

1

2

3

4

5

6

7 Genomic diversity of bacteriophages infecting *Rhodobacter capsulatus* and their 8 relatedness to its gene transfer agent RcGTA

9

10 Running title: Novel *R. capsulatus* phages

11

12 Jackson Rapala^a, Brenda Miller^a, Maximiliano Garcia^a, Megan Dolan^a, Matthew
13 Bockman^a, Mats Hansson^b, Daniel A. Russell^c, Rebecca A. Garlena^c, Steven G. Cresawn^d,
14 Alexander B. Westbye^{e\$}, J. Thomas Beatty^e, Richard M. Alvey^a, David W. Bollivar^a

15 ^aDepartment of Biology, Illinois Wesleyan University, Bloomington, Illinois, USA

16 ^bDepartment of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden.

17 ^cDepartment of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

18 ^dDepartment of Biology, James Madison University, Harrisonburg, Virginia, USA

Frontiers of Materials | www.frontiersin.org | Volume 1 | Article 100000 | December 2019 | 10

20 Vancouver, Canada

23 Abstract

24 The diversity of bacteriophages is likely unparalleled in the biome due to the immense
25 variety of hosts and the multitude of viruses that infect them. Recent efforts have led to
26 description at the genomic level of numerous bacteriophages that infect the
27 Actinobacteria, but relatively little is known about those infecting other prokaryotic
28 phyla, such as the purple non-sulfur photosynthetic α -proteobacterium *Rhodobacter*
29 *capsulatus*. This species is a common inhabitant of freshwater ecosystems and has been
30 an important model system for the study of photosynthesis. Additionally, it is notable
31 for its utilization of a unique form of horizontal gene transfer via a bacteriophage-like
32 element known as the gene transfer agent (RcGTA). Only three bacteriophages of *R.*
33 *capsulatus* had been sequenced prior to this report. Isolation and characterization at the
34 genomic level of 26 new bacteriophages infecting this host advances the understanding
35 of bacteriophage diversity and the origins of RcGTA. These newly discovered isolates
36 can be grouped along with three that were previously sequenced to form six clusters
37 with four remaining as single representatives. These bacteriophages share genes with
38 RcGTA that seem to be related to host recognition. One isolate was found to cause lysis
39 of a marine bacterium when exposed to high titer lysate. Although some clusters are
40 more highly represented in the sequenced genomes, it is evident that many more
41 bacteriophage types that infect *R. capsulatus* are likely to be found in the future.

42 Introduction

43 Bacteriophages (phages) are the most massively abundant and diverse biological
44 entities with an estimated 10^{31} particles in the biosphere (1,2). They are known to
45 greatly impact microbial populations in a variety of ways including the virulence and
46 persistence of bacterial pathogens (3). Concerted efforts to identify phages of
47 Actinobacteria such as mycobacteria, *Arthrobacter*, *Gordonia*, *Microbacterium*, *Rhodococcus*,
48 *Streptomyces* as well as studies of enterobacteria, *Bacillus*, and *Pseudomonas* have begun
49 to fill in the missing information about these neglected but impactful entities (4–11). In
50 terms of α -proteobacteria, phages that infect the hosts *Caulobacter*, *Ruegeria*, and
51 *Dinoroseobacter* have been identified and sequenced (12,13). To date however, only a few
52 phages of *Rhodobacter capsulatus* have been examined in significant detail (14–16).

53

54 *R. capsulatus* is a photosynthetic α -proteobacterium with the ability to grow under a
55 wide variety of conditions and has been used as a model for photosynthesis and
56 nitrogen fixation. Part of the reason that *R. capsulatus* was developed as a model system
57 was the presence of a genetic system that allowed for simple transduction-like gene
58 transfer and generation of site-directed gene knockouts. This system was based on a
59 phage-like entity known as a gene transfer agent (RcGTA). RcGTA has been studied
60 due to the implications it has for the transfer of genetic information between related

61 bacteria in the environment (17). The majority of the structural proteins for RcGTA are
62 encoded in an approximately 14 kb region of the *R. capsulatus* genome with additional
63 genes (eg. for fibers, lytic release, and regulation) found elsewhere in the genome
64 (18,19). In contrast to phages, individual particles can only package around 4 kb (20).
65 This results in the inability of RcGTA to package its full genome and instead particles
66 contain random fragments of host DNA, though there is some evidence that this is not
67 completely random (21). Similar systems have since been identified in a variety of other
68 bacterial species (17).

69

70 Until recently, phages that infect *R. capsulatus* have received much less attention than
71 those of other bacteria. In the mid-1970s, Wall et al. (14) and Schmidt et al. (22) isolated
72 nearly 100 phages of *R. capsulatus* from sewage and characterized them based on host
73 range. One of these, RC1, was selected for further study. This work established host
74 range and potential effects of RC1 on RcGTA production and suggested that presence of
75 RC1 was bioenergetically costly to host cells. It also placed RC1 in the *Siphoviridae* based
76 on morphology (22). None of the phages from these studies have been characterized at
77 the genomic level. A sequenced genome for a *R. capsulatus* strain E32 phage also named
78 “RC1” has been deposited in GenBank (accession number JF974308). This isolate (not
79 the same RC1 as Wall et al.) was obtained through prophage induction of gas hydrate
80 sediment samples from the Pacific Ocean (23). It shares some sequence similarity with

81 Mu-type phages that infect *Escherichia coli*. Since then, two additional phages of *R.*
82 *capsulatus* have been identified as prophages present in strains SB1003 and Y262. One,
83 RcapMu, could be induced to excise and reinfect, and as the name suggests, is also a
84 relative of Mu transposing phages (15). The other, RcapNL, was isolated and
85 sequenced, but was not further characterized in depth because no other host has been
86 identified that it can infect (16).

87

88 The work presented here describes an important expansion in the number of sequenced
89 *R. capsulatus* phages. Together with those previously sequenced, these 26 new phages
90 can be organized into six clusters (designated RcA, RcB, RcC, RcD, RcE, and RcF) with
91 at least two members and four additional singleton groups represented by a single
92 member. Phages that infect *R. capsulatus* are highly diverse, sharing only limited gene
93 conservation between clusters. The presence of shared genes between RcGTA, and
94 some of the phages is likely connected to host recognition based on the position of these
95 gene products in the newly determined structure of RcGTA (18). It is also intriguing to
96 note that one of these phages with shared proteins, is able to induce cell lysis of the
97 marine bacterium *Dinoroseobacter shibae*, suggesting *R. capsulatus* phages might serve as
98 an interesting model for examining host range evolution.

99

100 **Results**

101 ***R. capsulatus* phage isolation and gross morphology**

102 26 novel phages infecting the bacterium *R. capsulatus* were isolated from collected water
103 samples. All but one of these were isolated using the host strain YW1 C6; the exception
104 being RcSimone-Håstad isolated on strain SB1003. Most were isolated from samples
105 collected in the USA with the notable exceptions of RcSimone-Håstad that was isolated
106 from a sample collected in Håstad, Sweden and RcThunderbird isolated from a sample
107 collected near a wastewater treatment plant in Vancouver, British Columbia in Canada.
108 All of the phages formed plaques on host lawns.

109

110 Each of the phages described here has a dsDNA genome and a flexible noncontractile
111 tail placing it in the *Siphoviridae* branch of the *Caudovirales* (Fig. 1). All have isometric
112 capsids with the exception of RcSimone-Håstad, which has a prolate capsid. Measured
113 capsid diameters and tail lengths which were found to be similar for clustered phages
114 are summarized in Table 1.

115

116 **Fig 1. *R. capsulatus* phage virion morphologies.** Representative transmission electron
117 micrographs of virion particles from each *R. capsulatus* phage cluster shows the
118 presence of *Siphoviridae* morphologies.

119

120 **Table 1. *R. capsulatus* phage virion measurements.** Measurements for the capsid
121 diameters and tail lengths represent averages calculated using multiple separate phage
122 particles for multiple representatives of a cluster using ImageJ. For the singletons,
123 RcSimone-Håstad and RcZahn, measurements represent the averages from several
124 independent phage particles.

Cluster/Phage	Average capsid diameter (nm)	Average tail length (nm)
RcA	59.7	132.9
RcB	61.0	150.2
RcC	66.2	115.8
RcD	73.3	204.4
RcE	65.9	135.8
RcF	80.6	297.2
RcSimone-Håstad	76.7 x 54.1	184.2
RcZahn	87.1	296.9

125

126 **Host range/Plaque formation**

127 The ability of these new isolates to form plaques on the following strains of *R. capsulatus*
128 were examined: YW1, YW2, B6, B10, St. Louis, 37B4, and Iona (Table 2). Additionally,
129 two more distantly related marine bacterial species, *Dinoroseobacter shibae* DFL12 and

130 *Ruegeria pomeroyi* DSS3, were also examined as potential hosts. For most of the phages
131 tested, unique patterns of plaque formation and plaque morphology allowed for
132 tentative grouping or cluster assignment. With subsequent genomic sequencing these
133 assignments were largely found to be consistent for all the phages of a cluster and the
134 patterns of plaque formation with these host strains were distinct characteristics of
135 particular clusters. The exception to this was RcOceanus which is unique in its cluster
136 due to its inability to infect B10 or St. Louis. The singleton RcZahn was also notable for
137 having the ability to form plaques on *R. capsulatus* strain 37B4 and on *D. shibae*, two
138 hosts that none of the other phage isolates could form plaques on. Additionally, none of
139 the phages tested could form plaques on *R. capsulatus* strain Iona or on *R. pomeroyi*.

140

141 **Table 2. Plaque formation using spot testing on various hosts**

Cluster/ Phage	Host Strain								
	YW1	YW2	B6	B10	St. Louis	37B4	Iona	<i>D. shibae</i>	<i>R. pomeroyi</i>
RcA	+	-	-	-	-	-	-	-	-
RcB	+	+ ¹	+ ¹	+	+	-	-	-	-
RcC	+	-	-	+ ²	+ ^{1,2}	-	-	-	-
RcD	+	+ ¹	+ ¹	+ ¹	+ ¹	-	-	-	-
RcE	+	+	-	-	+ ¹	-	-	-	-
RcF	+	+	+	+	+	-	-	-	-
RcSimone - Håstad	+	-	-	+	+ ¹	-	-	-	-

RcZahn	+	-	+	-	-	+	-	+	-
--------	---	---	---	---	---	---	---	---	---

142 1- Plaques were cloudy or much more difficult to discern than on YW1

143 2 – RcOceanus differed from the other RcC phages in that it was unable to form plaques
144 on B10 or St. Louis

145

146 **Genometrics**

147 The genomic sequences of 26 phages were determined and used in comparative
148 analyses along with the 14,087 bp region of the RcGTA genome which encodes 17
149 genes—most of which comprise its structural components—and three previously
150 sequenced phages, (RC1, RcapMu, and RcapNL) (Table 3). Genome sizes for the new
151 isolates range from 35,985 bp with 45 predicted genes (RcCronus) to 101,599 bp with 147
152 genes (RcZahn). All have GC percentages lower than the host (66.5%) with a range from
153 54.8% (RcThunderbird) to 65.4% (RcRhea) (24,25). The majority of the isolated phage
154 DNAs have defined ends with short 11-13 bp 5'overhangs, but other end types were
155 observed including circularly permuted genomes, direct terminal repeats, and P1 type
156 headful packaging (Table 3).

157 **Table 3. Genometrics of *R. capsulatus* phages and RcGTA**

158

Phage name	Year	Cluster	Type of end	Host ¹	Length ²	GC%	ORFs	lytic/temp ³	Accession # ⁴	Reference
RcCronus	2013	RcA	5' overhang 13 base	YW1	35985	65.4	45	temperate	NC_042049	Bollivar et al
RcRhea	2013	RcA	5' overhang 13 base	YW1	36065	65.4	45	temperate	NC_028954	Bollivar et al
RcSaxon	2012	RcA	5' overhang 13 base	YW1	36081	65.4	46	temperate	KT 253150	Bollivar et al
RcTitan	2012	RcB	circularly permuted	YW1	44496	55.1	61	lytic	NC_029097	Bollivar et al
RcSpartan	2012	RcB	circularly permuted	YW1	44194	54.9	61	lytic	NC_041963	Bollivar et al
RcThunderbird	2015	RcB	circularly permuted	YW1	43941	54.8	61	lytic	MW677529	This paper
RcHartney	2018	RcB	circularly permuted	YW1	43528	55.1	60	lytic	MW677514	This paper
RcOceanus	2013	RcC	5' overhang 11 base	YW1	37609	64.2	57	ND ⁵	MW677520	This paper
RcDormio	2015	RcC	5' overhang 11 base	YW1	41640	64.1	69	ND ⁵	MW677510	This paper
RcBaka	2016	RcC	5' overhang 11 base	YW1	41643	64.1	70	ND ⁵	MW677509	This paper
RcFrancesLouise	2016	RcC	5' overhang 11 base	YW1	42073	64.0	71	ND ⁵	MW677512	This paper
RcHotPocket	2016	RcC	5' overhang 11 base	YW1	41765	64.1	70	ND ⁵	MW677515	This paper
RcKemmy	2018	RcC	5' overhang 11 base	YW1	41345	63.7	69	ND ⁵	MW677517	This paper
RcGingersnap	2016	RcD	5' overhang 12 base	YW1	68225	60.2	101	ND ⁵	MW677513	This paper
RcIroh	2016	RcD	5' overhang 12 base	YW1	68575	60.2	100	ND ⁵	MW677516	This paper
RcMcDreamy	2015	RcD	5' overhang 12 base	YW1	68228	60	101	ND ⁵	MW677518	This paper
RcMrWorf	2016	RcD	5' overhang 12 base	YW1	67196	60	99	ND ⁵	MW677519	This paper
RcPutin	2016	RcD	5' overhang 12 base	YW1	67605	60.3	100	ND ⁵	MW677522	This paper
RcPescado	2016	RcD	5' overhang 12 base	YW1	67494	60.4	99	ND ⁵	MW677521	This paper
RcRios	2017	RcD	5' overhang 12 base	YW1	68774	60.3	103	ND ⁵	MW677523	This paper
RcSalem	2017	RcD	5' overhang 12 base	YW1	67698	60	101	ND ⁵	MW677524	This paper
RcapMu	2011	RcE	Mu-type	SB1003	39283	64.9	59	temperate	NC_016165.1	Fogg et al
RcWaterboi	2016	RcE	Mu-type	YW1	38301	64.8	56	temperate	MW677528	This paper
RcTiptonus	2015	RcF	P1 headful	YW1	94091	57.9	139	ND ⁵	MW677527	This paper
RcDurkin	2018	RcF	P1 headful	YW1	94639	57.8	141	ND ⁵	MW677511	This paper
RC1	2002	singleton	Mu-type	E32	39573	62.3	56	ND ⁵	JF974308	Engelhardt et al.
RcSimone-Håstad	2017	singleton	77 base terminal repeat	SB1003	63102	60.7	80	ND ⁵	MW677525	This paper
RcZahn	2018	singleton	circularly permuted	YW1	101599	60.7	147	ND ⁵	MW677529	This paper
RcapNL	2011	singleton	circularly permuted	SB1003	40489	65.1	65	temperate	JQ066768	Hynes, AP

159	RcGTA	1974	N/A	N/A	N/A	14087	69.2	17	N/A	AF181080	Marrs, B.
-----	-------	------	-----	-----	-----	-------	------	----	-----	----------	-----------

160 ¹Host strain used for isolation

161 ²Genome length in base pairs

162 ³Lytic or temperate life style, as predicted bioinformatically

163 ⁴GenBank Accession number

164 ⁵ND = Not determined

165 Our analysis identified 2,350 genes that can be organized into 833 distinct gene families

166 (phams) among the 29 phage genomes and RcGTA structural gene cluster. Of these

167 phams, 367 (44%) were found to be orphans, or genes found in only one phage in this

168 database. There are 5 genes shared by as many as 12 entries. The average gene length is

169 646 bp with the largest predicted genes being for the tape measure proteins of cluster

170 RcF phages, RcDurkin and RcTiptonus, (gene #44 in both) which are 5,364 bp.

171 **Major capsid protein and large terminase subunit comparisons**

172 The major capsid and large terminase subunit protein sequences are commonly used

173 markers for understanding phage phylogeny. Protein-protein BLAST (BLASTP) queries

174 of the NCBI Non-redundant protein sequences database were used to identify phages

175 with similar capsid and terminase sequences to those of each of the 26 newly and 3

176 previously sequenced phages. As these sequences tend to be highly conserved between

177 highly related phages the results of this analysis are organized by cluster designation

178 (Table 4). In multiple instances no matches to proteins encoded in phage genomes were
179 found in the top 100 results with the most similar examples of these proteins being
180 found in the bacterial genomes. In all other instances matches were limited to those of
181 phages infecting α - (more frequently) or γ - (less frequently) proteobacteria.

