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22 Abstract

23 Common marmosets have been widely used in biomedical research for years.

24 Nutritional control is an important factor in managing their health, and insect intake would be
25  beneficial for that purpose because common marmosets frequently feed on insects in natural
26  habitats. Here, we examined the effect of enhanced insect feeding on the gut by analysing the
27  faecal microbiota and transcripts of captive marmosets. A family consisting of six marmosets
28  was divided into two groups. During the seven-day intervention period, one group (the insect
29  feeding group, or Group IF) was fed one cricket and one giant mealworm per marmoset per day,
30  while the other (the control group, or Group C) was not fed these insects. RNA was extracted
31  from faecal samples to evaluate the ecology and transcripts of the microbiota, which were then
32  compared among time points before (Pre), immediately after (Post), and two weeks after

33  intervention (After) by total RNA sequencing. The gut microbiota of marmosets showed

34  Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria as dominant phyla. Linear

35  discriminant analysis showed differential characteristics of microbiota with and without insect
36  feeding treatment. Further analysis of differentially expressed genes revealed increases and

37  decreases in Bacteroidetes and Firmicutes, respectively, corresponding to the availability of
38  insects under both Post and After conditions. Significant changes specific to insect feeding were

39  also detected within the transcriptome, some of which were synchronized with the fluctuations
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in the microbiota, suggesting a functional correlation or interaction between the two. The rapid

changes in the microbiota and transcripts may be deeply connected to the original microbiota

community shaped by marmoset feeding ecology in the wild. The results were informative for

identifying the physiological impact of insect feeding to produce a better food regimen and for

detecting transcripts that are currently unidentifiable.
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45 Introduction

46 After successful confirmation of the germline transmission of transgenes [1], common
47  marmosets (Callithrix jacchus) have been increasingly used in various medical and biological
48  areas [2]. Breeding methods for captive marmosets have been well established [3, 4, 5], while
49  some health problems, such as diarrhoea and wasting, have been observed in many laboratories
50  [6]. Marmoset wasting syndrome (MWS, or wasting marmoset syndrome, WMS) is a well-known
51  health problem endemic to captive marmoset colonies and has been documented for several
52 decades [7, 8]. The syndrome consists of various symptoms, but diarrhoea, anorexia, and anaemia
53  are frequently observed [9, 10]. Several causes have been suggested to explain the variable
54  symptoms, and malnutrition is thought to be one of the important factors for the aetiology of
55  MWS |6, 7].

56 In the wild, common marmosets are known to maintain highly exudativorous (i.e.,
57  highly dependent on tree exudates, such as gum) diets [11], but they also feed on a variety of food
58 items, such as insects, fruits, and small animals [12, 13]. Among them, insects are important
59  nutritional resources because they account for 30-70% of their diet [3]. They eat various insects,
60  such as grasshoppers, crickets, cicadas, and cockroaches [12]. Guidelines [3, 4] recommend
61  providing captive marmosets with complete commercial food, insects and produce (vegetables

62  and fruits). Although insects seem to have important nutritional roles in their health, the unique
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63  impact of insects on the physiological functions of marmosets has not been clarified. In the present

64  study, we aimed to determine the effect of insect feeding on captive marmosets by analysing the

65  microbiota and transcripts extracted from faecal samples.

66 The microbiota of common marmosets has been documented in several captive groups.

67  One study [14] that compared the microbiota of faecal samples from individuals with and without

68  WMS revealed differences in the abundance of only anaerobic, not aerobic, bacteria. The numbers

69  of lactobacilli were lower in the WMS group than in the non-WMS group, whereas those of

70  Bacteroides-Fusobacteria and Clostridia were higher in the WMS group than in the non-WMS

71  group. The group with a higher rate of chronic diarrhoea had a lower proportion of

72 Bifidobacterium than the other group, but there was no significant difference between the groups

73  in terms of the Shannon diversity (H”) index [15]. Because daily feeding regimens vary at each

74  facility, the microbiota should vary accordingly. However, there are still insufficient data to

75  characterize the gut microbiota distribution of captive common marmosets. In the present study,

76  we aimed to obtain basic data on the microbiota of marmosets by a total RNA sequencing (total

77  RNA-seq) analysis method [16].

78 The total RNA-seq approach can be used to simultaneously describe microbial ecology

79  and the transcriptome. It has been widely used in studies of marine ecology [17, 18], soil microbes

80 [19, 20] and animal gut microbiota [21, 22] to obtain information from all domains of microbial
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81 inhabitants, including eucaryotes, archaea, and bacteria, without a strong PCR bias. Additionally,

82  this approach can describe the gene expression patterns among samples, similar to standard

83  transcriptome analyses, by using short-read alignment tools [23, 24, 25]. Therefore, we employed

84  total RNA-seq to describe the activities of the whole microbial community in marmoset guts

85  under our experimental conditions.

86 In the present study, we evaluated the effects of enhanced insect feeding for seven days

87  on the gut microbiota and transcriptome by comparing groups with and without insect feeding.

