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ABSTRACT

Background: Arthrospira platensis (commonly known as spirulina) is a promising new platform
for low-cost manufacturing of biopharmaceuticals. However, full realization of the platform's
potential will depend on achieving both high growth rates of spirulina and high expression of
therapeutic proteins.

Objective: We aimed to optimize culture conditions for the spirulina-based production of
therapeutic proteins.

Methods: We used a machine learning approach called Bayesian black-box optimization to
iteratively guide experiments in 96 photobioreactors that explored the relationship between
production outcomes and 17 environmental variables such as pH, temperature, and light
intensity.

Results: Over 16 rounds of experiments, we identified key variable adjustments that
approximately doubled spirulina-based production of heterologous proteins, improving
volumetric productivity between 70% to 100% in multiple bioreactor setting configurations.

Conclusion: An adaptive, machine learning-based approach to optimize heterologous protein
production can improve outcomes based on complex, multivariate experiments, identifying
beneficial variable combinations and adjustments that might not otherwise be discoverable
within high-dimensional data.
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INTRODUCTION

Biologic drugs have been transforming patient lives for decades. But the traditional systems used
to produce therapeutic proteins require complex and costly manufacturing. As a result, affordable
and widespread access to biologics remains a challenge' .

The photosynthetic cyanobacterium Arthrospira platensis (commonly known as spirulina) has
many advantages compared with traditional platforms used to produce biopharmaceuticals.
These include simple, inexpensive growth and downstream processing; photosynthetic
metabolism; and Generally Regarded as Safe (GRAS) status with the FDA*°. Genetic
engineering of spirulina allows for stable expression of heterologous proteins, including diverse
anti-pathogen proteins such as active vaccine antigens, antibodies, and therapeutic enzymes’.
Together, these features offer the potential to produce disruptively low-cost biologics and
biologic cocktails.

A key aim of any emerging biotechnology platform is the production of recombinant proteins at
high yields®. Environmental variables play a crucial role in achieving high yields of both biomass
and heterologous protein®. For platforms like spirulina, many continuous environmental variables
can be adjusted simultaneously. These include light intensity and spectrum, mixing, aeration, and
temperature. Methods to predict the optimal combination of so many variables are desirable.

Historically, the biotechnology industry used one-variable-at-a-time (OVAT) experiments to
optimize production medium®. But this method is slow, expensive, and laborious, leading to
widespread adoption of ‘multivariate data analysis’ (MVA) to improve manufacturing of
biologics!'®!2. MVA carried out with a ‘design of experiments’ (DOE) approach has been widely
used by biologics manufacturers to optimize production media and growth conditions!'®-'*. One
biotechnology manufacturer used iterative statistical modeling to increase productivity 34% in
mammalian cell lines!*. However, a central challenge remains in selecting variable subsets and
the appropriate variable levels to test, given limited a priori knowledge and resources.

Machine learning (ML) approaches can facilitate the adaptive exploration of complex
multivariate spaces and can exploit complex, nonlinear, higher-order relationships'>!®, Among
such ML approaches, batched Bayesian optimization (BO) has become a preferred black box
method to tune high-complexity systems when trials are expensive to run, observations are noisy,
or derivatives of the objective to optimize are unavailable!”-!8, It is a powerful tool to adaptively
select experiments and approach an optimum as quickly as possible - even in non-convex
multimodal search spaces - while being robust with respect to poorly chosen variable bounds,
which may be expensive or impossible to know with accuracy before experimentation's.

The ability to build genetically modified spirulina cell lines while tightly controlling
photobioreactor environments presents a unique opportunity to adaptively optimize conditions
for low-cost production of therapeutics. We report below on the development of a high-
throughput experimentation pipeline using custom bioreactor arrays. We describe how an ML-
based approach iteratively guided a series of experiments to search across possible combinations
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of 17 environment variables, which ultimately identified several key variable combinations to
improve production outcomes. Finally, we describe how we applied these conditions to cultures
of therapeutic strains in larger-scale bioreactors to improve therapeutic protein yield.

METHODS

See Supplemental Materials.

RESULTS
Custom bioreactor arrays allow for high throughput experimentation

We set out to improve volumetric productivity (heterologous protein yield per unit of culture
volume and per unit of time) in the spirulina expression system. To enable rapid quantification of
heterologous protein for ML-guided optimization, we engineered a spirulina strain (SP699)
constitutively expressing green fluorescent protein (GFP) with a C-terminus dimerization
scaffold and polyhistidine-tag. This design was similar to our fusion protein designs for
therapeutic antibodies. Once fully segregated to homozygosity, cells in the engineered spirulina
filaments showed diffuse and uniform GFP fluorescence (Figure 1A). Using western blot, we
found that the GFP fusion protein comprised 2.7% of total protein (Supplemental Figure S1).
This level was within the typical range for antibodies in development as therapeutics’.

To carry out high-throughput experimentation, we constructed 96 bioreactors each with a liquid
capacity of 0.5 liters. This reactor array was designed with a light path-length similar to
commercial-sized reactors to facilitate scale-up of improved growth regimens. Each bioreactor
was constructed with independently controlled, continuously tunable settings for LED-
illumination, temperature, airflow (for mixing), and CO> flow (for pH control). Initial growth
conditions were selected to closely mimic commercial and laboratory growth conditions for
Arthrospira. The growth media used is based on the ATCC recommended medium 1679 for
spirulina: SOT medium for spirulina, modified by doubling nitrate concentration from 2.5 g/L to
5.0 g/L to support higher total biomass accumulation without reaching nitrogen limitation. A
growth temperature of 35°C and cultivation pH of 9.75 to 9.95 were selected to closely match
published commercial spirulina growth conditions!®. Cultures were illuminated with constant
light at 1000 umol/m?/s from both sides of the bioreactor to mimic existing capabilities of our
production-scale system for therapeutics. We defined these initial growth conditions as our
“standard” for the study. We next sought to commission the bioreactors by verifying the
reproducibility of run outcomes. Starting with inoculation densities of 0.5 g/L, we carried out
initial run sets of 15 to 48 bioreactor cultures with the GFP fusion strain. These cultures were
grown for ~90 hours in our standard condition. Throughout each run, we monitored changes in
pH and used the cumulative change as a proxy metric for total fixed carbon and, hence, biomass
growth (see Methods, “Cumulative pH calculation™). For each day of the run set, we also
sampled the cultures and measured both GFP fluorescence and cell autofluorescence per unit of
culture volume (see Supplemental Figure S2 for strain spectral analysis).
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We initially observed a high degree of variance in bioreactor production run metrics. Cumulative
pH readings for an early run set of 22 bioreactors had a relative standard deviation of ~16% at 72
hours. However, with improved processes, especially more uniform airflow rates and tighter
control of CO> delivery, we reduced overall variance to a relative standard deviation of ~6% in
cumulative pH change across 61 reactor runs in 3 run sets (Figure 1C). GFP fluorescence
readings initially had a relative standard deviation of ~13% at ~72 hours. With fluorescence
normalizations (see Methods), we reduced the noise and achieved a relative standard deviation
of ~5-6% within single run sets and ~8% across 93 reactor runs in 2 run sets (Figure 1D). Based
on the consistency of these results, we initiated experiments with varying conditions.

