

1 **An introgression breakthrough left by an anthropogenic contact between two**
2 **ascidians**

3 Alan Le Moan^{1,2,*}, Charlotte Roby¹, Christelle Fraisse³, Claire Daguen-Thiébaut¹, Nicolas
4 Bierne⁴, Frédérique Viard^{1,4,*}

5 ¹ Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier,
6 29680 Roscoff, France

7 ² Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg,
8 Laboratorievägen 10, 452 96 Strömstad, Sweden

9 ³ CNRS, Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France

10 ⁴ ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France

11 *corresponding authors: alan.le.moan@gmail.com, frederique.viard@umontpellier.fr

12

13 **Running title**

14 Introgression footprint of a sea squirt invasion

15 **Abstract**

16 Human-driven translocations of species have diverse evolutionary consequences such as
17 promoting hybridization between previously geographically isolated taxa. This is well-
18 illustrated by the solitary tunicate, *Ciona robusta*, native to the North East Pacific and
19 introduced in the North East Atlantic. It is now co-occurring with its congener *C. intestinalis* in
20 the English Channel, and *C. roulei* in the Mediterranean Sea. Despite their long allopatric
21 divergence, first and second generation crosses showed a high hybridization success between
22 the introduced and native taxa in the laboratory. However, previous genetic studies failed to
23 provide evidence of recent hybridization between *C. robusta* and *C. intestinalis* in the wild.
24 Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we
25 further explored the genome-wide population structure of the native *Ciona* taxa. We first
26 confirmed results documented in previous studies, notably i) a chaotic genetic structure at
27 regional scale, and ii) a high genetic similarity between *C. roulei* and *C. intestinalis*, which is
28 calling for further taxonomic investigation. More importantly, and unexpectedly, we also
29 observed a genomic hotspot of long introgressed *C. robusta* tracts into *C. intestinalis* genomes
30 at several locations of their contact zone. Both the genomic architecture of introgression,
31 restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations
32 suggest introgression is recent and occurred after the introduction of the non-indigenous
33 species. Overall, our study shows that anthropogenic hybridization can be effective in
34 promoting introgression breakthroughs between species at a late stage of the speciation
35 continuum.

36 **Keywords:** Biological introductions, non-indigenous species, anthropogenic hybridization,
37 introgression hotspots, population genomics, tunicates

38 **Introduction**

39 Anthropogenic hybridizations can arise from human-mediated translocations of
40 species outside their natural distribution range, which promote secondary contact between
41 previously geographically isolated taxa (McFarlane & Pemberton, 2019). Such circumstances
42 enable the initial phase of the hybridization to be studied in a natural context (Grabenstein &
43 Taylor, 2018, Hufbauer et al., 2012, Faust, Halvorsen, Andersen, Knutsen, & André, 2018;
44 Popovic, Matias, Bierne, & Riginos, 2020). Anthropogenic hybridizations thus provide unique
45 opportunities to examine gene flow between species experiencing incomplete reproductive
46 isolation, even at a late stage of the speciation process (Viard, Riginos, & Bierne, 2020).

47 Species introductions are common and occur at increasing rates in the marine
48 realm (Seebens et al., 2017). Ports and marinas, one component of the increasing marine
49 urbanization, are one point-of-entry of many non-native species (Firth et al., 2016), where
50 they can co-occur with native congeners (e.g., Bouchemousse, Lévêque, Dubois, & Viard,
51 2016b). Consequently, these habitats are prone to facilitating hybridization between
52 introduced and native species. They provide a suitable system to examine secondary gene
53 flow in case of anthropogenic hybridization. This is illustrated by a recent study from Simon et
54 al. (2020), which documented the presence of a singular lineage, named “dock mussels”,
55 originating from a recent admixture between *Mytilus edulis*, native to the North Atlantic, and
56 *Mytilus galloprovincialis*, native to the Mediterranean Sea. These admixed populations are
57 restricted to port habitats in European waters.

58 The secondary contact between the solitary tunicates *Ciona robusta* and *Ciona*
59 *intestinalis* in the English Channel is another case study, but with very different outcomes as
60 compared to *Mytilus* spp. system (Simon et al., 2020). *Ciona robusta* (formerly known as *C.*

61 *intestinalis* type A; Gissi et al., 2017), native to Asia, has been introduced in the early 2000s in
62 the native range of *C. intestinalis* (formerly known as *C. intestinalis* type B; Gissi et al., 2017),
63 in the English Channel (Bouchemousse, Bishop, & Viard, 2016a). The two species are found in
64 syntopy (Nydam & Harrison, 2010, Bouchemousse et al., 2016b), display similar life-cycles
65 (Bouchemousse, Lévêque, & Viard, 2017), and can be easily crossed in the laboratory
66 (Bouchemousse et al., 2016b; Malfant, Coudret, Le Merdy, & Viard, 2017) despite their high
67 molecular divergence (12% of net synonymous divergence, Roux, Tsagkogeorga, Bierne, &
68 Galtier, 2013, Roux et al., 2016). Successful hybridization nonetheless occurs in one direction
69 only, with *C. intestinalis* as the maternal lineage (Bouchemousse et al., 2016b; Malfant, Darras,
70 & Viard, 2018). Demographic inferences based on few individuals but high number of markers
71 derived from 852 coding sequences (total length of 270kb) suggested the presence of several
72 introgression hotspots between the two species (Roux et al., 2013). However, by using 100
73 ancestry-informative SNPs, this introgression was later shown to be the outcome of past
74 introgression, far preceding the contemporary secondary contact nowadays observed in the
75 English Channel (Bouchemousse, Lautard-Haag, Bierne, & Viard, 2016c). In Europe, where
76 both species occur in sympatry, Bouchemousse et al. (2016c) have found limited evidence for
77 hybridization (i.e., one F1 hybrid out of 449 individuals), and no sign of contemporary
78 introgression (i.e., no F2s or backcrosses). Thus, despite a high hybridization potential,
79 efficient reproductive barriers seem to prevent hybridization in the wild between the native
80 and non-native species. Although these results are based on low genomic coverage, they
81 suggest that introgression between *C. intestinalis* and *C. robusta* is far less common than in
82 *Mytilus* species. Indeed, admixture was effectively detected in dock mussels using similar
83 genomic coverage (Simon et al., 2020). Nevertheless, high genomic coverage can reveal

84 subtler introgression patterns as exemplified in model systems in speciation (sticklebacks:
85 Ravinet et al., 2018; rock periwinkle: Stankowski et al., 2020; drosophila: Turissini & Matute,
86 2017), as well as in native-invasive systems (cotton bollworm: Valencia-Montoya et al., 2020;
87 honey bee: Calfee, Agra, Palacio, Ramírez, & Coop, 2020).

88 In this study, we further explored the genome-wide population structure of the
89 native tunicate *C. intestinalis* in the North Atlantic using a large number of SNPs provided by
90 a ddRAD-sequencing approach. Our study expands on the work conducted by Hudson et al.
91 (2020), which described multiple glacial lineages of *C. intestinalis* within Europe. Here, we
92 aim to evaluate the consequences of anthropogenic hybridization with its congener *C. robusta*
93 that has been introduced in the range of one glacial lineage of *C. intestinalis*, in the English
94 Channel. As a control, and for the sake of comparison, we also examined one population of
95 the native species *Ciona roulei* from the Mediterranean Sea. The species status of *C. roulei* has
96 been repeatedly questioned (Lambert, Lafargue, & Lambert, 1990; Nydam & Harrison, 2010;
97 Malfant et al., 2018), and it might better be described as an isolated population of *C.*
98 *intestinalis*. Interestingly, *C. roulei* can be found in sympatry with *C. robusta*, also introduced
99 in the Mediterranean Sea. Based on genome-wide SNPs, we 1. recovered the population
100 structure described from previous studies for *C. intestinalis* both at fine and large geographical
101 scales 2. provided genome-wide support for a revision of the taxonomic status of *C. roulei*,
102 and 3. provided the first evidence in favor of recent introgression events from *C. robusta*
103 towards *C. intestinalis* in their contact zone, but not in allopatric populations. However,
104 introgression is restricted to a 1.5 Mb region of chromosome 5. Overall, our study shows that
105 anthropogenic hybridization can be effective in promoting gene flow even between species at

106 a late stage of speciation, but in this case introgression can be restricted to localized
107 breakthroughs in the receiving genome.

108

109 **Materials and methods**

110 *Sample collection*

111 We studied 397 individuals of *Ciona* spp., previously sampled across the North
112 Atlantic. The sampling locations are shown in Figures 1B (fine-scale) and 2A (large-scale) with
113 details provided in Table S1 in the Supporting Information file. Most individuals (N=346) are
114 *C. intestinalis* sampled from 22 localities in 2012 by Bouchemousse et al. (2016a), expect for
115 one locality (Jer) that was sampled in 2014 by Hudson, Viard, Roby, & Rius (2016). This
116 sampling includes two localities (REK, Iceland, and NAH, US) where *C. intestinalis* is most likely
117 introduced although its status remains debated (i.e., cryptogenic; See Appendix 1 in
118 Bouchemousse et al., 2016a). The sampling scheme aims at covering the known geographic
119 range of this species, with a focus on the English Channel where the species coexists with its
120 introduced congener *C. robusta*. In addition, 19 specimens of *C. roulei*, native to the
121 Mediterranean Sea, were included, along with 32 individuals from the introduced species *C.*
122 *robusta*, of which 16 were sampled from the Mediterranean Sea (in sympatry with *C. roulei*)
123 and 16 from the English Channel (in sympatry with *C. intestinalis*).

124 *DNA extraction and library preparation*

125 For each individual, DNA was extracted using Nucleospin® 96 Tissue Kit according
126 to the manufacturer's protocol (Macherey-Nagel, Germany). Individual double-digest RAD-
127 seq libraries were constructed with PstI and MseI according to the protocol detailed in
128 Brelsford, Dufresnes, & Perrin (2016), after fluorometric quantification of DNA concentration

129 with PicoGreen (Invitrogen, Carlsbad, CA, USA) and normalization of the extracts. Each
130 individual was labelled with a unique barcode-index combination, with an inline barcode
131 (incorporated in the PstI adaptor) and an Illumina Truseq index (incorporated during the PCR
132 carried out on the ligation products). Size selection was carried out with 1.5% agarose
133 cassettes in a pippin prep (Sage Science) to select fragments between 280 and 600 base pairs.
134 A total of three pooled libraries were sequenced, each containing 184 individuals, with
135 replicates (two individuals per library and two across the three libraries). Each library was
136 sequenced in two lanes of an Illumina HiSeq 2500 v4 high throughput flow cell generating 125
137 base single-end reads at Eurofins Genomics (Ebersberg, Germany).

138 *Bioinformatics pipeline*

139 The reads were demultiplexed based on their individual index-barcode with the
140 processRADtags programme of Stacks v2 (Rochette, Rivera- Colón, & Catchen, 2019). Overall,
141 3% of the reads were dropped due to ambiguous barcodes or low sequencing quality and yield
142 to on average 1.7M reads per sample. The reads were trimmed at 80 base pairs, and mapped
143 on the *C. robusta* genome (KH79 version, Dehal et al., 2002, NCBI assembly GCF_000224145.1)
144 using the default parameters implemented in BWA software (Li & Durbin, 2009). Note that
145 this genome is improperly referenced under the name *C. intestinalis* in several databases
146 because of a recent taxonomic revision (Gissi et al., 2017, and references herein). Between 60
147 and 67% of the reads were mapped for *C. roulei* and *C. intestinalis* individuals, and between
148 83 and 87% of the reads for *C. robusta* individuals. The aligned RAD data were then processed
149 using the reference mapping pipeline in Stacks v2 set with default parameters (Rochette et
150 al., 2019). Only the SNPs sequenced for at least 80% of the individuals within a locality, present
151 in all the populations and with a maximum heterozygosity of 80% were called using the

152 *population* function. Additional filtering steps were performed using vcftools (Danecek et al.,
153 2011) in order to remove SNPs with a minor allele count of two or showing significant
154 deviations from Hardy-Weinberg equilibrium (P-value threshold of 0.05) in more than 60% of
155 the population with the function *filter_hwe_by_pop.pl* implemented in dDocent pipeline
156 (Puritz, Hollenbeck, & Gold, 2014). We additionally removed all polymorphisms private to *C.*
157 *robusta* populations, as such polymorphisms are neither informative to describe *C. intestinalis*
158 population structure nor to evaluate the extent of introgression across species (which results
159 in shared polymorphisms). At the end of the filtration process, the dataset included 397
160 individuals (see Table S1 across sampled localities) genotyped at 51,141 SNPs (17,280 with a
161 Minor Allele Frequency (MAF) above 5%) derived from 5,599 RAD-locus with an average depth
162 across all samples of 59 reads per locus, which was then exported into variant call format
163 (VCF). The VCF was then statistically phased using Beagle v5.2 (Browning & Browning, 2007)
164 in order to extract haplotypes and conduct phylogenetic analyses as explained below.

165 *Population structure analyses*

166 **Fine-scale population structure (dataset 1):** Because of our interest in identifying
167 introgression in the contact zone, 280 individuals of *C. intestinalis* from 18 sampling sites (70%
168 of the data) were obtained from the English Channel, Iroise Sea and the Bay of Biscay. We first
169 explored the fine-scale population structure of these populations (dataset 1; Table S1; Figure
170 1B). The dataset 1 was further filtered to keep SNPs with a MAF above 5%, and additionally
171 thinned by keeping one random SNP per over bin of 1kb to take into account physical linkage,
172 using vcftools (Danecek et al., 2011). In total, 13,603 linked SNPs and 3,510 unlinked SNPs
173 were used to study the fine-scale population structure. For the unlinked SNPs, we used the
174 function *find.clusters* in adegenet (Jombart, Devillard, & Balloux, 2010) to find the best

175 number of clusters (lower BIC value) describing the population structure on the 50 first
176 principal components of a PCA (Figure S1). These clusters were then used as discriminant
177 factors to compute a discriminant analysis of principal components (DAPC) with two
178 discriminant functions. We then used the snmf function of the R package LEA (Frichot &
179 François, 2015), using the number of cluster inferred from the find.clusters function in
180 adegenet to examine the admixture proportions within each locality. We estimated pairwise
181 F_{ST} values with 95% confidence interval among sampling sites by bootstrapping (10,000
182 replications) using the R package StAMPP (Pembleton, Cogan, & Froster, 2013) and
183 significance was tested after accounting for multiple testing with Bonferroni correction. The
184 linked SNPs were used to compute another DAPC using the group inferred by the function
185 find.clusters on the unlinked SNPs, extract the eigenvalue of each individual SNP, and evaluate
186 the genomic distribution of the markers responsible for the population structure.