88  The main advantage of analysing both microbiota and transcripts simultaneously is to understand

89  functional characteristics that would be attributable to ecological changes in the marmoset gut

90  microbiota. The weekly weight and daily faecal scores were recorded to monitor the general

91  health status throughout the experimental period. RNA was extracted from faecal samples from

92  different timepoints (before (Pre), immediately after (Post), and after (After) the experimental

93  intervention), and DNA was then sequenced and annotated with a database for taxonomic

94  identification. In human subjects, the microbiota was reported to dramatically modify microbiota

95  diversity after a change in diet for five days [26]. Thus, insect feeding is thought to have a

96  substantial impact on the physiological states of marmosets, who preferentially eat insects in wild

97  habitats [12].

98
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99 Materials and Methods
100 Subjects

101 Six healthy adult common marmosets (Callithrix jacchus) from a family consisting of
102  one mother (9 y) and five offspring (one male and three females, aged 3-4 y) were used in this
103  study. The mean weight was 460 g, with a range from 374 g to 499 g. The mother was obtained
104  from a company (Clea, Tokyo, Japan), and the offspring were laboratory born and raised by
105  their own parents. They were living in a cage (w 70 x d 70 x h 180 cm) vertically separated by a
106  metal mesh plate to prevent fighting; thus, they were physically separated but visually,

107  acoustically, and olfactorily accessible to each other. The cage was placed in a breeding room
108  ona 12-hour light-dark cycle and maintained at 28° and 50% of the temperature and humidity,
109  respectively. According to this housing condition, the marmosets were divided into two groups
110  that differed in terms of the amount of insect intake per week, as described below. After the
111  study finished, the animals were not sacrificed, as the study did not include examination of

112 postmortem specimens.

113 Diets

114 The marmosets were fed commercially available pelleted foods (CMS-1M, Clea,

115  Tokyo, Japan; SPS, Oriental Yeast, Tokyo, Japan) daily ad libitum in the morning and

116  vegetables and fruits in the afternoon, in addition to a variety of food items such as yogurt,
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boiled eggs, acacia gum, cottage cheese, and small dried sardines. Different probiotic
preparations (Bifidobacterium bifidum (Biofermine), Biofermin Seiyaku, Hyogo, Japan;
Bifidobacterium animalis subsp. lactis (LKM512), Meito, Tokyo, Japan; Bifidobacterium
longum and Bifidobacterium infantis (LAC-B), Kowa, Aichi, Japan) were added to the meals or
given orally (1/2 to 1 tablet per head) when the animals had softened faeces or diarrhoea. Until
the beginning of the current study, frozen house crickets (Acheta domestica), which were
defrosted at the time of feeding, were given to all animals in the colony once per week (usually
on Wednesday).
Materials

For the insect feeding treatment, we used two different species, a house cricket
(Tsukiyono farm, Gunma, Japan) and a giant mealworm (Zophobas atratus, Sagaraya,
Kumamoto, Japan), which were commercially available and were kept frozen when they were
delivered to the laboratory. They were brought back to room temperature to thaw just before
feeding. These species have been reported to have similar amounts of protein, while the giant
mealworm is much fattier than the cricket with higher calories [27].
Procedures

Experimental design
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The family was divided into two experimental groups, each with three subjects. One group
(Group IF, consisting of three offspring females) was fed one cricket and one giant mealworm
per day for seven continuous days. The other group (Group C, consisting of the mother, one
offspring female, and one offspring male) was fed one cricket per week in the middle of the
week, which was the regular food regimen in our colony. These insects were fed manually by
the caretakers to each subject during the daytime.

There were three points of faecal sampling in the study: Pre, Post, and After. Pre
samples were collected just before the one-week insect feeding period in the experimental
group. Post samples were collected the day after the end of insect feeding, and After samples
were collected two weeks after the insect feeding treatment.

Sample preservation

To analyse the microbiota and the transcripts of the faeces from the marmosets,
samples were collected from the clean stainless floor of the breeding cages within 30 minutes of
defecation early in the morning (8:30-10:30 AM) when they usually frequently defecated. Three
pieces of faeces were collected from each group, and the faeces were immediately put into 10
ml RNAlater (Thermo Fischer Scientific, Waltham, MA, US) and manually mixed well with a
sterile spatula to homogenize them in the liquid. Using the same procedure, three tubes

consisting of three faecal pieces in 10 ml RNAlater were prepared for each group at each

10
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sampling point. The tubes were allowed to stand for 24 hours at room temperature. Then, they
were stored at -80°C in a refrigerator until cDNA construction.
Faecal and insect RNA extraction, sequencing, and taxonomic
annotation

Faecal RNA was purified by using the RNeasy PowerMicrobiota kit (Qiagen, Hilden,
Germany). The kit was operated with an automatic system, QIAcube (Qiagen, Hilden, Germany),
according to the protocol
(RNA_RNeasyPowerMicrobiota_StoolOrBiosolid IRTwithDNAse V1.qpf) provided by the
manufacturer. The concentration of RNA was measured with a Qubit 2.0 Fluorometer (Thermo
Fischer Scientific, Waltham, MA, USA). For library construction, 10 ng of obtained RNA was
processed using the SMARTer Stranded RNA-seq kit for Illumina (Takara Bio Inc., Shiga,
Japan) according to the manufacturer’s instructions. After the concentration of DNA was
evaluated by qPCR using the KAPA Library Quantification kit (KAPA Biosystems,
Wilmington, MA, USA), the libraries were loaded onto an Illumina MiSeq sequencer and then
sequenced using MiSeq Reagent kits v2 500 cycles (Illumina, San Diego, CA, USA) to obtain
250 bp paired-end reads. The nucleotide sequence data reported are available in the
DDBJ/EMBL/GenBank databases under the accession numbers DRA008965 and DRA008966

for the marmoset and insect microbiota, respectively.

