

1 **Comparison of genetic variation between rare and common congeners of**
2 ***Dipodomys* with estimates of contemporary and historical effective population**
3 **size**

4

5 Michaela K. Halsey^{1,2}, John D. Stuhler², Natalia Bayona-Vasquez^{3,4}, Roy N. Platt II⁵, Jim R.
6 Goetze⁶, Robert E. Martin⁷, Kenneth G. Matocha⁸, Robert D. Bradley^{1,9}, Richard D. Stevens^{2,9},
7 and David A. Ray¹

8

9

10 ¹Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of
11 America

12

13 ²Department of Natural Resources Management, Texas Tech University, Texas, United States
14 of America

15

16 ³Department of Environmental Health Science, University of Georgia, Athens, Georgia, United
17 States of America

18

19 ⁴Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America

20

21 ⁵Texas Biomedical Research Institute, San Antonio, Texas, United States of America

22

23 ⁶Natural Sciences Department, Laredo Community College, Laredo, Texas, United States of
24 America

25

26 ⁷Department of Biology, McMurry University, Abilene, Texas, United States of America

27

28 ⁸Department of Biology, South Arkansas Community College, El Dorado, Arkansas, United
29 States of America

30

31 ⁹Natural Science Research Laboratory, Museum of Texas Tech, Lubbock, Texas, United States
32 of America

33

34

35 * Corresponding Author

36 Email: [david.4.ray@gmail.com \(DR\)](mailto:david.4.ray@gmail.com)

37

38

39 **Abstract**

40 Organisms with low effective population sizes are at greater risk of extinction because
41 of reduced genetic diversity. *Dipodomys elator* is a kangaroo rat that is classified as threatened
42 in Texas and field surveys from the past 50 years indicate that the distribution of this species
43 has decreased. This suggests geographic range reductions that could have caused population
44 fluctuations, potentially impacting effective population size. Conversely, the more common and
45 widespread *D. ordii* is thought to exhibit relative geographic and demographic stability. Genetic
46 variation between *D. elator* and *D. ordii* samples was assessed using 3RAD, a modified
47 restriction site associated sequencing approach. It was hypothesized that *D. elator* would show
48 lower levels of nucleotide diversity, observed heterozygosity, and effective population size when
49 compared to *D. ordii*. Also of interest was identifying population structure within contemporary
50 samples of *D. elator* and detecting genetic variation between temporal samples that could
51 indicate demographic dynamics. Up to 61,000 single nucleotide polymorphisms were analyzed.
52 It was determined that genetic variability and effective population size in contemporary *D.*
53 *elator* populations were lower than that of *D. ordii*, that there is only slight, if any, structure within
54 contemporary *D. elator* populations, and there is little genetic differentiation between spatial or
55 temporal historical samples suggesting little change in nuclear genetic diversity over 30 years.
56 Results suggest that genetic diversity of *D. elator* has remained stable despite claims of
57 reduced population size and/or abundance, which may indicate a metapopulation-like system,
58 whose fluctuations might counteract any immediate decrease in fitness.
59 Key words: 3RAD, *Dipodomys elator*, *Dipodomys ordii*, genetic structure, metapopulation, single
60 nucleotide polymorphisms

61 **Introduction**

62 Measuring genetic variation in rare, threatened, endemic, or endangered species has
63 important implications for management and is integral to conservation efforts [1]. Population
64 genetic summary statistics can be used to delimit management units based on significantly
65 different allele frequencies [2], identify population structure [3], or assess connectivity of
66 demographically disparate subpopulations [4]. One such critical measure for small populations
67 is effective population size, N_e [5]. Effective population size can be influenced by fluctuations in
68 census size, mating strategy, biased sex ratios, migration, demographic history, spatial
69 dispersion, and population structure [6-9] and typically is far less than the census size.
70 However, any one N_e value is hard to interpret because it lacks a context. One such context to
71 help understand the potential impacts of fluctuations of N_e is comparison between more
72 restricted, possibly threatened species and a widespread congener, which are presumed to
73 harbor more genetic variation.

74 The Texas kangaroo rat (*Dipodomys elator*) is a heteromyid rodent that has a limited
75 distribution in north-central Texas [10-14]. Though previously found in two counties in
76 Oklahoma, it appears to have been extirpated from that state [15]. Moreover, *D. elator* has a
77 small geographic range and low dispersal capability [16-17], which increases isolation from
78 nearby subpopulations.

79 The distribution of the Texas kangaroo rat appears dynamic [18]. For instance, though
80 the species was described from a specimen in Clay County [19], it has not been observed there
81 in more recent surveys. Additionally, resampling of sites where it has been previously
82 documented have failed to detect the species, and new localities of presence have been
83 identified in more recent surveys [20]. Furthermore, previous studies of *D. elator* population
84 genetics [21-22] have been relevant to assess genetic diversity and structure within the species
85 and have established a valuable reference point for *D. elator*. However, these studies relied on
86 few molecular markers (i.e. enzymes, mitochondrial DNA, and microsatellites). Additionally, it is

87 useful to compare contemporary samples to historical collections to identify potential changes in
88 overall diversity [23-24].

89 Ord's kangaroo rat, *D. ordii* is a medium sized rodent that occurs from Canada into
90 Mexico [25] Given its large geographic range and preferred commonly available habitat choice
91 (i.e. sandy soils), *D. ordii* is not listed on any state or U.S. federal critically threatened and
92 endangered lists. The population in Canada, however, is listed as endangered [26]. To our
93 knowledge, there has not been a range-wide genetic analysis of *D. ordii*, and the last regional
94 genetic study on *D. ordii* isoenzymes was published by [27].

95 Here, we compare population genetic parameters of *D. elator* with *D. ordii*, further
96 compare *D. elator* samples from two time periods (pre- and post-2000), and for contemporary
97 samples, investigate differences in genetic diversity across the distribution. We make several
98 predictions: 1) *D. elator* will exhibit a lower effective population size than *D. ordii*, and
99 concomitantly, lower nucleotide diversity, lower observed heterozygosity, and higher inbreeding
100 coefficients; 2) there will be greater genetic diversity among contemporary samples of *D. elator*
101 than in historical samples, as contemporary samples were taken from across the distribution,
102 compared to historical samples collected from three counties in the middle of its distribution; and
103 3) historical N_e from a coalescent approach for *D. ordii* and *D. elator* will demonstrate that *D.*
104 *elator* exhibits a lower N_e at present than *D. ordii*.

105 **Methods**

106 **Sample collection**

107 Kangaroo rats were captured using Sherman live traps (23x9x8 cm; H.B. Sherman
108 Traps, Inc. Tallahassee, Florida) during surveys within the historical range of *D. elator* (Fig 1)
109 from 2015 to 2017. When a *D. elator* individual was captured, it was either 1) taken as a
110 voucher specimen for deposition at the Natural Science Research Laboratory (NSRL) at the
111 Museum of Texas Tech University or, 2) had between two to four whiskers extracted from either

112 side of the rostrum [28]. In the latter case, thicker whiskers (i.e., macrovibrissae) were selected
113 with the follicle intact. Whiskers were stored in a sterile vial with 1% sodium dodecyl sulfate
114 (SDS) lysis buffer [29]. A buccal swab was also collected from one *D. elator* individual as
115 described in detail in [28].

116 **Fig 1. Map of contemporary kangaroo rat samples used in this study.** Filled stars indicate
117 *Dipodomys elator* samples whereas gray circles represent *D. ordii* samples used in the study.
118 Note the sampling hole located in Foard County, most of Hardman County, and in south
119 Wilbarger County. Trapping restrictions and topography prevented collections in those regions.

120 Other methods of collecting DNA from rats included tail salvages and from toe clips from
121 museum specimens (Table S1). *D. elator* tail lengths average about 196 mm [30] and at times
122 the end of the tail (i.e., the plume) was severed by the door of an activated Sherman trap. These
123 salvaged tail plumes were placed in sterile vials of 1% sodium dodecyl sulfate (SDS) lysis buffer
124 [29]. Also sampled were toe clips that had been collected from rats from 1986 to 1995 as part of
125 a genetic survey of the species by REM and KGM.

126 In total, 70 *D. elator* samples were analyzed from five tissue types (i.e, liver, whisker, tail,
127 buccal swab, and toe clips) and two time periods (prior to 2000 and contemporary surveys from
128 2015 to 2017; Table S1). Additionally, 26 *D. ordii* liver samples were collected in five counties
129 from 2015 to 2017. Contemporary sampling followed guidelines established by the American
130 Society of Mammalogists [31]. Animal handling protocols were approved by the Institutional
131 Animal Care and Use Committee at Texas Tech University (#T14083).