In our first set of bioreactor experiments, we varied the intensity of light, a key variable in
photosynthetic growth. If carbon fixation rates are less than the cell’s photosynthetic capacity,
then increasing the intensity of light can increase growth rates. However, delivery of light
amounts that exceed the cell’s capacity to use it for photosynthesis confers no additional growth
benefit and can lead to cell damage through the generation of reactive oxygen species. We
carried out triplicate bioreactor runs at 13 constant light settings, ranging from ~120 to 2415
umol/m?/s. We found that cultures grown at higher light intensities had consistently better
growth and protein production up to a light intensity around 2000 umol/m?/s. Cultures grown at
light intensities above our standard condition of 1000 pmol/m?/s had an average of 23% to 38%
higher GFP yield at the final time point (group mean = 34% more signal, p-value = 1.8e-05)
(Figure 2A). Volumetric productivity differences with fluxes of 680 to 1000 umol/m?/s emerged
around the 48-hour sampling timepoint. Plotting these results as high-resolution light response
curves revealed a plateau of carbon fixation rates per unit volume at about 2000 pmol/m?/s,
while GFP accumulation rates per unit volume plateaued at a lower intensity of around 1250
umol/m?/s (Figure 2B). The results suggested that increases in light intensity between ~1250 and
2415 pmol/m?/s reduces the concentration of heterologous protein per unit of biomass
(“potency”), since the rate of carbon fixation per unit of volume continued to increase without
similar increases in the rate of heterologous protein accumulation per unit of volume. These
results further suggested that our cultures reached their maximum photosynthetic capacity at a
light intensity below the maximum achievable with our light equipment. Thus, further
improvements in productivity would need to come from other variables.

Bayesian black box mapping of parameter relationships leads to efficient selection of
culture conditions with improved performance

As a photosynthetic microbe, spirulina is highly attuned to light characteristics such as intensity,
color, and cycling?’. Thus, we sought to vary these light characteristics in our search for more
optimal conditions. We defined 6 different light parameters. Configuration of these parameters
specified 1-2 light intensity levels for two different LED types: a set of red-shifted white LEDs
(3000 - 4750 Kelvin) and a set of blue-shifted white LEDs (4750 - 6500 Kelvin). For red-shifted
LEDs, the maximum intensity level was a flux of about 1015 pmol/m?/s and for blue-shifted
LEDs about 1400 pmol/m?/s, yielding a combined flux capacity of around 2415 pmol/m?/s.
Other light parameters included the light level duration and frequency of cycling. We reasoned
that because cells in more densely growing cultures would experience, on average, lower
amounts of light (due to shelf-shading), it may be beneficial to ramp-up light intensities over
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time. Thus, we also included 2 parameters to configure the slope of light ramping on each LED
type.

Another key environmental variable is pH. Spirulina cultures are typically grown in alkaline
conditions. Our search space included a pH range from 8.0 to 10.0 with pH control bands as
small as 0.2 units. Indoor spirulina cultures are typically grown at a temperature of about 35°C
with sufficient air flow for mixing. We allowed for bioreactor growth regimens with two
temperature levels, between 20°C to 37°C, with a specified duration and frequency. In defining
all parameter bounds we considered that optima for biomass potency may not match the optima
for biomass yield or volumetric productivity (similar to what we had observed for light
intensity). Having defined these parameters and associated ranges for configuration
(Supplemental Table 1), we set out to conduct ML-guided optimization in a complex, 17-
dimentional space.

A key consideration for any ML optimization process is defining the reward function. To
optimize volumetric productivity, we reasoned that ideal harvest times for some culture
conditions may not necessarily fall on the last day of the experiment. Fast-growing cultures that
reached peak productivity at earlier timepoints may be more optimal, provided that enough
biomass is produced to justify the increased labor cost of more frequent run initiation and
harvesting. Thus, we scored volumetric productivity, as measured by GFP fluorescence, at each
sampling timepoint in association with a constant labor cost (Methods, Equation 2). Then we
took the maximum score for each run (Methods, Equation 3). To better account for week-to-
week fluctuations and to compare outcomes between run sets, we adjusted these run scores using
the run set standards, and then calculated each run’s fold-improvement relative to the global
standard mean (Methods, Equation 4). We refer to this productivity score (the reward) as
“performance.”

To model the relationship between run parameter configurations and performance, we applied a
Bayesian black-box approach. Bayesian, black-box ML is an automated approach to the joint
optimization of a complex set of choices using reward function outcomes. The “black box”
aspect allows us to optimize the function of bioreactor parameters without requiring that we
know the function in closed form or its derivatives. This allows for unbiased, noise-corrupted
(stochastic) observations of performance; the only requirement is that the function of bioreactor
parameters can be evaluated at any point in the defined search space. With this approach, a prior
belief is prescribed over all the possible run outcomes. This model is then refined as run sets are
completed, using non-parametric, Gaussian Process (GP) algorithms. The posterior model
represents updated beliefs about the bioreactor parameters and configurations most likely to
produce high performance. The model then maximizes over this updated belief, using batch-wise
optimization strategies to select the next set of experiments.

We explored the 17-dimensional configuration space by iteratively carrying out weekly
bioreactor run sets with an average of 60 bioreactors on approximately a 90-hour growth interval
(Figure 3A). Culture conditions for each bioreactor were separately programmed and controlled
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according to an assigned configuration, informed by the modeling results from previous runs. To
monitor week-to-week variation, we also ran at least two reactors under standard conditions in
every run set. Each day, we collected a culture sample from every bioreactor to monitor GFP
accumulation. At the end of the run set, we scored each run’s performance. Then we fed these
results back into the model, refining the model’s beliefs and using a batch-wise optimization
strategy to select configurations for the next run set.