11
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We used a mapping-based total RNA-seq pipelines [16] to analyse both rRNA and

mRNA profiles to identify the taxonomy of the microbiota and to search for their functions.

The obtained raw paired-end reads were trimmed by using Trimmomatic-0.35 [28] with seed

mismatch settings: palindrome clip: simple clip threshold = 5:30:7, minimum read length of 100

bp, head crop of 6 bp and a specification to remove SMARTer kit-specific adaptor sequences.

Then, trimmed paired-end reads were directly mapped to the SSU rRNA database SILVA

release 128 rep-set data with 99% identity by Bowtie2 [23] with local mode default condition as

a “best-hit” analysis. The data were transformed to BAM format for expression analysis.

Mapped reads were counted by using eXpress [29] to obtain counting data against the SSU

rRNA sequence database. Count data were combined with taxonomy data provided from

SILVA release 128 (taxonomy all, 99% identity, taxonomy 7 levels.txt) by R [30].

To analyse the metatranscriptome, paired-end reads were assembled by using the

Trinity v2.4.0 program package [31] with paired-end mode default settings. Open reading

frames (ORFs) and the encoded protein sequences were predicted using Transdecoder.

LongORF script in the TransDecoder v.3.0.0 program package (https://transdecoder.github.io/).

The ORF data (longest_orfs.cds) were used as the reference database for read mapping.

Mapping was performed as described above for SSU rRNA analysis. Functional annotation of

the identified ORFs was conducted with the Trinotate-3.0.1 program package [32]

12
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(https://trinotate.github.io/). The obtained functional annotations were combined with read
count data by R.

The obtained read count data were normalized according to Love et al. [33] using the
TCC package in R. Additionally, SSU rRNA reads or ORFs with less than 10 mapped reads in
total from all samples in the original count data were excluded by R.

Data analysis

The general health condition of the subjects was evaluated by weight and faecal score.
The weight was measured once during each period of the experiment (i.e., Pre, Post, and After)
as a part of the weekly physical examination performed by our laboratory. The faecal scores
were measured daily by visual inspection of the faecal shape based on three levels (partially
adopted from [34]): 3 corresponded to normal faeces (solid, with little liquid), 2 corresponded to
loose faeces (globules with liquid but still formed), and 1 corresponded to diarrhoea (mostly
globules, a large amount of liquid, and partially muddy).

The relative abundance of the communities with normalized read counts was analysed
and visualized at the phylum and genus levels according to the groups (C and IF) and timing of
the sampling (Pre, Post, and After). To evaluate the diversity/similarity of the microbes in the
faecal samples, the Shannon and Chaol indices were calculated and statistically analysed by

using the RStudio software environment (ver. 1.3.1093 [35]). To see the similarity relationships

13
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among each condition of the groups in microbiota and transcripts, dendrograms were created by

the clustering function in RStudio with the unweighted pair group method with arithmetic

average (UPGMA) method of agglomeration using the Bray-Curtis index. For visualization of

the distance of similarity among the conditions in spaces, nonmetric multidimensional scaling

(nMDS) was conducted using the Bray-Curtis index, and the differences were statistically

analysed by permutational multivariate analysis of variance (PERMANOVA).

To visualize the phylogenetic relationships of the microbes depending on the

experimental conditions, we used the LEfSe program package [36] to conduct linear

discriminant analysis (LDA) and to make a cladogram by following the instructions published

online (https://huttenhower.sph.harvard.edu/galaxy/). For LDA, the LEfSe program was run

with the threshold of 2.0 and an alpha value of 0.05 for both ANOVA (Kruskal-Wallis) and the

Wilcoxon test.