132 Throughout the manuscript the *D. elator* samples will be referred to using the following
133 descriptors: 'historical', collected prior to 2000; 'contemporary', collected after 2000; 'west',
134 collected from Cottle, Childress, or Hardeman counties; and 'east' collected from Baylor,
135 Wilbarger and Wichita counties (Fig 1).

136 **DNA extraction**

137 DNA was extracted using the Qiagen DNeasy Blood and Tissue spin column protocol
138 (Qiagen; Venlo, Netherlands). For liver, toe clips, and tail salvages, the manufacturer's
139 recommendations were followed. For whisker and buccal swab samples, the protocol found in
140 [28] was implemented. In all cases, DNA concentration was fluorometrically quantified using the
141 Qubit 3.0, high sensitivity assay (Invitrogen, Life Technologies, Carlsbad, CA).

142 **3RAD library prep, sequencing, and data husbandry**

143 RADseq libraries were prepared following the 3RAD protocol found in [32] Details of
144 library prep conditions used in this study are provided in Supplemental File S1. In short,
145 restriction enzyme combinations were tested in a subset of samples from both species, and
146 according to digestion patterns and pilot sequence data, the best combination (i.e. Mspl, EcoRI,
147 and Clal), was further used for all samples. Samples were normalized, digested, enzyme-
148 specific adapters were ligated, and ligation products were purified. To generate full- length
149 library constructs, ligated products were amplified using iTru5 and iTru7 primers [33]. For most
150 samples, a molecular ID tag (iTru 5 8N) was incorporated in the first cycle of PCR, to detect
151 PCR duplicates [32, 34]. PCR products were purified, pooled, and size-selected at a range of
152 550 bp +/- 15%. Size-selected fragments were purified and sequenced using an Illumina HiSeq
153 to generate paired end data at Oklahoma Medical Research Foundation Genomics Core or
154 Novogene Inc.

155 Stacks v1.48 and v2.01 [35] was employed to demultiplex, analyze, and export data into
156 other formats. After demultiplexing, poor reads were filtered using the AfterQC 'after.py' pipeline
157 [36]. Poor reads were defined as exhibiting a low quality score (PHRED score < 15), bad
158 overlaps (i.e., mismatched reads), too many ambiguous nucleotides (greater than 40% of the
159 read), short read lengths (< 35 base pairs), or homopolymer regions. If a read failed one of
160 these steps, it was removed from downstream analyses. Reads were aligned within Stacks to

161 the *D. ordii* genome assembly (accession ID GCA_000151885.1) using the Burrows-Wheeler
162 aligner [37].

163 Data were grouped into putative loci, and polymorphisms were identified with the
164 'gstacks' module in Stacks. Common population genetic statistics such as observed and
165 expected heterozygosity, nucleotide diversity, and inbreeding coefficients were calculated using
166 the 'populations' module. This step was repeated four times to determine a balance between
167 data used and processing speed. Though the "gold standard" is to include loci where 75 to 80%
168 of the individuals in a population have that locus, known as the -r value [35, 38], this has been
169 shown to bias population genetic measures, especially in cases where data are not plentiful.
170 This influences biological implications [39-42]. The 'populations' module using this 75% rule (-r
171 0.75), two liberal filters (-r of 0.25 and 0.5) and a more conservative filter (-r 0.95) was run. For
172 most downstream analyses, -r 0.75 was used as the main dataset and for comparison across -r
173 values for any differences. Finally, loci and individuals that had greater than 20% missing data
174 were removed.

175 **Population genetics**

176 Observed and expected heterozygosity were calculated using the 'summary' function in
177 the R package adegenet, version 2.1.1 [43]. F_{IS} and F_{ST} values were calculated using hierfstat
178 [44]. Nei's genetic distances [45] were determined and plotted using the 'aboot' function in the
179 poppr R package [46].

180 **Estimation of effective population size**

181 To determine effective population size using NeEstimator v2.1 [51], the Genepop file [52]
182 generated by Stacks was used on our contemporary dataset. NeEstimator calculates Ne using
183 three methods: linkage disequilibrium, molecular co-ancestry, and a temporal method. The first
184 two methods were used to determine contemporary effective population sizes per species.

185 For historical Ne of *D. elator*, the Extended Bayesian Skyline Plot (EBSP) coalescent
186 test as implemented in BEAST 2.0 [53] was used. Once loci containing multiple single
187 nucleotide polymorphisms were determined, the protocol outlined in [54] was followed, using a
188 strict molecular clock set to 1.0 and a generation time of 3 years [55]. Plots were constructed
189 with 24 individuals and 47 loci.

190 This same process was followed for *D. ordii*; however, 15 individuals and 49 loci were
191 used. Only one individual from Dickens County (Fig 1) was included to avoid misinterpretations
192 due to possible inbreeding since many individuals collected from that county were collected
193 from a single location.

194 **Population structure**

195 To infer population structure for each species, the STRUCTURE algorithm was used
196 [47]. All singletons and private doubletons were removed, which have been shown to mask
197 weak population structure [48-49]. Only one randomly selected SNP from each locus was used
198 to minimize possible effects of linked data. For all runs, 50,000 burn-in iterations were executed
199 and 200,000 Markov Chain Monte Carlo (MCMC) repetitions with 3 replicates at each K, which
200 ranged from 1 to 5. The program DISTRUCT v1.1 was used to visualize the final output of
201 structure analyses [50].

202 **Principal Components Analysis**

203 To visualize genetic structure of the population without assigning individuals to clusters *a*
204 *priori*, a Principal Components Analysis was conducted using the function dudi.pca in the R
205 package ‘adegenet’ version 2.1.1 [43] on historical and contemporary samples. Only the first
206 two axes were retained for all datasets based on the scree plots generated by gIPca.

207 **Results**

208 In all, 96 kangaroo rats were sequenced and analyzed from two species in eight
209 counties in north-central Texas. 3RAD analysis for 70 individual *D. elator* samples produced
210 over 34 million reads. Before filtering within the ‘populations’ module, there were 330,326 loci
211 suitable for analysis. Approximately 1.5% of reads per sample were removed from the dataset
212 following AfterQC filtering. Similar analysis for the 26 *D. ordii* samples produced over 10 million
213 reads. Prior to ‘populations’ filtering, approximately 382,514 loci were eligible for further
214 analysis. Fewer than 2% of reads per sample were removed from the dataset. For *D. elator*
215 samples, after removing loci and individuals that had greater than 20% missing data, 3,935
216 samples remained from 55 individuals.

217

218 **Summary population genetics**

219 There were as few as 7 single nucleotide polymorphisms (SNPs) to as many as 61,000
220 SNPs to analyze (Table S2). The general trend was that there were fewer SNPs analyzed as -r
221 value increased and extreme values of -r (i.e. 0.25 and 0.95) yielded stronger deviations
222 between observed and expected heterozygosity across all analyses (Table S2).

223 When compared to each other, contemporary *D. elator* samples showed lower levels of
224 observed heterozygosity (0.042-0.043) than *D. ordii* (0.128) which suggests lower genetic
225 diversity. F_{IS} was positive in all *D. elator* groups (0.015-0.031) except for in historical samples
226 (-0.007). F_{ST} values show moderately low genetic differentiation (0.035-0.041) across *D. elator*
227 comparisons (Table 1).

228 **Table 1. Genetic diversity summary statistics for *D. elator* and observed heterozygosity**
229 **and expected heterozygosity values for *D. ordii*.** Only one population is assumed for *D. ordii*,
230 so there are no values for F_{ST} or F_{IS} .

	F_{IS}	Observed Heterozygosity	Expected Heterozygosity
Temporal			

Historical		-0.007	0.042
East		+0.031	0.043
West		+0.027	0.042
Spatial			
East		+0.015	
West		+0.031	
<i>Dipodomys ordii</i>		0.128	0.155
		Pairwise F_{ST}	
		East	West
Temporal			
Historical		0.035	0.037
East			0.040
Spatial			
East		0.041	

231

232 Current and historical effective population size

233 Only the linkage disequilibrium method in NeEstimator v.2.1 produced a value other than
234 'Infinite' for effective population size for *D. elator*. Estimated N_e of the east group 171.3, with a
235 95% confidence interval of 158-186.9 using the lowest allele frequency. For the west group,
236 both the linkage disequilibrium and molecular co-ancestry methods returned 'Infinite' for N_e at all
237 allele frequencies. No method with NeEstimator was able to provide an estimate of population
238 size for *D. ordii*, other than 'Infinite.'

