

816

817 **Figure S4: Replicates of *Pinus radiata* shoot tissue infiltrated with candidate effector**

818 **proteins.** BcSSP2 (a) and Ds70057 (b) were produced by heterologous expression in *Pichia*

819 *pastoris*. Photos were taken 7 days after infiltration.

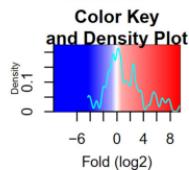
820

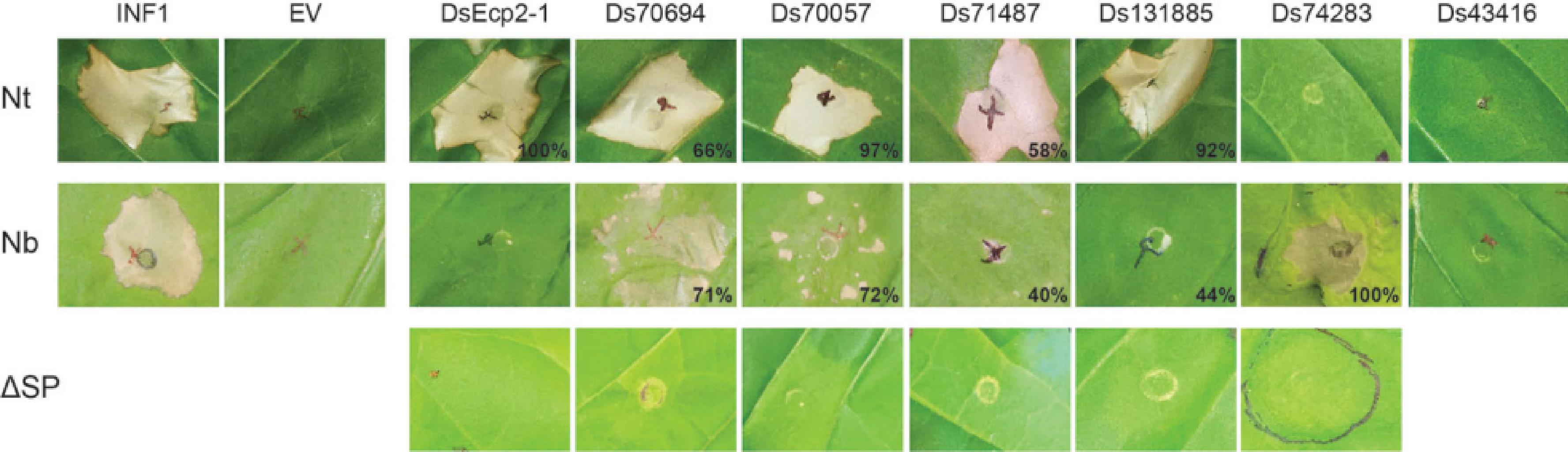
821

822

823

**Table 1: BLASTp hits of *Dothistroma septosporum* cell death elicitors in fungal classes.**


| Class <sup>a</sup> | Ds70057 | Ds70694 | Ds71487 | Ds74283 | Ds131885 |
|--------------------|---------|---------|---------|---------|----------|
| Dothideomycetes    | 119     | 14      | 120     | 52      | 100      |
| Eurotiomycetes     | 270     | 0       | 12      | 275     | 177      |
| Lecanoromycetes    | 5       | 0       | 0       | 5       | 0        |
| Leotiomycetes      | 30      | 0       | 38      | 26      | 14       |
| Orbiliomycetes     | 0       | 0       | 0       | 1       | 0        |
| Pezizomycetes      | 1       | 0       | 0       | 7       | 6        |
| Sordariomycetes    | 77      | 0       | 157     | 10      | 70       |
| Taphrinomycetes    | 0       | 0       | 2       | 0       | 1        |
| Xylonomycetes      | 1       | 0       | 3       | 0       | 0        |
| Agaricomycetes     | 4       | 0       | 0       | 0       | 0        |
| Pucciniomycetes    | 0       | 0       | 0       | 0       | 12       |
| Ustilaginomycetes  | 0       | 0       | 0       | 1       | 0        |
| Total hits         | 507     | 14      | 332     | 377     | 380      |


<sup>a</sup> The numbers represent the number of species in these classes in which there was at least one BLASTp hit to the *D. septosporum* cell death elicitors (E<1e-05) from fungal species for which genomes were available at JGI (details in Supplementary Table S4). Ascomycetes are grouped above the line, Basidiomycetes below.

