

1 **Interleukin-33 coordinates a microglial phagocytic response and limits**
2 **corticothalamic excitability and seizure susceptibility**

3
4 **Authors:** Rafael T. Han^{1#}, Ilia D. Vainchtein^{1#}, Johannes C. M. Schlachetzki⁷, Frances S.
5 Cho^{2,3,6}, Leah C. Dorman^{1,2}, Tessa Johung³, Eunji Ahn¹, Jerika T. Barron¹, Hiromi
6 Nakao-Inoue¹, Akshaj Joshi¹, Ari. B Molofsky⁴, Christopher K. Glass^{7,8}, Jeanne T.
7 Paz^{2,3,5,6}, and Anna V. Molofsky^{1,5*}

8
9
10 **Affiliations:**

11 ¹Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences,

12 ²Neuroscience Graduate Program, ³Department of Neurology, ⁴Department of Laboratory
13 Medicine, ⁵Kavli Institute for Fundamental Neuroscience, University of California, San
14 Francisco, San Francisco, CA, 94158, USA.

15
16 ⁶Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.

17
18 ⁷Department of Cellular and Molecular Medicine, University of California, San Diego,
19 La Jolla, CA 92093, USA. ⁸Department of Medicine, University of California, San
20 Diego, La Jolla, CA 92093, USA

21
22
23
24 # equal contribution

25
26 *Lead contact. Correspondence to:

27
28 Anna V Molofsky MD PhD, University of California San Francisco, 1550 4th Street, San
29 Francisco, CA 94158, USA. Tel: 1 (415) 502-3609. anna.molofsky@ucsf.edu,
30
31 @AnnaMolofskyLab

32
33 **Summary**

34 Microglia are key remodelers of neuronal synapses during brain development, but the
35 mechanisms that regulate this process and its ultimate impact on neural circuit function
36 are not well defined. We previously identified the IL-1 family cytokine Interleukin-33
37 (IL-33) as a novel mediator of microglial synapse remodeling. Here we define the
38 phagocytic program induced in microglia in response to IL-33. We find that IL-33
39 markedly alters the microglial enhancer landscape and exposes AP-1 transcription factor
40 sites that promote target gene expression. We identify the scavenger receptor MARCO
41 and the pattern recognition receptor TLR2 as downstream mediators of IL-33 dependent
42 synapse engulfment. Conditional deletion of IL-33 in the CNS or its receptor on
43 microglia results in increased numbers of excitatory synapses in the corticothalamic
44 circuit and spontaneous epileptiform activity as well as increased seizure susceptibility by
45 early adulthood. These findings define novel mechanisms through which IL-33

46 coordinates experience-dependent synaptic refinement to restrict hyperexcitability in the
47 developing brain.

48 **Introduction**

49 Innate immune signaling shapes tissue development and homeostasis, including the
50 remodeling of neuronal synapses in the central nervous system (CNS). Immune
51 dysfunction is also implicated in the pathogenesis of neurodevelopmental disorders
52 including epilepsy¹⁻³, autism, and schizophrenia⁴. Microglia are the dominant immune
53 cells in the brain parenchyma and therefore a potential mechanistic link between innate
54 immunity and neurodevelopmental disease. Microglia can both engulf synapses during
55 development and promote new synapse formation^{5,6}. Microglial function is shaped by an
56 exquisite sensitivity to environmental cues that can rapidly alter microglial identity⁷⁻¹¹.
57 However, how microglia coordinate synapse remodeling in response to environmental
58 cues is not well-defined.

59 We recently identified the IL-1 family member Interleukin-33 (IL-33) as a novel
60 regulator of microglial synapse remodeling^{12,13}. Microglia are the primary CNS-resident
61 cells that respond to IL-33 via its obligate co-receptor *Il1rl1*, and global deletion of *Il33*
62 or *Il1rl1* during development results in defective microglial engulfment of excitatory
63 synapses. The thalamus is one of the first brain regions to express IL-33¹³ and its
64 expression increases coincident with synapse maturation in this region¹⁴⁻¹⁷. Increased
65 excitation in the reciprocal connections between thalamus and cortex is one well-
66 described circuit that can drive seizures¹⁸⁻²¹, including a particular type of childhood
67 epilepsy characterized by absence seizures²². This raises the question of how IL-33's
68 function in corticothalamic maturation might impact seizure susceptibility.

69 In this study, we defined the impact of IL-33 on microglial gene expression, epigenomic
70 landscape, and function. We identified FOS, a component of the AP-1 transcription factor
71 complex, as a regulator of IL-33 dependent target gene expression, and found that the
72 scavenger receptor MARCO and the pattern recognition receptor TLR2 are two
73 downstream regulators of IL-33 dependent phagocytic responses. Loss of CNS-derived
74 IL-33 or its receptor (IL1RL1) on microglia and myeloid cells led to excess excitatory
75 synapses and decreased inhibitory synapses, but did not alter synaptic strength. Mice
76 lacking CNS-derived IL-33 had an increased incidence of spike wave discharges, a
77 characteristic feature of absence seizures, as well as increased susceptibility to convulsive
78 seizures. These data reveal novel mechanisms by which IL-33 promotes microglial
79 phagocytic capacity and defines a functional requirement for IL-33 in refinement of
80 corticothalamic synapses and in restricting seizure susceptibility.

81

82 **Results**

83

84 **IL-33 induces a microglial phagocytic program that includes pattern recognition
85 and scavenging responses**

86

87 To define how IL-33 impacts microglial function, we first examined its effect on the
88 microglial transcriptome. We performed single-cell sequencing of flow-sorted thalamic
89 CD45+ cells, which were predominately microglia, 4 hours after intracerebroventricular

90 (i.c.v.) administration of 40 ng of recombinant IL-33 or vehicle (**Fig. 1a; Fig S1a**). This
91 dose and time period were chosen to capture the initial cytokine response and did not
92 result in noticeable infiltration of myeloid or lymphoid cells into the CNS (**Fig. S1b**). To
93 determine whether IL-33 responses required direct signaling to the myeloid lineage and
94 to rule out potential off-target effects, we used *Cx3crl*^{CreERT2}²³ to conditionally delete the
95 IL-33 receptor *Il1rl1* in the early postnatal period (tamoxifen: P1, P3, P5). We compared
96 vehicle or IL-33 treated controls (*Cx3crl*^{CreERT2+/-}) to IL-33-treated animals lacking
97 myeloid IL-33R (*Cx3crl*^{CreERT2+/-}:*Il1rl1*^{fl/fl}).

98
99 Unsupervised clustering at several resolutions revealed distinct microglial subsets, but
100 only trace levels of macrophages (**Fig. 1b**, quality control in **Fig. S1c-f**). Most notable
101 was a robust transcriptomic shift in response to IL-33 in 84% of microglia (Cluster 1),
102 indicating that most thalamic microglia are competent to respond to IL-33 signaling. This
103 response was almost completely abrogated after myeloid-specific deletion of the IL-33
104 receptor (**Fig. 1b**), demonstrating a direct impact of IL-33 on myeloid cells. As expected,
105 we observed an overall activation of immune response pathways. Differential expression
106 analysis of IL-33 responsive cluster 1 vs. all other clusters revealed upregulation of
107 traditional immune activation genes and pathways (*Tnf*, *Il1b*, GO term: inflammatory
108 response; **Fig. 1c-d**). There was downregulation of homeostatic microglial genes
109 (*P2ry12*, *Tmem119*). These data indicate that microglia directly respond to IL-33,
110 although we could not rule out an indirect contribution of peripheral, perivascular, or
111 meningeal macrophages to this activation profile.

112
113 Phagocytosis is the dominant role of tissue resident macrophages, and we previously
114 demonstrated a role for IL-33 in promoting microglial phagocytosis^{12,13}. To define
115 potential regulatory mechanisms, we correlated IL-33 response genes (cluster 1) with an
116 annotated phagocytosis dataset ((GO: 0006909). This showed that IL-33 induced multiple
117 phagocytic genes while suppressing others (**Fig 1e**). Upregulated genes included
118 scavenger receptors (*Marco*, *Msr1*) and pattern recognition receptors (*Tlr2*)²⁴⁻²⁶. Some
119 genes linked to phagocytosis of synapses and apoptotic cells were downregulated,
120 including the recognition receptor *Trem2*²⁷⁻²⁹, and TAM receptor tyrosine kinase *Mertk*³⁰.
121 Some complement pathway genes were both up and downregulated (up-*C3ar*, *C5ar*,
122 down-*C5ar2*), consistent with proposed roles of complement in phagocytosis^{31,32},
123 although the specific roles of these genes in microglia have not been studied. Thus, IL-33
124 signals directly to myeloid cells and induces a distinct phagocytic gene expression profile
125 which includes many novel functional candidates.

126
127 To further examine functional targets of IL-33, we performed immunostaining for two of
128 the top gene candidates in our study: MARCO and TLR2 (**Fig. 1f**, **Fig. 1g**). The class A
129 scavenger receptor *MARCO*³³ has been implicated in dendritic cell filopodial
130 morphogenesis and debris clearance³⁴ as well as macrophage phagocytosis of bacteria
131 and other particles^{35,36}. We found that MARCO had low baseline expression and was
132 robustly induced in response to IL-33. This induction was completely abrogated after
133 deletion of the IL-33 receptor *Il1rl1* in myeloid cells (*Cx3crl*^{CreERT2+/-}:*Il1rl1*^{wt/wt} vs.
134 littermate *Cx3crl*^{CreERT2+/-}:*Il1rl1*^{fl/fl}, tamoxifen at P1,3,5) at the RNA level (**Fig. S1e**) as
135 well as the protein level in both thalamus (**Fig. 1g-h**) and cortex (**Fig. S2g**).

136
137 To determine whether induction of MARCO induction requires direct signaling of IL-33
138 to microglia, as opposed to meningeal, perivascular, or peripheral macrophages, we used
139 a recently created microglial-specific line with Cre recombinase inserted downstream of a
140 self-cleaving peptide in the 3' end of the microglial-specific gene *P2ry12* (*Il1rl1*^{+/+} vs.
141 *P2ry12*^{creERT2}*Il1rl1*^{f/f}; tamoxifen at P2, P4, P6³⁷). We validated that this strategy was
142 specific to microglia but not perivascular or meningeal macrophages by imaging and flow
143 cytometry (Fig. S2a-d). This strategy was somewhat less sensitive, leading to a ~92%
144 reduction in *Il1rl1* transcript in cortical microglia and an ~87% reduction in thalamic
145 microglia (Fig. S2f). We found that microglial specific deletion of IL-33 receptor
146 significantly reduced MARCO induction after IL-33, both by gene expression (Fig.
147 S1L), and at the protein level (Fig. 1j, thalamus, Fig S2i, cortex). These data indicate that
148 IL-33 signals at least in part directly to microglia to induce expression of MARCO.
149

150 Another top functional candidate was TLR2, a pattern recognition receptor that responds
151 to both pathogenic and physiologic signals^{38,39}. TLR2 functions as a heterodimer with
152 TLR1 and TLR6, both of which were also highly expressed in our dataset and induced by
153 IL-33 (Fig. 1c; Supplemental Table 1). TLR2 was expressed in all microglia at baseline
154 and was significantly induced by IL-33. Like MARCO, this induction was significantly
155 abrogated after myeloid- or microglia-specific deletion of the IL-33 receptor in both
156 thalamus (Fig. 1 g, i, k) and cortex (Fig. S2h, j), including at the gene expression level
157 (Fig. S1e-f). Taken together, these independent approaches suggest that IL-33 induces
158 target gene expression via direct signaling to microglia.
159

160
161 **MARCO and TLR2 promote IL-33 dependent synapse engulfment and restrict**
162 **excitatory synapse numbers**

163
164 We next investigated whether MARCO and TLR2 are causally linked to IL-33's ability
165 to promote microglial phagocytosis. We previously showed that exogenous IL-33 leads to
166 increased microglial engulfment of synaptic proteins and that it acutely depletes
167 excitatory synapses¹³. We therefore assessed both of these complementary phenotypes
168 after TLR2 or MARCO loss of function. We first quantified microglial engulfment of the
169 presynaptic marker VGLUT1 using high-resolution imaging and 3D reconstruction with
170 the myeloid *Cx3cr1*^{GFP} reporter⁴⁰. This enables more accurate reconstructions of
171 microglial volumes and predominantly labels microglia, as perivascular macrophages are
172 rare in the brain parenchyma (Fig. S1b, S2a-b). Injection of IL-33 increased presynaptic
173 protein engulfment, as quantified by the abundance of VGLUT1 within CD68+
174 microglial phagolysosomes (Fig. 2a-c). However, co-injection of IL-33 with either a
175 TLR2 function blocking antibody (Fig. 2b)^{41,42} or a MARCO blocking antibody (Fig.
176 2c)^{26,34} significantly but partially blunted this response relative to an IgG isotype control.
177 Thus, both MARCO and TLR2 partly mediate IL-33 dependent synapse engulfment.
178

179 To determine whether MARCO or TLR2 signaling impacted synapse numbers, we
180 quantified excitatory synapses after IL-33 exposure¹³ in genetic loss-of function models

181 (Fig. 2d; model validation in Fig. S3a). We found a 2-fold reduction in functional
182 excitatory synapses after IL-33 injection, as assessed by pseudocolocalization of pre- and
183 postsynaptic proteins VGLUT1 and HOMER1⁴³, consistent with our prior findings¹³.
184 This depletion was significantly attenuated on either a *Tlr2* or a *Marco* deficient
185 background in both thalamus (Fig. 2e-g) and cortex (Fig. S3b-c). Quantification of
186 excitatory synapses after acute loss of function with α -MARCO or α -TLR2 antibodies
187 phenocopied this effect, with somewhat more robust results (Fig. S3d-e). Taken together,
188 these data indicate that both *Tlr2* and *Marco* are IL-33 targets that partly mediate its
189 ability to promote synaptic protein engulfment and restrict synapse numbers.
190

191

192 **IL-33 promotes AP-1/FOS activation to drive target gene expression in microglia**

193

194 To define the regulatory mechanisms responsible for IL-33-dependent gene expression
195 programs, we next characterized the epigenetic changes in microglia responding to IL-33
196 (Fig. 3A). We isolated purified microglia after i.c.v. injection of 500 ng IL-33 or vehicle
197 (gating strategy in Fig. S1A). We assessed chromatin accessibility using an assay for
198 transposase-accessible chromatin sequencing (ATAC-seq; Buenrostro et al., 2013). We
199 also performed chromatin immunoprecipitation sequencing for acetylation of histone H3
200 lysine 27 (H3K27ac ChIP-seq) to determine active regulatory regions. These data were
201 cross-correlated with bulk RNA sequencing performed in parallel. Bulk RNA sequencing
202 was highly consistent with findings obtained by single cell RNA sequencing (Fig. S4A-
203 B; **Supplemental Table 2**). Representative examples of ATAC-seq and H3K27ac peaks
204 from IL-33 vs. vehicle exposed microglia are shown in the vicinity of *Marco* and *Tlr2*
205 (Fig. 3B, quality control in Fig. S4C-D), as well as quantification of total mRNA levels
206 (Fig. 3C). Both reveal increased accessibility at promoter regions (yellow shading) as
207 well as novel enhancers (purple shading) that were specifically induced in response to IL-
208 33.
209

210

211 To globally examine this epigenetic signature and to determine potential transcriptional
212 regulators of the IL-33 dependent response, we performed genome wide comparisons to
213 identify chromatin regions that were open and active, as defined by both ATAC-seq and
214 H3K27ac peaks. All peaks are listed in Supplemental Table 3 and can be visualized in
215 the UCSC data browser (https://genome.ucsc.edu/s/jschlachetzki/IL33_Microglia_mm10). We found a robust
216 induction of *de novo* enhancers peaks in response to IL-33 (Fig. 3D; Fig. S4E). Motif
217 enrichment analysis of regions that gained active open chromatin in response to IL-33
218 showed a significant enrichment for binding sites of adaptive-response type transcription
219 factors (TFs), including AP-1 and NF- κ B-p65 (Fig. 3E; Fig. S4F)^{45,46}. We also found
220 suppression of MEF2, a TF associated with a microglial physiology/surveillance
221 phenotype^{9,47}. The myeloid lineage-defining pioneer factor PU.1 is required for
222 chromatin opening, enabling subsequent accessibility of state-dependent TFs⁴⁸. PU.1
223 both gained and lost accessibility sites in response to IL-33, suggesting changes in its
224 binding, but not necessarily that these changes are driving gene expression differences.
225 We conclude that IL-33 markedly increased accessibility to stimulus-responsive
226 transcription factors, including the AP-1 transcription factor (TF) complex.

227

228 AP-1 is a heterodimeric TF complex that includes members of four families: Fos, Jun,
229 ATF/CREB, and Maf⁴⁹. IL-33 exposed microglia had significantly upregulated gene
230 expression of TFs in the AP-1 family, including *Fos*, *Batf*, *Junb*, and *Atf3* (**Fig. 3F**). We
231 observed that *Fos* was the top TF induced after IL-33 at the transcriptional level, and that
232 in myeloid cells, FOS binds to the de novo enhancers recruited by IL-33 in *Marco* and
233 *Tlr2* (**Fig. S4G-H**)⁵⁰. *Fos* is an immediate early gene whose induction is often used as a
234 marker of neuronal activation. Its role in microglia is unknown, raising the question of
235 whether FOS, as part of the AP-1 complex, is a regulator of IL-33 dependent gene
236 expression.

237

238 We used a Fos-TRAP approach to permanently label cells that recently expressed *Fos*,
239 using the *FosTrap2* knockin mouse crossed to a lox-stop-lox fluorescent reporter⁵¹. In
240 this system, Fos induction drives expression of tamoxifen-inducible Cre recombinase.
241 Administering tamoxifen then leads to excision of a stop cassette and permanently labels
242 cells that expressed *Fos* after the tamoxifen pulse (**Fig. 3G**). Of note, while this allele is
243 specific to *Fos* and two-fold more sensitive than TRAP1, it likely does not label all Fos+
244 cells. We found that IL-33 significantly increased the number of Fos-trapped microglia
245 (**Fig. 3H-I**). *Fos* induction in microglia required expression of IL-33R on myeloid cells
246 (**Fig. S4I**). In contrast, the number of Fos-trapped neurons was unchanged, suggesting no
247 effect of IL-33 on neuronal activation (**Fig. 3J**). We found that *Fos*-trapped microglia in
248 IL-33 exposed brains expressed significantly more TLR2 and MARCO protein relative to
249 non-trapped microglia in the same sections (**Fig. 3K-L**). Taken together, our data
250 suggest that IL-33 exposes AP-1 regulatory regions and promotes FOS/AP-1-mediated
251 target gene expression.

252

253

254

255 CNS-derived IL-33 acts through myeloid cells to restrict excitatory thalamic 256 synapse numbers

257

258 We next investigated whether CNS-specific loss of IL-33 or myeloid-specific deletion of
259 the IL-33 receptor impacted synaptic abundance and synaptic function. We deleted IL-33
260 from all CNS cells but not peripheral tissues ('IL-33 cKO') using the *hGFAPcre*
261 transgenic line, which expresses Cre recombinase in neurons and glia in the forebrain and
262 most astrocytes in the spinal cord (*hGFAPcre:Il33*^{fl/fl} vs. *Il33*^{fl/fl}, **Fig. S5a**)^{52,53}. Virtually
263 all IL-33+ cells in the thalamus were astrocytes, and the remainder were
264 oligodendrocytes (0% at P15 and 5.1% at P30, **Fig. S5b-c**). In the somatosensory cortex,
265 80-90% of IL-33+ cells were astrocytes, and the remainder were oligodendrocytes (5.4%
266 at P15 and 16.7% at P30; **Fig. S5d-e**), consistent with reports of oligodendrocyte
267 expression in adult cortex (Gadani et al., 2015). Overall, IL-33 expression in the
268 thalamus was more astrocyte-specific and robust than in cortex (**Fig. S5f**). In human
269 tissues, IL-33 was robustly expressed in cortical astrocytes and detectable in some
270 cortical neurons, consistent with our findings in mice (**Fig. S5g-h**). In summary, during
271 early postnatal development, most IL-33 expressing cells are astrocytes, and *hGFAPcre*
272 efficiently deletes IL-33 in the brain.

273

274 We focused on the reciprocal connections between somatosensory cortex and thalamus,
275 in part because the somatosensory thalamus is the first brain region to express IL-33
276 beginning at postnatal day 5¹³. This circuit is critical for somatosensory processing, but
277 hyperexcitability in these connections is linked to type of childhood epilepsy known as
278 absence epilepsy. The subtypes of synapses in the somatosensory thalamus include
279 excitatory VGLUT2+ sensory afferents⁵⁴, excitatory VGLUT1+ cortical afferents, and
280 VGAT+ inhibitory synapses. All of these synaptic connections mature during a period of
281 rapid IL-33 increase in thalamic astrocytes, accelerating after the second postnatal
282 week^{16,17,55} (**Fig. S5i**).

