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20 Abstract

21 Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native 

22 to the western Pacific Ocean.  Pink salmon are also the most abundant of these species and account for 

23 a large proportion of the commercial value of the salmon fishery worldwide.  A strict two-year life-

24 history of most pink salmon generates temporally isolated populations that spawn either in even-years 

25 or odd-years.  To uncover the influence of this genetic isolation, reference genome assemblies were 

26 generated for each year-class and whole genome re-sequencing data was collected from salmon of both 

27 year-classes.  The salmon were sampled from six Canadian rivers and one Japanese river.  At multiple 

28 centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long.  The 

29 largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the 

30 odd-year genome near a centromere.  These Fst peaks may be the result of centromere drive or a 

31 combination or reduced recombination and genetic drift, and they could influence speciation.  Other 

32 regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under 

33 selection were mostly associated with genes related to immune function, organ 

34 development/maintenance, and behaviour.

35

36 Introduction

37 Pink salmon are an economically important species under heavy exploitation and have been the 

38 subject of intense mitigation efforts.  Commercial catches of pink salmon comprise roughly half of all 

39 Pacific salmon catches by weight and a much greater percentage by count as they are the smallest of 

40 the commercially important Pacific salmon (1,2).  Since the late 1980s, more than a billion pink salmon 

41 are released annually from hatcheries (1) to maintain the abundance of this fishery.
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42 The native range of pink salmon encompasses parts of the southern Arctic Ocean between 

43 North America and Asia as well as much of the northern Pacific Ocean (3).  Recently, Arctic climate 

44 warming has opened previously inaccessible Arctic territory to pink salmon as well (4–6).  Pink salmon 

45 have been introduced to the Great Lakes in North America (7) and drainage basins of the White Sea 

46 (reviewed in (8)), near the border of Russia and Finland.

47 Pink salmon spend a year and a half at sea before returning to rivers to spawn at two-years of 

48 age.  This strict two-year life history, unique to this species among salmon, has wide-ranging 

49 implications for their evolution, conservation, and possibly for their future as a species.  Populations 

50 that spawn in an even-numbered year (e.g., 2020) return in an even-year (e.g., 2022) to spawn as adults.  

51 Similarly, odd-year spawned pink salmon return in odd-numbered years.  Gene flow between year-

52 classes/lineages is consequently limited (9) (this phenomenon is known as allochronic or temporal 

53 isolation).  Rare exceptions to a strict two-year life-cycle of pink salmon in their native range have been 

54 reported (10–12).  Outside their native range, three-year-old pink salmon have been observed in the 

55 Great Lakes following introduction (7,13).  One hypothesis based on experimental rearing in heated sea 

56 water is that temperature may play a role in precocious development (i.e., one-year life-cycle) (14).

57 Within a year-class, population genetic differentiation among rivers tends to be lower than that 

58 of other salmon species, which is a possible consequence of increased straying of pink salmon from 

59 natal streams during spawning (15,16).  Increased straying itself may be a repercussion of the reduced 

60 time that pink salmon spend in their natal streams compared to most other salmon species (chum 

61 salmon – Oncorhynchus keta being an exception) (3).  Pink salmon are ready for sea migration as soon 

62 as they emerge from gravel and after yolk-sac absorption (17). 

63 In contrast to the regional reduced heterogeneity observed within year-class populations, there 

64 is a high level of divergence between year-classes as a result of limited gene flow (9,18–22).  Genetic 

65 differentiation between odd and even lineages from the same river is greater than within year-class 
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66 differentiation, a phenomenon observed across the species natural range (23).  There are also 

67 phenotypic differences that have been reported between lineages such as gill raker counts (19), 

68 length/size (with even-year fish tending to be smaller in Canada) (24–26), and survival/alevin growth 

69 in low temperature environments (27).  

70 The divergence of pink salmon from other Pacific salmon species has been estimated to have 

71 occurred several million years ago (28–32); this provides a maximal time of odd and even lineage 

72 divergence.  Based on mitochondrial nucleotide diversity, divergence times between odd and even-year 

73 lineages have previously been estimated as 23,600 years (33), 150 – 608 thousand years ago (34), and 

74 0.9 – 1.1 million years ago (22).  The relatively recent estimates of divergence are inconsistent with 

75 complete temporal isolation between odd and even lineages (potentially for several million years).  It 

76 has been suggested that low-level gene flow or recolonization of extripated year-classes by alternate 

77 year-classes could account for recent estimates of divergence, with recolonization being a favoured 

78 explanation (33).  Both low-level gene flow and recolonization have been observed in introduced pink 

79 salmon in the North American Great Lakes (7,35,36), revealing that it is possible that environment and 

80 temperature (suggested in (36)) can alter the strict allochronic isolation observed in modern times.  

81 Maturation in pink salmon has been verified to be sensitive to temperature and photoperiod under 

82 experimental conditions (37).

83 While odd-year and even-year pink salmon populations may occupy the same environment 

84 (during different years), these lineages can still have different selective pressures (38).  For example, 

85 the density of pink salmon is known to vary between years (38,39), and density may influence the 

86 composition of pink salmon predators, prey, and the number of fish on the spawning grounds (40–42).  

87 In years with a high abundance of pink salmon, some studies have reported a decrease in body size of 

88 pink salmon at sea (other species of salmon and seabirds have also been adversely influenced during 

89 these high abundance years) (41–45).  These studies reveal that the intraspecific competition among 
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90 other pink salmon and interspecific competition among other species can vary significantly between 

91 odd and even-years. 

92 In this study, we present genome assemblies for both odd-year and even-year lineages, develop 

93 a transcriptome to annotate these assemblies, and analyze polymorphisms found between groups.  We 

94 identified regions of the genome that have diverged between odd and even-year lineages with some 

95 possibly as a response to selection.  We were also able to identify large Fst peaks adjacent to many 

96 centromeres and to verify one major fusion or deletion on LG15_El12.1-15.1 by combining 

97 polymorphism data with long-read sequencing of both year-classes.  These regions of the genome are 

98 important aspects of pink salmon biology and provide greater insight into the evolutionary divergence 

99 of the lineages.

100

101 Materials and Methods

102 Animal care

103 Fisheries and Oceans Canada Pacific Region Animal Care Committee (Ex. 7.1) was the 

104 authorizing body for animal care carried out in this study.  All salmon were reared, collected, or 

105 euthanized in compliance with the Canadian Council on Animal Care Guidelines.

106

107 Genome assemblies

108 A mature male pink salmon was sampled from the Big Qualicum River Hatchery (NCBI 

109 BioSample: SAMN16688056) on September 19, 2019 (odd-year) by hatchery personnel and euthanized 

110 by concussion as specified in section 5.5 of the Canadian Council on Animal Care guidelines.  A 

111 mature male pink salmon was also sampled from the Quinsam River Hatchery (NCBI BioSample: 
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112 SAMN18987060) by hatchery personnel in the same manner on July 28, 2020 (even-year).  We 

113 dissected liver, spleen, kidney, and heart tissues from the carcasses and flash-froze them on dry ice 

114 immediately and stored them at -80°C.  We used a Nanobind Tissue Big DNA Kit (Circulomics) to 

115 isolate high-molecular DNA following the manufacturer’s protocol from multiple tissues.  In addition, 

116 Short Read Eliminator Kits (Circulomics) were used to reduce the fraction of small DNA fragments in 

117 the DNA extractions following the kit protocol for DNA samples to be sequenced on Oxford Nanopore 

118 Technologies (ONT) platforms.

119 We generated sequencing libraries with the prepared DNA using a Ligation Sequencing Kit 

120 (SQK-LSK109 ONT) following the manufacturer’s protocol.  The libraries were sequenced on a Spot 

