

1 The role of antifreeze glycopeptides (AFGP) and polyvinyl 2 alcohol/polyglycerol (X/Z-1000) cocktails as ice modulators 3 during partial freezing of rat livers.

4
5 Shannon N. Tessier^{1,2}, Omar Haque^{1,2,3,4}, Casie A. Pendexter^{1,2}, Stephanie E.J. Cronin^{1,2},
6 Lindong Weng^{1,2}, Heidi Yeh⁴, James F. Markmann⁴, Michael J. Taylor⁵, Gregory M. Fahy⁶,
7 Mehmet Toner^{1,2,*}, Korkut Uygun^{1,2,*}

8
9 ¹Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard
10 Medical School, Boston MA, USA

11
12 ²Shriners Hospitals for Children - Boston MA, USA

13
14 ³Department of Surgery, Beth Israel Deaconess Medical Center, Boston MA, USA

15
16 ⁴Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard
17 Medical School, Boston MA, USA

18
19 ⁵Sylvatica Biotech Inc. North Charleston SC, USA and Department of Mechanical Engineering,
20 Carnegie Mellon University, Pittsburgh, PA USA

21
22 ⁶21st Century Medicine, Fontana, California, USA

23
24 ***Co-Corresponding authors:**

25 Korkut Uygun
26 Tel: 617-371-4881
27 Email: KUYGUN@mgh.harvard.edu

28
29 Mehmet Toner
30 Tel: 617-724-5336
31 Email: mehmet_toner@hms.harvard.edu

32
33

34

35

36

37

38

39 Abstract

40 The current liver organ shortage has pushed the field of liver transplantation to develop
41 new methods to prolong the preservation time of livers from the current clinical standard of static
42 cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable
43 frozen state at deeper storage temperatures (-10°C to -15°C) than can be achieved with
44 supercooling, while simultaneously maintaining a sufficient unfrozen fraction to limit
45 dehydration and ice damage. This research first demonstrated that partially frozen glycerol
46 treated rat livers were functionally similar after thawing from either -10 or -15°C with respect to
47 subnormothermic machine perfusion metrics and histology. Next, we assessed the effect of
48 adding either of two ice modulators, antifreeze glycoprotein (AFGP) and a polyvinyl
49 alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially
50 frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had
51 high levels of ATP and the least edema but suffered from significant endothelial cell damage.
52 X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated
53 endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA
54 damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but
55 also had the lowest levels of ATP and EC. Further research is necessary to optimize the ideal ice
56 modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA)
57 combinations, as well as improvements to machine perfusion CPA loading and unloading, can
58 help improve the viability of these partially frozen organs.

59

60 **Key words: antifreeze glycopeptides, polyvinyl alcohol, polyglycerol, cryopreservation,**
61 **partial freezing, subnormothermic machine perfusion**

62 **Abbreviations**

63 3-OMG, 3-O-methyl-D-glucose
64 ANOVA, Analysis of variance
65 AFGP, Antifreeze glycoprotein
66 BSA, Bovine serum albumin
67 CPA, Cryoprotective agent
68 EC, Energy charge
69 H&E, Hematoxylin and Eosin
70 HES, Hydroxyethyl starch,
71 HLA, Human leukocyte antigen
72 HMP, Hypothermic machine perfusion
73 INAs, Ice nucleating agents
74 IRIs, Ice recrystallization inhibitors
75 IVC, Infrahepatic vena cava
76 IACUC, Institutional Animal Care and Use Committee
77 LT, Liver transplant
78 M, molarity
79 PEG, Polyethylene glycol
80 X/Z-1000, Polyvinyl alcohol/polyglycerol
81 PV, Poral Vein
82 SCS, Static cold storage
83 SNMP, Subnormothermic machine perfusion
84 TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
85 UW, University of Wisconsin
86 WE, Williams E
87

88

89

90

91

92

93

94

95

96

97 I. Introduction

98 The liver organ shortage has pushed the field of transplantation to develop bold new
99 strategies to preserve transplantable organs. Currently, the clinical standard of preserving
100 transplantable livers is static cold storage (SCS) at 4°C, which keeps organs viable for a
101 maximum of 12 hours [1]. Prolonging this preservation time would improve the allocation of
102 organs in many ways. For example, it would reduce organ discard due to unacceptably long
103 ischemic times, lower operating room costs by making liver transplant (LT) operations elective,
104 enhance donor-recipient selection with human leukocyte antigen (HLA) matching and global
105 matching programs, and make tolerance induction protocols more feasible [2–4].

106 Preservation methods to slow organ deterioration after procurement can be broadly
107 categorized into two strategies: metabolic support and metabolic depression. Metabolic support
108 through ex-vivo machine perfusion allows for continuous quality and viability assessment of
109 organs. However, the major challenge with long term machine perfusion is maintaining organ
110 homeostasis ex-vivo, which becomes exponentially more complex with longer perfusion
111 durations that require continuous monitoring and adaptations [3,5–8]. On the other hand,
112 metabolic depression strategies leverage the fact that tissue deterioration slows down at
113 decreasing temperatures. Furthermore, lowering the hypothermic preservation temperature below
114 4°C harbors great potential to extend preservation times beyond clinical standards and does not
115 require the long-term, constant maintenance of machine perfusion [9].

116 Within metabolic depression preservation strategies, most subzero preservation efforts
117 have centered on low cryogenic temperature ranges (< –80°C) [3]. However, recent work has
118 investigated prospects for expanding storage within the high subzero temperature range from –
119 4°C to –20°C. These temperatures allow for more metabolic depression than hypothermic SCS

120 while also potentially avoiding lethal ice formation and vitrification-related cryoprotectant
121 toxicity and thermal stresses. The most prominent present example of the potential of this
122 approach has involved storage below the thermodynamic freezing point at -4°C to -6°C in the
123 absence of ice (termed supercooling), which has enabled 3-fold extensions of liver preservation
124 duration [9–11]. While these studies have shown that ice formation in rodent and human livers
125 can be completely circumvented with supercooling [9,11,12], the depth of metabolic stasis that
126 can be achieved by this method is limited by the risk of spontaneous nucleation leading to
127 damaging ice formation, which increases as temperature is lowered to below -6°C [13].

128 Although there is extensive evidence that ice formation can be severely damaging in
129 tissues and organs [14–17], recent studies based on the survival of frozen animals such as frogs
130 and turtles in nature have suggested that carefully limited and controlled ice formation may be
131 tolerable during attempted cryopreservation of solid organs [2,18]. Ishine et al. showed that ice
132 modulators such as antifreeze glycoproteins (AFGP) can have protective effects in high subzero
133 liver freezing protocols by inhibiting ice recrystallization and preventing ionic leakage through
134 cell membranes at low temperatures, although the authors report damage to the endothelial layer.
135 The authors froze their rat livers for 2 hours used livers frozen with glycerol as the only
136 cryoprotective agent (CPA) as controls [19]. To expand on these efforts, we aimed to test
137 extended preservation durations (up to 5 days) in the presence of two ice modulators, antifreeze
138 glycoprotein (AFGP) and a polyvinyl alcohol/polyglycerol combination (X/Z-1000), for their
139 ability to confer freeze tolerance of rodent livers. The inclusion of these agents is called for in
140 part because although the total quantity of ice present during long term storage at a fixed
141 temperature is constant, the ice may still cause injury due to recrystallization that could be
142 overcome by ice modulators.

143 AFGP has been shown to inhibit both ice recrystallization and ice growth below T_M (the
144 thermodynamic freezing point). These glycopeptides inhibit ice growth by attaching to multiple
145 faces of ice crystals [20–23]. AFGPs have also been shown to raise the homogenous ice
146 nucleation temperature (T_H) by organizing water into a more ice-like state [24]. However, since
147 the temperature range in our partial freezing protocol is well above T_H [25], the issues at hand
148 involve the role of AFGP in ice shaping and ice recrystallization inhibition. Although AFGP can
149 shape ice into damaging spicules [26], this effect may be outweighed under our storage
150 conditions by the ice growth and recrystallization inhibitory effects of AFGP. X-1000 is a 2
151 kilodalton (kDa) polyvinyl alcohol [27] that contains 20% vinyl acetate, which improves the
152 solubility and ice-inhibiting effects of X-1000 presumably by preventing self-association
153 between X-1000 chains. Polyvinyl alcohol is known to inhibit ice recrystallization [28,29]. Z-
154 1000 is a polyglycerol that inhibits heterogeneous ice nucleation [30], and together X/Z-1000 has
155 been shown to protect rat hearts during supercooling [31–33] and is functional from 0°C to
156 temperatures below –120°C [16].

157 In the present study, whole rat livers were frozen for up to 5 days at high subzero
158 temperatures (–10°C to –15°C) by combining glycerol and ice nucleating agents (INAs) with the
159 use of subnormothermic machine perfusion (SNMP) at 21°C. Further, two ice modulators,
160 antifreeze glycoprotein (AFGP) and a polyvinyl alcohol/polyglycerol combination (X/Z-1000),
161 were tested. Livers frozen with the inclusion of either AFGP or X/Z-1000 were compared to the
162 control group (with glycerol as the main CPA) with primary outcomes being perfusion metrics,
163 ATP, energy charge (EC), weight gain, and histology. We call this protocol “partial freezing”
164 since it induces a thermodynamically stable frozen state at deeper storage temperatures (as low

165 as -15°C) than can be achieved with supercooling, while simultaneously maintaining a sufficient
166 unfrozen fraction to limit dehydration and ice damage.

