

1 **Genetic evidence reveals the indispensable role of the *rseC* gene for autotrophy and the importance**
2 **of a functional electron balance for nitrate reduction in *Clostridium ljungdahlii***

3 Christian-Marco Klask¹, Benedikt Jäger¹, Largus T. Angenent^{1,2,3}, and Bastian Molitor^{1,2,*}

4 ¹ Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen,
5 Schnarrenbergstraße 94-96, 72076 Tübingen, Germany

6 ² Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Germany

7 ³ AG Angenent, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076 Tübingen,
8 Germany

9 * Corresponding author: bastian.molitor@uni-tuebingen.de

10

11 **Key words**

12 Acetogenic bacteria, *Clostridium ljungdahlii*, CRISPR, RNF-gene cluster, nitrate reduction, autotrophy

13 **Abstract**

14 For *Clostridium ljungdahlii*, the RNF complex plays a key role for energy conversion from gaseous
15 substrates such as hydrogen and carbon dioxide. In a previous study, a disruption of RNF-complex
16 genes led to the loss of autotrophy, while heterotrophy was still possible *via* glycolysis. Furthermore,
17 it was shown that the energy limitation during autotrophy could be lifted by nitrate supplementation,
18 which resulted in an elevated cellular growth and ATP yield. Here, we used CRISPR-Cas12a to delete:
19 1) the RNF complex-encoding gene cluster *rnfCDGEAB*; 2) the putative RNF regulator gene *rseC*; and
20 3) a gene cluster that encodes for a putative nitrate reductase. The deletion of either *rnfCDGEAB* or
21 *rseC* resulted in a complete loss of autotrophy, which could be restored by plasmid-based
22 complementation of the deleted genes. We observed a transcriptional repression of the RNF-gene
23 cluster in the *rseC*-deletion strain during autotrophy and investigated the distribution of the *rseC* gene
24 among acetogenic bacteria. To examine nitrate reduction and its connection to the RNF complex, we
25 compared autotrophic and heterotrophic growth of our three deletion strains with either ammonium
26 or nitrate. The *rnfCDGEAB*- and *rseC*-deletion strains failed to reduce nitrate as a metabolic activity in
27 non-growing cultures during autotrophy but not during heterotrophy. In contrast, the nitrate
28 reductase deletion strain was able to grow in all tested conditions but lost the ability to reduce nitrate.
29 Our findings highlight the important role of the *rseC* gene for autotrophy and contribute to understand
30 the connection of nitrate reduction to energy metabolism.

31 **Significance Statement**

32 Acetogenic bacteria are widely known for their ability to convert gaseous substrates, such as
33 hydrogen, carbon dioxide, and carbon monoxide, into short-chain fatty acids and alcohols, which can
34 be utilized as sustainable platform chemicals and fuels. However, acetogenic bacteria conserve energy
35 at the thermodynamic limit of life during autotrophy, and thus the production of more complex and
36 energy-dense chemicals is limited due to low ATP yields. Therefore, it is key to decipher the interplay
37 of the electron balancing reactions to understand and optimize the acetogenic metabolism. Recent
38 findings with alternative electron acceptors that accelerated the cellular growth and ATP yield during
39 autotrophy, such as nitrate, provide an opportunity to overcome energetic barriers in the acetogenic
40 metabolism. The interrogation of the nitrate metabolism and the interplay between nitrate reduction
41 and energy conservation in *C. ljungdahlii*, will contribute to fine-tuning of the acetogenic metabolism
42 for biotechnological applications.