239 The Extended Bayesian Skyline plots generated for the *D. elator* dataset showed a
240 decline in effective population size over the last 10,000 years, to an approximate current N_e of
241 500. For *D. ordii*, N_e has increased in the last 5,000 years and is estimated to stand at about
242 10,000 individuals (Fig 2).

243 **Fig 2. Extended Bayesian Skyline Plot for *Dipodomys elator* (top) from 34 individuals and**
244 **47 SNPs and for *D. ordii* (bottom) from 15 individuals and 49 SNPs.** X-axis is millions of
245 years ago. Y-axis is effective population size (N_e) in millions.

246

247 Population substructure

248 Based on log-likelihood scores (Table S3) and their respective variances from
249 STRUCTURE, the “best” value for k for *D. elator* was 3. When visualizing the PCA bi-plot, PC1
250 accounts for almost 98% of the variation found in the dataset and shows geographic separation
251 along PC2, which only accounts for 0.1% of the variation (Fig 3). Using Nei’s genetic distance,
252 most contemporary samples from the west cluster together and are nested within historical
253 samples (Fig 4). The historical PCA for *D. elator* samples excluding those from the 1960s (Fig
254 S1) largely confirms that all individuals were taken from the same region (Hardeman County).

255 **Fig 3. Principal components analysis on the genotypes for 55 samples (historical and**
256 **contemporary) using the dudi.pca function in R package ‘adegenet’.** While there are no
257 clear clusters emerging on PC1, geographic location seems to correspond with PC2.

258 **Fig 4. Nei’s genetic distance dendrogram for 55 samples (historical and contemporary).**
259 The patchy arrangement of individuals suggests gene flow between the hypothesized east and
260 west populations.

261 Discussion

262 This study evaluated changes in genetic diversity across time and space by comparing a
263 rare species with a hypothesized amorphous and restricted distribution to a more common
264 congener with a larger, more defined range. This is only the third population genetic study on
265 *Dipodomys elator* in over 30 years and it is the first to make use of genomic techniques,
266 screening from tens to thousands of markers, making the study valuable for current and future
267 conservation efforts. In [21], allozyme markers were used to conclude that there was moderate
268 genetic differentiation among three *D. elator* localities (Hardeman, Wilbarger, and Wichita
269 counties). This is seemingly incongruent with our results in which we observed little genetic

270 differentiation ($F_{ST} = 0.041$), but the difference could simply be the result of the markers used
271 (SNPs versus allozymes).

272 More recently, [22] observed low mitochondrial DNA variation but high microsatellite
273 diversity within the species. They concluded that genetic drift and not gene flow has had a
274 greater impact on configuring *D. elator* genetic diversity. This result is possible because
275 mitochondrial DNA has a lower effective population size than neutral nuclear markers such as
276 RAD loci [56]. Genetic drift could play a role in structuring mitochondrial DNA diversity, but more
277 time would be needed to detect reduction of diversity in the nuclear genome using older
278 markers such as microsatellites. An insufficient number of polymorphic microsatellite loci limits
279 genetic resolution between individuals with supposed low population-level diversity. Our results
280 suggest that RAD loci, that have a slower rate of mutation than microsatellites, are superior
281 when investigating populations with weak population structure [57]. Finally, genomic data
282 generated from this study can be used for future genomic investigations, such as those
283 examining family structure [58].

284 Together, these three studies, using allozyme, mtDNA, microsatellite and RAD-Seq
285 markers, offer numerous mean geographic estimates of F_{ST} within this species. In [21], the
286 mean F_{ST} was found to be 0.102, [22] estimated F_{ST} of 0.096 from their late 1960s samples, and
287 our study, at the greatest resolution of all previous studies, reveals a mean F_{ST} value of 0.041.
288 Our lower mean value includes individuals sampled from localities (Cottle and Childress
289 counties) not present in the previous two studies. These results suggest modest population
290 differentiation corresponding with geography.

291 From an overall genetic diversity perspective, our data suggest that there has not been a
292 substantial loss in genetic diversity over the last 30 years, despite what seems to be a decrease
293 in the distribution (and possibly abundance) of *Dipodomys elator*, similar to what [59] found in *D.*
294 *ingens*, the giant kangaroo rat. In other words, despite a decline in distribution and census size,
295 the genetic diversity of the species is sufficiently high to offset any short-term effects of reduced

296 fitness. This is supported by our estimate of N_e of between 170 to 500, which exceeds the
297 recommended value to curtail inbreeding depression, as outlined by the 100/1000 rule [60].
298 Within this range, there exist enough individuals to mitigate immediate reduction in fitness but is
299 not sustainable in the longer term (over thousands of years). In [22], it was also found that the
300 N_e of this species was between 65 and 490 individuals.

301 Results from our contemporary samples confirm that subpopulation differentiation is not
302 substantial ($F_{ST} < 0.05$). The STRUCTURE algorithm determined the best value of k to be 3.
303 However, examining the plots suggests that samples represent a single interbreeding
304 population. More clusters (i.e. subpopulations), while possible, are not biologically practical. This
305 may just be an artefact of our sampling scheme (for example, $k=5$, one for each county).
306 Second, newly colonized subpopulations on the fringes of ranges can exhibit lower levels of
307 genetic diversity than expected [61]. For our contemporary samples, this is not the case; the low
308 mean value of F_{ST} (< 0.05) does not seem to support cluster sizes of $k=4$ and $k=5$. Based on
309 climate, vegetation, edaphic, and land use characteristics across the study area [20], our *a priori*
310 assumption was that there are two subpopulations (east and west). However, STRUCTURE, the
311 PCA, and Nei's genetic distances do not clearly support two distinct subpopulations, suggesting
312 there is a fair amount of gene flow in the region.

313 Our *a priori* subpopulations display low levels of inbreeding and very little genetic
314 differentiation, suggesting one large interbreeding population (though not necessarily
315 panmictic). Our samples were collected on opposite sides of a cline, separated by a region of
316 inaccessible private land, so it was difficult to determine if the slight differentiation is due to that
317 distance or if there is true population substructure and isolation from other habitat patches [62].
318 We included additional historic samples from specimens collected in the 1960s from areas
319 within this “sampling hole” to answer this question. We anticipated that if the contemporary east
320 and west subpopulations were indeed distinct, then genetic differentiation would be greater
321 between them than to the samples from the sampling hole. In other words, a STRUCTURE plot

322 would show the sampling hole samples as intermediate between the two. Alternatively, if the
323 contemporary east and west subpopulations were considered one population then we would
324 expect greater genetic differentiation between them and our “sampling hole” samples. Our
325 results support the second prediction (Fig S2). However, the periods separating the datasets
326 (anywhere between 20 and 50 years) and the relatively short generation times of kangaroo rats
327 (about 3 years; Pacifici et al. 2012) would lead to high genetic turnover, so these results must
328 be interpreted with caution. If there is substantial genetic turnover, this too could indicate small
329 current effective population size, which supports our estimate of approximately 171.

330 As expected, our *D. ordii* samples exhibited higher genetic diversity estimates in nearly
331 all categories despite our samples being collected from only five counties in north-central Texas.
332 This emphasizes the substantial genetic diversity and evolutionary potential displayed by the
333 common *D. ordii*, compared with a much rarer congener. However, we were surprised to find
334 that *D. ordii* had a greater inbreeding coefficient than *D. elator* across some analyses. This
335 pattern can be attributed to sampling bias, given that we sampled from a small portion of the *D.*
336 *ordii* range, and half of the *D. ordii* samples were collected from a single ranch in Dickens
337 County, Texas, where most individuals collected may present a certain degree of relatedness by
338 proximity. Comparing between individuals from this ranch and a similarly situated subset of *D.*
339 *elator* individuals, expected heterozygosity, π , and inbreeding coefficients were largely similar
340 (Table S4). This suggests that potentially related individuals of *D. elator* do not show reduced
341 genetic diversity than similarly related *D. ordii* individuals.