182 **Table 4. Major capsid protein and large terminase subunit Genbank closest matches**

Cluster	Best phage match	
	Major capsid protein	Large terminase
RcA	Dinoroseobacter phage vB_DshS-R4C	Dinoroseobacter phage vB_DshS-R4C
RcB	Pseudomonas phage vB_PaeS_C1	Escherichia phage Halfdan
RcC	No phage match in the top 100	No phage match in the top 100
RcD	Ruegeria phage vB_RpoS-V18	Loktanella phage pCB2051-A
RcE	Rhizobium phage RR1-B	No phage match in the top 101
RcF	Rhizobium phage RHph_I4	Stenotrophomonas phage vB_SmaS_DLP_5
RcSimone-Håstad	Pseudomonas virus Yua	Pseudomonas phage PaMx28
RcZahn	Rhizobium phage RHph_TM16	Stenotrophomonas phage vB_SmaS_DLP_3
RcapNL	No phage match in the top 100	No phage match in the top 100
RC1	Rhodovulum phage RS1	Rhodovulum phage RS1

183

184 **Phage clustering**

185 The comparison of phage genomes is facilitated by using the phamily designations
186 generated within the Phamerator program to map the shared amino acid coding
187 sequences between phages. Using this information, a visual representation of the shared
188 gene network using Splitstree (26) can be constructed (Fig. 2). This analysis reveals six
189 clusters of phages (designated RcA to RcF) with varying numbers of members. Four

190 phages have very low numbers of shared genes and are described as singletons
191 following the terminology of Hatfull et al (27). It also should be noted that two clusters
192 have also been described as Genera; RcA is the genus *Cronusvirus*, and RcB is the genus
193 *Titanvirus* (28–30).

194

195 **Fig. 2. Network phylogeny of *R. capsulatus* bacteriophages.** The predicted proteins of
196 all 29 *R. capsulatus* phages and those found in the 14,087 bp RcGTA structural gene
197 region were sorted into 833 families (phams) according to shared amino acid sequence
198 similarities using Phamerator (31). Each genome was then assigned values reflecting the
199 presence or absence of members of each pham; the genomes were compared and
200 displayed using Splitstree. Clusters are indicated with colored ovals. The scale bar
201 indicates 0.01 substitutions/site.

202

203

204 Shared protein coding regions do not necessarily indicate shared nucleotide sequence
205 however. Some clusters have members with relatively large differences in the average
206 nucleotide identities with other cluster members. RcKemmy for instance, shares
207 between 85-86% average nucleotide identity (ANI) with any other member of the RcC
208 cluster. Other clusters, such as the RcA cluster, have high nucleotide conservation

209 between members with 98-99% ANI between any pairing of these phages. Comparison
210 of nucleotide sequence conservation amongst phage cluster demonstrates significant
211 variation with occasional pockets of shared sequence. This can be visualized with a
212 dotplot comparison of the catenated genomes with themselves (Fig. 3). The central
213 diagonal indicates self-alignment, but it is also evident that there are genomes that
214 share substantial sequence similarity correlating with the six clusters described above.
215 RcGTA and the four singletons (RC1, RcapNL, RcSimone-Håstad, and RcZahn) share
216 little nucleotide sequence identity with the other groups, though there is a small region
217 (~750 bp) of RcSimone-Håstad that is similar to members of the RcC cluster.

218

219 **Fig. 3 Dotplot comparison of catenated genomes.** A dotplot comparison of the
220 catenated genomes against themselves was created using Gepard. Areas of clustering
221 are color-coded to match the cluster colors on Fig 2 and table 3.

222

223 Genome BLAST distance phylogeny has been proposed as a robust method for
224 determining phage relationships and proposing genera (32,33). The genomes of the 29
225 *R. capsulatus* phages and the RcGTA structural gene region of the *R. capsulatus* genome
226 were submitted to the VICTOR analysis page at the DSMZ (33) to determine how this
227 analysis would compare with the Splitstree clustering method (Fig. 4). As expected, the

228 same groupings were observed. Using the D0 distance formula, ten genus level clusters
229 and two family-level clusters were predicted by the VICTOR method.

230 **Fig. 4. Evolutionary relationships of *R. capsulatus* bacteriophages and RcGTA.** The
231 phylogenomic genome BLAST distance phylogeny (GBDP) tree generated using the
232 VICTOR web application under settings recommended for prokaryotic viruses and the
233 D0 distance formula. The numbers above branches are GBDP pseudo-bootstrap support
234 values from 100 replications. The branch lengths on the resulting VICTOR tree are
235 scaled in terms of the respective distance formula used.

236

237 **RcA cluster**

238 The three members of the RcA cluster, RcCronus, RcSaxon, and RcRhea, were the first
239 phages isolated in our laboratory. They came from three separate water samples
240 collected from a stream near the local water treatment plant in 2012 and 2013. Each
241 phage genome has a GC content of 65.4% with either 45 (RcCronus and RcRhea) or 46
242 (RcSaxon) predicted genes. TEMs of these phages demonstrate the typical morphology
243 associated with members of the *Siphoviridae* with an average capsid diameter of 59.7 nm
244 and a tail length of 132.9 nm (Fig. 1, Table 1) The mean genome length for this cluster is
245 36,044 bp with 96 bp separating the largest (RcSaxon) and smallest (RcCronus)
246 genomes. This average genome length is the smallest of any of the identified clusters

247 while the average GC content is the highest. As expected with small genomes, these
248 phages also have the smallest capsid diameters of any in this collection. The genomes of
249 RcA phages have defined ends with 13 bp 5'overhang suggesting a cohesive end
250 packaging strategy. Compared to the other clusters, their genomes have a relatively
251 high nucleotide identity and except for one area align very closely (Fig. 5). RcRhea and
252 RcCronus are nearly identical at the nucleotide level (99.23% ANI), while RcSaxon
253 shows slightly larger sequence differences (99.15% ANI with RcCronus and 98.60% ANI
254 with RcRhea).

255

256 **Fig. 5 Genome organizations of *R. capsulatus* RcA cluster phages.** Genome maps of
257 the RcA phages are shown. Pairwise nucleotide sequence similarities are displayed with
258 spectrum-coloring between genomes, with violet representing greatest similarity and
259 red the least similar, above a threshold E value of 10^{-3} . Genes are represented as boxes
260 above or below the genomes reflecting rightwards- and leftwards-transcription
261 respectively. Genes are colored according to their phamily designations using
262 Phamerator (31) and database Rhodobacter_capsulatus.

263

264 The core set of genes for this cluster is comprised of 44 genes. RcRhea and RcCronus
265 have the exact same set of 45 genes while RcSaxon has two novel genes (orphams)

266 where the other two have just one (gene 25 in both RcRhea and RcCronus; genes 25 and
267 26 in RcSaxon). Genome sequences of these phages were reported in a genome
268 announcement (30) and led to the creation of a phage genus, *Cronusvirus*, with
269 RcCronus considered the type phage for the genus (28).

270 Organization of the genes in RcA phages match the typical organization seen in other
271 tailed phages with the left side encoding structural proteins in a canonical order with
272 the exception of endolysin (gene 3) placement. The right side contains a number of
273 genes associated with DNA metabolism.

274 Members of the RcA cluster share 8 genes with other sequenced *R. capsulatus*
275 phages outside of this cluster with 6 of these having known functions (Table 5). All
276 members of this cluster share the large terminase subunit and endolysin with all of the
277 RcD phages. Interestingly however they also share a gene of unknown function with
278 just one member of the RcD cluster, RcMcDreamy (gene 90). A set of three genes
279 encoding two minor tail proteins and a peptidase in these phages is one of the most
280 widely shared segments in this collection as it is found in all RcA and RcC phages along
281 with the singletons, RcSimone-Håstad and RcZahn, and RcGTA. The DNA primase of
282 RcapNL (gene 67) is also shared with all members of the RcA cluster and is the only
283 gene this phage shares with any others in this collection. Lastly, gene 12 of RcSimone-
284 Håstad with no known function is shared by all members of this cluster (gene 22).

285 **Table 5 Genes shared among *R. capsulatus* phages**

Cross-Cluster Shared Genes	Function
All RcC (RcOceanus 20), RcSimone-Håstad 5, RcZahn 33, RcGTA 18	GTA TIM-barrel-like domain protein
All RcB (RcHartney 17), RcSimone-Håstad 77	tail tube protein
All RcA (RcCronus 2), All RcD (RcPescado 24)	terminase large subunit
All RcB (RcHartney 7), RcSimone-Håstad 68	terminase, large subunit
Both RcF (RcTiptonus 33), RcZahn 19	major capsid protein
All RcB (RcHartney 16), RcSimone-Håstad 76	minor tail protein
All RcB (RcHartney 20), RcSimone-Håstad 80	minor tail protein
All RcA (RcCronus 14), All RcC (RcOceanus 17), RcSimone-Håstad 2, RcZahn 30, RcGTA 15	minor tail protein
All RcA (RcCronus 16), All RcC (RcOceanus 18), RcSimone-Håstad 3, RcZahn 31, RcGTA 16	minor tail protein
All RcA (RcCronus 17), All RcC (RcOceanus 19), RcSimone-Håstad 4, RcZahn 32, RcGTA 17	peptidase
Both RcF (RcTiptonus 31), RcZahn 17	capsid maturation protease
All RcA (RcCronus 3), All RcD (RcPescado 46)	endolysin
All RcA (RcCronus 42), RcapNL 67	DNA primase
Both RcF (RcTiptonus 70), RcZahn 15	DNA polymerase
All RcB (RcHartney 28), All RcD (RcPescado 8)	DNA polymerase
All RcE (RcWaterboi 19), Both RcF (RcTiptonus 14)	DNA binding, HU-like domain
All RcD (RcPescado 16), RcSimone-Håstad 15	ribonucleotide reductase
All RcC (RcOceanus 55), RC1 25	methylase
All RcD (RcPescado 53), RcZahn 95	ThyX-like thymidylate synthase
All RcD except McDreamy (RcPescado 55), RcZahn 101	ADP ribosyltransferase
All RcD (RcPescado 87), RcZahn 71	AAA-ATPase
All RcC except RcOceanus (RcKemmy 35), RcSpartan 45, RcTitan 46	nkf
All RcA (RcCronus 27), RcMcDreamy 90	nkf
All RcB (RcHartney 24), All RcD (RcPescado 41)	nkf
RcSalem 86, RcZahn 102	nkf
RcTitan 45, RcMrWorf 89, RcGingersnap 89, RcRios 89	nkf
All RcC (RcOceanus 45), RcMcDreamy 89	nkf
RcDurkin 96, RcZahn 110	nkf
All RcA (RcCronus 22), RcSimone-Håstad 12	nkf
All RcD (RcPescado 10), RcZahn 37	nkf
All RcD (RcPescado 11), RcZahn 38	nkf
All RcD (RcPescado 12), RcZahn 39	nkf
All RcD (RcPescado 13), RcZahn 40	nkf

All RcD (RcPescado 14), RcZahn 41

nkf

286

287

288

289 A recently published genome of a phage isolated off the coast of China that infects *D.*
290 *shibae*, vB_DshS-R4C (GenBank accession MK882925.1), was reported to have
291 substantial similarities to the genomes of the RcA cluster phages (34). This same phage
292 also was found to have the most similar major capsid and large terminase proteins
293 through BLASTP searches with these sequences (Table 4). In this paper they propose
294 that vB_DshS-R4C should be placed in the *Cronusvirus* genus. Fifteen of the 49
295 predicted genes of vB_DshS-R4C are shared with the RcA phages along with complete
296 conservation of gene order. It was also noted that vB_DshS-R4C has an identified
297 integrase whereas none of the members of the RcA cluster do. Despite the similarities of
298 these phages to vB_DshS-R4C, RcA phages were found to be the most limited in their
299 plaquing abilities and were only capable of forming plaques on the isolation strain,
300 YW1, and none of the others examined including *D. shibae* (Table 2).

301

302 **RcB cluster**

303 The four members of the RcB cluster, RcTitan, RcSpartan, RcThunderbird, and
304 RcHartney, were isolated from a number of locations in Illinois and from Vancouver,
305 Canada. RcTitan, RcSpartan, and RcThunderbird were each isolated from independent
306 water samples taken from a stream near a water treatment plant or water directly from
307 a water treatment plant. RcTitan and RcSpartan samples were obtained in Bloomington
308 IL while RcThunderbird was from a wastewater treatment plant in Canada. RcHartney,
309 however, came from an Illinois River location not immediately associated with a water
310 treatment plant. The plaques formed by these phages on the isolation host YW1 are
311 notably clear with well-defined borders and bioinformatic information is consistent
312 with them being virulent phages. When examined on alternative hosts, they were found
313 to produce similarly robust plaques on the St. Louis and B10 strains with somewhat
314 cloudier plaques on YW2 and B6. They were unable to form plaques on 37B4, Iona, *R.*
315 *pomeroyi*, or *D. shibae* (Table 2).

316
317 A representative transmission electron micrograph of these phages demonstrates they
318 are noncontractile tailed phages with an average tail length of 150.2 nm and icosahedral
319 heads with an average diameter of 61.0 nm (Fig. 1, Table 1). Two of these phage
320 genomes were described in a genome announcement and led to creation of the genus
321 *Titanvirus* with RcTitan serving as the type phage (29).

322

323 RcB phage genomes are circularly permuted and use a headful packaging mechanism.

324 The mean GC content is 54.9% and the mean genome length is 44,040 bp with a 986 bp

325 difference between the largest (RcTitan) and smallest (RcHartney) of these genomes.