For early run sets, our batch-wise optimization strategy had a bias toward exploratory
configurations. This allowed for broader sampling of the search space and broad mapping of the
parameter configuration zones, helping identify potential performance peaks and valleys. We
found that early run sets had a range of performance outcomes that suggested immediate
improvements over standard runs. By run set number 5, we observed multiple run configurations
with around a 2-fold performance improvement, despite having covered only a small proportion
of the overall search space. Later, in run sets 11-16, we observed 15 additional configurations
with greater than a 2-fold increase in performance (Figure 3B). To confirm the improvements,
we took the initial top performers and ran a series of configuration replicates in run set 10.
Improved configurations had consistently higher performance (group mean fold improvement =
1.8, standard deviation = 0.25, T test p-value = 3.3e-12) across 5 configuration replicates.
Relative to standards, these replicates showed a stronger boost in signal after the first 24-hours of
growth, leading to significant differences by 48-hours (T test p-value = 1.0e-06) (Figure 4A
top). Mean volumetric productivity for each configuration was 69% to 93% higher than run set
standards on the final day, leading to 81% higher volumetric yield on average (std = 25%)
(Figure 4A bottom). For one of these high-performing configurations, we ran a second round of
replicates in run set 13 and confirmed week-to-week robustness with a mean volumetric
productivity improvement of 69% in the second run set (Figure 4B). Based on a conversion
between GFP fluorescence units and pg GFP (Methods, Equation 5), we estimated the mean
overall rate of protein production increased from 7.8 pg/mL/day to 14.2 pg/mL/day.

For the second group of configurations in run sets 11-16, we took the top performer and sought
to validate the discovery with 5 configuration replicates in run set 15. Once again, we confirmed
that the high-scoring configuration had consistently better performance (mean fold improvement
= 1.8, standard deviation = 0.14, T test p-value = 1.2e-06) (Figure 4C top). Mean volumetric
productivity was 102% higher than the run set standards on the final day (std = 27%) (Figure 4C
bottom). Thus, the model discovered multiple run configurations with performance outcomes
that were more than 4 standard deviations away from our standard conditions, and these
improvements were robust to replication, both within a given run set and across run sets. We
concluded that modeling was successful in guiding the efficient discovery of high-performing
bioreactor conditions for spirulina-based production of heterologous protein.

Temperature, pH, and light adjustments contribute to improved performance

We observed that many high performing configurations had similar parameter settings. To
further assess the degree to which these shared characteristics were representative of top-
performing configurations, we binned each run based on performance and examined the binned
histograms for each individual parameter and for derived variables (e.g., lowest temperature
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across temperature levels) (Supplemental Figure S3). We found that the best performing runs
had strong temperature, pH, and initial light intensity biases (Figure 5A).

Target temperatures for the top 10% of runs with constant temperature fell into a narrow band,
with an interquartile range of 33.7°C to 34.1°C. The full range of sampled temperatures for runs
in the top 10% spanned from 27.7°C to 36.6°C, suggesting that temperatures greater than ~28°C
may be necessary for the highest performance outcomes. Overall, the further away from a target
temperature of 34°C, the stronger the association with lower run performance in our
experiments. This “ideal” temperature fell below the maximum possible temperature of 37°C as
well as the standard temperature of 35°C.

With respect to pH, the top 10% of runs displayed a strong bias for the lowest possible pH in our
search space. These high-performing configurations had a median, lower bound pH of 8.06 and
upper bound pH of 8.56 (lower IQR = 8.01 - 8.10; upper bound IQR = 8.31 - 8.63). Unlike
temperature, where the highest-performing configurations had settings adjacent to our initial
standard, the pH bias fell at the far end of the parameter search space from our initial standard
pH of 9.75 to 9.95. While it was possible for a given run configuration to sample a wide-ranging
pH, no runs in the top 10% exceeded an upper pH bound of 9.23, and all reached a lower bound
of at least 8.54. These results suggest that dipping below a pH threshold of around 8.5 may be
necessary for the highest performance outcomes.

Due to specification of light gradient parameters within our search space, there was an overall
bias towards light schedules that would reach our equipment’s maximum light intensity. Across
all sampled configurations, only 13% had a maximum light flux that fell below 1250 umol/m?/s.
Among the top 10% of runs (n = 72), only 12.5% (n = 9) configurations had a max light flux
below 2000 pmol/m?/s. Nevertheless, among these high-performers, 4 configurations had a max
light flux between 1200 and 1500 pmol/m?/s. This suggests that while maximizing light is a
strong contributing factor to more optimal performance, it may not be necessary for top
performance.

To examine the relationship between parameters, we began by plotting the values for each
parameter pairing in bins based on run performance (Supplemental Figure S4-S6). We also
created plots that applied third parameter cutoff values. Since there were no top performing runs
with a temperature below 28°C, we applied this as one of our cutoffs. We observed that the low-
performing configurations below this temperature had maximum light fluxes and lower-bound
pH settings that spanned a range of values with no clear relationship (Supplemental Figure S7).
Above this temperature, however, configurations in the top 25% tended to have either low pH or
the maximum achievable light intensity; configurations in the top 10% tended to have both
(Figure 5B). These observations suggest that light flux and pH depend on a temperature
threshold but are otherwise independent parameters that combine to generate the highest
performance outcomes. To further evaluate the contribution of lower pH to overall performance,
we compared two groups of high-light, moderate temperature configurations: one with lower pH
and the other with high pH. Median fold improvement in performance was 0.53-fold greater for
the lower pH group (Figure 5C). We thus conclude that the ideal temperature band for
cultivation falls around 33 to 34°C, and that for run configurations with temperatures above


https://doi.org/10.1101/2021.08.06.453272
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.453272; this version posted August 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

~28°C, both high light intensity (schedules with max light flux reaching at least 1200 pmol/m?/s)
and low pH (lower bound < 8.5) contribute to dramatic performance improvements.

Key parameter adjustments lead to improved yield with therapeutic strain and larger-scale
cultures

We applied one of the top-performing run configurations (Supplemental Table 2) to culturing a
spirulina strain that expresses a single-domain antibody (VHH) specific to Campylobacter jejuni
flagellin in the 450 mL reactors. We compared growth (as measured by ash-free dry weight) and
VHH levels (as a percentage of total soluble protein) between our initial standard and ML-
discovered configuration. We found that cultures of this anti-campylobacter strain grew better
than GFP strain cultures under our standard conditions. Despite this higher baseline, total
biomass yield for the anti-campylobacter strain was 39% higher in the ML-discovered conditions
after ~90 hours of growth (one-tailed T test p-value = 0.04), corresponding to overall growth rate
of approximately 0.68 g/L/day vs. 0.49 g/L/day in the standard condition (Figure 6A). VHH
levels were unchanged in biomass samples from the ML-discovered condition (Supplemental
Figure S8), indicating that performance improvements with the ML-discovered condition came
primarily from improved growth.