187 **Large-scale population structure (dataset 2):** For the large-scale population structure
188 analyses, and to achieve a more balanced sampling structure, we reduced the number of
189 sampling localities by keeping only one sampling site per genetic cluster inferred with the fine-
190 scale analyses (see above). In total, 129 individuals from nine sampling sites for *C. intestinalis*,
191 32 individuals from two sampling sites for *C. robusta* and 19 individuals from one sampling
192 site for *C. roulei* were included (dataset 2; Table S1; Figure 2A). This second dataset was
193 filtered to keep SNPs with a MAF above 5%, and further filtered for physical linkage (one
194 random SNP per kb). Overall, 17,138 linked and 3,828 unlinked SNPs were used depending on
195 the analysis. Using the unlinked SNPs, we conducted a PCA analysis from the R package
196 adegenet (Jombart & Ahmed, 2011) and admixture analyses (detailed on Figure S2) from the
197 R package LEA (Frichot & François, 2015). We computed the pairwise F_{ST} value with 95%

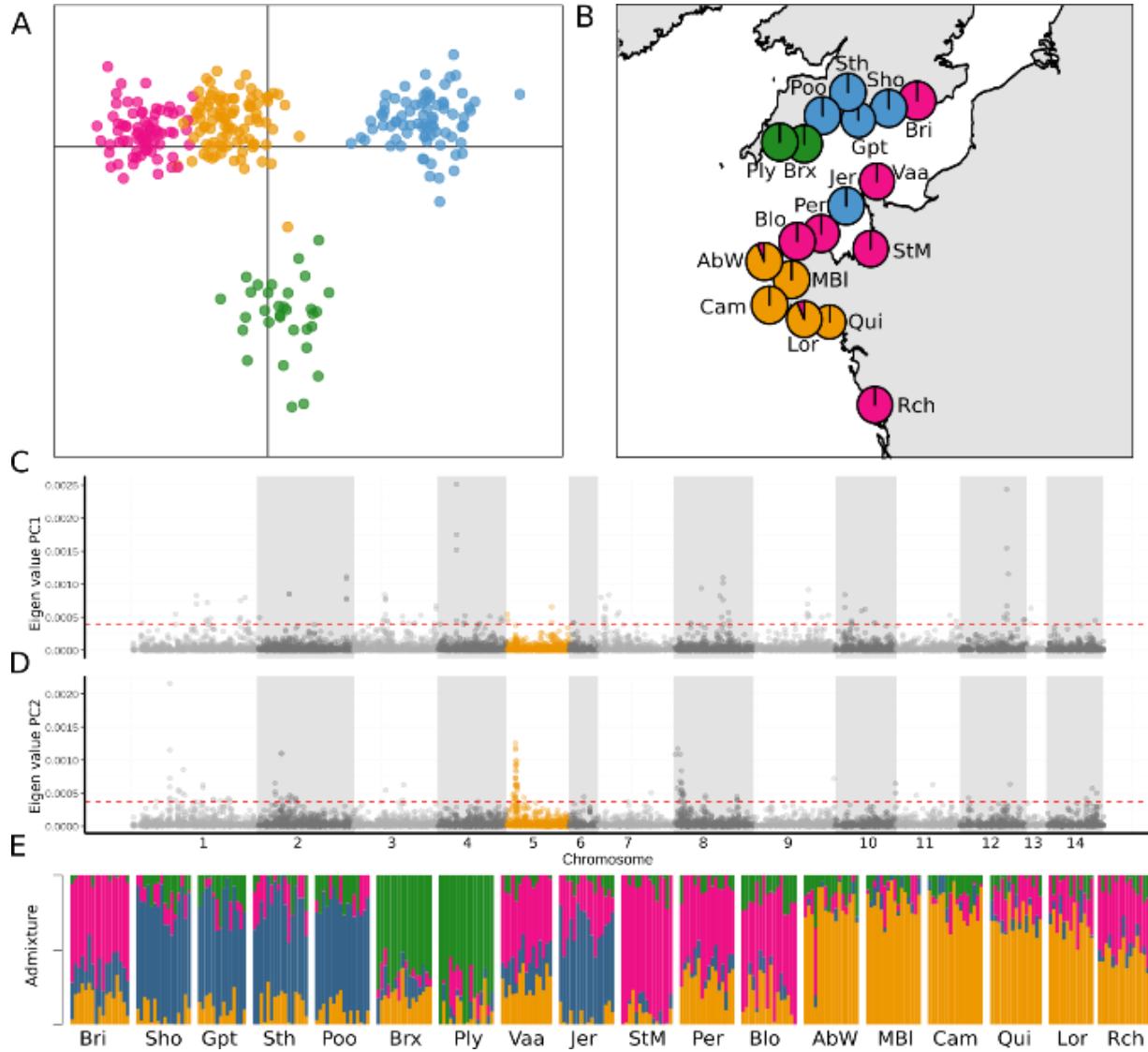
198 confidence interval from bootstrapping (10,000 replication) using the R package StAMPP
199 (Pembleton et al., 2013), and significance was tested after accounting for multiple testing
200 using Bonferroni correction. A second PCA analysis was performed on the linked SNPs and the
201 eigenvalue of each SNPs were extracted and plotted against their physical position on the
202 reference genome in order to characterize the genomic distribution of the markers
203 responsible for the population structure. Finally, we used the statistically phased VCF file to
204 create a pseudo sequence of all SNPs, and transformed it into a fasta file containing two
205 haplotypes per individual using a custom R script available in the Zenodo archive (see the Data
206 Accessibility Section). From this fasta file, we computed the pairwise genetic distance between
207 each haplotype, and represented a neighbor joining tree based on the GTR substitution model
208 using the R package phangorn (Schliep, 2011).

209 **Investigating introgression between *Ciona intestinalis* and *C. robusta* (dataset 3):** To assess
210 the variability of introgression along the genome, we first used the R package LEA using k=2
211 to compute the individual ancestry of *C. robusta* and *C. intestinalis* individuals, over the whole
212 genome, and for each chromosome independently. Pairwise F_{ST} values between the two
213 sampling localities (pooled) of *C. robusta* and each other sites (*C. intestinalis*) were then
214 computed for each SNP following the method of Weir and Cockerham (1986) using vcftools
215 (Danecek et al., 2011). For each chromosome, we calculated the maximum F_{ST} value taken
216 over a sliding window of 100kb, which was then smoothed with the R package ggplot2
217 (Wickham, 2011). Additionally, we created an ancestry informative set of SNPs by extracting
218 the markers differentially fixed (i.e., F_{ST} value of one) between *C. robusta* and the Gul
219 population (6,849 SNPs in total). The later population comes from a region and an

220 environment (deep natural habitat) where *C. robusta* have never been reported, thus, is the
221 least likely population to have recently hybridized with *C. robusta*.

222 To detect potential introgression tracts of *C. robusta* within the genome of *C.*
223 *intestinalis*, we extracted the F_{ST} value of the 6,849 ancestry informative SNPs calculated
224 between *C. robusta* and each 22 *C. intestinalis* populations (Rek excluded due to low sampling
225 size). We then used the Hidden Markov Model (HMM) developed by Hofer, Foll & Excoffier
226 (2012) to infer the position of genomic islands. Briefly, the HMM characterizes and sorts
227 genomic regions according to their level of differentiation, and is generally used to detect
228 island of divergence (e.g. Soria-Carrasco et al., 2014, Shi et al., 2021). Here, the HMM was
229 applied to detect regions of introgression by contrasting regions with high-background
230 differentiation (with an F_{ST} value of one) from regions with intermediate differentiation (with
231 F_{ST} normally distributed around the 15% lower quantile) and low differentiation (with F_{ST}
232 normally distributed around the 5% lower quantile) using a modify version of the R script
233 available from Marques et al. (2016). To avoid any biases by comparing introgressed
234 population from none-introgressed populations, the quantiles were drawn from the
235 distribution of all F_{ST} values calculated for the 22 pairwise comparisons. Regions of low
236 differentiation covering more than 4 consecutive SNPs, and regions of intermediate
237 differentiation covering more than 10 consecutive SNPs in a given pair of *C. robusta* and *C.*
238 *intestinalis* were considered as candidate for introgression. Finally, the genotypes of all the
239 individuals at each diagnostic SNP was visualized using a modified version of mk.image of the
240 R package introgress (Gompert & Buerkle, 2010) available in github and developed as part of
241 Simon et al. (2021). This analysis was performed independently along each chromosome.

242

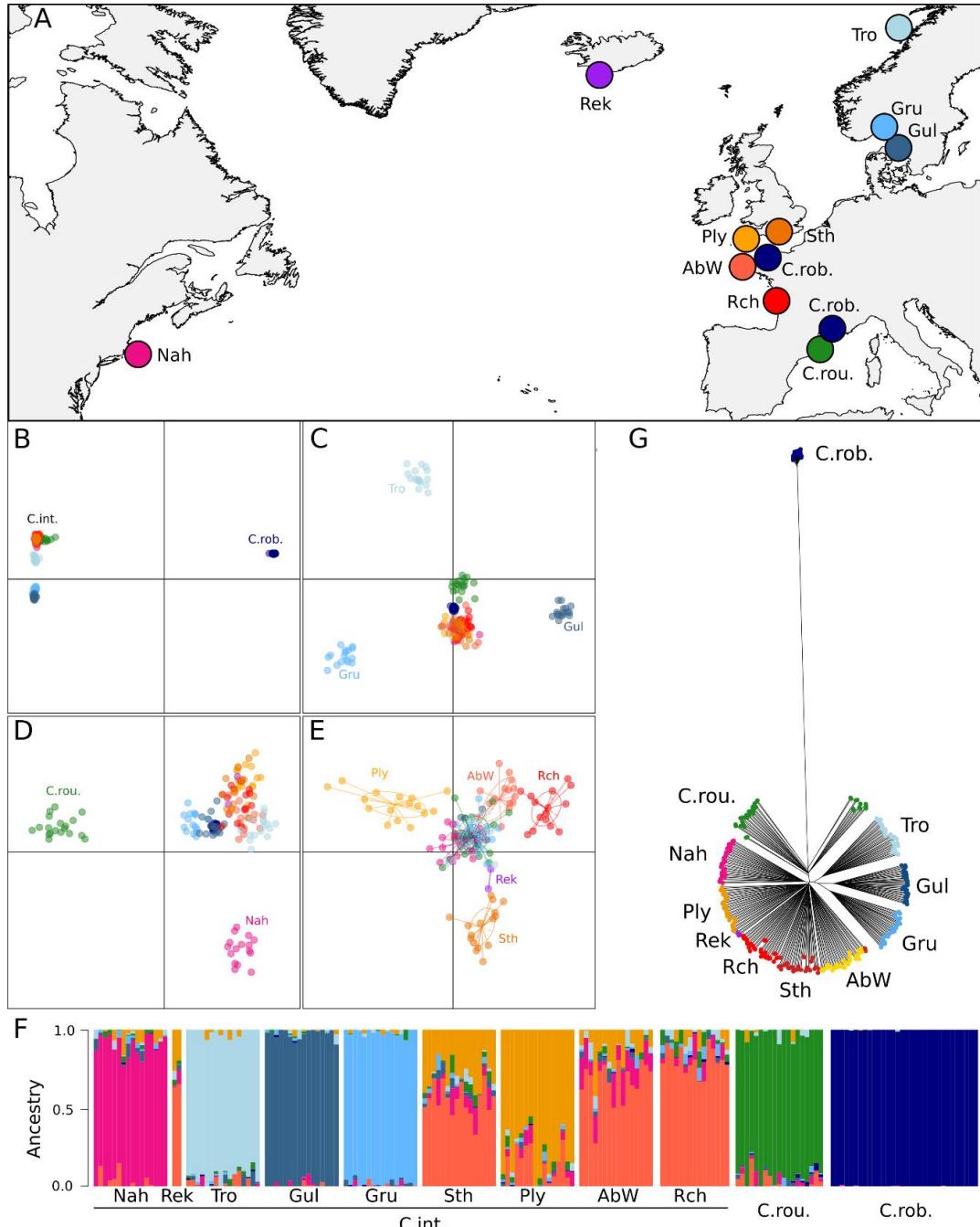

243 Results

244 *Fine-scale population structure of Ciona intestinalis in France and UK*

245 Four genetic clusters, which explained 25% of the variance in the DAPC, were
246 identified in the English Channel, Iroise Sea and Bay of Biscay (Figure 1A). The genetic
247 clustering of the localities was consistent with their geographical proximity, except for three
248 of them grouping with geographically distant ones (Figure 1B): 1) the individuals from Jer
249 (Jersey island), geographically close to the northern Brittany populations (deep pink cluster)
250 but clustered with eastern UK sites (blue cluster), 2) Rch (La Rochelle) and Bri (Brighton), which
251 belong to the northern Brittany cluster, despite being geographically closer to Western France
252 (yellow cluster) and eastern UK (blue cluster), respectively. This mosaic structure was also
253 supported by the LEA analysis (Figure 1E), notably for Bri and Jer. However, Rch showed
254 evidence of admixture between nearby localities (Qui and Lor in Western Brittany) and distant
255 ones (Per and Blo in Northern Brittany). Additionally, the two westernmost English
256 populations (Ply and Brx) were genetically differentiated from all the other sampling sites
257 (green cluster in Figure 1B, admixture analysis, Figure 1E).

258 The SNPs contributing to the population structure observed along the first axis
259 were distributed genome-wide (Figure 1C). Conversely, the SNPs structuring the second axis
260 (and thus differentiating the westernmost English populations) were over-represented at the
261 start of two chromosomes (5 and 8, Figure 1D). Pairwise F_{ST} values were overall low (0.001 <
262 F_{ST} < 0.028) but significant across most sites (Table S2), except among four sites of northern
263 and western Brittany (AbW, MBI, Cam, and Lor), and among four sites of the eastern UK (Sth,

264 Sho, Gpt and Poo). The highest values of F_{ST} (0.028) were found among the most distant sites
265 following the coastline, i.e. Rch versus several sampling sites in the UK (Ply, Sho, Poo).


266
267 **Figure 1:** Fine-scale structure analysis of the 18 populations of *C. intestinalis* sampled in Bay of Biscay,
268 Iroise Sea and English Channel. The locality name for each code, and further details about the sampling
269 sites, are provided in Table S1. Based on 280 individuals genotyped at 3,510 unlinked SNPs, four genetic
270 clusters were identified with a DAPC from the `find.clusters` function, each of them pictured by a
271 different colour in A). Membership to the four clusters is indicated by using the same color scheme in
272 the other plots. B) is showing the proportion of individuals per sampling site assigned to each cluster
273 with the DAPC. The contribution of the 13,603 linked-SNP, mapped on chromosomes, to the first (C)
274 and second (D) axes of the DAPC; the chromosome 5, which is carrying an introgression hotspot, is
275 highlighted in orange; the dashed red lines show the 95% quantiles above which are located the top
276 5% eigenvalues. E) provides the graphical output of the admixture analyses (`snmf` function of the LEA
277 package; K=4) with the membership of each individual, sorted according to their sampling locality, to
278 each of the four genetic clusters identified with the `find.clusters` function on the unlinked SNPs.