326 RcHartney has 60 predicted genes while each of the other three have 61. All members of

327 this cluster share a core set of 51 genes with 10 out of the total of 72 genes in this cluster

328 being orphans. These genomes share strong sequence identity through the first 32 kb

329 with identities ranging from 93% to 97% in this region and identical gene content and

330 order (Fig. 6). Two different genes are present as gene 36. Interestingly, one version of

331 gene 36 is shared by RcSpartan and RcHartney and has been annotated as a helix-turn-

332 helix DNA binding domain while the other longer version of gene 36 is shared between

333 RcTitan and RcThunderbird and is annotated as an endonuclease. As RcTitan and

334 RcSpartan were isolated from the same geographical location this suggests that the

335 version of gene 36 is not correlated with the geographical location of the water sample.

336 Further to the right in these genomes there is greater variation in the genes present and

337 the sequence.

338

339 **Fig. 6 Genome organizations of *R. capsulatus* RcB cluster phages.** See Fig. 5 for details.

340

341

342 Members of RcB share genes with RcSimone-Håstad, RcC, and RcD phages, with
343 conservation primarily at the amino acid level, not at the nucleotide level (Table 5). RcB
344 phage genes 7, 16, 17, and 20 (encoding the terminase large subunit, minor tail protein,
345 tail tube protein, and minor tail protein respectively) are shared with RcSimone-Håstad
346 (genes 68, 76, 77, and 80). Another gene with no known function is found in only two
347 members of the RcB cluster, RcTitan 45 and RcSpartan 46, and almost all of the RcC
348 phages (though not RcOceanus); represented by RcKemmy gene 35. RcB phage genes 24
349 and 28 (No known function and DNA polymerase respectively) are shared with all of
350 the RcD phages (RcPescado genes 41 and 8). Lastly, a gene with no known function in a
351 single member of this cluster, RcTitan gene 45, is shared by just three of the eight
352 members of the RcD cluster, RcMrWorf, RcGingersnap, and RcRios, - gene 89.

353 Outside of the *R. capsulatus* phages, the major capsid and large terminase
354 BLASTP analysis revealed RcB cluster phages share some similarity with *Pseudomonas*
355 *aeruginosa* phage vB_PaeS_C1 (accession number MG897800) and the *E. coli* phage
356 Halfdan (accession number MH362766) (Table 4). Both isolated from wastewater
357 environments.

358 **RcC cluster**

359 Members of the RcC cluster have all been isolated from water samples in Illinois. The 6
360 members, RcOceanus, RcDormio, RcBaka, RcFrancesLouise, RcHotpocket, and
361 RcKemmy, were isolated over a span of four years, with RcOceanus isolated first in
362 2013 and RcKemmy isolated most recently, in 2018. Plaques formed by members of this
363 cluster are generally turbid. All members except RcOceanus are able to form plaques on
364 YW1 (the isolation host) and B10 with barely discernable plaques on St. Louis and no
365 plaques seen with the other potential hosts tested. RcOceanus only forms plaques on
366 YW1 (Table 2).

367

368 A representative transmission electron micrograph of these phages reveals they are
369 *Siphoviridae* with average tail lengths of 115.8 nm and icosahedral heads with an average
370 diameter of 66.2 nm (Fig. 1, Table 1).

371

372 The genomes of RcC phages have defined ends with 11 base pair 5'overhangs
373 suggesting a cohesive end packaging strategy. Mean GC content is 64.1% while mean
374 gene content is 67 and mean genome length is 41,023 bp. All members share a core set
375 of 53 genes with just 4 of the 76 genes in this cluster being orphans. The mean gene
376 number and genome length are skewed by the RcOceanus genome being much smaller
377 than the rest (Table 3). RcOceanus has twelve fewer genes and is 3,736 bp smaller than
378 the next smallest genome (RcKemmy) as seen in the alignment of RcC cluster phages

379 (Fig. 7). This is of particular interest given the difference in host range observed for
380 RcOceanus.

381

382 **Fig. 7 Genome organizations of *R. capsulatus* RcC cluster phages.** See Fig. 5 for
383 details. Areas where red lines appear between genome maps indicate the presence of
384 repeat sequences.

385

386 The organization of genes is typical of most tailed phages with those for structural
387 proteins to the left end. Members of this cluster appear to have a fused major capsid
388 and protease. There is also evidence for a holin/endolysin cassette just to the right of the
389 tail protein genes. A small open reading frame between the holin and endolysin could
390 be either another holin or an antiholin but was left unlabeled in the absence of
391 experimental evidence. The right ends of these genomes contain a number of genes
392 encoding proteins with predicted DNA binding domains as well as proteins that are
393 involved in nucleotide metabolism such as a ribonucleotide reductase and a nuclease.

394

395 As noted above, the RcC phages share a set of adjacent genes associated with tail
396 components with the RcA phages, two singletons and RcGTA as well as the
397 conservation of a gene between two members of the RcB cluster and most of the RcC

398 phages (gene 35 in RcKemmy). Another interesting relationship is a gene with an
399 unknown function present in all RcC phages (RcOceanus gene 45) that is present in a
400 single representative of the RcD cluster, RcMcDreamy (gene 89). Additionally, two
401 genes that are conserved in all RcC phages (RcOceanus 55 and 20) are shared with RC1
402 (gene 25, a DNA methylase) and RcSimone-Håstad 5, RcZahn 33, and RcGTA 17
403 encoding a GTA TIM barrel-like domain tail protein.

404 BLASTP analysis of the major capsid and larger terminase protein sequences found no
405 close matches to any isolated phages with the top 100 closest hits being found only in
406 sequenced bacterial genomes.

407

408 **RcD cluster**

409 The RcD cluster has the greatest number of isolated phages in our sequenced collection.
410 The eight phages were collected starting in 2016. These phages produce cloudy plaques
411 and apparent lysogens can be isolated that are resistant to superinfection and produce
412 infectious particles when the cells are grown to stationary phase. Members of this
413 cluster have a relatively broad ability to form plaques on YW1, YW2, B6, B10, and St.
414 Louis strains though the plaques formed on the latter four hosts tend to be much
415 cloudier than those on YW1. None of them can form plaques on 37B4, Iona, or the
416 marine hosts *D. shibae* and *R. pomeroyi* (Table 2).

417

418 The transmission electron micrograph of cluster RcD phage RcMcDreamy is consistent
419 with the others obtained in this cluster and demonstrates they are somewhat larger
420 noncontractile tailed phages with an average tail length of 204.4 nm and icosahedral
421 heads with an average diameter of 73.3 nm (Fig. 1, Table 1). The larger head size
422 observed is consistent with the larger genome size for these phages.

423

424 Genomes in the RcD cluster have a mean length of 68,058 bp, a mean GC content of
425 60.2%, and a mean gene content of 101 predicted genes (Table 1). 1,280 bp separate the
426 smallest genome in this cluster RcPescado (with 99 predicted genes) from the largest,
427 RcRios (with 103 predicted genes). The core genome for this group consists of 81 genes
428 with 14 out of 125 total genes being orphans. The genome ends have a 5' overhang of
429 12 bases. There is a significant amount of repeat sequence at the right end of the
430 genomes that also correlates with sequence and gene diversity (Fig. 8). The left ends of
431 the genomes are highly conserved but unlike most of the other sequenced *R. capsulatus*
432 phages there are several genes involved in replication (DNA primase, DNA
433 polymerase, DNA helicase), nucleotide metabolism (ribonucleotide reductase, nuclease)
434 and lysogeny (tyrosine integrase, excise, immunity repressor) on this end of the
435 genomes. These genes are most commonly on the right ends of the genomes. The
436 structural genes at the left end start at gene 23 in all members of the cluster, beginning

437 with the small terminase subunit and are in a very typical order, just shifted further into
438 the genome.

439

440 **Fig. 8 Genome organizations of *R. capsulatus* RcD cluster phages.** See Fig. 5 for
441 details.

442

443 Most shared genes present in the RcD cluster have already been described above with
444 the other clusters with the exception of genes shared with singletons RcSimone-Håstad
445 and RcZahn (Table 2). The ribonucleotide reductase found in RcSimone-Håstad (gene
446 15) is also found in all of the RcD phages (gene 16). RcZahn shares 9 genes with at least
447 one member of the RcD cluster. RcZahn genes 37- 41, 71, and 95 are present in all of the
448 RcD phages. Predicted functions are only available for genes 71 and 95; AAA ATPase
449 and ThyX respectively. The RcD homologs of RcZahn 37-41 are in the same order in
450 RcZahn and are in the highly conserved region on the left side of the genome (RcD
451 genes 10-14). Another gene encoding an ADP ribosyltransferase is present in RcZahn
452 (gene 101) and in 6 of the 8 RcD phages but is absent from RcMcDreamy and RcSalem.
453 The final shared gene is RcSalem gene 86 and RcZahn gene 102 which is not found in
454 any other sequenced *R. capsulatus* phage and has no known function.

455

456 The NCBI BLASTP best hits for the major capsid and large terminase protein sequences
457 for this cluster were with the *Ruegeria pomeroyi* phage vB_RpoS-V18 (GenBank accession
458 number NC_052970) and the *Loktanella* sp. CB2051 phage pCB2051-A (GenBank
459 accession number NC_020853) (Table 4). These isolation hosts are both marine
460 Rhodobacteraceae and these phages were both isolated from brackish or marine
461 environmental samples.

462

463 **RcE cluster**

464 There are two members of the RcE cluster, RcapMu and RcWaterboi. RcapMu is
465 integrated into the genome of B10 and was isolated by heat treatment to encourage
466 excision from the genome by Fogg et al. (15), though it has likely been present in the
467 genome of the original B10 strain since isolation in 1974 (15,35). We also isolated
468 RcapMu from B10 by growing it to late stationary phase and using filtrate to infect
469 YW1. RcWaterboi was isolated from a water sample in 2016 indicating that this type of
470 phage continues to circulate.

471

472 As the name RcapMu suggests, these phages share characteristics with *E. coli* phage Mu.
473 Mu type phages are often present as lysogens in the host bacterium but when induced
474 to excise, they use transposition throughout the genome as the mechanism for

475 replication. Both of the RcE cluster phages easily form lysogens and when cross-
476 infection experiments were attempted, the RcapMu lysogen was immune to
477 RcWaterboi, and the RcWaterboi lysogen was immune to RcapMu (data not shown).
478 Both phages formed plaques on YW1, YW2, and St. Louis strains of *R. capsulatus*.
479 Neither was able to form plaques on B6, B10, 37B4, or Iona (Table 2). The inability to
480 infect B10 was expected, since it contains an integrated RcapMu prophage. Neither of
481 these phages could form plaques on *D. shibae* or *R. pomeroyi*.

482

483 Sequenced DNA from RcWaterboi revealed the ends of the genome were heterogeneous
484 as expected for a phage that replicates by transposition. The sequence reported includes
485 only the sequence where the heterogeneity ceased. It aligns well with RcapMu as the
486 two phages share 90% ANI. The GC% for both is 64.8. The mean length is 38,792 bp, and
487 the mean gene number is 57. The two phages share 51 genes with 7 being unique to
488 RcapMu and 4 being unique to RcWaterboi.

489

490 The organization of the structural genes follow the order commonly observed in
491 members of the *Siphoviridae* but with terminase genes close to the center of the genome
492 (gene 30 in RcWaterboi and gene 32 in RcapMu; Fig.9). Genes to the left in these
493 genomes are involved in the transposition process, regulation of lysogeny, and lysis.
494 Another *R. capsulatus* phage, RC1, isolated in 2002 and sequenced by the Broad

495 Institute, shares 12 of its 56 genes with the RcE phages and is included in Fig. 9 to
496 emphasize the shared regions. Though the ANI is only 59% between RC1 and either of
497 the two RcE phages, there is significant amino acid sequence similarity with some of the
498 putative tail proteins and several other genes that are homologs. Additionally, the order
499 and placement of these genes along the genome is largely conserved. Overall enough
500 difference exists that RC1 is not considered a member of this cluster however. One of
501 the genes shared with RC1 is the only other gene in these phages that is shared with
502 members outside this cluster. This gene is shared with the RcF cluster (Table 5;
503 RcWaterboi gene 19) and has an HU-like domain suggesting it is involved with DNA
504 organization.

505

506 **Fig. 9 Genome organizations of *R. capsulatus* RcE cluster phages and RC1 phage.**

507 Genome maps of the RcE phages along with the singleton RC1 are shown. See Fig. 5 for
508 details.

509

510

511 While the *E. coli* Mu is a *Myoviridae* with a contractile tail, transmission electron
512 micrographs of RcapMu had previously shown that this phage has a flexible,
513 noncontractile tail, though the tails were readily lost during preparation for microscopy
514 (15). Our results with RcapMu were similar (data not shown), but the tails of

515 RcWaterboi were much more stable and easily visualized (Fig 1). In both cases, the tails
516 were flexible, noncontractile structures placing these phages in the *Siphoviridae*.

517
518 BLASTP searches of the major capsid and large terminase protein sequences revealed
519 the most similar major capsid protein was found in *Rhizobium radiobacter* phage RR1-B
520 (GenBank accession number NC_021557) and no similar phage protein match for the
521 large terminase subunit. RR1-B is described as a *Myoviridae* isolated from a sample of an
522 upwelling of deep-biosphere sediment in the open equatorial Pacific.

523
524
525 **RcF cluster**

526 The two members of this cluster, RcDurkin and RcTiptonus, were isolated from water
527 samples taken in Illinois. They produce notably small plaques on YW1, and are able to
528 also form plaques on YW2, B6, B10 and St. Louis strains of *R. capsulatus*, but not on the
529 37B4 or Iona strains or on *D. shibae* or *R. pomeroyi*. These phages have a typical structure
530 with an icosahedral capsid diameter average of 80.6 nm and flexible tail with an
531 average length of 297.2 nm (Fig 1, Table 1). There is no bioinformatic or laboratory
532 evidence for lysogeny, so the RcF phages appear to be virulent.

533

534 When genome sequencing of these phages was completed the nature of the ends were
535 initially difficult to determine. Phageterm (36) on the Galaxy cluster at the Pasteur
536 Institute (<https://galaxy.pasteur.fr>) deduced that these phages use a packaging strategy
537 similar to P1. This involves a defined start site with cleavage at a *pac* site and then
538 headful packaging with the downstream *pac* site modified by methylation to prevent
539 cleavage. The result is that the left end is well defined, but the right end is distributed
540 over a wide range, but duplicates sequence found at the left end. The genome sequences
541 reported includes the whole genome just once. GC content for both phages is 57.8% and
542 the mean gene content is 140 with a common core set of 133 genes with RcDurkin
543 having 6 orphans and RcTiptonus having 5. The mean genome length is 94,635 bp,
544 making this the cluster with the longest genomes (Table 3). 548 bp separate the larger
545 from the smaller genome.