283

284 We quantified synaptic subtypes at P30 by pseudocolocalization of pre and postsynaptic
285 proteins⁴³. We found a significant increase in the number of corticothalamic excitatory
286 synapses (VGLUT1:Homer1) in IL-33 cKO animals vs. littermate controls (**Fig. 4a-b**).
287 This was phenocopied with loss of myeloid IL-33R (*Cx3cr1*^{CreERT2+/-}:*Il1rl1*^{fl/fl} vs.
288 *Cx3cr1*^{CreERT2+/-}:*Il1rl1*^{wt/wt}; **Fig. 4c**). We also observed a more modest increase in brain
289 stem to thalamic excitatory synapses in both genotypes (VGLUT2:Homer1; **Fig. 4d-f**). In
290 contrast, the number of inhibitory synapses (VGAT:Gephyrin) was significantly
291 decreased in both genotypes (**Fig. 4g-i**). We did not observe gross structural alterations in
292 thalamic neurons of IL-33 cKO animals, as assessed by Scholl analysis of neuronal
293 branching (**Fig. S5j-k**). There were similar but more modest changes in synapse numbers
294 in somatosensory cortex of IL-33 cKO animals (**Fig. S5l-n**), consistent with the lower
295 expression of IL-33 in cortex. In summary, CNS-specific loss of IL-33 resulted in excess
296 excitatory synapses and fewer inhibitory synapses at both nodes of the corticothalamic
297 circuit.

298

299 To determine whether these changes in synapse numbers were also associated with
300 changes in synaptic function, we performed whole-cell patch clamp electrophysiology in
301 somatosensory thalamus of IL-33cKO mice (**Fig. 4j**). Miniature excitatory post synaptic
302 currents (mEPSC) were higher in frequency in IL-33cKO mice (**Fig. 4k-l**). This was
303 consistent with an increase in synapse numbers that was similar in magnitude to what we
304 observed with immunostaining. However, mEPSC amplitude was unchanged **Table S4**.
305 In addition, miniature inhibitory postsynaptic currents (mIPSCs) were reduced in
306 frequency in IL-33 cKO (**Fig. 4m-n**), consistent with fewer inhibitory synapses, but
307 unchanged in amplitude (**Table S4**). Taken together, these studies suggest that CNS-
308 derived IL-33 acting on myeloid cells increases excitatory/inhibitory ratio by both
309 restricting excitatory synapse numbers and promoting inhibitory synapse numbers,
310 without altering synaptic strength.

311

312

313 **IL-33-IL1RL1 signaling limits seizure susceptibility**

314

315 Thalamic hyperexcitability can lead to seizures in rodent models^{18,56} and is particularly
316 associated with childhood absence epilepsy⁵⁷. To investigate whether the increased
317 excitation after loss of CNS-derived IL-33 impacted brain electrical activity, we
318 performed electrocorticography (ECoG) recordings. Leads were placed in primary

319 somatosensory cortex (S1) and prefrontal (PFC) cortex in freely behaving juvenile mice
320 (5-6 weeks old; **Fig. 5a**). One hour of baseline recording in the home cage environment
321 revealed the presence of brief (1-3 second) spontaneous spike-wave discharges (SWDs)
322 in 6/10 IL-33 cKO mice but these were never observed in littermate controls (**Fig. 5b-c**).
323 These SWDs were observed simultaneously in both cortical regions (S1 and PFC; **Fig.**
324 **5b**), indicating that they were bona fide events, and were frequently associated with
325 behavioral arrest in simultaneous videorecording. SWD had a characteristic internal
326 frequency of 4-6 Hz, with a harmonic peak at 12 Hz, clearly distinguishing them from
327 sleep spindles (**Fig. 5d**). Taken together, this phenotype resembled typical absence type
328 ('petit mal') seizures seen in various rodent models of childhood absence epilepsy, which
329 results from alterations in corticothalamic function⁵⁷⁻⁵⁹.
330

331 To determine whether IL-33 cKO mice were also more susceptible to convulsive ('grand
332 mal') seizures, we performed ECoG recordings in the same animals after injection of a
333 chemoconvulsant, pentylenetetrazol (PTZ; 50 mg/kg), a GABA_A receptor blocker (**Fig.**
334 **5e**). We found an increase in the frequency and amplitude of spikes in response to PTZ in
335 IL-33 cKO vs. littermate controls in both somatosensory and prefrontal cortex (**Fig. 5f-h**;
336 **Fig S6a**). We also behaviorally quantified seizures in independent cohorts of mice that
337 had not undergone lead placement by video recording for one hour after injection of PTZ,
338 and blind scoring seizure events on a Racine scale. Consistent with our ECoG findings,
339 we observed a significantly increased incidence of generalized tonic-clonic seizures in
340 IL-33 cKO animals in response to PTZ: 11/16 IL-33 cKO mice had at least one seizure,
341 compared to 3/15 littermate controls (**Fig. 5i**). Increased c-Fos staining of IL-33 cKO
342 animals after PTZ was consistent with these findings (**Fig. S6b-d**). IL-33 cKO mice were
343 also more susceptible to another chemoconvulsant, Kainic Acid (KA), a glutamate
344 receptor agonist (**Fig. S6e-f**), further supporting their increased seizure susceptibility.
345

346 Importantly, this increase in seizure susceptibility was phenocopied after PTZ injection in
347 mice with conditional deletion of IL-33R in myeloid cells using Cx3cr1^{CreERT2} (**Fig. 5j**;
348 6/7 Cx3cr1^{CreERT2+/-}:Il1rl1^{f/f} vs. 2/9 littermate Cx3cr1^{CreERT2+/-} mice had at least one
349 seizure) or microglia specific deletion of IL-33R using P2ry12^{CreERT2} (**Fig. 5k**; 11/12
350 P2ry12^{CreERT2+/-}:Il1rl1^{f/f} vs. 10/22 littermate Il1rl1^{f/f} mice had at least one seizure).
351 Moreover, seizure susceptibility was increased in juvenile *Marco* deficiency mice (**Fig 5i**;
352 8/16 *Marco* deficiency vs. 3/21 littermate wild-type mice had at least one seizure).
353 However, *Tlr2* deficiency was not sufficient to increase seizure susceptibility in juvenile
354 mice (**Fig. S6g-h**). Taken together, these results indicate that IL-33-Il1rl1 signaling -
355 operating locally in the CNS and acting through myeloid cells - coordinates functional
356 responses in microglia that restrict spontaneous epileptiform activities and limits seizure
357 susceptibility.
358

359 **360 Discussion**

361
362 IL-33 is a tissue resident cytokine initially defined as a regulator of allergic immune
363 responses, but increasingly implicated in development, homeostasis, and remodeling⁶⁰.
364 Tissue resident macrophages, including microglia, are essential mediators of remodeling

365 but their roles as direct targets of IL-33 remain underexplored. Our data reveal a critical
366 and targeted role for IL-33, acting through microglia, in shaping the microglial
367 epigenomic landscape (Fig. 6.) We demonstrate that IL-33 renders target genes
368 accessible to stimulus-responsive TFs and coordinates a phagocytic gene expression
369 program. This is consistent with a series of studies demonstrating that microglia are
370 highly responsive to contextual cues^{7,10,11,61,62}, and suggests that IL-33 is one factor
371 mediating this context sensitivity.

372

373 We demonstrate that IL-33 impacts synapse numbers rather than synaptic strength,
374 consistent with a role in synapse remodeling. This brain-specific form of tissue
375 remodeling is required for optimal neural circuit function by regulating the balance of
376 excitatory to inhibitory synapses. Although neuronal activity is one signal that modulates
377 IL-33 dependent engulfment, its impact is to promote microglial phagocytic function
378 rather than acute feedback control of neuronal activity as shown in other contexts⁶³. Our
379 data demonstrate that loss of IL-33 signaling leads to hyperexcitability in a core circuit
380 implicated in seizure generation. We identify MARCO and TLR2 as two top functional
381 candidates downstream of IL-33 signaling, however, *Tlr2* deficiency alone is not
382 sufficient to phenocopy the functional impact of IL-33 on seizure susceptibility. This
383 could be due to homeostatic compensation. Taken together, these data suggest that IL-33
384 coordinates a broader ‘sensing and scavenging’ phagocytic program that is distinct from
385 previously described mechanisms of microglial synaptic engulfment.

386

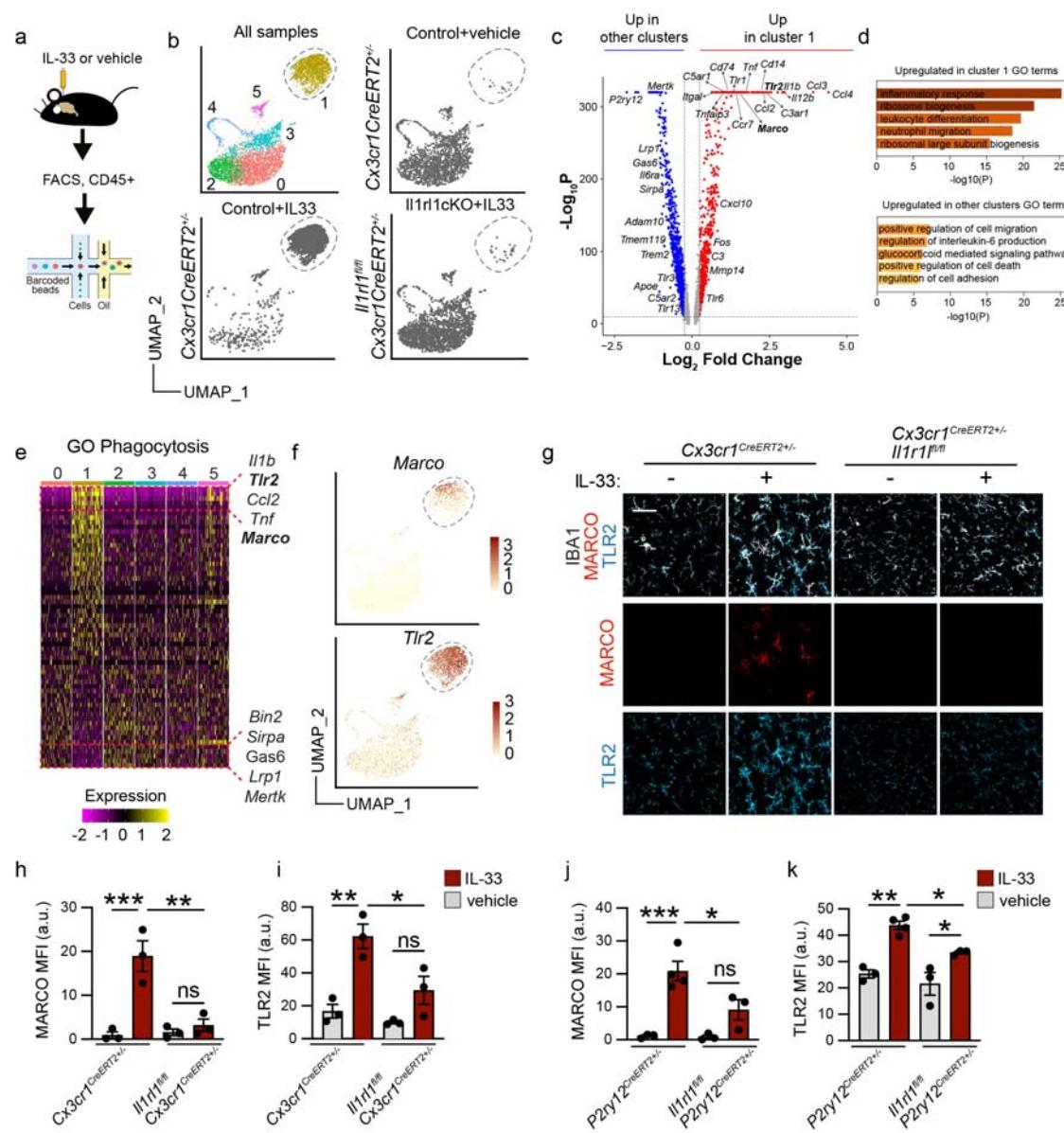
387 Neural circuit hyperexcitability is a phenotype that has been implicated in multiple
388 neurodevelopmental disorders including epilepsy, autism, and schizophrenia⁶⁴.
389 Neuroimmune dysfunction is also increasingly implicated in these pathologies, although
390 mechanistic evidence is lacking⁴. Microglia are attractive potential therapeutic targets in
391 epilepsy⁶⁵, particularly with the emergence of immunotherapies. Our study defines a core
392 pathway regulating microglial phagocytic function, suggesting potential avenues to
393 towards immune-mediated therapies for epilepsy and other neurodevelopmental
394 disorders.

395

396 **Acknowledgements:** We are grateful to members of the Molofsky Lab for helpful
397 comments on the manuscript, to Dr. Mercedes Paredes for pathology expertise, and to
398 Irene Lew for help with animal husbandry. Thanks to the UCSF Laboratory for Cell
399 Analysis and Center for Advanced technology for technical contributions. Imaging was
400 performed at the Gladstone Institutes’ Histology & Light Microscopy Core.

401

402 **Funding:** A.V.M is supported by the Pew Charitable Trusts, the Brain and Behavior
403 Research Foundation, NIMH (R01MH119349, MH125000, and DP2MH116507), and the
404 Burroughs Wellcome Fund. This study was supported in part by the HDFCCC Laboratory
405 for cell Analysis Shared Resource facility through a shared grant from NIH
406 (P30CA082103). J.T.P is supported by NIH & NINDS R01 NS096369-01, DoD
407 EP150038, NSF 1608236, and the Gladstone Institutes Animal Facility Grant RR18928.
408 F.S.C. is supported by NINDS NS111819.


409

410 **Authors contributions:** Conceptualization: R.T.H., I.D.V., A.B.M., J.T.P., and A.V.M.
411 Methodology: R.T.H, I.D.V., F.S.C., L.C.D, and T. J; Investigation: R.T.H., I.D.V.,
412 F.S.C., J. C. M. S., A.J., E.A., J.T.B. and H N-I; Writing – Original Draft: R.T.H., I.D.V.,
413 and A.V.M.; Writing – Review & Editing: all co-authors; Funding Acquisition: A.V.M.
414 Resources: A.V.M. and J.T.P. Supervision, A.V.M., C.K.G. and J.T.P.
415

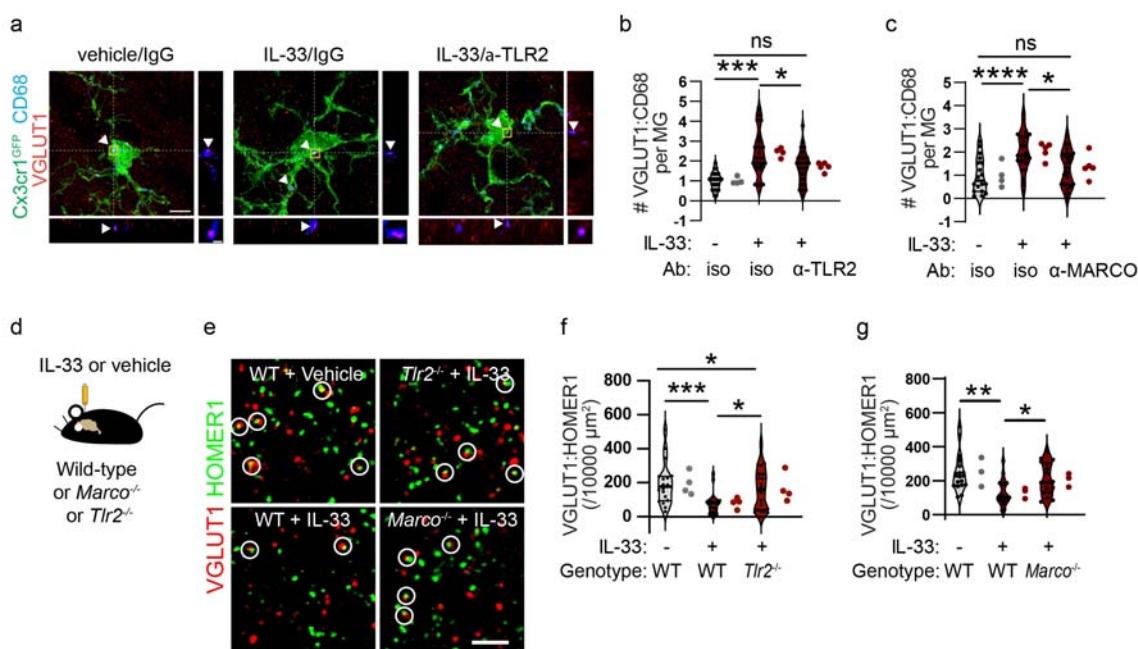
416 **Declaration of interests:** The authors declare no competing interests.
417

418 **Data and materials availability:** Supplement contains additional data. All data needed
419 to evaluate the conclusions in the paper are present in the paper or the Supplementary
420 Materials. Bulk RNA, ATAC, H3K27ac ChIP-sequencing and scRNAseq data of
421 microglia post i.c.v. injection of IL-33 or vehicle are available through GEO [number
422 pending], and epigenomic data has been uploaded to the UCSC data browser
423 (https://genome.ucsc.edu/s/jschlachetzki/IL33_Microglia_mm10).
424

425 **Figures and Figure legends:**

426

427 **Figure 1: IL-33 induces a microglial phagocytic program that includes pattern**
 428 **recognition and scavenging responses.**


429

430 **a)** Experimental paradigm for single cell RNA-seq from P15 thalamus (vehicle=PBS).

431 **b)** Unsupervised clustering of single cell sequencing data from all three conditions (upper left). Same plot
 432 showing only *Cx3cr1*^{CreERT2+/-} sample 4 hours after vehicle injection (upper right), showing *Cx3cr1*^{CreERT2+/-}
 433 sample 4 hours after 40 ng IL-33 injection (lower left), and showing *Cx3cr1*^{CreERT2+/-} *II1rl1*^{fl/fl} sample 4
 434 hours after 40 ng of IL-33 injection (lower right) plotted in UMAP space. Each dot represents a cell.

435 **c)** Volcano plot of differentially expressed genes between the IL-33 responsive cluster 1 vs. aggregated
 436 cells from all other clusters. Red dots are upregulated in cluster 1 with \log_2 fold change > 0.25 , $p_{\text{Adj}} < 10^{-10}$,
 437 using the MAST test in Seurat. Blue dots are upregulated in all other aggregated clusters vs cluster 1 with
 438 \log_2 fold change < 0.25 , $p_{\text{Adj}} < 10^{-10}$.

439 **d)** Top 5 GO terms upregulated in cluster 1 (upper) and upregulated in all other aggregated clusters
440 (lower).
441 **e)** Heatmap showing expression of phagocytosis related genes (GO:0006909) across clusters, highlighting
442 top 5 upregulated genes (top, yellow) and downregulated genes (bottom, purple) in cluster1 (ordered based
443 on expression in cluster 1, centered normalized expression values).
444 **f)** Feature plots showing *Marco* (upper) and *Tlr2* (lower) expression with cluster 1 highlighted (dotted line).
445 **g)** Representative images of MARCO and TLR2 protein expression in thalamic microglia 18 hours after
446 vehicle or IL-33 injection in *Cx3cr1CreERT2+/-* or *Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}* mice. Scale bar = 40 μ m.
447 **h)** Quantification of MARCO mean fluorescence intensity (MFI) in thalamic microglia 18 hours after
448 vehicle or IL-33 injection in *Cx3cr1CreERT2+/-* or *Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}* mice. Each dot represents
449 a mouse. Two-way ANOVA followed by Tukey's post hoc comparison (genotype and treatment).
450 **i)** Quantification of TLR2 mean fluorescence intensity (MFI) in thalamic microglia 18 hours after vehicle
451 or IL-33 injection in *Cx3cr1CreERT2+/-* or *Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}* mice. Each dot represents a
452 mouse. Two-way ANOVA followed by Tukey's post hoc comparison (genotype and treatment).
453 **j-k)** Quantification of MARCO (**J**) and TLR2 (**K**) expression in thalamic microglia 18 hours after vehicle
454 or IL-33 injection in *Il1rl1^{fl/fl}* or *P2ry12creERT2+/-;Il1rl1^{fl/fl}* mice. Each dot represents a mouse. Two-way
455 ANOVA followed by Tukey's post hoc comparison (genotype and treatment).
456
457 Data represented as mean \pm SEM for bar graphs. Mice from P15-P17 were used for g-k. * $p<0.05$, **
458 $p<0.01$, *** $p<0.001$.
459
460 *See also Figure S1 and S2.*
461

462
463

464 **Figure 2: MARCO and TLR2 promote IL-33 dependent synapse engulfment and**
465 **restrict excitatory synapse numbers.**

466

467 a) Representative images of Z-stack maximum projection from $Cx3cr1^{GFP}$ microglia in the somatosensory
468 thalamus for the indicated conditions. Arrowheads and orthogonal projections highlight engulfed VGLUT1
469 within CD68+ phagolysosomes. Vehicle=PBS. Scale bar: 5 μ m (main panel) and 0.5 μ m (inset).