To confirm effect in a production-scale system, the anti-campylobacter strain (SP1182) was
grown in parallel 250-liter flat panel photobioreactors under standard and improved conditions.
We used a simplified, constant light program at 1350 umol/m?/s, given constraints in the existing
larger-scale system. We also had more approximate temperature controls than in the smaller-
scale reactors. In a production run growth cycle totaling 7 days, the culture under improved
conditions outperformed standard conditions, generating about 63% more biomass and higher
VHH yields (Figure 6B). Thus, we conclude that lower pH (8.10 - 8.61) with higher light (1350
umol/m?/s or more) and a slightly lower target temperature (33.3°C - 34.128°C) is a beneficial
set of conditions to improve the yield of antibody-expressing strains at larger-scale.

DISCUSSION

Traditional biologic platforms are ill-equipped to meet global demand, leaving a need for
alternative, low-cost expression systems?. Indoor cultivation of spirulina provides an opportunity
to finely tune growth conditions for low-cost production of biologics. We demonstrate that a
Bayesian black-box model can efficiently steer cultivation conditions toward improved
outcomes. Over iterative rounds of experimentation (between 5 to 15 rounds), we discovered
multiple configurations with specifically tuned temperature, lower pH, and high overall light that
approximately doubled productivities in a spirulina-based expression system. We further
demonstrate that these conditions improve spirulina-based production of an anti-campylobacter
antibody in large-scale culture.

Emerging biotechnology platforms introduce production organisms with unique and valuable
attributes to the biopharmaceutical industry. A key challenge for emerging platforms is
effectively evaluating multiple, often interacting environmental parameters that can impact
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productivity. Outside of ideal conditions, heterologous expression systems are particularly
sensitive to stressors?!. Thus, precise tuning of culture conditions can help to push the limits of
cellular productivity while also ensuring more reliable production cultures and processes. Given
limited resources, biologics manufacturers must try to both discover optimal combinations and
finely tune key variables. Methods that reduce the total number of trials and evaluate variable
interactions have improved upon the conventional one-variable at a time (OVAT) approach to
variable optimization. Most notably, DOE approaches have saved time and money across
multiple phases of drug development, leading to widespread adoption in the pharmaceutical and
biotechnology industries.

DOE involves pre-determined study designs based on goals (e.g., screening, response surface
mapping, optimization), number of factors to be investigated, and total number of experiments®.
Often DOE is carried out in multiple phases. An initial screening phase applies fractional
factorial designs to test combinations of variables at 2 or 3 levels???3. After selecting key
variables an optimization phase may follow, which tests additional center and axial points to help
estimate linear and quadratic response curves and thus better “tune” each variable?*. The specific
design of a DOE-based study often takes a reasoned approach to characterizing complex,
multivariate space by cautiously selecting appropriate variable levels and fractional factorials,
applying both existing expert knowledge and thoughtful consideration.

In contrast with the pre-planned trials and separate phases for screening and optimization in
many DOE studies, the adaptive nature of BO allows for greater flexibility in design. It is more
robust to observation noise and variables that may interact non-linearly, such as genetic
perturbations. BO samples broadly and efficiently across a landscape of possible variable
combinations, continuously updates model assumptions based on the available data, and then
adaptively shifts resources to conduct additional experiments in the most promising areas of a
search space. With this adaptive modeling approach, researchers can rapidly move toward
improved outcomes based on available information.

It can sometimes be difficult to appreciate the full value of an adaptive model in retrospect. As
part of our study, we ran just 245 configurations prior to discovering multiple configurations that
landed in the top 10% of performers overall. A comparable number of trials could be run in a 2-
level, 8 factor, full factorial DOE study (2% = 256 trials) by testing only a subset of variables,
similar to our “simple” 8-parameter search sub-space (see Methods, “Parameter space of
controllable bioreactor alternatives™). This traditional approach may have delivered similar
directional information regarding temperature, pH, and light intensity responses, but reaching
these conclusions would have depended on which variable levels were selected initially for
testing. We found that temperatures for top performing bioreactor run configurations tended to
fall in a narrow band around 33 to 34°C; DOE screening with a high temperature point of 37°C
and a middle or low point between 25°C and 30°C, for example, would have missed this effect.
Similarly, we found that all top-performing configurations had a pH range that fell below 8.5
units; DOE screening based on the spirulina literature, which widely reports using pH values
between 9 and 10%°, would likely have missed this pH effect if the low point was above 8.5. By
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de-risking the design phase selection of variable subsets and levels for testing, the adaptive
model encourages broader exploration of possibilities, including variables that may contribute to
higher-order interactions and non-convex responses. Furthermore, the rigidity of DOE would
have presented significant limitations in sampling from both ramping and cyclic light schedules
as a complex subspace, which in our study totaled 17-dimensions, requiring over 130,000 trials
to complete a two-level full factorial experiment.

The adaptive, BO approach has a long history in fields outside of biotechnology?®-3°. It
originated in the oil industry as a means of predicting more optimal oil-drilling locations and has
become a de facto tool at leading machine-learning centers for model hyperparameter
tuning!”182%-30 Within biotechnology drug discovery fields, BO approaches have successfully
guided chemical synthesis and protein engineering improvements?!-*2, Despite this history and
demonstrated value, BO has had limited overall adoption in biotechnology, and it has not to our
knowledge been applied in biologic manufacturing®3-34,