546

547 The general organization of these genomes is similar to most members of the
548 *Siphoviridae* with the structural proteins on the left end and DNA replication and
549 metabolic genes to the right. The terminase is gene 25, and the canonical organization of
550 structural genes follows through the tape measure followed by presumptive tail
551 proteins (Fig. 10). As mentioned previously, gene 14 in these phages is a predicted HU
552 DNA binding protein shared with RcE and RC1 phages (Table 5). The only other genes
553 shared with a phage outside of the cluster are shared with the singleton RcZahn. The

554 arrangement of genes 31 and 33 in the RcF phages is similar to genes 17 and 19 in
555 RcZahn and encode the capsid maturation protease and major capsid respectively. Gene
556 70 in the RcF phages is similar to gene 15 in RcZahn and predicted to encode a DNA
557 polymerase. Lastly, RcDurkin gene 96 (no known function) shares homology with
558 RcZahn gene 110 but this gene is not present in RcTiptonus.

559

560 **Fig. 10 Genome organizations of *R. capsulatus* RcF cluster phages.** See Fig. 5 for
561 details.

562

563 **Singletons**

564 **RcSimone-Håstad**

565 This phage was isolated from a water sample collected from a stream in the Swedish
566 village of Håstad using the host strain SB1003 (a derivative of B10). Its structure is
567 different from all of the others reported here, as it has a slightly prolate head. Average
568 tail length is 184.2 nm with a head width of 54.1 nm and length of 76.7 nm (Fig. 1, Table
569 1). Along with infecting its isolation host strain and B10 it was also found to infect YW1
570 and form plaques on *St. Louis*, but was unable to form plaques with YW2, B6, 37B4,
571 Iona, *D. shibae*, and *R. pomeroyi*.

572

573 Sequencing of RcSimone-Håstad revealed a genome of 63,102 bp and 60.75 % GC with a
574 77 bp terminal repeat (Table 1). It is predicted to have 80 genes with genome ends in the
575 middle of the structural gene region; the left end starts with the tape measure gene and
576 is followed by several tail protein genes while the right end contains the terminase to
577 tail assembly chaperone region of the structural genes (Fig. 11). As noted above,
578 RcSimone-Håstad shares genes with several phages in other clusters, with the greatest
579 number of genes shared with the RcB cluster (Table 5). There is no evidence for any
580 genes associated with lysogeny and no lysogens were isolated when attempted so this
581 phage appears to be virulent.

582

583 **Fig. 11 Genome organization of *R. capsulatus* phage RcSimone-Håstad.** See Fig. 5 for
584 details.

585

586

587 BLASTP analysis of the RcSimone-Håstad major capsid and large terminase subunit proteins
588 yielded best hit matches with two *Pseudomonas aeruginosa* phages, YuA (GenBank accession
589 number AM749441) and PaMx28 (GenBank accession number JQ067089) (Table 4). Both of these

590 share the somewhat unique slightly prolate capsid morphology seen with RcSimone-Håstad
591 (37,38).

592

593 **RcZahn**

594 RcZahn was isolated from a water sample collected in Illinois, USA in 2018. This phage
595 has a typical structure with a tail length of 296.9 nm and a head diameter of 87.1 nm
596 (Figure 1, Table 1). Notably this capsid diameter is the largest of any of the phages
597 described here and the tail length is just below those of the RcF phages. While its ability
598 to form plaques on the examined *R. capsulatus* strains is limited to just YW1, B6, and
599 37B4 it is the only phage in this collection capable of forming plaques on 37B4 or *D.*
600 *shibae*. It was not able to be further cultivated on either of these strains though and
601 plaque formation was observed only with relatively high phage concentrations (Table
602 2). Despite the fact that it can form plaques on *D. shibae*, it was unable to form plaques
603 on the other marine host examined, *R. pomeroyi*. No genomic or phenotypic evidence
604 exists for the formation of lysogens by this phage so it appears to be virulent.

605 The genome of RcZahn is the largest of any *R. capsulatus* phages reported here at
606 101,599 bp. The % GC is 60.7 (Table 3) and it is predicted to contain 147 genes, all of
607 which would be transcribed in the same direction (Fig. 12). The sequence data suggest a
608 circularly permuted genome with headful packaging. The general order of structural

609 genes placed on the left is consistent with most tailed phages, but is interrupted with
610 numerous genes associated with DNA metabolism and genes without a predicted
611 function between the terminase and portal genes (Fig. 12). Unlike most of the phages
612 described here, there is no clear evidence for sequences associated with the
613 programmed translational frameshift usually found in the tail assembly chaperone
614 genes. As noted above, RcZahn shares some genes with several other phages in this
615 collection, with the greatest number shared with the RcD cluster (Table 5).

616

617 **Fig. 12 Genome organization of *R. capsulatus* phage RcZahn.** See Fig. 5 for details.

618

619 BLASTP searches with the RcZahn major capsid and large terminase subunit protein
620 sequences yielded best hits with the *Rhizobium* sp. R693 phage RHph_TM16 (GenBank
621 accession number MN988459) and *Stenotrophomonas maltophilia* phage vB_SmaS_DLP_3
622 (GenBank accession number MT110073) (Table 4). These two phages have similarly
623 sized genomes as RcZahn and originated from soil samples.

624

625 **Phage collection's relationship to RcGTA:**

626 As noted in several instances above, the RcGTA structural gene region shares a set of
627 three to four genes with high amino acid sequence similarity to those of many of the
628 phages in this collection (RcA and RcC phages and the singletons, RcSimone-Håstad
629 and RcZahn, Fig. 13). Nucleotide sequence conservation in these regions is quite low.
630 These genes are annotated as the minor and major tail proteins, the cell wall hydrolase,
631 and a “GTA TIM-barrel-like domain” which is associated with RcGTA tail proteins (18).
632 A recent paper has renamed the minor tail protein as the distal tail protein, the second
633 tail protein as the hub protein, the cell wall hydrolase as a peptidase and the GTA TIM-
634 barrel like domain protein as megatron (18). It is also notable that none of the other
635 genes found in this region (RcGTA 1-13) have been found to have close homologs with
636 any of the other genes in this collection.

637

638 In addition to the 14,087 bp region encoding RcGTA structural proteins, several other
639 genes elsewhere in the *R. capsulatus* SB1003 genome have been shown to be involved
640 with RcGTA production (39). These four regions designated by their locus identifiers as
641 rcc00171 (encoding tail fibers), rcc00555 and rcc00556 (endolysin and holin
642 respectively), rcc01079 and rcc01080 (GhsA and GhsB head spikes/fibers), and rcc01865
643 (GafA transcriptional regulator of RcGTA) and rcc01866 (unclear function, possibly
644 capsid maturation) were also used as queries in this database. Of these only rcc01080,
645 has substantial similarity to genes found in these newly isolated phages (18,40). This

646 gene is found in the RcE phages RcWaterboi and RcapMu. This match with RcapMu as
647 well as a match between rcc01079 and RcapNL have previously been reported (40).

648

649 **Fig. 13 Genes Shared with RcGTA.** Genes shared between RcGTA, RcZahn, RcSimone-
650 Håstad, and members of the RcA and RcC clusters are indicated by shared color. The
651 locations of several of these proteins within the tail region of RcGTA particles have
652 recently been identified (18).

653

654

655 **Discussion**

656 This work represents the first major survey of environmentally-isolated phages of *R.*
657 *capsulatus* in more than 45 years. The lack of more recent reports may relate to the
658 challenges of using morphology and host range as the primary means of classifying
659 phage relationships as used in the report from 1975 describing 95 phages and 16
660 potential clusters (14). The advent of relatively inexpensive sequencing of phage
661 genomes has dramatically altered the ability to look at phage relationships. The
662 sequencing of phage genomes combined with the integration of phage discovery into

663 our biology course (RMA, DWB) led to development of a collection of sequenced *R.*

664 *capsulatus* phages described here.

665 With this collection of 26 newly isolated phages we have used genomic sequence and

666 protein conservation to identify six distinct clusters and four additional singletons that

667 likely represent a small proportion of the overall diversity of phages that infect this

668 host. Studies with gene transfer agents have demonstrated that lateral gene transfer

669 events are possible via these agents and that these events may have effects on bacterial

670 adaptation and evolution (41,42). Since phages can also transfer host DNA,

671 understanding the genomic diversity of *R. capsulatus* phages could provide insight into

672 the readily accessible genetic material for incorporation into the bacterium.

673 We constructed a database that includes the RcGTA structural gene cluster, the

674 genomes of previously sequenced *R. capsulatus* phages, and the 26 new phage isolates

675 that has 1,563,838 bp of DNA sequence encoding 2,350 predicted genes that can be

676 grouped into 833 phams with 367 orphans. While all of these isolates possess a

677 *Siphoviridae* morphology, each grouping has distinct characteristics that clearly

678 delineates it from the others. These features include particle morphology, plaque

679 morphology and host range, but most importantly genomic characteristics. All of the

680 clusters and singletons share genes with at least one other phage type and most

681 commonly with several other types – a pattern commonly seen with studies of phages.

682 Additionally, some of the most widely shared genes in this collection are shared with

683 RcGTA, consistent with it having originated from a phage. It is notable however, that
684 the majority of genes known to be involved with RcGTA do not appear to be closely
685 related to homologs in this collection. The genes that are shared between RcGTA and
686 some of the newly isolated phages are clearly linked to host infection: distal tail protein
687 (gene 14), hub (gene 15), peptidase (gene 16), and megatron (gene 17) are proteins that
688 are involved with the interface between phage and host with the distal tail protein
689 proposed to be involved in recognition, the hub protein having domains for
690 carbohydrate binding and megatron having a domain involved in penetration. Since
691 RcGTA delivers phage DNA to the periplasmic space (43) this may suggest a similar
692 infection route for phages with the megatron gene (formerly described as a GTA TIM
693 barrel domain protein).

694 The lack of shared genes between RcGTA and the phage collection could simply be due
695 to the limited nature of this collection, or it could be due to the fact that the host used
696 for the majority of the isolations for this study, *R. capsulatus* strain YW1, cannot be
697 transduced by RcGTA and thus related phages that utilize similar mechanisms of
698 infection may be selected against.

699 The metabolic flexibility of *R. capsulatus* has been studied extensively and led to an
700 increased understanding of photosynthesis and gene regulation in response to
701 environmental factors such as light and oxygen presence. Characterization of RcGTA
702 led to the use of this agent for genetic manipulation of the host. The work presented

703 here is an initial description of the genomic diversity of phages that infect *R. capsulatus*.
704 In addition, there is suggestive evidence that phages that infect members of the
705 Rhodobacteraceae may readily move between different host species, including between
706 marine and freshwater environments. Continuing to investigate the breadth of diversity
707 within the phages of *R. capsulatus* will illuminate the reservoir of genes available to
708 members of this family of bacteria.

709

710 Materials and Methods

711 Growth and Isolation

712 The majority of the newly isolated phages described here were isolated by students in
713 the Illinois Wesleyan University Science Education Alliance-Phage Hunters Advancing
714 Genomics and Evolutionary Science (SEA-PHAGES) course using the curriculum and
715 protocols developed for this program and adapting them for use with *R. capsulatus* (44).
716 Phages were isolated by direct plating or enrichment on the *R. capsulatus* hosts YW1 C6,
717 a tetracycline-resistant derivative of strain YW1, and SB1003 (35,45). Cells were grown
718 under aerobic conditions at 30°C in YP (0.3 % yeast extract and 0.3 % peptone), YPS (YP
719 supplemented with 2 mM CaCl₂ and 2 mM MgSO₄), or PYCa (0.1% yeast extract, 1.5%
720 peptone, 0.5% CaCl₂, 0.1% glucose). Phages were plated on solidified versions of these

721 media in a 0.4% top agar overlay and purified by three rounds of single-plaque
722 replating after initial plaque identification. They were then amplified by confluent
723 plating on bacterial lawns for increasing titer which was then used for TEM, DNA
724 isolation, and additional experimentation such as lysogen testing and host range
725 determination.

726

727 **Lysogen testing**

728 The ability of phages to enter into a lysogenic cycle was examined through use of a
729 large spot plate assay. Briefly, a 100 μ l aliquot of a high titer lysate was placed onto the
730 surface of a YP, YPS, or PYCa petri dish overlaid with solidified 0.4% top agar with *R.*
731 *capsulatus* cells. This plate was then incubated for one week at 30°C. A sample of the
732 resulting plaque was then taken using an inoculating loop and was streaked for
733 isolation onto a fresh plate. After several days of incubation, when bacterial colonies
734 had grown to a reasonable size for further cultivation, the resulting colonies were again
735 streaked for isolation. From these plates individual colonies were chosen to start liquid
736 cultures that were incubated for several days until sufficiently grown for use as the
737 inoculum for a spot plate assay. Typically, this was three days but could sometimes be
738 longer for slower growing cultures. These cultures were then challenged in a spot plate
739 assay with 10ul of the original phage lysate to check its susceptibility to infection. For

740 any isolates that did not support plaque formation, a 1ml sample was centrifuged in a
741 microcentrifuge to pellet the cells and the resulting supernatant was then assayed for
742 the presence of phage on plates containing solidified top agar containing *R. capsulatus*
743 cells naïve to the challenging phage. Isolates that were unable to support cultivation of
744 their challenging phage and exhibited phage release were considered presumptive
745 positives for lysogens and the phages they harbored were considered to be temperate.

746 **Host Range Determination**

747 To examine the ability of newly isolated phages to form plaques on alternative hosts
748 seven different strains of *R. capsulatus*, YW1 (35), YW2 (35), B6 (27), B10 (35), St. Louis
749 (35), 37B4 (46), and Iona (a isolate of the Beatty lab), and two marine Rhodobacteraceae,
750 *D. shibae* DFL12 and *R. pomeroyi* DSS3 were used as potential hosts in spot assays with
751 high titer ($>10^7$ pfu/ml) lysates. Briefly, 10 μ l aliquots of these high titer lysates were
752 spotted onto plates with cells of these strains embedded in solidified top agar (0.4%
753 agar in YPS). Plates were incubated for three days at 30°C and were then scored for the
754 formation of plaques.

755 **Sequencing and annotation**

756 DNA was extracted from concentrated phage samples using a modified protocol with
757 the Wizard DNA Clean-Up Kit (Product #A7280; Promega, Madison, WI). Briefly,

758 RNaseA and DNase I was added to 1.4 ml of phage sample and incubated at 37°C for 10
759 min. This mixture was then added to 2ml of DNA clean-up resin, mixed well, and then
760 split between two clean-up columns. Three 2 ml washes of 80% isopropanol were
761 applied to these columns which were then centrifuged to remove any remaining wash
762 solution. Genomic DNA was then eluted from the columns with two applications of 50
763 µl of water at 90°C and centrifugation at 10,000 x g for 1 minute.

764

765 Sequencing was performed by ATGC inc., Wheeling, IL, The Sequencing Center, Fort
766 Collins, CO, North Carolina State University, and the University of Pittsburgh.

767 Sequences were determined by Illumina and assembled using Newbler and Consed.

768 Genomes were annotated using DNAMaster (cobamide2.pitt.edu) and PECAAN
769 (discover.kbrinsgd.org) with analysis by Glimmer, Genemark, BLAST, tRNAscan-SE,
770 Aragorn, and HHpred informing decisions about gene location and function prediction
771 during annotation.