342 We were unable to generate a value of N_e for the current sample of *D. ordii*, likely a
343 result of samples displaying high degrees of relatedness, so we used the value calculated from
344 EBSP, which was approximately 10,000 individuals. In contrast to *D. elator* N_e , which declined
345 over time, the plot for *D. ordii* increased, perhaps an indication of colonization of new habitat
346 (northward) as glaciers receded after the Last Glacial Maximum 20,000 years ago [63-64].

347 Coupled with low N_e estimates, and population surveys that recover or fail to locate *D.*
348 *elator* in different localities, one possibility is that this population exhibits characteristics of a
349 metapopulation [65-66]. Metapopulation theory has been discussed in the context of
350 mammalian conservation biology because it accommodates populations in fragmented habitats
351 [67], but empirical studies to develop metapopulation theory for threatened and endangered
352 mammals are few (see [68-69]). One reason for the difficulty to meet the original metapopulation
353 criteria of [70] is the stringency of the original criteria. In [71], the authors relaxed two criteria,
354 adding that subpopulations, not the colonized habitat patch, are the discrete entity, and that
355 these discrete subpopulations differ in their demography, implying asynchronicity. Based on
356 field surveys, analysis of field notes, museum specimens, and species distribution models [20]
357 there is evidence that the *D. elator* population may benefit from management consideration
358 stemming from metapopulation theory.

359 However, because this connection to metapopulation theory is still tenuous, the overall
360 population should still be monitored [72]. Perhaps a long-term demographic study is warranted.
361 Managing the metapopulation must be concerned with maintaining dispersal and gene flow and
362 other population dynamics among subpopulations. Should managers elect for extreme
363 measures to manage *D. elator* populations, such as translocations or reintroductions,
364 knowledge that the population is a metapopulation is critical. Lastly, it is important to note that
365 the metapopulation in a conservation context has several assumptions. One assumption is the
366 “equilibrium” between colonization and extinction across long time scales (i.e. if one patch goes
367 extinct, another is colonized). This seems unlikely in many natural populations [73], including
368 that of *D. elator*, but this type of assumption can be used to appropriately model changes in
369 demography and genetics of *D. elator*.

370 There is no lack of research on habitat associations, mainly those evaluating soil and
371 vegetation changes, as they influence *D. elator*. These studies have greatly improved our
372 understanding of this elusive rodent [16-18, 74-75], but we still do not have answers to many

373 basic biological questions. We do know, however, that the population of *D. elator* seems to track
374 favorable habitat, albeit in a more restricted range than previously recorded [18].
375 Overall, the population of *D. elator* exhibits genetic variation lower than that of a species with a
376 predictably greater effective population size. However, contemporary samples show no
377 substantial decrease in genetic diversity from historical samples, suggesting that the *D. elator*
378 population, though small and constantly shifting, has managed to maintain its genetic diversity.

379 This study demonstrates the effectiveness of using samples from gradations across the
380 range, rather than at two extremes. Sampling from the extremes of a population range could
381 lead researchers to inappropriate conclusions that could wrongly influence management
382 decisions. Though the current effective population size of *D. elator* is estimated to be around
383 171 to 500 individuals, perhaps small population sizes are the status quo for this species.
384 Increasing population size may be unsustainable for this species (greater competition, reduced
385 resources, delayed or forgoing reproduction).

386 **Conservation Implications**

387 Researchers interested in natural genetic variation and population structure of mammals
388 should consider the possibility the population of their organisms of study could be exhibiting a
389 metapopulation. This is especially important for species that are rarely seen or captured. Our
390 findings suggest that the *D. elator* population could be a metapopulation that must be vigorously
391 monitored so that managers can detect any great losses in genetic diversity and evolutionary
392 potential. Furthermore, given the current advances in molecular techniques and analyses, it is
393 no longer necessary to limit samples in the temporal dimension. Doing so, especially for species
394 that remain understudied, will prove detrimental to any plan long-term plan for management. We
395 advise continued use of reduced representation sequencing (ddRAD, 3RAD) but with inclusion
396 of historic and geographically represented samples to fully encapsulate temporal and spatial
397 genetic variability within a possibly imperiled species.

398 CRediT authorship contribution statement

399 **Michaela Halsey:** Writing – Original Draft, Writing – Review and Editing, Formal Analysis,
400 Investigation, Data Curation, Validation, Methodology, Visualization. **John Stuhler:**
401 Methodology, Investigation, Writing – Review and Editing. **Natalia Bayona-Vasquez:**
402 Methodology, Investigation, Data Curation, Writing – Original Draft, Writing – Review and
403 Editing, Visualization. **Roy Platt II:** Conceptualization, Funding Acquisition, Methodology,
404 Writing – Review and Editing. **Jim Goetze:** Conceptualization, Writing – Review and Editing.
405 **Robert Martin:** Resources. **Kenneth Matocha:** Resources. **Robert Bradley:**
406 Conceptualization, Methodology, Funding Acquisition, Writing - Review and Editing. **Richard**
407 **Stevens:** Conceptualization, Methodology, Resources, Supervision, Project Administration,
408 Funding Acquisition, Writing – Review and Editing. **David Ray:** Conceptualization,
409 Methodology, Resources, Supervision, Project Administration, Funding Acquisition, Writing –
410 Review and Editing

411 Acknowledgements

412 Samples analyzed were loaned from the following collections: Museum of Texas Tech in
413 Lubbock, Texas, Midwestern State University in Wichita Falls, Texas, and the Museum of
414 Southwestern Biology in Albuquerque, New Mexico. Moreover, we would like to acknowledge
415 Travis Glenn for suggesting 3RAD sequencing. This work would not be possible without
416 cooperation from private landowners who allowed us to collect on their land. We sincerely
417 appreciate the efforts of C. Garcia, C. Brothers, A. Kildow, J. Keats, S. de la Piedra, M.
418 Krishnamoorthy, C. Rios-Blanco, G. Langlois, E. Stukenholtz, D. Arenas, L. Lindsay, T. Soniat,
419 E. Roberts, E. Wright, I. Vasquez, J. Francis and many others for their help with fieldwork. Also,
420 we would like to acknowledge the High-Performance Computing Center (HPCC) at Texas Tech
421 University for providing substantial logistical support. We also like to thank H. Wilson and J.

422 Grimshaw and all anonymous reviewers for constructive feedback used to improve earlier
423 versions of this manuscript.

424 **References**

- 425 1. Frankham R, Ballou SE, Briscoe DA, Ballou JD. *Introduction to conservation genetics*.
426 Cambridge University Press; 2002 Mar 14.
- 427 2. Moritz C. Defining 'evolutionarily significant units' for conservation. *Trends Ecol Evol*. 1994
428 Oct 1;9(10):373-5.
- 429 3. Rousset F. *Genetic structure and selection in subdivided populations (MPB-40)*. Princeton
430 University Press; 2013 Feb 15.
- 431 4. Slatkin M. Gene flow and the geographic structure of natural populations. *Science*. 1987
432 May 15;236(4803):787-92.
- 433 5. Wright S. Evolution in Mendelian populations. *Genetics*. 1931 Mar;16(2):97.
- 434 6. Franklin IR. Evolutionary change in small populations. *Conservation biology: an*
435 *evolutionary-ecological perspective*. 1980;395.
- 436 7. Frankham R. Effective population size/adult population size ratios in wildlife: a review. *Genet*
437 *Res*. 1995 Oct;66(2):95-107.
- 438 8. Harmon LJ, Braude S. 12. *Conservation of Small Populations: Effective Population Sizes,*
439 *Inbreeding, and the 50/500 Rule*. In *An introduction to methods and models in ecology,*
440 *evolution, and conservation biology* 2010 Jan 4 (pp. 125-138). Princeton University Press
- 441 9. Wang J, Santiago E, Caballero A. Prediction and estimation of effective population size.
442 *Heredity*. 2016 Oct;117(4):193-206.
- 443 10. Dalquest WW, Collier G. Notes on *Dipodomys elator*, a rare kangaroo rat. *Southwest Nat*.
444 1964 Aug 20:146-50.
- 445 11. Baccus JT. Mammals of Baylor County, Texas. *Texas J Sci*. 1971 Jan 1;22(2-3):177.
- 446 12. Martin RE, Matocha KG. Distributional status of the kangaroo rat, *Dipodomys elator*. *J.*
447 *Mammal*. 1972 Nov 1;53(4):873-7.
- 448 13. Carter DC, Jones JK, Jones C, Suttkus RD. *Dipodomys elator*. *Mamm Species*. 1985 May
449 24(232):1-3.
- 450 14. Martin RE, Matocha KG. The Texas kangaroo rat, *Dipodomys elator*, from Motley Co.,
451 Texas, with notes on habitat attributes. *Southwest Nat*. 1991 Sep 1;36(3):354-6.
- 452 15. Baumgardner GD. A recent specimen of the Texas kangaroo rat, *Dipodomys elator*
453 (Heteromyidae), from Oklahoma. *Southwest Nat*. 1987 Jun 15;32(2):285-6.