We conclude that an adaptive, ML-based approach to optimization of culturing conditions is a
valuable tool for biotechnology. BO can identify beneficial variable combinations and
adjustments that might not otherwise be discoverable within high-dimensional data. As a
complement to commonly applied DOE approaches, the adaptive ML approach can be especially
helpful in exploring relatively uncharacterized systems, fine-tuning parameters in the context of
many variables, and overcoming preconceived notions about an established system by using a
wider search space with the potential for surprising discoveries. Future efforts could focus on
new parameters, such as media and genetic variables, and could apply deep learning tools to
incorporate other data sources, such as microscopy images, for further improvements in model
prediction and search efficiency.
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Figure 1: Bioreactor facility setup and commissioning establishes foundation for high-
throughput exploration of culturing conditions. A) Microscope images of WT (UTEX LB 1926)
and GFP-scaffold (SP699) spirulina strains shown in bright field, with Texas Red filter, and with
YFP filter shown at 1000x magnification (top) and 100x magnification (bottom) using a Leica
DM5000B microscope. B) Photobioreactors in a facility of 96 independently controlled reactors.
Each reactor is independently controlled with programmed settings. C and D) Bioreactor
commissioning runs as time series of cumulative change in pH (left plot, total n = 61), and GFP
fluorescence (right plot, total n = 93). Box plots depict median and interquartile range by run set
(color) and timepoint. Precise sampling times for GFP readings vary. Points reflect actual sample
times; box plots are grouped by day.
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Figure 2: Higher light intensities lead to more culture growth and GFP production until the
relationships plateau. A) Time series of mean cumulative change in pH (left plot) and mean GFP
yield in fluorescence units (right plot) for bioreactor cultures grown at constant light across 13
different target light fluxes (120 - 2415 pmol/m?/s). Shaded regions represent the 95%
confidence interval based on triplicate runs. B) Light response curves for the rate of cumulative
pH change (left) and volumetric GFP productivity (right) on each day of the run set (colors).
Shaded regions represent the 95% confidence interval based on triplicate runs.
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Figure 3: Bioreactor run performances over 16 rounds with targeted sampling of the run
parameter search space. A) Workflow schematic for ML-guided optimization of bioreactor run
performance. Each week ~40-80 bioreactors are run with a set of parameter configurations for
light, temperature, pH and mixing rate variables, totaling a 17-dimensional search space. B) Fold
improvement in bioreactor run performance by round of ML-guided experimentation. Top plot
shows individual bioreactor runs (dots) and standard condition runs (white circles) with fold
improvement adjusted for run set variation in standards and calculated relative to the global
mean of standards (1-fold, n = 51).
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Figure 4: Kernel density estimate of fold-improvement (top) and time series of mean GFP
fluorescence yield (bottom) for replicate runs of top-performing bioreactor configurations
compared to standards (gray). A) Early, top-five run configurations in a validation run set (n =5
each configuration, gray standard n = 7). B) Early top-performing configuration across two run
sets (orange configuration n = 10, standard n = 14). C) Later-stage, top-performing configuration
(pink configuration n = 5, blue standard n = 6). Shaded areas represent 95% confidence intervals.
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Figure 5: Highest-performing conditions tend to have similar pH, light, and temperature
characteristics. A) Key single variable histograms binned by performance: lowest 10% (red),
lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% (teal). B) Key variable
kernel density plots and paired scatter plots for run configurations with temperatures above
28°C. Run configurations are binned by performance: lowest 10% (red, temperature subset n =
16), lower 25% (orange, temperature subset n = 60), upper 25% (dark blue, temperature subset n
=100), top 10% (teal, temperature subset n = 66). C) Boxplot comparison of low pH
configurations (purple, n = 65, pH lower bound < 8.55, pH upper bound < 9.23) and high pH
configurations (green, n = 18, pH lower bound > 9.5) with temperature 33°C — 35°C and
maximum light flux > 2000 pmol/m?/s.
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Figure 6: Application of high-performing conditions to anti-campylobacter strain in 450 mL and
250 L reactors increases biomass yields. A) Net biomass yield of the GFP-fusion (SP699) and
anti-campylobacter VHH (SP1182) strains after ~90 hours of growth at 450 mL scale. ML-
discovered configuration (teal) compared with standard (gray). Error bars represent standard
deviation of 3 run replicates. B) Biomass growth of an anti-campylobacter antibody strain
(SP1182) in 250 L reactors. Improved condition based on ML-guided experimentation (orange)
and initial standard condition (blue). Error bars represent standard deviation of AFDW
measurements.
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Supplemental Materials

METHODS

Plasmids and strains

Strains were built using integration vectors directed toward a neutral integration site (Q01210 -
Q01230 in the case of SP699) or D01030 kmR locus (in the case of SP1182). Integration vectors
were built with a constitutively active, native promoter from upstream of spirulina’s cpcB gene
(Pcpc600), as well as with the appropriate transgene, the E. coli rrnB terminator, a selection marker
expression cassette, and 1-1.5 kb homology arms. SP699’s GFP transgene was constructed using
Enhanced GFP (eGFP) fused to a synthetically designed, homo-dimeric scaffold and poly-histidine
tag at the C-terminus (AA276). Methods for construction of SP1182 are further described in Jester,
et al., 2020. Cultured cells were transformed into wild-type UTEX (SP003) or kanamycin
resistance knock-out (SP205) and genotyped as described in Jester, et al., 2021. Pre-transformation
cultures were grown in Multitron incubators at 35°C, 0.5% CO2, 110-150 pEi of light, and shaking
at 120-270 rpm. Longer-term cultures were maintained in Innova incubators at 30°C, atmospheric
CO02, 50-110 pEi of light, and shaking at 120 rpm. These small-scale cultures of 3-100 ml were
grown in SOT media supplemented with 2.5-5 pg/ml streptomycin (for SP699) or 70-100 pg/ml
of kanamycin (for SP1182) based on the transgene selection marker.

Bioreactor design (450 mL reactors)

Experiments were conducted in 96 independently controlled small, 450 mL, airlift reactors. All
reactors were equipped with silicone adhesive-mount heater and a Neptune Systems temperature
probe. A subset of the reactors were equipped for cooling with aluminum cooling heat sink
plates. Each reactor was also equipped with a dimmable, dual color, LED-backlit LCD panel
(Reefbright, NJ, USA) capable of illuminating the culture up to 2415 umol/m?/s (3000 to 6500
Kelvin) as well as a pH probe to drive feedback control of culture pH via CO; injection to the
airlift stream. Each reactor is lit from the narrow ends to simulate a larger form factor flat plate
bioreactor with commercially usable volume. Neptune Systems controllers with Apex software
were used to monitor the temperature and pH and to control each reactor’s heating/cooling
elements, solenoid for COz injection, and light panel intensity level.

Bioreactor run set experiments (450 mL reactors)

Seed train cultures used for inoculation were maintained in 9 L bioreactors in 1x SOT with 2x
nitrate and sodium bi/carbonate buffer under the following settings: constant 500 pmol/m?/s,
34.8 -35.3 °C, pH 0of 9.8 — 10, 2 LPM air flow for mixing. Three days prior to a run set, seed
train cultures were harvested and used to re-inoculate seed reactors at a consistent inoculation
density based on chlorophyll content.