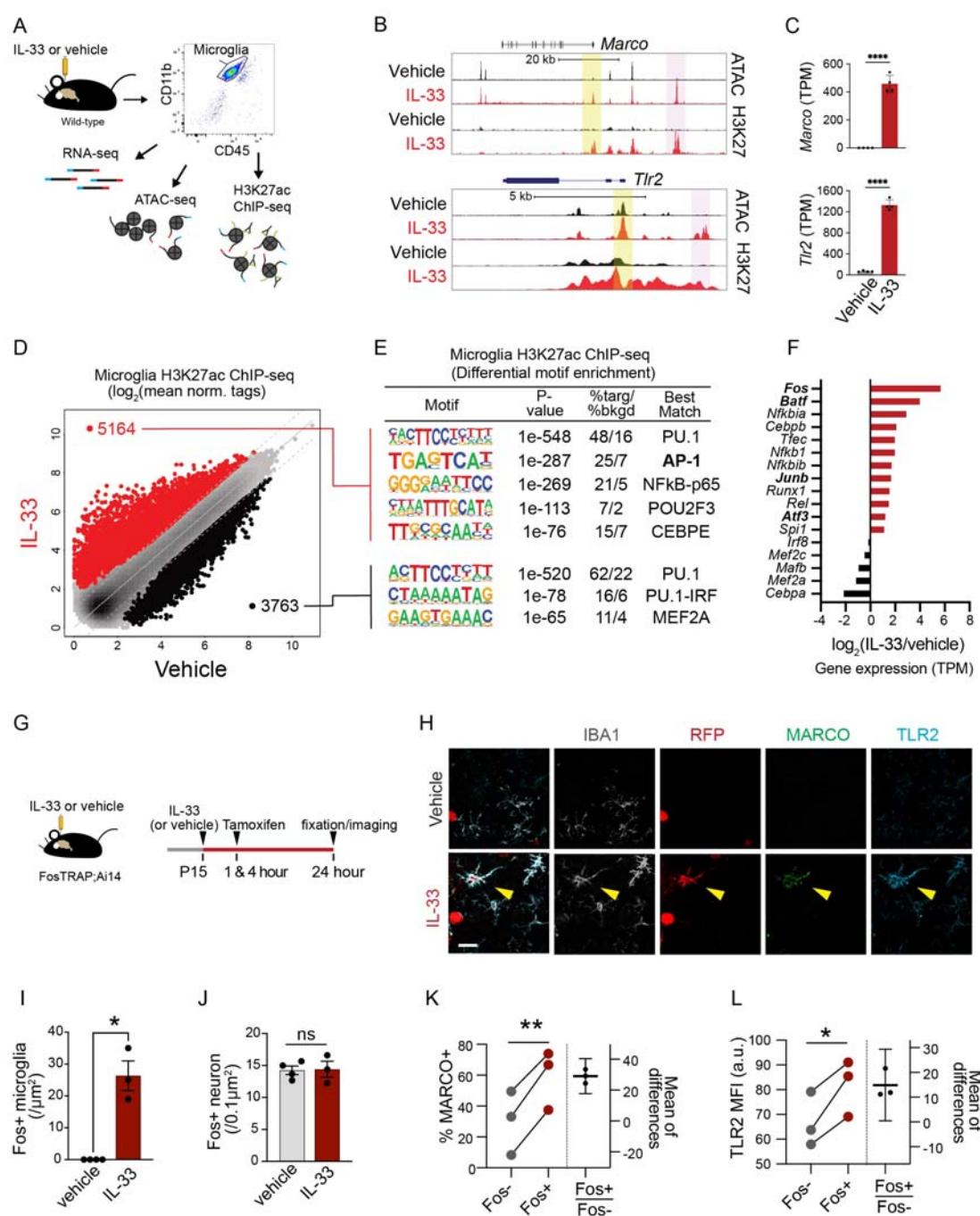
470 b) Quantification of VGLUT1 within CD68+ phagolysosomes within individual microglia after vehicle or
471 IL-33 injection in the presence of TLR2 blocking antibody or isotype control (values normalized to
472 vehicle+isotype control condition; n=24 microglia from 4 mice for vehicle+isotype control, n= 21
473 microglia from 4 mice for IL33+isotype control, and n= 27 microglia from 5 mice for IL33+TLR2
474 blocking antibody).

475 c) Quantification of VGLUT1 within CD68+ phagolysosomes within microglia after vehicle or IL-33
476 injection after co-injection of a MARCO blocking antibody or isotype control (values normalized to
477 vehicle+isotype control condition; n=18 microglia from 4 mice for vehicle+isotype control, n= 23
478 microglia from 5 mice for IL-33+isotype control, and n= 21 microglia from 5 mice for IL33+MARCO
479 blocking antibody).

480 d) Schematic of intracerebroventricular injection of IL-33 in wild type, $Marco^{-/-}$, or $Tlr2^{-/-}$ animals.

481 e) Representative images of corticothalamic excitatory synapses defined by pseudocolocalization of pre-
482 and post- synaptic proteins VGLUT1 and HOMER1 respectively for indicated conditions. White circles
483 indicate colocalized puncta defined as presumptive functional synapses. Scale bar: 2 μ m.

484 f) Quantification of corticothalamic excitatory synapses in somatosensory thalamus after vehicle or IL-33
485 injection into $Tlr2^{-/-}$ animals or wild-type animals (n = 18 fields of view for wild-type+vehicle, and 20
486 fields of view for wild-type+IL-33 and $Tlr2^{-/-}$ + IL-33, 4 mice/condition).


487 g) Quantification of corticothalamic excitatory synapses in somatosensory thalamus after vehicle or IL-33
488 injection into $Marco^{-/-}$ or wild-type animals (for each condition n = 17 fields of view from 3
489 mice/condition).

490

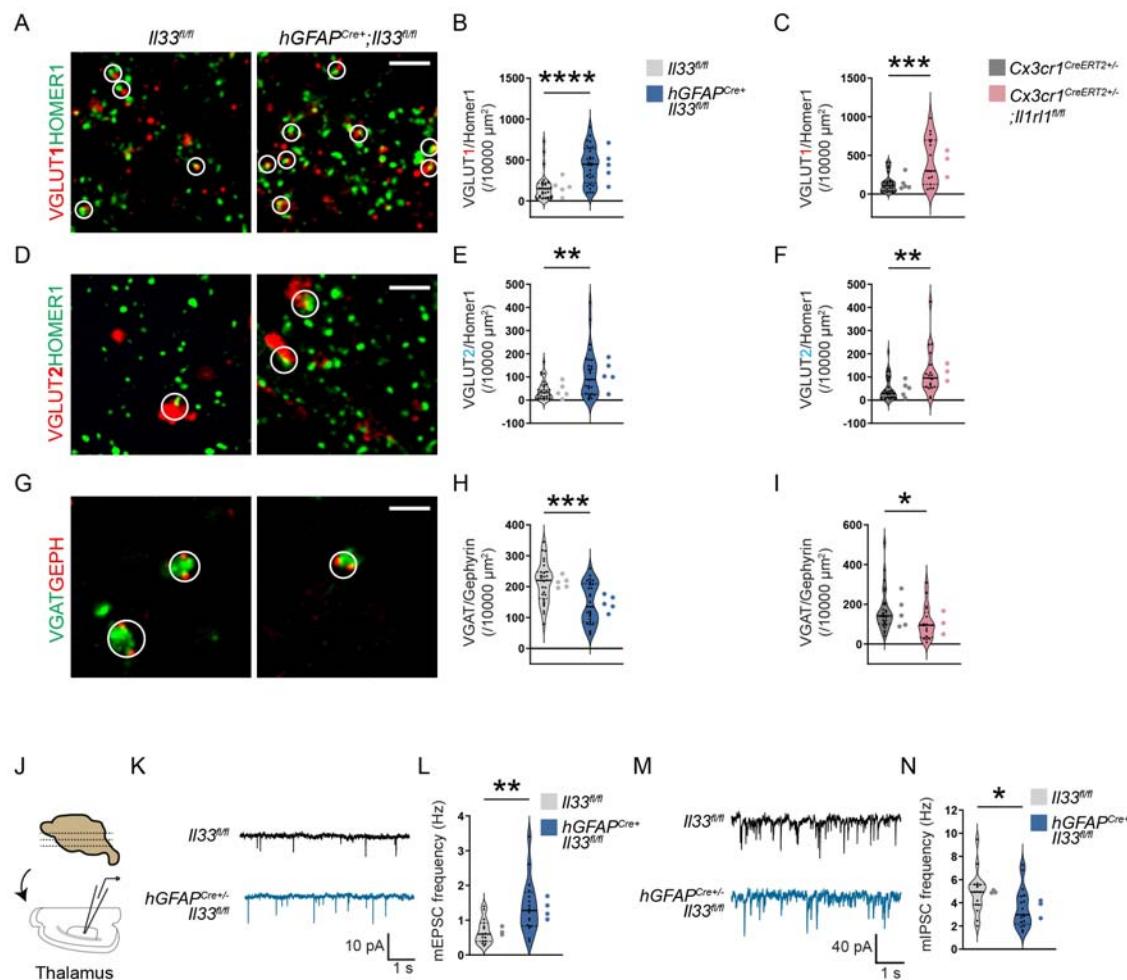
491 Data represented as median \pm interquartile range for violin plots. Larger dots to the right of violin plots
492 represent the average per individual mouse within that group. Mice from P15-P17 were used for all
493 experiments. One-way ANOVA followed by post hoc Tukey's comparison was used for all analysis. *
494 $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.

495

496 *See also Figure S3.*

497
498

Figure 3: IL-33 promotes AP-1/Fos activation to drive target gene expression in microglia.


501

502 A) Schematic of bulk RNA-seq, ATAC-seq and H3K27ac ChIP-seq paradigm. Vehicle=PBS.

503 B) Brower tracks of ATAC-seq and H3K27ac ChIP-seq peaks in the vicinity of *Marco* and *Tlr2*. Yellow
504 shading denotes promoter regions, pink shading denotes distal gene regulatory elements (enhancers).

505 C) Bar graphs illustrate mRNA expression (transcripts per million, TPM) from bulk RNA-seq for *Marco*
506 and *Tlr2*. Error bars = standard deviation. Each dot represents a mouse (two-tailed unpaired t-test).

507 **D)** Scatter plot of normalized H3K27ac ChIP-seq in regions with ATAC-seq signal, in microglia after
508 vehicle or IL-33 exposure. Data focuses on putative enhancers (chromatin regions > 3kb from
509 transcriptional start site). Color codes indicate significant changes (FDR < 0.05 & FC >2) in H3K27ac
510 ChIP-seq signal (IL-33 enriched= red, vehicle enriched=black).
511 **E)** Enriched *de novo* motifs in distal open chromatin regions (enhancers) that gained or lost H3K27ac
512 ChIP-seq signal after treatment with IL-33 or vehicle, showing best matched TFs binding to those motifs.
513 **F)** Log₂ fold-change of gene expression of all transcription factors that bind DNA elements identified in
514 (E). All transcription factors shown have adj. p-value <0.001 by RNAseq.
515 **G)** Experimental paradigm using the Fos-Trap2 allele crossed to the *Ai14* TdTomato reporter to label, or
516 'trap' Fos+ cells. Tamoxifen administered 1 and 4 hours after IL-33 or vehicle i.c.v. injection to capture
517 Fos+ cells, animals sacrificed 20 hours after the last tamoxifen injection.
518 **H)** Representative images of staining for Fos-TRAP (TdT+), MARCO and TLR2 after vehicle or IL-33
519 injection. Scale bar = 10 μ m.
520 **I)** Quantification of Fos+ microglia in the cortex after vehicle or IL-33 injection. Each dot represents a
521 mouse (two-tailed unpaired t-test).
522 **J)** Quantification of Fos+ neurons in the cortex after vehicle or IL-33 injection. Each dot represents a
523 mouse (two-tailed unpaired t-test).
524 **K)** Quantification of percent microglia that are MARCO+ comparing Fos- or Fos+ microglia in the cortex
525 after IL-33 injection. Lines (left) connect paired measurements of Fos+ and Fos- microglia in the same
526 mouse (two-tailed paired t-test). The right hand estimation plot shows the difference between the two
527 means for each mouse, error bars indicate 95% confidence interval of that difference.
528 **L)** Quantification of TLR2 mean fluorescent intensity from Fos- or Fos+ microglia in the cortex after IL-33
529 injection. Lines (left) connect paired measurements of Fos+ and Fos- microglia in the same mouse (two-
530 tailed paired t-test). The right hand estimation plot shows the difference between the two means for each
531 mouse, error bars indicate 95% confidence interval of that difference.
532
533 Data represented as mean \pm SEM for bar graphs. Mice at P30 were used for A-F. * p <0.05, ** p <0.01,
534 **** p <0.0001.
535
536 **See also Figure S4.**
537
538

539
540

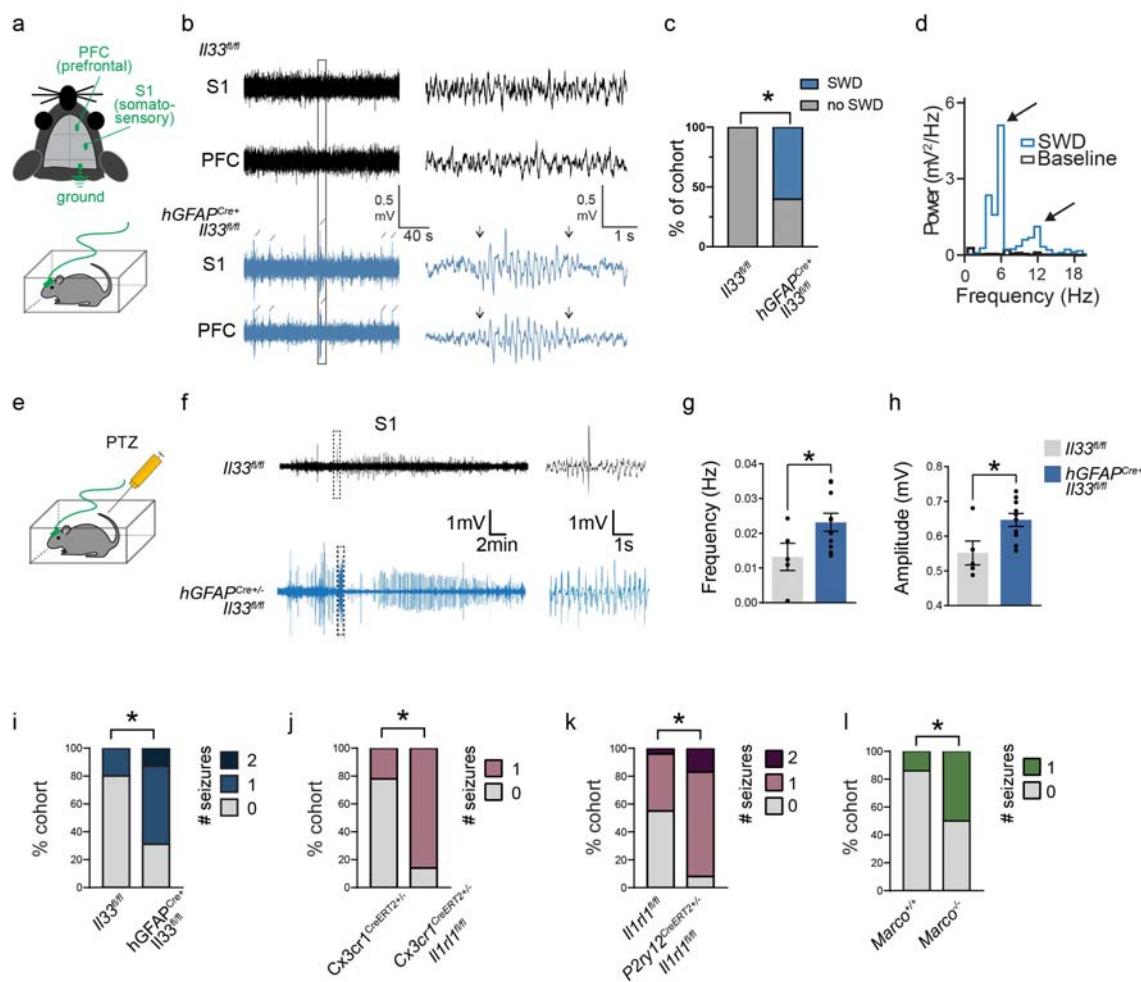
541 **Figure 4: CNS-derived IL-33 acts through myeloid cells to restricts excitatory**
542 **thalamic synapse numbers.**

543

544 **a)** Representative images of corticothalamic excitatory synapses as defined by colocalized presynaptic
545 (VGLUT1) and postsynaptic(HOMER1) puncta in *hGFAPCre+;Il33^{fl/fl}* vs. *Il33^{fl/fl}* control. Circles indicate
546 co-localization, defining a functional synapse. Scale bar = 2 μ m.

547 **b)** Quantification of corticothalamic excitatory synapses in *hGFAPCre+;Il33^{fl/fl}* vs. *Il33^{fl/fl}* control. n= 28
548 fields of view, 5 mice/genotype.

549 **c)** Quantification of corticothalamic excitatory synapses with myeloid-specific deletion of IL-33 receptor
550 (*Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}*) vs. control (*Cx3cr1CreERT2+/-*). n= 15 fields of view from 3 mice in
551 *Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}* and n= 25 fields of view from 5 mice in *Cx3cr1CreERT2+/-*.


552 **d)** Representative images of brainstem afferent synapses as defined by colocalized pre- (VGLUT2) and
553 post- (HOMER1) synaptic puncta in *hGFAPCre+;Il33^{fl/fl}* vs. *Il33^{fl/fl}*. Circles indicate co-localization,
554 defining a functional synapse. Scale bar = 2 μ m.

555 **e)** Quantification of brainstem afferent synapses in *hGFAPCre+;Il33^{fl/fl}* vs. *Il33^{fl/fl}* control mice. n= 28
556 fields of view, 5 mice/genotype.

557 **f)** Quantification of brainstem afferent synapses after myeloid-specific deletion of IL-33 receptor
558 (*Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}*) vs. control (*Cx3cr1CreERT2+/-*). *Cx3cr1CreERT2+/-;Il1rl1^{fl/fl}* : n= 19 fields of view
559 from 3 mice. *Cx3cr1CreERT2+/-*: n= 29 fields of view from 5 mice.

560 g) Representative images of thalamic inhibitory synapses as defined by colocalized presynaptic (VGAT)
561 and postsynaptic (Gephyrin) puncta in *hGFAPCre+;Il33^{f/f}* vs. *Il33^{f/f}* control. Circles indicate co-
562 localization, defining a functional synapse. Scale bar = 2 μ m.
563 h) Quantification of thalamic inhibitory synapses in *hGFAPCre+;Il33^{f/f}* vs. *Il33^{f/f}* control. n= 28 fields of
564 view, 5 mice/genotype.
565 i) Quantification of thalamic inhibitory synapses in myeloid-specific deletion of IL-33 receptor
566 (*Cx3cr1Cre^{ERT2+/-};Il1rl1^{f/f}*) vs. control (*Cx3cr1^{CreERT2+/+};Il1rl1^{f/f}*). *Cx3cr1^{CreERT2+/+};Il1rl1^{f/f}* : n= 17 fields of view
567 from 3 mice. *Cx3cr1^{CreERT2+/-}*: n= 26 fields of view from 5 mice.
568 j) Experimental paradigm for whole cell patch-clamp electrophysiology of somatosensory thalamic
569 neurons.
570 k) Representative traces of miniature excitatory post synaptic currents (mEPSC) from somatosensory
571 thalamus over a 5 second recording period.
572 l) Quantification of mEPSC frequency in somatosensory thalamic neurons (*Il33^{f/f}* control: n=17 neurons
573 from 3 mice, *hGFAPCre+;Il33^{f/f}* : n=18 neurons from 4 mice, 2 independent experiments, all mice age
574 P26-P33).
575 m) Representative traces of miniature inhibitory post synaptic currents (mIPSC) from somatosensory
576 thalamus over a 5 second recording period.
577 n) Quantification of mIPSC frequency in somatosensory thalamic neurons (n=16 neurons from 3 mice in
578 *Il33^{f/f}*, n=17 neurons from 3 mice in *hGFAPCre+;Il33^{f/f}*, 2 independent experiments, all mice age P28-
579 P36).
580
581 Data represented as median \pm interquartile range for violin plots. Larger dots to the right of violin plots
582 represent the average per individual mouse within that group. Two-tailed unpaired t-test used for all
583 analyses. P28-P30 mice were used for b, e, and h. P32-P35 mice were used for c, e, and i. * p<0.05, **
584 p<0.01, *** p<0.001, **** p<0.0001.