279 *Large-scale population structure across the Northern Atlantic:*

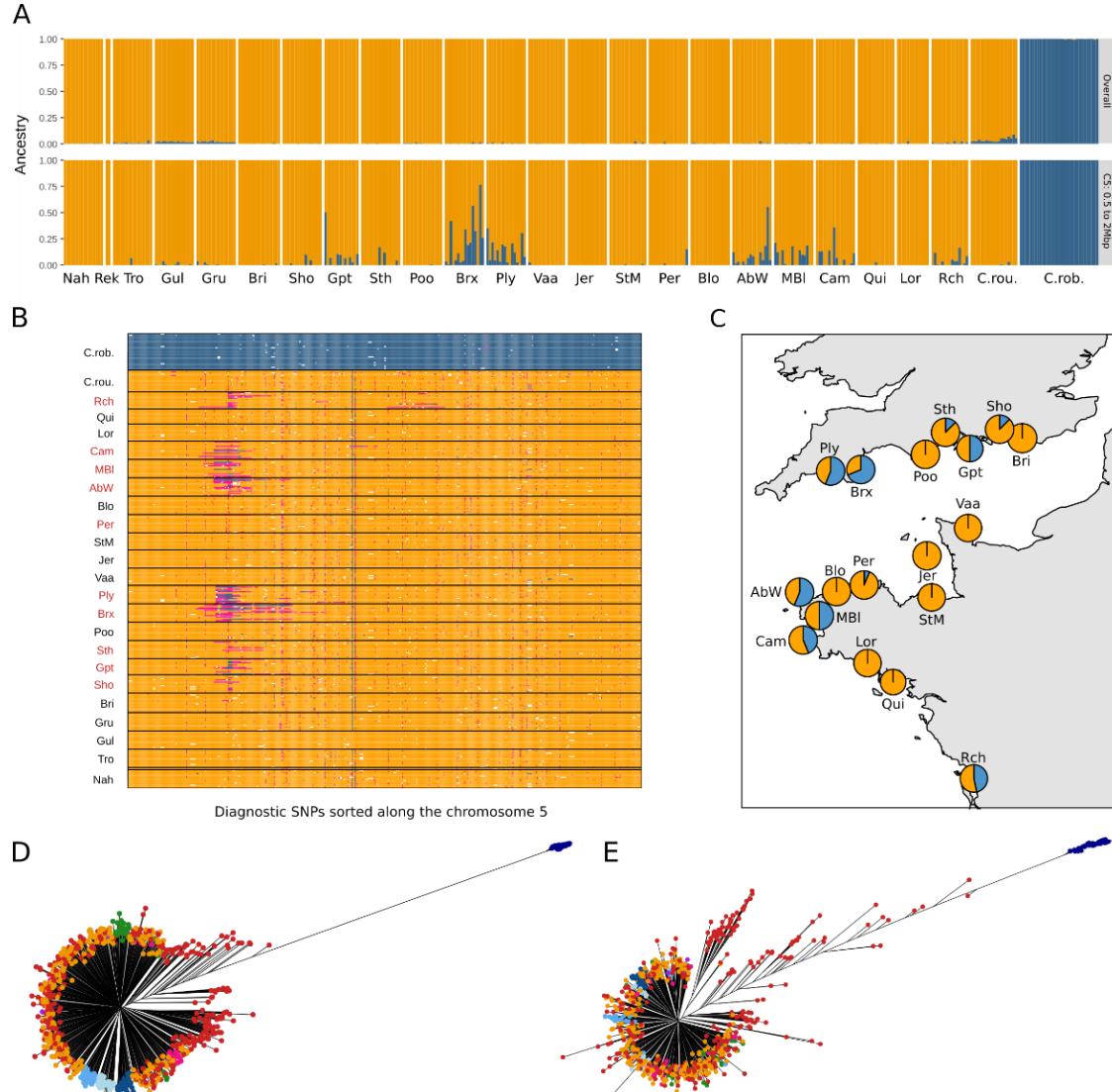
280 The non-indigenous individuals of *C. robusta* are highly divergent from the two
281 species native to European waters, *C. intestinalis* and *C. roulei*, as illustrated on the first axis
282 of the PCA, which explained 51.80% of the inertia (Figure 2B). Populations with less genetic
283 divergence are then distinguished in the following axes: the northern European samples of *C.*
284 *intestinalis* (Gru, Gul and Tro, in blue) are distinguished by the second axis (2.56%, figure 2B)
285 from the other localities (France, England, Iceland, USA), as well as from the putative sister
286 species *C. roulei*. The following axes (3 to 8) distinguished up to sampling localities of *C.*
287 *intestinalis* but with much smaller and decreasing inertia, from 1.65% to 0.52% and (Figure 2C-
288 E). *C. roulei* was distinct from *C. intestinalis* only along the axis 5 (1.29%, Figure 2D). The two
289 sampling sites Rek and Nah, in which *C. intestinalis* has an undetermined status (putatively
290 introduced), were very similar to populations from the south of Europe, being distinguished
291 only on axes six and eight (Figure 2D,E).

292 The SNPs contributing to the major divergence between *C. robusta* and the two
293 native species *C. intestinalis* and *C. roulei* were distributed genome-wide (i.e., Figure S3).
294 However, at the start of the chromosome 5, a reduction of the divergence between *C. robusta*
295 and *C. intestinalis* was observed, as shown by a slight decline of eigenvalues in the PC1 at the
296 start of chromosome 5. The population structure depicted by the PCA was corroborated by
297 the admixture analysis (Figure 2F, Figure S2) showing high support for all the clusters
298 described from the axes one to six of the PCA (Figure 2B-E). All the pairwise F_{ST} were
299 significantly different from 0 except for two comparisons (between the two *C. robusta* sites,
300 and between Rek and Sth, Table S3). The F_{ST} values ranged from 0.02 to 0.169 among *C.*
301 *intestinalis* sampling sites, which is similar to the range (from 0.069 to 0.166) observed

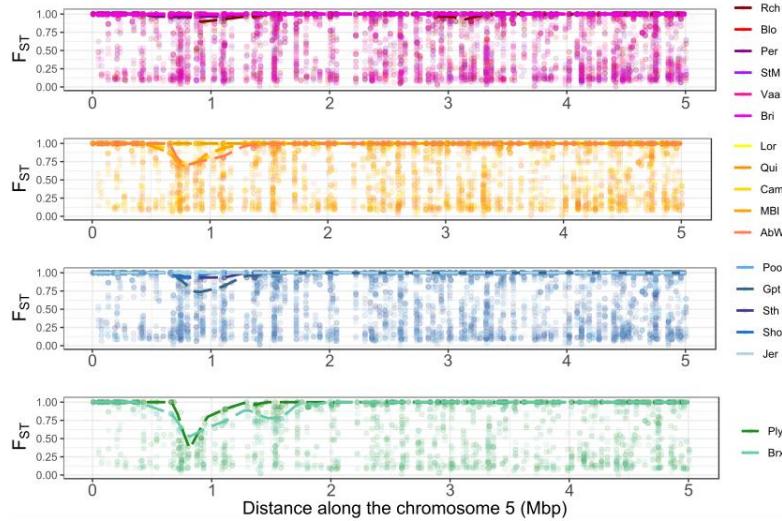
302 between *C. roulei* and any of the *C. intestinalis* populations. The two sites Nah and Rek showed
303 the lowest F_{ST} values with the populations from the English Channel (e.g., F_{ST} Nah vs AbW =
304 0.033 and F_{ST} Rek vs Sth non-significant from 0), and were less differentiated than pairwise
305 comparisons between northern and southern North Atlantic sites. Very large values (i.e., 0.761
306 to 0.813) were observed between *C. robusta* and *C. intestinalis/C. roulei* (Table S3). The deep
307 divergence of *C. robusta* from the other populations, and that each population clustered in
308 separate groups, is also confirmed by the phylogenetic tree (Figure 2G). *C. roulei* individuals
309 formed a distinct group closely related to *C. intestinalis*.

310

311 **Figure 2:** Large-scale population structure analysis of *Ciona intestinalis* (C. int.) populations as
312 compared to *C. roulei* (C.rou.; native to Europe) and *C. robusta* (C. rob., introduced to Europe). The
313 localities examined are shown in A). The locality name, and further details, associated to each code are
314 provided in Table S1. The color code used to picture each sampling locality in A) is used in the other
315 plots. PCA plots, based on 180 individuals genotyped at 3,828 unlinked SNPs, are shown in figures B-E,
316 which are displaying 8 different axes (B: 1 vs. 2; C-E: 3 vs. 4, 5 vs. 6, 7 vs 8), associated to 51.80, 2.56,
317 1.65, 1.45, 1.29, 0.75, 0.55 and 0.52% of the total inertia, respectively. Figure 2F displays the graphical
318 outcome of the admixture analysis made with the same SNPs using the *snmf* function of the LEA
319 package for a k value of eight cluster (detailed on cluster selection available in Figure S2) for each
320 individual sorted by species and, for *C. intestinalis*, per sampling locality (left part). A neighbor-joining
321 tree of 360 phased haplotypes built with the 17,138 linked SNPs is pictured in figure 2G.


322 *Introgression between C. robusta and C. intestinalis*

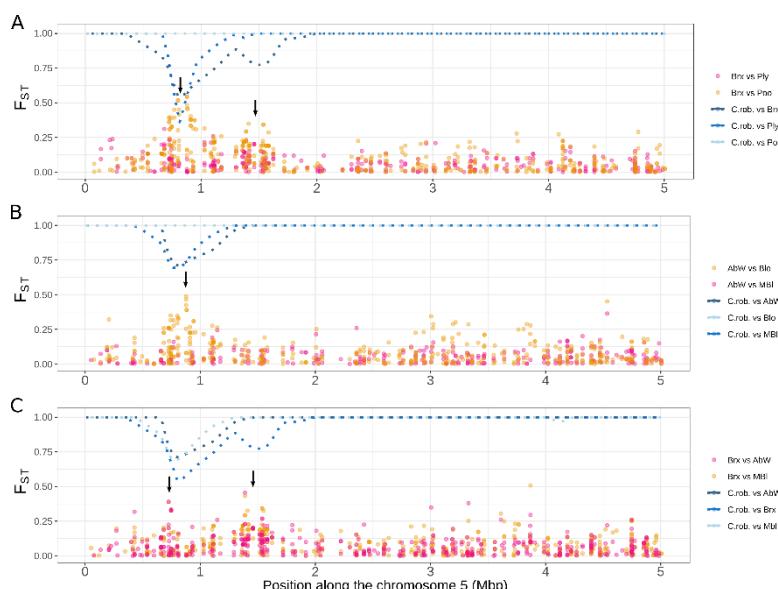
323 *Ciona robusta* and *C. intestinalis* had consistent high divergence across the
324 genome (Figure S4), with ~39.64% of the SNPs with a MAF above 5% being diagnostic using
325 Gul population as reference ($F_{ST}=1$). No sign of genome-wide admixture was detected
326 between the two species (Figure 3A, top panel), but the *C. roulei* individuals appeared admixed
327 with a *C. robusta* ancestry ranging from 1.96 to 8.77% (Figure 3A, top-panel).


328 The same results were obtained when each chromosome was analyzed
329 independently (Figure S5), with one noticeable exception found on chromosome 5. On this
330 chromosome, 82 *C. intestinalis* individuals showed a signal of admixture with *C. robusta* (up
331 to 8.62%). The chromosome 5 was also the only chromosome where regions of introgression
332 with a low differentiation between *C. intestinalis* and *C. robusta* at diagnostic SNPs were
333 detected by the HMM, all of which being located between 0.61 and 1.58 Mb (tracts sizes
334 ranging from 64.83kb to 0.49Mb, Table S4). These regions were found in nine populations,
335 and shared an 80 kb fragment located from 0.81 to 0.88 Mb of the chromosome5. Large
336 regions of intermediate differentiation, with tracts sizes ranging from 40.04kb to 1.25Mb,
337 were also found only on chromosome 5, with 90% of them located around the region of low
338 differentiation (from 0.40 and 2.22Mb). In this portion of chromosome 5, the *C. robusta*
339 ancestry reached up to 76.77% (Figure 3A - bottom panel).

340 The presence of admixed individuals were detected at sites located in the contact
341 zone in the English Channel, Iroise Sea and Bay of Biscay (Figure 3B,C, Table S4). In agreement
342 with the HMM analysis, the chromosome-wide F_{ST} values calculated between those
343 populations and *C. robusta* showed a striking decline in F_{ST} (Figure 4), with the most extreme
344 drop localized within the 80kb region of low differentiation shared among the most

345 introgressed population, around 0.87Mb of the chromosome 5. The largest decline in F_{ST} was
346 found in the south western part of the English Channel, in the two populations assigned to the
347 green cluster in the fine-scale analyses (Brx and Ply, Figure 1). Here, F_{ST} decreased below 0.5
348 (Figure 4 – bottom panel), and 29 out of 32 individuals carried at least one *C. robusta* tract
349 (Figure 3A-B-C). The decline in F_{ST} was not observed in every sites of the contact zone, being
350 absent in 5 out of 6 of the comparison with populations from the pink cluster identified in the
351 fine-scale analysis (Figure 1), except in Rch (Figure 4). In this latter population, a second F_{ST}
352 decline was visible on the same chromosome around 3.1 Mb (Figure 4 – top panel), which is
353 also a region of intermediate differentiation identified by the HMM analysis (Table S4). The
354 admixture signal, and the long tracts of *C. robusta* ancestry were absent from all the sites
355 outside the contact zone, or from other chromosomes (Figure 3A-B, and Table S4), except in
356 *C. roulei* where few small tracts of introgression (<77kb) were detected on chromosome 7 and
357 10.

359 **Figure 3:** Evidence for introgression, at chromosome 5, of the native species *C. intestinalis* by its
360 introduced congener *C. robusta*, in the English Channel, Iroise Sea and Bay of Biscay. A) Admixture
361 plots computed for K=2 i) on 397 individuals genotyped at 17280 linked-SNPs from the overall dataset
362 (top), and ii) on a subset of 354 SNPs located on the chromosome 5, from 0.5 to 2.0 Mb (bottom). B)
363 Introgroßs plot showing the genotypes of the 397 individuals at 545 SNPs chosen to be diagnostic
364 between *C. robusta* and *C. intestinalis* along the chromosome 5. Individuals (y-axis) are ordered from
365 top to bottom per species (*C. robusta*: *C. rob.*, *C. roulei*: *C. rou.*, *C. intestinalis*); *C. intestinalis* individuals
366 are sorted per locality (code and location are shown on the map in C)). Population where introgression
367 was detected by the HMM are colored in red. Dark blue boxes indicate homozygote genotype on *Ciona*
368 *robusta* alleles; yellow, homozygote genotype on *C. intestinalis* alleles; pink, heterozygotes for *C.*
369 *robusta* and *C. intestinalis* alleles; and white boxes, missing values. C) Proportion of individuals per site
370 displaying a *C. robusta* tract (blue) in chromosome 5. D) and E) Neighbor-joining trees build on 794
371 phased haplotypes showing the similarities between some *C. intestinalis* haplotypes from admixed
372 localities (red dots) and the haplotypes obtained for *C. robusta* (dark blue dots on the right divergent
373 branch), when using data for chromosome 5 (D) and a zoom from 0.5 to 2.0 Mb of the same
374 chromosome (E); such similarities are not observed for the haplotypes obtained in localities from the
375 contact zone with no introgression (yellow dots), or from other sites located outside the contact zone
376 and from *C. roulei* (colored according to the color code used in Figure 2).


377

378 **Figure 4:** Pairwise F_{ST} values along chromosome 5 between *C. robusta* and populations of *C. intestinalis*
379 sampled in the contact zone between the two species, in the English Channel, Iroise Sea and Bay of
380 Biscay. Each graph corresponds to a comparison made with populations from each of the four genetic
381 clusters identified in the fine-scale analyses (clusters are pictured with the same color code as in Figure
382 1). The populations that belongs to each cluster are listed on the right. Each dot represents the F_{ST}
383 value for the 1235 SNP with of MAF of 5% on chromosome 5, and the dashed line show the maximum
384 F_{ST} value computed over bins of 100kb.

385

386 The neighbor-joining tree built with SNPs from the chromosome 5 showed that
387 some phased haplotypes from admixed sites (red haplotypes in Figure 3D) were genetically
388 closer to *C. robusta* than the haplotypes from non-admixed sites (yellow haplotypes in Figure
389 3D). This pattern is exacerbated when zooming on the region spanning from 0.5 to 2.0 Mb
390 (Figure 3E). Interestingly, 23 haplotypes (including 10 from 5 homozygous individuals)
391 completely overlapped with *C. robusta* haplotypes when focusing on the portion between 0.7
392 and 1.2 Mb of chromosome 5 (Figure S6B). In this small region, 19 SNPs were species-
393 diagnostic between Gul and *C. robusta*, and three SNPs were polymorphic in both species (red
394 arrows in Figure S6A). Two of these three SNPs might reflect incomplete lineage sorting or
395 parallel mutation. One was indeed polymorphic in several *C. robusta* and one *C. intestinalis*
396 individual from non-admixed sites (Nah), and the other one was polymorphic in *C. robusta* and

397 in 10 *C. intestinalis* sites, two of which are localized outside the contact zone. Conversely, the
398 last of these three SNPs (position 1020271), was polymorphic in *C. robusta* (maf = 9%), with
399 the minor allele only found in three phased haplotypes of the 23 *C. intestinalis* haplotypes
400 identical to *C. robusta* haplotypes. The three haplotypes carrying the *C. robusta* minor allele
401 at this specific SNP were all collected from the east of UK (one from Ply and two from Gpt).
402 These three haplotypes, different from other *C. intestinalis* haplotypes, all clustered with
403 other *C. robusta* in the phylogenetic tree (black arrow in Figure S6B). Thus, it seems that
404 different *C. robusta* haplotypes have introgressed admixed *C. intestinalis* populations. In
405 addition, the introgression by *C. robusta* was found to be variable in size (Figure 3B) leading
406 to the formation of twin peaks in some pairwise comparison of *C. intestinalis*, as illustrated by
407 pairwise F_{ST} values computed between Brx and MBI or AbW (Figure 5C, below the arrows),
408 and also visible when comparing the geographically close sites of Ply and Brx (Figure 5A).