To prepare inoculums, cells were transferred from seed reactors into an induction tank and
allowed to settle. Liquid was decanted off the top, leaving a cell slurry. Inoculum slurries were
assayed for chlorophyll content levels by first taking a 10 mL sample of slurry, centrifuging the
sample for 10 min at 4,000 RPM, decanting, resuspending in DI water, transferring into 90 mL
methanol, and placing in a sonicating water bath for 15 minutes. Then after taking a 1 mL aliquot
of the methanol cell mixture and spinning it down, a 0.5 mL aliquot of supernatant was diluted
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and used to measure chlorophyll absorbance at 664 nm. This absorbance measure was used to
estimate the chlorophyll content (12.1 pug/Abs unit) and biomass (total pg of chlorophyll / 1.8%
of total biomass) and to calculate a volume of cell slurry for each bioreactor inoculation,
targeting an initial estimated biomass of 500 mg/L.

Prior to bioreactor run initiation, all pH probes were checked for pH drift between readings.
Probes were recalibrated if the cumulative drift exceeded 0.15 pH units. Benchtop reactors were
filled with 320 mL of water followed by 40 mL 10x SOT with 2x nitrate, 40 mL 1 M sodium
bi/carbonate pH 9, and 0.5 mL of 100g/L antifoam. Once filled, the CO; tank value was opened
and set to 30 PSI and flow rate on each CO; rotamer was set to 0.1 LPM. Following inoculation,
all reactors were brought up to a final volume of 450 mL and adjusted to the appropriate air flow
rate. During the run, any water lost to evaporation was replaced by topping up reactor volumes
each morning.

Bioreactor schedules and monitoring (450 mL reactors)

All bioreactor runs were registered in a PostgreSQL database together with a run configuration
ID. Updated light and temperature settings were pushed to controllers every 12 minutes.
Temperature and pH were actively monitored for deviations outside of programmed ranges and a
record of light settings was updated with successful/failed pushes to the controller. Alarm
notifications were triggered when temperatures reached 1.5 degrees above or below programmed
values, as well as when pH readings reached 0.2 units above or below or when there were failed
attempts to push light setting updates after a retry. Runs with either sustained alarms or
recognized process deviations were flagged and manually reviewed. Upon review, runs with
significant deviations, which may have impacted the integrity of results, were excluded from
further analysis.

Cumulative pH calculation

Spirulina cells fix carbon during photosynthesis at a rate that correlates with biomass growth,
and over time this increases the pH of a photobioreactor. When the upper bound pH setting is
reached, this triggers the solenoid opening for the CO> sparging, which lowers the pH back down
to the lower bound of the pH range. The result is a sawtooth pattern, consisting of a gradual
ascending interval to the upper bound and a steep return to the lower bound. To estimate
biomass growth during bioreactor run experiments, we tracked the cumulative change in pH
between solenoid firings and extrapolated changes during CO> sparging times. Starting 30
minutes after run initiation, changes between pH sensor data points were cumulative added
together. During CO; sparging, the change in pH was estimated using a linear regression based
on the previous 6 hours of data.

GFP fluorescence readings and normalization

For high-throughput protein quantification in bioreactor run experiments with SP699, daily
samples of 1 mL were taken from each reactor and diluted (typically, 5 to 17-fold) in Thermo
Scientific 8-well dishes with SOT to within the linear range of readings on a Spectramax M2
plate reader. Using SoftMax Pro 5.2 we ran a protocol script with shaking. Measurements to
quantify GFP per unit of volume were taken with 488 nm excitation at 512 nm emission with a
495 nm cutoff filter. Additional control measurements of GFP were taken with 488 nm excitation
at 540 nm emission with a 495 nm cutoff filter. Cell autofluorescence, composed primarily of
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chlorophyll and phycocyanin, was measured with 370 nm excitation at 660 nm emission with no
cutoff filter. We adapted the instrument’s 96-well layout to 8-well plates by measuring at four
central positions within each well of the 8-well plate and averaging the results. To account for
position-to-position variation in the instrument’s readings, we first found each position’s median
time zero fluorescence reading, and then adjusted readings to account for the relative difference
between positional medians and a global median baseline.

Overview of batched Bayesian optimization

Bioreactors were run in parallel for many iterations to characterize the effects and co-dependence
of bioreactor parameter settings on spirulina growth and protein product yield. By measuring
cells grown in a large matrix of different environmental parameter settings, the best conditions
for the highest protein yields can be realized; but both selection of the search space, for
parameter settings over which to optimize, and the efficient prioritization of search space
exploration is an open problem.

In this work, the settings for each bioreactor parameter were guided by the black-box Bayesian
optimization (BO). This methodology provides an automated approach to the joint optimization
of a complex set of choices, such as bioreactor parameter configurations. The "black box" aspect
of the optimization refers to the fact that we do not need to know the closed form or the
derivatives of f(bioreactor parameters) to optimize it and can allow for unbiased noise-corrupted
(stochastic) observations of bioreactor run outcomes; the only requirement is that we are able to
evaluate f(bioreactor parameters) at any point in the configuration space of interest.
Specifically, we used the following procedures for optimizing bioreactor run outcomes via BO:
1. Mapping spirulina growth condition alternatives to an explorable bioreactor parameter
space
2. Defining a reward function to optimize over the parameter space
3. Selecting a batch (“set”) of trials (bioreactor runs) from the current space modeled via
Gaussian Process Batched Upper Confidence Bound (GP-BUCB)
4. Updating Bayesian model from noisy observations of bioreactor run outcomes
5. Running the loop: repeat (selecting (#3) => updating (#4)) until "done"
Each of these steps is further outlined in the following subsections.

Parameter space of controllable bioreactor alternatives

Each bioreactor run in ML-model experiments had an assigned run configuration with settings
for 17 different parameters (Supplemental Table 1). The use of contextual bandits (see Golovin,
et al.) allowed for the top-level selection of a "simple" light and temperature 8-dimensional
subspace, while still allowing for identification of more complex light and temperature schedules
in the full 17-dimensional space, if the complexity provided improved bioreactor run outcomes.
This strategy also encouraged the model to sample equally from simple and complex search
subspaces initially (i.e., both were tried in equal proportion when the model had a uniform prior,
allowing fast discovery of simple, improved bioreactor run configurations if the simple
parameter settings were on-par or better than complex parameter settings).