585
586 See also Figure S5.
587
588

589
590

591 Figure 5: IL-33-IL1RL1 signaling limits seizure susceptibility.

592
593 a) Schematic of lead placement and setup for electrocorticography (ECoG) in 5–6 week-old mice.
594 b) Representative traces of recordings from somatosensory and prefrontal cortex of freely behaving mice.
595 Left shows several minutes of recording with detected spiking events indicated by diagonal lines. Boxed
596 area on the left indicates inset which is shown at a higher time scale on the right. The inset highlights a
597 representative spike-wave discharge (SWD) lasting about 3 seconds, occurring in *hGFAP*^{Cre+}; *Il33*^{fl/fl}.
598 Arrowheads indicate the beginning and end of the event.
599 c) Quantification of percent of cohort with synchronized spike-wave-discharge (SWD) events in both
600 cortical areas, collected during the one-hour recording session. $n=10$ *hGFAP*^{Cre+}; *Il33*^{fl/fl} mice and 5 *Il33*^{fl/fl}
601 mice (Fisher's exact test).
602 d) Representative fast Fourier transform of a spike wave discharge observed in *hGFAP*^{Cre+}; *Il33*^{fl/fl} mice,
603 demonstrating characteristic peak at 6 Hz and harmonic peak at 12 Hz.
604 e) Schematic of ECoG recordings after injection of the GABA-A receptor antagonist pentylenetetrazol
605 (PTZ). Mice were recorded for one hour.
606 f) Representative traces of recordings from somatosensory cortex of PTZ-injected mouse. The left trace
607 shows several minutes of recording time. Boxed area indicates a spiking event shown at a higher time scale
608 in the inset on the right.

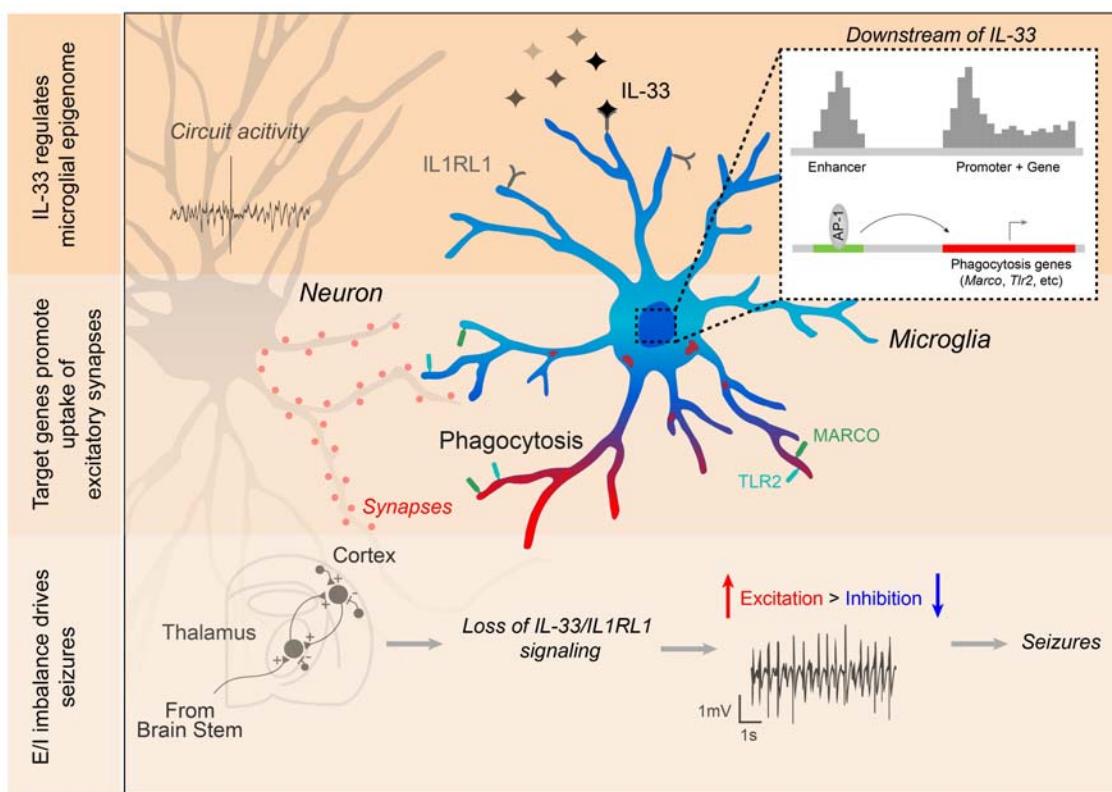
609 **g-h)** Quantification of total spike frequency (**G**) and average amplitude of detected spike events (**H**) from
610 somatosensory cortex during one-hour recording session. n=10 *hGFAP*^{Cre+}; *Il33*^{f/f} mice and 5 *Il33*^{fl/fl} mice
611 (two-tailed unpaired t-tests).

612 **i)** PTZ injection was followed by one hour of video recording, with behavioral scoring of observed seizure
613 events on a Racine scale by a blinded observer. Quantification shows percent of cohort that experienced
614 generalized tonic-clonic seizures during the recording. n=16 *hGFAP*^{Cre+}; *Il33*^{f/f} mice and 15 *Il33*^{fl/fl} mice
615 from 4 independent experiments. Age P29-P35, Fisher's exact test.

616 **j)** PTZ injection followed by behavioral scoring of seizure events, showing percent of cohort that
617 experienced generalized tonic-clonic seizures during the recording. n=7 *Cx3cr1*^{CreERT2+/+}; *Il1rl1*^{f/f} mice and
618 n=9 *Cx3cr1*^{CreERT2+/+} mice from 3 independent experiments. Age P29-P35, Fisher's exact test.

619 **k)** PTZ injection followed by behavioral scoring of seizure events, showing percent of cohort that
620 experienced generalized tonic-clonic seizures during the recording. n=12 *P2ry12*^{CreERT2+/+}; *Il1rl1*^{f/f} mice
621 and n=22 *Il1rl1*^{f/f} mice from 5 independent experiments. Age P29-P35, (Fisher's exact test).

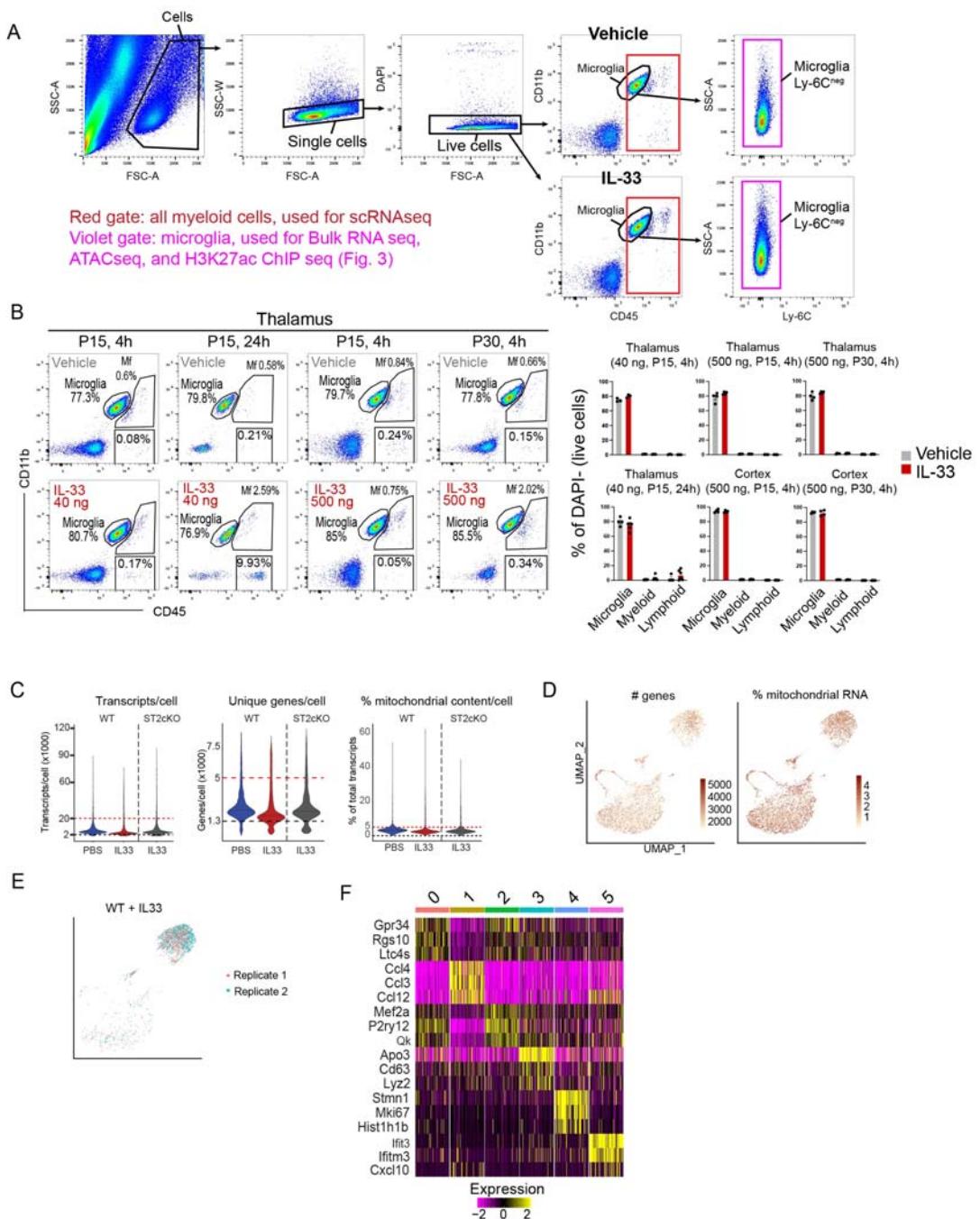
622 **l)** PTZ injection followed by behavioral scoring of seizure events, showing percent of cohort that
623 experienced generalized tonic-clonic seizures during the recording. n=21 wild-type and 16 *Marco*^{-/-} from 4
624 independent experiments (Fisher's exact test).


625

626

627 Data represented as mean \pm SEM for bar graphs. Each dot represents mice. Mice from P35-40 were used
628 for a-h. ECoG; electrocorticography, PTZ; pentylenetetrazol, S1; somatosensory cortex, PFC; prefrontal
629 cortex. *p<0.05.

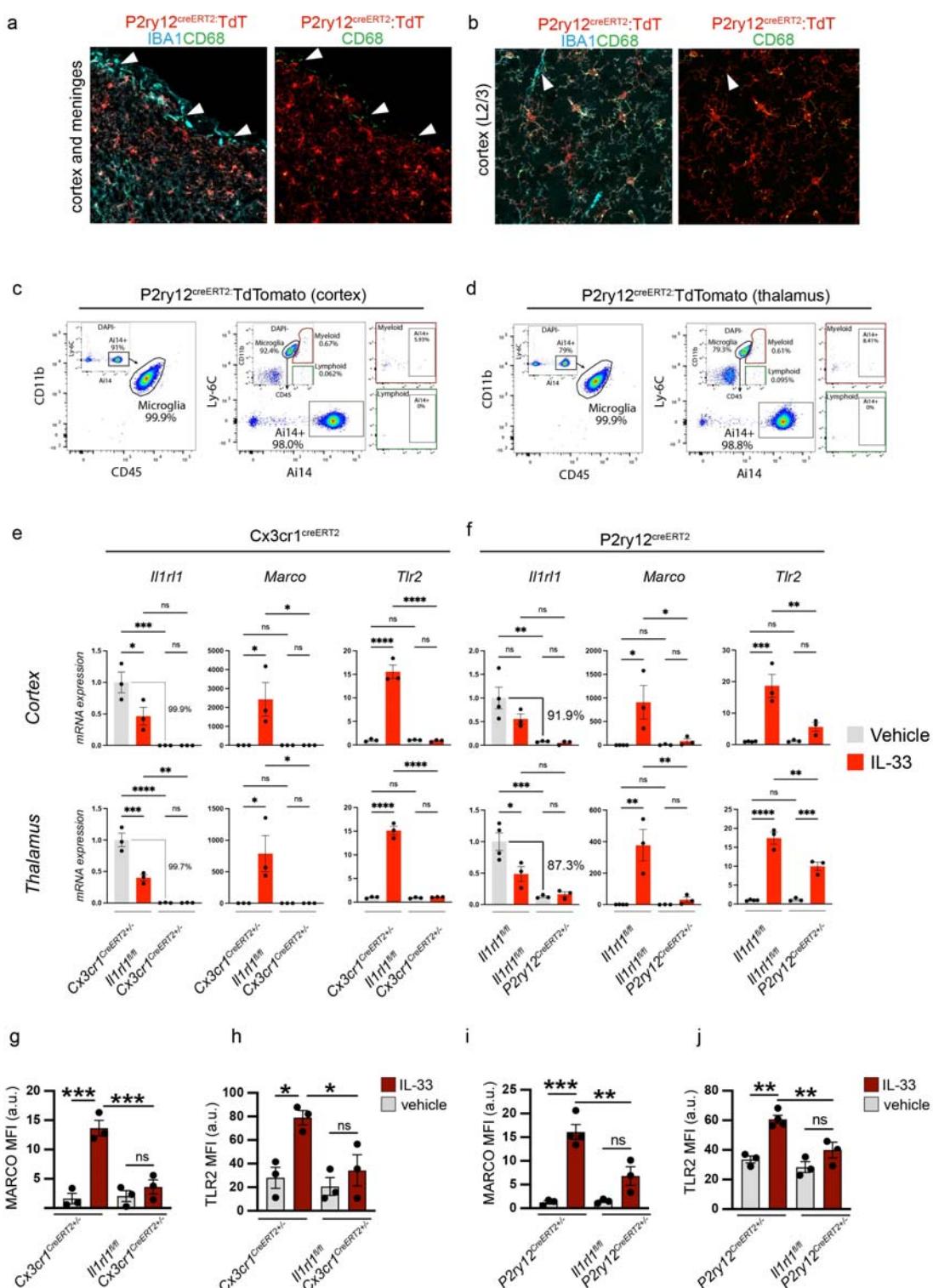
630


631 *See also Figure S6.*

632 **Figure 6:** Graphical abstract.

633 • IL-33 promotes state-dependent transcription factor expression in microglia and
634 induces gene expression programs associated with sensing and scavenging.
635 • The scavenger receptor MARCO and the pattern recognition receptor TLR2 are
636 two downstream target genes that partly mediate IL-33's effects on microglial
637 uptake of synaptic proteins
638 • Loss of CNS-derived IL-33 or its receptor on myeloid cells leads to
639 corticothalamic excitability by altering synapse numbers and increases seizure
640 susceptibility.

641 **Supplemental Figures:**
642


643
644

645 **Figure S1: Quality control and additional data defining the microglial response to**
646 **IL-33, related to Figure 1.**

647
648
649

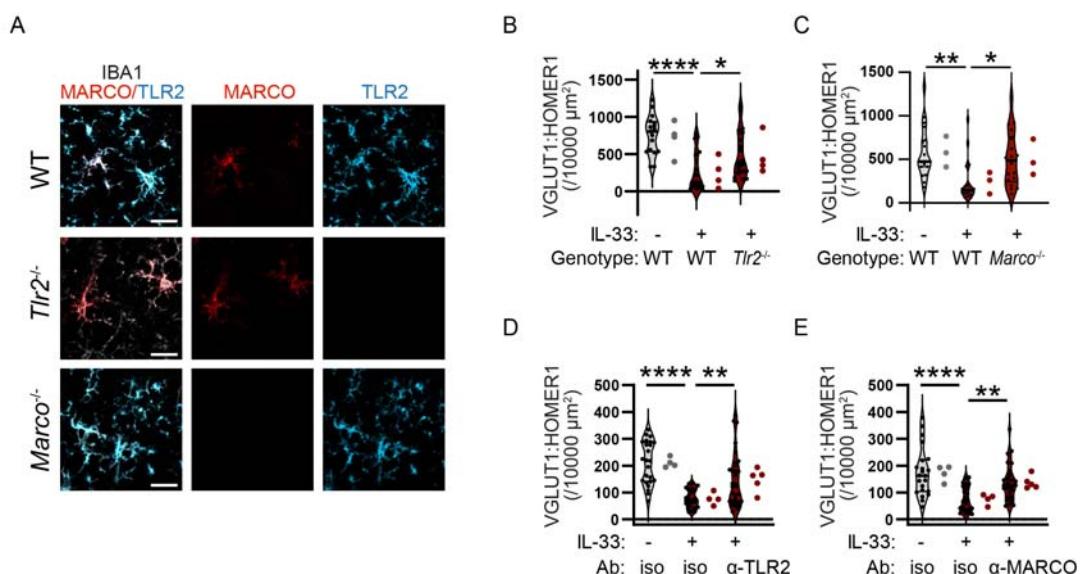
a) Gating strategy for isolation by FACS of all CD45+ (red) for scRNAseq in Figure 1, or microglia only (CD11b+, CD45+, Ly-6C-, purple) for bulk RNA/ATAC/ChIP seq (Figure 3).

650 **b)** Gating strategy and percentage of microglia, myeloid and lymphoid cells after vehicle or IL-33 as gated
651 by CD11b and CD45. Representative plots are from Thalamus, quantifications on the right include
652 Thalamus and Cortex. Each dot represents a mouse.
653 **c)** Violin plots of scRNAseq data showing transcripts/cell, unique genes/cell and % mitochondrial
654 content/cell for each sample. Cut off boundaries are marked (upper: dotted red line, bottom: dotted black
655 line).
656 **d)** Feature plots for number of genes and % mitochondrial RNA for all samples combined from scRNAseq
657 data. Each dot represents a cell.
658 **e)** Feature plot showing correlation between replicates for WT + IL-33 scRNAseq sample.
659 **f)** Heatmap for the top 3 genes in each cluster from scRNAseq data.
660
661

662

663

Figure S2: Additional data defining the microglial response to IL-33, related to Figure 1.