167

168 **II. Materials and Methods**

169 **A. Experimental design**

170 **Figure 1** outlines the rat liver partial freezing protocol in 8 consecutive steps: (1) liver
171 procurement, (2) preconditioning during SNMP, (3) CPA preloading during hypothermic
172 machine perfusion (HMP), (4) loading of final storage solution and ice modulators during HMP,
173 (5) partial freezing of rat liver, (6) thawing of rat liver, (7) unloading of CPAs during HMP, and
174 (8) functional recovery of frozen rat livers during SNMP.

175 **Fig 1. Experimental design of partial freezing, in 8 consecutive steps.** (1) liver
176 procurement, (2) preconditioning during SNMP, (3) CPA preloading during hypothermic
177 machine perfusion (HMP), (4) loading of final storage solution and ice modulators during HMP,
178 (5) partial freezing of rat liver, (6) thawing of rat liver, (7) unloading of CPAs during HMP, and
179 (8) functional recovery of frozen rat livers during SNMP.

180 Within this protocol, we first compared partially frozen livers at -10°C (n=4 livers) and $-$
181 15°C (n=9 livers) with 12% glycerol. Upon finding minimal differences between these two
182 groups, we combined them as a control and compared them to livers partially frozen with 0.5
183 mg/ml (0.05% w/v) of AFGP (n = 4 livers) or 0.1% X-1000/0.2% Z-1000 (total, 0.3% w/v; n = 4
184 livers) ice modulating agents added to the preservation solution. After freezing, liver viability on
185 SNMP was compared between the 12% glycerol control group and the two ice modulated
186 groups.

187

188 **B. Partial freezing protocol**

189 The rat liver perfusion system involved perfusion through the cannulated portal vein (PV)
190 with regulation of pressure, flow, and temperature. Detailed set-up of the perfusion system has
191 been previously described [34]. The total rat hepatectomy protocol was approved by the
192 Institutional Animal Care and Use Committee (IACUC) of Massachusetts General Hospital
193 (Boston, MA, USA). Livers were procured from male Lewis rats (250-300g, age 10-12 weeks.
194 Charles River Laboratories, Wilmington, MA, USA) (**figure 1, step 1**). The bile duct was
195 isolated and cannulated, and the rats were heparinized with 30U sodium heparin. PV splenic and
196 gastric branches, as well as the hepatic artery were ligated prior to cannulation. The PV was
197 subsequently cannulated with a 16-gauge catheter and immediately flushed with 40ml of
198 heparinized saline (1000U/ml at room temperature). The liver was then freed from all peritoneal
199 attachments, flushed with an additional 20ml of heparinized saline. After procurement, the liver
200 was weighed, and machine perfusion was immediately initiated.

201 Preconditioning during SNMP was initiated at 21°C with a flow rate of 5 ml/min (**figure**
202 **1, step 2**). The flow rate was gradually increased [(1 ml/min)/min] until a maximum PV pressure
203 of 5 mmHg, or a flow rate of 25 ml/min, was reached (whichever was reached first). The rat
204 livers were perfused for 1 hour with 500 ml of preconditioning solution consisting of Williams E,
205 200 U/l of insulin, 2% w/v PEG, 50g/L BSA, 100mM 3-O-methylglucose (3-OMG), 10,000 U/l
206 of heparin, 24 mg/L of dexamethasone, 25 mg/ml of hydrocortisone, 40,000 ug/l of penicillin,
207 and 40,000 U/l of streptomycin and sodium bicarbonate as needed to maintain a physiological
208 pH (see **Supplemental Table 1** for composition of all solutions).

209 After 1 hour of preconditioning during SNMP, the temperature was decreased to 4°C at a
210 rate of ~1°C/min. Flow rates were gradually adjusted as necessary to ensure a maximum
211 perfusion pressure of 3-5mmHg during HMP. The SNMP preconditioning solution was switched
212 to 500 ml CPA preloading solution at 4°C (consisting of Williams E, 200 U/l of insulin, 2%
213 PEG, 50g/L BSA, 100mM 3-OMG, 30mM raffinose, 3% hydroxyethyl starch (HES), 6%
214 glycerol, 4000 U/l of heparin, 24 mg/l of dexamethasone, 25 mg/ml of hydrocortisone, 40,000
215 ug/l of penicillin, 40,000 U/l of streptomycin, and sodium bicarbonate as needed to maintain a
216 physiological pH) (**figure 1, step 3; Table S1**). HMP was continued for 1 hour to ensure
217 complete equilibration of solution throughout the liver parenchyma.

218 After CPA preloading during HMP, rat livers were loaded with 50mls of final storage
219 solution (consisting of University of Wisconsin (UW) Solution (Bridge to Life Ltd., Columbia,
220 SC, USA), 5% PEG, 50mM trehalose, 12% v/v (1.64M) glycerol, 1g/L Snomax (Telemet,
221 Hunter, NY, USA) to promote nucleation, 10 U/l of insulin, 24 mg/l of dexamethasone, sodium
222 bicarbonate as needed to maintain a physiological pH, and either 0.5 mg/ml of AFGP or 0.1% x-
223 1000/0.2% z-1000 (**figure 1, step 4**). During the perfusion of the final storage solution the liver
224 was perfused at a fixed flow rate of 0.5 ml/min for 30 min, resulting in a perfusion pressure of 3
225 mmHg.

226 Once the final storage solution during HMP had been perfused through the liver, the
227 livers were placed in a storage bag with 50 ml of storage solution in a pre-cooled chiller (Engel,
228 Schwertberg, Austria; model no. ENG65-B) for partial freezing (**figure 1, step 5**). Note: the
229 concentrations of raffinose and HES were higher in the storage solution than in the pre-loading
230 solution because the storage solution was made with UW which contains both raffinose and
231 HES. In the case of livers frozen with glycerol only, the chiller temperature was pre-cooled to

232 either -10°C or -15°C , and the liver was stored at one of these temperatures for 1 to 5 days.

233 Livers frozen with either of the two ice modulation candidates were stored at -15°C .

234 After partial freezing, livers were thawed (**figure 1, step 6**) by placement in 50 ml of
235 thawing solution consisting of Williams E, 10 U/l of insulin, 2% PEG, 50g/L BSA, 100mM 3-
236 OMG, 30mM raffinose, 3% HES, 50mM trehalose, 5mM L-glutathione, 200 μM cyclic AMP,
237 1,000 U/l of heparin, 24 mg/l of dexamethasone, 25 mg/ml of hydrocortisone, 40,000 ug/l of
238 penicillin, and 40,000 U/l of streptomycin, which was pre-warmed to 37°C in a constant
239 temperature bath (Thermo Fisher, Waltham, MA, USA). Livers were gently agitated until fully
240 thawed, which required approximately 5 min based on superficial observation and thermal
241 equilibration between the final thawing solution temperature and the liver surface temperature of
242 4°C .

243 After thawing, CPAs and INAs were unloaded during HMP (**figure 1, step 7**). The
244 thawed livers were perfused at 4°C with thawing solution for 60 min with an initial flow rate of 2
245 ml/min. Flows were increased so as to keep a maximum pressure of 3mmHg. After 60 min, the
246 perfusion temperature was increased to 21°C , and the perfusion solution was changed to 750 ml
247 of SNMP recovery solution (consisting of Williams E, 20 U/l of insulin, 2% PEG, 50g/L BSA,
248 5mM L-glutathione, 200 μM cyclic AMP, 1,000 U/l of heparin, 24 mg/l of dexamethasone, 25
249 mg/ml of hydrocortisone, 40000 ug/l of penicillin, and 40000 U/l of streptomycin; **Table S1**),
250 discarding the first 50-100mls to ensure complete CPA removal. Functional recovery of frozen
251 rat livers during SNMP with recovery solution continued for 3 hours (**figure 1, step 8**) with a
252 maximum intrahepatic perfusion pressure of 5 mmHg and a maximum flow rate of 25 ml/min.

253

254 **C. Viability Assessment**

255 Perfusate measurements were done hourly during the SNMP recovery period. Time zero
256 (t=0) was defined as being at approximately 5 min of HMP, and the first outflow samples were
257 taken at this time (flow, 2 ml/min). PV and infrahepatic vena cava (IVC) oxygen partial
258 pressures and lactate levels were measured with a Cg4+ i-STAT cartridge (catalog no. 03P85-50)
259 and handheld blood analyzer. Similarly, potassium and other electrolytes were measured in IVC
260 samples using a Chem 8+ i-STAT cartridge (catalog no. 09P31-26) with the same blood analyzer
261 (catalog no. WD7POC012; Abbott, Chicago, IL, USA).

262 Rat liver weight was measured directly after procurement, prior to freezing, after
263 thawing, and after viability testing. Weight gain was calculated as the percentage increase at the
264 end of recovery compared to the liver weight after procurement. Vascular resistance was
265 calculated by dividing the perfusion pressure in the PV by the flow rate per gram of liver using
266 the weight of the liver after procurement as the reference standard weight. Oxygen consumption
267 rates were calculated as $(pO_2^{in} - pO_2^{out}) * F/W$ where pO_2^{in} and pO_2^{out} were the oxygen contents
268 per ml of inflowing and outflowing perfusate, respectively, and the difference between them
269 multiplied by the perfusion rate (F, in ml/min) provided the total oxygen uptake per minute. This
270 value was then normalized by liver weight (W) to calculate the oxygen uptake per minute, per
271 gram of liver. After thawing and SNMP recovery, rat liver tissue was either flash frozen in liquid
272 nitrogen or fixed in 10% formalin, embedded in paraffin, sectioned, and stained with
273 Hematoxylin and Eosin (H&E). Terminal deoxynucleotidyl transferase dUTP nick end labeling
274 (TUNEL) was also performed on rat liver tissue after freezing to detect DNA breaks as an
275 indicator of apoptosis [9]. Liver tissue that was flash frozen was used to quantify ATP and EC by
276 the Massachusetts General Hospital (MGH) Mass Spectrometry Core (Boston, MA, USA).