121 On Flow Cell MK1 R9 with a MinION (ONT) or a PromethION (R9.4.1 flow cell).  Libraries 

122 sequenced on the PromethION were size selected using magnetic beads (0.4:1 ratio).  DNase flushes 

123 were performed to increase yield according to manufacturer’s instructions.  We also tried to add 1% 

124 DMSO immediately before sequencing to reduce secondary structures that might block pores and 

125 reduce sequencing efficiency for one flow-cell (with a minor increase in pore occupancy, more titration 

126 will be needed to identify if there are benefits of adding DMSO).  FASTQ sequence files were 

127 generated either using the Guppy Basecalling Software (version 3.4.3+f4fc735 for sequences from the 

128 MinION) with default settings or MinKNOW v3.4.6 (for sequences from the PromethION).

129 Short-read sequence data were generated for genome polishing for the even-year genome 

130 assembly (NCBI SRA accession: SRX10913279 – SRX10913282) and the odd-year genome assembly 

131 (NCBI SRA accession: SRX6595859 – SRX6595860).  We generated the short-read data for the even-

132 year genome by shearing 1ug of DNA (pink even-year male described above) with a COVARIS LE220 

133 (Covaris) using the following configuration in a 96 microTUBE plate (Covaris): duty 20, pip450, 

134 cycles/burst 200, total time 90s, pulse spin in between 45s treatment.  The library was then constructed 
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135 using the MGIEasy PCR-Free DNA Library Set (MGI) following the manufacturer’s protocol.  The 

136 library was then sequenced on an MGISEQ-200RS Sequencer (150 + 175 PE).

137 We generated the short-read sequence data for polishing the odd-year genome assembly for a 

138 previous assembly that was not published because the contiguity of the assembly was low.  The 

139 sequences were from an odd-year haploid female produced at Fisheries and Oceans Canada using 

140 source material from the Quinsam River Hatchery (NCBI BioSample: SAMN12367892).  To produce 

141 the haploid salmon, we applied UV irradiation (560 uW/cm2 for 176 s) to sperm from a Quinsam River 

142 male pink salmon (to destroy parental DNA) immediately before fertilizing eggs from a Quinsam River 

143 female pink salmon.  Prior to sequencing, the individual was confirmed to be haploid using a panel of 

144 11 microsatellites.  The details of the library preparations and sequencing technology can be found on 

145 the NCBI website (NCBI SRA accession: SRX6595859 – SRX6595860).

146 We created a Hi-C library for the even-year genome assembly using the Arima-HiC 2.0 kit 

147 (Arima Genomics – manufacturer’s protocol) with liver tissue from the even-year male (NCBI SRA 

148 accession: SRR14496776).  The library was then sequenced on an Illumina HiSeq X (PE150).  A Hi-C 

149 library was only successfully generated for the even-year genome assembly.

150 After sequencing, we produced initial genome assemblies with the Flye genome assembler 

151 (version 2.7-b1587 – odd, 2.8.2-b1695 – even) (46) using ONT sequences (parameters: -g 2.4g, --asm-

152 coverage 30).  Racon (version 1.4.16) (47) was then used to find consensus sequences of the Flye 

153 assemblies (parameters: -u) after aligning the respective ONT reads to the assemblies using minimap2 

154 (48) (version 2.13, parameters: -x map-ont).  We polished the assemblies with Pilon (version 1.22) (49) 

155 using the following methods.  Paired-end reads were filtered and trimmed using Trimmomatic (50) 

156 (version 0.38) (parameters for the odd-year reads: ILLUMINACLIP: TruSeq3-PE-2.fa:2:30:10 

157 LEADING:28 TRAILING:28 SLIDINGWINDOW:4:15 MINLEN:200; parameters for the even-year 

158 reads: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 
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159 MINLEN:36).  The respective reads were aligned to each of the Racon-corrected assemblies using bwa 

160 (51,52) (version 0.7.17) with the -M parameter and sorted and indexed using Samtools (53) (version 

161 1.9) prior to polishing with Pilon (default parameters).

162 After the genome assemblies were polished, we identified the order and orientation of 

163 contigs/scaffolds on pseudomolecules/chromosomes for the odd-year genome using a genetic map (54) 

164 and synteny to the coho salmon genome (NCBI: GCF_002021735.2).  Chromonomer (55) (version 

165 1.10) was used to order the contigs/scaffolds using the genetic map (parameters: --disable_splitting).  

166 Ragtag (56) (version 1.0.1) was used to order the contigs/scaffolds using synteny to the coho salmon 

167 genome (default parameters).  We used a custom script (57) to compare the contig order files output by 

168 Chromonomer and Ragtag (.agp files) and manually reviewed the output for discrepancies.  The 

169 manually curated order and .fasta files were submitted to the NCBI.  

170 To order and orient contigs and scaffolds on pseudomolecules for the even-year genome, we 

171 mapped Hi-C reads to the polished assembly using scripts from Arima Genomics (58).  The output 

172 alignment file was then converted to a .bed file using BEDtool bamtobed (version 2.27.1) (59) with 

173 default parameters and sorted using the Unix command ‘sort -k 4.’  After the Hi-C reads were mapped 

174 to the genome assembly, Salsa2 (60,61) was used to further scaffold the contigs and initial scaffolds 

175 (parameters: -e GATCGATC,GANTGATC,GANTANTC,GATCANTC).  After scaffolding, we 

176 mapped the remaining contigs and scaffolds onto pseudomolecules/chromosomes using the same 

177 strategy as for the odd-year genome assembly (see above) except a newer genetic map was used (62) 

178 (an odd-year genetic map was the only available) and the rainbow trout genome assembly (NCBI: 

179 GCF_013265735.2, (63)) was chosen for synteny.  The proposed order and orientation was then 

180 reviewed manually using Juicebox (version 1.11.08) (64) before submission to the NCBI.  The .hic and 

181 .assembly files used by Juicebox were produced using the pipeline from Phase Genomics (65).  The 
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182 nomenclature for the chromosomes was based on the linkage group from the genetic maps and from the 

183 Northern pike orthologous chromosomes in an attempt to standardize nomenclature across salmonids 

184 (66).

185 A BUSCO (Benchmarking Universal Single-Copy Orthologs) version 3.0.2 analysis (67) was 

186 used to assess assembly quality.  We performed these analyses after polishing assemblies, but before 

187 mapping contigs/scaffolds onto chromosomes.  The lineage dataset used in this analysis was 

188 actinopterygii_odb9 (4584 BUSCOs).  The parameters used were: -m genome and -sp zebrafish.  

189 A Circos plot was generated from the odd-year genome assembly using Circos software version 

190 0.69-8 (68).  We identified homeologous regions of the genome with SyMap version 5.0.6 (69) using a 

191 repeat-masked version of the assembly without unplaced scaffolds or contigs (default settings).  

192 Repeats had previously been identified by NCBI and were masked by us using Unix commands.  The 

193 output from SyMap was formatted and summarized using scripts from Christensen et al. (2018) (70).  

194 A histogram of repetitive sequence was generated using a python script (71).  The Marey map (genetic 

195 map markers aligned to a genome) was generated using the methods from Christensen et al. (2018) 

196 (70).  Centromere positions were taken from the genetic map after it was converted into a Marey map.