454 16. Garner HW. Population dynamics, reproduction, and activities of the kangaroo rat,
455 *Dipodomys ordii*, in western Texas. 1970. (Doctoral dissertation, Texas Tech University).

456 17. Stangl FB, Schafer TS, Goetze JR, Pinchak W Opportunistic use of modified and disturbed
457 habitat by the Texas kangaroo rat (*Dipodomys elator*). *Texas J Sci.* 1992 Feb 1;44(1):25-35.

458 18. Nelson AD, Goetze JR, Watson E, Nelson M. Changes in vegetation patterns and their
459 effect on Texas Kangaroo rats (*Dipodomys elator*). *Texas J Sci.* 2009 May 1;61(2):119-30.

460 19. Merriam CH. Preliminary descriptions of eleven new kangaroo rats of the genera *Dipodomys*
461 and *Perodipus*. *Proc Bio Soc Wash.* 1894;9:109-16.

462 20. Stuhler JD, Halsey MK, Portillo-Quintero C, Ray, DA, Bradley RD, Stevens, RD.
463 Endangered Species Research: Texas kangaroo rat (*Dipodomys elator*). Texas Comptroller.
464 2020.

465 21. Hamilton MJ, Chesser RK, Best TL. Genetic variation in the Texas kangaroo rat, *Dipodomys*
466 *elator* Merriam. *J. Mammal.* 1987 Nov 27;68(4):775-81.

467 22. Pfau RS, Goetze JR, Martin RE, Matocha KG, Nelson AD. Spatial and temporal genetic
468 diversity of the Texas kangaroo rat, *Dipodomys elator* (Rodentia: Heteromyidae). *J.*
469 *Mammal.* 2019 Jul 27;100(4):1169-81.

470 23. Wandeler P, Hoeck PE, Keller LF. Back to the future: museum specimens in population
471 genetics. *Trends Ecol Evol.* 2007 Dec 1;22(12):634-42.

472 24. Bradley RD, Bradley LC, Garner HJ, Baker RJ. Assessing the value of natural history
473 collections and addressing issues regarding long-term growth and care. *BioSc.* 2014 Dec
474 1;64(12):1150-8.

475 25. Garrison TE, Best TL. *Dipodomys ordii*. *Mamm Species.* 1990 Apr 26(353):1-0.

476 26. Environment Canada. Recovery Strategy for the Ord's Kangaroo Rat (*Dipodomys ordii*) in
477 Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 2012

478 27. Beck ML, Kennedy ML, Biggers CJ. Genic variation in Ord's kangaroo rat *Dipodomys ordii* in
479 Oklahoma. *Am Midl Nat.* 1981 Jan 1:77-83.

480 28. Halsey MK, Stuhler JD, Platt II RN, Bradley RD, Stevens RD, Ray DA. Cheeky Business:
481 Comparing DNA Yield of Buccal, Fecal, and Whisker Samples for Minimally Invasive
482 Genetic Research. *Occ. Papers, Mus Tex Tech Univ.* 2021;374:1-9

483 29. Longmire JL, Maltbie M, Baker, RJ. 1997. Use of" lysis buffer" in DNA isolation and its
484 implication for museum collections. *Occ. Papers, Mus Tex Tech Univ.* 1997;163: 1-3.

485 30. Schmidly DJ, Bradley RD. The mammals of Texas. University of Texas Press; 2016 Aug 9.

486 31. Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists. 2016
487 Guidelines of the American Society of Mammalogists for the use of wild mammals in
488 research and education. *J. Mammal.* 2016 Jun 9;97(3):663-88.

489 32. Bayona-Vásquez NJ, Glenn TC, Kieran TJ, Pierson TW, Hoffberg SL, Scott PA, et al.
490 Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD).
491 *PeerJ.* 2019 Oct 11;7:e7724.

492 33. Glenn TC, Nilsen RA, Kieran TJ, Finger JW, Pierson TW, Bentley KE, et al. Adapterama I:
493 universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext).
494 *BioRxiv.* 2016 Jan 1:049114.

495 34. Hoffberg SL, Kieran TJ, Catchen JM, Devault A, Faircloth BC, Mauricio R, et al. RAD cap:
496 sequence capture of dual-digest RAD seq libraries with identifiable duplicates and reduced
497 missing data. *Mol Ecol Resour.* 2016 Sep;16(5):1264-78.

498 35. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set
499 for population genomics. *Mol Ecol.* 2013 Jun;22(11):3124-40.

500 36. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. AfterQC: automatic filtering, trimming, error
501 removing and quality control for fastq data. *BMC Bioinformatics.* 2017 Mar;18(3):91-100.

502 37. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform.
503 *Bioinform.* 2010 Mar 1;26(5):589-95.

504 38. Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC. Restriction
505 site-associated DNA sequencing, genotyping error estimation and de novo assembly
506 optimization for population genetic inference. *Mol Ecol Resour.* 2015 Jan;15(1):28-41.

507 39. Gautier M, Gharbi K, Cezard T, Foucaud J, Kerdelhué C, Pudlo P, Cornuet JM, Estoup A.
508 The effect of RAD allele dropout on the estimation of genetic variation within and between
509 populations. *Mol Ecol.* 2013 Jun;22(11):3165-78.

510 40. Huang H, Knowles LL. Unforeseen consequences of excluding missing data from next-
511 generation sequences: simulation study of RAD sequences. *Syst Biol.* 2016 May
512 1;65(3):357-65.

513 41. Hosner PA, Faircloth BC, Glenn TC, Braun EL, Kimball RT. Avoiding missing data biases in
514 phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). *Mol Biol*
515 *Evol.* 2016 Apr 1;33(4):1110-25.

516 42. Hodel RG, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE. Adding loci improves
517 phylogeographic resolution in red mangroves despite increased missing data: comparing
518 microsatellites and RAD-Seq and investigating loci filtering. *Sci Rep.* 2017 Dec 14;7(1):1-4.

519 43. Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers.
520 *Bioinform* 24:1403-1405.

521 44. Goudet J, Jombart T, Goudet MJ. Package ‘hierfstat’. R package version 0.04-22. Retrieved
522 from <http://www.r-project.org>, <http://github.com/jgx65/hierfstat>. 2015 Nov 24.

523 45. Nei M. Genetic distance between populations. *Am Nat*. 1972 May 1;106(949):283-92.

524 46. Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of
525 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ*. 2014 Mar
526 4;2:e281.

527 47. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus
528 genotype data. *Genetics*. 2000 Jun 1;155(2):945-59.

529 48. Linck E, Battey CJ. Minor allele frequency thresholds strongly affect population structure
530 inference with genomic data sets. *Mol Ecol Resour*. 2019 May;19(3):639-47.

531 49. Mynhardt S, Bennett NC, Bloomer P. New insights from RADseq data on differentiation in
532 the Hottentot golden mole species complex from South Africa. *Mol Phylogenet Evol*. 2020
533 Feb 1;143:106667.

534 50. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. *Mol*
535 *Ecol Notes*. 2004 Mar;4(1):137-8.

536 51. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2:
537 re-implementation of software for the estimation of contemporary effective population size
538 (Ne) from genetic data. *Mol Ecol Resour*. 2014 Jan;14(1):209-14.

539 52. Rousset F. genepop'007: a complete re-implementation of the genepop software for
540 Windows and Linux. *Mol Ecol Resour*. 2008 Jan;8(1):103-6.

541 53. Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci.
542 *BMC Evol Biol*. 2008 Dec;8(1):1-5.

543 54. Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC, et al. King
544 penguin demography since the last glaciation inferred from genome-wide data. *Proc Royal*
545 *Soc B: Biol Science*. 2014 Jul 22;281(1787):20140528.

546 55. Pacifici M, Santini L, Di Marco M, Baisero D, Francucci L, Marasini GG, et al. Generation
547 length for mammals. *Nat Conserv*. 2013 Nov 13;5:89.

548 56. Birky Jr CW, Fuerst P, Maruyama T. Organelle gene diversity under migration, mutation,
549 and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells,
550 and comparison to nuclear genes. *Genetics*. 1989 Mar 1;121(3):613-27.