43

44 Introduction

45 Acetogenic bacteria (*i.e.*, acetogens), such as *Clostridium ljungdahlii*, maintain autotrophic growth
46 with mixtures of the gaseous substrates carbon dioxide, carbon monoxide, and hydrogen as carbon
47 and energy sources (1, 2). The pathway that allows carbon fixation for autotrophic growth in
48 acetogens is the Wood-Ljungdahl pathway (3, 4). Overall, the Wood-Ljungdahl pathway is considered
49 the most energy-efficient pathway for carbon fixation that exists in nature (5, 6). In the Wood-
50 Ljungdahl pathway, two molecules of carbon dioxide are reduced to one carbonyl group and one
51 methyl group, which are then combined with coenzyme A to the central metabolite acetyl-coenzyme
52 A (7). The electrons for these reductions can be derived from the oxidation of hydrogen or carbon
53 monoxide, while carbon monoxide can also enter the pathway directly to provide the carbonyl group
54 (8). For carbon fixation, acetyl-coenzyme A is channeled into the anabolism for cellular growth (9). For
55 energy conservation, acetyl-coenzyme A is converted to acetate, which generates cellular energy by
56 substrate level phosphorylation (10). One mole of ATP is generated per mole of acetate that is
57 produced. However, in the first step of the pathway, after carbon dioxide was reduced to formate,
58 one mole of ATP is invested to activate the formate to formyl-tetrahydrofolate (3, 4). Thus, the energy
59 balance of the Wood-Ljungdahl pathway alone is net zero (10). All required cellular energy for the
60 anabolism of the microbes during autotrophy is generated *via* membrane-coupled phosphorylation
61 (2). In *C. ljungdahlii*, the membrane-bound transhydrogenase *Rhodobacter* nitrogen fixation (RNF)
62 complex (11, 12) utilizes two electrons from the oxidation of reduced ferredoxin to reduce NAD⁺ to
63 NADH, while simultaneously one proton is translocated across the membrane (10, 13). A proton-
64 dependent F₁F₀ ATPase then consumes the chemiosmotic proton gradient to generate ATP (14, 15).
65 In the presence of carbon dioxide and hydrogen, theoretically, *C. ljungdahlii* can generate a maximum
66 of 0.63 moles ATP per mole acetate for the anabolism *via* membrane-coupled phosphorylation. Thus,
67 the conservation of cellular energy during autotrophy occurs at the thermodynamic limit of life (10).

68 For *C. ljungdahlii*, the RNF complex is encoded by the RNF-gene cluster *rnfCDGEAB*. Although the RNF
69 complex plays an essential role for energy conservation during autotrophy in *C. ljungdahlii* (13),
70 fundamental knowledge about the regulation and gene expression control of the encoding RNF-gene
71 cluster is missing. Transcriptome studies with *C. ljungdahlii* revealed that the RNF complex is under
72 strict gene expression control and strongly induced during autotrophy (15, 16). The regulatory
73 mechanisms behind this remain unknown. However, the small gene *rseC*, which is located directly
74 upstream of *rnfC* in *C. ljungdahlii*, is also highly expressed during autotrophy and follows the
75 expression profile of *rnfC* (15). The gene *rseC* is annotated to contain the conserved protein domain
76 family RseC_MucC (pfam04246) (14). The domain family RseC_MucC is found in positive

77 transcriptional regulators in other microbes. The one representative, RseC, was found to be involved
78 in the oxidative stress response in *Escherichia coli* (17-19), and in thiamine synthesis in *Salmonella*
79 *typhimurium* (20). The other representative, MucC, was found to be involved in the regulation of the
80 alginate formation of *Azotobacter vinelandii* (21) and *Pseudomonas aeruginosa* (22). Others identified
81 a transcription start site for *C. ljungdahlii*, which is located upstream of the *rseC* gene, and a putative
82 terminator sequence, which is located between *rseC* and *rnfC* were identified. This indicates that *rseC*
83 is expressed as an individual transcript apart from the RNF-gene cluster transcripts (15). Altogether,
84 this leads to the assumption that the *rseC* gene product is closely linked to the RNF complex, and could
85 be important for the regulation of autotrophy in *C. ljungdahlii*.