To evaluate the changes in gene expression of microbiota and transcripts caused by the

insect feeding treatment, differentially expressed genes (DEGs) were analysed using a pipeline

(“EEE-baySeq”, 37), with a false discovery rate of 5%. To obtain DEGs, the datasets with

groups (C and IF) and conditions (Pre, Post, and After) were divided into six groups (G1, G2,

G3, G4, G5, and G6). G1, G2, and G3 corresponded to the Pre, Post, and After conditions of

Group C, respectively. G4, G5, and G6 corresponded to those of Group IF. Because G1, G2,

14
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224  G3, and G4 were the conditions in which no insect feeding was executed, while G5 and G6
225  included insect feeding with different timings, any difference observed in G5 and G6 was of
226  most interest in this study. Each group was compared to “others”, which included all conditions
227  except for that group (e.g., G1 vs. others). The analysis also included the comparison among all
228  the categories to find any differences (named “G7”: G1 vs. G2 vs. G3 vs. G4 vs. G5 vs. G6).
229 Thus, eight DEG patterns were obtained involving six categories (no DEG, DEG G1, DEG G2,
230 DEG G3, DEG G4, DEG G5, DEG G6, DEG G7). Then, for the microbes and transcripts

231  associated with with any of the DEG patterns, the direction (i.e., larger or smaller than those of
232 other categories) was determined: G1 > others, G2 > others, G3>others, G4>others, G5>others,
233 G6>others, G1 < others, G2 < others, G3 < others, G4 < others, G5 < others, and G6 < others.
234  For G7, only DEGs where G5 or G6 ranked among the top comparisons (i.e.,

235  G5>G3>G4>G6>G1>G2, for example) were considered for further analysis (G5>anywhere,
236  G5<anywhere, G6>anywhere, and G6<anywhere). To overview the changes among the

237  conditions, microbes with DEGs were presented at the phylum and genus levels. To detect the
238  possible relationships, the microbiota and transcripts with DEGs were combinatorily clustered
239  in each DEG category by using the ComplexHeatmap package in RStudio.

240

241  Results

15
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242  General health condition

243 The faecal scores of the group subjected to the insect feeding treatment (Group IF)
244  decreased (i.e., increase in the frequency of loose stools) in the After condition, as shown by the
245  bars in Fig 1, but this was not statistically significant (¥ (2, 54) = 1.29, p = 0.283). Although the
246  weights of the two groups were significantly different by 2-way ANOVA (F (1, 12)=11.78, p =
247  0.005), they were stable during the whole experimental period, as shown by the lack of

248  significance both among the conditions (¥ (2, 12) = 0.073, p = 0.930) and between the

249  interaction of the group and condition (¥ (2, 12) =0.011, p = 0.999), as shown in the lines in Fig
250 1.

251 <Fig 1 around here >

B Fecal score - C

550 mm Fecal score - IF
~l-Weight - C
- 500
-@-Weght - IF
- 450
- 400

- 350
2

- 300
1 - 250
0 200

Pre Post After

Weight (g)

Fecal score (1-3)

Fig 1. Faecal scores (bars) and weight (lines) during the experimental periods for
Groups C (blue) and IF (red). Error bars show the standard deviation of the mean from
three subjects. The faecal scores were recorded daily, and the weight was recorded

individually once during each period.
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Whole microbiota community of the marmoset gut

The total number of read counts normalized against the SSU rRNA sequences
generated from the 18 faecal samples of the six common marmosets at the Pre, Post, and After
conditions were 355,905.34, with an average of 19,772.52 counts per sample (see Supporting
Information of S1 Table for the normalized count data of the annotated microbes). The
difference in normalized read counts per sample between Groups C and IF was not significant (¢
(16) =-0.16, p = 0.88, mean =+ standard deviation (SD) for Group C: 65.66 + 2.63; Group IF:
66.03 + 6.49).

Fig 2a shows the relative abundance of the microbiota at the phylum level for each
group across the conditions. The phyla accounting for more than 0.5% of the total read count
were listed, and those accounting for less than 0.5% and unable to be assigned to any phylum
were categorized as “others”. Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria
were abundant in every sample of both groups. By observing the same data at the genus level,
with more than 0.5% abundance, as shown in Fig 2b, Veillonellaceae (phylum Firmicutes) and

Bifidobacteriaceae (phylum Actinobacteria) were dominant under all conditions.

<Fig 2 around here>
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Fig 2. Relative abundance of microbes at the phylum (a) and genus (b) levels for
Groups C (left) and IF (right) under the experimental conditions (Pre, Post, and
After).

270

271 Microbial diversity under each condition

272 Shannon and Chaol indices were used to determine the diversity of the microbial communities
273  within the samples of each group, as shown in Fig 3. ANOVA of the Shannon indices after
274  applying the general linear model (GLM) revealed a significant difference among the conditions

275 (Pre, Post, After, F =7.065, p = 0.008) but not between the groups (F =0.292, p = 0.597). Similar
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276  results were obtained using the Chaol index with the GLM (conditions: F=7.092, p = 0.007;
277  groups: F=1.051, p =0.323).

278 <Fig 3 around here>
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Fig 3. Shannon (left) and Chaol (right) indices used to visualize the diversity within
the samples of each group for the three conditions (left for Group C and right for Group
IF in each panel, respectively).
279

280  Similarity of the microbial communities among the conditions

281  To determine the similarities of the microbial communities among the groups, the Bray Curtis
282  index was calculated and used to generate the cluster dendrogram among the conditions of each
283  group (Fig 4a), together with the differentially coloured squares and lines for individual

284  conditions of two groups. For microbiota clustering, the Post conditions of Group IF (yellow

285  solid line squares) were closely agglomerated.
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Fig 4. Cluster dendrograms for microbiota (a) and transcripts (b). Pre, Post, and
After conditions are differentially coloured (sky-blue, yellow, and green), with

dotted and solid lines for Groups C and IF, respectively.