Light parameters made up 9 of the 17 parameters. Light level parameter settings were specified
in units of umol/m?/s, whereas each type of LED backlighting on the bioreactor LCD panels was
controlled on a power scale of 1 to 100%. To convert between units of pmol/m?/s and the
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equipment’s power settings, specified intensities were normalized by the maximum achievable
intensity: 1015 pumol /m2/s for the red-shifted LEDs; 1400 umol /m/2 for the blue-shifted LEDs.
Each LED-type (red-shifted and blue-shifted) had independent level and gradient settings.
However, for configurations with two, alternating light levels, the timing of light level changes
was synchronized between LED types. A light period was defined as one cycle of level 1 and
level 2 settings. Cycle frequency was specified by the “number of light periods” parameter,
which specified the total number of equal duration periods across 96 hours. The “light level 1
fraction” specified the proportion of each period at light level 1 versus light level 2. Light
gradients were specified as slopes corresponding to the daily, percent of max increase in light
intensity. Thus, a gradient slope of 0.5 corresponded to a 50% increase above specified light
intensities over 24 hours. In application, these light level changes were pushed to controllers
every 12 minutes. Gradients were applied at the start of a run, and as a result, light intensities
often reached and maintained the maximum setting at some point during the run.

Beyond light parameters, there were 5 temperature, 1 air flow and 2 pH related parameters.
Similar to light parameters, the “number of temperature periods” specified the total number of
equal duration periods across 96 hours, and the “temperature level 1 fraction” specified the
proportion of each period at temperature level 1 versus temperature level 2. The “air flow”
parameter was manually set to the appropriate LPM on air flow meter. The pH parameters
defined a band within which the pH was allowed to vary cyclically. The “pH lower level”
(Drower) defined the lower bound of this allowed pH window while the “pH upper fraction” (f)
defined the height of the window relative to the maximum achievable pH (®max) of 10.0. When a
culture reached the upper extent of the allowed pH window, due to biomass growth, the pH was
adjusted via CO; bubbling back to the lower level. Due to physical hardware limitations, the
allowed pH window had a minimum achievable width, referred to as Amin. We then defined the
upper extent of the allowed pH window (®upper) as a function of the following:

Constants:
®max = 10.0  The maximum achievable/allowed pH for our system
Amin=0.2 The minimum achievable pH window/gap size
Given:
Diower The lower bound of the pH window (“pH lower level”)
f The fraction of the maximum achievable window size to use (“pH upper
fraction”)
Equation #1:

(I)upper = Qjower + Amin + f * ((Dmax - Diower - Amin)

For example, given a pH lower level of 8.2 units, a pH upper fraction of 0.5 would place the
upper-bound pH setting at 9.2 units; i.e., Qupper = 8.2 + 0.2 + 0.5%(10.0 - 0.2 - 8.2) =9.2.

Reward function definition

The function being optimized in this case was: f(bioreactor parameters) = bioreactor run
outcome; each reactor run having a unique configuration of parameter settings was equivalent to
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one evaluation of f(bioreactor parameters) and produced a resultant outcome at the end of each
bioreactor run.
We defined a protein production curve for a single reactor over time as follows:

Given:
F(f)  The GFP fluorescence reading at time ¢
C Overhead cost of a production run
Equation #2:

g()=(F@®O-F©0))/(+ )

The cost parameter, C, encodes an overhead penalty associated with initiating and harvesting
each production run cycle. We have used an empirically selected value of C =200 in this work,
as actual, live-production environment costs can carry complex sets of dependencies and
uncertainties that are difficult to rapidly and accurately access. Given our protein production
curve definition for a single run (Equation #2), we then defined the reward for a given bioreactor
run as:
Equation #3:

R(g) = max; g(?)
Each batch (“set”) of bioreactor runs was seeded by a common starting culture (see “Bioreactor
run set experiments (450 mL reactors)”) and the interbatch performance variance was estimated
by including multiple control condition replicates (“standards” based on initial conditions) within
the batch to quantify both inter- and intra-batch variance. The reward outcome for a given
bioreactor run was then adjusted to account for this inter-batch variance as follows:
Given:

Wbach  The mean intra-batch reward for our standard runs

Uglobal The mean inter-batch (global) reward for our standard runs
Equation #4:

R,(g) = (R(g) - Mbatch + Hglobal) / LLglobal

We then defined our per bioreactor run reward (termed “performance”) over which to optimize,
f(bioreactor parameters), as this adjusted reward function: R’(g).

Selecting a batch of trials via GP-BUCB and iterating

The strategy employed in this work to search the defined parameter space was via Gaussian
Process Batched Upper Confidence Bound (GP-BUCB) as implemented by Vizier'”. The GP
model (Bayesian black box model) prescribed a prior belief over all possible bioreactor run
outcomes and its posterior represented updated beliefs about the bioreactor parameter settings
most likely to produce the highest performance given the runs completed so far. Initially the
model assigned a uniform prior belief across all outcomes. Selecting a single trial (bioreactor
run) via the GP model can be performed by taking the bioreactor configuration (i.e., a point in
model belief space) expected to produce the highest performance according to the current belief,
as modeled by the GP according to the Upper Confidence Bound (UCB). However, extending
this procedure to produce a batch of parameter choices optimally is an open problem.

In this work, the Batched Upper Confidence Bound (BUCB) approach selected subsequent
points in the parameter space by simulating the model belief posterior, assuming a pessimistic
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performance for all points included in the batch so far, and then reapplying the UCB selection
policy on this updated posterior. Each subsequent bioreactor configuration choice was made
serially by the model using this simulated approach, resulting in a batch of bioreactor
configuration choices to attempt in parallel.

Given a new batch (set) of bioreactor configuration evaluations (actual run performances), the
belief posterior was updated with the full set of run performances to-date. Subsequent batches of
runs were then sampled and evaluated cyclically by repeating this GP-BUCB policy.

Ash-free dry weight (AFDW) and chlorophyll content

Biomass samples were taken from each bioreactor and spun down in tabletop centrifuge for 10-
15 minutes. Supernatant was removed. Biomass was transferred to glass tubes, washed with 10
mL of 200 mM NacCl, and spun down for another 10-15 minutes. After removing the supernatant,
biomass was placed in a drying oven at 100°C for 24 to 72 hours. Once dry, biomass was
removed, allowed to cool, and weighed on microbalance to obtain the pre-ash weight. Biomass
material was then placed in an ashing furnace at 550°C for at least 16 hours followed by cooling.
Samples were then weighed to obtain the post-ash weight with which to subtract from pre-ash
weights.

To determine chlorophyll content of dried pellets and cell lysates, samples were diluted 1:9 in
methanol and incubated on ice for 5-10 minutes. After spinning for 10 minutes to separate blue
pellet, the absorbance of supernatant fraction was measured at 664 nm.