277 Statistical analysis was performed with Prism 8 software (GraphPad Software, San
278 Diego, CA, USA) with a significance level of 0.05. Analysis of variance (ANOVA), followed by
279 Tukey's post-hoc test (ANOVA/Tukey) was used for the comparison of the time-course
280 perfusion data. ATP and EC in the -10°C vs. -15°C group were compared using unpaired, two-
281 tailed t-tests.

282

283 **III. Results**

284 **A. Comparison of partially frozen rat livers at -10°C vs -15°C with 285 12% glycerol**

286 Pooled results for livers stored for 1 and 5 days at -10°C (n=4) or -15°C (n=9) with a
287 cocktail containing 12% glycerol were compared 1 hour after CPA unloading and 3 hours after
288 recovery with SNMP at 21°C . There was no statistically significant difference between the two
289 groups with respect to oxygen consumption (**figure 2A**), PV lactate (**figure 2B**), vascular
290 resistance (**figure 2C**), and perfusate potassium on two-way ANOVA/Tukey testing. Similarly,
291 there were no statistically significant differences between -10°C and -15°C livers with respect to
292 percent weight gain (**figure 2D**), ATP (**figure 2E**), and EC (**figure 2F**) by unpaired, two-tailed t-
293 testing. Thus, rat livers partially frozen with 12% glycerol at -10°C and -15°C were not
294 functionally different, and as a result, were grouped together to form a more statistically robust
295 control group (n = 13) for comparison against the ice modulator groups.

296 **Fig 2. Perfusion metrics comparing partially frozen rat livers stored for 1 (n=6) and
297 5 (n=7) days at -10°C (n = 4) vs -15°C (n = 9) with 12% glycerol and 4 hours of recovery
298 during SNMP revealed no functional differences between the groups. (A) oxygen**

299 consumption, defined as outflow oxygen minus inflow oxygen, adjusted for liver weight and
300 flow rate, (B) inflow lactate, (C) resistance, defined as the perfusion pressure in the PV divided
301 by the flow rate and adjusted for liver weight after procurement, (D) percent weight gain, defined
302 as percentage increase of liver weight at the end of recovery compared to liver weight after
303 procurement, (E) ATP, (F) energy charge. Two-way ANOVA, followed by Tukey's post-hoc test
304 for A-C. Unpaired two-tailed t-test for D-F. Boxes: median with interquartile range. Whiskers:
305 min to max. Significance level: $p < 0.05$.

306

307 **B. Comparison of partially frozen control rat livers to livers frozen**
308 **with AFGP or X/Z-1000 ice modulators (pooled results for 1 and 5**
309 **days)**

310 There was no statistically significant difference between the three groups with respect to
311 oxygen consumption based on two-way ANOVA/Tukey testing (**figure 3A**). Control glycerol-
312 only livers had the lowest mean perfusate lactate (1.17 ± 0.61 mmol/L) at time zero. Over the
313 first hour of SNMP, there was a decrease in lactate among all three groups. There were no
314 significant differences between the groups at any time point according to the two-way
315 ANOVA/Tukey test (**figure 3B**). X/Z-1000 frozen livers had significantly higher mean vascular
316 resistance (1.44 ± 0.37 mmHg/[(ml/min)/g] at 0 hours compared to both 12% glycerol control
317 livers (0.528 ± 0.39 mmHg/ml/min, p-value 0.0315) and AFGP livers (0.413 ± 0.27 , p-value
318 0.0215) (by ANOVA/Tukey). However, these differences were no longer significant at the
319 remaining time points as the resistance levels converged over time (**figure 3C**). At 1 hour,
320 glycerol only livers had higher mean perfusate potassium levels (6.5 ± 1.01 mmol/L) compared

321 to both AFGP livers (5.1 ± 0.22 mmol/L, p-value 0.0167) and X/Z-1000 livers (5.6 ± 0.14
322 mmol/L, p-value 0.0275) (ANOVA/Tukey). However, these differences were no longer
323 significant at the remaining time points as the potassium levels converged over time.

324 Final mean weight gains for the glycerol-only control, the +AFGP, and the +X/Z-1000
325 groups were $26.9 \pm 15.3\%$, $12.8 \pm 13.2\%$, and $39.5 \pm 5.69\%$ respectively. Livers frozen with
326 AFGP had the least edema, significantly less compared to X/Z-1000 livers (p-value 0.0294 by
327 one-way ANOVA/Tukey; **figure 3D**). Mean ATP for the glycerol control group, AFGP, and
328 X/Z-1000 were 0.187 ± 0.075 , 0.624 ± 0.20 , and 0.680 ± 0.32 ug/ml respectively. ATP
329 concentrations were significantly lower for livers stored with glycerol only compared with AFGP
330 (p = 0.0057) and X/Z-1000 (p = 0.0023) (ANOVA/Tukey). There was no significant difference
331 in ATP levels between AFGP and X/Z-1000 frozen livers (p = 0.91) (**figure 3E**). Finally, mean
332 EC for the glycerol control group, AFGP, and X/Z-1000 was 0.066 ± 0.032 , 0.063 ± 0.015 , and
333 0.591 ± 0.62 (ATP+1/2ADP)/(ATP+ADP+AMP) respectively. EC was dramatically higher in
334 livers stored with X/Z-1000 and glycerol compared to glycerol alone (p = 0.0159) and to glycerol
335 plus AFGP (p = 0.0428) (one-way ANOVA/Tukey). There was no significant difference in EC
336 between AFGP and glycerol frozen livers (p = 0.99) (**figure 3F**).

337 **Fig 3. Perfusion metrics comparing rat livers partially frozen at -15°C with AFGP**
338 **(n=4) or with X/Z-1000 ice modulators (n=4) versus 12% glycerol control (n=13), with 4**
339 **hours of recovery during SNMP.** There was higher t=0 resistance and energy charge in X/Z-
340 1000 livers, and lower ATP levels in glycerol livers. (A) oxygen consumption, defined as
341 outflow oxygen minus inflow oxygen, adjusted for liver weight and flow rate, (B) portal vein
342 lactate, (C) vascular resistance, defined as the perfusion pressure in the PV divided by the flow
343 rate and adjusted for liver weight after procurement, (D) percent weight gain, defined as

344 percentage increase of liver weight at the end of recovery compared to liver weight after
345 procurement, (E) ATP, (F) energy charge. Stars denote statistical significance (two-way
346 ANOVA, followed by Tukey's post-hoc test for A-C, one-way ANOVA, followed by Tukey's
347 post-hoc test for D-F): * $0.01 < p < 0.05$; ** $0.001 < p < 0.01$. Error bars represent standard
348 deviation. Boxes: median with interquartile range. Whiskers: min to max.

349 H&E staining of rat liver parenchyma following both 1 and 5 day partial freezing showed
350 sinusoidal, hepatocellular, and endothelial cell damage in all groups. In glycerol plus X/Z-1000
351 frozen livers, H&E showed better preservation of sinusoidal patency (seemingly caused by less
352 hepatocyte cell swelling) than seen in the other groups after 1 day of storage, which deteriorated
353 somewhat after 5 days of storage. Endothelial patency also deteriorated between days 1 and 5,
354 with almost complete endothelial cell destruction around the PV vasculature (after 1 day: **figure**
355 **4A**; after 5 days, **figure 4E**). After 1 day of storage, glycogen staining was decreased in glycerol
356 plus X/Z-1000 livers, but not in the glycerol plus AFGP or glycerol-only groups. Glycerol plus
357 AFGP frozen livers exhibited cellular swelling at the expense of sinusoidal patency and suffered
358 from endothelial cell layer disruption that was mild after 1 day (**figure 4B**) and considerably
359 worse after 5 days (**figure 4F**) of storage. Livers frozen with only glycerol at -10°C had
360 sinusoidal damage and compression, peri-portal endothelial destruction (**figure 4D**) and linear
361 cracks in the liver parenchyma (**figure 4H**). Decreasing the storage temperature of these control
362 glycerol livers to -15°C did not alter the H&E pathology after either 1 (**figure 4C**) or 5 (**figure**
363 **4G**) days of frozen storage.

364 **Fig 4. 40X H&E staining of rat liver parenchyma after partial freezing for 1 day (A-
365 D) and 5 days, (E-H) with X/Z-1000, AFGP ice modulators versus 12% glycerol only.**

366 TUNEL staining was observed in both the endothelium and the sinusoids after 1 and 5
367 days of frozen storage in the presence of X/Z-1000, but appeared to be less intense after 5 days
368 of storage (**figures 5A and 5E**). AFGP frozen livers had primarily endothelial staining with mild
369 sinusoidal staining after 1 day (**figure 5B**), but after 5 days, TUNEL staining had increased both
370 around the vasculature and within the sinusoids (**figure 5F**). Compared to the other groups,
371 AFGP frozen livers at -15°C and five days of partial freezing had the most TUNEL staining.
372 Glycerol only livers stored at -10°C had remarkably less TUNEL staining compared to X/Z-
373 1000 and AFGP livers with only mild sinusoidal staining after 1 day (**figure 5D**), and 5 days
374 (**figure 5H**) of storage. As in the H&E results, decreasing the storage temperature of glycerol
375 only livers to -15°C did not exacerbate TUNEL staining after 1 day (**figure 5C**) or 5 days
376 (**figure 5G**) of storage.