287

288 To spatially visualize the microbiota similarities, nMDS was applied, and the data
289  from each condition were shown in 2D space, as depicted in Fig 5a. To determine the effect of
290  insect feeding, PERMANOVA was performed after dividing the individuals into three groups:

291 (1) no insect feeding (three conditions for Group C and the Pre condition for Group IF), (2) Post
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292 of Group IF, and (3) After of Group IF, and significant differences were found among the three

293  groups (F =3.070, p = 0.005).

294 <Fig 5 around here>
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Fig 5. nMDS of the microbiota (a) and transcripts (b) data under the Pre (circle),
Post (triangle), and After (square) conditions for Group C (red) and IF (blue).
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Phylogenetic characterization of differentially abundant microbiota
with and without insect feeding treatment

To characterize the specific microbes that emerged from the insect feeding treatment,
we used the LEfSe analytical tool (see methods) on the normalized counts at multiple levels of
taxonomy. The histogram in Fig 6a shows the LDA scores above the threshold (2.0) for the
microbiota on various taxonomic levels ranked according to the effect size (alpha = 0.05) for the
treatments with (IF: Post and After for Group IF) and without (NolF: all conditions for Group C
and Pre for Group IF) insect feeding. With IF, 5 taxonomic clades (three from the phylum
Proteobacteria and two from Bacteroidetes) were differentially abundant. With NolF, 8
taxonomic clades were detected by LDA (two from the phylum Actinobacteria, two from
Bacteroidetes, and four from Firmicutes). Fig 6b shows the microbial abundance and taxonomic
clades with differential characteristics for each treatment. The cladogram shows that abundant
bacterial communities characteristic of IF were phylogenetically separatable from those
characteristic of NolF, as depicted by the red and green sectors without overlap.

<Fig 6 around here>
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Fig 6. LEfSe characterization of the dominant microbial taxa according to the treatments
with (IF: Post and After for Group IF) or without (NoIF: all conditions for Group C and Pre
for Group IF) insect feeding. (a) LDA scores, above the threshold 2, of the microbial clades
for each treatment, Insect feeding (red) and No insect feeding (green). (b) Cladogram based
on the ranked list in (a) to visualize the relationships between the treatments and the
phylogenetic relationships among the microbes. Phylogenetic clades are ordered from the centre
of the circle, with narrower to broader taxonomic levels. Diameters of outer circles correspond to
the relative abundance in the microbial community. Red and green points in the circles show
the most abundant classes under the IF and NolF treatments, respectively. Points in light

green show the clades that are not significant.

Differentially expressed genes in microbiota among the conditions

The microbial communities fluctuated even without insect feeding treatment. Thus, to clarify
the microbes specifically changed in Group IF depending on the conditions, the DEGs were
analysed using the community data. Among 300 microbes annotated by the analysis, DEGs
were confirmed for 99 of them. The relative distribution of DEG categories is presented in Fig

7a. Of 99 microbes with DEGs, a total of 21.21% were upregulated in terms of the experimental
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319  conditions (G5>others, G5>anywhere, G6>others, G6>anywhere), whereas a total of 20.20%
320  were downregulated (G5<others, G6<others). No DEGs were found for the G3<>others,
321  GS5<anywhere, and G6<anywhere categories.
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Fig 7. Distribution of DEG categories found in microbiota. (a) Relative distribution of the
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Ninety-nine microbes with DEGs were further classified into phyla. Fig 7b and 7¢

show the microbes showing upregulated and downregulated changes with each DEG category,

respectively. Among the upregulated phyla shown in Fig 7b, the distribution of Bacteroidetes

was different under the Post condition of Group IF (i.e., G5>others and G5>anywhere). On the

other hand, among the downregulated phyla in Fig 7c, Firmicutes showed different distributions

in the same categories.

Fig 8 shows the normalized read counts of the microbes at the phylum level according

to the DEG categories. The left two rows show upregulation, and the right row shows

downregulation. In the case of the Post condition of Group IF (G5), Bacteroidetes appeared in

both upregulated (Fig 8d, 8f) and downregulated (Fig 8k) categories, whereas Firmicutes only

showed downregulated DEGs (Fig 8k). In the case of the After condition of Group IF (G6),

Actinobacteria and Bacteroidetes only showed downregulated DEGs (Fig 81), whereas

Firmicutes and Proteobacteria showed both the upregulated (Fig 8e) and downregulated (Fig

81) categories.