197

198 Whole-genome re-sequencing 

199 Samples were previously collected by Fisheries and Oceans Canada personnel from the 

200 following bodies of water (British Columbia unless otherwise noted): Quinsam River Hatchery, 

201 Atnarko River, Kitimat River Salmon Hatchery, Deena River, Yakoun River Hatchery, Snootli Creek 

202 Hatchery, Kushiro River (Japan) (S1 File).  Samples were chosen to encompass odd-year and even-year 

203 samples from the same body of water or from nearby streams (even-year n=30, odd-year n=31).
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204 We extracted DNA from tissues stored either in 100% ethanol or RNAlater (ThermoFisher) 

205 using the manufacturer’s protocol (72).  Whole-genome sequencing libraries were produced at McGill 

206 University and Génome Québec Innovation Centre (now the Centre d'expertise et de services Génome 

207 Québec).  The libraries were generated using the NxSeq AmpFREE Low DNA Library Kit and NxSeq 

208 Adaptors (Lucigen).  They were then sequenced on an Illumina HiSeq X (PE150).

209 We identified nucleotide variants using GATK (73–75) (version 3.8).  Unfiltered paired-end 

210 reads were aligned to the Racon corrected odd-year genome assembly (as other versions were 

211 unavailable at the time – available at: https://doi.org/10.6084/m9.figshare.14963721.v1) using bwa 

212 mem (parameters: -m) and the sort command from Samtools.  Picard’s (76) (version 2.18.9) 

213 AddOrReplaceReadGroups was used to change read group information (with stringency set to lenient).  

214 Samtools was used to index the resulting alignment files, and the MarkDuplicates command from 

215 Picard was used to mark possible PCR duplicates (lenient validation stringency).  The MarkDuplicates 

216 command was also used to merge .bam files if multiple sequencing lanes were used to sequence the 

217 sample.  Read group information was changed using the Picard command ReplaceSamHeader for these 

218 samples so that the library and sample ID were the same, but other information was left the same.  This 

219 was performed so that GATK would treat the sample appropriately.  

220 HaplotypeCaller (GATK) was then used to generate .gvcf files (parameters: --genotyping_mode 

221 DISCOVERY, --emitRefConfidence GVCF) for each sample.  The GenotypeGVCF command from 

222 GATK was then used to genotype the individuals in 10 Mbp intervals (see (77) for python script used 

223 to split into 10 Mbp intervals).  The CatVariants command was used to merge the intervals afterwards.  

224 Variants were then hard-filtered using vcftools (78) (version 0.1.15) with the following parameters: 

225 maf 0.05, max-alleles 2, min-alleles 2, max-missing 0.9, remove-indels, and remove-filtered-all (VCF 

226 file available at: https://doi.org/10.6084/m9.figshare.14963739.v1).  Additional filtering was done for 
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227 some analyses, which are sensitive to linkage disequilibrium.  Variants were filtered if heterozygous 

228 allele counts were not evenly represented — also known as allele balance (minor allele count < 20% of 

229 the major allele count, see (77) for python script).  Variants in linkage disequilibrium were thinned 

230 using BCFtools (79) (parameters: +prune, -w 20kb, -l 0.4, and -n 2).  Custom scripts, bwa mem, and 

231 Samtools index were used to map the variants to different genome assemblies (80).

232

233 Transcriptome

234 To better annotate the genome assemblies, we collected a dataset of 19 tissues from a juvenile 

235 female pink salmon (NCBI Accessions: SRX6595821-SRX6595839).  Euthanasia of this salmon was 

236 performed by placing the salmon in a bath of 100 mg/L tricaine methanesulfonate buffered with 200 

237 mg/L sodium bicarbonate.  Team dissection was used to quickly remove tissues and each tissue was 

238 stored in RNAlater Stabilization Solution (ThermoFisher) as recommended by the manufacturer.

239 We extracted RNA from the tissue stored in RNAlater Stabilization Solution using the Qiagen 

240 RNeasy kit (QIAGEN).  Stranded mRNASeq libraries were generated at McGill University and 

241 Génome Québec Innovation Centre, with NEBNext dual index adapters.  Libraries were then 

242 sequenced as a 1/39 fraction of a NovaSeq 6000 S4 PE150 lane at McGill University and Génome 

243 Québec Innovation Centre.  These datasets were deposited to NCBI for use in gene annotation 

244 (BioProject: PRJNA556728).

245

246 Population structure

247 As clustering techniques are sensitive to linkage disequilibrium, we used variants that were 

248 hard-filtered (including for allele balance) and filtered for linkage disequilibrium for all population 
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249 structure analyses.  A DAPC analysis (81) was used to cluster individuals in R (82) using the following 

250 packages: adegenet (83), vcfR (84), and ggplot2 (85).  The number of DAPC clusters was determined 

251 using the find.clusters function and choosing the cluster count with the lowest Bayesian information 

252 criterion.  Thirty principal components were retained with the dapc function.  The variants used for the 

253 DAPC analysis were not yet mapped to chromosomes.

254 To complement the DAPC analysis, we also performed an Admixture (version 1.3.0) analysis 

255 (86) to identify clusters of individuals and quantify the admixture between the identified groups.  To 

256 format the linkage disequilibrium thinned .vcf file, we used a custom Python script to rename the 

257 chromosomes to numbers (77) and PLINK (version 1.90b6.15) (87,88) was used to generate .bed files 

258 (parameters: --chr-set 26 no-xy, --double-id).  PLINK was also used to generate a principal components 

259 analysis.  The Admixture software was then used to identify the optimal cluster number based on the 

260 lowest cross-validation error value.  The admixture values from this analysis were plotted in R. 

261 To examine population structure based on the mitochondrion sequence, we generated a 

262 phylogenetic tree based on full mitochondria sequences.  The genome assembly included a 

263 mitochondrion sequence, and this region of the genome was subset from the variant file using vcftools.  

264 The resulting file and the SNPRelate (89) package in R was used to generate the phylogenetic tree.  

265 The snpgdsVCF2GDS and snpgdsOpen functions were used to import the data, the snpgdsDiss 

266 function was used to calculate the individual dissimilarities for pairwise comparisons between samples, 

267 the snpgdsHCluster function was used to generate a hierarchical cluster of the dissimilarity matrix, the 

268 snpgdsCutTree function was used to determine subgroups, and the snpgdsDrawTree function was used 

269 to plot the dendrogram.

270 From the variants with minimal filtering and the variants after all filters had been applied, the 

271 heterozygosity ratio was separately calculated based on the number of heterozygous genotypes divided 
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272 by the number of alternative homozygous genotypes (90,91).  The number of heterozygous and 

273 homozygous genotypes were counted using a python script from Christensen et al. (2020) (77).  

274 Heterozygous genotypes per kilobase pair (kbp) was calculated by dividing the heterozygous genotype 

275 counts by the genome size (2,528,518,120 bp) and then multiplied by 1000.  This calculation was used 

276 on the variants with minimal filtering not yet mapped to chromosomes.

277 The number of shared alleles was calculated as a metric for relatedness using custom scripts for 

278 the variants with minimal filtering and which were mapped to chromosomes (92).  This value is 

279 calculated by counting the number of alleles an individual has in common with another individual and 

280 is similar to previous work (93–95).  The percent shared alleles was calculated in R (number of shared 

281 alleles divided by the total allele count multiplied by 100) and plotted using the reshape2 (96) and 

282 pheatmap (97) R packages.

283 Fst, nucleotide diversity (within populations—pi and between—dxy), and Tajima’s D were 

284 calculated and plotted using the R packages PopGenome (98), dplyr (99), tidyr (100), stringr, and 

285 qqman.  In PopGenome, all metrics were calculated using a sliding window of 10 kbp and the data 

286 were visualized as a Manhattan plot using qqman.  We used the populations module from Stacks 

287 version 2.54 (101) to calculate the number of private alleles, percent polymorphic variants, Fis 

288 (inbreeding coefficient), and Pi (nucleotide diversity within a population) for odd and even year class 

289 samples grouped as populations.  These metrics were compared with the sample from Japan as an odd-

290 year sample or as its own population.  A comparison was also performed to see how filtering 

291 influenced these metrics. 