772 All of the genomes listed in Table 3 were analyzed using the Phamerator software
773 package which uses an alignment-free algorithm, kClust, to group predicted gene
774 products into “phamilies” based on related amino acid sequence and allows for
775 comparison of genomes in terms of in-common gene presence and organization (31,47).

776 **Genome comparisons**

777 PhamDB (48) was used to create a database with 30 entries (29 phage genomes and the
778 ~14 kb RcGTA segment). Phamerator (31) was used to identify similar predicted genes
779 in the genomes and create images of aligned genomes using database
780 Rhodobacter_capulatus at <https://phamerator.org/>. Formatting of these images was
781 performed in Inkscape.
782 Gene content networks were created using Splitstree (26) based on pham membership
783 of genes in each genome as determined by Phamerator. Analysis of nucleotide
784 conservation to determine proposed evolutionary relationships was performed at the
785 VICTOR site (<https://ggdc.dsmz.de/victor.php>,)(33).

786 Electron microscopy

787 To negative stain the samples, 10 microliters of a high titer lysate sample were placed
788 on carbon and Formvar coated 300 mesh copper grids. After 5 minutes the sample was
789 wicked away with filter paper, so as to not disturb the attached sample, and replaced
790 with 10 microliters of an aqueous solution of 2% uranyl acetate. The uranyl acetate was
791 also wicked away so as to leave a thin film of the solution which was allowed to dry.

792

793 The dried grids were viewed with a JEOL company JEM 1010 TEM at 80 kV. Images
794 were acquired using a Gatan MegaScan 794 digital camera.

795

796 Capsid diameter and tail length measurements were made using ImageJ (49) and
797 reported values are the averages of measurements taken on at least three separate
798 images (with three different phage particles) and multiple cluster members when
799 possible.

800

801

802 **Acknowledgements**

803 We thank Veronique Delesalle for help with annotation review of our phage genomes,

804 members of the Dieter Jahn Laboratory in the Institute of Microbiology at the

805 Technische Universität Braunschweig especially Simone Virus for hosting DWB.

806 Students in the SEA-PHAGES courses at IWU as well as students in the molecular

807 biology course are thanked for their roles in phage isolation and initial annotation.

808 Members of these classes are indicated in the Supporting Information. We also thank

809 Dr. Barry Stein at the Electron Microscopy Center at the Indiana University

810 Bloomington campus for electron microscopy.

811

812 The research of JTB was supported by a grant (RGPIN 2018-03898) from the Canadian

813 Natural Sciences and Engineering Research Council (NSERC). The research of DWB

814 was supported by funds from the Illinois Wesleyan University Miner Linnaeus Sheriff
815 endowed professorship in Botany.

816

817 **Author Contributions**

818 **Conceptualization:** DWB, RMA

819 **Data curation:** DWB, RMA, SGC

820 **Formal analysis:** DWB, RMA, MD, JR, AW, BM, MB, MG, DAR, RAG

821 **Writing – original draft:** DWB

822 **Writing – review & editing:** DWB, RMA, AW, JTB, MH, MD, DAR, SGC

823

824 **References:**

825

- 826 1. Mushegian AR. Are There 1031 Virus Particles on Earth, or More, or Fewer? *J
827 Bacteriol.* 2020 Apr 9;202(9).
- 828 2. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary
829 relationships among diverse bacteriophages and prophages: all the world's a phage.
830 *Proc Natl Acad Sci U S A.* 1999 Mar 2;96(5):2192–7.
- 831 3. Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial
832 pathogens: from genomic rearrangements to lysogenic conversion. *Microbiol Mol
833 Biol Rev MMBR.* 2004 Sep;68(3):560–602, table of contents.
- 834 4. Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D,
835 Montgomery MT, et al. Bacteriophages of *Gordonia* spp. Display a Spectrum of
836 Diversity and Genetic Relationships. *mBio.* 2017 Aug 15;8(4).

837 5. Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P, Allen KG, et al. Tales of
838 diversity: Genomic and morphological characteristics of forty-six Arthrobacter
839 phages. *PloS One*. 2017;12(7):e0180517.

840 6. Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, et al. Genomic
841 diversity of bacteriophages infecting *Microbacterium* spp. *PloS One*.
842 2020;15(6):e0234636.

843 7. Bonilla JA, Isern S, Findley AM, Klyczek KK, Michael SF, Saha MS, et al. Genome
844 Sequences of 19 *Rhodococcus erythropolis* Cluster CA Phages. *Genome Announc*.
845 2017 Dec 7;5(49).

846 8. Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the
847 tailed phages that infect the bacterial family Enterobacteriaceae. *Virology*. 2014
848 Nov;468–470:421–43.

849 9. Grose JH, Jensen GL, Burnett SH, Breakwell DP. Genomic comparison of 93 *Bacillus*
850 phages reveals 12 clusters, 14 singletons and remarkable diversity. *BMC Genomics*.
851 2014 Oct 4;15:855.

852 10. Smith MCM, Hendrix RW, Dedrick R, Mitchell K, Ko C-C, Russell D, et al.
853 Evolutionary relationships among actinophages and a putative adaptation for
854 growth in *Streptomyces* spp. *J Bacteriol*. 2013 Nov;195(21):4924–35.

855 11. De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R. *Pseudomonas*
856 predators: understanding and exploiting phage-host interactions. *Nat Rev
857 Microbiol*. 2017 Sep;15(9):517–30.

858 12. Zhan Y, Chen F. Bacteriophages that infect marine roseobacters: genomics and
859 ecology. *Environ Microbiol*. 2019 Jun;21(6):1885–95.

860 13. Ash KT, Drake KM, Gibbs WS, Ely B. Genomic Diversity of Type B3 Bacteriophages
861 of *Caulobacter crescentus*. *Curr Microbiol*. 2017 Jul;74(7):779–86.

862 14. Wall JD, Weaver PF, Gest H. Gene transfer agents, bacteriophages, and bacteriocins
863 of *Rhodopseudomonas capsulata*. *Arch Microbiol*. 1975 Nov 7;105(3):217–24.

864 15. Fogg PCM, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly
865 discovered Mu-like bacteriophage, RcapMu, in *Rhodobacter capsulatus* strain
866 SB1003. *Virology*. 2011 Dec 20;421(2):211–21.

867 16. Hynes AP. The phages and phage-like elements of *Rhodobacter capsulatus*
868 [Internet] [doctoral]. Memorial University of Newfoundland; 2014 [cited 2021 Apr
869 7]. Available from: <https://research.library.mun.ca/6296/>

870 17. Lang AS, Westbye AB, Beatty JT. The Distribution, Evolution, and Roles of Gene
871 Transfer Agents in Prokaryotic Genetic Exchange. *Annu Rev Virol.* 2017 Sep
872 29;4(1):87–104.

873 18. Bárda P, Füzik T, Hrebík D, Pantůček R, Beatty JT, Plevka P. Structure and
874 mechanism of DNA delivery of a gene transfer agent. *Nat Commun.* 2020 Jun
875 15;11(1):3034.

876 19. Fogg PCM. Identification and characterization of a direct activator of a gene transfer
877 agent. *Nat Commun.* 2019 Feb 5;10(1):595.

878 20. Lang AS, Beatty JT. Genetic analysis of a bacterial genetic exchange element: the
879 gene transfer agent of *Rhodobacter capsulatus*. *Proc Natl Acad Sci U S A.* 2000 Jan
880 18;97(2):859–64.

881 21. Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS. DNA packaging bias and
882 differential expression of gene transfer agent genes within a population during
883 production and release of the *Rhodobacter capsulatus* gene transfer agent, RcGTA.
884 *Mol Microbiol.* 2012 Jul;85(2):314–25.

885 22. Schmidt LS, Yen HC, Gest H. Bioenergetic aspects of bacteriophage replication in
886 the photosynthetic bacterium *Rhodopseudomonas capsulata*. *Arch Biochem
887 Biophys.* 1974 Nov;165(1):229–39.

888 23. Engelhardt T, Sahlberg M, Cypionka H, Engelen B. Induction of prophages from
889 deep-subseafloor bacteria. *Environ Microbiol Rep.* 2011 Aug;3(4):459–65.

890 24. Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, et al. Complete genome
891 sequence of the photosynthetic purple nonsulfur bacterium *Rhodobacter capsulatus*
892 SB 1003. *J Bacteriol.* 2010 Jul;192(13):3545–6.

893 25. Ding H, Moksa MM, Hirst M, Beatty JT. Draft Genome Sequences of Six
894 *Rhodobacter capsulatus* Strains, YW1, YW2, B6, Y262, R121, and DE442. *Genome
895 Announc.* 2014 Feb 13;2(1).

896 26. Dress AWM, Huson DH. Constructing splits graphs. *IEEE/ACM Trans Comput Biol
897 Bioinform.* 2004 Sep;1(3):109–15.

898 27. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko C-C, et al.
899 Comparative genomic analysis of 60 Mycobacteriophage genomes: genome
900 clustering, gene acquisition, and gene size. *J Mol Biol.* 2010 Mar 19;397(1):119–43.

901 28. Delesalle VA, Kuhn JH, Kropinski AM, Adriaenssens EM, Bollivar DW. To create
902 one (1) new genus, *Cronusvirus*, including one (1) new species in the family
903 *Siphoviridae*. 2016 [cited 2021 Apr 7]; Available from:
904 <http://rgdoi.net/10.13140/RG.2.2.18285.38885>

905 29. Delesalle VA, Kuhn JH, Kropinski AM, Adriaenssens EM, Bollivar DW. To create
906 one (1) new genus, *Titanvirus*, including two (2) new species in the family
907 *Siphoviridae*. 2016 [cited 2021 Apr 7]; Available from:
908 <http://rgdoi.net/10.13140/RG.2.2.24996.27520>

909 30. Bollivar DW, Bernardoni B, Bockman MR, Miller BM, Russell DA, Delesalle VA, et
910 al. Complete Genome Sequences of Five Bacteriophages That Infect *Rhodobacter*
911 *capsulatus*. *Genome Announc.* 2016 May 26;4(3).

912 31. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. Phamerator:
913 a bioinformatic tool for comparative bacteriophage genomics. *BMC Bioinformatics.*
914 2011 Oct 12;12:395.

915 32. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome
916 prokaryotic phylogeny. *Bioinforma Oxf Engl.* 2005 May 15;21(10):2329–35.

917 33. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification
918 of prokaryotic viruses. *Bioinforma Oxf Engl.* 2017 Nov 1;33(21):3396–404.

919 34. Cai L, Ma R, Chen H, Yang Y, Jiao N, Zhang R. A newly isolated roseophage
920 represents a distinct member of *Siphoviridae* family. *Virol J.* 2019 Nov 6;16(1):128.

921 35. Weaver PF, Wall JD, Gest H. Characterization of *Rhodopseudomonas capsulata*.
922 *Arch Microbiol.* 1975;105(1):207–16.

923 36. Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M. PhageTerm: a tool for
924 fast and accurate determination of phage termini and packaging mechanism using
925 next-generation sequencing data. *Sci Rep.* 2017 Aug 15;7(1):8292.

926 37. Ceyssens P-J, Mesyanzhinov V, Sykilinda N, Briers Y, Roucourt B, Lavigne R, et al.
927 The genome and structural proteome of YuA, a new *Pseudomonas aeruginosa*
928 phage resembling M6. *J Bacteriol.* 2008 Feb;190(4):1429–35.

929 38. Flores V, Sepúlveda-Robles O, Cázares A, Kropinski AM, Adriaenssens EM, Kuhn
930 JH, et al. To create one (1) new genus, Pamx74virus, including two (2) new species
931 in the family Siphoviridae. 2016 [cited 2021 Jun 10]; Available from:
932 <http://rgdoi.net/10.13140/RG.2.2.35062.60482>

933 39. Hynes AP, Shakya M, Mercer RG, Grüll MP, Bown L, Davidson F, et al. Functional
934 and Evolutionary Characterization of a Gene Transfer Agent's Multilocus
935 "Genome." *Mol Biol Evol*. 2016 Oct;33(10):2530–43.

936 40. Westbye AB, Kuchinski K, Yip CK, Beatty JT. The Gene Transfer Agent RcGTA
937 Contains Head Spikes Needed for Binding to the *Rhodobacter capsulatus*
938 Polysaccharide Cell Capsule. *J Mol Biol*. 2016 Jan 29;428(2 Pt B):477–91.

939 41. Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life.
940 *Nat Rev Genet*. 2015 Aug;16(8):472–82.

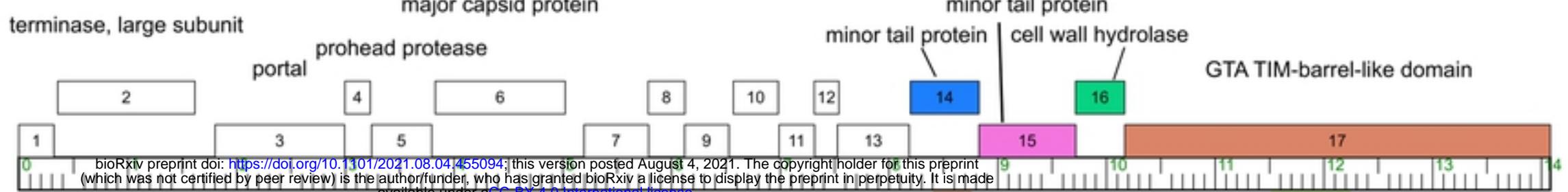
941 42. Shakya M, Soucy SM, Zhaxybayeva O. Insights into origin and evolution of α -
942 proteobacterial gene transfer agents. *Virus Evol*. 2017 Jul;3(2):vex036.

943 43. Brimacombe CA, Ding H, Johnson JA, Beatty JT. Homologues of Genetic
944 Transformation DNA Import Genes Are Required for *Rhodobacter capsulatus* Gene
945 Transfer Agent Recipient Capability Regulated by the Response Regulator CtrA. *J*
946 *Bacteriol*. 2015 Aug;197(16):2653–63.

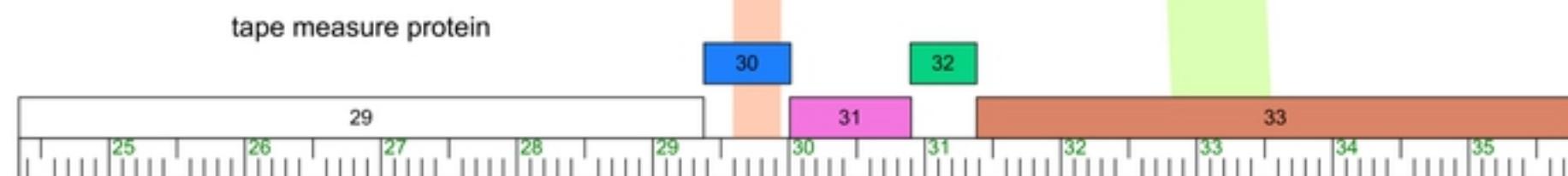
947 44. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, et al. A broadly
948 implementable research course in phage discovery and genomics for first-year
949 undergraduate students. *mBio*. 2014 Feb 4;5(1):e01051-01013.

950 45. Yen HC, Marrs B. Map of genes for carotenoid and bacteriochlorophyll biosynthesis
951 in *Rhodopseudomonas capsulata*. *J Bacteriol*. 1976 May;126(2):619–29.