409

410 **Figure 5:** F_{ST} values (orange and pink colors) between pairs of *C. intestinalis* populations and maximum
411 value of F_{ST} (dashed line in blue colors) between these *C. intestinalis* populations and *C. robusta* over
412 bins of 100kb, computed using 1235 SNPs with MAF of 5% located along the chromosome 5. F_{ST} is
413 calculated between pairs of sites either A) geographically close in UK or B) in Brittany (France). In C),
414 F_{ST} was calculated between introgressed sites in France vs. UK. Pink color is used to show F_{ST} between
415 two introgressed sites and orange color between an introgressed and a non introgressed site.

416 **Discussion**

417 Using a genome-wide approach based on ddRAD-sequencing, we investigated the
418 fine-scale and large-scale population structure of *Ciona intestinalis* in native (NE Atlantic) and
419 possibly introduced populations (US and Iceland). Our results provide supports to previous
420 studies about the influence of human-mediated transports on population structure at both
421 regional and global scales. Comparisons with its congeners *C. robusta* and *C. roulei* offered
422 new insights about the past and recent history of these three species. Our study finally
423 provided the first evidence of contemporary introgression from *C. robusta* into *C. intestinalis*,
424 in the introduction range of the former. This introgression is not homogeneously distributed
425 in the genome but rather forms a breakthrough located in an introgression hotspot of
426 chromosome 5.

427

428 **Chaotic genetic structure and cosmopolitanism: a footprint of human-mediated dispersal**

429 The overall population genetic structure of *C. intestinalis* was in line with the results
430 from previous studies (Bouchemousse et al., 2016a,c; Hudson et al., 2016; Johannesson et al.,
431 2018; Hudson, Johannesson, McQuaid, & Rius, 2020, Johannesson, Le Moan, Perini, & André,
432 2020). In particular, we confirmed that the populations of *C. intestinalis* are highly
433 differentiated over large geographical scales, which is likely due to the presence of different
434 glacial lineages in Europe (Hudson et al., 2020). At smaller geographical scales, *C. intestinalis*
435 is much less genetically structured, and more importantly shows discrepancies between
436 genetic clustering and geographic distance, leading to a mosaic structure. Such a mosaic
437 structure had been previously reported in the study area, with microsatellite markers, and
438 attributed to human-mediated connectivity among harbors (Hudson et al., 2016). *Ciona*

439 *intestinalis* is a benthopelagic invertebrate but with very short-lived larvae (<24 hours under
440 laboratory conditions). Similar mosaic structures have been documented in introduced
441 species, inhabiting ports, and characterized by low natural dispersal ability, for example the
442 seaweed *Undaria pinnatifida* (Guzinski, Ballenghien, Daguin-Thiébaut, Lévéque, & Viard,
443 2018).

444 The individuals sampled in localities for which the native vs. non-native status has been
445 unclear (in the North Western Atlantic and in Iceland) were genetically more similar to the
446 populations sampled in France and England (average F_{ST} of 0.032) than to other European
447 populations (F_{ST} up to 0.176). They were also more similar between each other than several
448 comparisons within Europe, suggesting that they are recently derived from somewhere near
449 the English Channel. Such a situation has also been described by Hudson et al. (2020) in a
450 Canadian site localized further north than our study population (Nah). However, the Canadian
451 individuals appeared admixed between Swedish and English Channel lineages, while Nah here
452 appeared as a mostly pure cluster genetically close to the English Channel lineage. Population
453 structure along the western Atlantic Coast is common, even in invasive species such as the
454 green crab (Pringle, Blakeslee, Byers, & Roman, 2011; Jeffery, et al., 2017). The Canadian site
455 is located in Nova Scotia, a major suture zone for marine species living along the Western
456 Atlantic coast, while our sampling site is located further south where populations display
457 usually less admixture (Standley et al., 2018). The differences in admixture pattern observed
458 here and in Hudson et al. (2020) suggest the presence of substantial population structure in
459 the North American introduction range of *C. intestinalis*, which might reflect multiple
460 introduction events from the native range, as often reported in marine introduced species
461 (Viard, David, & Darling, 2016). Additional sampling sites along the Western Atlantic coast

462 would be needed to explore further the population structure of *C. intestinalis*, and reconstruct
463 its introduction history. Our study concurs with previous results by Bouchemousse et al.
464 (2016a) and Hudson et al. (2020), and suggests that *C. intestinalis* can be described as a neo-
465 cosmopolitan species according to the terminology by Darling & Carlton (2018), with a trans-
466 Atlantic distribution due to human introductions, rather than to an eucosmopolitan species
467 with relictual populations that took advantage of new available habitats (ports and marinas).

468

469 **A continued and needed appraisal of species status within the *Ciona* genus**

470 The *Ciona* species belongs to a complex genus, as shown by the recent discovery
471 of a new species in the Mediterranean Sea (i.e., *Ciona intermedia*, Mastrototaro et al., 2020),
472 and the recent in-depth taxonomic revision of the previously accepted *C. intestinalis* species.
473 Morphological observations (Brunetti et al., 2015), molecular data (Nydam & Harrison, 2010;
474 Zhan, Macisaac, & Cristescu, 2010; Bouchemousse et al., 2016a,c) and experimental crosses
475 (Lambert et al., 1990; Malfant et al., 2017) indeed showed that two deeply divergent lineages,
476 named type A and type B, were co-existing under the accepted name *C. intestinalis*. This
477 taxonomic revision led to the resurrection of a previously synonymized species, namely *C.*
478 *robusta*. In line with these previous data, we observed differentially fixed SNPs between *C.*
479 *robusta* and *C. intestinalis* across most of their genome (average $F_{ST} > 0.780$ for all pairwise
480 comparison). This conclusion also holds for *C. robusta* and *C. roulei*. Our results show that the
481 species status of *C. roulei* is in need of taxonomic revision. We indeed showed a weak genome-
482 wide differentiation when comparing *C. roulei* with *C. intestinalis* populations sampled in the
483 English Channel ($F_{ST} < 0.075$). Interestingly, the differentiation is even weaker than those
484 observed between the southern and northern European populations of *C. intestinalis* studied

485 here (F_{ST} up to 0.169). Lambert et al. (1990) and Malfant et al. (2018) performed experimental
486 crosses showing that hybridization between individuals of *C. intestinalis* and *C. roulei* is easy
487 to achieve, with no sign of outbreeding depression. In addition, mitochondrial sequencing
488 data showed that the two taxa display similar haplotypes (Malfant et al., 2018). Our results
489 agree with these previous studies suggesting that *C. roulei* is a divergent lineage of *C.*
490 *intestinalis*, likely trapped in cold waters of the northern Mediterranean Sea after post-glacial
491 warming, like other cold-adapted marine species (*Platichthys flesus*: Borsa, Blanquer, &
492 Berrebi, 1997; *Sprattus sprattus*: Debes, Zachos, Hanel, 2008; *Sagitta setosa*: Peijnenburg,
493 Fauvelot, Breeuwer, & Menken, 2006).

494

495 **Evidence for contemporary introgression of the native species by its introduced congener**

496 Our analyses also provide several novel results. We observed one peak of intra-specific
497 differentiation on chromosome 5 that corresponded to a decline of inter-specific
498 differentiation between sympatric populations of *C. robusta* and *C. intestinalis*. This decline
499 was only found in a subset of the populations located in the contact zone between the two
500 species, pointing toward an introgression from *C. robusta* into *C. intestinalis* populations. The
501 introgression was confirmed by the presence of long *C. robusta* ancestry tracts in some *C.*
502 *intestinalis* individuals sampled across the English Channel and Iroise Sea, and in the Rch site
503 in the Bay of Biscay. These long introgression tracts were primarily found on chromosome 5
504 between positions 0.38 to 2.32 Mb (Table S4), which we refer as an introgression hotspot.
505 Other long tracts were found on chromosome 5 outside the main introgression hotspot in a
506 three individuals from Rch and one from Cam. These other tracts close to the introgression
507 hotspot could be either due to independent introgression events or, more likely, to tracts that

508 hitchhiked with the introgression at the hotspot. This introgression restricted to a single
509 hotspot explains why it was missed in previous studies using fewer ancestry-informative SNPs
510 (Bouchemousse et al., 2016b,c). Marker density is thus a key to obtain evidence for very
511 localized introgression (Ravinet et al., 2018, Turissini & Matute, 2017, Stankowski et al., 2020).

512 *C. roulei* did not show long tracts of *C. robusta* ancestry in chromosome 5, but showed
513 two small tracks (<78kb) on chromosome 7 and 10, and signs of admixture with *C. robusta*
514 were spread across all chromosomes. This admixture pattern and the absence of long
515 haplotypes from *C. robusta* into *C. roulei* could suggest that the introgression between *C.*
516 *roulei* and *C. robusta* is ancient. Previous studies examining gene flow between *C. intestinalis*
517 and *C. robusta* have interpreted the patterns of allele sharing as a consequence of historical
518 rather than recent introgression (Bouchemousse et al., 2016c). The *C. roulei* samples
519 examined here could thus be another example of historical introgression. Alternatively, such
520 introgression could involve another species closely related to *C. robusta*, but present in the
521 Mediterranean Sea. Out of the 14 species currently accepted in the genus *Ciona* (Word
522 Register of Marine Species; <http://marinespecies.org/>), three other species not included in
523 this study have been reported in the Mediterranean Sea (*C. intermedia*, *Ciona* sp. C and *Ciona*
524 sp. D). Based on mitochondrial phylogeny, *Ciona* sp. C appears genetically close to *C. robusta*
525 (Mastrototaro et al., 2020). Thus, carrying out a genome-wide analysis on the *Ciona* taxa found
526 in the Mediterranean Sea is needed to confirm that the signs of admixture of *C. roulei* by *C.*
527 *robusta* are truly due to introgression with this latter species.

528

529

530

531 **Spatial and temporal dynamics of the introgression tracts**

532 The recent invasion of *C. robusta* into the English Channel (Nydam & Harrison,
533 2010), the absence of large introgression tracts outside of the contact zone including in pop-
534 ulations outside European Seas (Rek and Nah), the large size of the introgression tracts (>0.5
535 Mb) and the genetic similarity between introgressed tracts in *C. intestinalis* and *C. robusta*
536 haplotypes (Figure 3), all point toward a recent introgression event (i.e., post-dating the intro-
537 duction of *C. robusta* in Europe in the late 20th or early 21st centuries). Dating the age of an
538 introgression event is not easy to achieve when using genome reduction DNA sequencing
539 methods, such as ddRAD-sequencing. For instance, Shchur et al. (2020) provided a theoretical
540 framework for interpreting the timing of introgression, based on the distribution of genomic
541 admixture tract lengths, and including positive selection effects. However, the underlying as-
542 sumption of their method may not hold in our case. For example, the level of genome-wide
543 introgression should be sufficiently high to estimate the baseline neutral introgression rate,
544 while in our case it is around 0.1% on average (Fraisse et al., unpublished results), with little
545 tracts outside of the chromosome 5 hotspot. In addition, a single pulse of admixture is as-
546 sumed in these methods while multiple admixture events have likely happened in *C. intesti-*
547 *nalis*, as discussed below.

548 The localized pattern of long (0.84-1.24 Mb, Table S4), and thus likely young, tracts
549 of introgression in a single region of chromosome 5, and nowhere else in the genome, is
550 difficult to explain without invoking some sort of selection. Although a localized desert of
551 genes associated with low recombination rates can potentially produce this pattern, such
552 regions usually exist at several places of a genome. In addition, 21 genes are located in the

553 80kb tract shared by the most introgressed populations, from 0.81 to 0.88 Mb of chromosome
554 5 (listed in Table S5), which does not support the gene desert hypothesis. Moreover, the high
555 variation of *C. robusta* tract length in *C. intestinalis* suggests recombination is operating
556 efficiently on the introgression hotspot. In addition, the introgression is not fixed in any of the
557 study populations. Simple positive selection (adaptive introgression *sensu stricto*) also seems
558 unlikely to explain synchronous incomplete sweeps at many distant locations belonging to
559 different genetic clusters. Alternative selective scenarios therefore need to invoke other kind
560 of selection such as balancing selection, frequency dependence or heterosis. For instance, as
561 the two species studied here are highly divergent (12%, which translates into roughly 2,000
562 non-synonymous substitutions per Mb), introgression tracts may carry many mutations
563 affecting fitness. Theory predicts an intrinsic benefit of heterozygosity and a cost of admixture
564 (Schneemann, De Sanctis, Roze, Bierne, & Welch, 2020). Introgressed tracts might provide a
565 fitness advantage when heterozygous at the start of the introgression, through heterosis
566 effect, but a negative effect when frequent and homozygote in a *C. intestinalis* background.
567 Furthermore, the heterosis effect could vanish when long tracts are broken down by
568 recombination (Harris & Nielsen, 2016). Thus, the dynamic of the introgression might change
569 over time, with some haplotypes being first positively selected, and then counter selected as
570 soon as recombination broke the introgressed haplotypes into smaller pieces (Leitwein,
571 Duranton, Rougemont, Gagnaire, & Bernatchez, 2020). Examining changes in introgression
572 frequencies and distribution in time would allow to further investigate if selection is truly
573 acting on introgression tracts and continues to drive introgressed tracts to high frequency.
574 Genome sequencing will better delineate the heart of the introgression hotspot and allow to
575 identify candidate genes on the basis of their function.

576 The length of introgression tracts can be informative about the place where contact
577 happened, as it is inversely correlated to the distance from where the introgression first
578 occurred (Leitwein, Duranton, Rougemont, Gagnaire, & Bernatchez et al., 2020). This effect
579 was documented between the Atlantic and the Mediterranean lineages of European sea bass,
580 *Dicentrarchus labrax*, where the size of the Atlantic introgression tracts into the
581 Mediterranean population is proportionally reduced with the distance from the contact zone
582 between the two lineages, at the Almeria-Oran front (Duranton, Bonhomme, & Gagnaire,
583 2019). Building on these observations, it is noteworthy that the length of *C. robusta*
584 haplotypes in the genome of *C. intestinalis* individuals was generally larger in western UK (1.24
585 Mb in Brx, Table S4) than in other populations (e.g., ~0.5 Mb in Gpt/StM/MBI), suggesting that
586 introgression occurred there first. Interestingly, introgression was not found restricted to a
587 particular area and shows a chaotic spatial structure similar to what is observed genome wide
588 in our study, and in Hudson et al. (2016). Intra-specific gene flow promoted by human-
589 mediated transports, as previously suggested (Hudson et al., 2016), could explain the chaotic
590 dispersal of introgression tracts. In this context, introgression tracts could be a relevant tool
591 to identify recent human-mediated migration routes (Gagnaire et al., 2015). For instance,
592 while the population Jer seems genetically related to distant populations located in central-
593 eastern UK at the genome-wide level (Figure 2B), this population shares a lack of introgression
594 tracts with StM (Figure 3C), a population in close vicinity, and strongly connected through
595 leisure boating.