86 While autotrophy in acetogens results in low cellular energy yields, Emerson *et al.* (23) reported that
87 *C. ljungdahlii* is able to couple the reduction of nitrate to the generation of ATP during growth with
88 carbon dioxide and hydrogen. This relieved the energy limitation during autotrophy and resulted in a
89 significantly higher biomass yield (23). We confirmed this in a bioreactor study, and biomass yields
90 were considerably higher with nitrate, but resulted in stochastic crashes of the continuous bioreactor
91 cultures (24). Emerson *et al.* (23) proposed that electrons, which are required for nitrate reduction,
92 are provided by NADH. One route to regenerate NADH is by the RNF complex where reduced
93 ferredoxin is consumed (11), which would link nitrate reduction to the energy metabolism. It was
94 assumed that nitrate reduction is accelerating the RNF-complex activity and more protons are
95 translocated across the membrane, which can be used by the F₁F₀ ATPase for the generation of ATP
96 (23). This way, the co-utilization of carbon dioxide and nitrate with hydrogen was suggested to yield
97 up to 1.5 ATP through the concerted action of the RNF complex and the ATPase (23). This would be a
98 2.4-fold increase in ATP yield compared to the ATP yield with carbon dioxide and hydrogen alone (10).

99 To investigate the autotrophy in *C. ljungdahlii* with respect to regulatory aspects and the interplay
100 with nitrate reduction, we addressed three main questions: **1)** Is the *rseC* gene involved in the
101 regulation of the RNF-gene cluster?; **2)** Is nitrate reduction dependent on a functional RNF complex?;
102 and **3)** Is nitrate reduction abolished by the deletion of the nitrate reductase that is annotated in the
103 genome of *C. ljungdahlii*?

104 Results

105 A full deletion of the RNF complex confirmed its indispensable role for autotrophy in *C. ljungdahlii*

106 We first attempted to generate a full deletion of the RNF-gene cluster to further investigate
107 autotrophy in *C. ljungdahlii*. Others had demonstrated that a mutant strain of *C. ljungdahlii*, for which
108 the *rnfAB* genes were disrupted with an antibiotic resistance cassette, had lost the ability to grow

109 during autotrophy (13). However, this genome modification was not stable, and the wild-type
110 genotype was restored during the cultivation time of the experiments (13). In addition, it was
111 demonstrated recently that a full RNF-gene cluster deletion led to the loss of autotrophic growth in
112 the acetogen *Acetobacterium woodii* (25). Here, we achieved a full deletion of the RNF-gene cluster
113 in *C. ljungdahlii* with a clustered regularly interspaced short palindromic repeats (CRISPR)-associated
114 protein 12a (CRISPR-Cas12a) system, which we implemented and used to generate all deletion strains
115 in this study (**Fig. 1A, Supplementary Text S1A**).

116 After successfully generating the RNF-gene cluster deletion strain (*C. ljungdahlii* Δ RNF) and confirming
117 the identity of this strain (**Fig. 1B, Supplementary Text S1B**), we compared the growth of *C. ljungdahlii*
118 wild-type (WT) to the growth of *C. ljungdahlii* Δ RNF. We performed growth experiments with carbon
119 dioxide and hydrogen (autotrophy) and with fructose (heterotrophy), while we added equimolar
120 amounts of either ammonium or nitrate as nitrogen source to the medium for both autotrophy and
121 heterotrophy (**Materials and Methods, Fig. 2, Supplementary Fig. S1**). We had added a small amount
122 of yeast extract (0.1 weight-%) in all cultivation conditions (**Material and Methods**). As expected, we
123 observed growth for *C. ljungdahlii* WT in all growth experiments (**Fig. 2A, Supplementary Fig. S1A**).
124 However, the nitrogen source had a distinct influence on the growth rate, final OD₆₀₀, fermentation
125 product spectrum, and pH (**Table 1, Fig. 2B, Supplementary Text S1C, Supplementary Fig. S1B**). We
126 found that nitrate reduction occurred rapidly in our growth experiments (**Fig. 2F, Supplementary Fig.**
127 **S1F**). *C. ljungdahlii* WT utilized all provided nitrate within 53 h of cultivation with carbon dioxide and
128 hydrogen (**Fig. 2F**) and within 47 h of cultivation with fructose (**Supplementary Fig. S1F**). The
129 ammonium concentrations increased concomitant with decreasing nitrate concentrations when
130 nitrate was provided in the medium (**Fig. 2E, Supplementary Fig. S1E**). Noteworthy, we also observed
131 an increase in the ammonium concentration when ammonium was provided as the nitrogen source
132 during autotrophy (**Fig. 2F**). We did not measure any nitrite as an intermediate of the nitrate reduction
133 pathway (discussed below).