<Fig 8 around here>
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Fig 8. Normalized read counts of the microbes identified by the differentially expressed gene
(DEG) analysis of faecal SSU rRNA at the phylum level. In each panel, the left and the right
three bars show Pre, Post, and After conditions for Group C and Group IF, respectively.
Black arrows in the panels indicate the groups which have DEGs compared with the other
groups. (a-g) Upregulated DEGs, with insect-feeding nonrelevant (a, b, ¢) and insect-feeding
relevant (d, e, f, g) conditions. (h-1) Downregulated DEGs with insect-feeding nonrelevant
(h, i, j) and insect-feeding relevant (k, 1) conditions. No DEG was found under the After
condition in Group C (G3). For f, and g, data for each microbiota were compared with those
of the other groups separately. In other graphs, data for each microbiota were compared

with the total of the other groups.
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To examine the changes according to the conditions (Pre, Post, and After) separately

in the groups, Fig 9 shows the heatmap of the microbes at the genus level (for microbes unable

to be annotated at the genus level, upper taxonomies (i.e., order, family) were assigned) with

DEGs. The blue squares indicate the results relevant to the insect feeding treatment (Post (GS5)

and After (G6) conditions). In the upregulated category of the Post condition (G5>others,

G5>anywhere), the genera Bacteroides, Parabacteroides, Prevotella9 (phylum Bacteroidetes)

and Fusobacterium (Fusobacteria) were listed, whereas in the After condition (G6>others,

Go6>anywhere), the genera Weissella (Firmicutes) and Escherichia-Shigella (Proteobacteria)

were listed as having DEGs. In the downregulated category of the Post condition (G5<others),

the genera Bacteroides (Bacteroidetes), Allisonella, Megamonas, and Weissella (Firmicutes)

were found to have DEGs. In the After condition (G6<others), the genera were Collinsella,

Olsenella (Actinobacteria), Alloprevotella, Parabacteroides (Bacteroidetes), Streptococcus,

Erysipelotrichaceae UCG-004, Oribacterium (Firmicutes), and Sutterella (Proteobacteria).

<Fig 9 around here>
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Fig 9. Heatmap of the SSU rRNA data (genus level) with DEGs. Groups C and IF are

presented on left and right of the panel, respectively. For each group, the upper and lower
parts present the data from upregulated and downregulated genera, respectively. G1: Pre
condition for Group C; G2: Post condition for Group C; G4: Pre condition for Group IF, G5:
Post condition for Group IF; G6: After condition for Group IF; AW: DEGs from any
comparisons among the conditions. G3 is not presented because DEGs were not found under
this condition (After condition of Group C). The heatmap with blue squares on the right

indicates the changes in microbiota in accordance with the experimental treatments (.e., G5
and G6 of Group IF).

358

359 LEfSe (Fig 6) revealed some genera with differential changes relevant to the insect

360  feeding treatment, and thus we could identify the specific microbes of those genera by
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combining the results with the DEG results (i.e., selecting the DEG (G5 and G6) microbes in the

genera found to be treatment-relevant by LEfSe). Fig 10 shows the normalized counts of such

microbes from the genera Bacteroides (phylum Bacteroidetes), Olsenella, (phylum

Actinobacteria) and Oribacterium (phylum Firmicutes). In Bacteroides (Fig 10a and 10b),

there were microbes showing both upregulation and downregulation, but they were all relevant

to the Post condition of Group IF (i.e., G5). On the other hand, the microbes in Oribacterium

and Olsenella showed downregulation relevant to the After condition of Group IF (i.e., G6, Fig

10c and 10d, respectively).

<Fig 10 around here>
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Fig 10. Results overlapped from the LEfSe and DEG analysis, showing the microbes
specifically expressed just after the insect feeding treatment (a, b) and two weeks
after the treatment (c, d), indicated by the black arrows. (a) Upregulation found under
the Post condition in three microbes of the genus Bacteroides. (b) Downregulation
found under the Post condition in four microbes of the genus Bacteroides. (c)
Downregulation found under the After condition in two microbes of the genus
Olsenella. (d) Downregulation found under the After condition in a microbe of the

genus Oribacterium.
371

372 Transcriptomes of groups IF and C

373 Altogether, 407 different transcript IDs were classified by BLASTP (see Supporting

374  information of S2 Table for normalized count data of transcripts). Among those, 72 were
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analysed with DEGs, among which 83% were classified as “hypothetical proteins” from various

bacteria (Fig 11a). By classifying those proteins with an e-value above 1.0e+8, it was found that

transcripts originating from Bacteroidetes and Firmicutes were abundant, as shown in Fig 11b

and 11c. In the case of insect feeding-relevant conditions, both Bacteroidetes and unclassified

bacteria were abundant in both upregulated (G5>others) and downregulated (G5<others)

categories. Firmicutes characteristically increased in the downregulated category under the

After condition (G6<others). Proteobacteria appeared only in the upregulated category under

the After condition (G6>others).

<Fig 11 around here>
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Fig 11. Relative distribution of DEG categories found in transcripts. (a) Relative
distribution of transcript functions of DEGs. (b) Relative distribution of transcripts in
each DEG category at the phylum level, showing upregulated changes. Categories
under the insect-feeding treatments were G5>others, G6>anywhere, and G6>others.
(c) Relative distribution of transcripts in each DEG category at the phylum level,
showing downregulated changes. Categories under the insect-feeding treatment were
Gb5>others and G6>others.