596 Another non mutually exclusive hypothesis might explain both the mosaic structure of
597 introgression and the variable size of introgression tracts: independent introgression events
598 occurring several times in different populations. For instance, the honey bee (*Apis mellifera*

599 *scutellata*) shows repeated introgressions from the African lineage into the European lineage
600 at one genomic location of the chromosome 1 in two hybrid zones that are localized more
601 than 5,000 kilometers apart (Calfee et al., 2020). Repeated adaptive introgression has been
602 also documented at a gene involved in insecticide resistance in the mosquito *Anopheles* spp.
603 (Weill et al., 2000; Norris et al., 2015) and in cotton bollworm *Helicoverpa* spp. (Valencia-
604 Montoya et al., 2020). Although *Ciona* species are much more divergent than any of the
605 examples presented above, the contact zones between *C. intestinalis* and *C. robusta* are not
606 restricted to a few localities, as they co-occurred in syntopy in several isolated harbors along
607 coastlines of Great-Britain and France, which increases the possibility of introgression. We
608 showed that one SNP distinguished two haplotypes of *C. robusta* found within *C. intestinalis*
609 individuals, suggesting that introgression from *C. robusta* into *C. intestinalis* could have
610 happened at least twice. This SNP was only carried by long introgressed tracts, and could be a
611 footprint of more recent introgression contributing to the twin peak of differentiation
612 observed in the surrounding of the main introgression hotspot between populations that carry
613 introgression tracts of variable size (Figure 5).

614 The possibility of repeated introgression events does not rule out the hypothesis of
615 intra-specific diffusion of the introgression, facilitated by human activities, and both
616 mechanisms might have jointly contributed to the current distribution of the introgression
617 tracts. Overall, our study shows that anthropogenic hybridization can be effective in
618 promoting gene flow between species even at late stage of speciation, contributing to the
619 population structure described among contemporary populations. Future work should focus
620 on complete genome sequencing, and temporal sampling of the introgressed populations.

621 **Acknowledgements**

622 The authors are grateful to Sarah Bouchemousse and Sabrina Le Cam for providing samples
623 from Iceland and Norway, and to Alan Brelsford and Pierre-Alexandre Gagnaire for providing
624 advices about ddRAD-sequencing and/or scripts for RAD-Seq analyses. The authors are also
625 most grateful to the Biogenouest Genomics core facility for their technical support, and from
626 the Biogenouest ABIMS Platform for softwares and bioinformatics tools set-up, and access to
627 computing resources. This work benefitted from funding of the French National Research
628 Agency (ANR) with regards the ANR Project HYSEA (no. ANR-12-BSV7-0011).

629 **Data Accessibility availability**

630 Data will be available upon publication: Trimmed fasta files will be made available in NCBI
631 deposit; the three filtered vcf files used for the fine-scale, large-scale, and introgression
632 analyses, respectively, as well as the R scripts for population genetics and the HMM analyses,
633 and the custom scripts for phylogenetic analyses will be made available on zenodo archives.

634 **Authors' contributions**

635 F.V. and N.B. designed the research. F.V. obtained the funding grants. C.D. and C.R. performed
636 the lab-work. C.R. performed the raw-data filtration. A.LM. performed the bio-informatics
637 analyses with advices from N.B. and C.F.. A.LM., N.B., C.F., and F.V. interpreted the data. A.LM.
638 and F.V. wrote the first-draft of the paper, with substantial inputs from N.B. and C.F.. All
639 authors revised and edited the final manuscript.

640 References

641 Borsa, P., Blanquer, A., & Berrebi, P. (1997). Genetic structure of the flounders *Platichthys flesus* and *P. stellatus*
642 at different geographic scales. *Marine Biology*, 129, 233–246. doi: 10.1007/s002270050164

643 Bouchemousse, S., Bishop, J.D.D., & Viard, F. (2016a). Contrasting global genetic patterns in two biologically
644 similar, widespread and invasive *Ciona* species (Tunicata, Ascidiacea). *Scientific reports*, 6, 24875. doi:
645 10.1038/srep24875

646 Bouchemousse, S., Lévéque, L., Dubois, G., & Viard, F. (2016b). Co-occurrence and reproductive synchrony do
647 not ensure hybridization between an alien tunicate and its interfertile native congener. *Ecology and*
648 *Evolution*, 30, 69–87. doi: 10.1007/s10682-015-9788-1

649 Bouchemousse, S., Lévéque, L. & Viard, F. (2017). Do settlement dynamics influence competitive interactions
650 between an alien tunicate and its native congener? *Ecology and Evolution*, 7, 200–213. doi:
651 10.1002/ece3.2655

652 Bouchemousse, S., Liautard-Haag, C., Bierne, N., & Viard, F. (2016c). Distinguishing contemporary hybridization
653 from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated *Ciona*
654 species. *Molecular Ecology*, 25, 5527–5542. doi: 10.1111/mec.13854

655 Brelsford, A., Dufresnes, C., & Perrin, N. (2016). High-density sex-specific linkage maps of a European tree frog
656 (*Hyla arborea*) identify the sex chromosome without information on offspring sex. *Heredity*, 116, 177–
657 181. doi: 10.1038/hdy.2015.83

658 Browning, S. R., & Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-data inference for
659 whole-genome association studies by use of localized haplotype clustering. *American Journal of Human*
660 *Genetics*, 81, 1084–1097. doi: 10.1086/521987

661 Brunetti, R., Gissi, C., Pennati, R., Caiucci, F., Gasparini, F., & Manni, L. (2015). Morphological evidence that the
662 molecularly determined *Ciona intestinalis* type A and type B are different species: *Ciona robusta* and
663 *Ciona intestinalis*. *Journal of Zoological Systematics and Evolutionary Research*, 53, 186–193. doi:
664 10.1111/jzs.12101

665 Calfee, E., Agra, M.N., Palacio, M.A., Ramírez, S.R., & Coop, G. (2020). Selection and hybridization shaped the
666 rapid spread of African honey bee ancestry in the Americas. *PLoS Genetics*, 16, e1009038. doi:
667 10.1371/journal.pgen.1009038

668 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., ... 1000 Genomes Project Analysis
669 Group (2011). The variant call format and VCFtools. *Bioinformatics*, 27, 2156–2158. doi:
670 10.1093/bioinformatics/btr330

671 Darling, J. A., & Carlton, J. T. (2018). A framework for understanding marine cosmopolitanism in the
672 Anthropocene. *Frontiers in Marine Science*, 5, 293. doi: 10.3389/fmars.2018.00293

673 Debes P.V., Zachos F.E., & Hanel, R. (2008). Mitochondrial phylogeography of the European sprat (*Sprattus*
674 *sprattus* L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and
675 range expansion in the northeast Atlantic. *Molecular Ecology*, 17, 3873–88. doi: 10.1111/j.1365-
676 294X.2008.03872.x.

677 Dehal, P., Satou, Y., Campbell, R.K., Chapman, J., Degenan, B., De Tomaso, A., ... Rokhsar, D.S. (2002). The draft
678 genome of *Ciona intestinalis*: insights into chordate and vertebrate origins. *Science*, 298, 2157–67. doi:
679 10.1126/science.1080049

680 Duranton, M., Bonhomme, F. & Gagnaire, P.-A. (2019). The spatial scale of dispersal revealed by admixture tracts.
681 *Evolutionary applications*, 12, 1743–1756. doi: 10.1111/eva.12829

682 Faust, E., Halvorsen, K. T., Andersen, P., Knutsen, H., & André, C. (2018). Cleaner fish escape salmon farms and
683 hybridize with local wrasse populations. *Royal Society Open Science*, 5, 171752. doi:
684 10.1098/rsos.171752

685 Firth, L. B., Knights, A. M., Bridger, D., Evans, A., Mieskowska, N., Moore, P. J., ... Hawkins, S. J. (2016). Ocean
686 sprawl: challenges and opportunities for biodiversity management in a changing world. *Oceanography*
687 and *Marine Biology: An Annual Review*, 54, 193–269. doi:10.1201/9781315368597

688 Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. *Methods in*
689 *Ecology and Evolution*, 6, 925–929. doi: 10.1111/2041-210X.12382

690 Gagnaire, P. A., Broquet, T., Aurelle, D., Viard, F., Souissi, A., Bonhomme, F., ... Bierne, N. (2015). Using neutral,
691 selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era.
692 *Evolutionary Applications*, 8, 769–786. doi: 10.1111/eva.12288

693 Gissi, C., Hastings, K.E.M., Gasparini, F., Stach, T., Pennati, R., & Manni, L. (2017). An unprecedented taxonomic
694 revision of a model organism: the paradigmatic case of *Ciona robusta* and *Ciona intestinalis*. *Zoologica
695 Scripta*, 46, 521–522. doi: 10.1111/zsc.12233

696 Gompert, Z., & Alex Buerkle, C. (2010). introgress: a software package for mapping components of isolation in
697 hybrids. *Molecular Ecology Resources*, 10, 378–384. doi: 10.1111/j.1755-0998.2009.02733.x

698 Grabenstein, K.C., & Taylor, S.A. (2018). Breaking barriers: causes, consequences, and experimental utility of
699 human-mediated hybridization. *Trends in Ecology & Evolution*, 33, 198–212. doi:
700 10.1016/j.tree.2017.12.008

701 Guzinski, J., Ballenghien, M., Daguin-Thiébaut, C., Lévêque, L., & Viard, F. (2018). Population genomics of the
702 introduced and cultivated Pacific kelp *Undaria pinnatifida*: Marinas-not farms-drive regional
703 connectivity and establishment in natural rocky reefs. *Evolutionary Applications*, 11, 1582–1597. doi:
704 10.1111/eva.12647

705 Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. *Genetics*, 203(2), 881–891. doi:
706 10.1534/genetics.116.186890

707 Hofer, T., Foll, M., & Excoffier, L. (2012). Evolutionary forces shaping genomic islands of population differentiation
708 in humans. *BMC genomics*, 13, 107. <https://doi.org/10.1186/1471-2164-13-107>

709 Hudson, J., Johannesson, K., McQuaid, C.D., & Rius, M. (2020). Secondary contacts and genetic admixture shape
710 colonization by an amphiatlantic epibenthic invertebrate. *Evolutionary Applications*, 13, 600–612. doi:
711 10.1111/eva.12893

712 Hudson, J., Viard, F., Roby, C., & Rius, M. (2016). Anthropogenic transport of species across native ranges:
713 unpredictable genetic and evolutionary consequences. *Biology Letters*, 12, 20160620. doi:
714 10.1098/rsbl.2016.0620

715 Hufbauer, R. A., Facon, B., Ravigné, V., Turgeon, J., Foucaud, J., Lee, C. E., Rey, O., & Estoup, A. (2012).
716 Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered
717 habitats within the native range can promote invasions. *Evolutionary Applications*, 5, 89–101. doi:
718 10.1111/j.1752-4571.2011.00211.x

719 Jeffery, N.W., DiBacco, C., Wringe, B.F., Stanley, R.R.E., Hamilton, L.C., Ravindran, P.N. & Bradbury, I.R. (2017).
720 Genomic evidence of hybridization between two independent invasions of European green crab
721 (*Carcinus maenas*) in the Northwest Atlantic. *Heredity*, 119, 154–165. doi: 10.1038/hdy.2017.22

722 Johannesson, K., Le Moan, A., Perini, S., & André, C. (2020). A Darwinian laboratory of multiple contact zones.
723 *Trends in Ecology & Evolution*, 35, 1021–1036. doi: 10.1016/j.tree.2020.07.015

724 Johannesson, K., Ring, A. K., Johannesson, K. B., Renborg, E., Jonsson, P. R., & Havenhand, J. N. (2018).
725 Oceanographic barriers to gene flow promote genetic subdivision of the tunicate *Ciona intestinalis* in a
726 North Sea archipelago. *Marine Biology*, 165, 126. doi: 10.1007/s00227-018-3388-x

727 Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data.
728 *Bioinformatics*, 27, 3070–3071. doi: 10.1093/bioinformatics/btr521

729 Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for
730 the analysis of genetically structured populations. *BMC Genetics*, 11, 94. doi: 10.1186/1471-2156-11-94

731 Lambert, C., Lafargue, F., & Lambert, G. (1990). Preliminary note on the genetic isolation of *Ciona* species
732 (Asciidiacea, Urochordata). *Vie et Milieu*, 40, 293–295. doi: hal-03036352

733 Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P. A., & Bernatchez, L. (2020). Using haplotype information
734 for conservation genomics. *Trends in Ecology & Evolution*, 35(3), 245–258. doi:
735 10.1016/j.tree.2019.10.012

736 Malfant, M., Coudret, J., Le Merdy, R. & Viard, F. (2017). Effects of temperature and salinity on juveniles of two
737 ascidians, one native and one invasive, and their hybrids. *Journal of Experimental Marine Biology and
738 Ecology*, 497, 180–187. doi: 10.1016/j.jembe.2017.09.019

739 Malfant, M., Darras, S., & Viard, F. (2018). Coupling molecular data and experimental crosses sheds light about
740 species delineation: a case study with the genus *Ciona*. *Scientific Reports*, 8, 1480. doi: 10.1038/s41598-
741 018-19811-2

742 Mastrototaro, F., Montesanto, F., Salonna, M., Viard, F., Chimienti, G., Trainito, E., & Gissi, C. (2020). An
743 integrative taxonomic framework for the study of the genus *Ciona* (Asciidiacea) and description of a new
744 species, *Ciona intermedia*. *Zoological Journal of the Linnean Society*, 190, 1193–1216. doi:
745 10.1093/zoolinnean/zlaa042

746 Marques, D. A., Lucek, K., Haesler, M. P., Feller, A. F., Meier, J. I., Wagner, C. E., Excoffier, L., & Seehausen, O.
747 (2017). Genomic landscape of early ecological speciation initiated by selection on nuptial colour.
748 *Molecular ecology*, 26(1), 7–24. <https://doi.org/10.1111/mec.13774>

749 Turissini, D. A., & Matute, D. R. (2017). Fine scale mapping of genomic introgressions within the *Drosophila*
750 *yakuba* clade. *PLoS Genetics*, 13, e1006971. doi: 10.1371/journal.pgen.1006971

751 McFarlane, S. E., & Pemberton, J. M. (2019). Detecting the true extent of introgression during anthropogenic
752 hybridization. *Trends in Ecology & Evolution*, 34, 315–326. doi: 10.1016/j.tree.2018.12.013

753 Norris, L. C., Main, B. J., Lee, Y., Collier, T. C., Fofana, A., Cornel, A. J., & Lanzaro, G. C. (2015). Adaptive
754 introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated
755 bed nets. *Proceedings of the National Academy of Sciences of the United States of America*, 112, 815–
756 820. doi: 10.1073/pnas.1418892112

757 Nydam, M. L., & Harrison, R. G. (2010). Polymorphism and divergence within the ascidian genus *Ciona*. *Molecular*
758 *Phylogenetics and Evolution*, 56, 718–726. doi: 10.1016/j.ympev.2010.03.042

759 Peijnenburg K.T., Fauvelot C., Breeuwer J.A., & Menken, S.B. (2006). Spatial and temporal genetic structure of
760 the planktonic *Sagitta setosa* (Chaetognatha) in European seas as revealed by mitochondrial and nuclear
761 DNA markers. *Molecular Ecology*, 15, 3319–38. doi: 10.1111/j.1365-294X.2006.03002.x.