134 In contrast, the *C. ljungdahlii* Δ RNF strain was unable to grow with carbon dioxide and hydrogen
135 regardless of the nitrogen source (**Fig. 2A**). We did not observe a pH decrease, and also not an
136 accumulation of ethanol as a metabolic activity of non-growing cultures of *C. ljungdahlii* Δ RNF,
137 however, some minor amounts of acetate were detected (**Fig. 2B, 2C, 2D, Table 1**). Furthermore,
138 nitrate reduction as a metabolic activity of non-growing cultures was not detectable in *C. ljungdahlii*
139 Δ RNF with carbon dioxide and hydrogen (**Fig. 2F**). Thus, we confirmed the essential role of the RNF
140 complex for autotrophy in *C. ljungdahlii*.

141 **The deletion of the RNF complex influenced nitrate reduction during heterotrophy**

142 For the *C. ljungdahlii* Δ RNF strain, heterotrophic growth with fructose was still possible but notably
143 reduced (**Fig. 1C, Supplementary Fig. S1A**). The growth rates of *C. ljungdahlii* Δ RNF were significantly
144 reduced by 34% ($0.052 \text{ h}^{-1}, P \leq 0.001$) and by 42% ($0.042 \text{ h}^{-1}, P \leq 0.001$) with ammonium and nitrate,
145 respectively, when compared to *C. ljungdahlii* WT (**Table 1, Supplementary Table S1**). The observed
146 maximum OD₆₀₀ values were also significantly reduced by 53% ($P \leq 0.001$) and 56% ($P \leq 0.001$) for *C.*
147 *ljungdahlii* Δ RNF, respectively (**Table 1, Supplementary Table S1A**). In addition, the maximum acetate
148 concentrations in the deletion strain were significantly reduced by 32% ($P \leq 0.001$) with ammonium
149 and by 42% ($P \leq 0.001$) with nitrate compared to the maximum acetate concentration in the wild type.
150 The maximum ethanol concentration was significantly reduced by 41% ($P \leq 0.001$) with fructose and
151 ammonium, while ethanol was not produced at all by *C. ljungdahlii* Δ RNF during growth with fructose
152 and nitrate (**Table 1, Supplementary Fig. S1C, S1D**). During heterotrophy, *C. ljungdahlii* Δ RNF was able
153 to utilize nitrate but considerably slower when compared to *C. ljungdahlii* WT (**Supplementary Fig.**
154 **S1F**). At the end of the cultivation, cultures of *C. ljungdahlii* Δ RNF had only consumed 49% of the
155 provided nitrate (**Supplementary Fig. S1F**). Overall, we observed a halt in growth and metabolic
156 activity for cultures of *C. ljungdahlii* Δ RNF with fructose after 47 h of cultivation in nitrate-containing
157 medium and after 56 h of cultivation in ammonium-containing medium (**Supplementary Fig. S1**).
158 Fructose concentrations at the end of the cultivation remained at a concentration of 8.0-9.7 mM,
159 which is still 30-35% of the initially provided concentration (**Supplementary Fig. S1G**). The pH did not
160 increase during heterotrophy with nitrate in *C. ljungdahlii* Δ RNF, but instead slowly decreased until
161 the end of the cultivation (**Supplementary Fig. S1B**). Notably, the final pH for heterotrophic cultures
162 of *C. ljungdahlii* Δ RNF with nitrate was still higher compared to cultures with ammonium
163 (**Supplementary Fig. S1B**). For none of the culture samples with *C. ljungdahlii* Δ RNF during
164 heterotrophy, decreasing ammonium concentrations were observed, even when ammonium was
165 provided as the nitrogen source (**Supplementary Fig. S1E**). Overall, we confirmed that the RNF
166 complex plays a pivotal role for the distribution of electrons in the metabolism of *C. ljungdahlii* during
167 heterotrophy, but that it was not essential in these conditions.