292

293 Genomic regions associated with population structure under selection
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294 To identify regions of the genome associated with population structure identified in the DAPC 

295 analysis, we performed an eigenGWAS analysis (102).  The format of the hard-filtered variants was 

296 converted to the appropriate format in PLINK, and the GEAR (103) software was used to run the 

297 eigenGWAS analysis (this was performed on a slightly different version of the genome assembly 

298 available on the NCBI, but only positions on chromosome 9 were minimally affected).  Significance 

299 was corrected for using the genomic inflation factor to better identify markers potentially under 

300 selection rather than a result of genetic drift between populations.  The genomic inflation factor 

301 corrected p-values were then plotted in R using the qqman (104) and stringr (105) packages.  A 

302 Bonferroni correction was applied as a multiple test correction (alpha = 0.05).  Only peaks with at least 

303 5 SNPs within 100 kbp of each other were retained to reduce false-positives (nucleotide variants under 

304 selection are expected to be in linkage disequilibrium with surrounding variants and significant single 

305 variants not in linkage may be a consequence of spurious alignments).

306

307 Sex determination and sdY

308 We utilized a genome-wide association (GWA) of phenotypic sex to identify the region of the 

309 genome associated with sex for all pink salmon (individual year-classes were checked as well).  This 

310 analysis was also used to identify where the contig from the genome assembly with the sdY gene 

311 should be placed.  This was confirmed with synteny from the rainbow trout Y-chromosome 

312 (NC_048593.1) and manual inspection of the Hi-C data (it was placed in the even-year genome 

313 assembly).  The GWA analyses were performed using PLINK (parameters: --logistic --perm).  Synteny 

314 was identified from alignments to the rainbow trout genome assembly (GCF_013265735.2, (63)) using 

315 CHROMEISTER (106) (default settings).
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316 When manually genotyping the presence/absence of the sdY gene by visualizing alignments in 

317 IGV (107), we noticed some males had increased coverage of the sdY gene, and two haplotypes were 

318 identified (4 variants in non-coding DNA).  The haplotypes were manually genotyped.  To estimate the 

319 copy number of the sdY gene, we first used a python script to determine the average coverage of all 

320 hard-filtered variants (108).  The average coverage of the four variants in the sdY gene was then 

321 divided by the average coverage of all variants.

322

323 Results

324 Genome assemblies

325  The odd-year assembly (GCA_017355495.1) had a combined length of ~2.5 Gbp, with 20,664 

326 contigs and a contig N50 of ~1.8 Mbp.  The even-year assembly had similar metrics, with a contig N50 

327 of ~1.5 Mbp, 24,235 contigs, and a length of ~2.7 Gbp.  We used a BUSCO analysis of known 

328 conserved genes to determine the completeness and quality of the genome assembly.  Of the 4584 

329 BUSCOs, 95.3% were found to be complete in the odd-year genome assembly (54.9% single-copy and 

330 40.4% duplicated), 1.4% were fragmented, and 3.3% were missing.  The even-year assembly also had 

331 95.3% complete BUSCOs (51.5% single-copy and 43.8% duplicated), but more fragmented (1.6%) and 

332 fewer missing BUSCOs (3.1%).

333 The odd-year assembly had 26 linkage groups and extensive homeologous regions between 

334 chromosomes (Fig 1).  The odd-year genome assembly contained similar levels of repetitive DNA and 

335 duplicated regions compared to other salmonids (Fig 1, (70,77,109)).  Like other salmon species, 

336 increased sequence similarity was also observed at telomeres between duplicated chromosomal arms 
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337 (Fig 1).  Peaks of increased Fst between odd and even-year lineages were commonly found at putative 

338 centromere locations (Fig 1, Table 1).

339

340 Fig 1. Circos plot of pink salmon genome assembly.  Positions are all based on the odd-year genome 

341 assembly.  Chromosomes/linkage groups are noted with blue boxes representing the centromere 

342 identified in Tarpey et al. (2017) (62).  Links between chromosomes are homeologous regions 

343 identified using SyMap.  A) Fst values between all odd-year and even-year salmon greater than 0.25.  

344 Values greater than 0.5 are highlighted red.  B) The fraction of repetitive DNA as identified by NCBI 

345 (odd-year).  Values greater than 0.65 are highlighted red.  C) The percent identity between 

346 homeologous regions identified by SyMap (scale 75-100%).  Values greater than 90% are highlighted 

347 red.  D) A Marey map with markers from the genetic map (y-axis, 0 – 1, with 1 being the marker with 

348 the greatest cM value) placed onto the genome (x-axis, odd-year).

349 Table 1. Largest Fst peaks between odd and even-year lineages.

Linkage group/
chromosome

Region 
(Mbp)

Size of peak 
(Mbp)

Frequency
Odd (p*)

Frequency
Even (p*)

HWE Potential cause

LG04_El13.1-02.1 50-53 ~3 0.98 0.43 Both Centromere
LG10_El12.1-15.1 46.5-50 ~3.5 0.69 0.22 Both Centromere
LG14_El18.2-23.2 49-55 ~6 0.77 0.12 Both Centromere
LG15_El08.2-20.1 50-54 ~4 Centromere

~1.26 Deletion
0.5** 0** Both Centromere/

Deletion-Fusion
LG18_El09.2-17.1 45.5-46.5 ~1 1 0 Both Selection
LG21_El24.2-22.1 31-34.5 ~3.5 0.63 0 Both Centromere
LG25_El23.1-24.1 17.5-19 ~1.5 0.65 0.15 Both Centromere
LG26_El09.1-11.1 11.3-18 ~3.5 Centromere

~7.3 Misassembly
0.89 0.67 Both Centromere/

Misassembly
350 The odd and even allele frequencies (p) were based on the most clearly defined sub-region rather than 
351 the entire region.  It is unclear which individuals have the deletion or fusion on LG15_El08.2-20.1.  
352 *reference genome allele frequency 
353 **alternative (to reference) allele frequency
354
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355 Population structure

356 A shared allele analysis (Fig 2) and both Admixture and DAPC analyses (Fig 3) revealed a clear 

357 delineation between odd and even-year lineages.  Parent-progeny and sibling relationships 

358 (relationships known during sampling) are highlighted by increased levels of shared alleles, but the 

359 majority of clustering appears to be related to geographical distance (Fig 2, S1 File).  No apparent 

360 admixture was observed in the even-year class (Fig 3B).  In the odd-year lineage, estimated ancestry 

361 from the even-year group varied from zero to over forty percent (Fig 3B).

362

363 Fig 2. Percent of shared alleles among pink salmon.  A heatmap of shared alleles between salmon is 

364 shown with clustering and a dendrogram.  Each square represents the percent shared alleles after minor 

365 filtering of variants (bi-allelic SNPs).  In addition to the legend displaying the colour representation of 

366 percent shared alleles, the sex, year-class, and river system sample information is colour-coded and 

367 shown on both rows and columns.

368 Fig 3. Population structure of pink salmon.  A) Sampling locations for odd and even-year pink 

369 salmon.  B) An admixture analysis based on an optimal group number of two.  Sampling site is 

370 specified on the left (y-axis) by colour and fraction of alleles inherited from a lineage is shown on the 

371 x-axis (orange – even-year, blue – odd-year).  On the right, DAPC groups are shown (see S1 File for 

372 group and coordinate positions).  The DAPC groups matched year-class/lineage designations.

373

374 A separate analysis of mitochondrial DNA was performed to further investigate the 

375 relationships between the odd and even-year lineages.  Odd-year pink salmon had longer branch 

376 lengths in mitochondria dendrograms and haplotype networks with more uniform distributions of 

377 haplotypes (Figs 4A and B).  The even-year salmon had two major haplotypes (Fig 4B).  Mitochondrial 
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378 sequence analyses revealed 21 unique haplotypes from the 61 mitochondria sequences with 1-19 steps 

379 between haplotypes (Fig 4).  Based on the length of the sequence analyzed (16,822 bp) this represents a 

380 mutation frequency between 0.006% to 0.1%.  One haplotype was shared between lineages and the 

381 closest haplotype that was not shared had 5 steps between year-classes (Fig 4).  The mitochondrial 

382 analyses illustrate divergence between the odd and even-year lineages, but also raises questions 

383 regarding possible recent admixture based on a shared haplotype and an odd-year haplotype most 

384 closely related to an even-year haplotype.