551 57. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of
552 RADseq for ecological and evolutionary genomics. *Nat Rev Genet*. 2016 Feb;17(2):81-92.

553 58. Lemopoulos A, Prokkola JM, Uusi-Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, et al.
554 Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—
555 Implications for brown trout conservation. *Ecol Evol*. 2019 Feb;9(4):2106-20.

556 59. Statham MJ, Bean WT, Alexander N, Westphal MF, Sacks BN. Historical population size
557 change and differentiation of relict populations of the endangered giant kangaroo rat. *J
558 Hered.* 2019 Jul;110(5):548-58.

559 60. Frankham R, Bradshaw CJ, Brook BW. Genetics in conservation management: revised
560 recommendations for the 50/500 rules, Red List criteria and population viability analyses.
561 *Biol Conserv.* 2014 Feb 1;170:56-63.

562 61. Eckert CG, Samis KE, Lougheed SC. Genetic variation across species' geographical
563 ranges: the central–marginal hypothesis and beyond. *Mol Ecol.* 2008 Mar;17(5):1170-88.

564 62. Audzijonyte A, Vrijenhoek RC. When gaps really are gaps: statistical phylogeography of
565 hydrothermal vent invertebrates. *Evolution.* 2010 Aug;64(8):2369-84.

566 63. Jezkova T, Olah-Hemmings V, Riddle BR. Niche shifting in response to warming climate
567 after the last glacial maximum: inference from genetic data and niche assessments in the
568 chisel-toothed kangaroo rat (*Dipodomys microps*). *Glob Chang Biol.* 2011 Nov;17(11):3486-
569 502.

570 64. Jezkova T, Riddle BR, Card DC, Schield DR, Eckstut ME, Castoe TA. Genetic
571 consequences of postglacial range expansion in two codistributed rodents (genus
572 *Dipodomys*) depend on ecology and genetic locus. *Mol Ecol.* 2015 Jan;24(1):83-97.

573 65. Levins R. Some demographic and genetic consequences of environmental heterogeneity for
574 biological control. *Am Entomol.* 1969 Sep 1;15(3):237-40.

575 66. Hanski I, Gilpin M. Metapopulation dynamics: brief history and conceptual domain. *Biol J Linn
576 Soc Lond.* 1991 Jan 1;42(1-2):3-16.

577 67. Nathan LR, Kanno Y, Vokoun JC. Population demographics influence genetic responses to
578 fragmentation: A demogenetic assessment of the 'one migrant per generation' rule of thumb.
579 *Biol Conserv.* 2017 Jun 1;210:261-72.

580 68. Gaona P, Ferreras P, Delibes M. Dynamics and viability of a metapopulation of the
581 endangered Iberian lynx (*Lynx pardinus*). *Ecol Monogr.* 1998 Aug;68(3):349-70.

582 69. Schooley RL, Branch LC. Enhancing the area–isolation paradigm: habitat heterogeneity and
583 metapopulation dynamics of a rare wetland mammal. *Ecol Appl.* 2009 Oct;19(7):1708-22.

584 70. Hanski I. *Metapopulation ecology.* Oxford University Press; 1999 Mar 18.

585 71. Elmhagen B, Angerbjörn A. The applicability of metapopulation theory to large mammals.
586 *Oikos.* 2001 Jul;94(1):89-100.

587 72. Lindenmayer DB, Lacy RC. Metapopulation viability of Leadbeater's possum,
588 *Gymnobelideus leadbeateri*, in fragmented old-growth forests. *Ecol Appl.* 1995
589 Feb;5(1):164-82.

590 73. Akçakaya HR, Mills G, Doncaster CP. The role of metapopulations in conservation. *Key*
591 *topics in conservation biology*. 2007:64-84.

592 74. Roberts JD, Packard RL. Comments on movements, home range and ecology of the Texas
593 kangaroo rat, *Dipodomys elator* Merriam. *J. Mammal.* 1973 Nov 1;54(4):957-62.

594 75. Goetze JR, Stasey WC, Nelson AD, Sudman PD. Habitat attributes and population size of
595 Texas kangaroo rats on an intensely grazed pasture in Wichita County, Texas. *Texas J Sci.*
596 2007;59(1):11.

597

598 **Supporting Information**

599 **Fig S1. Principal components analysis on the genotypes for historical samples from**
600 **Hardeman County using the gIPCA function in R package ‘adegenet’.**

601 **Fig S2. STRUCTURE plot of 70 *D. elator* samples across three time periods (see text for**
602 **time breakdown).** The “sampling hole” individuals (blue) are completely divergent from later
603 samples; however, there is evidence of those loci persisting in the population. These results
604 confirm a) no appreciable decrease in genetic diversity over 30 years and b) one interbreeding
605 contemporary population).

606 **Table S1. Seventy *Dipodomys elator* samples and 26 *D. ordii* samples used in the genetic**
607 **analysis including temporal (historical, contemporary) subpopulation, spatial (east or**
608 **west) subpopulation, the specific county the individual was found, tissue type, and the**
609 **museum where the voucher was received.** Museum codes are MSB (Museum of
610 Southwestern Biology), MSU (Midwestern State University), and TTU (Texas Tech University).

611 **Table S2. Summary statistics calculated in Stacks for 26 *D. ordii* and 38 *D. elator***
612 **contemporary samples.** Private alleles are those alleles not shared with any other
613 subpopulation.

614 **Table S3. Log-likelihood and delta K values used in the Evanno method for *D. elator***
615 **STRUCTURE analysis.**

616 **Table S4. General summary statistics calculated in Stacks for a comparison between 3**
617 **individuals from each species that were collected in proximity (i.e. same tract of land).**
618 Private alleles are those alleles not shared with any other subpopulation. Observed and
619 expected heterozygosity are the proportion of loci that are heterozygous based on Hardy-
620 Weinberg frequencies. π is a measure of nucleotide diversity. FIS indicates the inbreeding
621 coefficient.