664

665

666

a-b) Representative images for $P2ry12^{creERT2}$ crossed to a R26R-TdTomato reporter ($AI14$). Staining for TdT, IBA1 and CD68. Left panel (G) at lower power shows cortex with overlying meninges. Arrowheads

667 indicate meningeal macrophages that are CD68+IBA1+TdT^{neg}. Right panels (**H**) shows L2/3 cortex.
668 Arrowheads indicate perivascular macrophage that is CD68+IBA1+TdT^{neg}.
669 **c-d)** Representative flow cytometry plots of Cortex (**I**) and Thalamus (**J**) showing P2ry12^{creERT2} driven
670 Ai14 (TdTomato) expression. Two gating strategies shown: Left panels show gating on Ai14+ followed by
671 CD11b and CD45. Right panels show gating on microglia, myeloid and lymphoid based on CD11b and
672 CD45 followed by Ly-6C and Ai14.
673 **e-f)** qRT-PCR of *Il1rl1*, *Marco* and *Tlr2* expression in cortical and thalamic microglia from Cx3cr1^{creERT2}
674 (**e**) and P2ry12^{creERT2} (**f**) mice. Values were normalized to housekeeper (*Hmbs*) and control + vehicle (PBS)
675 condition. In Cx3cr1^{creERT2} control=Cx3cr1^{creERT2+/-}. In P2ry12^{creERT2} control=*Il1rl1*^{fl/fl}. Each dot represents a
676 mouse. Two-way ANOVA followed by Tukey's post hoc comparison (genotype and treatment).
677 **g-j)** Mean fluorescence intensity for MARCO and TLR2 protein in cortex from Cx3cr1^{creERT2} (**g-h**) and
678 P2ry12^{-creERT2} (**i-j**) mice. Each dot represents a mouse. Two-way ANOVA followed by Tukey's post hoc
679 comparison (genotype and treatment).
680
681 Data represented as mean \pm SEM for bar graphs. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.
682

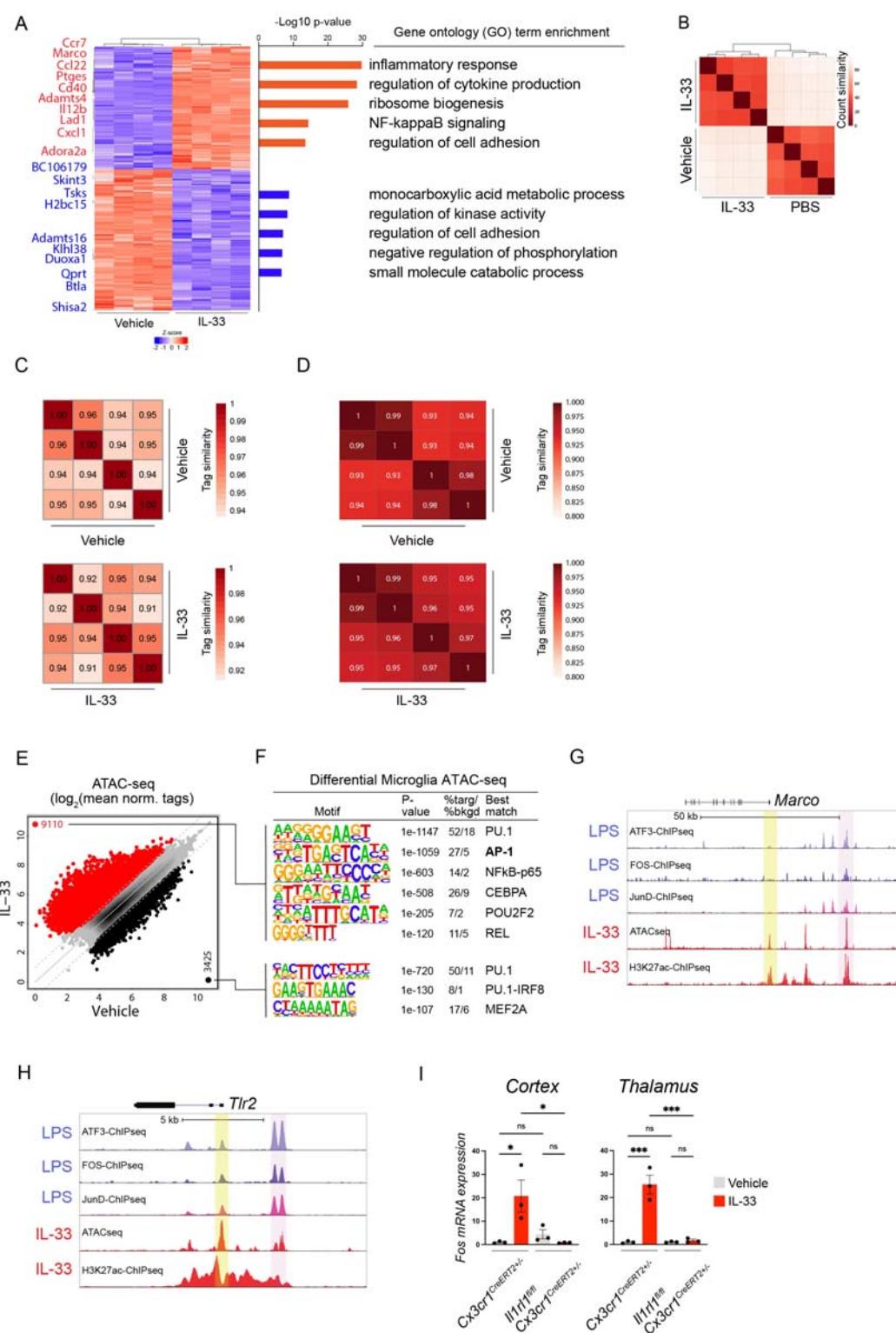
683
684

685 **Figure S3: Validation of TLR2 and MARCO deficient animals and impact on**
686 **cortical synapse numbers, related to Figure 2.**

687
688 a) Representative images of MARCO and TLR2 immunostaining in wild-type (top), *Tlr2* (middle), or
689 *Marco* (bottom) deficiency animals 18 hours after 40 ng of IL-33 i.c.v. injection at P17. Scale bar = 20 μm.
690 b) Quantification of intracortical synapses in somatosensory cortex after vehicle or IL-33 injection into
691 *Tlr2*^{-/-} animals or wild-type animals (n=17 fields of view for wild-type+vehicle, n=19 fields of view for
692 wild-type+IL-33, n=20 fields of view for *Tlr2*^{-/-} + IL-33, 4 mice/condition).

693 c) Quantification of intracortical synapses in somatosensory cortex after vehicle or IL-33 injection into
694 *Marco*^{-/-} animals or wild-type animals (n=19 fields of view for wild-type+vehicle, n=18 fields of view for
695 wild-type+IL-33, n=18 for *Marco*^{-/-} + IL-33, 3 mice/condition).

696 d) Quantification of corticothalamic synapses in somatosensory thalamus after vehicle or IL-33 injection in
697 the presence of TLR2 blocking antibody or isotype control (n=24 fields of view from 4 mice for
698 vehicle+isotype control and IL-33+isotype control, and n=29 fields of view from 5 mice for IL-33+ α-
699 TLR2).


700 e) Quantification of corticothalamic synapses in somatosensory thalamus after vehicle or IL-33 injection in
701 the presence of MARCO blocking antibody or isotype control (n=22 fields of view from 4 mice for vehicle
702 +isotype control, n=23 fields of view from 4 mice for IL-33+isotype control, and n=26 fields of view from
703 5 mice for IL-33+ α-MARCO).

704

705 Data represented as median ± interquartile range for violin plots. Larger dots to the right of violin plots
706 represent the average per individual mouse within that group. One-way ANOVA followed by post hoc
707 Tukey's comparison was used for all analysis. *p<0.05, **p<0.01, ****p<0.0001.

708

709

710

711 **Figure S4: Transcriptomic and epigenomic profiling of microglia after IL-33**
712 **exposure, related to Figure 3.**

713

714 A) Heatmap of differentially expressed genes in cortical microglia four hours after vehicle (PBS) or 500 ng
715 of IL-33 treatment ($P_{adj} < 0.01$). Left: Top 10 upregulated (red) and downregulated (blue) genes indicated. Right:

716 Top GO categories associated with differentially expressed genes ($P_{adj} < 0.01$, fold-change>2), upregulated
717 (red) and downregulated (blue).

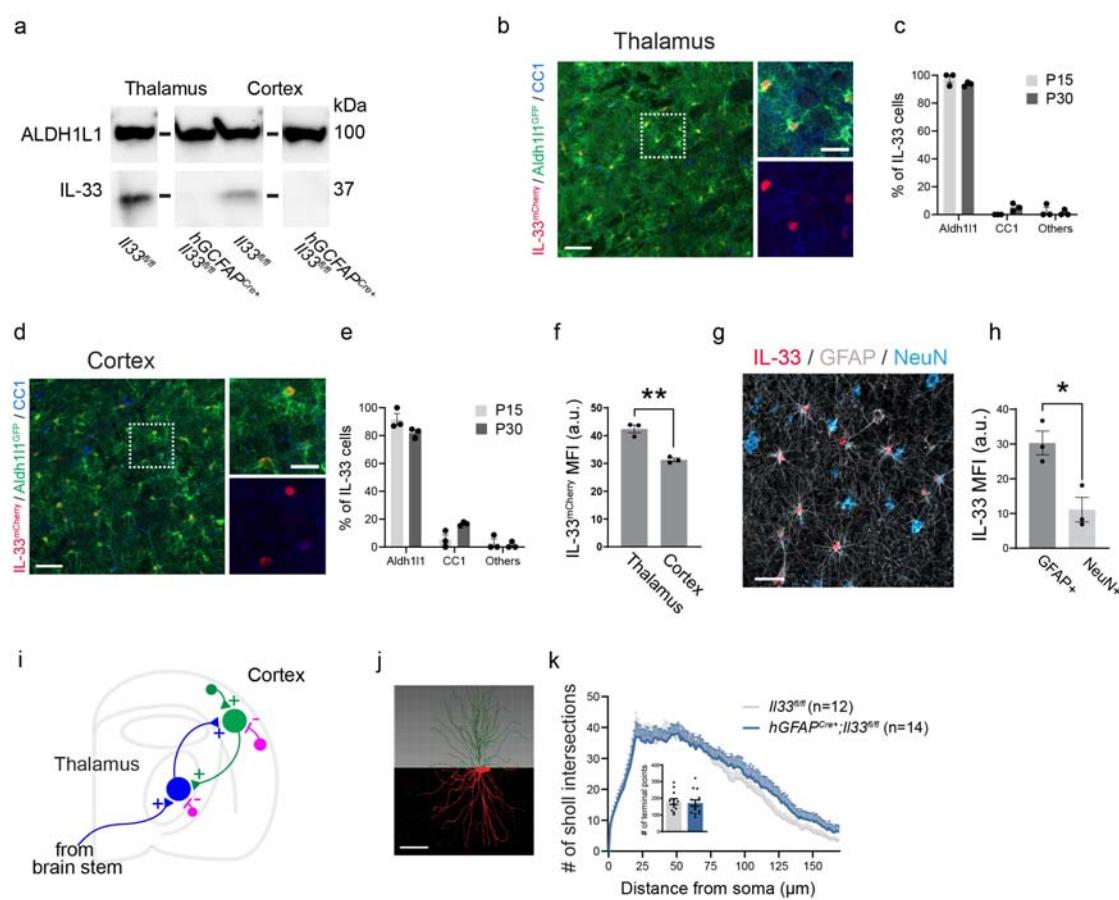
718 **B)** Heatmap of sample-to-sample Pearson correlation of bulk RNA-seq replicates.

719 **C)** Heatmaps of sample-to-sample correlation for ATAC-seq replicates. Values indicate Pearson
720 correlation.

721 **D)** Heatmaps of sample-to-sample correlation for H2K27ac ChIP-seq replicates. Values indicate Pearson
722 correlation.

723 **E)** Scatter plot of normalized ATAC-seq signal at all distal open chromatin regions (> 3kb from TSS) in
724 microglia after vehicle or IL-33 exposure. Color codes indicate significant changes (FDR < 0.05 & FC >2)
725 in ATAC-seq signal (IL-33 enriched= red, vehicle enriched=black).

726 **F)** Enriched *de novo* motifs in distal open chromatin regions (enhancers) that gain or lose H3K27ac ChIP-
727 seq signal after treatment with IL-33 or vehicle, showing best matched TFs binding to those motifs ($P_{adj} <$
728 0.05).


729 **G-H)** Browser tracks of ChIP-seq peaks for AP-1 family members ATF3, FOS and JunD in macrophages
730 after LPS stimulation (from Fonseca et al., 2019⁵⁰), shown above microglia ATAC-seq and H3K27ac ChIP-
731 seq peaks 4 hours after IL-33 (this study). Highlighting *Marco* (**G**) and *Tlr2* (**H**). Yellow shading denotes
732 promoter regions, pink shading denotes distal gene regulatory elements (enhancers).

733 **I)** qRT-PCR of *Fos* mRNA expression in cortical and thalamic microglia from indicated genotypes. Values
734 were normalized to housekeeper (*Hmbs*) and control + vehicle condition. In *Cx3cr1*^{creERT2}
735 control=*Cx3cr1*^{creERT2+/-}. In *P2ry12*^{creERT2} control=*Il1rl1*^{fl/fl}. Each dot represents a mouse. Two-way ANOVA
736 followed by Tukey's post hoc comparison (genotype and treatment).

737

738 Data represented as mean \pm SEM for bar graphs. * $p < 0.05$, *** $p < 0.001$.

739

740
741

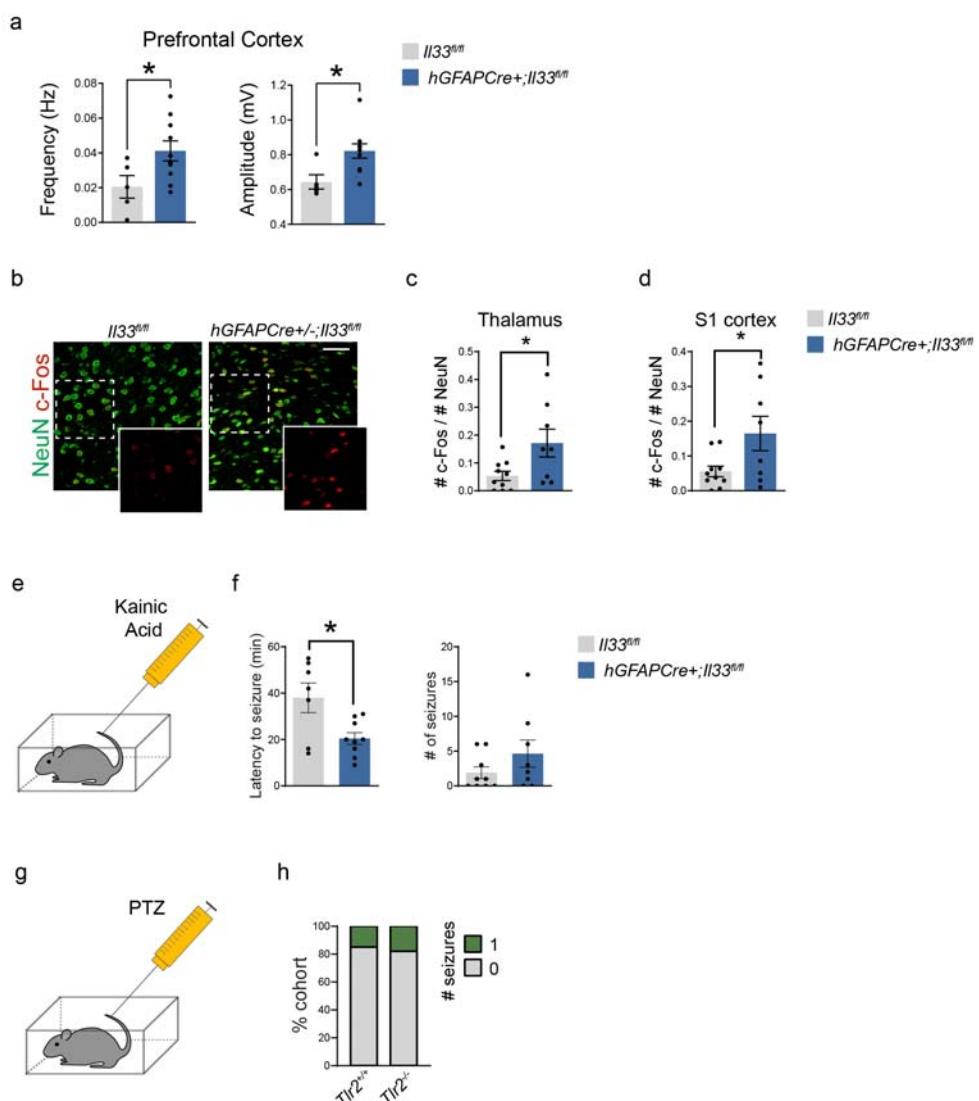
742 **Figure S5. Defining the cellular sources of IL-33 in the developing thalamus and**
743 **cortex, efficiency of IL-33 depletion using *hGFAPcre:Il33fl/fl*, and additional**
744 **characterization of corticothalamic circuits after CNS-specific deletion of IL-33,**
745 **related to Figure 4.**

746

747 a) Western blot from cortex and thalamus of *hGFAPCre:Il33fl/fl* animals and *Il33fl/fl* controls at P35.
748 ALDH1L1 used as a loading control. Blot has been cropped to remove unrelated bands.

749

750 b-c) Representative image and quantification of percent $IL-33^{mCherry+}$ cells in the somatosensory thalamus
751 of *Il33^{mCherry};Aldh1l1^{GFP}* mice stained with CC1 (oligodendrocytes) at P15 and P30. GFP expression marks
astrocytes. Scale bar = 50 μ m (left) and 20 μ m (right).


752

753 e-e) Representative image and quantification of percent $IL-33^{mCherry+}$ cells in the somatosensory cortex of
754 *Il33^{mCherry};Aldh1l1^{GFP}* mice stained with CC1 (oligodendrocytes) at P15 and P30. Scale bar = 50 μ m (left)
755 and 20 μ m (right).

756

757 f) Comparison of mean fluorescent intensity (MFI) of $IL-33^{mCherry}$ in the thalamus and the cortex at P15.
g) Representative image of IL-33 expression in the human cortical grey matter. Colocalized with GFAP
(astrocytes) and NeuN (neurons). Scale bar = 20 μ m.

758 **h)** Mean fluorescence intensity of IL-33 expression in human cortical astrocytes and neurons. n= 3 male
759 subjects aged 17, 50, and 51.
760 **i)** Schematic of corticothalamic circuit. Green; VGLUT1+ excitatory neuron Blue; VGLUT2+ excitatory
761 neuron. Purple; VGAT+ inhibitory neuron.
762 **j)** Representative image and 3D reconstruction of biocytin filled neuron in somatosensory thalamus.
763 **k)** Scholl analysis quantification of process branching and (inset) number of terminal branch points (two-
764 way ANOVA followed by Sidak's multiple comparison for Scholl analysis and two-tailed t-test for inset).
765 Each dot represents a neuron. n=14 neurons from 7 *Il33^{f/f}* animals and n=12 neurons from 6
766 *hGFAPCre+;Il33^{f/f}* animals.
767 **l-n)** Quantification of synapses in somatosensory cortex in *Il33^{f/f}* and *hGFAPCre+;Il33^{f/f}* animals,
768 including excitatory intracortical (**l**), excitatory thalamocortical (**m**), and inhibitory (**n**) synapses. n=13
769 fields of view from 3 *Il33^{f/f}* and n= 16 fields of view from 3 *hGFAPCre+;Il33^{f/f}* mice in D; n= 12 fields of
770 view *Il33^{f/f}* mice and n= 14 fields of view from *hGFAPCre+;Il33^{f/f}* mice in E; n= 13 fields of view from 3
771 *Il33^{f/f}* mice and n=14 fields of view from 3 *hGFAPCre+;Il33^{f/f}* mice in F. Two-tailed unpaired t-test was
772 used.
773
774 Data represented as mean ± SEM for bar graphs and as median ± interquartile range for violin plots. Larger
775 dots to the right of violin plots represent the average per individual mouse within that group. Mice from
776 P26-P36 were used for k. Mice from P28-P30 were used for l-n. MFI; mean fluorescent intensity. *p<0.05,
777 **p<0.01.
778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

Figure S6: Additional characterization of seizure phenotypes after conditional deletion of IL-33, its receptor, and target genes, related to Figure 5.

a) Quantification of total spike frequency (left) and average amplitude (right) of detected spike events from prefrontal cortex during one-hour recording session. n=10 *hGFAPCre+;Il33*^{fl/fl} mice and 5 *Il33*^{fl/fl} mice (two tailed t-test). Each dot represents a mouse. Mice were P35-P40.

b-d) Representative images in thalamus (b) and quantification of c-Fos expression in the thalamus (c) and cortex (d) following PTZ administration (two-tailed t-test). Scale bar = 50 μ m. Each dot represents a mouse.

e) Schematic of kainic acid administration.

f) Quantification of latency to first seizure onset (left) and incidence of seizures (right) for 3 hours following kainic acid administration (two-tailed t-test). Each dot represents a mouse.

g-i) Quantification of percent of cohort with generalized tonic-clonic seizures in 1 hour following PTZ administration in wild-type vs. *Tlr2*^{-/-} animals. n=13 wild-type and 11 *Tlr2*^{-/-} animals from 2 independent experiments (Fisher's exact test).

Data represented as mean \pm SEM for bar graph. Mice from P29-P35 were used for all experiment except A. *p<0.05.

798

799 **Table S1: ScRNA-seq data showing differentially expressed genes per cluster.** Data
800 shows genes expressed in >5% of cells in that cluster, adjusted p-value < 0.001 and Log_2
801 FC > 0.1/-0.1). See excel file.

802

803 **Table S2: Genes differentially expressed in microglia after IL-33 i.c.v. vs. vehicle, in**
804 **bulk RNA-seq (adjusted p-value < 0.01).** See excel file.

805

806 **Table S3: ATAC-seq and H3K27ac ChIP-seq peaks differentially expressed in**
807 **microglia after IL-33 i.c.v. vs. vehicle.** See excel file.

808

809 **Table S4: mEPSC and mIPSC amplitude and kinetics, and intrinsic electrical**
810 **membrane properties of neurons in somatosensory thalamus of IL-33 cKO**
811 **(*hGFAPCre+/-Il33^{f/f}*) vs. littermate controls (*Il33^{f/f}*)** Data represented as mean \pm SEM.
812 For mEPSC and intrinsic electrical membrane properties, *Il33^{f/f}*: n=17 neurons from 3
813 mice, *hGFAPCre+/-Il33^{f/f}*: n= 18 neurons from 4 mice; For mIPSC, *Il33^{f/f}*: n=16
814 neurons from 3 mice and *hGFAPCre+/-Il33^{f/f}*: n=17 neurons from 3 mice. Two-tailed
815 unpaired t-test. ns: not significant.

<u>mEPSC</u>	<u>Control</u>	<u>IL-33 cKO</u>	<u>p-value</u>
Amplitude (pA)	12.43 \pm 0.40	11.76 \pm 0.40	ns
Decay time constant (ms)	2.77 \pm 0.13	2.88 \pm 0.22	ns
Half-width (ms)	1.52 \pm 0.09	1.53 \pm 0.12	ns
<u>mIPSC</u>	<u>Control</u>	<u>IL-33 cKO</u>	
Amplitude (pA)	34.77 \pm 1.60	31.51 \pm 1.54	ns
Decay time constant (ms)	6.29 \pm 0.18	6.73 \pm 0.48	ns
Half-width (ms)	6.00 \pm 0.19	6.23 \pm 0.31	ns
<u>Intrinsic electrical membrane properties</u>	<u>Control</u>	<u>IL-33 cKO</u>	
Membrane capacitance (pF)	125.48 \pm 6.23	131.70 \pm 7.04	ns
Input resistance (mOhm)	288.1 \pm 37.8	300 \pm 49.2	ns
Resting membrane potential (mV)	-66.57 \pm 1.10	-66.69 \pm 1.17	ns

816

817

818 **References**

819

820 1. Vezzani, A., Lang, B. & Aronica, E. Immunity and inflammation in epilepsy. *Cold*
821 *Spring Harb. Perspect. Med.* **6**, 1–22 (2016).