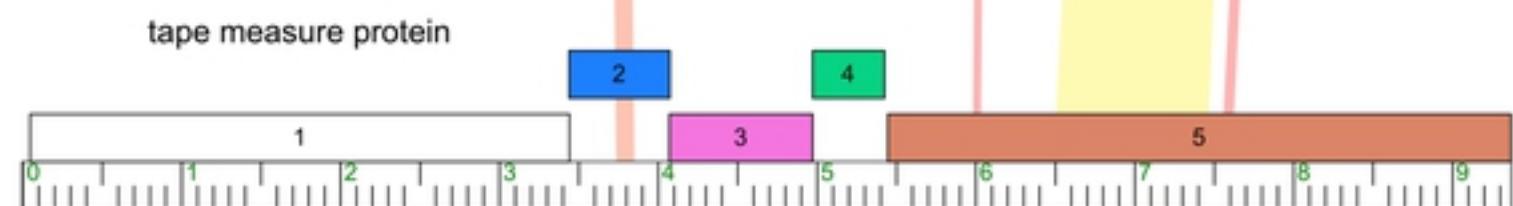
952 46. Biebl H, Drews G. [The in vivo spectrum as taxonomic characteristic in distribution
953 studies of Athiorhodaceae]. *Zentralblatt Bakteriol Parasitenkd Infekt Hyg Zweite*
954 *Naturwissenschaftliche Abt Allg Landwirtsch Tech Mikrobiol*. 1969;123(4):425–52.

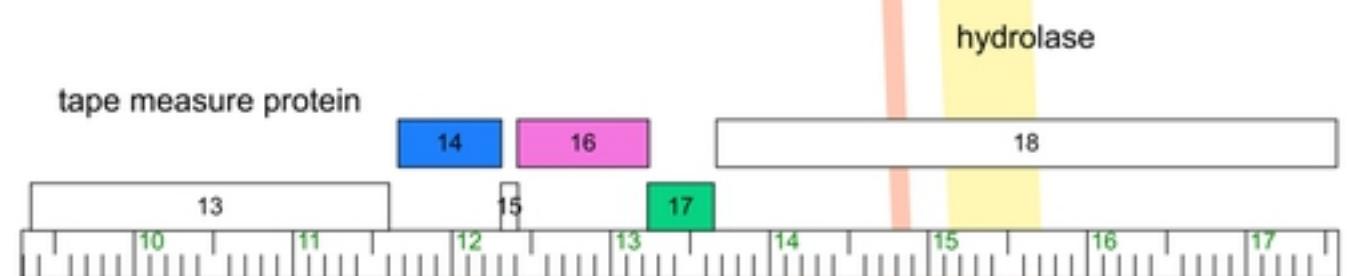

955 47. Hauser M, Mayer CE, Söding J. kClust: fast and sensitive clustering of large protein
956 sequence databases. *BMC Bioinformatics*. 2013 Aug 15;14:248.

957 48. Lamine JG, DeJong RJ, Nelesen SM. PhamDB: a web-based application for building
958 Phamerator databases. *Bioinforma Oxf Engl*. 2016 Jul 1;32(13):2026–8.


959 49. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image
960 analysis. *Nat Methods*. 2012 Jul;9(7):671–5.

961


RcGTA


RcZahn (Singleton)

RcSimone-Håstad (Singleton)

RcCronus (RcA)

RcDormio (RcC)

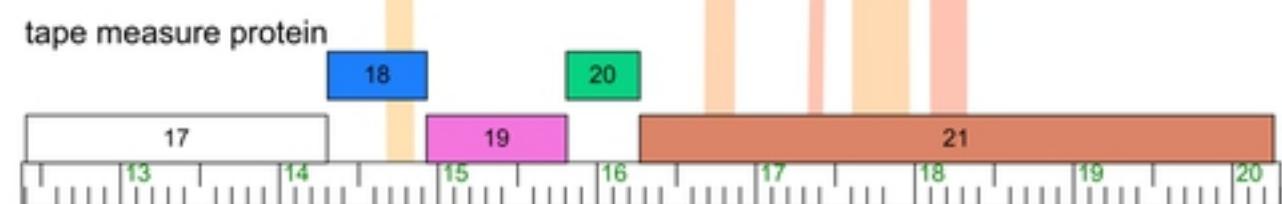


Figure 13

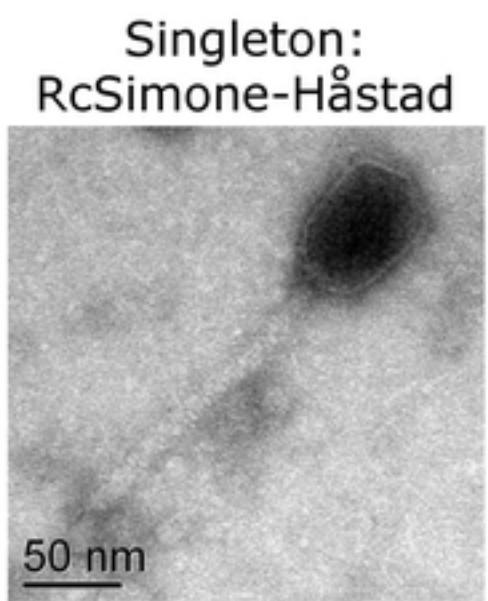
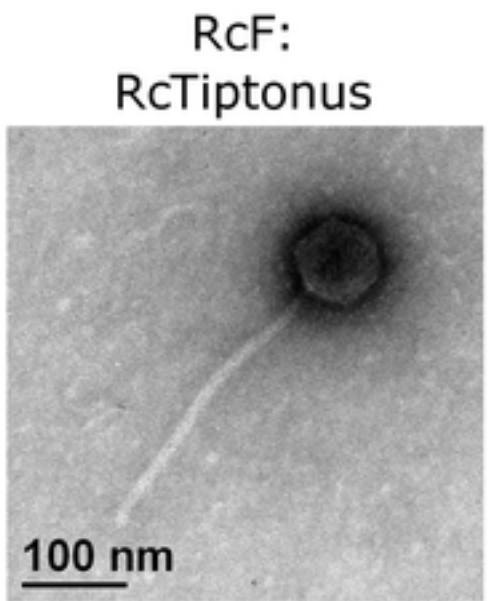
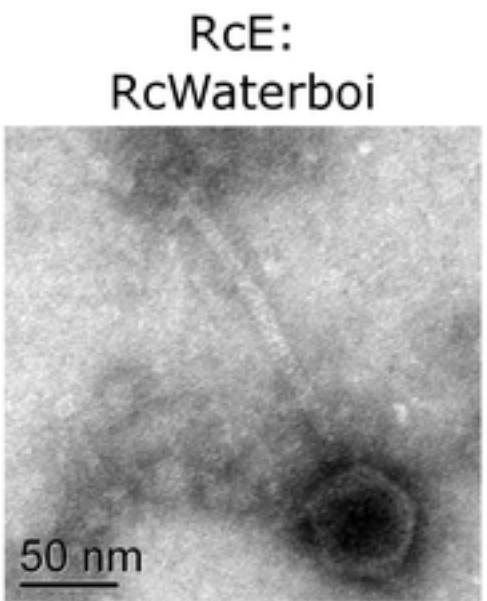
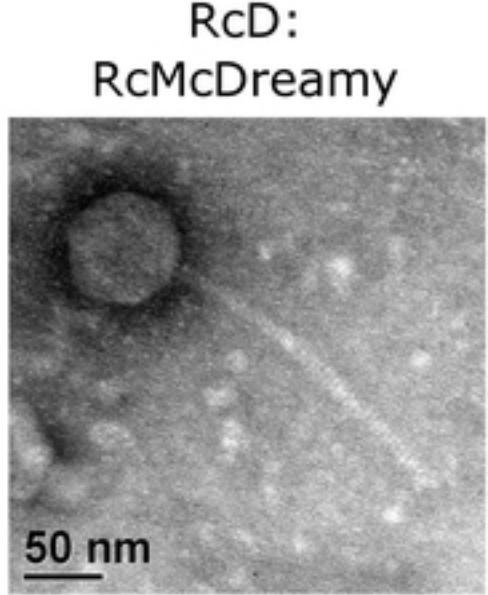
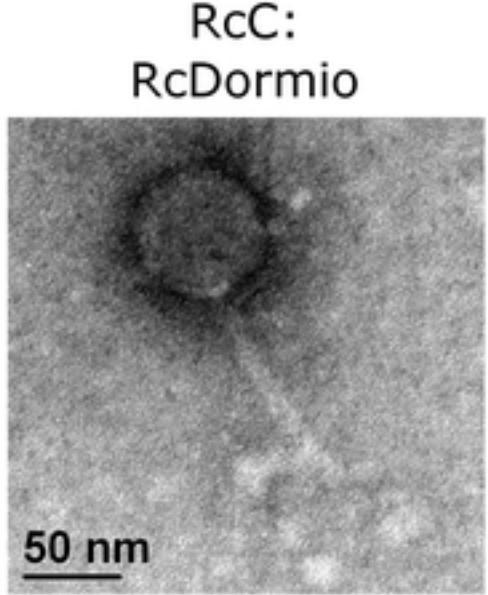
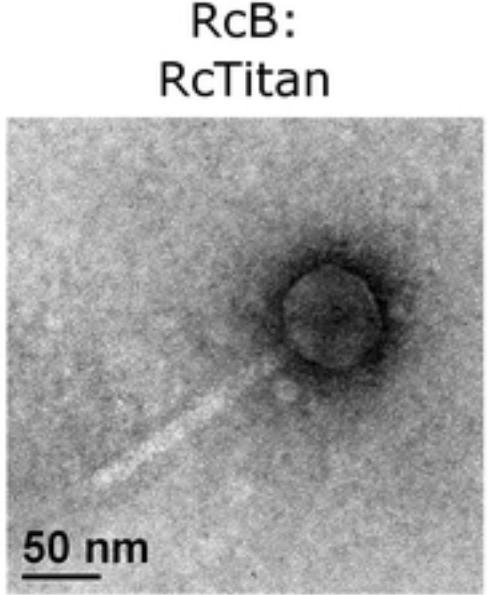
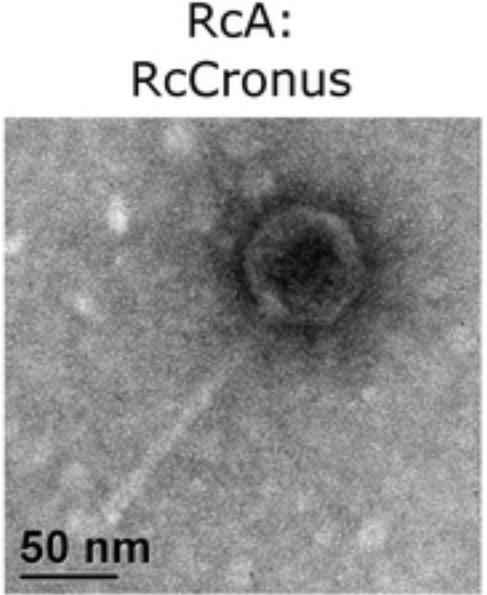








Figure 1

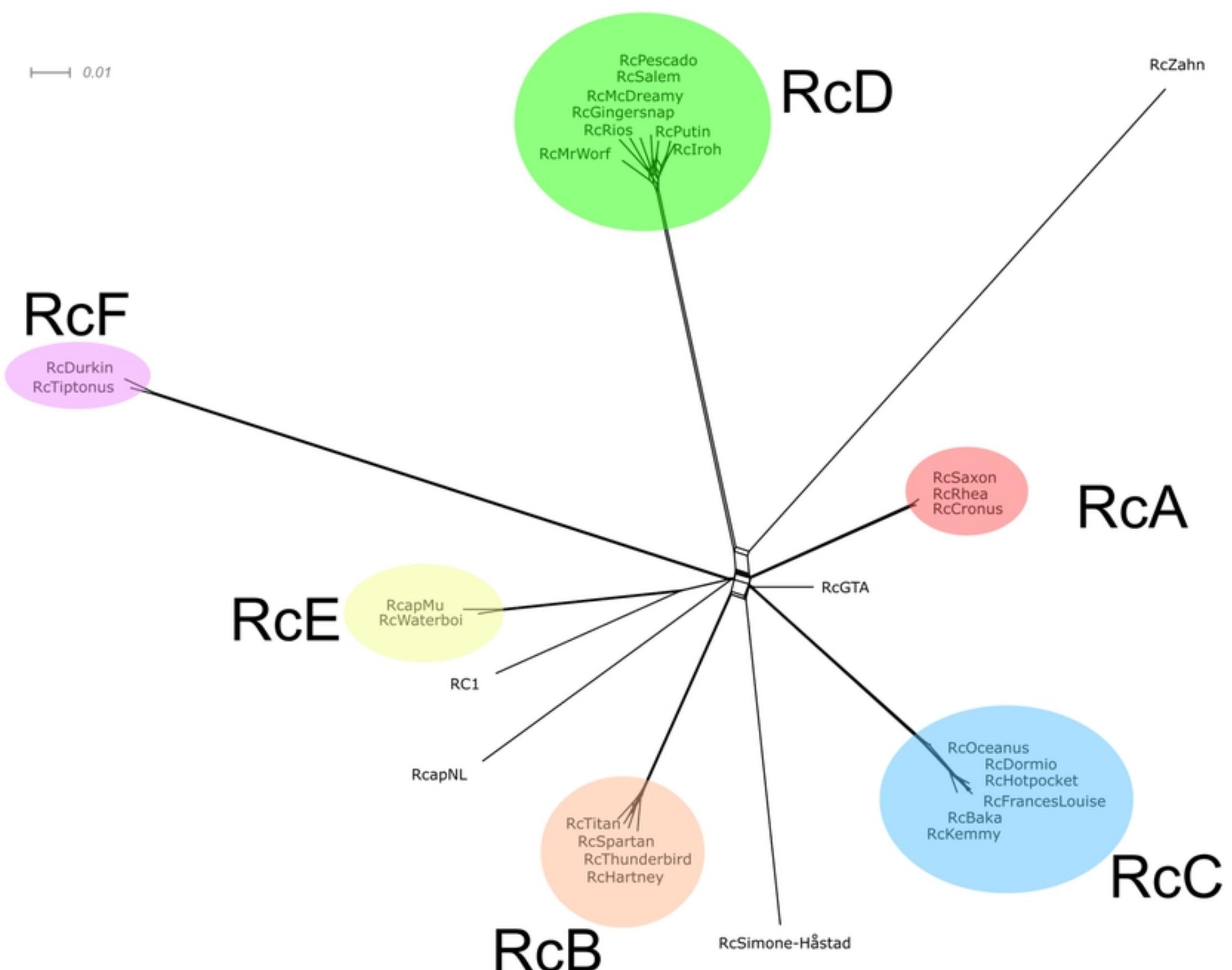


Figure 2

RcA RcB RcC

RcD

RcE RcF Singletons

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.04.455094>; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