Relationship of the changes between the microbiota and

transcriptome

The functional significance of transcripts was evaluated by analysing the similarity of
changes between the microbiota and transcriptome and whether such changes closely interacted
with each other according to the experimental conditions. Thus, we performed clustering

analysis with Pearson’s product moment correlation coefficient among the SSU rRNA and
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transcriptome data with DEGs within 6 categories. Fig 12 shows the heatmap of the changes in

the microbiota and transcriptome listed together in each DEG category, according to the

experimental period (indicated on the bottom of the heatmap) in Groups C (left) and IF (right).

The dendrogram located on the right of the heatmap shows the results of Group IF. Note that the

microbiota and transcriptomes that behaved similarly were near each other in the heat map with

a short clustering distance. The blue squares indicate the results relevant to the insect feeding

treatment. In the case of the upregulated categories, microbes and transcripts tended to cluster

separately. In the case of the downregulated categories, especially G6<others, they were more

intermixed.

<Fig 12 around here>
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Microbiota and transcripts of the insects fed to the marmosets

To determine whether the significant changes in the abundance of the microbial
community in the samples of Group IF after insect feeding were attributable to the insects
themselves fed to the marmosets, we analysed the microbiota of crickets and mealworms from
the same lot as those fed to the subjects, using the same protocol described in the methods (see
Supporting information of S3 and S4 Tables for normalized count data of the microbes and
transcripts, respectively). As shown in Fig 13, abundant microbial phyla accounting for more
than 0.5% of the total reads were Opisthokonta (eucaryotes), Archaeplastida (eucaryotes), and
Firmicutes for the crickets and Opisthokonta, Archaeplastida, Firmicutes, Proteobacteria, and
Cyanobacteria for the meal worms. The relative abundance of the kingdom Bacteria was 1.09
and 7.26% of the total reads from the crickets and worms, respectively, while it was 96.38% of
the total reads from the faecal samples of marmosets. All the remaining microbes were in the
kingdom Eukaryota (98.91% and 92.04% for crickets and mealworms, respectively), which was
0.28% in the case of the marmoset sample.

<Fig 13 around here>
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(left) and giant meal worm (right).
421

122  Discussion

423 The present study described the characteristics of the gut microbiota of captive

424  common marmosets by using the total RNA sequencing method, with Firmicutes,

425  Actinobacteria, Bacteroidetes, and Proteobacteria as dominant phyla. Then, we showed that
426  enhanced insect intake for only one week modified the microbiota population in the gut, which
427  interacted with the transcripts simultaneously extracted from the faecal samples. Changes

428  observed in the microbiota were not attributable to the insects themselves. More specifically,
429  microbes in the phyla Bacteroidetes and Firmicutes showed corresponding changes in their
430  abundance under the insect feeding treatment at the different sampling points. Bacteroidetes

431  showed both an increase and decrease upon just finishing the treatment (Post condition),
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followed by a decrease after two weeks (After condition), while Firmicutes showed a decrease
at the Post condition, followed by both an increase and decrease at the After condition. These
results corresponded well to the changes in the abundance of transcripts having the same
homologous phyla of origin. Overall, the current study indicated that a partial change in the diet
for seven days had an impact on the host marmosets’ microbiota and that insect feeding

naturally observed in wild populations of common marmosets has special roles.

Treatment-relevant changes observed in the microbes

belonging to the phyla Bacteroidetes and Firmicutes

Treatment with insect feeding differentially affected the marmosets’ gut microbiota at
different times. As indicated by LEfSe (Fig 6), sets of microbes in the phylum Bacteroidetes
appeared in both categories, whereas those of the phyla Proteobacteria (insect feeding) and
Actinobacteria and Firmicutes (no insect feeding) appeared in either of the categories.
Additionally, DEG analysis with 6 patterns showed the exact changes according to the groups
and conditions (Figs 8 and 9). Because the phylum Bacteroidetes showed both an increase and a
decrease under Post conditions and a decrease under After conditions and the phylum
Firmicutes showed a decrease under Post conditions and an increase and decrease under After
conditions, one possible interpretation of these results would be that Bacteroidetes and

Firmicutes had opposite responses to insect feeding. That is, microbes in those phyla may have
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shown rapid changes corresponding to the availability of insects. Adding one more sampling

point during the insect feeding treatment would clarify the above possibility, which was not

examined in the current study.

The results from the studies on other species treated with animal-concentrated diets

would be comparable to those obtained in the current experiment. In a human study, after taking

an animal-based diet for five days, an increase was found in species belonging to the genus

Bacteroides, whereas a decrease was found in those of Firmicutes, but there were some species

belonging to Firmicutes that showed increased in abundance after the treatment [26]. This study

also detected an increase in the abundance of bacteria in the phylum Proteobacteria, including

the species Bilophila wadsworthia, which is known to be stimulated by increased bile acid

responsible for fat intake [38]. In our study, both an increase and a decrease in the abundance of

Proteobacteria were observed under After, not Post conditions (Figs 8e, 8g, and 8l), suggesting

a gradual change in the metabolism related to bile acid in the gut of the host. A previous study

on dogs fed a raw meat diet for 14 days [39] observed 7 genera showing an increase after the

treatment, and only the genus Bacteroides was in common with our current study findings.