822 2. Ravizza, T. *et al.* The IL-1 β system in epilepsy-associated malformations of
823 cortical development. *Neurobiol. Dis.* (2006). doi:10.1016/j.nbd.2006.06.003

824 3. Aronica, E. *et al.* Complement activation in experimental and human temporal
825 lobe epilepsy. *Neurobiol. Dis.* (2007). doi:10.1016/j.nbd.2007.01.015

826 4. Bennett, F. C. & Molofsky, A. V. The immune system and psychiatric disease: a
827 basic science perspective. *Clin. Exp. Immunol.* **197**, 294–307 (2019).

828 5. Mosser, C. A., Baptista, S., Arnoux, I. & Audinat, E. Microglia in CNS
829 development: Shaping the brain for the future. *Prog. Neurobiol.* **149–150**, 1–20
830 (2017).

831 6. Frost, J. L. & Schafer, D. P. Microglia: Architects of the Developing Nervous
832 System. *Trends Cell Biol.* **26**, 587–597 (2016).

833 7. Lavin, Y. *et al.* Tissue-resident macrophage enhancer landscapes are shaped by the
834 local microenvironment. *Cell* **159**, 1312–1326 (2014).

835 8. Hrvatin, S. *et al.* Single-cell analysis of experience-dependent transcriptomic states
836 in the mouse visual cortex. *Nat. Neurosci.* **21**, 120–129 (2018).

837 9. Gosselin, D. *et al.* Environment drives selection and function of enhancers
838 controlling tissue-specific macrophage identities. *Cell* **159**, 1327–1340 (2014).

839 10. Gosselin, D. *et al.* An environment-dependent transcriptional network specifies
840 human microglia identity. *Science* (80-). **356**, 1248–1259 (2017).

841 11. Butovsky, O. *et al.* Identification of a unique TGF- β -dependent molecular and
842 functional signature in microglia. *Nat. Neurosci.* **17**, 131–143 (2014).

843 12. Nguyen, P. T. *et al.* Microglial Remodeling of the Extracellular Matrix Promotes
844 Synapse Plasticity. *Cell* **182**, 388-403.e15 (2020).

845 13. Vainchtein, I. D. *et al.* Astrocyte-derived interleukin-33 promotes microglial
846 synapse engulfment and neural circuit development. *Science* (80-). **1273**, 1269–
847 1273 (2018).

848 14. Takeuchi, Y. *et al.* Large-Scale Somatotopic Refinement via Functional Synapse
849 Elimination in the Sensory Thalamus of Developing Mice. *J. Neurosci.* **34**, 1258–
850 1270 (2014).

851 15. Takeuchi, Y., Osaki, H., Yagasaki, Y., Katayama, Y. & Miyata, M. Afferent fiber

852 remodeling in the somatosensory thalamus of mice as a neural basis of
853 somatotopic reorganization in the brain and ectopic mechanical hypersensitivity
854 after peripheral sensory nerve injury. *eNeuro* **4**, 1–21 (2017).

855 16. Golshani, P., Warren, R. A. & Jones, E. G. Progression of change in NMDA, non-
856 NMDA, and metabotropic glutamate receptor function at the developing
857 corticothalamic synapse. *J. Neurophysiol.* **80**, 143–154 (1998).

858 17. Yoshida, M., Satoh, T., Nakamura, K. C., Kaneko, T. & Hata, Y. Cortical activity
859 regulates corticothalamic synapses in dorsal lateral geniculate nucleus of rats.
860 *Neurosci. Res.* **64**, 118–127 (2009).

861 18. Paz, J. T. *et al.* Closed-loop optogenetic control of thalamus as a tool for
862 interrupting seizures after cortical injury. *Nat. Neurosci.* **16**, 64–70 (2013).

863 19. Paz, J. T., Christian, C. A., Parada, I., Prince, D. A. & Huguenard, J. R. Focal
864 Cortical Infarcts Alter Intrinsic Excitability and Synaptic Excitation in the
865 Reticular Thalamic Nucleus. *J. Neurosci.* **30**, 5465–5479 (2010).

866 20. Blumenfeld, H. Cellular and network mechanisms of genetically-determined
867 absence seizures. *Epilepsia* **3**, 181–203 (2005).

868 21. Makinson, C. D. *et al.* Regulation of Thalamic and Cortical Network Synchrony
869 by Scn8a. *Neuron* **93**, 1165–1179.e6 (2017).

870 22. Meeren, H., Van Luijtelaar, G., Lopes Da Silva, F. & Coenen, A. Evolving
871 concepts on the pathophysiology of absence seizures: The cortical focus theory.
872 *Arch. Neurol.* **62**, 371–376 (2005).

873 23. Yona, S. *et al.* Fate Mapping Reveals Origins and Dynamics of Monocytes and
874 Tissue Macrophages under Homeostasis. *Immunity* **38**, 79–91 (2013).

875 24. Bonilla, D. L. *et al.* Autophagy regulates phagocytosis by modulating the
876 expression of scavenger receptors. *Immunity* **39**, 537–547 (2013).

877 25. Doyle, S. E. *et al.* Toll-like Receptors Induce a Phagocytic Gene Program through
878 p38. *J. Exp. Med.* **199**, 81–90 (2004).

879 26. Da Silva, F. P. *et al.* CD16 promotes *Escherichia coli* sepsis through an FcR γ
880 inhibitory pathway that prevents phagocytosis and facilitates inflammation. *Nat.*
881 *Med.* **13**, 1368–1374 (2007).

882 27. Shirotani, K. *et al.* Aminophospholipids are signal-transducing TREM2 ligands on
883 apoptotic cells. *Sci. Rep.* **9**, 1–9 (2019).

884 28. Wang, Y. *et al.* TREM2 lipid sensing sustains the microglial response in an
885 Alzheimer's disease model. *Cell* **160**, 1061–1071 (2015).

886 29. Filipello, F. *et al.* The Microglial Innate Immune Receptor TREM2 Is Required for
887 Synapse Elimination and Normal Brain Connectivity. *Immunity* **48**, 979–991.e8
888 (2018).

889 30. Fourgeaud, L. *et al.* TAM receptors regulate multiple features of microglial
890 physiology. *Nature* **532**, 240–244 (2016).

891 31. Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive
892 immune responses. *Cell Res.* **20**, 34–50 (2010).

893 32. Wilton, D. K., Dissing-Olesen, L. & Stevens, B. Neuron-Glia Signaling in Synapse
894 Elimination. *Annu. Rev. Neurosci.* **42**, 107–127 (2019).

895 33. Bowdish, D. M. E. & Gordon, S. Conserved domains of the class A scavenger
896 receptors: Evolution and function. *Immunol. Rev.* **227**, 19–31 (2009).

897 34. van der Laan, L. J. *et al.* Regulation and functional involvement of macrophage
898 scavenger receptor MARCO in clearance of bacteria in vivo. *J. Immunol.* **162**,
899 939–47 (1999).

900 35. Maler, M. D. *et al.* Key role of the scavenger receptor MARCO in mediating
901 adenovirus infection and subsequent innate responses of macrophages. *MBio* **8**, 1–
902 15 (2017).

903 36. Xu, J. *et al.* Scavenger Receptor MARCO Orchestrates Early Defenses and
904 Contributes to Fungal Containment during Cryptococcal Infection. *J. Immunol.*
905 **198**, 3548–3557 (2017).

906 37. McKinsey, G. L. *et al.* A new genetic strategy for targeting microglia in
907 development and disease. *Elife* **9**, 1–34 (2020).

908 38. Medzhitov, R. & Janeway, C. The Toll receptor family and microbial recognition.
909 *Trends Microbiol.* **8**, 452–456 (2000).

910 39. Medzhitov, R. Toll-like receptors and innate immunity. *Nat. Rev. Immunol.* **1**,
911 135–145 (2001).

912 40. Jung, S. *et al.* Analysis of Fractalkine Receptor CX3CR1 Function by Targeted
913 Deletion and Green Fluorescent Protein Reporter Gene Insertion. *Mol. Cell. Biol.*
914 **20**, 4106–4114 (2000).

915 41. Decout, A. *et al.* Rational design of adjuvants targeting the C-type lectin Mincle.
916 *Proc. Natl. Acad. Sci. U. S. A.* **114**, 2675–2680 (2017).

917 42. Feng, L. *et al.* A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal
918 Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization
919 in Age-Related Macular Degeneration. *Am. J. Pathol.* **187**, 2208–2221 (2017).

920 43. Ippolito, D. M. & Eroglu, C. Quantifying synapses: An immunocytochemistry-
921 based assay to quantify synapse number. *J. Vis. Exp.* 1–10 (2010).
922 doi:10.3791/2270

923 44. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
924 Transposition of native chromatin for fast and sensitive epigenomic profiling of
925 open chromatin, DNA-binding proteins and nucleosome position. *Nat. Methods*
926 **10**, 1213–1218 (2013).

927 45. Thompson, M. R., Xu, D. & Williams, B. R. G. ATF3 transcription factor and its
928 emerging roles in immunity and cancer. *J. Mol. Med.* **87**, 1053–1060 (2009).

929 46. Ruland, J. Return to homeostasis: Downregulation of NF- κ B responses. *Nat.*
930 *Immunol.* **12**, 709–714 (2011).

931 47. Holtman, I. R., Skola, D. & Glass, C. K. Transcriptional control of microglia
932 phenotypes in health and disease. *J. Clin. Invest.* **127**, 3220–3229 (2017).

933 48. Zaret, K. S. Pioneer Transcription Factors Initiating Gene Network Changes.
934 *Annu. Rev. Genet.* **54**, 367–385 (2020).

935 49. Gazon, H., Barbeau, B., Mesnard, J. M. & Peloponese, J. M. Hijacking of the AP-1
936 signaling pathway during development of ATL. *Front. Microbiol.* **8**, 1–13 (2018).

937 50. Fonseca, G. J. *et al.* Diverse motif ensembles specify non-redundant DNA binding
938 activities of AP-1 family members in macrophages. *Nat. Commun.* **10**, (2019).

939 51. DeNardo, L. A. *et al.* Temporal evolution of cortical ensembles promoting remote
940 memory retrieval. *Nat. Neurosci.* **22**, 460–469 (2019).

941 52. Zhuo, L. *et al.* hGFAP-cre transgenic mice for manipulation of glial and neuronal
942 function in vivo. *Genesis* **31**, 85–94 (2001).

943 53. Molofsky, A. V. *et al.* Astrocyte-encoded positional cues maintain sensorimotor
944 circuit integrity. *Nature* (2014). doi:10.1038/nature13161

945 54. Arsenault, D. & Zhang, Z. W. Developmental remodelling of the lemniscal
946 synapse in the ventral basal thalamus of the mouse. *J. Physiol.* **573**, 121–132
947 (2006).

948 55. Zolnik, T. A. & Connors, B. W. Electrical synapses and the development of
949 inhibitory circuits in the thalamus. *J. Physiol.* **594**, 2579–2592 (2016).

950 56. Huguenard, J. R. & McCormick, D. A. Thalamic synchrony and dynamic
951 regulation of global forebrain oscillations. *Trends Neurosci.* **30**, 350–356 (2007).

952 57. Crunelli, V. *et al.* Clinical and experimental insight into pathophysiology,
953 comorbidity and therapy of absence seizures. *Brain* **143**, 2341–2368 (2020).

954 58. Paz, J. T., Chavez, M., Salliet, S., Deniau, J. M. & Charpier, S. Activity of ventral
955 medial thalamic neurons during absence seizures and modulation of cortical
956 paroxysms by the nigrothalamic pathway. *J. Neurosci.* **27**, 929–941 (2007).

957 59. Lüttjohann, A. & Van Luijtelaar, G. Dynamics of networks during absence
958 seizure's on- and offset in rodents and man. *Front. Physiol.* **6**, 1–17 (2015).

959 60. Molofsky, A. B., Savage, A. K. & Locksley, R. M. Interleukin-33 in Tissue
960 Homeostasis, Injury, and Inflammation. *Immunity* **42**, 1005–1019 (2015).

961 61. Ayata, P. *et al.* Epigenetic regulation of brain region-specific microglia clearance
962 activity. *Nat. Neurosci.* **21**, 1049–1060 (2018).

963 62. Hu, R. *et al.* Brain cell type – specific enhancer – promoter interactome maps and
964 disease-risk association. *Science (80-.).* **1139**, 1134–1139 (2019).

965 63. Badimon, A. *et al.* Negative feedback control of neuronal activity by microglia.
966 *Nature* (2020). doi:10.1038/s41586-020-2777-8

967 64. Sohal, V. S. & Rubenstein, J. L. R. Excitation-inhibition balance as a framework
968 for investigating mechanisms in neuropsychiatric disorders. *Mol. Psychiatry* **24**,
969 1248–1257 (2019).

970 65. Eyo, U. B., Murugan, M. & Wu, L. J. Microglia–Neuron Communication in
971 Epilepsy. *Glia* **65**, 5–18 (2017).

972 66. Palecanda, A. *et al.* Role of the scavenger receptor MARCO in alveolar
973 macrophage binding of unopsonized environmental particles. *J. Exp. Med.* **189**,
974 1497–1506 (1999).

975 67. Granucci, F. *et al.* The scavenger receptor MARCO mediates cytoskeleton
976 rearrangements in dendritic cells and microglia. *Blood* **102**, 2940–2947 (2003).

977 68. Galatro, T. F., Vainchtein, I. D., Brouwer, N., Boddeke, E. W. G. M. & Eggen, B.
978 J. L. Isolation of microglia and immune infiltrates from mouse and primate central
979 nervous system. in *Methods in Molecular Biology* (2017). doi:10.1007/978-1-
980 4939-6786-5_23

981 69. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
982 reconstruction of single-cell gene expression data. *Nat. Biotechnol.* **33**, 495–502
983 (2015).

984 70. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data Yuhan. *bioRxiv*
985 (2020).

986 71. Hoffman, G. E. & Schadt, E. E. variancePartition: Interpreting drivers of variation
987 in complex gene expression studies. *BMC Bioinformatics* **17**, 17–22 (2016).

988 72. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell
989 RNA-seq data using regularized negative binomial regression. *bioRxiv* 1–15
990 (2019). doi:10.1101/576827

991 73. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
992 Harmony. *Nat. Methods* **16**, 1289–1296 (2019).

993 74. Finak, G. *et al.* MAST: A flexible statistical framework for assessing
994 transcriptional changes and characterizing heterogeneity in single-cell RNA
995 sequencing data. *Genome Biol.* **16**, 1–13 (2015).

996 75. Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of
997 systems-level datasets. *Nat. Commun.* **10**, (2019).

998 76. Dobin, A. *et al.* STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
999 15–21 (2013).

1000 77. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with
1001 high-throughput sequencing data. *Bioinformatics* **31**, 166–169 (2015).

1002 78. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
1003 dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 1–21 (2014).

1004 79. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat.*
1005 *Methods* **9**, 357–359 (2012).

1006 80. Heinz, S. *et al.* Simple Combinations of Lineage-Determining Transcription
1007 Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell
1008 Identities. *Mol. Cell* **38**, 576–589 (2010).

1009 81. Kent, W. J. *et al.* The Human Genome Browser at UCSC. *Genome Res.* **12**, 996–
1010 1006 (2002).

1011 82. Nott, A. *et al.* Cell type-specific enhancer-promoter connectivity maps in the
1012 human brain and disease risk association. *bioRxiv* **0793**, 1–12 (2019).

1013 83. Lüttjohann, A., Fabene, P. F. & van Luijtelaar, G. A revised Racine's scale for
1014 PTZ-induced seizures in rats. *Physiol. Behav.* **98**, 579–586 (2009).

1015 84. Ritter-Makinson, S. *et al.* Augmented Reticular Thalamic Bursting and Seizures in
1016 Scn1a-Dravet Syndrome. *Cell Rep.* **26**, 54-64.e6 (2019).

1017 85. Sorokin, J. M. *et al.* Bidirectional Control of Generalized Epilepsy Networks via
1018 Rapid Real-Time Switching of Firing Mode. *Neuron* **93**, 194–210 (2017).

1019 86. Gong, S. *et al.* A gene expression atlas of the central nervous system based on
1020 bacterial artificial chromosomes. *Nature* **425**, 917–925 (2003).

1021 87. Chen, W. Y., Hong, J., Gannon, J., Kakkar, R. & Lee, R. T. Myocardial pressure
1022 overload induces systemic inflammation through endothelial cell IL-33. *Proc.*
1023 *Natl. Acad. Sci. U. S. A.* **112**, 7249–7254 (2015).

1024 88. Madisen, L. *et al.* A robust and high-throughput Cre reporting and characterization
1025 system for the whole mouse brain. *Nat. Neurosci.* **13**, 133–140 (2010).

1026 89. Wooten, R. M. *et al.* Toll-Like Receptor 2 Is Required for Innate, But Not
1027 Acquired, Host Defense to *Borrelia burgdorferi*. *J. Immunol.* **168**, 348–355
1028 (2002).

1029 90. Arredouani, M. *et al.* The scavenger receptor MARCO is required for lung defense
1030 against pneumococcal pneumonia and inhaled particles. *J. Exp. Med.* **200**, 267–
1031 272 (2004).

1032

1033 - CONTACT FOR REAGENT AND RESOURCE SHARING

1034

1035 **Anna Molofsky**, anna.molofsky@ucsf.edu

1036

1037 - EXPERIMENTAL MODELS AND SUBJECT DETAILS

1038

1039 **Mice:** All mouse strains were maintained in the University of California San Francisco
1040 specific pathogen-free animal facility, and all animal protocols were approved by and in
1041 accordance with the guidelines established by the Institutional Animal Care and Use
1042 Committee and Laboratory Animal Resource Center. Littermate controls were used for
1043 all experiments when feasible, and all mice were backcrossed >10 generations on a
1044 C57Bl/6 background unless otherwise indicated. The following mouse strains used are
1045 described in the table above and are as referenced in the text. For experiments using
1046 conditional alleles, Tamoxifen (Sigma, T5648) was diluted in corn oil (Sigma-Aldrich,
1047 C8267) at 37°C overnight and administered intragastrically at a concentration of 50
1048 mg/kg three times every other day beginning at P1-P2 for Cx3cr1-creER and P2ry12-
1049 creER. 4-hydroxytamoxifen (Hello Bio, HB6040) was dissolved at 20 mg/mL in ethanol
1050 by shaking at 37°C for 15 min and was then aliquoted and stored at -20°C for up to
1051 several weeks. Before use, 4-OHT was redissolved in ethanol by shaking at 37°C for 15
1052 min, and corn oil (Sigma-Aldrich, C8267) was added to give a final concentration of 2.5
1053 mg/mL 4-OHT. The final 2.5 mg/mL 4-OHT solutions were always used on the day they
1054 were prepared and administered intraperitoneally at a concentration of 50 mg/kg.

1055

1056

1057 - METHOD DETAILS

1058

1059 **Stereotaxic injections:** All injections were performed with a Kopf stereotaxic apparatus
1060 (David Kopf, Tujunga, CA) with a microdispensing pump (World Precision Instruments)
1061 holding a beveled glass needle with ~50 µm outer diameter. For perinatal experiments,
1062 mice were anesthetized by hypothermia. For all postnatal (>P8) and adult injections, mice
1063 were anesthetized with 1.5% isoflurane at an oxygen flow rate of 1L/min, headfixed with
1064 a stereotaxic frame, and treated with ophthalmic eye ointment. Fur was shaved and the
1065 incision site was sterilized with 70% ethanol and Betadine prior to surgical procedures. A
1066 hole was drilled in the skull. After injection, glass pipette was left in place for several
1067 minutes to allow diffusion. Pipette was slowly removed, and scalp re-apposed with tissue
1068 glue. Body temperature was maintained throughout surgery using a heating pad. Post-
1069 surgery Buprenorphine (Henry Schein Animal Health) was administered as needed by
1070 intraperitoneal injection at a concentration of 0.1 mg/kg. Further details for each
1071 experiment are below.

1072

1073 **FosTRAP2 labeling of Fos-expressing microglia:** Homozygous Fos-TRAP2 mice
1074 (*Fos2A-CreER*) were crossed to R26R-lsl-TdTomato (*Ai14*) reporter mice. Progeny
1075 heterozygous for both alleles were administered 40 ng of recombinant IL-33 or vehicle
1076 (PBS) intracerebroventricularly as described separately. At one and four hours after i.c.v.
1077 injection, mice were injected intraperitoneally with freshly prepared 4-hydroxytamoxifen
1078 (4-OHT) a more rapidly bioavailable form of tamoxifen, at a concentration of 50 mg/kg.