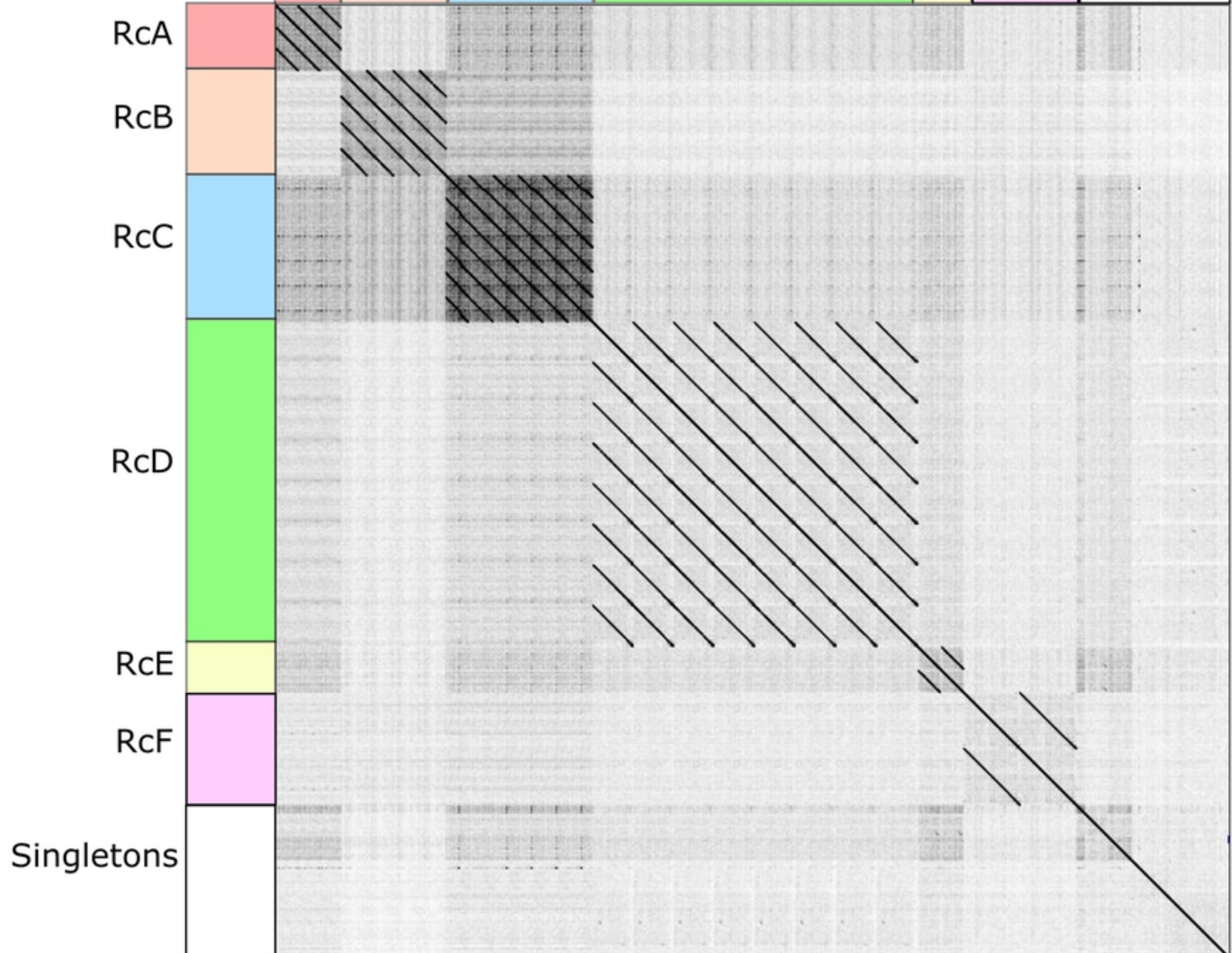


Figure 3

Figure 4

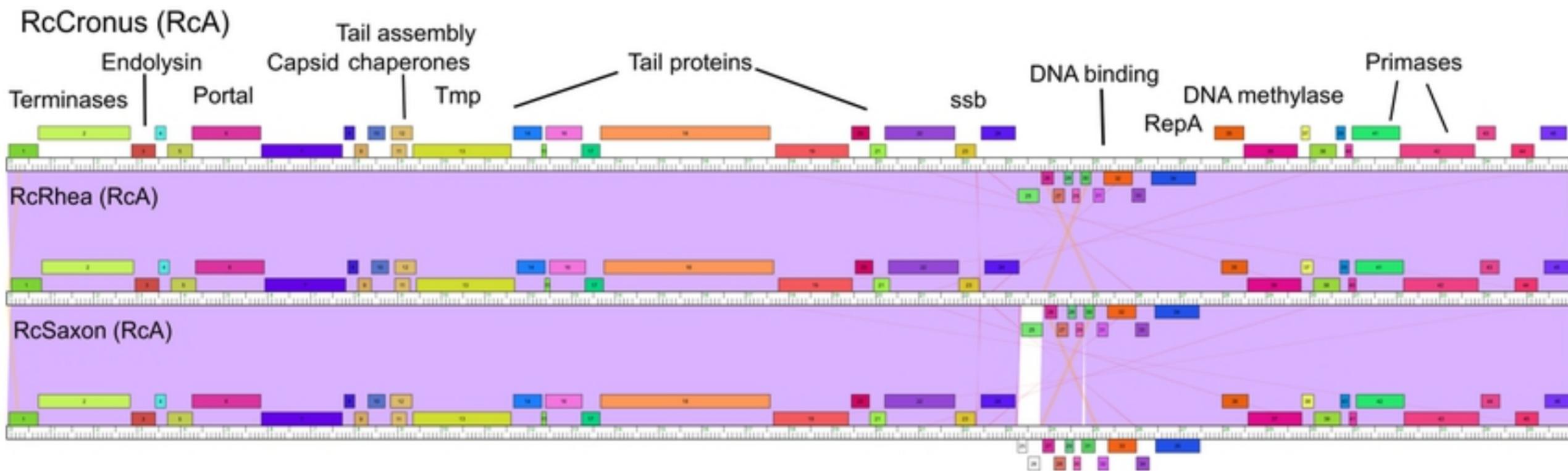


Figure 5

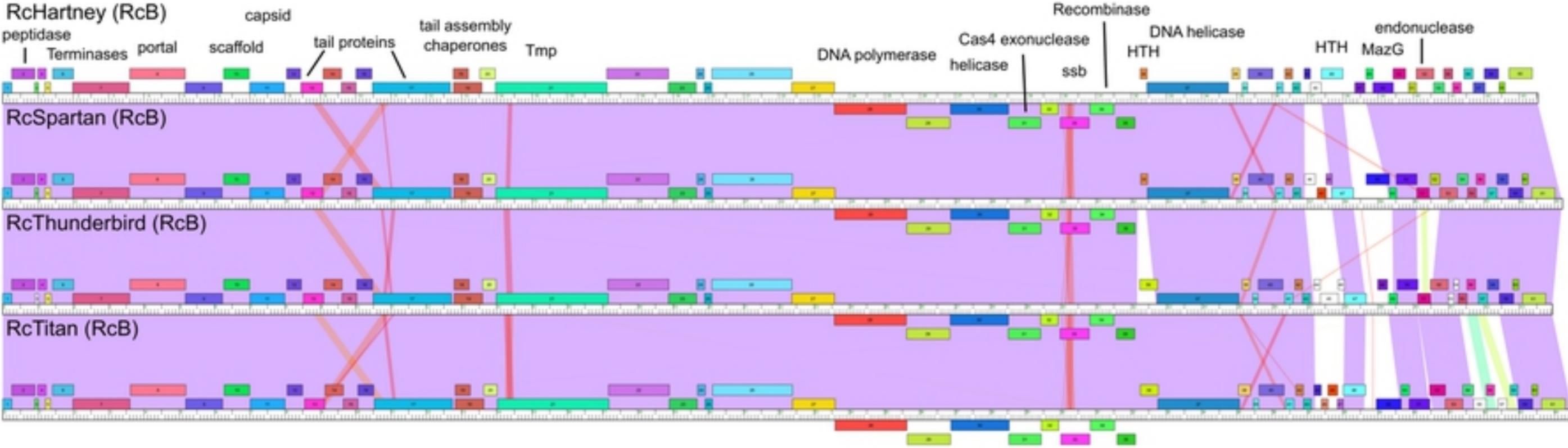


Figure 6

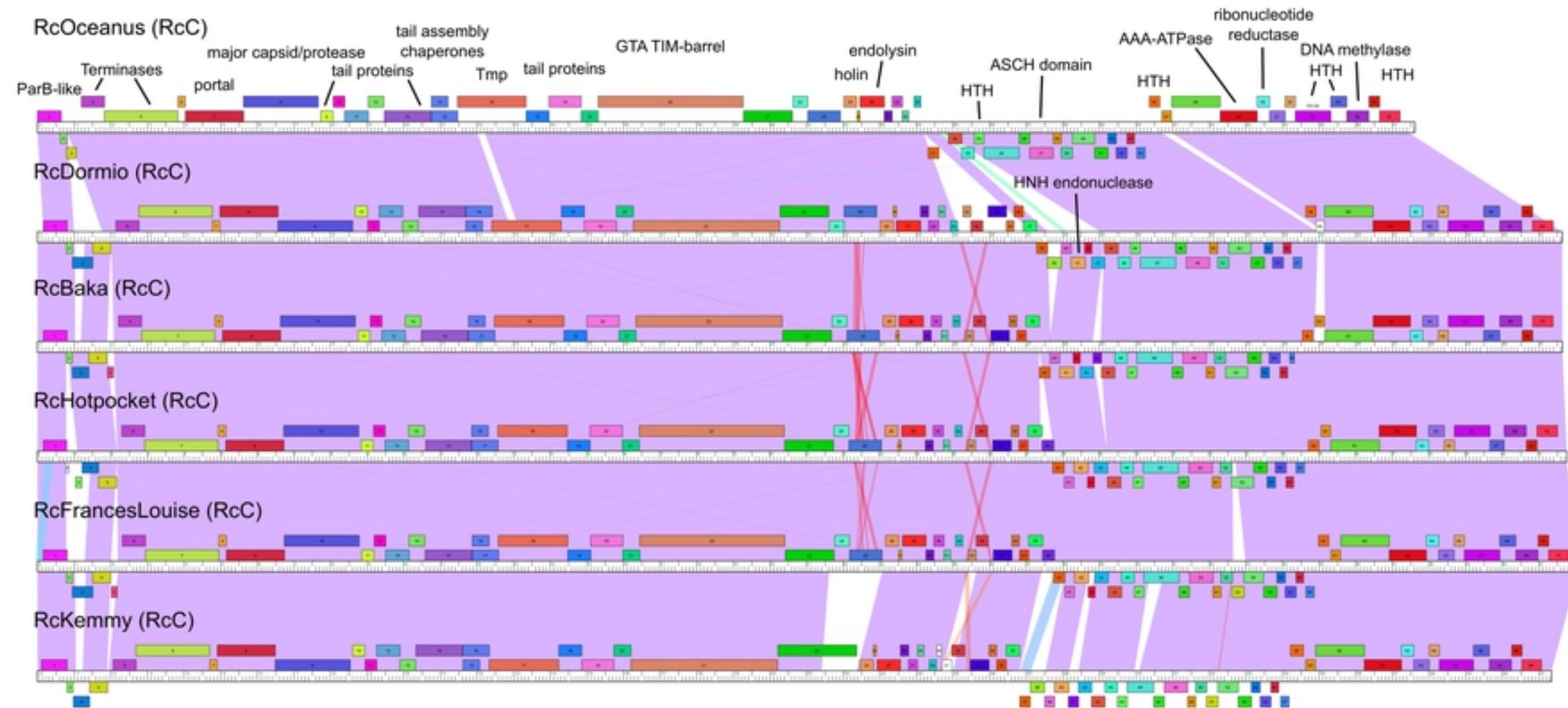


Figure 7

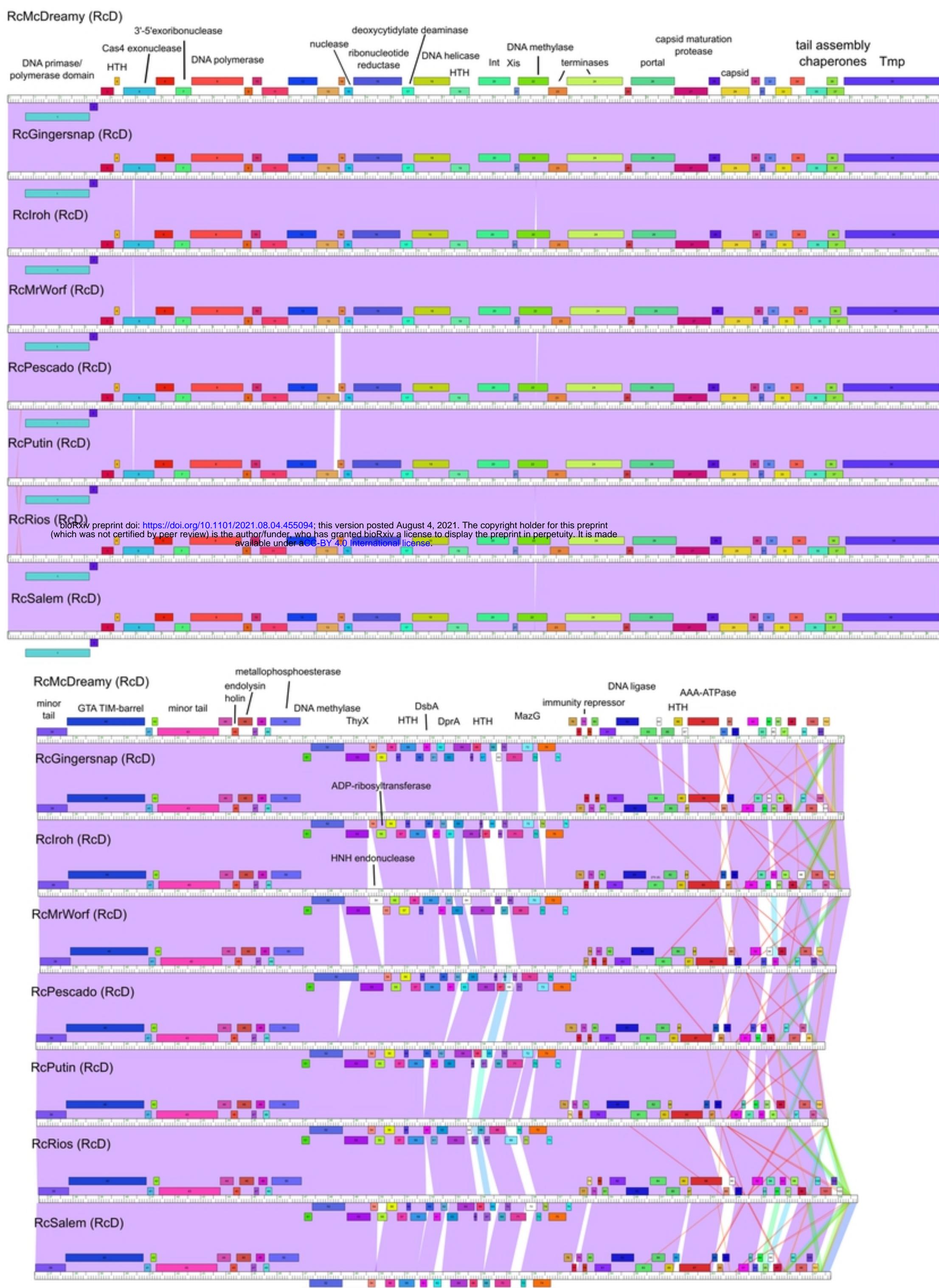
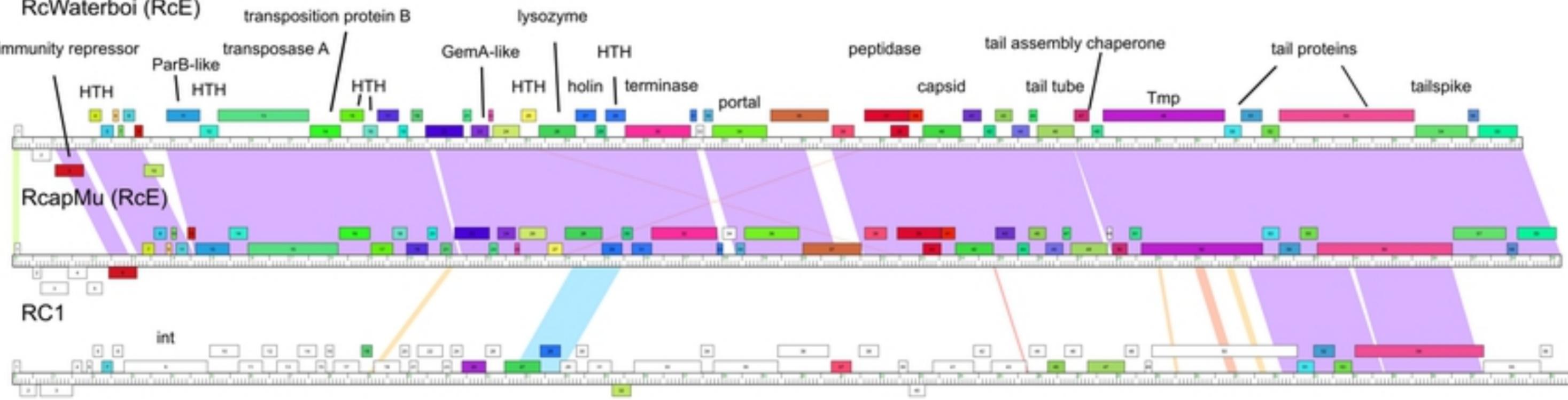