385

386 Fig 4. Whole mitochondrial genome comparisons between lineages.  A) A dendrogram based on 

387 full mitochondrial sequences.  The y-axes show dissimilarity scores on the left and coancestry values 

388 on the right, which were used to cluster individuals.  Year-class/lineage is specified below the 

389 dendrogram.  B) A full mitochondrial genome haplotype network is shown for the 21 unique 

390 haplotypes identified.  River names are shown for the haplotype shared between lineages.

391

392  Several metrics were calculated to quantify genetic divergence between and within year-classes: 

393 heterozygosity ratios, heterozygous genotype per kbp, polymorphic sites, private alleles, and nucleotide 

394 diversity.  Heterozygosity ratios in odd-year fish ranged from 1.5-4.56, with an average of 2.54 

395 (excluding haploid individuals generated for a previous project) (S1 File).  Even-year class individuals 

396 ranged from 1.09-1.78, with an average of 1.44 (S1 File).  The average heterozygous genotype per kbp 

397 (excluding haploids) was 0.71 for odd-year salmon (range: 0.55 – 0.85) and 0.58 for even-year (range: 

398 0.45 – 0.69) pink salmon.  The Pearson correlation between heterozygosity ratio and heterozygosity per 

399 kb was 0.91 (excluding haploids).  Salmon from odd-years had on average higher levels of 

400 polymorphic sites, increased private alleles, and increased nucleotide diversity (Table 2).  These values 

401 varied based on sample inclusion and filtering parameters used for filtering nucleotide variants (Table 
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402 2).  The average percent of shared alleles among odd-year fish was 76.13%, 74.42% among even-year 

403 individuals, and 71.04% between year-classes (S1 File).  Most analyses revealed increased genetic 

404 diversity among odd-year pink salmon than among even-year pink salmon and fewer shared alleles 

405 between odd and even-year populations than within year-class. 

406 Table 2. Population metrics of the two lineages.

Odd 
with sample from Japan

Odd 
without sample from Japan

Even

Number of variants 3,817,721 (101,594)
% polymorphic 93.23 (97.91) 92.61 (97.64) 90.66 (87.86)
Private alleles 356,634 (12,333) 302,507 (10,486) 258,335 (2,124*)
Pi 0.276 (0.337) 0.276 (0.337) 0.269 (0.283)
Fis 0.075 (0.143) 0.068 (0.135) 0.122 (0.195)

407 Variants with minimal filtering are shown first and variants after all filters are shown in parentheses.
408 *2,126 without sample from Japan

409

410 Genomic regions associated with odd and even-year lineages

411 We identified regions of the genome with divergence between odd and even-year lineages using 

412 an eigenGWAS and Fst analysis.  Seventeen significant regions of the genome were discovered to 

413 contribute to the divergence between odd and even-year lineages (Fig 5, Table 3).  These regions are 

414 putatively under selection as genetic drift is partially accounted for through the genomic inflation 

415 factor.  Multiple candidate genes under selection were identified in these regions (Table 3).

416

417 Fig 5. Genome-wide divergence between odd and even-year pink salmon lineages.  A Manhattan 

418 plot of eigenGWAS results, with chromosome positions on the x-axis and p-values (corrected for 

419 genetic drift using the genomic inflation factor) on the y-axis identifies region of the genome 

420 potentially under selection.  The red horizontal line represents a Bonferroni correction at ɑ=0.01 and 

421 the blue line at ɑ=0.05.  All positions are from the odd-year genome assembly.
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422 Table 3. Top eigenGWAS peaks identified between lineages.

Chromosome BP range SNP position 
with 

lowest P-
value

Candidate Gene Gene 
Symbol

LG01_El19.1-16.1 51653225-51738345 51716026 protein tyrosine phosphatase 
receptor type J

PTPRJ

LG02_El19.2-07.2 18075760-18095551 18075760 AT-rich interactive domain-
containing protein 3A

arid3a

LG02_El19.2-07.2 46961740-47008290 46969254 protein-methionine sulfoxide 
oxidase mical2b

mical2b

LG02_El19.2-07.2 110392052-110493632 110449484 multidrug and toxin extrusion 
protein 2-like

SLC47A2

LG08_El03.2-06.2 60715584-60782108 60767399 polh polymerase (DNA 
directed), eta

POLH

LG14_El18.2-23.2 29365137-29414547 29411435 uncharacterized gene
LG14_El18.2-23.2 50053735-50217619 50217619 Unknown
LG15_El08.2-20.1 42753852-42762230 42758791 cystathionine gamma-lyase CTH
LG15_El08.2-20.1 51106314-52224901 51106314 multiple candidates*
LG18_El09.2-17.1 45516859-45534019 45524530 cell division control protein 42 

homolog*
CDC42

LG18_El09.2-17.1 46342891-46450909 46347678 H-2 class II histocompatibility 
antigen, A-U alpha chain*

H2-Aa

LG19_El20.2-01.2 22831059-22843129 22836628 B-cell receptor CD22 CD22
LG21_El24.2-22.1 9281799-9398462 9391795 histidine N-acetyltransferase hisat
LG22_El03.1 10576168-10595358 10595038 purine nucleoside 

phosphorylase
PNP

LG22_El03.1 15334053-15411821 15405819 multiple candidates
LG24_El10.1-25.1 47355926-47430898 47398112 microtubule-associated protein 

9 
map9

LG25_El23.1-24.1 37126251-37202999 37137812 uncharacterized gene (ncRNA)
423 All positions are relative to the odd-year genome.  
424 *associated with an Fst peak
425

426 Seven of the eight largest Fst peaks between year-classes were located in the vicinity of a 

427 centromere (Fig 1, Table 1).  More detail is presented on one of the largest Fst peaks.  This peak is also 

428 associated with a large deletion or fusion.  The Fst peak on LG15_El12.1-15.1 (Fig 6A) is in Hardy-

429 Weinberg equilibrium in the odd-year lineage (p=0.984 with a chi-square test), but fixed in the even-

430 year lineage (Figs 6B and 6C).  When Oxford Nanopore reads from the two year-classes were aligned 
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431 to the genome assembly, a heterozygous deletion or fusion from 51,670,144 – 52,926,328 was found in 

432 this region of the odd-year male used for genome assembly (S1 Fig.).  The ~1.2 Mbp deletion/fusion 

433 may explain why the LG15_El12.1-15.1 Fst peak was one of the largest and widest (Fig 1, S1 Fig.).

434

435 Fig 6. Chromosome LG15_El12.1-15.1 Fst peak.  A) A Manhattan plot of 10 kbp sliding-window Fst 

436 values between odd and even-year pink salmon lineages on chromosome LG15_El12.1-15.1.  B) 

437 Genotypes visualized in IGV.  Each row represents an individual pink salmon and each column 

438 represents a nucleotide variant (dark blue – homozygous reference, light blue – heterozygous reference, 

439 green – homozygous alternative, and white – missing genotype).  Individuals were sorted by year-class 

440 (shown on the right) and then by assigned genotype (shown on the left).  C) Counts of genotypes of the 

441 chromosomal polymorphism based on manual genotyping.