1079 Mice were sacrificed 24 hours after IL-33 i.c.v. injection. In a field of view, individual
1080 microglia IBA1 immunostaining was used to mask individual microglia, and Fos-CreER-
1081 Tdt positive and negative microglia were examined for TLR2 mean fluorescence
1082 intensity (as described separately) and presence or absence of MARCO staining.
1083

1084 **IL-33 and blocking antibody delivery:** For bulk RNA, ATAC and H3K27ac ChIP
1085 sequencing, and quantitative RT-PCR, 500 ng of IL-33 or PBS (1 μ l) was slowly injected
1086 (3-5 nl/sec) into right lateral ventricle (ML = 1.25 mm, AP = -0.6 mm, Z = -1.85 mm) of
1087 P30 mice. For all other experiments including single cell RNA-seq, *in vivo* microglia
1088 engulfment assay, *in vivo* microglia protein expression quantification, synapse counting,
1089 and FosTRAP2, either 40 ng of IL-33 or PBS (1 μ l) was slowly injected (3-5 nl/sec) into
1090 right lateral ventricle (ML = 1.1 mm, AP = 3.5 mm from lambda, Z = -1.8 mm) of P14-
1091 P16 mice. For MARCO and TLR2 antibody blockade either 0.8 μ g of MARCO antibody
1092 (Bio-Rad)^{34,66,67} or 1.6 μ g of TLR2 antibody (Invivogen) or the same amount of IgG
1093 negative control antibody (Bio-Rad, MCA6004GA for MARCO and Invivogen, bgal-
1094 mab10-1 for TLR2) was administered in the same needle with IL-33.
1095

1096 **Quantification of mean fluorescence intensity of MARCO and TLR2:** For *in vivo*
1097 microglia protein expression assay, mice were sacrificed 16-18 hours after IL-33 i.c.v.
1098 injection. For quantification of MARCO and TLR2 intensity, 4 μ m-thickness z-stack
1099 image was obtained using an LSM 800 confocal microscope (Zeiss) and maximum
1100 intensity projection image was created. Mean fluorescent intensity was quantified in
1101 ImageJ by first thresholding the Iba1 channel to make mask for microglia soma and
1102 process, then measuring the intensity of MARCO and TLR2 channel in masked area in
1103 grey scale and averaging those values in a field of view. Default thresholding was used
1104 for Iba1 masking.
1105

1106 **Fluorescence activated cell sorting (FACS) of microglia:** Four hours after i.c.v.
1107 injection of IL-33 or PBS, P30 mice were anesthetized with isoflurane and perfused with
1108 PBS. As described⁶⁸, in brief, the brain was isolated and placed in ice-cold HBSS-Ca/Mg
1109 free supplemented with Hepes and glucose. The cortex was dissected and homogenized
1110 into a single cell suspension using a tissue homogenizer (5 cm³, VWR) and filtered
1111 through a 70 μ m strainer (Falcon). Cells were pelleted at 300 xg for 10 min at 4°C and
1112 supernatant was discarded. A 22% Percoll gradient was run on the pellet to deplete
1113 myelin at 900 xg, no brake at 4°C and the pellet was afterwards incubated with
1114 CD16/CD32 (eBioscience), CD11b-PE (eBioscience) or CD11b-APC (BioLegend),
1115 CD45-FITC (eBioscience) or CD45-APC (BioLegend) and Ly-6C-APC or Ly-6C
1116 APC/Cy7 (Biolegend) antibodies in HBSS-Ca/Mg free supplemented with Hepes,
1117 glucose and EDTA (iMed-) on ice for 30 minutes. Cells were pelleted at 300 xg for 10
1118 min at 4°C, resuspended in iMed- and incubated with DAPI just before FACS. A purified
1119 microglia population defined as CD11b^{high}CD45^{low}Ly-6C^{neg} was collected by FACS on a
1120 BD Aria3 (BD Biosciences). For scRNA sequencing a CD45+ population was collected
1121 as shown in supplementary figure 1A and processed further as described in 10x
1122 Genomics manual. For bulk RNA sequencing and qPCR, microglia were lysed with
1123 RLT+ (Qiagen) and stored at -80°C. For ATAC and H3K27ac ChIP sequencing microglia
1124 were processed as described below.

1125
1126 **Single-cell RNA sequencing of CD45+ cells:** After FACS, approximately 10,000
1127 CD45+ cells were loaded into each well of a 10x Genomics Chromium Chip G (v3.1) and
1128 dual-index libraries were prepared as described in the 10x Genomics manual. Library
1129 quality was assessed by Agilent High Sensitivity DNA kit on a Bioanalyzer (Agilent) and
1130 libraries were pooled and sequenced on Illumina NovaSeq SP100.
1131
1132 **Single-cell RNA sequencing analysis:** Sequenced libraries were processed using the
1133 Cell Ranger 5.0 pipeline and aligned to the GRCm38 (mm10) mouse reference genome.
1134 Clustering and differential expression analysis were performed using Seurat version 4.0.1
1135 ^{69,70}. Cells expressing fewer than 1300 unique genes and 2000 unique transcripts were
1136 excluded as likely debris, while cells expressing more than 5000 genes or 20,000
1137 transcripts were excluded to remove cell doublets. Cells with higher than 5%
1138 mitochondrial transcripts were excluded to remove cells with membrane damage. Over
1139 70% of the cells in each sample shown passed quality control thresholding for a total of
1140 >2000 cells per sample (*Cx3cr1*^{creERT2+/-} + IL33 (Control + IL-33): 2205, *Cx3cr1*^{creERT2+/-}
1141 + PBS (Control + PBS): 2730, *Cx3cr1*^{creERT2+/-}.*Il1rl1*^{f/f} + IL-33 (Il1rl1 cKO + IL33):
1142 2707 healthy cells). An additional sample (*Cx3cr1*^{creERT2+/-}.*Il1rl1*^{f/f} + PBS) was excluded
1143 because less than half of the 1800 initially identified cells passed the quality control
1144 thresholds. Cells were identified as “female” or “male” based on their expression of the
1145 gene *Xist*; any cells expressing at least one count of *Xist* were labelled female, while all
1146 others were labelled male. The top seven transcripts correlated with sex (*Xist*, *Tsix*,
1147 *Ddx3y*, *Eif2s3y*, *Fkbp5*, *Ddit4*, *Uty*) were identified using the VariancePartition ⁷¹
1148 package in R (1.20.0) and excluded from the PC, UMAP, and clustering calculations
1149 described below.
1150
1151 The top 6000 most variable genes, excluding the 7 sex-correlated genes above, were
1152 identified and their transcript counts normalized and scaled using the sctransform ⁷²
1153 function in Seurat, regressing out percent mitochondrial RNA and total counts per cell.
1154 50 principal components were calculated from the scaled genes. The Harmony package
1155 (1.0) ⁷³ was used to adjust the top 50 PCs to reduce technical variability between samples.
1156 These adjusted PCs were used for nearest neighbor, UMAP, and cluster identification.
1157 Cells were initially clustered with a resolution of 1, and two clusters (57 cells) with low
1158 expression of a canonical microglial gene (*Cx3cr1*) and nonzero expression of the myelin
1159 gene *Mbp* were excluded from downstream analysis as likely non-microglial
1160 contamination. The remaining cells were then passed through all of the normalization and
1161 clustering steps described in this paragraph again. A clustering resolution of 0.4 was used
1162 to generate 6 clusters.
1163
1164 Differential Expression (DE) analysis was done in Seurat using the MAST test ⁷⁴ on the
1165 6,000 most variable genes including only those genes expressed in at least 10% of the
1166 cells in a cluster. A p-value was calculated only for genes with a fold change of 5% or
1167 more.
1168
1169 Heatmaps were created with the DoHeatmap function in Seurat including the top 3 genes
1170 by log₂ fold change per cluster, including only genes with an adjusted p-value lower than

1171 10^{-9} . 100 randomly selected cells are shown per cluster. Feature and Dimensional UMAP
1172 plots show 2,000 cells per sample. For the phagocytosis gene-specific heatmap,
1173 phagocytosis genes were identified using the GO term “Phagocytosis” (GO:0006909) and
1174 subset to include genes upregulated in cluster 1 by at least 7% (LFC>0.1), then ordered
1175 by descending log fold change in cluster 1. Only 100 cells are shown per cluster. Gene
1176 ontology (GO) analysis was performed using the Metascape webpage
1177 ⁷⁵(<https://www.metascape.org>) and only GO terms were used for Figure 1D.
1178

1179 **Bulk RNA sequencing of cortical microglia:** RNA was isolated from 30000-60000
1180 FACS-microglia per sample with the RNeasy® Plus Micro kit (Qiagen). Quality and
1181 concentration were determined with the Agilent RNA 6000 Pico kit on a Bioanalyzer
1182 (Agilent). All samples had an RNA Integrity Number (RIN) >7. cDNA and libraries were
1183 made using the Ovation® RNA-Seq System V2 kit (NuGen) and quality was assessed by
1184 Agilent High Sensitivity DNA kit on a Bioanalyzer (Agilent) and quantified by qPCR.
1185 Pooled libraries were RNA sequenced on an Illumina HiSeq 4000 paired-end for 125
1186 cycles (PE125) yielding 50-70 million reads per sample.
1187

1188 **Bulk RNA sequencing analysis:** Read quality was assessed with FastQC
1189 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>) and aligned to the Mus
1190 Musculus genome (Ensembl GRCm38) using STAR aligner (version 2.6.0)⁷⁶, with the
1191 additional command --outFilterMultimapNmax 1, to only keep reads that map one time to
1192 the reference genome. Aligned reads were counted using HTSeq (version 0.9.0)⁷⁷ and
1193 counts were loaded into R (The R Foundation). DESeq2 package (version 1.24.0)⁷⁸ was
1194 used to normalize the raw counts and perform differential gene expression analysis.
1195

1196 **qPCR:** RLT+ (Qiagen) lysed microglia were vortexed and frozen at -80° for storage.
1197 Samples were thawed and mRNA was isolated using RNeasy® Plus Micro kit (Qiagen).
1198 Purified mRNA was converted to cDNA using the High Capacity cDNA Reverse
1199 Transcription kit (Life Technologies). Primers for *Hmbs*, *Rps17*, *Marco*, *Tlr2*, *Il1rl1* and
1200 *Fos* were made using NCBI Primer Blast and ordered from IDT. A qPCR was run using
1201 Fast SYBR Green Master Mix (Thermo Fisher) on a 7900HT Fast Real-Time PCR
1202 System (Applied Biosystems). Data was analyzed using SDS software v2.4 (Applied
1203 Biosystems).
1204

1205 **Assay for transposase accessible chromatin (ATAC) sequencing of cortical
1206 microglia:**

1207 Around 40000-70000 microglia were FACS isolated and collected into iMed-. Cells were
1208 pelleted at 300 xg, 4°C. Afterwards a previously published protocol⁴⁴ with modifications
1209 was used to perform ATAC sequencing. In brief, the pellet was gently resuspended in
1210 ice-cold 50 µl lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl₂, 0.1%
1211 IGEPAL CA-630) and spun down at 500 xg for 10 min and 4°C. The supernatant was
1212 discarded, and cell pellet gently resuspended in 20 µl of transposition reaction mix (10 µl
1213 tagment DNA buffer (Nextera, Illumina), 1 µl tagment DNA enzyme (Nextera, Illumina),
1214 9 µl nuclease free water) and incubated at 37 °C for 30 minutes. Samples were stored at -
1215 20 °C afterwards. The next day, tagmented DNA was purified using MinElute PCR
1216 purification kit (Qiagen) and size selected for 70 – 500 bp using AmpureXP beads

1217 (Beckman Coulter). Libraries were constructed and amplified using 1.25 μ M Nextera
1218 index primers and NEBNext High-Fidelity 2x PCR Master Mix (New England BioLabs).
1219 A quantitative PCR was run to determine the optimal number of cycles. Libraries were
1220 afterwards twice size selected with AmpureXP beads (Beckman Coulter) for 150-400 bp
1221 fragments and paired-end sequenced for 100 cycles (PE100) on an Illumina HiSeq 4000
1222 yielding 40-60 million reads per sample.
1223

1224 **ATAC sequencing analysis:** FASTQ files were mapped to the mouse mm10 genome
1225 (UCSC). Bowtie2 with default parameters was used to map ATAC-seq experiments⁷⁹.
1226 HOMER was used to convert aligned reads into ‘tag directories’ for further analysis⁸⁰.
1227 Peaks were called with HOMER for each tag directory with parameters -L 0 -C 0 -fdr 0.9
1228 -minDist 200 -size 200. IDR was used to test for reproducibility between replicates, and
1229 only peaks with IDR < 0.05 were used for downstream analysis. The pooled tag directory
1230 from four replicates was used for track visualization using the UCSC genome browser⁸¹.
1231 To quantify chromatin accessibility, peak files were merged with HOMER’s mergePeaks
1232 and annotated with raw tag counts with HOMER’s annotatePeaks using parameters -
1233 noadj, -size given. DESeq2⁷⁸ was used to identify chromatin accessibility with > 2 fold-
1234 change and adj. p-value < 0.05. Motif enrichment was performed using HOMER’s motif
1235 analysis (findMotifsGenome.pl) and de novo motifs was used. The background sequences
1236 were from the comparing condition as indicated in the figure legends.
1237

1238 **Chromatin immunoprecipitation-sequencing (ChIP-seq):** ChIP for H3K27ac was
1239 performed essentially as described previously⁸². In brief, FACS purified cells were fixed
1240 with 1% formaldehyde for 10 min at room temperature. Next, formaldehyde was
1241 quenched with 2.625M glycine for 5 min at room temperature. Cells were collected by
1242 centrifugation at 1,500 x g for 10 min at 4°C. Cell pellets were then snap frozen and
1243 stored at -80C. For ChIP reactions, cell pellets were thawed on ice and lysed in 130 μ l
1244 LB3 (10mMTris/HCl pH 7.5, 100mMNaCl, 1mMEDTA, 0.5mM EGTA, 0.1%
1245 deoxycylcholate, 0.5% sarkosyl, 1 x protease inhibitor cocktail, and 1 mM sodium
1246 butyrate). Samples were sonicated in a 96 Place microTUBE Rack (Covaris cat#500282)
1247 using a Covaris E220 for 12 cycles with the following setting – time 60 s; duty 5.0; PIP,
1248 140; cycles, 200; amplitude/velocity/ dwell 0.0. Samples were collected and 10% Triton
1249 X-100 was added to 1% final concentration. Sonicated samples were spun down at max
1250 speed, 4°C for 10 min. One percent of the sonicated lysate was saved as a ChIP input.
1251 The sonicated lysate was added to 20 μ l Dynabeads Protein A with 1.5 ug anti-H3K27ac
1252 (Active Motif, #39685 Mouse Monoclonal) and incubated with slow rotation at 4°C
1253 overnight. The following day, beads were collected using a magnet and washed three
1254 times each with ice cold wash buffer I (20 mM Tris/HCl pH 7.5, 150 mM NaCl, 1%
1255 Triton X-100, 0.1% SDS, 2 mM EDTA, and 1 x protease inhibitor cocktail) and ice cold
1256 wash buffer III (10 mM Tris/HCl pH 7.5, 250 mM LiCl, 1% Triton X-100, 0.7%
1257 Deoxycholate, 1 mM EDTA, and 1 3 protease inhibitor cocktail). Beads were then
1258 washed twice with ice cold 10 mM Tris/HCl pH 7.5, 1 mM EDTA, 0.2% Tween-20.
1259 Sequencing libraries were prepared for ChIP products while bound to the Dynabeads
1260 Protein A initially suspended in 25 μ l 10 mM Tris/HCl pH 8.0 and 0.05% Tween-20.
1261

1262 ChIP libraries were prepared while bound to Dynabeads using NEBNext Ultra II Library
1263 preparation kit with reaction volumes reduced by half, essentially as previously described
1264 (Heinz et al., 2018). Libraries were eluted and crosslinked reversed by adding to the 46.5
1265 μ l NEB reaction 20 ml water, 4 μ l 10% SDS, 4.5 ml 5M NaCl, 3 ml 0.5 M EDTA, and 1
1266 μ l 20 mg/mL proteinase K, followed by incubation at 55C for 1 h and 65C overnight in a
1267 thermal cycler. Dynabeads were removed from the library using a magnet and libraries
1268 cleaned by adding 2 μ l SpeedBeads 3 EDAC in 61 μ l 20% PEG8000/1.5MNaCl, mixing
1269 well, then incubating at room temperature for 10 min. SpeedBeads were collected on a
1270 magnet and washed two times with 150 μ l 80% ethanol for 30 s. Beads were collected
1271 and ethanol removed following each wash. After the second ethanol wash, beads were
1272 air-dried and DNA eluted in 25 μ l 10 mM Tris/HCl pH 8.0 and 0.05% Tween-20. DNA
1273 was amplified by PCR for 14 cycles in a 50 ml reaction volume using NEBNext Ultra II
1274 PCR master mix and 0.5 mM each Solexa 1GA and Solexa 1GB primers. Libraries were
1275 cleaned up as described above using 2 μ l SpeedBeads and 36.5 μ l 20% PEG 8000/1.5 M
1276 NaCl and 2 μ l SpeedBeads. After ethanol washing and drying, PCR amplified libraries
1277 were eluted from the SpeedBeads using 20 μ l 10 mM Tris/HCl pH 8.0 and 0.05% Tween-
1278 20. Next, libraries were size selected 200-500 bp using gel extraction using 10% TBE
1279 acrylamide gels. Libraries were single-end sequenced using a HiSeq 4000.
1280

1281 **ChIP-sequencing Analysis:** For preprocessing, Bowtie2 with default parameters was
1282 used to map ATAC-seq and ChIP-seq experiments⁷⁹. HOMER was used to convert
1283 aligned reads into “tag directories” for further analysis⁸⁰. To quantify H3K27ac signal,
1284 peak files were merged with HOMER’s mergePeaks and quantified with raw tag counts
1285 with HOMER’s annotatePeaks using parameters -noadj -size 1000 -pc 3 on ATAC-
1286 associated peaks. Peaks which contained at least 4 tags in at least 1 sample were used to
1287 identify differentially bounded peaks (FC > 2 and p-adj < 0.05) by DESeq2⁷⁸. Peaks
1288 were categorized as distal peaks which are 3 kb away from known TSS. ChIP peak
1289 signals was normalized to the sequence depth. Motif Enrichment: To identify de novo
1290 motifs enriched in peak regions over random genomic background, HOMER’s motif
1291 analysis (findMotifsGenome.pl) was used. We performed a de novo motif analysis on
1292 H3K27ac signal within 300 bp of ATAC-associated peaks.
1293

1294 Data Visualization: The UCSC genome browser⁸¹ was used to visualize ChIP-seq and
1295 ATAC-seq data. The UCSC genome browser session containing the processed ATAC-
1296 and ChIP-seq data.
1297

1298 **Mouse immunohistochemistry** : Mice were perfused transcardially with ~10 mL of ice-
1299 cold 1X PBS followed by ~10 mL of 4 % paraformaldehyde (PFA) diluted in PBS.
1300 Brains were post-fixed in 4 % PFA for a minimum of 3 hours and then transferred to a 30
1301 % sucrose solution until brains fully submerged. Brains were then embedded in OCT
1302 compounds, frozen, and sliced in 14 μ m thick coronal sections on a CryoStar NX70
1303 Cryostat (ThermoFisher, MA). Brain sections were incubated in a blocking solution
1304 consisting of 5 % normal goat serum (ThermoFisher, MA) and 0.4 % Triton X-100
1305 (Sigma-Aldrich) diluted in 1X PBS for 1 hour. Primary staining was done in the same
1306 blocking solution overnight at 4 °C. Secondary antibodies were diluted in the same
1307 blocking solution and tissue was incubated for 45 minutes at room temperature. Brain

1308 sections were mounted on coverslips with DAPI Fluoromount-G (SouthernBiotech, 0100-
1309 20) for all other experiments. Histology slides were imaged on an LSM780 or LSM800
1310 or LSM880 confocal microscope with AiryScan (Zeiss, Germany) on Superresolution
1311 mode using a 63x objective for synapse quantification and microglia engulfment assay
1312 and an LSM 700 or LSM 800 confocal microscope (Zeiss, Germany) using 20x
1313 objectives for all other imaging. The following goat secondary antibodies and their
1314 dilutions were used corresponding to the host of primary antibodies; Alexa Flour 405
1315 (1:500; Abcam), Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 647 (1:500;
1316 ThermoFisher).