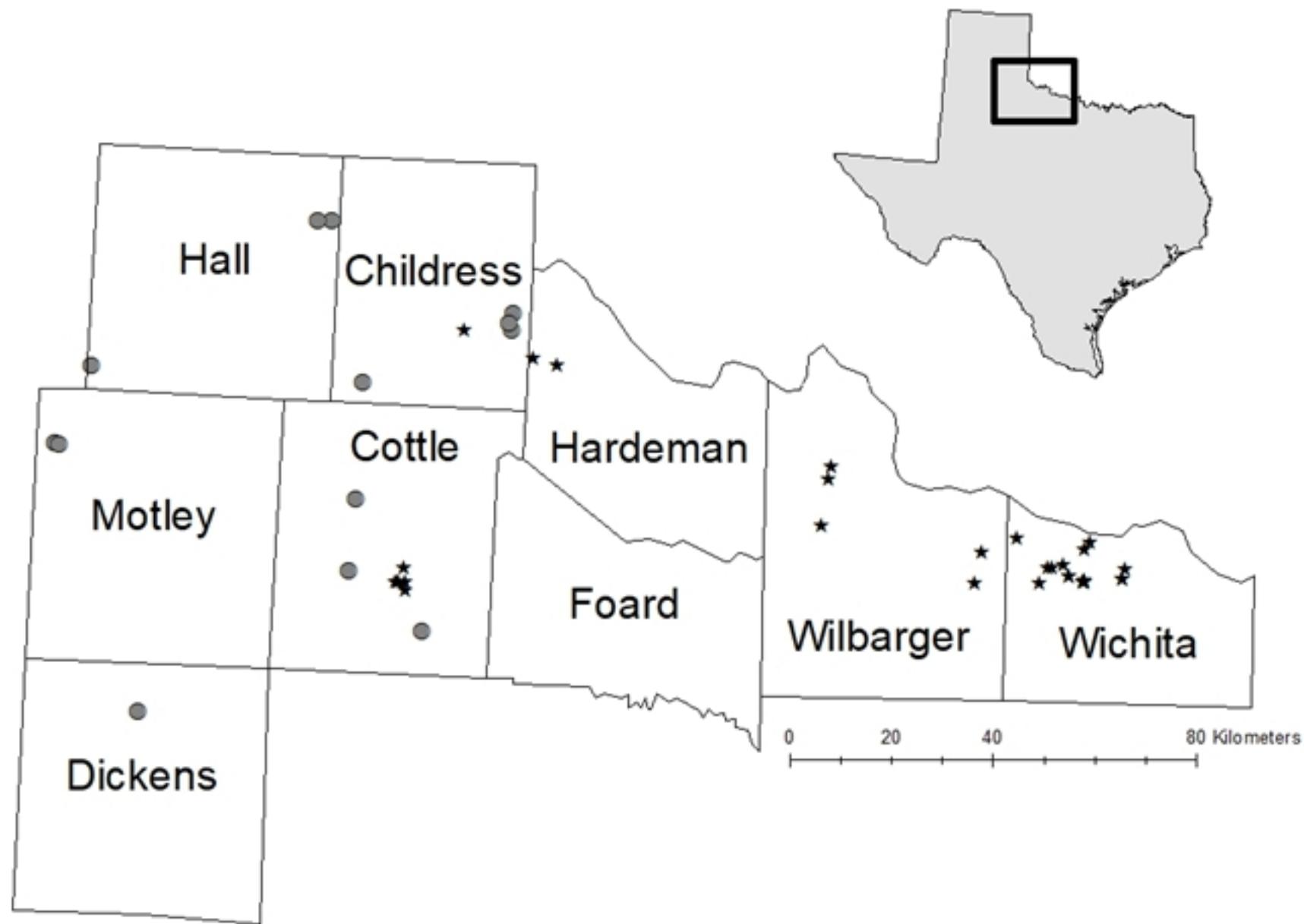


Figure 1

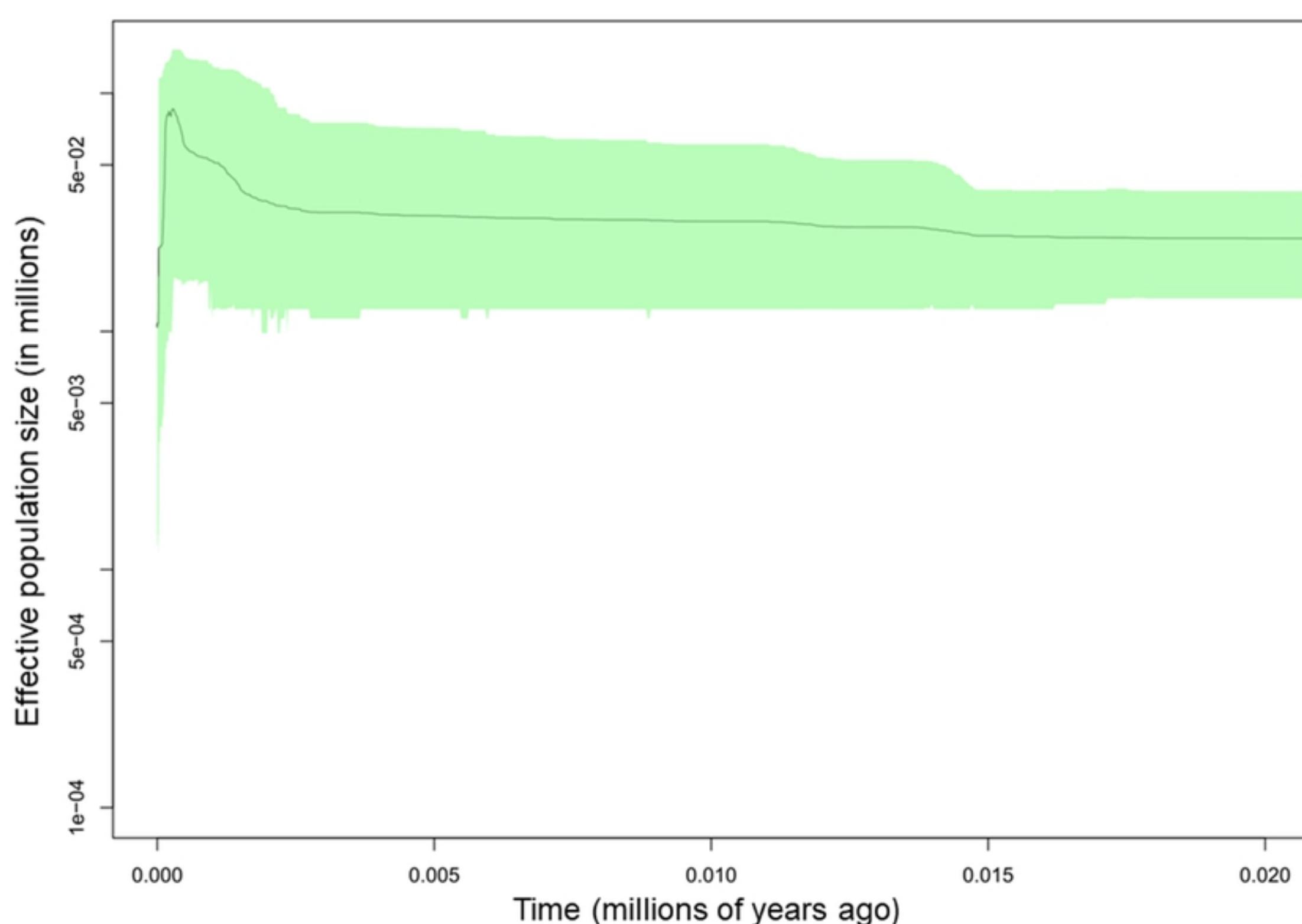
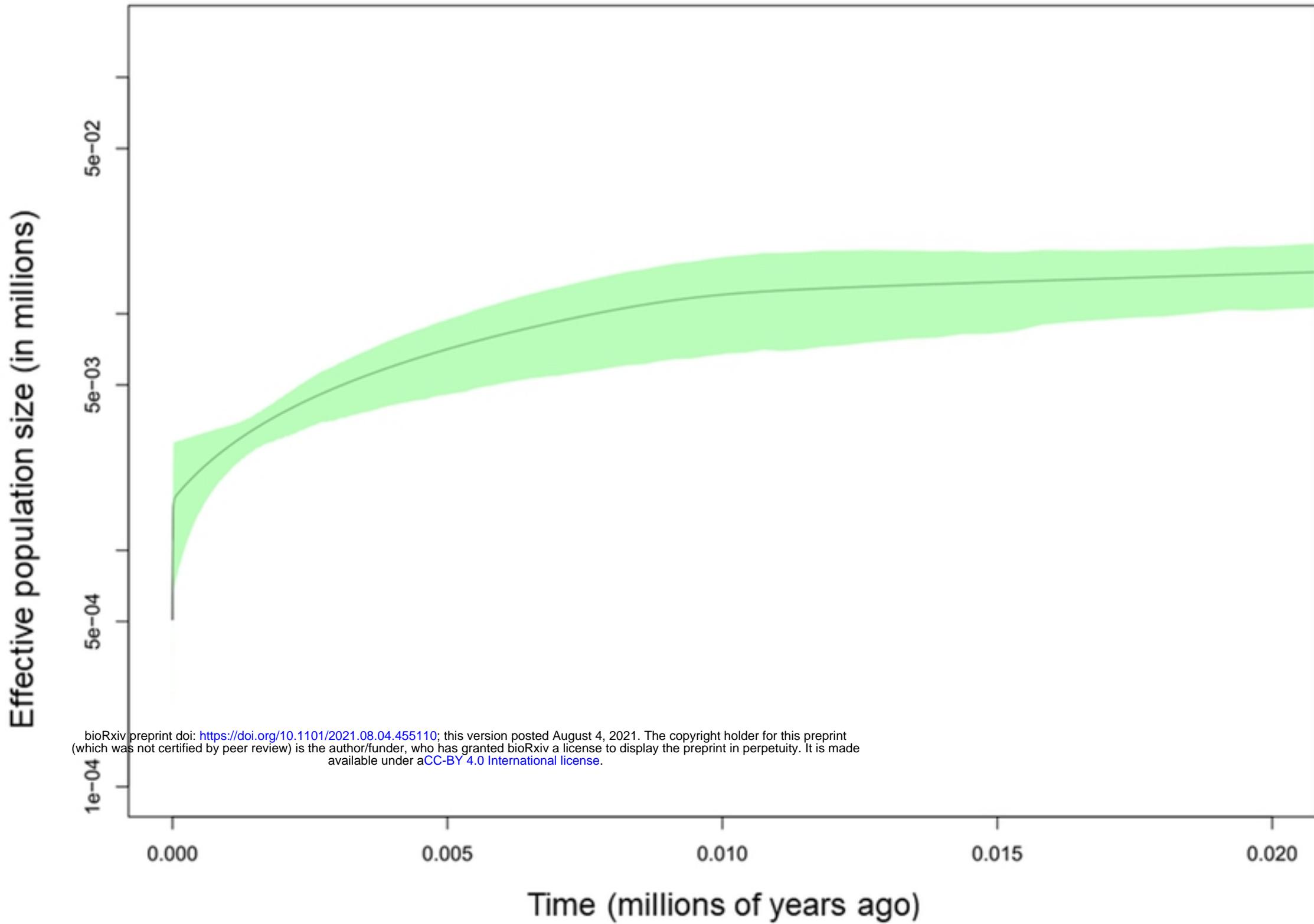