377 **Fig 5. 40X Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)**
378 **staining of rat liver parenchyma after partial freezing for 1 day (A-D) and 5 days (E-H)**
379 **with X/Z-1000, AFGP ice modulators versus 12% glycerol only.**

380

381 **IV. Discussion**

382 Extending the preservation time of donor organs has tremendous clinical application in
383 the field of transplantation. For liver transplantation, lengthening the allograft preservation time
384 from the current standard of SCS at 4°C will reduce the burden placed on the healthcare system
385 from high costs of unplanned surgeries, decrease organ rejection rates by incorporating more
386 HLA typing into clinical practice, and possibly even open avenues for global matching programs
387 [3,35].

388 Prior cryogenic organ preservation efforts have typically (although not universally [36])
389 encountered either lethal [14,15] or unacceptably damaging [16,37–39] amounts of extracellular
390 ice, or the challenge of introducing the enormous concentrations of CPA needed to preclude such
391 damage [16,40,41]. So far, these difficult challenges have not been adequately overcome, and
392 therefore, other approaches should be investigated and may produce practical results more
393 rapidly. Our current approach primarily utilized cold but not cryogenic temperatures to extend
394 organ preservation time. We explored rat liver preservation at high subzero temperatures (-10°C
395 and -15°C) combined with recovery SNMP to maximize the benefits of metabolic rate
396 depression and *ex vivo* organ assessment, while avoiding the dangers of deep cryogenic
397 temperatures. Ice modulators have been shown to modify ice crystal shape and inhibit ice
398 recrystallization, potentially decreasing ice-induced cellular damage. In the context of the partial
399 freezing of rat livers, ice modulators create an intriguing opportunity to preserve organs at
400 subzero temperatures in the presence of ice, allowing these stored organs to reap the benefits of
401 deeper metabolic stasis than current hypothermic standards while avoiding ice-related cellular
402 damage.

403 This study first demonstrated that rat livers frozen at -10°C versus -15°C with glycerol
404 were functionally similar regarding perfusion metrics, cellular architecture, and DNA damage,
405 indicating that the reduction in partial freezing did not significantly reduce metabolic function.
406 However, the reduction in storage temperature from -10°C to -15°C can have implications for
407 organ viability on a cellular level. As water freezes, solutes are excluded from the ice crystals,
408 which increases the osmolality and reduces the freezing point of the unfrozen water fraction.
409 Thus, a lower freezing temperature results in more ice and a higher level of osmotic shift [42]. In
410 our case, 12% v/v glycerol (1.64M), equates to 1.86 molality. According to the freezing point

411 depression approximation, freezing point is lowered by about 1.86°C for every 1 osmolal
412 increase in concentration. Adding the 0.3 osmolal contribution of the glycerol vehicle solution,
413 the melting point of our storage media should be in the vicinity of -4°C . At -10°C , about 60% of
414 the water in the solution will be converted to ice, and at -15°C , about 73% of the water will be
415 frozen out, which is a significant increase. Although the membrane stabilizing saccharides,
416 trehalose and raffinose [43] were employed, they do not enter cells and therefore do not
417 nominally protect the inner membrane leaflet or reduce cell shrinkage induced by water
418 extraction during freezing.

419 A major aim of this research was to assess the effect of ice modulators such as AFGP and
420 X/Z-1000 on partially frozen rat livers compared to glycerol-only controls. AFGP frozen livers
421 had the least amount of edema and high levels of ATP. However, the AFGP-mediated ice
422 modulation had adverse effects on endothelial cells, which was reflected in both H&E and
423 TUNEL staining, particularly after prolonged storage. As the duration of freezing increased from
424 1 to 5 days, the AFGP TUNEL staining expanded from predominately endothelial damage to
425 diffuse sinusoidal cellular damage as well. AFGP has an established role in dynamic ice shaping,
426 ice recrystallization inhibition, and hysteretic freezing point depression [22,44,45]. Since
427 endothelial cells would make direct contact with the ice, it is possible that AFGP may be causing
428 less favorable ice crystal shapes that are disrupting the endothelial cells of the liver. In a study by
429 Rubinsky et al., antifreeze proteins resulted in the killing of all red blood cells during freezing
430 despite the use of directional solidification methods that normally minimize ice damage [26,46].
431 Yet, AFGP may offer protection to hepatocytes through its other mechanism of action, ice
432 recrystallization inhibition. (AFGP freezing point depression is typically limited to $1\text{--}2^{\circ}\text{C}$, which
433 is smaller than the difference between our solutions' T_{MS} and our chosen storage temperatures

434 and therefore was not able to contribute a protective effect in these experiments). Isothermal
435 freeze fixation [15] could be useful in future studies for relating the details of ice distribution and
436 characteristics to observed outcomes [47].

437 X/Z-1000 was the second ice modulator combination assessed in this study. X/Z-1000
438 frozen livers had the highest ATP and by far the highest EC but suffered from the highest SNMP
439 resistance at t=0 and had the most edema after recovery. On staining, X/Z-1000 frozen livers had
440 less TUNEL staining compared to AFGP frozen livers, but still exhibited both endothelial and
441 sinusoidal staining in excess of that seen for the glycerol only group. X/Z-1000 livers had a large
442 variation in both ATP and EC levels, which could potentially be explained by the competing
443 mechanisms of action of X-1000/Z-1000 with the potent ice nucleator, Snomax [30]. Snomax
444 would tend to reduce the number of ice crystals and, therefore, to increase their mean size and
445 the range of grain sizes. This might relate to the larger observed size of the sinusoids and to
446 stochastic differences in local nucleation and ice crystal size that affected the consistency of
447 hepatocyte viability. While X/Z-1000 is appealing for its high ATP and EC, the high level of
448 edema after partial freezing is concerning and might also be related to vascular damage caused
449 by larger local intravascular or interstitial ice grains, which would be consistent with previous
450 observations by Rubinsky et al. relating injury in frozen livers to vascular distension by
451 intravascular ice [48]. A future direction related to this ice modulator should be to explore the
452 use of X-1000, which is a recrystallization inhibitor, without the use of Z-1000, which is an
453 antinucleator. On the other hand, total vascular distension should have been similar in all groups,
454 as dictated by the phase diagram of glycerol-water solutions, and yet edema was more moderate
455 in the glycerol-only group. In any case, X/Z-1000 seems promising for use with the isolation or

456 preservation of isolated hepatocytes, for which maintenance of high ATP/EC would be the main
457 goal.

458 Finally, glycerol-only control livers had the lowest lactate levels at t=0 and minimal
459 TUNEL staining. However, these livers also had very low ATP and EC compared to the ice
460 modulator groups. A potential biological reason for this difference is that glycerol induces
461 glycerol kinase to convert glycerol to glycerol-3-phosphate, which is an ATP dependent
462 pathway. Thus, the activity of glycerol as a CPA could depress ATP levels [49]. The
463 extraordinary and unexpected ability of both ice modulators to prevent this has no clear
464 explanation, but it seemed that utilization of glycogen to generate ATP and lactate was more
465 effective in the X/Z-1000 group and to a lesser extent in the AFGP group, based on more intense
466 glycogen staining (suggesting less glycogen metabolism) in the glycerol-only group. It would be
467 interesting to see if structurally unrelated small molecule ice recrystallization inhibitors (IRIs)
468 [50] would have a similar effect and also better protect the vascular system. Without the effects
469 of the ice modulators preventing damaging ice recrystallization, glycerol-only livers also
470 consistently had parenchymal cracks and endothelial cell obliteration on H&E staining, despite
471 adding Snomax and 3-OMG to rescue endothelial cells from partial freezing injury. Thus, the
472 concept of adding ice modulation to the basic methodology for high temperature freezing
473 appears to be well supported. Finally, all liver groups cleared lactate over the 2 hour perfusion
474 and (while incurring hepatocellular damage) had viable H&E histology after perfusion, meeting
475 two criteria for transplantation [51,52]. Thus, future experiments transplanting these partially
476 frozen livers after SNMP can be conducted to assess if perfusion performance correlates with *in*
477 *vivo* hepatic function.

478 Overall, the ideal ice modulator combination to enhance the partial freezing protocol
479 would retain the positive effects of high ATP and high EC seen in X/Z-1000, the low levels of
480 edema with AFGP, without the cellular damage to endothelial and sinusoidal cells seen with both
481 ice modulator groups. Thus, future directions to expand the preservation of livers for
482 transplantation with the partial freezing approach depend on both modifications to the freezing
483 protocol as well as the ice modulator combination. Specifically, increasing the CPA
484 concentration to decrease ice formation at lower temperatures and improving the loading and
485 unloading of CPAs with SNMP could improve liver viability. Additionally, there are other
486 permeating CPAs that could be tested in the partial freezing protocol such as dimethyl sulfoxide,
487 ethylene glycol, N-methylformamide, propylene glycol, and urea [40,53,54]. Finally, altering the
488 base solution from UW to a lower potassium carrying solution could decrease the
489 transmembrane osmotic stress in the unfrozen water fraction.

490 In summary, this research incorporated ice modulators into the rat liver partial freezing
491 protocol to prolong the preservation time of livers. We demonstrated that there was no difference
492 in partially frozen livers with only glycerol at -10°C versus -15°C with respect to perfusion
493 metrics, cellular architecture, and DNA damage. Additionally, we showed that AFGP and X/Z-
494 1000 ice modulators can have beneficial effects on partially frozen rat liver ATP and EC levels,
495 respectively. However, further work on elucidating the optimal ice modulator cocktail is
496 necessary as AFGP livers had high levels of endothelial DNA damage and X/Z-1000 livers
497 suffered from post-freeze edema. Modifications to CPA combinations, as well as improvements
498 to machine perfusion CPA loading and unloading, can help improve the viability of these
499 partially frozen organs.