Immunoassay protein quantification

Cell lysates were prepared by a freeze-thaw and bead-beating protocol. 10 mL cell samples were
collected, pelleted, and washed with 100 mM sodium chloride + 100 mM sodium phosphate, pH
6.0. Washed pellets were stored at -80°C overnight; then thawed in 100m mM sodium phosphate
on ice and transferred to tube with glass beads. Samples were run ~3 times in bead beater at 5000
for 30 seconds, saving the supernatant and washing beads with sodium phosphate buffer. After
removing a subsample to determine chlorophyll content and the AFDW equivalent per uL of cell
lysate, samples were transferred to 2x SDS buffer.

Cell lysate and purified proteins (from SP699) were separated by standard SDS-PAGE
electrophoresis and transferred to a nitrocellulose membrane. Blots were probed with a
monoclonal mouse anti-histidine tag antibody (GenScript), rinsed, and probed with rabbit anti-
mouse horseradish peroxidase (HRP) secondary antibody. Chemiluminescent substrate was
added, and the blot was imaged and then quantified using ImagelJ. Total band intensity vs. loaded
protein calibration curves were prepared for the purified proteins, and the concentration of
epitope tagged protein in the lysate calculated from band intensity and this standard curve.

Protein levels for later run sets with SP1182 were measured by capillary electrophoresis
immunoassay (CEIA). First, a Bradford assay was carried out to quantify total soluble protein in
each run sample. Samples were then diluted and loaded with 0.12 pg of protein per capillary.
Purified protein controls were loaded in the range of 0.004 to 0.03 pg per capillary in generating
a standard curve. Materials included: 12-230 kDa Jess/Wes Separation Module (ProteinSimple),
mouse anti-histidine tag primary antibody (GenScript), and a rabbit anti-mouse HRP-conjugated
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secondary antibody (Protein Simple). Peak analysis was performed using the Protein Simple
Compass software.

GFP unit conversion

From immunoassay quantification of GFP protein in an SP699 culture, grown under our standard
conditions, we found there were ~12321 pg of GFP per unit of chlorophyll absorbance.
Similarly, there were ~1297 GFP fluorescence units per unit of chlorophyll absorbance. Thus, we
defined a rough conversion factor (c) of 9.5e-3 ug GFP per unit of GFP fluorescence. Assuming
these relationships held constant for a given bioreactor run timepoint with associated GFP
fluorescence readings, the GFP yield in pg/mL (y(t)) was estimated as follows:

Given:

F(t) The GFP fluorescence reading at time t

C Conversion factor for GFP fluorescence to pg using sample chlorophyll content
Equation #5:

y(t) = (F(H) - F(0)) * ¢

Bioreactor run experiments (250 L reactors)

To validate performance of BO improved conditions at scale, growth of the strains under
standard and machine learning conditions was conducted in 250 L production reactors with
similar light path and geometry. One reactor was run under standard conditions (pH 9.8 — 10.0;
temperature 34.9-35.1 °C), the other reactor was run under conditions similar to high-performing
run configurations from the BO search (pH 8.1-8.6, temperature 33.3-34.1 °C). Both reactors
delivered the same light flux (1350 umols/m?*/sec) and the same media (1x SOT with 2x nitrate,
identical to that described above in section “Bioreactor run set experiments (450 mL reactors)”.
Cells were grown for seven days; relative growth rates are compared in Figure 6B.
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SUPPLEMENTAL TABLES

Supplemental Table 1: Model Parameters and Ranges

Name Min Max Simple Complex | Parent
Value | Value | Subspace Subspace

Air flow 0.4 1 X X

Number of light levels 1 2 X

Number of light periods 0 10 X Number of light
levels

Light level 1 fraction 0.15 0.85 X Number of light
levels

Blue-shifted light level 1 0 1400 X X

Blue-shifted light level 2 0 1400 X Number of light
levels

Red-shifted light level 1 0 1015 X X

Red-shifted light level 2 0 1015 X Number of light
levels

Blue-shifted light gradient 0 0.5 X X

Red-shifted light gradient 0 0.5 X X

Number of temperature levels 1 2 X

Number of temperature 0 4 X Number of

periods temperature levels

Temperature level 1 fraction 0.25 1 X Number of
temperature levels

Temperature level 1 20 37 X X

Temperature level 2 20 37 X Number of
temperature levels

pH lower bound (Piower) 8 9.79 X X

pH upper fraction (f) 0 1 X X
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Supplemental Table 2: ML-discovered configuration applied to culturing a VHH-expressing
strain, SP1182 (450 mL)

Name Value
Air flow 0.8
Number of light levels 2
Number of light periods 9.27
Light level 1 fraction 0.16
Blue-shifted light level 1 1307
Blue-shifted light level 2 1399
Red-shifted light level 1 1003
Red-shifted light level 2 282
Blue-shifted light gradient 0.49
Red-shifted light gradient 0.37
Number of temperature levels 1
Number of temperature

periods

Temperature level 1 fraction

Temperature level 1 33.85
Temperature level 2

pH lower bound (Piower) 8.01
pH upper fraction (f) 0.045
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SUPPLEMENTAL FIGURES
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Supplemental Figure S1: Western blot of his-tagged protein. Cell lysate from SP699 (GFP
fusion strain) was loaded in three amounts and compared with the calibration curve of a known
standard to quantify epitope-tagged protein in the lysate.
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Supplemental Figure S2: GFP and cell autofluorescence emissions have distinct peaks. The
fluorescence emission spectra with 370 nm excitation shows one sample composed of 100%
GFP-fusion (SP699) cells (dark blue) and samples mixed with WT (UTEX LB 1926) cells.
Mixed samples are composed of 80% GFP-fusion (orange), 60% GFP-fusion (gray), 40% GFP-
fusion (yellow), 20% GFP-fusion (light blue). The final sample is 100% WT (green).
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Supplemental Figure S3: Subset of single parameter histograms by performance bin: lowest
10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% (teal).
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Supplemental Figure S4: Selected subset of temperature-related parameter pairings by
performance bin: lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark
blue), top 10% (teal).
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Supplemental Figure S5: Selected subset of light-related parameter pairings by performance
bin: lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10%
(teal).
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Supplemental Figure S6: Selected subset of pH related parameter pairings by performance bin:

lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10%
(teal).
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Supplemental Figure S7: Key parameter kernel density plots and paired scatter plots for run
configurations with temperatures below 28°C. Run configurations are binned by performance:
lowest 10% (red, temperature subset n = 56), lower 25% (orange, temperature subset n = 42),

upper 25% (dark blue, temperature subset n = 3). There are no configurations from the top 10%
in this subset.
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Supplemental Figure S8: Mean VHH protein as a percentage of total soluble protein for
biomass grown in ML-discovered configuration (teal) vs. standard (gray). Error bars represent
standard deviation (n = 2 run replicates).
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