Chickens fed Tenebrio molitor larvae for 54 days showed an increase in Firmicutes and a

decrease in Bacteroidetes at the phylum level [40], which corresponded to some of our results

(Figs 8d, 8f, and 8e).
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General impact of insect feeding on the gut

The abundances at the phylum and genus levels, together with two indices of a
diversity (Shannon and Chaol indices), did not differ from each other between Groups C and
IF. At the macroscopic level, insect feeding for seven days did not affect the general community
of the intestinal microbiota, which was in common with the results of human adults treated with
25 g cricket powder per day for 14 days [41]. However, after focusing on the pattern of the
changes corresponding to the experimental treatment by calculating the B diversity, there were
significant differences between the conditions with and without insect feeding. The same
patterns, no difference in o diversity but a significant difference in p diversity, were observed in
a study on human subjects treated for 5 days with an animal-based diet [26]. A study examining
the effects of an animal-based diet on the microbiota in dogs reported that faeces became firm
and that the Shannon H’ index increased after raw beef was added to commercial food for 14
days [39]. The reason for the lack of a significant change in a diversity indices (Shannon and
Chaol) after insect feeding in the current study would partially be attributable to unexpected
fluctuations observed in the samples of Group C. Thus, evaluation of the stability of the
microbial community would be necessary to compare the effects of short-term intervention

(seven days) by taking additional samples in the Pre period, for example.
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For microbiota, the samples just after the insect feeding treatment were clearly
distinguishable from other samples, as shown in Fig 4a. By examining the distances among the
samples, conditions with insect feeding (Post and After conditions of Group IF) were closely
grouped and more distance from the other samples. Additionally, as the results of the
PERMANOVA indicated, there were also differences between the Post and After conditions of
Group IF, suggesting that changes caused by the insect feeding treatment had impacts on
microbiota, which were long lasting for the bacterial community even after the treatment ended.
On the other hand, PERMANOVA did not detect a significant difference in the transcript data
between the conditions with and without insect feeding, although the samples under the Post
conditions were closely clustered in Fig 4b, and the plots were separately located in Fig 5b. The
reason for this difference between the microbiota and transcriptome was not identified by the
current results, so some possibilities, such as length of the treatment and quantity of the fed
insects, need to be examined to determine the changes in the transcripts.

Limitations and future perspectives of the study

Our analysis using total RNA-seq, which could concurrently detect the dynamics of
the microbiota and transcripts, was effective in searching for functional genes that are currently
unidentifiable after establishing a metagenomic database of the transcriptome with a full-length

cDNA library. However, the functional significance of the transcriptomes could only be inferred
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by the microbiota that showed similar changes across the experimental conditions. In the next

step, we need to capture a wider view that would integrate the changes in microbiota,

transcripts, and host responses to understand the effect of feeding insects, considering that the

subjects have a long history of foraging.

In the present study, we used frozen crickets and giant mealworms instead of live

mealworms. The results might have been different from those obtained in the study using live

insects. The use of live insects as a feeding regimen is also recommended for marmosets in

terms of enrichment purposes [4]. Nevertheless, the present study showed that feeding common

marmoset insects changes their physiological status by balancing the microbiota to modulate

metabolites. Consideration must be given to how much and what types of insects we should

feed captive marmosets because there is a risk of overeating in the breeding cages but not in

bushes in the wild. For example, some insect larvae are rich in fat and lack calcium, and it is

therefore recommended to feed the insects a high calcium diet before feeding the insects to

marmosets [3]. Insects with a high phosphorous-calcium rate should not be provided in

abundance to prevent the malabsorption of calcium [4]. Thus, further studies are clearly needed

to determine the long-term effect of insect feeding in captive animals and what types of insects

are most beneficial for their health while simultaneously monitoring the changes in the faecal

microbiota and transcriptome.

41


https://doi.org/10.1101/2021.08.05.455322
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455322; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

made available under aCC-BY 4.0 International license.

Conclusions

The present study showed that adding insects to the regular food regimen for seven
days could have a distinct effect on the microbiota and transcripts of captive common
marmosets. The total RNA-seq method was used to analyse the microbiota and transcripts
simultaneously, and the correlational analysis suggested that they did interact with each other.
Thus, enhanced insect feeding could activate the physiological dynamics that have been
evolutionarily developed in this species in wild habitats. The obtained results help us to
understand the interaction between the host and the microbiota via food sources and suggest that
the feeding ecology in wild habitats is an important key to developing food regimens

appropriate for the microbiota of common marmosets.

List of abbreviations

ANOVA: analysis of variance
Group C: control group.

Group IF: insect feeding group
LDA: linear discriminant analysis

LEfSe: linear discriminant analysis effect size
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540  MWS: marmoset wasting syndrome

541  OREF: open reading frame

542  PERMANOVA: permutational multivariate analysis of variance

543 SSU rRNA: small subunit ribosomal ribonucleic acid

544  total RNA-seq: total RNA sequencing

545  WMS: wasting marmoset syndrome
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