442

443 It is difficult to distinguish between a deletion and a chromosomal fusion in these analyses and 

444 this may represent a fusion instead of a deletion.  Previous research support chromosomal variants in 

445 pink salmon (110) and a species specific fusion of this chromosome (66), but further research will be 

446 needed to confirm this hypothesis.  From these analyses, many highly divergent regions of the genome 

447 were identified, either from selection or from genetic isolation/population dynamics.  The largest 

448 reservoirs of divergence between odd and even-year classes appears to be associated with centromeres, 

449 but not exclusively and uncommonly for regions putatively under selection (Table 3).

450

451 Sex determination and sdY
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452 The sex-determination gene in salmonids, sdY (111), was located on a ~110 kbp contig in the 

453 pink salmon odd-year genome assembly (NCBI accession: JADWMN010014055.1) and on a contig 

454 ~367 kbp that was placed onto a chromosome in the even-year genome assembly.   The sdY gene can 

455 be placed at one of the ends of LG20_El14.2 by using genome-wide association with sex as the trait of 

456 interest, Hi-C contact data (even-year genome), and synteny with the rainbow trout Y-chromosome and 

457 chromosome 29 (an autosome) of the coho salmon (Fig 7A, S1 and S3 Figs.).  LG20_El14.2, has the 

458 reverse orientation in the odd-year assembly compared to the genetic map (Fig 1), but was corrected to 

459 have the same orientation in the even-year assembly.

460

461 Fig 7. The location and counts of the sex-determining gene, sdY, in pink salmon.  A) A genome-

462 wide association analysis with sex as the phenotype under investigation shown as a Manhattan plot.  

463 The putative sex-determining region is indicated with an arrow.  B) A scatterplot with the average 

464 coverage of the variants across the genome on the x-axis for all the pink salmon, and the estimated sdY 

465 count on the y-axis (sdY has previously been identified as the sex-determining gene in most salmonids).  

466 The different colour points represent different year-classes and sdY haplotypes.

467

468 In both genome assemblies there is only one copy of the sdY gene, confirmed with a BLAST 

469 alignment of a sdY gene available in the NCBI database (KU556848.1) to the respective assemblies.  

470 From a self-alignment of the sdY-containing contig, the majority of this contig is highly repetitive, > 90 

471 kbp out of ~110 kbp.  From the alignment of the sdY-containing region in pink salmon to the coho 

472 salmon chromosome 29, only a small portion of the Y-chromosome appears to be unique to the Y-

473 chromosome (S3 Fig.).  Genotypes were called for the majority of this region for males and females, 
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474 and the main difference related to sex was that all females had large runs of homozygosity while many 

475 males had large runs of heterozygosity (S4 Fig, S1 File). 

476 From previous research (112,113), a pseudo growth hormone 2 gene was shown to be tightly 

477 linked to sex-determination in pink salmon.  Four tandem duplicates of this gene (NCBI: DQ460711.1) 

478 were identified on the same contig in the even-year genome assembly, but only two copies were found 

479 in the odd-year genome assembly on separate contigs (S1 File).  As these contigs were not mapped to a 

480 chromosomal position, it is likely that parts of the Y-chromosome specific region remain incomplete in 

481 these two assemblies.  

482 There were two sdY haplotypes (variants found in non-coding DNA) observed in both odd and 

483 even male pink salmon (Fig 7B, S1 File).  Additionally, some males possessed multiple copies of the 

484 sdY gene (Fig 7B).  The CGGA sdY haplotype was only identified in a single odd-year male pink 

485 salmon, while the TTAC haplotype was evenly distributed between year-classes (S1 File).  

486 Based on manual inspection of the genotypes, long stretches of heterozygosity were observed 

487 near the sdY gene in some males, but not in others.  In males with the TTAC sdY haplotype, there were 

488 extended or short runs of heterozygosity evenly distributed between year-classes (S1 File).  Even-year 

489 males with the TTAC sdY haplotype and a short run of heterozygosity were more likely to have 

490 multiple copies of the sdY gene (n=4, average=2.7) than the same group with long runs of 

491 heterozygosity (n=4, average=0.9, p=0.017 with one-tailed, unpaired t-test).  Any individuals with the 

492 CGGA sdY haplotype did not have stretches of heterozygosity near the putative location of sdY.  One 

493 hypothesis to explain these results is that individuals with the CGGA sdY haplotype have an alternative 

494 sex chromosome. 

495
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496 Discussion

497 Population structure

498 Similar to previous studies (23,54), pink salmon population structure divergence was found at 

499 the whole-genome level to be greater between year-classes rather than based on geography.  Shared 

500 allele, DAPC, and Admixture analyses point to a clear delineation of odd and even lineages, with the 

501 exception of the only sample from Japan.  Further sampling will need to be performed to provide an 

502 improved picture of the diversity of this species at the whole-genome level within year-class and across 

503 their Pacific Rim distribution.  In British Columbia, however, the even-year lineage appeared to be 

504 more homogeneous than the odd-year lineage based on the admixture analysis and several population 

505 metrics such as nucleotide diversity.  A similar result was previously observed with microsatellite (15) 

506 and SNP markers (23).

507 Divergence between lineages was also revealed by whole mitochondrial sequences.  There were 

508 21 unique mitochondria genotypes among the 61 individuals sampled, and only one of these haplotypes 

509 was shared between lineages.  While the number of unique haplotypes was the same between lineages, 

510 most of the even-year class haplotypes (8 out of 10) were similar in sequence.  The two major 

511 haplotypes seen in the even-year class were consistent with the Alaskan A and AA haplotypes seen in 

512 Churikov and Gharrett (2002) (33), as were the numerous and more distantly related odd-year 

513 haplotypes.  

514 The low nucleotide diversity of mitochondrial haplotype networks and the increase of rare 

515 haplotypes have led previous studies to conclude that pink salmon (with some local exceptions) have 

516 undergone a bottleneck during the Pleistocene interglacial period and rapid expansion since the last 

517 glacial maximum or earlier (33,34,114).  The interconnected mitochondrial networks in these studies 
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518 have inner shared haplotypes between year-classes.  Churikov and Gharrett (2002) suggested that these 

519 observations supported a model where a year-class might go extinct and an alternate year-class would 

520 then replace that population rather than continued gene flow between year-classes that would be 

521 necessary to otherwise explain the shared haplotypes (incomplete lineage sorting was tested) (33).  The 

522 mitochondrial network seen in this study is consistent with that hypothesis.  An alternative hypothesis 

523 is that environmental factors influence maturation timing and the strict two year life-cycle of pink 

524 salmon, and gene flow between year-classes only occurs when environmental conditions favour 

525 changes to the two year life-cycle, as that seen in the introduction of pink salmon to the Great Lakes 

526 (7,35,36).

527 Estimates of divergence based on mitochondrial sequences suggest that odd and even-year 

528 lineages (from East Asia and Alaska) are relatively recent for pink salmon as a species (generally less 

529 than 1 million years ago) and divergence likely began during the Pleistocene interglacial period or later 

530 (22,33,34).  If the two-year life-cycle is environmentally influenced, these estimates could be distorted 

531 by phases of gene-flow and would suggest that the interglaciation period was the last major period of 

532 gene-flow between odd and even-year classes (but does not necessarily mean that was when the strict 

533 two year life-cycle evolved).

534 It has previously been reported that the odd-year lineage of pink salmon has higher levels of 

535 heterozygosity, private alleles, and allelic richness (23,54).  A similar trend was observed in this study 

536 with the heterozygosity ratio, heterozygous genotypes per kbp, private alleles, and other metrics 

537 assessing nucleotide diversity.  Several factors could help explain the reduced levels of nucleotide 

538 diversity seen in the sampled even-year populations.  Tarpey et al. (2018) suggested three possibilities, 

539 1) the odd-year lineage was older and the even lineage was derived from the odd-year lineage, 2) there 

540 was a past reduction in even-year lineage(s), and 3) genetic variation was lost during adaptation (23).  
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541 Further sampling will be required to understand if this phenomenon is seen in all even-year populations 

542 (especially as lower heterozygosity in the even-year lineage is not universally supported, e.g. (20)).  