1317

1318 **Human brain immunohistochemistry:** Human brain tissue was collected during
1319 autopsy with postmortem interval < 48 hours. Tissue was collected with previous patient
1320 consent in strict observance of legal and institutional ethical regulations in accordance
1321 with the University of California San Francisco Committee on Human Research. Brains
1322 were cut into ~1.5-cm coronal or sagittal blocks, fixed in 4% paraformaldehyde for 2 d,
1323 cryoprotected in a 30% sucrose solution, and embedded in optimal cutting temperature
1324 (OCT) compound (Tissue-Tek). Samples contained no evidence of brain disease as
1325 assessed by a neuropathologist (E.J. Huang). We collected 14- μ m cryosections on
1326 Superfrost slides (VWR) using a Leica CM3050S cryostat. Sections were allowed to
1327 equilibrate to room temperature for 3 hours. Antigen retrieval was conducted at 95°C in
1328 10 mM sodium citrate buffer, pH 6. Following antigen retrieval, slides were washed with
1329 TNT buffer (0.05% Triton-X100 in PBS) for 10 minutes, placed in 0.5 % H₂O₂ in PBS
1330 for 30 minutes and then blocked with TNB solution (0.1M Tris-HCl, pH 7.5, 0.15M
1331 NaCl, 0.5% blocking reagent from PerkinElmer, NEL701A001KT) for 1 hour. Slides
1332 were incubated in primary antibodies overnight at 4°C and in secondary antibodies for 1
1333 hour at room temperature. All antibodies were diluted in TNB solution. Sections were
1334 then incubated for 30 minutes in streptavidin–horseradish peroxidase, which was diluted
1335 (1:1250) with TNB. Tyramide signal amplification (PerkinElmer, NEL744001KT) was
1336 used for some antigens. Sections were incubated in tyramide-conjugated Cy3 (1:100) for
1337 4 minutes. The following secondary antibodies and their dilutions were used; donkey
1338 anti-goat biotinylated antibody (1:500; Jackson ImmunoResearch, 705-065-147), donkey
1339 anti-chicken DyLight 405-conjugated antibody (1:500; Jackson ImmunoResearch, 703-
1340 475-155), and donkey anti-rat Alexa Fluor 647-conjugated antibody (1:500; Jackson
1341 ImmunoResearch, 712-605-153). MaxEntropy thresholding was used for masking.

1342

1343 **Western blotting:** Tissues were flash frozen on dry ice, then sonicated for 20 seconds in
1344 lysis buffer (50 mM tris-HCl, 1 mM EDTA, 1% Tx-100, 150 mM NaCl). The sample was
1345 centrifuged for 10 minutes at 15,000 rpm at 4°C and the pellet was discarded. Samples
1346 were run on a denaturing gel and transferred to PVDF membrane, blocked with 5% milk
1347 in TBST for 1 hour at room temperature, incubated in primary antibody overnight at 4°C
1348 and secondary at room temperature for one hour, and developed with ECL plus. The
1349 following secondary antibodies and their dilutions were used; rabbit anti-goat HRP-
1350 linked secondary (1:1000, Bio-Rad, 1721034) and goat anti-rabbit HRP-linked secondary
1351 (1:2000, Cell Signaling Technology, 7074S).

1352

1353 **Slice preparation:** Slices were prepared as previously described¹². Briefly, we prepared
1354 250 μ m (for patch-clamp electrophysiology) or 400 μ m (for *ex vivo* microglia engulfment
1355 assay)-thick horizontal slices including thalamus in ice-cold sucrose cutting solution
1356 containing 234 mM sucrose, 2.5 mM KCl, 1.25 mM NaH₂PO₄, 10 mM MgSO₄, 0.5 mM
1357 CaCl₂, 26 mM NaHCO₃, and 10 mM glucose, equilibrated with 95% O₂ and 5% CO₂,
1358 pH 7.4, using a Leica VT1200 vibrating microtome (Leica Microsystems) from 4 months
1359 old mice. We incubated the thalamic slices, initially at 32-34°C for an hour and then at
1360 room temperature (for patch-clamp electrophysiology) or 35-36°C (for microglia
1361 engulfment assay), in artificial cerebrospinal fluid (aCSF) containing 126 mM NaCl, 2.5
1362 mM KCl, 1.25 mM NaH₂PO₄, 1 mM MgCl₂, 2 mM CaCl₂, 26 mM NaHCO₃, and 10
1363 mM glucose, equilibrated with 95% O₂ and 5% CO₂, pH 7.4.
1364

1365 **Whole cell patch-clamp recording:** Recordings were performed as described¹². Briefly,
1366 recording electrodes made of borosilicate glass had a resistance 3-5 M Ω when filled
1367 with intracellular solution containing 115 mM potassium gluconate, 11 mM KCl, 1 mM
1368 MgCl₂, 1 mM CaCl₂, 10 mM HEPES, and 11 mM EGTA, 2 mM K₂ATP, 0.1% biocytin,
1369 pH adjusted to 7.35 with KOH (286 mOsm) for miniature excitatory post-synaptic
1370 currents (mEPSCs) recording or 129 mM CsCl, 5 mM QX-314Cl, 2 mM MgCl₂, 10 mM
1371 HEPES, and 10 mM EGTA, 4 mM MgATP, 0.1% biocytin, pH adjusted to 7.38 with
1372 CsOH (288 mOsm) for inhibitory post-synaptic currents (mIPSCs) recording. Series
1373 resistance was monitored in all recordings, and the recordings were excluded from
1374 analysis if the series resistance was > 25 M Ω or varied by more than 20%. Recordings
1375 were obtained using an MultiClamp 700B (Molecular Devices, CA), digitized (Digidata
1376 1550B; Molecular Devices), and acquired at 20 kHz using the pClamp 10 software
1377 (Molecular Devices). Recordings were performed in voltage-clamp mode at a holding
1378 potential of -70 mV and obtained from visually identified neurons in somatosensory
1379 thalamus for 10 minutes. In the presence of 0.5 μ m tetrodotoxin, 50 μ m picrotoxin
1380 (Sigma-Aldrich, P1675) or 50 μ m D-(-)-2-Amino-5-phosphonopentanoic acid (5AP;
1381 Hello Bio, HB0225) and 20 μ m 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione (DNQX,
1382 Sigma-Aldrich, D0540) were used to isolate mEPSCs or mIPSCs, respectively. The
1383 recordings were analyzed using ClampFit (Molecular Devices) and MiniAnalysis
1384 (Synaptosoft, NJ).
1385

1386 **Microglial engulfment assays:** For quantification of *in vivo* microglial synapse
1387 engulfment, 16-18 hours after i.c.v. injection of IL-33 or PBS and MARCO antibody,
1388 TLR2 antibody or IgG negative control antibody. The brains were post-fixed in 4% PFA
1389 for a minimum of 6 hours and transferred to a 30% sucrose solution until brains fully
1390 submerged. The brains were cut in 30 μ m thick horizontal sections using HM 440E
1391 freezing microtome (GMI Instruments).
1392

1393 Quantification of engulfment was performed as previously described¹³. Briefly, Z-stacks
1394 encompassing entire microglia were collected with a Zeiss LSM880 confocal microscope
1395 with AiryScan (Zeiss, Germany) on Superresolution mode (~150nm resolution) using a
1396 63x objective, with NA 1.4. Laser power and gain were consistent across all experiments.
1397 Images were analyzed using Imaris software (Bitplane) by creating a 3D surface
1398 rendering of microglia, thresholded in pilot experiments to ensure that microglial

1399 processes were accurately reconstructed, and maintained consistent thereafter. This
1400 rendering of microglia was used to mask the CD68 channel to create a 3D surface
1401 rendering of phagolysosomes. This rendering was used to mask the VGLUT1 or Homer1
1402 signal, and the “Spots” function was subsequently used to quantify the number of
1403 VGLUT1 puncta or Homer1 puncta entirely within the microglial surface or the surface
1404 of phagolysosome in individual microglia. Analysis was automated and experimenter was
1405 blinded to genotype and experimental condition throughout. In some cases, data was
1406 normalized to the indicated control conditions to better allow comparisons between
1407 different experimental batches.

1408

1409 **Quantification of c-Fos+ neurons:** c-Fos+ neuron was quantified in ImageJ by first
1410 thresholding the NeuN channel to make mask for an individual neuron, thresholding the
1411 c-Fos channel, and analyzing the c-Fos+ neuron based on the NeuN mask image. Default
1412 thresholding was used for NeuN masking and MaxEntropy thresholding was used for c-
1413 Fos+ identification.

1414

1415 **IL-33^{mCherry} quantification:** In most cases, positive and negative cells were quantified.
1416 For intensity measurements 7.5 um-thickness z-stack image was obtained using an LSM
1417 800 confocal microscope (Zeiss) and maximum intensity projection image was created
1418 Mean fluorescent intensity was quantified in ImageJ by first thresholding the IL-33
1419 channel to make mask for an individual cell, then measuring the intensity of IL-33
1420 channel of an individual cell in grey scale and averaging those values in a field of view.

1421

1422 **Seizure behavior Assays:** Mice between P30-P40 were used for seizure behavioral
1423 assays.

1424 Pentylenetetrazol (PTZ; Sigma-Aldrich, MO) and Kainic acid (KA; Tocris, United
1425 Kingdom) were dissolved in normal saline and freshly prepared. 50 mg/kg of PTZ or 16
1426 mg/kg of KA was used. Each animal was placed in the center of a transparent cage
1427 immediately after IP injection of PTZ or KA, and behavior was video recorded for 1 hour
1428 or 3 hours, respectively. Video clips were analyzed to measure the latency to develop
1429 seizures, defined as generalized tonic-clonic seizure (GTC) with loss of balance or wild
1430 jumping, the number and duration of seizures, scored on a Racine scale as previously
1431 described⁸³. More than 10 seconds between two GTCs was considered as two separate
1432 events. After KA injection, 2/9 and 1/10 mice from control and IL33 cKO, respectively,
1433 which did not have a seizure, were excluded from the latency to seizure onset analysis,
1434 and 1/9 and 2/10 mice from control and IL33 cKO, respectively, which had continuous
1435 prolonged seizure and died, were excluded from duration and the number of seizures
1436 analysis. Mice were sacrificed within 3 hours after PTZ injection for IHC experiment. All
1437 experiments were conducted in the same conditions between 10AM and 4PM, and
1438 experimenter was blinded to genotype throughout data collection and analysis.

1439

1440 **Implantation of electrocorticogram (ECoG) devices:** Procedures were performed as
1441 previously described⁸⁴. Custom devices containing multiple screws were used to acquire
1442 electrocorticogram (ECoG) signals *in vivo* (Mill-Max Manufacturing Corp, NY).
1443 Animals were anesthetized with isoflurane (2-5%) and secured with ear bars in a
1444 stereotaxic frame while resting on top of a small heating pad to maintain body

1445 temperature. Small bur holes were drilled using a hand-held drill (Dremel, WI), and were
1446 located above the prefrontal cortex (AP: +0.5 mm from Bregma) and somatosensory
1447 cortex (AP: -0.5 mm from Bregma, ML: +2.5 mm). The reference screw was placed
1448 above the cerebellum (AP: -1.0 mm from Lambda; ML: +1.0 mm). To implant ECoG
1449 devices, screws were placed into the bur holes and secured with dental cement. Topical
1450 lidocaine and antiseptic ointment were applied to the skin surrounding the implant.
1451 Animals were monitored for 1 week as they recovered, prior to beginning recordings.
1452

1453 **In vivo ECoG acquisition :** Recordings were performed as previously described^{84,85}.
1454 ECoG signals were recorded at 24.41 kHz sampling rate using RZ5 and Synapse software
1455 (Tucker Davis Technologies). A video camera mounted on a flexible arm was used to
1456 continuously monitor the animals. Each recording trial consists of 60 minutes of baseline
1457 recording followed by 60 minutes of recording after a single-dose 50 mg/kg PTZ
1458 intraperitoneal injection. ECoG signals from prefrontal cortex and somatosensory cortex
1459 were referenced to the ECoG screw electrode placed over the cerebellum. Analysis was
1460 performed using ClampFit (Molecular Devices, CA) for spike and spike-wave discharge
1461 (SWD) analysis.
1462

1463 For spike analysis, data were bandpass filtered at 1 and 100 Hz. A spike was defined as a
1464 signal which was greater than 0.4 mV based on visual inspection of all recordings (mean
1465 standard deviation from mean spike amplitude ($1 \pm 3.6 \mu\text{V}$) was $0.068 \pm 0.015 \text{ mV}$).
1466

1467 For SWD analysis, data were bandpass filtered at 1 and 60 Hz. SWDs were defined as at
1468 least 5 connected rhythmic 4–6 Hz spike-wave complexes (typically spanning at least 0.5
1469 seconds) with amplitudes at least two-fold higher than background. All data was
1470 collected and analyzed blinded to genotype and condition.
1471

1472 **Synapse quantification:** Mice between P14-P17 were used for synapse quantification
1473 after i.c.v. IL-33 injection. Mice between P28-P35 were used for synapse quantification
1474 of *hGFAPCre;Il33^{flaxed}* and *Cx3cr1-creER;Il1rl1^{flaxed}* and their control experiments.
1475 Quantification was performed as previously described⁴³. Briefly, synapse colocalization
1476 for pre-and post-synaptic markers was quantified by determining colocalization of
1477 Homer1 and VGLUT1 or VGLUT2; Gephyrin and VGAT in optical sections of
1478 somatosensory thalamus and layer 4 sensory cortex. Images were collected using
1479 standardized imaging parameters throughout, and colocalization was analyzed using
1480 PunctaAnalyzer, an ImageJ plug-in developed by the Eroglu lab. Analysis parameters
1481 were constant throughout and blinded to genotype and condition. Image quality was
1482 checked by repeating analyses after 90° rotation of one channel to verify that co-
1483 localization was not due to random chance.
1484

1485 **Dendritic branch quantification:** For quantification of dendrite branch, biocytin-labeled
1486 250 μm thickness acute brain slices were fixed in 4 % PFA overnight after whole-cell
1487 patch clamp recording, and then washed with PBS 3 times. Slices were incubated in
1488 Alexa Fluor 555-conjugated streptavidin (1:1000; ThermoFisher, S32355) at 4 °C
1489 overnight in the dark. Z-stacks encompassing entire neuron were collected; Images were
1490 analyzed using Imaris software (Bitplane) by creating a filament rendering of neuron,

1491 manually corrected by blinded experimenter to ensure neuronal processes were accurately
1492 reconstructed.

1493

1494 **Statistical Analysis:** For statistical analysis, Graphpad Prism 8, 9 and R was used.
1495 Comparisons of two groups were performed with the two tailed t-test, the nonparametric
1496 Mann-Whitney test, or the Fisher's exact test, as needed. The difference between
1497 multiple groups was tested by one-way ANOVA followed by Tukey's test. Two-way
1498 ANOVA followed by Tukey's multiple comparison, Newman-Keuls test or Sidak's
1499 multiple comparison was used as needed when more than two comparisons were made.
1500 The level of significance was set at $p < 0.05$. RNA-sequencing and ATAC-seq data were
1501 analyzed in R as described in the methods section above.

1502

1503 **Data and Materials Availability:** RNA, ATAC, H3K27ac ChIP and scRNA sequencing
1504 data of microglia post i.c.v injection of IL-33 or PBS are available through GEO (number
1505 pending). Marco KO mice were kindly provided by Dr. James Luyendyk under MTA
1506 AAGR2021-00156.

1507

1508

1509 RESOURCE TABLE

1510

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies - immunostaining		
guinea pig anti-mouse VGLUT1 1:5000	EMD Millipore	Cat# AB5905; RRID:AB_2301751
guinea pig anti-mouse VGLUT2 1:5000	EMD Millipore	Cat# AB2251; RRID:AB_1587626
rabbit anti-mouse Homer1 1:200	Synaptic Systems	Cat# 163 003; RRID: pending
rabbit anti-mouse VGAT 1:2000	Synaptic Systems	Cat# 131 003; RRID:AB_887869
mouse anti-mouse Gephyrin 1:200	Synaptic Systems	Cat# 147 021; RRID:AB_2232546
rabbit anti-mouse dsRed 1:1000	Takara Bio	Cat#632496; RRID:AB_10013483
chicken anti-mouse GFP 1:1000	Aves Labs	Cat#GFP-1020; RRID:AB_10000240
chicken anti-mouse NeuN 1:500	EMD Millipore	Cat#ABN91; RRID:AB_11205760
rat anti-mouse GFAP 1:1000	Thermo Fisher	Cat#13-0300; RRID:AB_2532994
goat anti-human IL-33 1:400	R&D Systems	Cat# AF3625; RRID: AB_1151900
mouse anti-mouse c-Fos 1:500	Biosensis	Cat# M-1752-100 RRID: pending
moues anti-mouse CC1 1:500	EMD Millipore	Cat# OP80 RRID: pending
rat anti-mouse MARCO 1:400 (also used for <i>in vivo</i> blocking)	Bio-Rad	Cat# MCA1849; RRID:AB_322923

mouse anti-mouse TLR2 0.5 μ g/mL (also used for <i>in vivo</i> blocking)	InvivoGen	Cat# mab2-mtlr2; RRID: pending
rabbit anti-mouse dsRed 1:1000	Takara Bio	Cat# 632496 RRID:AB_10013483
guinea pig anti-mouse Iba1 1:2000	Synaptic Systems	Cat# 234 004 RRID:AB_2493179
mouse anti-mouse Iba1 1:2000	Wako Chemicals	Cat# 019-19741 RRID:AB_839504
guinea pig anti-mouse Gephyrin 1:200	Synaptic Systems	Cat# 147 318 RRID:AB_2661777
Antibodies - flow cytometry		
rat anti-mouse CD16/CD32 Purified 1:100	eBioscience	Cat#14-0161-82; RRID:AB_467133
APC rat anti-mouse Ly-6C 1:130	BioLegend	Cat#128016; RRID:AB_1732076
APC/Cy7 rat anti-mouse Ly-6C 1:130	BioLegend	Cat#128025; RRID: RRID:AB_10643867
PE rat anti- mouse CD11b 1:150	eBioscience	Cat# 12-0112-81; RRID:AB_465546
APC rat anti- mouse CD11b 1:150	BioLegend	Cat# 101212; RRID: RRID:AB_312795
FITC rat anti- mouse CD45 1:200	eBioscience	Cat#11-0451-81; RRID:AB_465049
APC rat anti- mouse CD45 1:200	BioLegend	Cat# 103111; RRID: RRID:AB_312976
Antibodies – western blotting		
goat anti-mouse IL-33 1:500	R&D Systems	Cat# AF3626; RRID:AB_884269
rabbit anti-mouse Aldh1l1 1:1000	Abcam	Cat# ab87117 RRID:AB_10712968
Drugs and compounds		
Recombinant mouse Interleukin-33, carrier free	R&D Systems	Cat#3626-ML-010/CF
Tamoxifen	Sigma	T5648
4-hydroxytamoxifen	Hello Bio	HB6040
Kainic Acid (KA)	Tocris	UK
Pentylenetetrazol (PTZ)	Sigma-Aldrich, MO	MO, USA
Deposited Data		
RNA, ATAC, H3K27ac ChIP and scRNA sequencing of microglia 4 hours after i.c.v. injection of PBS or IL-33.	Gene Expression Omnibus	<i>pending</i>
Experimental Models: Mouse strains		
IL-33 reporter line <i>Il33</i> ^{H2B-mCherry} was derived from an insertional mutation of a gene trap cassette into the intron upstream of exon 5 of the <i>Il33</i> gene.	13	<i>pending</i>

Astrocyte reporter line <i>Aldh1l1</i> ^{eGFP} is a BAC transgenic generated by the GENSAT project.	(Gong et al., 2003; Molofsky et al., 2014)	MGI:3843271
<i>Il33</i> ^{fl/fl} mice	R.T. Lee ⁸⁷	<i>pending</i>
<i>hGFAPcre</i> transgenic line was used on a mixed genetic background for brain-specific excision of <i>Il33</i> .	⁵²	<i>pending</i>
<i>Cx3cr1</i> ^{eGFP} is a knock in allele.	⁴⁰	MGI:2670351
<i>Fos2A-CreER</i> (FosTRAP2) was used for <i>Fos</i> -induction specific induction of TdTomato.	⁵¹	JAX: 030323
<i>Gt(ROSA)26Sor</i> ^{tm14(CAG-tdTomato)Hze} (Ai14)	⁸⁸	JAX: 007914
<i>Tlr2</i> ^{tm1Ktr} (TLR2 KO)	⁸⁹	JAX: 004650
<i>Marco</i> ^{tm1Ktr} (Marco KO)	⁹⁰	MGI:3690644
<i>Cx3cr1-CreERT2</i> was used for myeloid-specific excision of <i>Il1rl1</i> .	²³	JAX: 020940
<i>P2ry12em1</i> (<i>icre/ERT2</i>) <i>Tda</i> was used for microglia-specific excision of <i>Il1rl1</i> and induction of TdTomato.	³⁷	JAX: 034727
<i>Il1rl1</i> ^{fl/fl} mice	R.T. Lee ⁸⁷	<i>pending</i>

1511

1512