500

501 **Acknowledgements**

502 This research was funded from the US National Institutes of Health (R01DK114506,
503 R01DK096075, R01DK107875) and NSF ATP-Bio ERC grant (NSF 1941543). Further, we
504 gratefully acknowledge funding to SNT for Career Development from NIH (K99HL1431149-
505 01A1), American Heart Association (18CDA34110049), Harvard Medical School Eleanor and
506 Miles Shore Fellowship, and the Claflin Distinguished Scholar Award on behalf of the MGH
507 Executive Committee on Research. We gratefully acknowledge research support to Omar Haque
508 by the American Liver Foundation (2019 Hans Popper Memorial Postdoctoral Research
509 Fellowship) and the American College of Surgeons (Grant number 1123-39991 scholarship
510 endowment fund).

511

512 **Data availability**

513 The authors declare that the data supporting the findings of this study are available within
514 the paper and its supplementary information files. Any additional data, if needed, will be
515 provided upon request.

516

517

518

519

520

521

522

523

524

525 References

526

527 1. Ray K. Preserving the liver for transplantation. *Nature Reviews Gastroenterology and*
Hepatology. 2018;15(327). doi:10.1038/s41575-018-0024-7

528 2. Taylor MJ, Weegman BP, Baicu SC, Giwa SE. New Approaches to Cryopreservation of

529 Cells, Tissues, and Organs. *Transfusion Medicine and Hemotherapy*. 2019;46(3).
doi:10.1159/000499453

530 3. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, et al. The promise of

531 organ and tissue preservation to transform medicine. *Nature Biotechnology*. 2017;35:530-
532 542. doi:10.1038/nbt.3889

533 4. Yamada K, Sykes M, Sachs DH. Tolerance in xenotransplantation. *Current Opinion in*
Organ Transplantation. 2017;22(6):522-528. doi:10.1097/MOT.0000000000000466

534 5. Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y, et al. Ex-vivo perfusion of

535 donor hearts for human heart transplantation (PROCEED II): A prospective, open-label,
536 multicentre, randomised non-inferiority trial. *Lancet*. 2015;27(9987):2577-2584.
doi:10.1016/S0140-6736(15)60261-6

537 6. Warnecke G, Van Raemdonck D, Smith MA, Massard G, Kukreja J, Rea F, et al.

538 Normothermic ex-vivo preservation with the portable Organ Care System Lung device for

539 bilateral lung transplantation (INSPIRE): a randomised, open-label, non-inferiority, phase

540 3 study. *Lancet Respir Med*. 2018;6(5):357-367. doi:10.1016/S2213-2600(18)30136-X

541 7. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A

542 randomized trial of normothermic preservation in liver transplantation. *Nature*.
2018;557(7703):50-56. doi:10.1038/s41586-018-0047-9

543 8. Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C, et al.

544 An integrated perfusion machine preserves injured human livers for 1 week. *Nat*
Biotechnol. 2020;38:189-198. doi:10.1038/s41587-019-0374-x

545 9. de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, et al. Supercooling

546 extends preservation time of human livers. *Nat Biotechnol*. 2019;37:1131-1136.
doi:10.1038/s41587-019-0223-y

547 10. de Vries R, Tessier SN, Banik PD, Ozer S, Cronin SEJ, Nagpal S, et al. Extending the

548 Human Liver Preservation Time for Transplantation by Supercooling. *Transplantation*.
2018;102:615. doi:10.1097/01.tp.0000543168.17458.55

549 11. Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, et al. Supercooling

550 enables long-term transplantation survival following 4 days of liver preservation. *Nat*
Med. 2014;20(7):790-793. doi:10.1038/nm.3588

551 12. Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. Supercooling

552 preservation and transplantation of the rat liver. *Nat Protoc*. 2015;10(3):484-494.
doi:10.1038/nprot.2015.011

553 13. Zachariassen KE, Kristiansen E. Ice nucleation and antinucleation in nature. *Cryobiology*.
2000;41(4):257-279. doi:10.1006/cryo.2000.2289

554 14. Pegg DE. The relevance of ice crystal formation for the cryopreservation of tissues and

555 organs. *Cryobiology*. 2010;60(3 supp):S36-44. doi:10.1016/j.cryobiol.2010.02.003

556 15. Hunt CJ. Studies on cellular structure and ice location in frozen organs and tissues: The

557 use of freeze-substitution and related techniques. *Cryobiology*. 1984;21(4):385-402.
doi:10.1016/0011-2240(84)90077-4

558

559

560

561

562

563

564

565

566

567

568

569

570 16. Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. Physical and
571 biological aspects of renal vitrification. *Organogenesis*. 2009;5(3):167-175.
572 doi:10.4161/org.5.3.9974

573 17. Fahy GM. Analysis of “solution effects” injury: Cooling rate dependence of the functional
574 and morphological sequellae of freezing in rabbit renal cortex protected with dimethyl
575 sulfoxide. *Cryobiology*. 1981;18(6):550-570. doi:10.1016/0011-2240(81)90123-1

576 18. Tessier SN, Weng L, Moyo WD, Au SH, Wong KHK, Angpraseuth C, et al. Effect of Ice
577 Nucleation and Cryoprotectants during High Subzero-Preservation in Endothelialized
578 Microchannels. *ACS Biomater Sci Eng*. 2018;4(8):3006-3015.
579 doi:10.1021/acsbiomaterials.8b00648

580 19. Ishine N, Rubinsky B, Lee CY. Transplantation of Mammalian Livers Following
581 Freezing: Vascular Damage and Functional Recovery. *Cryobiology*. 2000;40(1):84-89.
582 doi:10.1006/cryo.1999.2225

583 20. Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, et al. Microfluidic
584 experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their
585 growth. *Proc Natl Acad Sci U S A*. 2013;110(4):1309-1314.
586 doi:10.1073/pnas.1213603110

587 21. Kuiper MJ, Morton CJ, Abraham SE, Gray-Weale A. The biological function of an insect
588 antifreeze protein simulated by molecular dynamics. *Elife*. 2015;4: e05142.
589 doi:10.7554/elife.05142

590 22. Weng L, Stott SL, Toner M. Molecular Dynamics at the Interface between Ice and
591 Poly(vinyl alcohol) and Ice Recrystallization Inhibition. *Langmuir*. 2018;34(17): 5116-
592 5123. doi:10.1021/acs.langmuir.7b03243

593 23. Naullage PM, Lupi L, Molinero V. Molecular Recognition of Ice by Fully Flexible
594 Molecules. *J Phys Chem C*. 2017;121(48):26949-26957. doi:10.1021/acs.jpcc.7b10265

595 24. Weng L, Swei A, Toner M. Role of synthetic antifreeze agents in catalyzing ice
596 nucleation. *Cryobiology*. 2018;84:91-94. doi:10.1016/j.cryobiol.2018.08.010

597 25. Eickhoff L, Dreischmeier K, Zipori A, Sirotinskaya V, Adar C, Reicher N, et al.
598 Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation
599 Promoters. *J Phys Chem Lett*. 2019;10(5):966-972. doi:10.1021/acs.jpclett.8b03719

600 26. Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells
601 during directional solidification. *Cryobiology*. 1994;31(5):483-500.
602 doi:10.1006/cryo.1994.1059

603 27. Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. Vitrification
604 enhancement by synthetic ice blocking agents. *Cryobiology*. 2000;40(3):228-236.
605 doi:10.1006/cryo.2000.2243

606 28. Burkey AA, Riley CL, Wang LK, Hatridge TA, Lynd NA. Understanding Poly(vinyl
607 alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement
608 and pH Effects. *Biomacromolecules*. 2018;19(1):248-55.
609 doi:10.1021/acs.biomac.7b01502

610 29. Hasan M, Fayter AER, Gibson MI. Ice Recrystallization Inhibiting Polymers Enable
611 Glycerol-Free Cryopreservation of Microorganisms. *Biomacromolecules*. 2018;19(8):
612 3371-3376. doi:10.1021/acs.biomac.8b00660

613 30. Wowk B, Fahy GM. Inhibition of bacterial ice nucleation by polyglycerol polymers.
614 *Cryobiology*. 2002;44(1):14-23. doi:10.1016/S0011-2240(02)00008-1

615 31. Amir G, Horowitz L, Rubinsky B, Yousif BS, Lavee J, Smolinsky AK. Subzero

616 nonfreezing cryopreservation of rat hearts using antifreeze protein I and antifreeze protein
617 III. *Cryobiology*. 2004;48(3):273-282. doi:10.1016/j.cryobiol.2004.02.009

618 32. Amir G, Rubinsky B, Horowitz L, Miller L, Leor J, Kassif Y, et al. Prolonged 24-hour
619 subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins
620 derived from arctic fish. *Ann Thorac Surg*. 2004;77(5):1648-1655.
621 doi:10.1016/j.athoracsur.2003.04.004

622 33. Amir G, Rubinsky B, Basheer SY, Horowitz L, Jonathan L, Feinberg MS, et al. Improved
623 viability and reduced apoptosis in sub-zero 21-hour preservation of transplanted rat hearts
624 using anti-freeze proteins. *J Heart Lung Transplant*. 2005;24(11):1915-1929.
625 doi:10.1016/j.healun.2004.11.003

626 34. Watson CJ, Jochmans I. From "Gut Feeling" to Objectivity: Machine Preservation of the
627 Liver as a Tool to Assess Organ Viability. *Curr Transplant Reports*. 2018;5(1):72-81.
628 doi:10.1007/s40472-018-0178-9