543 This information is important to interpret which hypothesis is better supported or if another model is 

544 better suited (e.g., extirpated lineage replaced by alternate year or that recent population demographics 

545 are more important).

546

547 Fst peaks between odd and even-year lineages

548 A single major chromosomal polymorphism (either a fusion or deletion) was identified 

549 proximal to a centromere on LG15_El12.1-15.1.  This region was characterized by ~4 Mbp runs of 

550 homozygosity/heterozygosity.  This region was identified from an Fst analysis because nearly the entire 

551 region was fixed in the even-year lineage, but appeared to segregate as a single locus in Hardy-

552 Weinberg equilibrium in the odd-year lineage.

553 Interestingly, pink salmon runs of homozygosity/heterozygosity were common at centromeres 

554 rather than an effect of chromosomal polymorphisms.  Six other major runs of 

555 homozygosity/heterozygosity were also located near centromeres and they differed between lineages.  

556 All of these Fst peaks extend for at least 1 Mbp.  It is expected that regions with reduced 

557 recombination, such as centromeres, will have increased runs of homozygosity and reduced genetic 

558 diversity (reviewed in (115)).  This may help explain why there are long runs of homozygosity at 

559 centromeres, but not why there are differences between lineages at these loci.  Genetic drift or selection 

560 such as centromere drive would also need to be considered.

561 The centromere drive hypothesis posits that a centromere can be retained in a female gamete 

562 more often than an alternative centromere during meiosis due to an advantageous DNA sequence 
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563 mutation at the centromere or from mutations in centromere associated proteins (reviewed in (116–

564 118)).  In populations that become isolated, the competition between centromere sequences can quickly 

565 drive differentiation at these regions between the populations and result in hybrid defects should they 

566 come into contact again (117).  These observations reveal that the pink salmon lineages may be at a 

567 point where speciation is a likely outcome as these large centromere differences could cause hybrid 

568 defects.  In medaka, genomic diversity at non-acrocentric repeats in centromeres were associated with 

569 speciation (119).

570 The centromere drive hypothesis may further shed light on the fixation of the Fst peak on 

571 LG15_ El12.1-15.1.  Robertsonian fusions (assuming that the Fst peak on LG15_El12.1-15.1 is indeed 

572 associated with a fusion rather than a deletion) can generate centromeres that are preferentially able to 

573 segregate to the egg during female meiosis (118).  This could help drive the fusion to fixation in a 

574 population.  Alternatively, if the telocentric chromosomes instead of the fused metacentric chromosome 

575 had more effective centromeres, the telocentric chromosomes would become fixed.  Further studies 

576 will be needed to confirm if there is indeed a fusion instead of a deletion and that the fusion leads to 

577 fixation by centromere drive.

578

579 Genomic regions putatively under selection

580 A large component of the genetic and phenotypic diversity between pink salmon year-classes 

581 likely originates from genetic drift as there is little evidence for gene flow between lineages.  However, 

582 in addition to genetic drift, these lineages may experience different selective pressures even if they 

583 occupy the same streams.  As mentioned in the Introduction, population density between lineages is 

584 often different and this can generate different ecological environments.  EigenGWAS and Fst analyses 

585 were used to identify regions of the genome potentially responsive to these environmental differences 
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586 between pink salmon year-classes.  Candidate genes under selection were organized into three broad 

587 categories (immune system, organ development/maintenance, and behavior), and each is discussed 

588 below.

589 Immune system

590 Variation in immune related genes is a common phenomenon between salmonid populations 

591 (e.g., (77,120,121)).  Between odd and even-year pink salmon, five eigenGWAS peaks were identified 

592 near or in genes with immune related functions.  These include the H-2 class II histocompatibility 

593 antigen, A-U alpha chain (H2-Aa) (122–126), B-cell receptor CD22 (CD22) (127,128), polh 

594 polymerase (DNA directed), eta (POLH) (129–133), AT-rich interactive domain-containing protein 3A 

595 (arid3a) (134,135), and purine nucleoside phosphorylase (PNP) (136–140).

596 Several factors could influence why these immune related genes might be under selection 

597 between odd-year and even-year populations of pink salmon.  For example, altered migration patterns 

598 (reviewed in (141,142)), increased pathogen loads between year classes due to increased density 

599 (reviewed in (142,143)), and increased physiological stress from competition and increased number of 

600 predators during years with larger returns (e.g., (142)) could all influence the differences observed in 

601 immune related genes.  Further investigations into the nature of these genes in pink salmon may 

602 uncover the environmental factors and selective pressures relevant to the evolutionary history of these 

603 pink salmon lineages.

604 Organ development/maintenance

605 Salmon go through nutritional and behavioural changes that require organ-level alterations and 

606 maintenance throughout their life-cycle.  This can be observed in developing salmon that transition 

607 from plankton to other fish as food sources.  In the eye, this transition requires the development of new 
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608 functionality such as night vision to chase prey.  One example of such a transition is the change of UV 

609 opsins observed in hatched Pacific salmon to blue later in life by opsin changeover (144,145).  

610 Variation in vision related genes have previously been observed between sockeye salmon 

611 populations (77).  In Atlantic salmon, six6, a gene related to eye development, daylight vision 

612 (146,147), and fertility (148) was also found to be associated with age at maturity (149,150) and later 

613 with stomach fullness during migration (151).  These studies suggest that genetic variation influencing 

614 organ development, transition, or maintenance are important components influencing salmonid 

615 evolution.  

616 Similar to six6 in Atlantic salmon, Protein tyrosine phosphatase receptor type J (PTPRJ) (152), 

617 histidine N-acetlytransferase (hisat) (153–160), and microtubule-associated protein 9 (MAP9 or ASAP) 

618 (161) all appear to play roles in proper vision.  The variation in these genes may represent differences 

619 in selective pressure between odd and even-years and could be driven by the different population 

620 dynamics observed between odd and even-year populations.

621 Cystathionine gamma-lyase (CTH) may have, among other roles, a function in hearing (162–

622 164), and could have been influenced by similar population dynamics as those suggested for vision-

623 related genes.  Multidrug and toxin extrusion protein 2 gene (SLC47A2) is not related to a specific 

624 organ, though it may have a special role in the blood-brain barrier (165,166).  Instead, it may help in 

625 removing toxins, which might accumulate in more dense and stressed populations.

626 Behaviour

627 Fish display consistent behavioural differences from each other, analogous to human 

628 personalities (167).  Personality variation in a population may represent adaptive solutions to different 

629 environmental pressures (167).  In high density populations, such as the odd-year populations, more 

630 aggressive behaviours during high-density spawning conditions (40) could result in more offspring, but 
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631 might waste energy in lower-density conditions.  Associations to genes related to behaviour have 

632 previously been identified among sockeye salmon populations (77), and under selection between wild 

633 and farmed Atlantic salmon (168).  In the present study, protein-methionine sulfoxide oxidase mical2b 

634 (mical2b) (169,170) and cell division control protein 42 homolog (CDC42) (171), both putative genes 

635 found in the eigenGWAS analysis between even and odd-year pink salmon, have previously been 

636 found to be associated with anxiety/reactiveness and schizophrenia, respectively.  

637 Another gene, we were not able to unambiguously identify as a candidate gene from other 

638 nearby genes, on LG15_El08.2-20.1 is worth noting because of its association with behaviour.  The 

639 gene, 5-hydroxytryptamine receptor 2B (5-HT2B and also known as serotonin receptor 2B), is 

640 associated with impulsivity and impulsive aggression in humans and mice (172,173).  This region of 

641 the genome was fixed in the even-year class pink salmon where population density is often lower (in 

642 many North American populations, but not necessarily in all of the rivers in this study) and aggression 

643 might be maladaptive.  These associations suggest that population dynamics might influence the 

644 frequency of certain personality traits in pink salmon populations, with density as a possible driving 

645 force.