762 Pembleton, L. W., Cogan, N. O., & Forster, J. W. (2013). StAMPP: An R package for calculation of genetic
763 differentiation and structure of mixed-ploidy level populations. *Molecular Ecology Resources*, 13, 946–
764 952. doi: 10.1111/1755-0998.12129

765 Popovic, I., Matias, A.M.A., Bierne, N., & Riginos, C. (2020). Twin introductions by independent invader mussel
766 lineages are both associated with recent admixture with a native congener in Australia. *Evolutionary*
767 *Applications*, 13, 515–532. doi: 10.1111/eva.12857

768 Pringle, J. M., Blakeslee, A. M., Byers, J. E., & Roman, J. (2011). Asymmetric dispersal allows an upstream region
769 to control population structure throughout a species' range. *Proceedings of the National Academy of*
770 *Sciences of the United States of America*, 108, 15288–15293. doi: 10.1073/pnas.1100473108

771 Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: a RADseq, variant-calling pipeline designed for
772 population genomics of non-model organisms. *PeerJ*, 2, e431. <https://doi.org/10.7717/peerj.431>

773 Ravinet, M., Yoshida, K., Shigenobu, S., Toyoda, A., Fujiyama, A., & Kitano, J. (2018). The genomic landscape at a
774 late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of
775 introgression. *PLoS Genetics*, 14, e1007358. doi: journal.pgen.1007358

776 Rochette, N.C., Rivera-Colón, A.G., & Catchen, J.M. (2019). Stacks 2: Analytical methods for paired-end
777 sequencing improve RADseq-based population genomics. *Molecular Ecology*, 28, 4737–4754. doi:
778 10.1111/mec.15253

779 Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding light on the grey zone of
780 speciation along a continuum of genomic divergence. *PLoS Biology*, 14, e2000234. doi:
781 10.1371/journal.pbio.2000234

782 Roux, C., Tsagkogeorga, G., Bierne, N., & Galtier, N. (2013). Crossing the species barrier: genomic hotspots of
783 introgression between two highly divergent *Ciona intestinalis* species. *Molecular Biology and Evolution*,
784 30, 1574–1587. doi: 10.1093/molbev/mst066

785 Shchur, V., Svedberg, J., Medina, P., Corbett-Detig, R., & Nielsen, R. (2020). On the Distribution of Tract Lengths
786 During Adaptive Introgression. *G3: Genes|Genomes|Genetics*, 10(10), 3663–3673.
787 doi:10.1534/g3.120.401616

788 Schliep, K.P. (2011). phangorn: phylogenetic analysis in R. *Bioinformatics*, 27, 592–593. doi:
789 10.1093/bioinformatics/btq706

790 Schneemann, H., De Sanctis, B., Roze, D., Bierne, N. & Welch, J.J. (2020). The geometry and genetics of
791 hybridization. *Evolution*, 74, 2575–2590. doi: 10.1111/evo.14116

792 Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., ... Essl, F. (2017). No saturation
793 in the accumulation of alien species worldwide. *Nature Communications*, 8, 14435. doi:
794 10.1038/ncomms14435

795 Shi, Y., Bouska, K. L., McKinney, G. J., Dokai, W., Bartels, A., McPhee, M. V., & Larson, W. A. (2021). Gene flow
796 influences the genomic architecture of local adaptation in six riverine fish species. *BioRxiv*. doi:
797 10.1101/2021.05.18.444736

798 Simon, A., Arbiol, C., Nielsen, E.E., Couteau, J., Sussarellu, R., Burgeot, T., ... Bierne, N. (2020). Replicated
799 anthropogenic hybridizations reveal parallel patterns of admixture in marine mussels. *Evolutionary*
800 *Applications*, 13, 575–599. doi: 10.1111/eva.12879

801 Simon, A., Fraïsse, C., El Ayari, T., Liautard-Haag, C., Strelkov, P., Welch, J. J., & Bierne, N. (2021). How do species
802 barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. *Journal of*
803 *Evolutionary Biology*, 34, 208– 223. doi: 10.1111/jeb.13709

804 Soria-Carrasco, V., Gompert, Z., Comeault, A. A., Farkas, T. E., Parchman, T. L., Johnston, J. S., Buerkle, C. A., Feder,
805 J. L., Bast, J., Schwander, T., Egan, S. P., Crespi, B. J., & Nosil, P. (2014). Stick insect genomes reveal
806 natural selection's role in parallel speciation. *Science*, 344(6185), 738–742. doi:
807 10.1126/science.1252136

808 Stankowski, S., Westram, A. M., Zagrodzka, Z. B., Eyres, I., Broquet, T., Johannesson, K., & Butlin, R. K. (2020). The
809 evolution of strong reproductive isolation between sympatric intertidal snails. *Philosophical*
810 *Transactions of the Royal Society of London. Series B, Biological sciences*, 375, 20190545. doi:
811 10.1098/rstb.2019.0545.

812 Stanley, R., DiBacco, C., Lowen, B., Beiko, R. G., Jeffery, N. W., Van Wyngaarden, ... Bradbury, I. R. (2018). A
813 climate-associated multispecies cryptic cline in the northwest Atlantic. *Science Advances*, 4, eaao929.
814 doi: 10.1126/sciadv.aao929

815 Turissini, D. A., & Matute, D. R. (2017). Fine scale mapping of genomic introgressions within the *Drosophila*
816 *yakuba* clade. *PLoS Genetics*, 13, e1006971. doi: 10.1371/journal.pgen.1006971

817 Valencia-Montoya, W. A., Elfekih, S., North, H. L., Meier, J. I., Warren, I. A., Tay, W. T., Gordon, K., Specht, A.,
818 Paula-Moraes, S. V., Rane, R., Walsh, T. K., & Jiggins, C. D. (2020). Adaptive introgression across
819 semipermeable species boundaries between local *Helicoverpa zea* and invasive *Helicoverpa armigera*
820 moths. *Molecular biology and evolution*, 37, 2568–2583. doi: 10.1093/molbev/msaa108

821 Viard, F., David, P. & Darling, J. (2016). Marine invasions enter the genomic era: Three lessons from the past, and
822 the way forward. *Current Zoology*, 62, 629-642. doi: 10.1093/cz/zow053

823 Viard, F., Riginos, C., & Bierne, N. (2020). Anthropogenic hybridization at sea: Three evolutionary questions
824 relevant to invasive species management. *Philosophical Transactions of the Royal Society of London.*
825 *Series B, Biological sciences*, 375, 20190547. doi: 10.1098/rstb.2019.0547

826 Weill, M., Chandre, F., Brengues, C., Manguin, S., Akogbeto, M., Pasteur, N., Guillet, P., & Raymond, M. (2000).
827 The kdr mutation occurs in the Mopti form of *Anopheles gambiae* s.s. through introgression. *Insect*
828 *Molecular Biology*, 9, 451–455. doi: 10.1046/j.1365-2583.2000.00206.x

829 Weir, B.S., & Cockerham, C.C. (1984). Estimating F-Statistics for the analysis of population structure. *Evolution*,
830 38, 1358–1370. doi: 10.2307/2408641

831 Wickham, H. (2011). *ggplot2*. *WIREs Computational Statistics*, 3, 180–185. doi: 10.1002/wics.147

832 Zhan, A., Macisaac, H.J., & Cristescu, M.E. (2010). Invasion genetics of the *Ciona intestinalis* species complex:
833 from regional endemism to global homogeneity. *Molecular Ecology*, 19, 4678–4694. doi:
834 10.1111/j.1365-294X.2010.04837.x

Supplemental Information for:

An introgression breakthrough left by an anthropogenic contact between two ascidians

Alan Le Moan, Charlotte Roby, Christelle Fraisse, Claire Daguin-Thiébaut, Nicolas Bierne,
Frédérique Viard

Table of Contents:

Table S1	Page 2-3
Table S2	Page 4
Table S3	Page 5
Table S4	Page 6-7
Table S5	Page 8
Figure S1	Page 9
Figure S2	Page 10
Figure S3	Page 11
Figure S4	Page 12
Figure S5	Page 13
Figure S6	Page 14

Table S1: Sampling sites and samples used in the different dataset.

For each species, sampling sites (region/sub-region/locality) are indicated with the code associated to each locality, the type of habitat where sampling was made, the species status (native, introduced or cryptogenic), the number of individuals collected, the dataset in which the sampling site was included. “*” in the code column indicates localities which have been examined by mitochondrial sequencing by Bouchemousse et al. (2016a). The Jersey site was collected as part of the study made by Hudson et al. (2016). All the individuals were sampled in marinas from the surface or by diving, except *C. intestinalis* from Gullmar Fjord (Sweden) sampled in natural habitats by diving, and *C. roulei* sampled by diving or trawling in natural habitats but with specimens most often found on artificial substrates, such as tires or watering cans.

Region	Sub-region	Locality	Habitat	Status	Code	N _{ind}	Dataset		
							1- fine scale	2- large scale	3- introgression
<i>Ciona intestinalis</i>									
North Eastern Atlantic	Iceland	Reykjavik, Ic	harbour	Cryptogenic	Rek	2	x	x	
	North Sea	Trondheim, Nw	harbour	Native	Tro	16	x	x	
		Grundsund, Sw	harbour	Native	Gru*	16	x	x	
		Gullmar Fjord, Sw	natural - deep	Native	Gul*	16	x	x	
	English Channel	Jersey, UK	harbour	Native	Jer	16	x		x
		Brighton, UK	harbour	Native	Bri*	17	x		x
		Brixham, UK	harbour	Native	Brx*	16	x		x
		Gosport, UK	harbour	Native	Gpt*	14	x		x
		Plymouth, UK	harbour	Native	Ply*	16	x	x	x
		Poole, UK	harbour	Native	Poo*	16	x		x
		Shoreham, UK	harbour	Native	Sho*	16	x		x
		Southampton, UK	harbour	Native	Sth*	16	x	x	x
		Saint-Vaast, Fr	harbour	Native	Vaa*	15	x		x
		Saint-Malo, Fr	harbour	Native	StM*	15	x		x
		Perros-Guirec, Fr	harbour	Native	Per*	16	x		x
		Bloscon, Roscoff, Fr	harbour	Native	Blo*	16	x		x

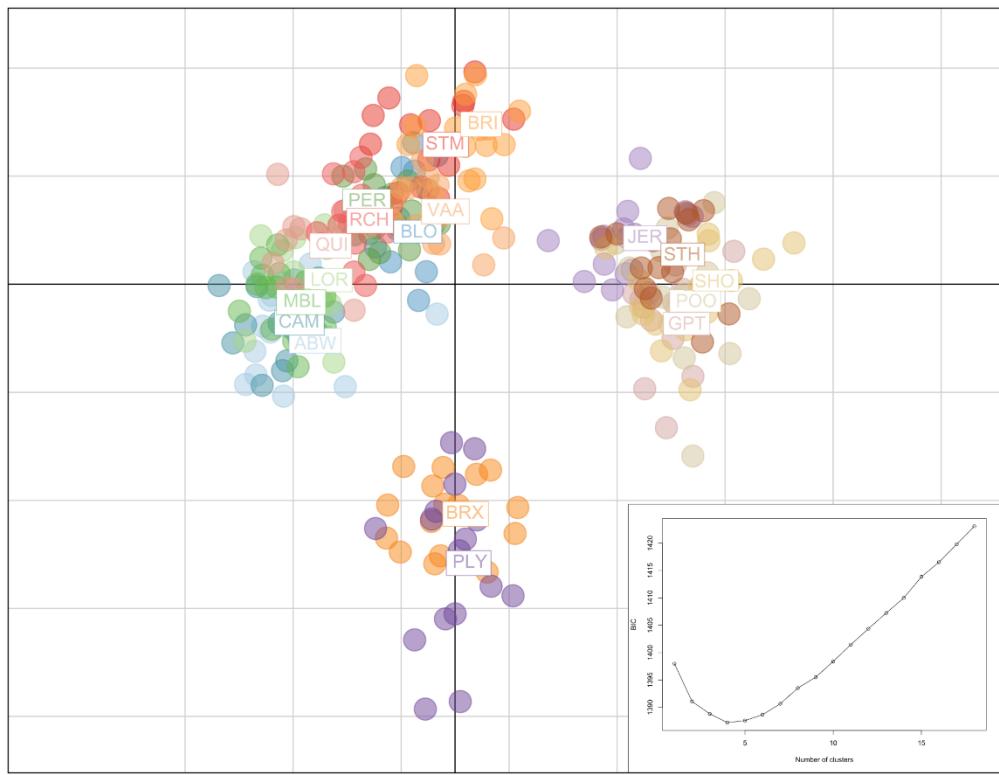
		Aber Wrach, Fr	harbour	Native	AbW*	16	x	x	x
	Iroise Sea	Moulin Blanc, Fr	harbour	Native	MBI*	16	x		x
		Camaret, Fr	harbour	Native	Cam*	16	x		x
	Bay of Biscay	Lorient, Fr	harbour	Native	Lor*	15	x		x
		Quiberon, Fr	harbour	Native	Qui*	13	x		x
		La Rochelle, Fr	harbour	Native	Rch*	15	x	x	x
North Western Atlantic	Gulf of Maine	Nahant, US	harbour	Cryptogenic	Nah*	16		x	x
<i>Ciona roulei</i>									
Mediterranean Sea	Gulf of Lion	Banyuls, Fr	shallow	Native	C.rou.	19		x	x
<i>Ciona robusta</i>									
Mediterranean Sea	Gulf of Lion	Sète, Fr	harbour	Introduced	C.rob.S	16		x	x
North Western Atlantic	Iroise Sea	Moulin Blanc, Fr	harbour	Introduced	C.rob.B	16		x	x

Table S2: Pairwise F_{ST} between populations from the fine scale analyses (bellow the diagonal) with estimates of 95% confidence interval (above the diagonal), non-significant value of F_{ST} after Bonferroni correction are highlighted in bold.

	Vaa	StM	Per	Blo	AbW	MBI	Cam	Jer	Bri	Sho	Gpt	Sth	Poo	Brx	Ply	Lor	Qui	
Vaa	-	[0.012- 0.017]	[0.008- 0.013]	[0.009- 0.014]	[0.008- 0.013]	[0.011- 0.016]	[0.009- 0.015]	[0.009- 0.014]	[0.006- 0.012]	[0.013- 0.019]	[0.016- 0.023]	[0.011- 0.017]	[0.014- 0.019]	[0.012- 0.019]	[0.018- 0.025]	[0.007- 0.012]	[0.010- 0.016]	
StM	0.015	-	[0.014- 0.020]	[0.002- 0.007]	[0.017- 0.023]	[0.019- 0.025]	[0.018- 0.024]	[0.016- 0.022]	[0.010- 0.016]	[0.020- 0.027]	[0.019- 0.026]	[0.019- 0.025]	[0.021- 0.028]	[0.020- 0.026]	[0.023- 0.031]	[0.015- 0.022]	[0.016- 0.023]	
Per	0.010	0.017	-	[0.010- 0.016]	[0.011- 0.015]	[0.010- 0.017]	[0.010- 0.015]	[0.013- 0.019]	[0.004- 0.009]	[0.018- 0.025]	[0.018- 0.024]	[0.017- 0.023]	[0.019- 0.025]	[0.014- 0.020]	[0.019- 0.026]	[0.008- 0.014]	[0.011- 0.017]	
Blo	0.012	0.005	0.013	-	[0.011- 0.016]	[0.012- 0.018]	[0.010- 0.015]	[0.014- 0.020]	[0.010- 0.016]	[0.017- 0.023]	[0.017- 0.023]	[0.015- 0.021]	[0.016- 0.022]	[0.013- 0.018]	[0.016- 0.022]	[0.010- 0.015]	[0.009- 0.014]	
AbW	0.011	0.020	0.012	0.014	-	[-0.001 - 0.003]	[-0.001 - 0.003]	[0.018- 0.024]	[0.014- 0.019]	[0.022- 0.029]	[0.021- 0.027]	[0.020- 0.027]	[0.021- 0.028]	[0.011- 0.016]	[0.015- 0.022]	[0.002- 0.007]	[0.004- 0.010]	
MBI	0.013	0.022	0.014	0.015	0.001	-	[-0.001 - 0.003]	[0.019- 0.026]	[0.014- 0.020]	[0.023- 0.030]	[0.021- 0.028]	[0.020- 0.027]	[0.022- 0.028]	[0.013- 0.019]	[0.020- 0.027]	[0.001 - 0.005]	[0.005- 0.010]	
Cam	0.012	0.021	0.012	0.012	0.001	0.001	-	[0.019- 0.025]	[0.013- 0.019]	[0.022- 0.029]	[0.019- 0.025]	[0.019- 0.027]	[0.020- 0.027]	[0.022- 0.029]	[0.011- 0.017]	[0.016- 0.023]	[0.001 - 0.006]	[0.004- 0.010]
Jer	0.012	0.019	0.016	0.017	0.021	0.023	0.022	-	[0.009- 0.014]	[0.004- 0.008]	[0.005- 0.009]	[0.003- 0.007]	[0.002- 0.007]	[0.015- 0.021]	[0.014- 0.019]	[0.018- 0.021]	[0.015- 0.025]	[0.016- 0.022]
Bri	0.009	0.013	0.007	0.013	0.016	0.017	0.016	0.011	-	[0.015- 0.021]	[0.014- 0.020]	[0.010- 0.016]	[0.014- 0.019]	[0.016- 0.022]	[0.022- 0.029]	[0.010- 0.016]	[0.012- 0.018]	
Sho	0.016	0.024	0.022	0.020	0.025	0.027	0.025	0.006	0.018	-	[0.000 - 0.004]	[0.001 - 0.004]	[0.002 - 0.004]	[0.016- 0.022]	[0.020- 0.027]	[0.021- 0.028]	[0.024- 0.031]	
Gpt	0.019	0.023	0.021	0.020	0.024	0.024	0.022	0.007	0.017	0.002	-	[0.001 - 0.005]	[0.001 - 0.005]	[0.014- 0.020]	[0.018- 0.025]	[0.018- 0.024]	[0.022- 0.029]	
Sth	0.014	0.022	0.020	0.018	0.023	0.024	0.023	0.005	0.013	0.002	0.003	-	[0.000 - 0.004]	[0.015- 0.022]	[0.020- 0.028]	[0.018- 0.025]	[0.018- 0.025]	
Poo	0.016	0.025	0.022	0.019	0.025	0.025	0.025	0.005	0.017	0.002	0.003	0.002	-	[0.015- 0.021]	[0.019- 0.027]	[0.018- 0.025]	[0.021- 0.028]	
Brx	0.015	0.023	0.017	0.015	0.013	0.016	0.014	0.018	0.019	0.019	0.017	0.018	0.018	-	[0.002- 0.007]	[0.012- 0.018]	[0.015- 0.022]	
Ply	0.021	0.027	0.022	0.019	0.019	0.023	0.019	0.022	0.025	0.023	0.022	0.024	0.023	0.005	-	[0.017- 0.024]	[0.019- 0.028]	
Lor	0.009	0.018	0.011	0.013	0.005	0.003	0.003	0.019	0.013	0.024	0.021	0.022	0.021	0.015	0.021	-	[0.003- 0.008]	
Qui	0.013	0.019	0.014	0.011	0.007	0.007	0.007	0.019	0.015	0.027	0.025	0.022	0.024	0.019	0.023	0.005	-	