629 35. de Vries RJ, Yarmush M, Uygun K. Systems engineering the organ preservation process
630 for transplantation. *Current Opinion in Biotechnology*. 2019;58:192-201.
631 doi:10.1016/j.copbio.2019.05.015

632 36. Campbell BK, Hernandez-Medrano J, Onions V, Pincott-Allen C, Aljaser F, Fisher J, et
633 al. Restoration of ovarian function and natural fertility following the cryopreservation and
634 autotransplantation of whole adult sheep ovaries. *Hum Reprod*. 2014;29(8):1749-1763.
635 doi:10.1093/humrep/deu144

636 37. Hamilton R, Holst HI, Lehr HB. Successful preservation of canine small intestine by
637 freezing. *J Surg Res*. 1973;14(4):313-318. doi:10.1016/0022-4804(73)90033-4

638 38. Lin JH, Carroll PM. The effect of calcium and magnesium on frozen rat uteri, and the
639 calcium content of uteri frozen by various procedures. *Cryobiology*. 1968;5(2):105-108.
640 doi:10.1016/S0011-2240(68)80151-8

641 39. Taylor MJ, Pegg DE. The effect of ice formation on the function of smooth muscle tissue
642 stored at -21 or -60 °C. *Cryobiology*. 1983;20(1):36-40. doi:10.1016/0011-
643 2240(83)90057-3

644 40. Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. Cryopreservation of organs
645 by vitrification: Perspectives and recent advances. *Cryobiology*. 2004;48(2):157-178.
646 doi:10.1016/j.cryobiol.2004.02.002

647 41. Farrant J. Mechanism of cell damage during freezing and thawing and its prevention.
648 *Nature*. 1965;205:1284-1287. doi:10.1038/2051284a0

649 42. Libbrecht KG. Physical Dynamics of Ice Crystal Growth. *Annu Rev Mater Res*.
650 2017;47:271-295. doi:10.1146/annurev-matsci-070616-124135

651 43. Van den Ende W. Multifunctional fructans and raffinose family oligosaccharides.
652 *Frontiers in Plant Science*. 2013;4:247. doi:10.3389/fpls.2013.00247

653 44. Urbańczyk M, Góra J, Latajka R, Sewald N. Antifreeze glycopeptides: from structure and
654 activity studies to current approaches in chemical synthesis. *Amino Acids*.
655 2017;49(2):209-222. doi:10.1007/s00726-016-2368-z

656 45. Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, et al. Antifreeze peptides and
657 glycopeptides, and their derivatives: Potential uses in biotechnology. *Marine Drugs*.
658 2013;11(6):2013-2041. doi:10.3390/MD11062013

659 46. Mugnano JA, Wang T, Layne JR, DeVries AL, Lee RE. Antifreeze glycoproteins promote
660 intracellular freezing of rat cardiomyocytes at high subzero temperatures. *Am J Physiol -
661 Regul Integr Comp Physiol*. 1995;269(2):474-479. doi:10.1152/ajpregu.1995.269.2.r474

662 47. Hunt CJ, Taylor MJ, Pegg DE. Freeze-substitution and isothermal freeze-fixation studies
663 to elucidate the pattern of ice formation in smooth muscle at 252 K (-21°C). *J Microsc.*
664 1982;125(2):177-186. doi:10.1111/j.1365-2818.1982.tb00335.x

665 48. Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of
666 damage during hepatic cryosurgery. *Cryobiology.* 1990;27(1):85-97. doi:10.1016/0011-
667 2240(90)90055-9

668 49. Robinson J, Newsholme EA. Some properties of hepatic glycerol kinase and their relation
669 to the control of glycerol utilization. *Biochem J.* 1969;112(4):455-464.
670 doi:10.1042/bj1120455

671 50. Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice
672 recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming
673 and thawing. *Sci Rep.* 2016;29(6):23619. doi:10.1038/srep23619

674 51. Tolboom H, Pouw R, Uygun K, Tanimura Y, Izamis ML, Berthiaume F, et al. A model
675 for normothermic preservation of the rat liver. *Tissue Eng.* 2007;13(8):2143-2151.
676 doi:10.1089/ten.2007.0101

677 52. Nösser M, Gassner JMGV, Moosburner S, Wyrwal D, Claussen F, Hillebrandt KH, et al.
678 Development of a Rat Liver Machine Perfusion System for Normothermic and
679 Subnormothermic Conditions. *Tissue Eng Part A.* 2020;26(1):57-65.
680 doi:10.1089/ten.tea.2019.0152

681 53. Katenz E, Vondran FWR, Schwartlander R, Pless G, Gong X, Cheng X, et al.
682 Cryopreservation of primary human hepatocytes: The benefit of trehalose as an additional
683 cryoprotective agent. *Liver Transplant.* 2007;13(1):38-45. doi:10.1002/lt.20921

684 54. Spindler R, Wolkers WF, Glasmacher B. Dimethyl sulfoxide and ethylene glycol promote
685 membrane phase change during cryopreservation. *Cryo-Letters.* 2011;32(2):148-157.
686
687