646

647 Sex determination and sdY

648 With the discovery of a novel sex-determining gene in salmonids (111), and previously with 

649 closely linked genetic markers (174,175) researchers have been able to identify instances of sex-

650 determination switching between chromosomes in salmonids (176–180).  As suggested in Yano et al. 

651 (2013), Y-chromosome switching may act in response to (expected) degeneration of the Y-
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652 chromosome due to mutation accumulation from reduced recombination (181).  In pink salmon, sdY 

653 was located on LG20_El14.2, but we suggest there may be an alternative location as well.

654 Several pieces of information indicate that LG20_El14.2 may not be the only location of the 

655 sex-determining gene, sdY, in the pink salmon genome.  For instance, there were two sdY haplotypes 

656 and several males had multiple copies of this gene.  Also, all males with the CGGA sdY haplotype had 

657 a run of homozygosity similar to most females on the LG20_El14.2 chromosome near the putative 

658 location of sdY.  It is expected that near the sdY gene, recombination is reduced and mutations would 

659 accumulate between the X and Y-chromosomes as a result of reduced recombination.  Females tend to 

660 have long runs of homozygous genotypes where recombination is reduced and males tend to have long 

661 stretches of heterozygous genotypes when reads from the X and Y-chromosome align at the same 

662 location (77).  Since the males with the CGGA sdY haplotype have long runs of homozygous genotypes 

663 at the LG20_El14.2 region, as most of the females do, we suggest that the CGGA sdY is at another 

664 location in the genome in these individuals.  We were unable to identify a precise putative alternative 

665 location because there were too few individuals with the CGGA sdY to obtain a signal from a genome 

666 wide association analysis, however, the potential discovery of another salmon species with alternative 

667 sdY locations, further supports the hypothesis of Y-chromosome switching put forth by Yano et al. 

668 (2013) for salmonids (181).

669

670 Conclusions

671 We generated reference genome assemblies for both pink salmon lineages, RNA-seq data for 

672 genome annotation, and whole genome re-sequencing data to expand the available resources for this 

673 commercially important and evolutionarily interesting species.  The coupled whole genome re-
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674 sequencing study of 61 individuals from several streams in British Columbia (and one from Japan) 

675 helped us to characterize regions of the genome that have diverged between the temporally isolated 

676 groups.  The amount and degree of lineage-specific genomic variation suggests that there is little gene-

677 flow between the year-classes, but the shared variants such as whole mitochondrial and sdY haplotypes 

678 suggests that there has been enough recent gene-flow or alternative year-class replacement to maintain 

679 these similarities.  Divergence at centromeres between the two lineages may be a consequence of 

680 centromere drive (or genetic drift and reduced recombination) and represent early stages of speciation.  

681 Genes related to the immune system, organ development/maintenance, and behaviour were divergent 

682 between odd and even-year classes as well.  These example lineage defining differences offer us a 

683 glimpse into the evolutionary landscape and the selective pressures or demographic histories that may 

684 have driven the divergence in these genes and the differences between odd and even lineages of pink 

685 salmon.
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697 Supporting information

698 S1 File. Sample information.  The sample tab has metadata about each sample, including information 

699 on sex, river, and year-class (latitude and longitude locations are approximate).  The StatsAllFilters 
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700 shows metrics from the .vcf file after filtering for LD (see methods).  Stats1stFilter has the same 

701 information, but from the .vcf file after only preliminary filtering (see methods).  The eigenGWAS tab 

702 contains the DAPC values used in the eigenGWAS analysis (see methods).  The Mitochondrion tab 

703 shows metadata used to generate the mitochondria figures.  The GPS tab shows the coordinates used in 

704 the sample map.  The Admixture tab has the values output from the admixture analysis.  For each tab 

705 with LG, these sheets have manually genotyped areas and calculations of HWE.  The PrivateAlleles tab 

706 has metrics output from Stacks.  The SharedAlleles tab has a matrix of shared alleles between 

707 individuals in long format and statistics on the right.  The Y-Chrom tab has information about the sdY 

708 haplotypes.  The GWAS tab has metadata used in the GWAS analysis.  The GHp tab displays the 

709 alignments of the growth hormone pseudogene and sdY gene to the odd and even genome.  The even 

710 genome placements will change after processing by NCBI.

711 S1 Fig. Chromosomal polymorphism at centromere on LG15_El08.2-20.1.  Depiction of 

712 LG15_El08.2-20.1 and a chromosomal polymorphism, either a deletion or evidence of a chromosomal 

713 fusion.  At the top, LG15_El08.2-20.1 is depicted with the distance and location of the purposed 

714 polymorphism.  Scaffolds/contigs that comprise the region surrounding the polymorphism are shown 

715 below the chromosomal depiction, with a blue arrow showing where multiple small contigs were 

716 placed.  Below the scaffolds, synteny with rainbow trout and Northern pike is shown based on 

717 CHROMEISTER (106) alignments.  Finally, ONT/Nanopore reads that were used to generate the 

718 genome assemblies were aligned back to the odd-year genome and visualized with IGV.  Reads in the 

719 odd-year individual are shown flanking the deletion (the display was split because the region was too 

720 large to adequately visualize otherwise).

721 S2 Fig. Sex determining region of the even-year pink salmon compared to the rainbow trout Y-

722 chromosome.  A) A CHROMEISTER (106) dotplot between the Y-specific portion (top) and shared 
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723 portion (bottom) of LG20_El14.2 of the even-year pink salmon genome assembly and the rainbow 

724 trout Y-chromosome (63).  The location of the sdY gene is shown based on the position in the rainbow 

725 trout chromosome and the genes annotated by NCBI are shown on the x-axis at the bottom.  B) A plot 

726 of the Hi-C contact map of the even-year pink salmon genome assembly produced by Juicebox (64).  

727 There are multiple inversions between the pink salmon and rainbow trout genome, but the contact map 

728 supports the order and orientation for the pink salmon genome assembly and these could represent 

729 actual inversions between species instead of assembly errors.

730 S3 Fig. Sex determining region of the even-year pink salmon compared to the coho salmon 

731 chromosome 29 autosome.  A) A CHROMEISTER (106) dotplot between the Y-specific portion (top) 

732 and shared portion (bottom) of LG20_El14.2 of the even-year pink salmon genome assembly and coho 

733 salmon chromosome 29.  B) A plot of the Hi-C contact map of the even-year pink salmon genome 

734 assembly produced by Juicebox (64).  There are multiple inversions between the pink salmon and coho 

735 salmon genome, but the contact map supports the order and orientation for the pink salmon genome 

736 assembly and these could represent actual inversions between species instead of assembly errors.

737 S4 Fig. Sex determining region of the even-year pink salmon with genotype information.  

738 Genotypes are shown from an IGV (107) screenshot for the 61 samples of pink salmon for the region 

739 with the sdY sex-determining gene.  The top portion shows the distance of the Y-specific genome 

740 region (~3.2 Mbp) and the contig/scaffold boundaries that make up this region are shown as vertical 

741 lines.  Below the distances, allele frequencies for each locus are shown, and below that individual 

742 genotypes.  The x-axis of the genotypes represent loci and each line on the Y-axis represents an 

743 individual pink salmon.  The dark-blue colour is a homozygous reference genotype, the light-blue 

744 colour a heterozygous genotype, and the green genotype is for a homozygous alternative locus.  There 

745 are large stretches (1-2 Mbp) of heterozygosity and homozygosity based on sex.  Please note that there 
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746 is a possible inversion (from a mis-assembly) in this region as the runs of homozygosity and 

747 heterozygosity are broken by a section from ~600 kbp and ~1,300 kbp.
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