824

825

| ID <sup>a</sup> | Brief description / predictions <sup>b</sup> | Length <sup>c</sup> | Abs. and rel. expression in planta <sup>d</sup> |       |      |      |       |     |
|-----------------|----------------------------------------------|---------------------|-------------------------------------------------|-------|------|------|-------|-----|
|                 |                                              |                     | FM                                              | Early | Mid  | Late | Early | Mid |
| Ds19040         | Similar to hypothetical proteins†            | 113 (6)             | 46                                              | 66    | 51   | 48   |       |     |
| Ds24695         | Similar to hypothetical proteins             | 113 (8)             | 1222                                            | 83    | 529  | 339  |       |     |
| Ds42387*        | Similar to hypothetical proteins             | 142(0)              | 498                                             | 515   | 584  | 364  |       |     |
| Ds43416         | Alt a 1- / PevD1-like                        | 125 (4)             | 73                                              | 233   | 193  | 3732 |       |     |
| Ds46236         | Ecp6-like                                    | 204 (8)             | 47                                              | 6     | 606  | 171  |       |     |
| Ds52422         | Endoglucanase-like†                          | 164 (12)            | 13                                              | 29    | 834  | 532  |       |     |
| Ds63725*        | Similar to hypothetical proteins             | 97 (6)              | 137                                             | 34    | 57   | 53   |       |     |
| Ds67456*        | Similar to hypothetical proteins             | 418 (8)             | 70                                              | 102   | 60   | 51   |       |     |
| Ds68958         | Putative polyketide cyclase                  | 176 (4)             | 1595                                            | 181   | 753  | 3500 |       |     |
| Ds69113         | Phialide A-like                              | 176 (4)             | 53                                              | 83    | 257  | 342  |       |     |
| Ds69335         | CAP superfamily                              | 264 (5)             | 426                                             | 1448  | 1012 | 554  |       |     |
| Ds69845         | Putative effector 75 [ <i>C. fulvum</i> ]    | 230 (6)             | 81                                              | 94    | 81   | 118  |       |     |
| <b>Ds70057</b>  | <b>Similar to hypothetical proteins</b>      | 189 (5)             | 311                                             | 467   | 2569 | 3312 |       |     |
| Ds70155         | Cerato-platanin-like                         | 130 (4)             | 257                                             | 71    | 507  | 1303 |       |     |
| <b>Ds70694</b>  | <b>Alt a 1- / PevD1-like</b>                 | 135 (4)             | 5                                               | 4     | 205  | 115  |       |     |
| <b>Ds71487</b>  | <b>Similar to hypothetical proteins</b>      | 180 (5)             | 27                                              | 239   | 145  | 982  |       |     |
| Ds71565*        | Similar to hypothetical proteins             | 234 (24)            | 206                                             | 157   | 75   | 154  |       |     |
| Ds72737         | Similar to hypothetical proteins†            | 239 (4)             | 41                                              | 491   | 245  | 8995 |       |     |
| Ds72870         | Putative polyketide cyclase                  | 176 (5)             | 47                                              | 23    | 53   | 130  |       |     |
| Ds73520         | Similar to hypothetical protein†             | 114 (0)             | 8                                               | 819   | 438  | 5421 |       |     |
| <b>Ds74283</b>  | <b>Similar to hypothetical proteins</b>      | 178 (2)             | 41                                              | 27    | 141  | 243  |       |     |
| Ds74790         | Similar to hypothetical proteins             | 188 (10)            | 30                                              | 18    | 49   | 159  |       |     |
| Ds74875         | Similar to hypothetical proteins†            | 110 (4)             | 1                                               | 10    | 0    | 133  |       |     |
| Ds75009         | Hydrophobin 5                                | 92 (8)              | 9234                                            | 455   | 6494 | 4862 |       |     |
| Ds75130         | Similar to hypothetical proteins             | 166 (0)             | 1338                                            | 6349  | 860  | 1647 |       |     |
| Ds129328        | Similar to hypothetical proteins             | 76 (8)              | 872                                             | 28    | 53   | 194  |       |     |
| Ds131290        | Chitin binding, LysM                         | 175 (10)            | 399                                             | 637   | 89   | 174  |       |     |
| <b>Ds131885</b> | <b>Similar to hypothetical proteins</b>      | 126 (10)            | 1                                               | 9     | 369  | 203  |       |     |
| Ds153323*       | Similar to hypothetical proteins             | 130 (0)             | 173                                             | 61    | 108  | 110  |       |     |
| <b>Ds158381</b> | <b>DsEcp2-1</b>                              | 149 (5)             | 1                                               | 8     | 244  | 18   |       |     |





Nt

Nb

ΔSP

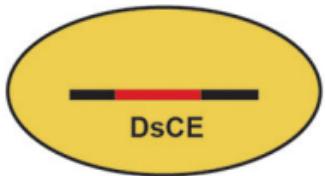
100%

66%

97%

58%

92%


100%

44%

71%

72%

40%



1. *Pichia pastoris* transformation with candidate gene

2. Expression of recombinant protein by *Pichia pastoris* and secretion into culture medium

3. Protein purification (IMAC)

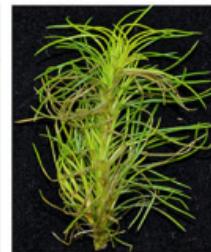


6. Vacuum infiltration of *P. radiata* shoots with 1% neutral red dye

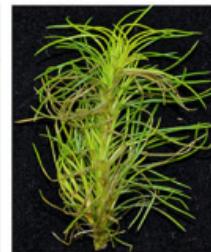


5. *P. radiata* tissue culture shoots




4. Vacuum infiltration with purified protein

**Control**


(elution buffer)

BSA (1.3  $\mu$ g/mL)BSA (15  $\mu$ g/mL)BcSSP2 (1.3  $\mu$ g/mL)Ds70057 (1.3  $\mu$ g/mL)

Nt



S6



S11



R4