688

689

690

691

692

693

694

695

696

697

698

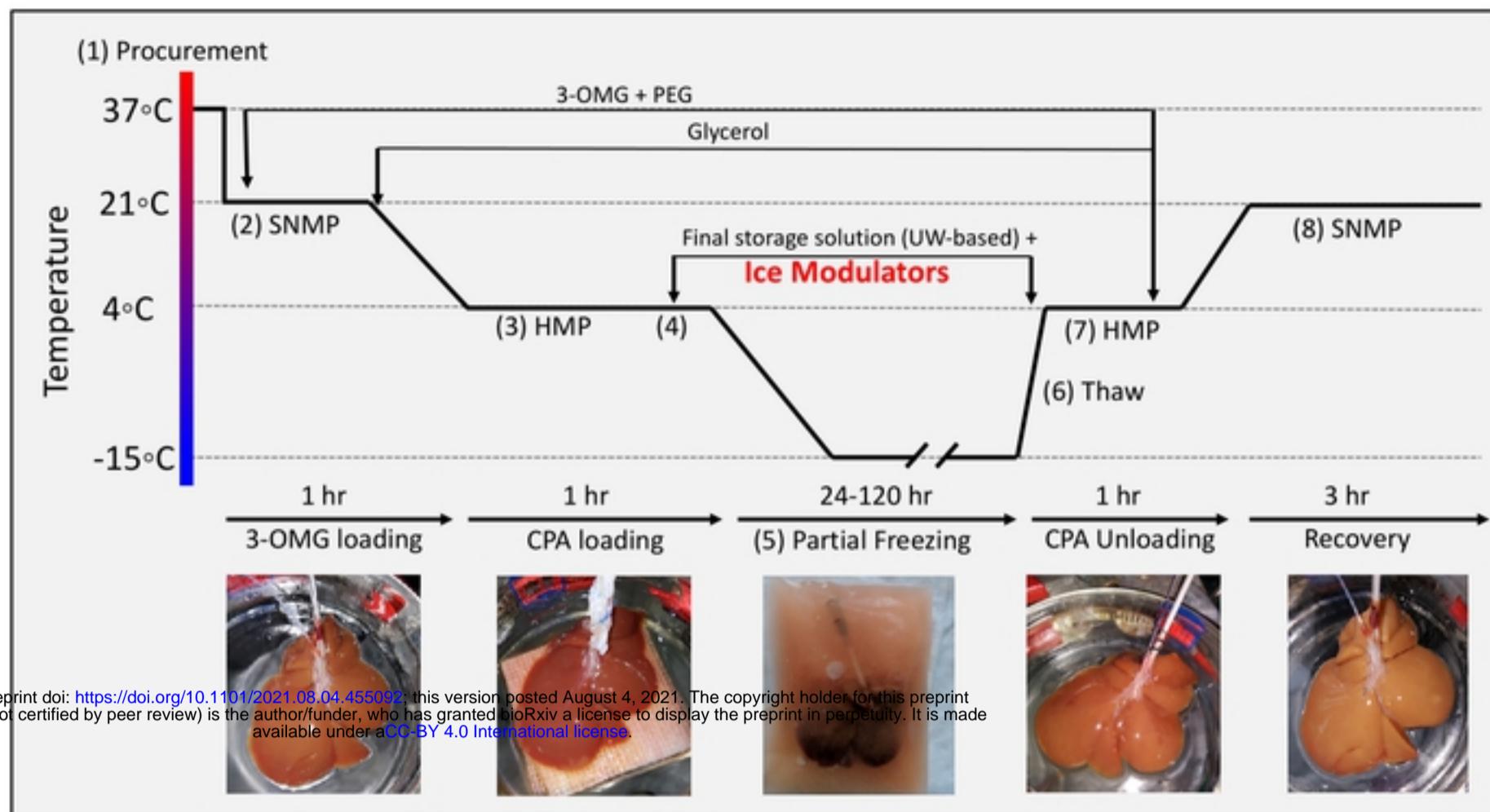
699

700

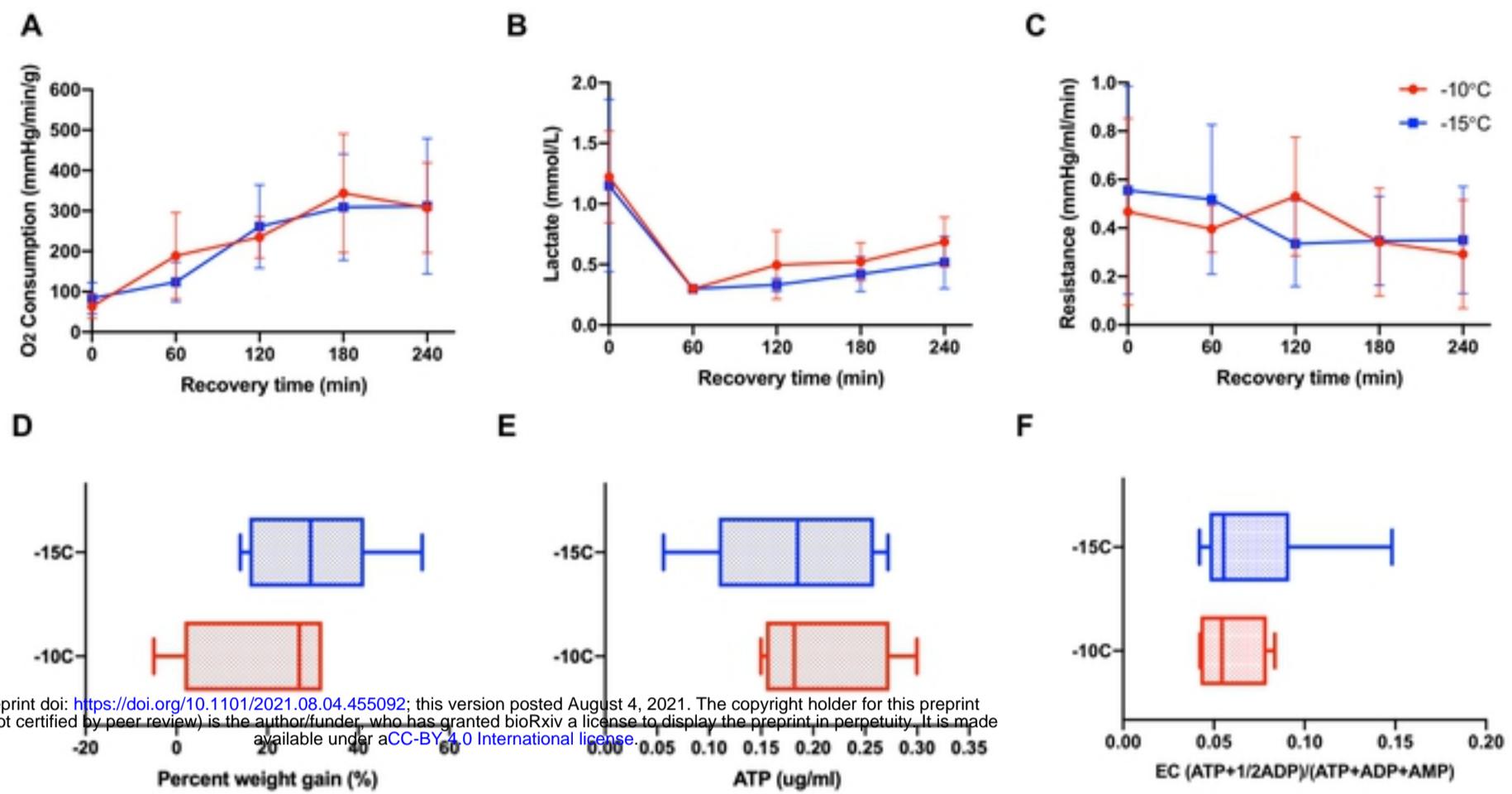
701

702

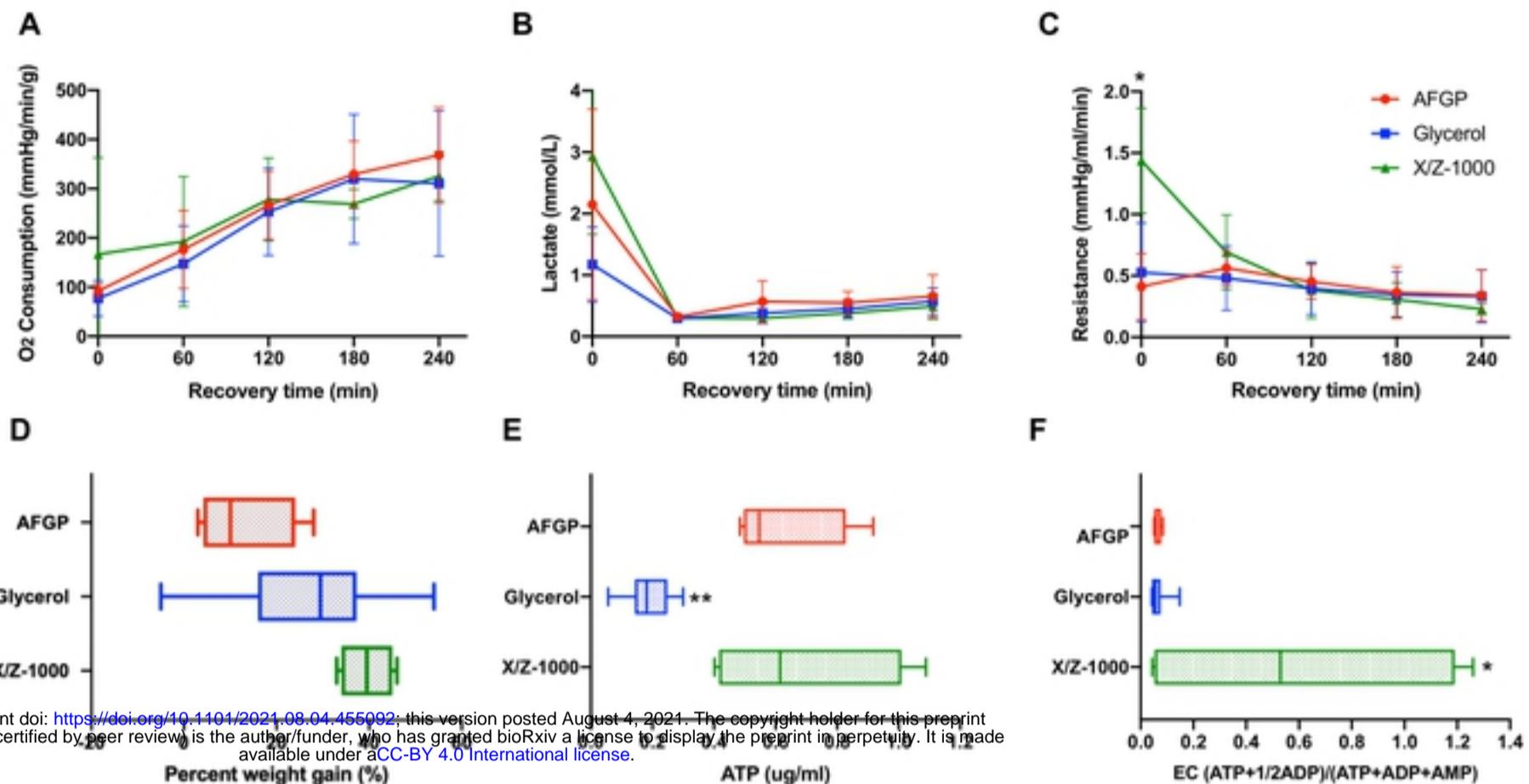
703 **Supplemental Table 1:** Composition of all solutions used in each phase of the partial freezing
704 protocol. WE = Williams E, UW = University of Wisconsin, PEG = polyethylene glycol, BSA =
705 bovine serum albumin, HES = hydroxyethyl starch, 3-OMG = 3-O-methyl-D-glucose, CPA =
706 cryoprotective agent, INA = ice nucleating agents, U/l = Units per liter, *present in UW solution.
707
708


	Subnormothermic Preconditioning solution	Hypothermic Preloading solution	Storage Solution	Thawing Solution	Subnormothermic Recovery Solution
Base solution	WE	WE	UW	WE	WE
Total volume	250 ml	250 ml	100 ml	250 ml	500 ml
Additives					
Insulin	200 U/l	200 U/l	10 U/l	10 U/l	20 U/l
Heparin	10,000 U/l	4,000 U/l	---	1,000 U/l	1,000 U/l
Dexamethasone	24 mg/l	24 mg/l	24 mg/l	24 mg/l	24 mg/l
Hydrocortisone	25 mg/ml	25 mg/ml	---	25 mg/ml	25 mg/ml
Penicillin	40,000 ug/l	40,000 ug/l	---	40,000 ug/l	40,000 ug/l
Streptomycin	40,000 U/l	40,000 U/l	---	40,000 U/l	40,000 U/l
Glutathione	---	---	0.922 g/l*	1.536 g/l	1.536 g/l
Macromolecules					
35 kDa PEG	20 g/l	20 g/l	50 g/l	20 g/l	20 g/l
BSA	50 g/l	50 g/l	---	50 g/l	50 g/l
HES	---	30 g/l	50 g/l*	30 g/l	---
Saccharides					
3-OMG	19.42 g/l	19.42 g/l	---	19.42 g/l	---
Raffinose	---	15.12 g/l	17.83 g/l*	15.12 g/l	---
Trehalose	---	---	18.92 g/l	18.92 g/l	---
CPA / INA					
Glycerol	---	60 ml/l	120 ml/l	---	---
Snomax	---	---	1 g/l	---	---

709
710
711
712
713
714
715


716 **Supplemental Table 2: List of suppliers for each reagent used in partial freezing solutions.**

<i>Reagent</i>	<i>Supplier</i>
University of Wisconsin (UW) solution	Bridge to Life
Williams' Medium E	Sigma-Aldrich
Insulin (Humulin R)	MGH pharmacy
Sodium heparin	MGH pharmacy
Dexamethasone	Sigma-Aldrich
Hydrocortisone	MGH pharmacy
Penicillin-Streptomycin	Invitrogen
L-Glutathione	Sigma-Aldrich
Bovine Serum Albumin (BSA)	Sigma-Aldrich
35kDa Polyethylene glycol (PEG)	Sigma-Aldrich
3-O-methyl glucose	Chem-Impex
D-(+)-Trehalose dihydrate	Sigma-Aldrich
Glycerol	Fisher Scientific
Antifreeze glycopeptides (AFGP)	A/F Protein Inc.
X/Z-1000	21st Century Medicine
Snomax	Telemet