Figure 8

Figure 9

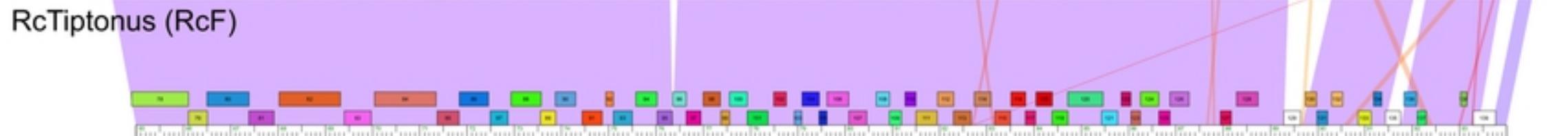
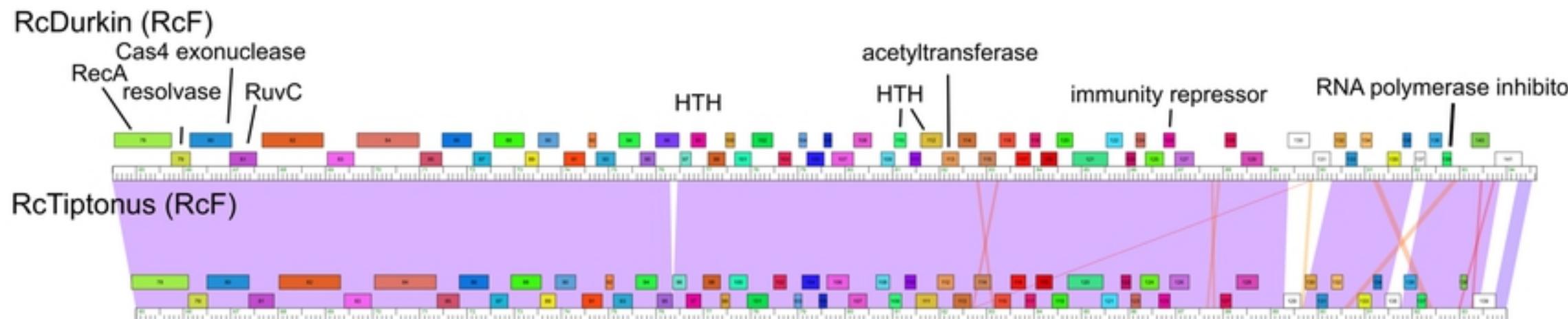
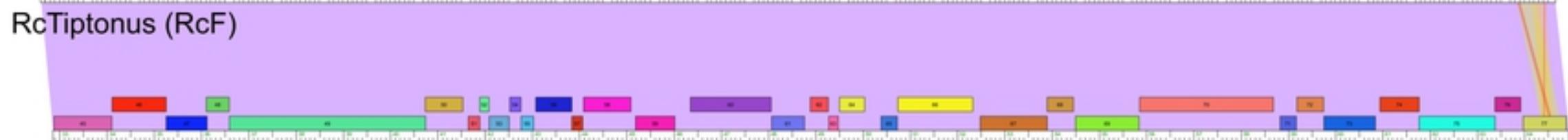
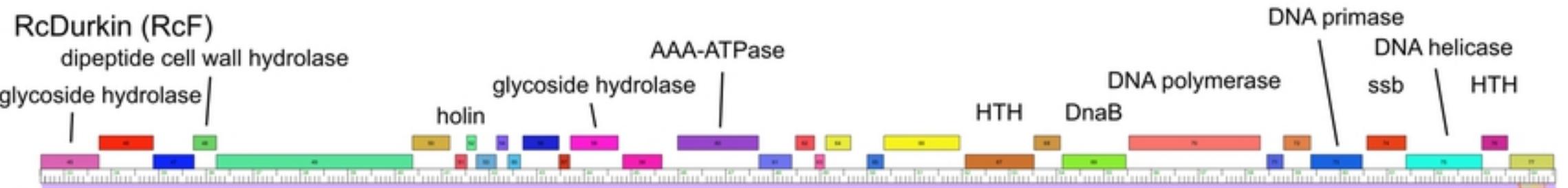
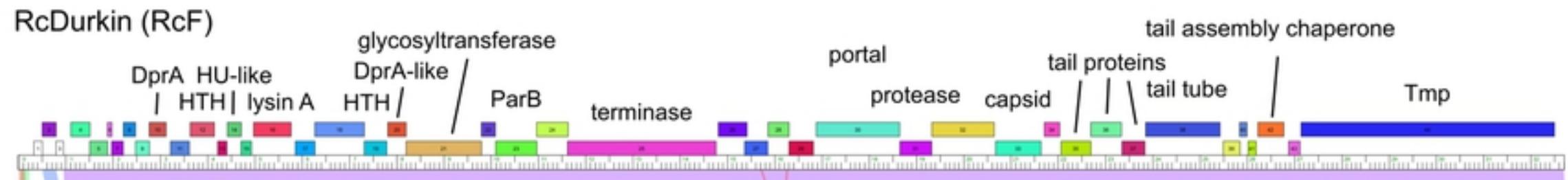






Figure 10

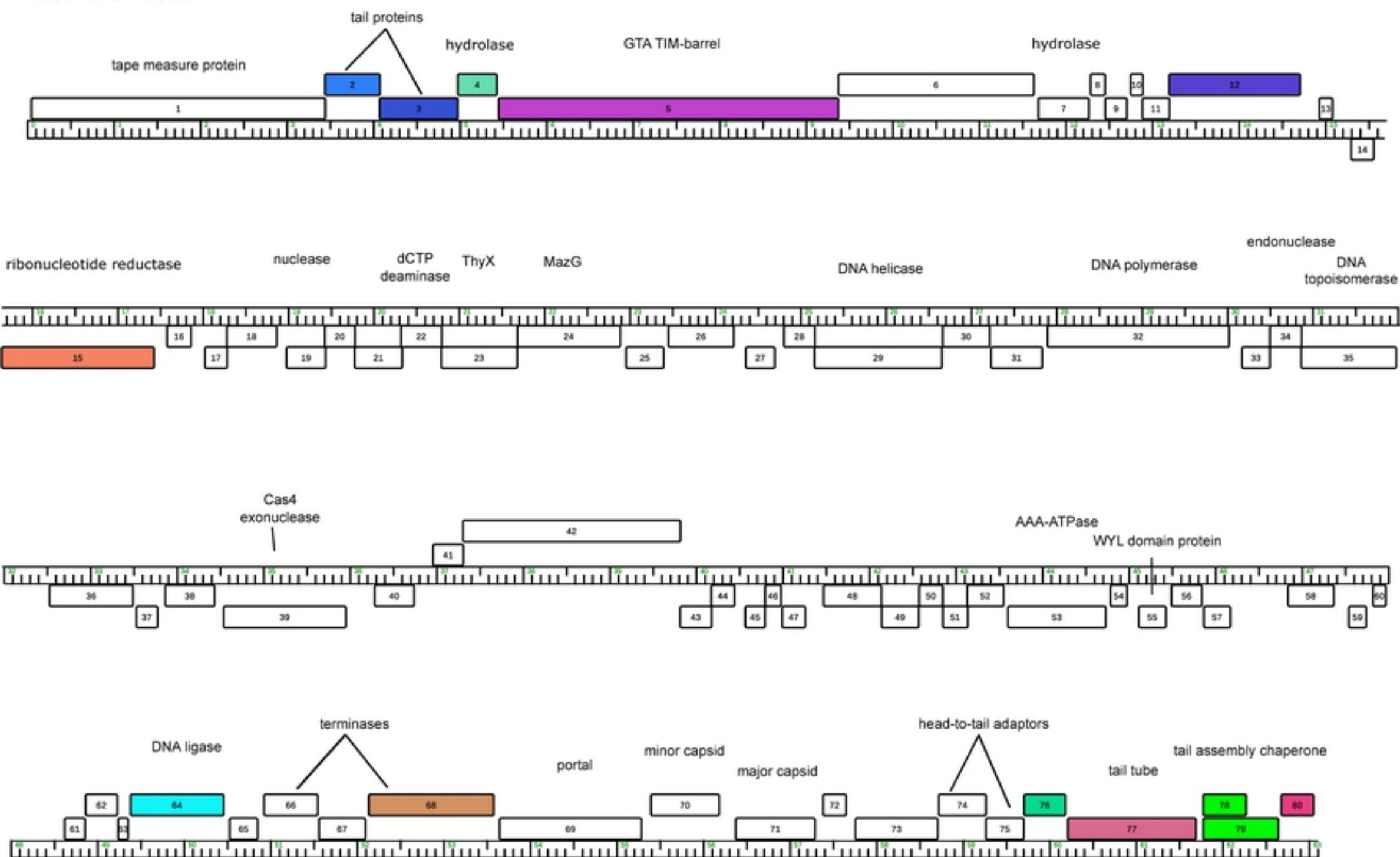
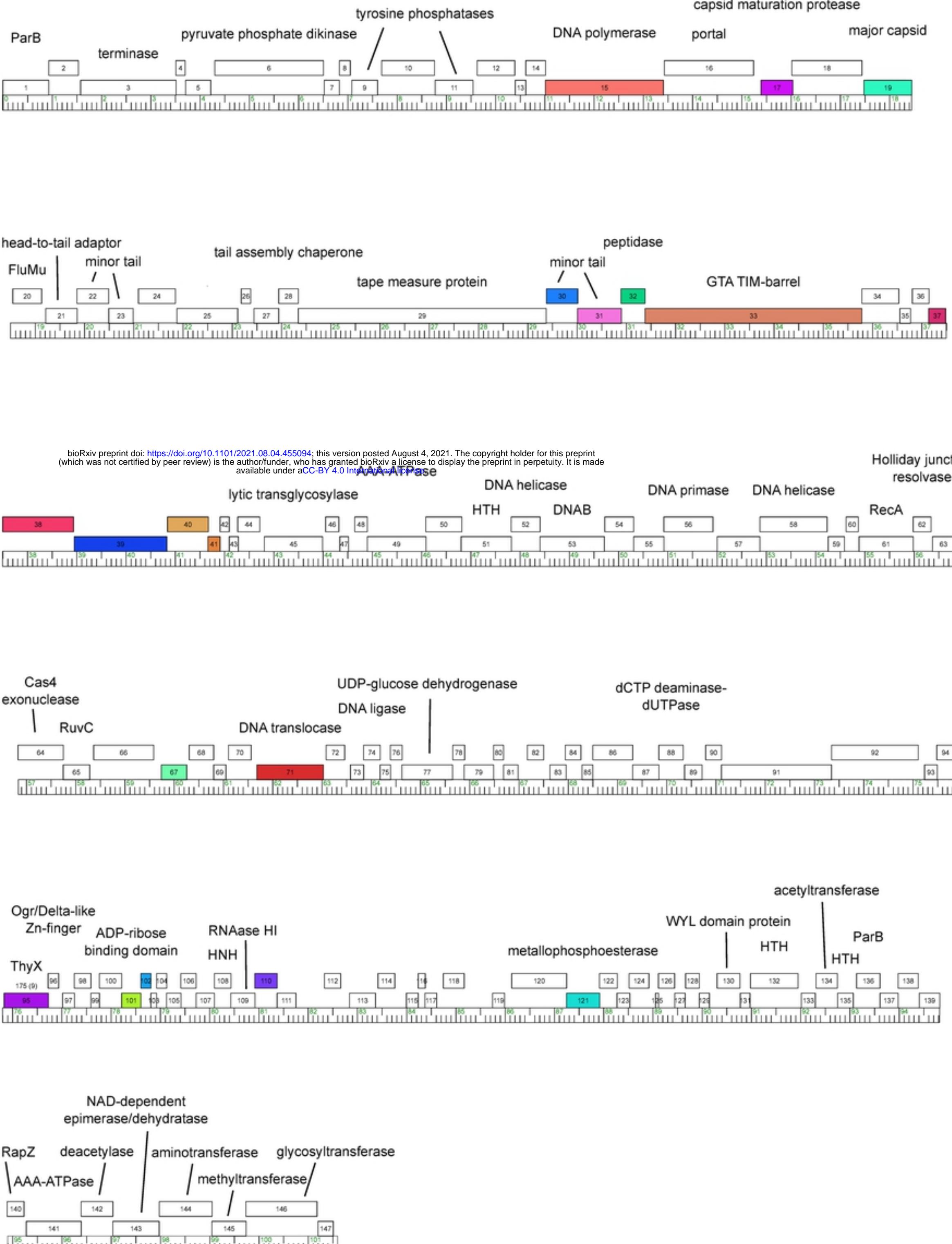



Figure 11