Figure 2

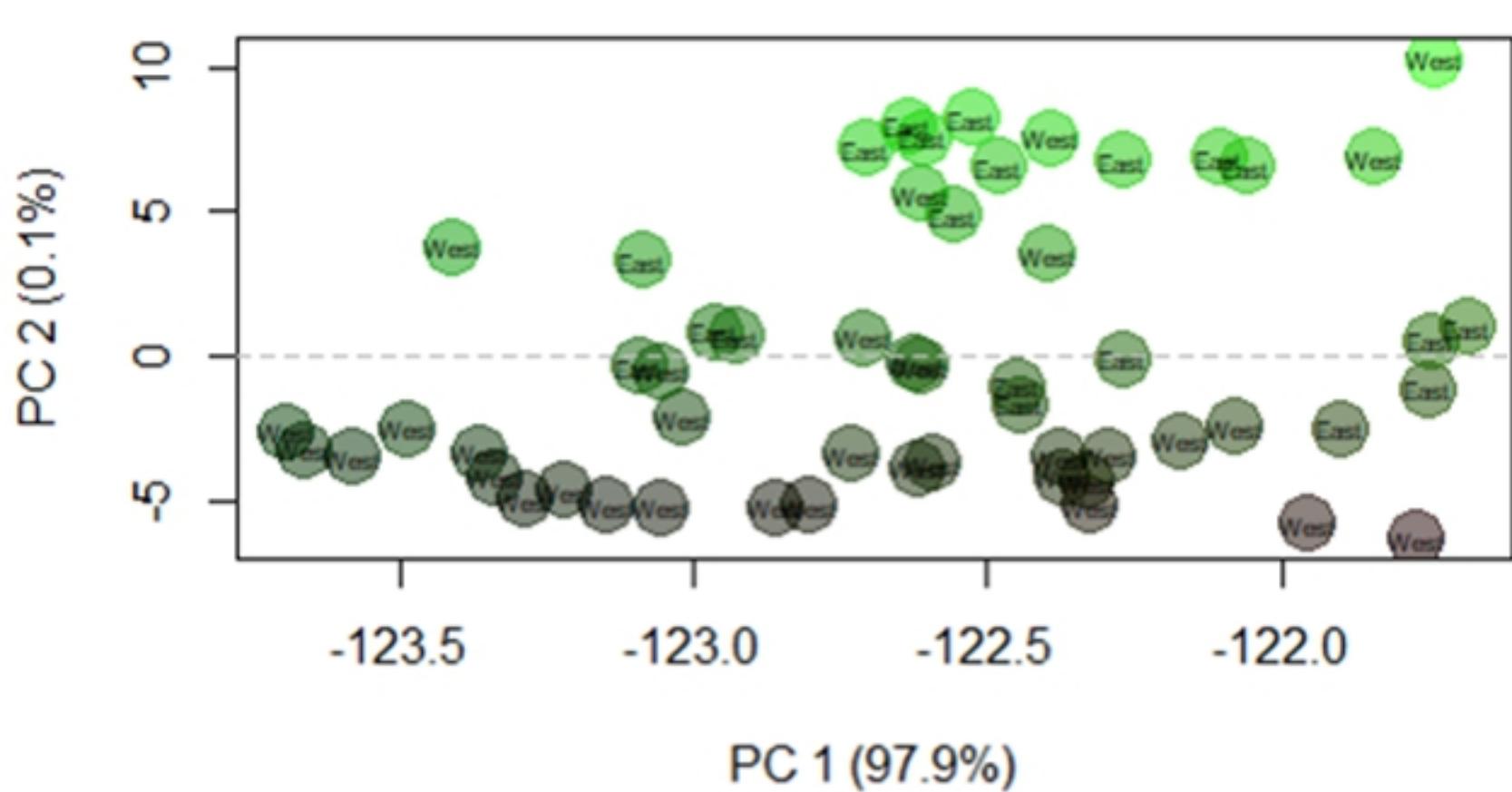


Figure 3

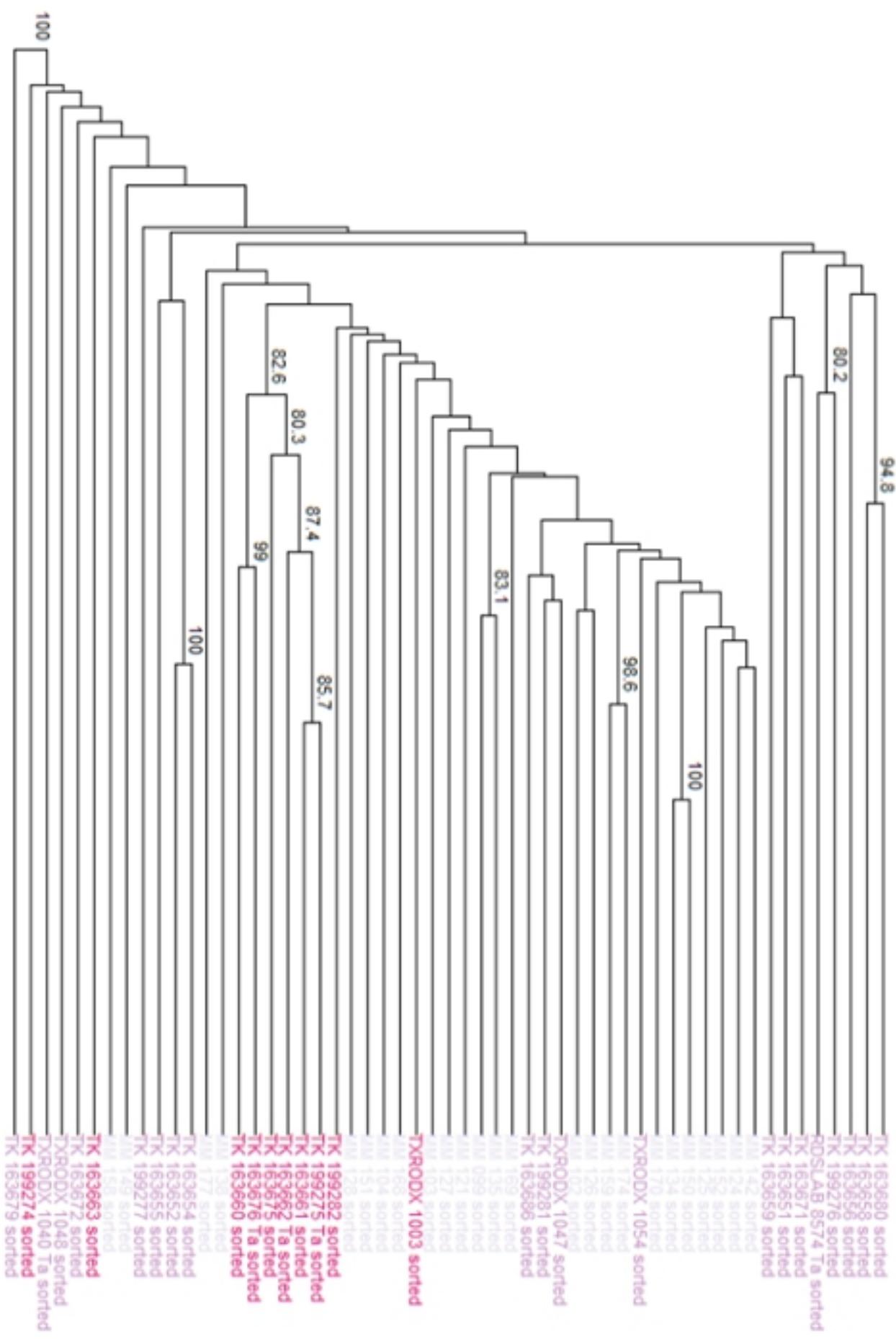


Figure 4