717

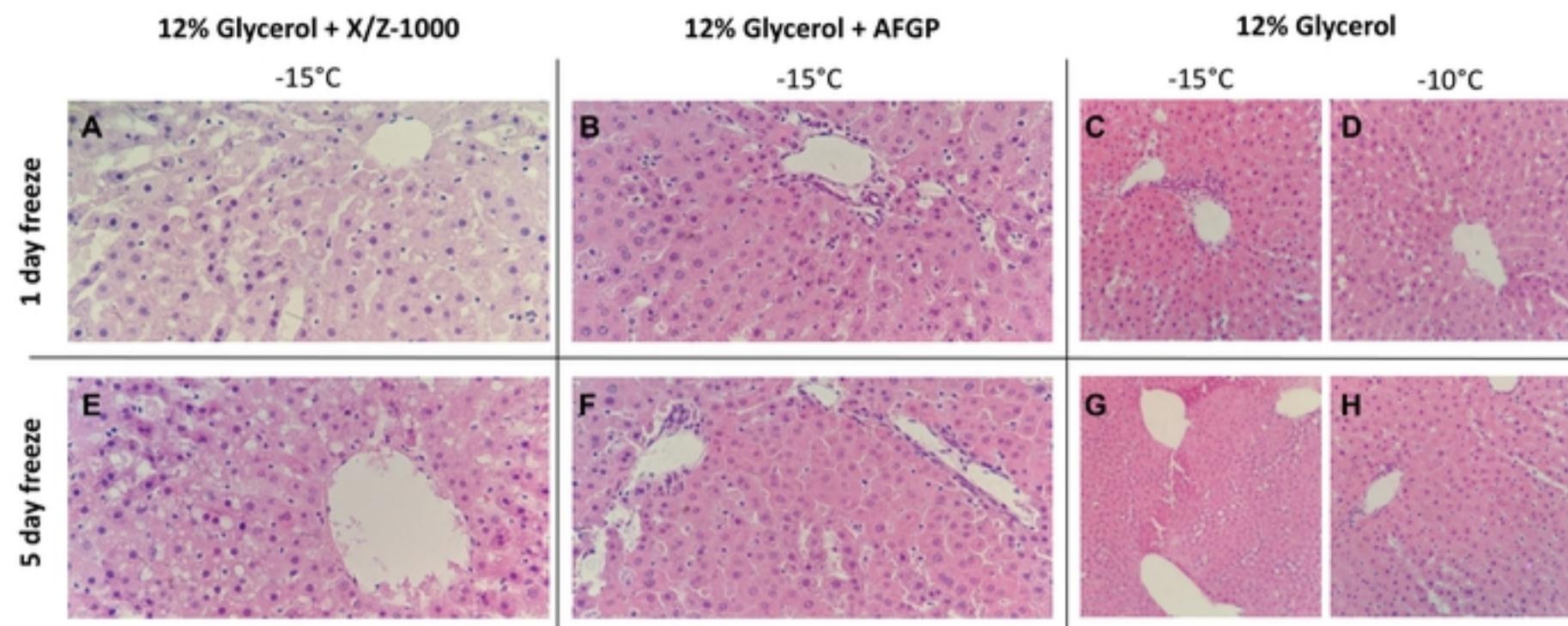

Figure 1: Experimental design of partial freezing, in 8 consecutive steps: (1) liver procurement, (2) preconditioning during SNMP, (3) CPA preloading during hypothermic machine perfusion (HMP), (4) loading of final storage solution and ice modulators during HMP, (5) partial freezing of rat liver, (6) thawing of rat liver, (7) unloading of CPAs during HMP, and (8) functional recovery of frozen rat livers during SNMP.

Figure 2: Perfusion metrics comparing partially frozen rat livers stored for 1 (n=6) and 5 (n=7) days at -10°C (n = 4) vs -15°C (n = 9) with 12% glycerol and 4 hours of recovery during SNMP revealed no functional differences between the groups. **(A)** oxygen consumption, defined as outflow oxygen minus inflow oxygen, adjusted for liver weight and flow rate, **(B)** inflow lactate, **(C)** resistance, defined as the perfusion pressure in the PV divided by the flow rate and adjusted for liver weight after procurement, **(D)** percent weight gain, defined as percentage increase of liver weight at the end of recovery compared to liver weight after procurement, **(E)** ATP, **(F)** energy charge. Two-way ANOVA, followed by Tukey's post-hoc test for A-C. Unpaired two-tailed t-test for D-F. Boxes: median with interquartile range. Whiskers: min to max. Significance level: $p < 0.05$.

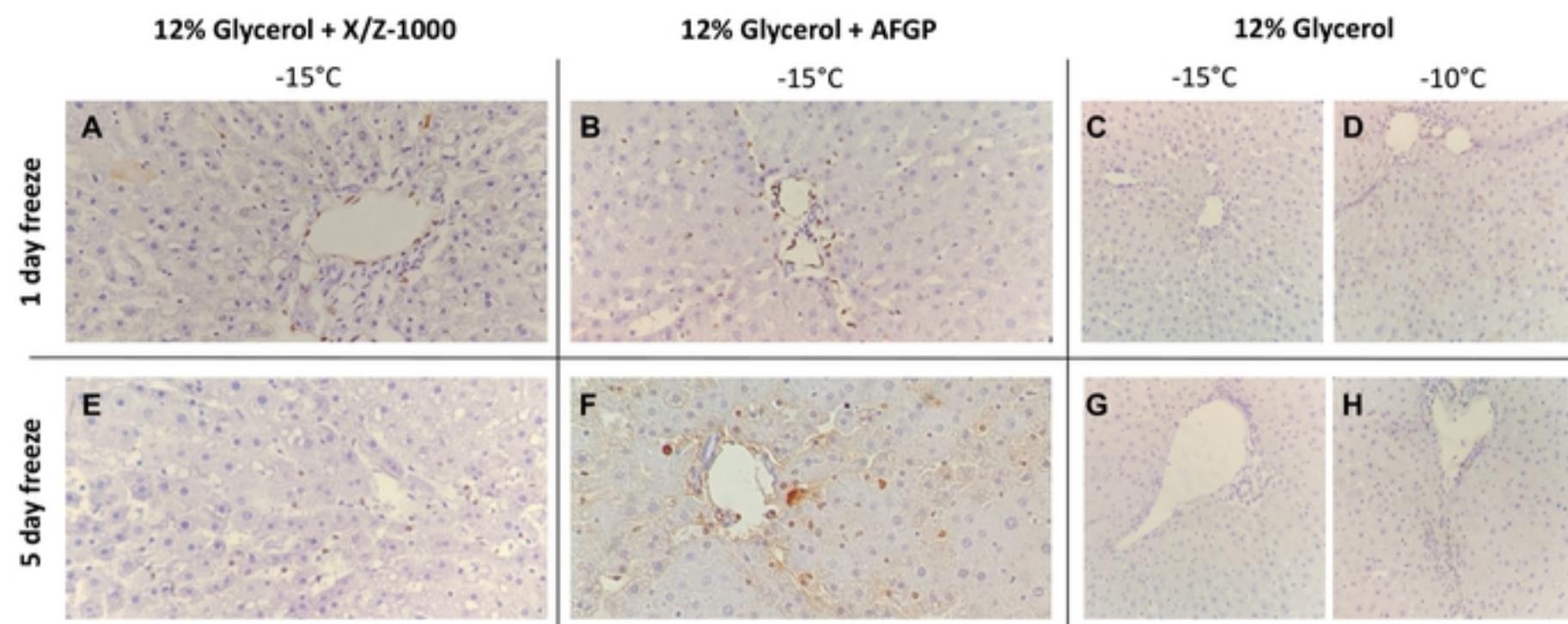


Figure 3: Perfusion metrics comparing rat livers partially frozen at -15°C with AFGP (n=4) or with X/Z-1000 ice modulators (n=4) versus 12% glycerol control (n=13), with 4 hours of recovery during SNMP. There was higher t=0 resistance and energy charge in X/Z-1000 livers, and lower ATP levels in glycerol livers. **(A)** oxygen consumption, defined as outflow oxygen minus inflow oxygen, adjusted for liver weight and flow rate, **(B)** portal vein lactate, **(C)** vascular resistance, defined as the perfusion pressure in the PV divided by the flow rate and adjusted for liver weight after procurement, **(D)** percent weight gain, defined as percentage increase of liver weight at the end of recovery compared to liver weight after procurement, **(E)** ATP, **(F)** energy charge. Stars denote statistical significance (two-way ANOVA, followed by Tukey's post-hoc test for A-C, one-way ANOVA, followed by Tukey's post-hoc test for D-F): * $0.01 < p < 0.05$; ** $0.001 < p < 0.01$. Error bars represent standard deviation. Boxes: median with interquartile range. Whiskers: min to max.

Figure 4: 40X H&E staining of rat liver parenchyma after partial freezing for 1 day (A-D) and 5 days (E-H) with X/Z-1000, AFGP, or 12% glycerol only.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.04.455092>; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 5: 40X Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of rat liver sections after different freezing for 1 day (A-D) and 5 days (E-H) with X/Z-1000, AFGP ice modulators versus 12% glycerol only.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.08.04.455092>; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.