Table S3: Pairwise F_{ST} between populations from the large scale analyses (bellow the diagonal) with estimates of 95% confidence interval (above the diagonal), the non-significant value of F_{ST} after Bonferroni correction are highlighted in bold.

	Nah	Rek	Tro	Gul	Gru	AbW	Sth	Ply	Rch	C.rou.	C.rob.S.	C.rob.B.
Nah	-	[0.041- 0.066]	[0.102- 0.118]	[0.143- 0.164]	[0.130- 0.150]	[0.029- 0.038]	[0.038- 0.048]	[0.042- 0.053]	[0.038- 0.047]	[0.075- 0.091]	[0.777- 0.796]	[0.777- 0.795]
Rek	0.054	-	[0.104- 0.132]	[0.160- 0.193]	[0.139- 0.172]	[0.012- 0.036]	[0.005- 0.027]	[0.019- 0.042]	[0.014- 0.039]	[0.051- 0.077]	[0.913- 0.926]	[0.911- 0.924]
Tro	0.110	0.118	-	[0.158- 0.179]	[0.145- 0.166]	[0.089- 0.104]	[0.091- 0.106]	[0.095- 0.110]	[0.091- 0.107]	[0.110- 0.128]	[0.790- 0.808]	[0.790- 0.808]
Gul	0.154	0.176	0.169	-	[0.157- 0.179]	[0.130- 0.151]	[0.133- 0.153]	[0.141- 0.162]	[0.133- 0.154]	[0.155- 0.177]	[0.805- 0.822]	[0.805- 0.822]
Gru	0.140	0.156	0.155	0.168	-	[0.124- 0.145]	[0.121- 0.141]	[0.128- 0.148]	[0.128- 0.149]	[0.146- 0.168]	[0.800- 0.818]	[0.800- 0.817]
AbW	0.033	0.024	0.097	0.141	0.134	-	[0.017- 0.024]	[0.016- 0.024]	[0.062- 0.077]	[0.774- 0.792]	[0.773- 0.792]	
Sth	0.043	0.016	0.099	0.143	0.131	0.020	-	[0.021- 0.030]	[0.020- 0.027]	[0.063- 0.077]	[0.772- 0.791]	[0.772- 0.790]
Ply	0.047	0.030	0.102	0.151	0.138	0.020	0.026	-	[0.024- 0.034]	[0.067- 0.083]	[0.771- 0.789]	[0.771- 0.789]
Rch	0.043	0.026	0.099	0.144	0.138	0.013	0.024	0.029	-	[0.062- 0.076]	[0.781- 0.798]	[0.780- 0.798]
C.rou.	0.083	0.064	0.119	0.166	0.157	0.070	0.070	0.075	0.069	-	[0.751- 0.769]	[0.751- 0.769]
C.rob.S.	0.787	0.919	0.800	0.814	0.809	0.783	0.782	0.781	0.790	0.760	-	[0.003- 0.022]
C.rob.B.	0.787	0.918	0.799	0.814	0.809	0.783	0.781	0.780	0.790	0.760	0.012	-


Table S4: Detection and classification of introgression hotspot from *C.robusta* into *C.intestinalis* by the Hidden Markov Model (Hufbauer et al., 2012). In order of appearance, the table shows the populations and the chromosomes where introgression hotspots were detected, the differentiation level assigned to the hotspots (“low” = region with at least 4 SNPs with an F_{ST} value distributed around the 5% lower quantile, and “intermediate” = regions with at least 10 SNPs with an F_{ST} value distributed around the 15% lower quantile, and “pooled” = consecutive regions of “low” and “intermediate” differentiation pooled together), the first base pair of the hotspots, the last base pair of the hotspots, the size of the hotspots and the number of SNPs within hotspots.

Population	Chromosome	Differentiation*	hotspot start	hotspot end	tract size	SNPs
Gpt	chromosome5	low	800297	957012	156715	16
	chromosome5	intermediate	661065	800297	139232	13
	chromosome5	intermediate	957012	1174846	217834	12
	chromosome5	intermediate	1292432	1458154	165722	20
	chromosome5	intermediate	1533371	1582348	48977	14
	chromosome5	pooled	661065	1174846	513781	41
	chromosome5	pooled	1292432	1458154	165722	20
	chromosome5	pooled	1533371	1582348	48977	14
Sho	chromosome5	low	809214	881557	72343	5
	chromosome5	intermediate	661065	809214	148149	15
	chromosome5	pooled	661065	957012	295947	29
Sth	chromosome5	intermediate	661065	1174846	513781	41
	chromosome5	pooled	661065	1174846	513781	41
Brx	chromosome5	low	682498	1174846	492348	39
	chromosome5	low	1361967	1582481	220514	31
	chromosome5	intermediate	1758978	1917434	158456	16
	chromosome5	pooled	377321	1623571	1246250	103
	chromosome5	pooled	1758978	1917434	158456	16
Ply	chromosome5	low	723971	942587	218616	25
	chromosome5	intermediate	942587	1174846	232259	13
	chromosome5	intermediate	1292431	1458154	165723	19
	chromosome5	intermediate	1533371	1582348	48977	14
	chromosome5	intermediate	1758978	1917434	158456	16
	chromosome5	intermediate	1985795	2043869	58074	11
	chromosome5	intermediate	2221365	2373946	152581	13
	chromosome5	pooled	682498	1174846	492348	39
	chromosome5	pooled	1292431	1458154	165723	19
	chromosome5	pooled	1533371	1582348	48977	14
Per	chromosome5	pooled	1758978	1917434	158456	16
	chromosome5	pooled	1985795	2043869	58074	11
	chromosome5	pooled	2221365	2373946	152581	13
	chromosome5	intermediate	429050	1115054	686004	51
	chromosome5	pooled	429050	1115054	686004	51
AbW	chromosome5	low	661065	957012	295947	29
	chromosome5	intermediate	957012	1174846	217834	12
	chromosome5	intermediate	1292432	1388526	96094	14

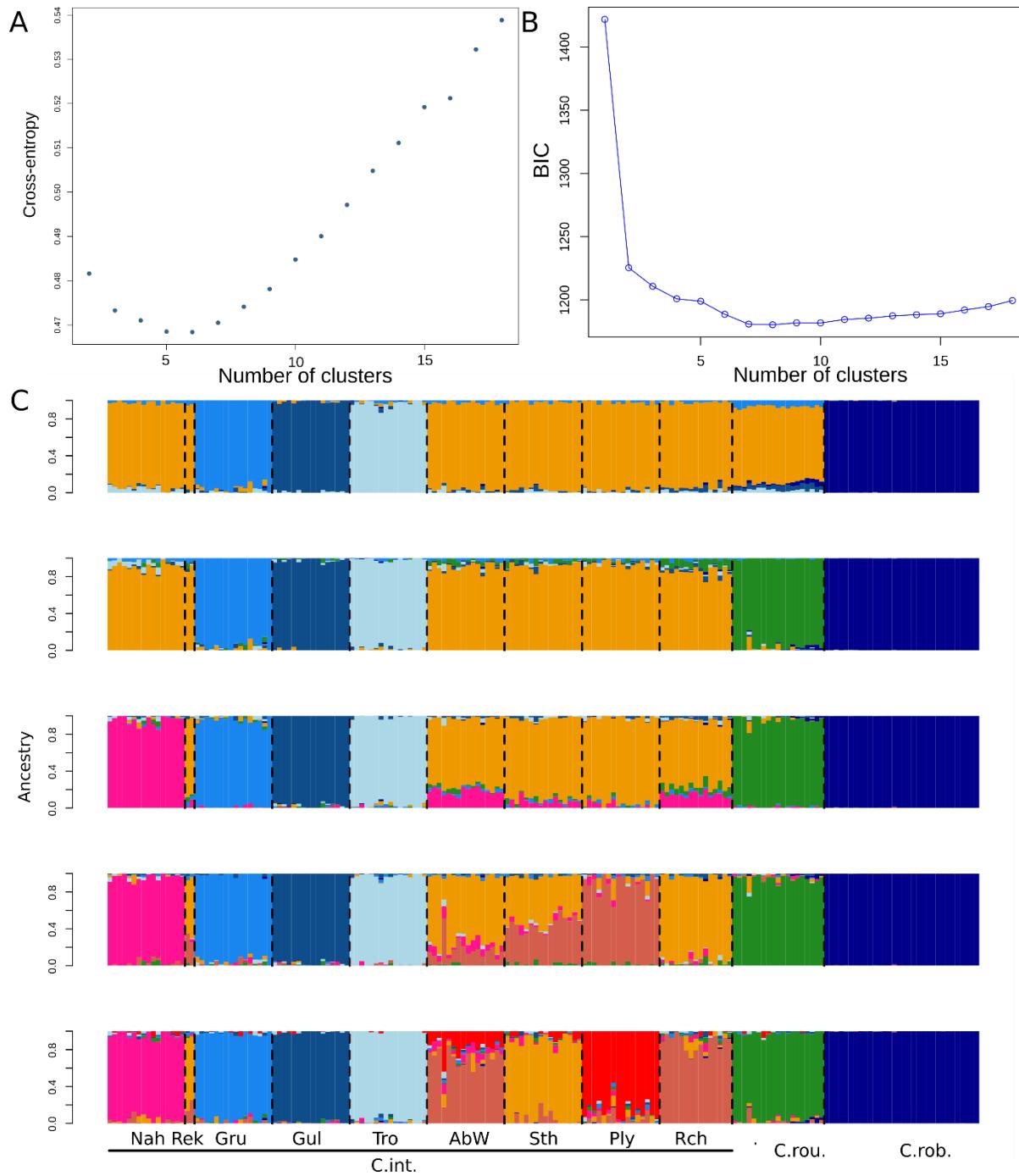
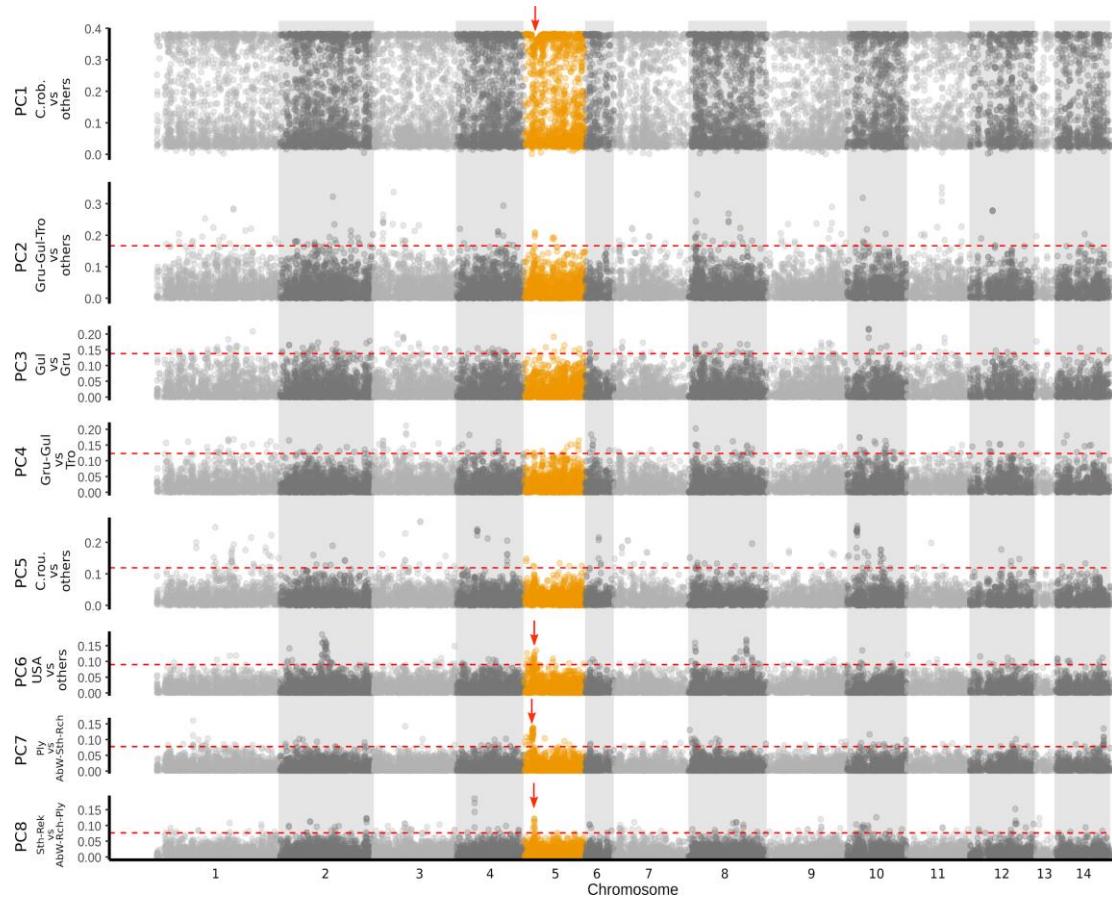
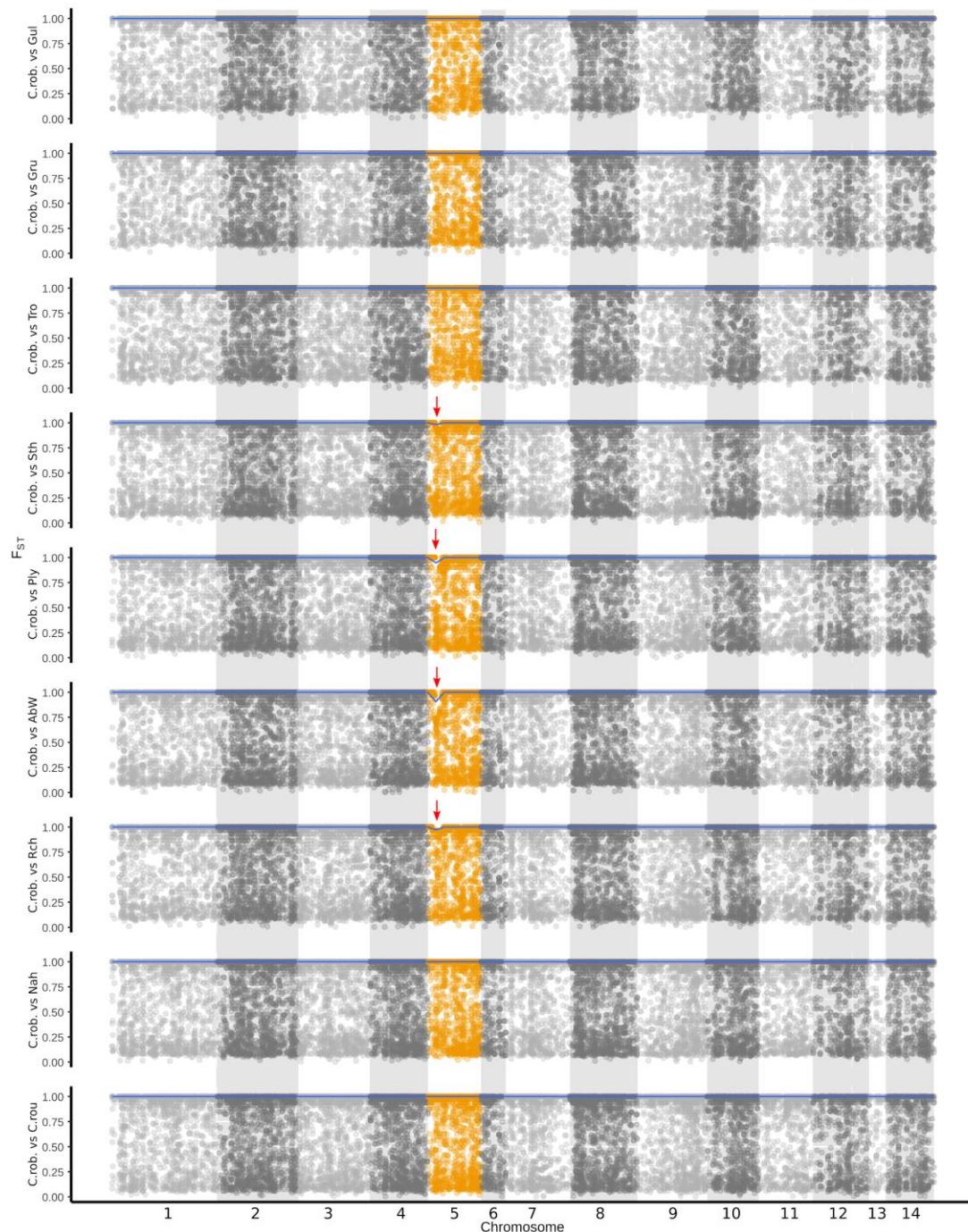
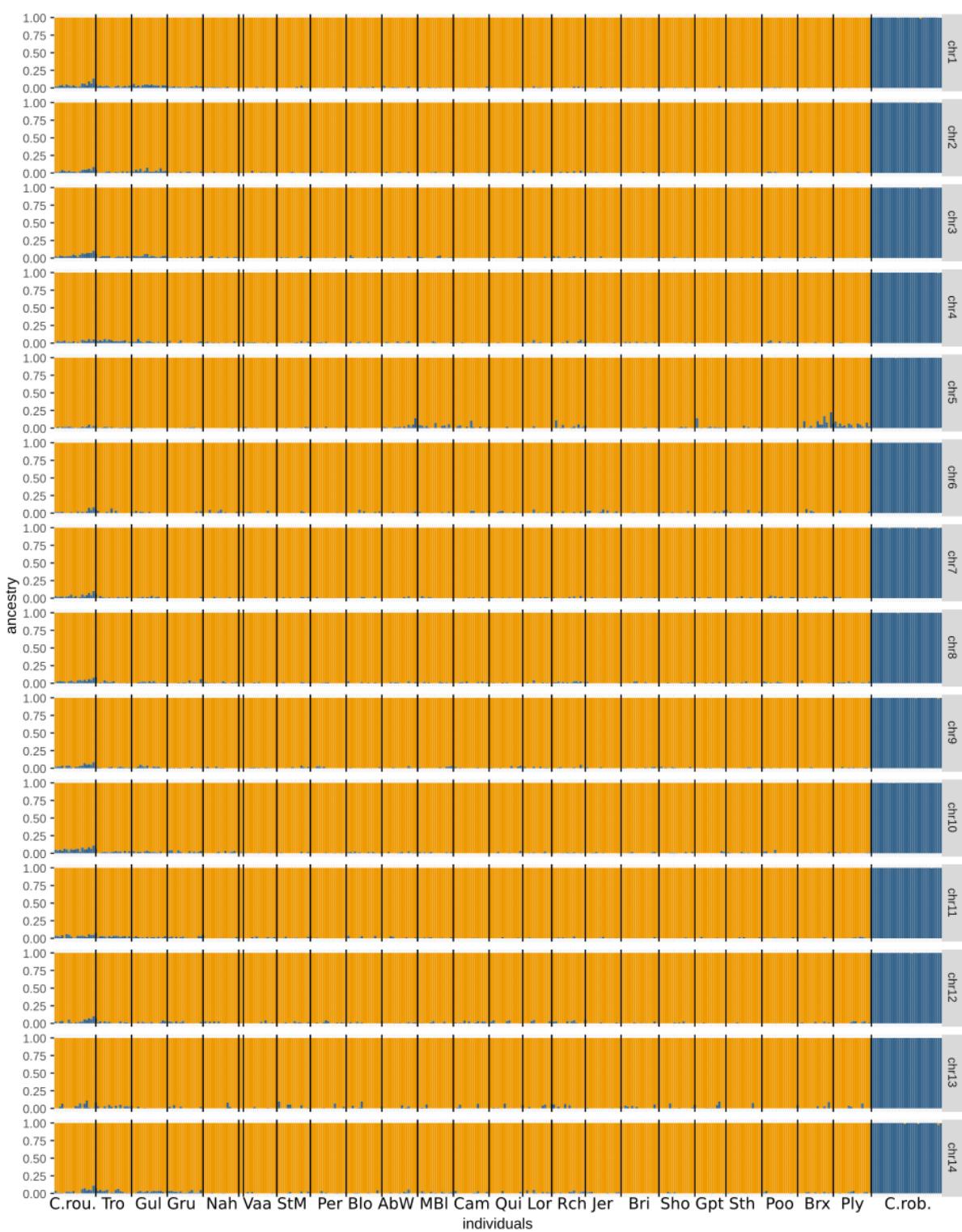

	chromosome5	intermediate	1533371	1582348	48977	14
	chromosome5	pooled	657969	1174846	516877	46
	chromosome5	pooled	1292432	1388526	96094	14
	chromosome5	pooled	1533371	1582348	48977	14
MBI	chromosome5	low	661065	910363	249298	22
	chromosome5	intermediate	429050	661065	232015	11
	chromosome5	intermediate	910363	1174846	264483	19
	chromosome5	pooled	429050	1174846	745796	52
Cam	chromosome5	low	682498	942587	260089	26
	chromosome5	intermediate	381258	682498	301240	18
	chromosome5	intermediate	942587	1174846	232259	13
	chromosome5	intermediate	2472440	2543497	71057	13
	chromosome5	pooled	381258	1174846	793588	57
	chromosome5	pooled	2422432	2543497	121065	20
Rch	chromosome5	low	809214	910363	101149	7
	chromosome5	intermediate	381258	809214	427956	31
	chromosome5	intermediate	910363	1458154	547791	40
	chromosome5	intermediate	2836829	2965726	128897	23
	chromosome5	intermediate	3009660	3324463	314803	37
	chromosome5	pooled	381258	1458154	1076896	78
	chromosome5	pooled	2836829	2965726	128897	23
	chromosome5	pooled	3009660	3324463	314803	37
Crou	chromosome10	low	757781	822614	64833	6
	chromosome7	intermediate	4175485	4215530	40045	12
	chromosome10	pooled	745167	822498	77331	16
	chromosome7	pooled	4175485	4215530	40045	12

Table S5: list of the 21 gene localized within the center of the introgression hotspot, i.e. regions constantly found across all the regions of low differentiation in the HMM analyses (see Table S4), from 0.81 to 0.88Mbp of chromosome 5.


Gene name	start	end	Gene ID
UNKNOWN	812974	816156	ENSCING00000019603
UNKNOWN	818806	819703	ENSCING00000022334
UNKNOWN	819866	822478	ENSCING00000022641
UNKNOWN	823590	824220	ENSCING00000024967
MITOTIC CHECKPOINT BUB3	825243	828547	ENSCING00000009630
UNKNOWN	828909	830017	ENSCING00000020450
UNKNOWN	831653	833165	ENSCING00000018175
UNKNOWN	833867	836249	ENSCING00000012290
DNA REPLICATION COMPLEX GINS SLD5 GINS COMPLEX SUBUNIT 4	836023	839508	ENSCING00000012292
UNKNOWN	838055	839147	ENSCING00000019815
UNKNOWN	840497	843161	ENSCING00000012291
UNKNOWN	843464	846351	ENSCING00000009631
ALPHA AMINOADIPIC SEMIALDEHYDE SYNTHASE MITOCHONDRIAL PRECURSOR LKR/SDH	848755	851281	ENSCING00000022393
CYTOCHROME P450	857361	861177	ENSCING00000000333
CYTOCHROME P450	866043	867072	ENSCING00000016274
CYTOCHROME P450	867365	872121	ENSCING00000009427
UNKNOWN	871805	874955	ENSCING00000012284
TARGET OF EGR1 1	877149	878527	ENSCING00000003872
UNKNOWN	878982	889185	ENSCING00000003868
UNKNOWN	879927	881620	ENSCING00000023632
UNKNOWN	880859	885430	ENSCING00000018584


Figure S1: Fine-scale population structure (dataset1) visualized by the two first component of a PCA analyses on the 3510 unlinked SNPs with adegenet (Jombart & Ahmed, 2011). The 18 sampling sites are labeled on the graph according to the code names presented in table S1 and are filled with different colors. PC1 (x-axis) and PC2 (y-axis) showed 1.49% and 0.88% of the total inertia, respectively. Insert shows the value of BIC against the number of clusters assessed by function `find.clusters` (Jombart et al., 2010). The lowest BIC value is found for a k of four cluster, which was used for the DAPC analyses in the main text in Figure 1.


Figure S2: Population clustering for the large scale population structure analyses (dataset2) with A. the cross-entropy validation performed by LEA (lowest value found for a $k=6$ clusters), and B. BIC variation against the number of clusters by the `find.clusters` function of `adegenet` package on the 50 first PC (lowest value found for a $k=8$) and C. the ancestry proportions inferred by the `snmf` function of the LEA package for a K value ranging from 5 (top panel) to 9 (bottom panel). The ancestries inferred for $K=8$ are showed in Figure 2 in the main.

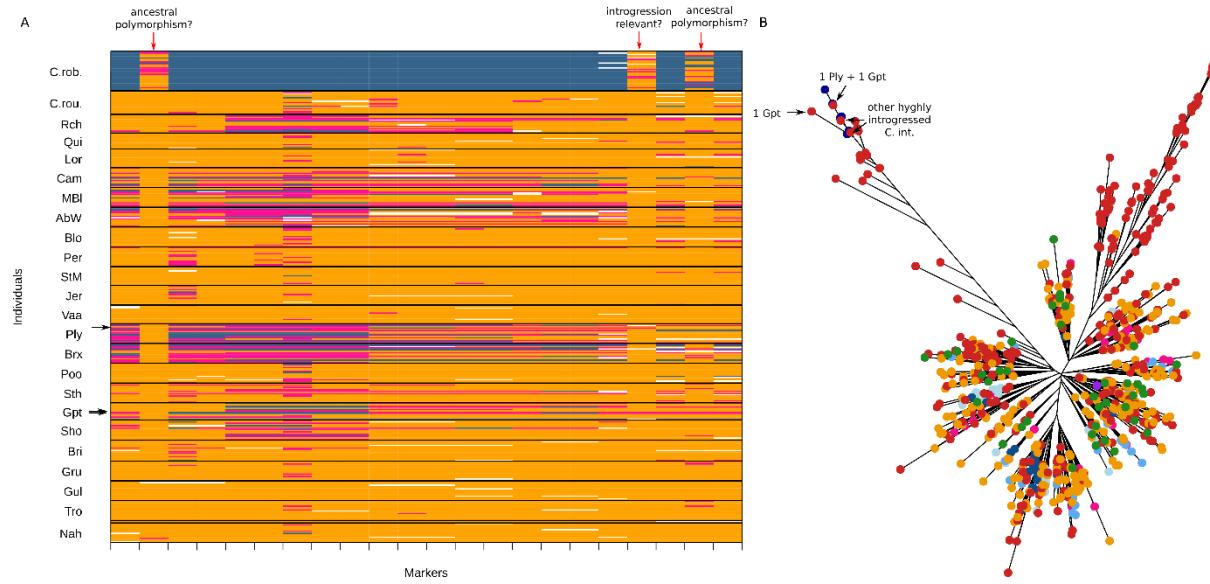

Figure S3: Contribution of each SNP to each axis of the PCA in the large scale analysis shown in Figure 2 (Main text). The red dotted lines represent the 95% quantile above which the top 5% eigen values are located. The chromosome 5 is highlighted in orange, where the red arrows point toward a slight decline of eigen values for the PC1, indicative of a reduction in the genome-wide divergence between *C. robusta* and *C. intestinalis*. The location of this decline is coinciding with a peak of eigen value among the populations of the English Channel and US (red arrows on plots for PCA6-8).

Figure S4: Manhattan F_{ST} plot for different pairwise comparison between *C. robusta* and populations of *C. intestinalis* sampled over the large geographical scale. The blue lines represent the maximum value of F_{ST} over bins of 100kb. The chromosome 5 is highlighted in orange, where the red arrows point toward a slight decline of F_{ST} between *C. robusta* and *C. intestinalis* sampled from the contact zone (Sth, Ply, ABW and Rch).

Figure S5: Structure plot per chromosome for $k=2$ (one plot per chromosome). The vertical lines delimitate individuals collected from different sampling sites. Signal admixture, albeit low, is detected in every chromosome between *C. roulei* and *C. robusta*. However, sign of introgression between *C. intestinalis* and *C. robusta* is detectable only chromosome 5 in 82 individuals sampled from Per, Blo, AbW, MBI, Cam, Rch, Gpt, Sth, Brx and Ply.

Figure S6: Zoom between 0.7 and 1.2 Mbp of the chromosome 5, with A) Introgression plot for 22 diagnostic and polymorphic SNPs between *C. robusta* and *C. intestinalis* from Gul (locality from deep waters of Sweden). Polymorphism private to *C. intestinalis* and/or *C. roulei* was removed from the analyses. Markers (x-axis) are ordered following physical position on chromosomes. Individuals (y-axis) are ordered per population. Dark blue boxes indicate homozygote genotype on *Ciona robusta* alleles; yellow, homozygote genotype on *C. intestinalis* alleles; pink, heterozygotes for *C. robusta* and *C. intestinalis* alleles; and white boxes, missing values. The plot shows shared polymorphism between *C. robusta* and all *C. intestinalis* individuals (below the red arrow), and B) neighbor-joining tree of all phased polymorphism data where black arrows distinguish different *C. intestinalis* haplotypes (in red) segregating among *C. robusta* haplotypes.