168 **The *rseC* gene is essential for autotrophy in *C. ljungdahlii***

169 After we confirmed the indispensable role of the RNF complex for autotrophy and the influence on
170 nitrate reduction during heterotrophy, we investigated the role of the small putative regulator gene
171 *rseC* (CLJU_c11350), which is located directly upstream of the *rnfCDGEAB* gene cluster. A
172 transcriptomic study with *C. ljungdahlii* had revealed that *rseC* is expressed in a similar pattern
173 compared to *rnfC* and is highly expressed during autotrophy (15). We applied our CRISPR-Cas12a
174 system to delete the *rseC* gene from the genome (**Supplementary Fig. S2A**). Next, we performed
175 growth experiments with the generated *C. ljungdahlii* Δ rseC strain under the same conditions as for

176 the *C. ljungdahlii* WT and Δ RNF strains. Cultures of *C. ljungdahlii* Δ rseC did not grow with carbon
177 dioxide and hydrogen, neither with ammonium nor with nitrate, during a total cultivation time of 189
178 h (Fig. 2). Non-growing cultures for this strain did not accumulate notable concentrations of acetate
179 or ethanol during the cultivation time (Fig. 2C, 2D). Furthermore, we did not observe nitrate reduction
180 or a remarkable change in pH as a metabolic activity of non-growing cultures for this strain during
181 autotrophy (Fig. 2B, 2E, 2F).

182 Heterotrophic growth of *C. ljungdahlii* Δ rseC was possible, and in contrast to *C. ljungdahlii* Δ RNF, the
183 impact was less pronounced for growth with ammonium but limited to some extent with nitrate
184 (Supplementary Fig. S1A). Heterotrophic growth rates were increased by 6% (0.084 h^{-1} , $P = 0.08$) with
185 ammonium and significantly reduced by 34% (0.048 h^{-1} , $P \leq 0.001$) with nitrate as nitrogen source,
186 respectively, when compared to *C. ljungdahlii* WT under the same conditions (Supplementary Table
187 1). The maximum observed OD₆₀₀ values for *C. ljungdahlii* Δ rseC were 1.90 ± 0.15 for ammonium and
188 1.58 ± 0.03 for nitrate cultures, which is a reduction of 24% ($P = 0.05$) and a significant reduction of 30%
189 ($P \leq 0.001$) compared to the wild type. The maximum acetate concentrations of *C. ljungdahlii* Δ rseC
190 were similar to those observed for *C. ljungdahlii* WT, while the maximum ethanol concentrations were
191 significantly reduced by 29% ($P \leq 0.001$) for ammonium cultures and by 42% ($P \leq 0.001$) for nitrate
192 cultures instead (Supplementary Table 1, Supplementary Fig. S1C, S1D). Nitrate reduction was not
193 restricted during heterotrophy in *C. ljungdahlii* Δ rseC (Supplementary Fig. S1E, S1F). Indeed, we
194 observed a rapid utilization of all supplied nitrate within 60 h of cultivation, which is similar to the
195 observations that we had made for *C. ljungdahlii* WT (Supplementary Fig. S1F). Thus, rseC seems to
196 be involved in positively regulating the expression of the RNF-gene cluster during autotrophy, but not
197 during heterotrophy. However, the exact impact on gene expression of the RNF-gene cluster cannot
198 be deduced from these findings.

199 **Plasmid-based complementation relieved the phenotypes of the *C. ljungdahlii* Δ RNF and Δ rseC**
200 **strains**

201 After we had characterized the *C. ljungdahlii* Δ RNF and *C. ljungdahlii* Δ rseC strains, we questioned
202 whether the wild-type phenotype, particularly with respect to autotrophy, can be restored by plasmid-
203 based gene complementation. Therefore, we generated the plasmid-carrying strains *C. ljungdahlii*
204 Δ RNF pMTL83151_P_{nat}_rnfCDGEAB and *C. ljungdahlii* Δ rseC pMTL83152_rseC. The plasmids encode
205 the RNF-gene cluster under the control of the native promoter region upstream of the rnfC gene from
206 the genome (P_{nat}) in pMTL83151_P_{nat}_rnfCDGEAB and the rseC gene under the control of the
207 constitutive thiolase promoter (P_{thi}) in pMTL83152_rseC, respectively. We investigated the
208 complementation strains in ammonium-containing medium with carbon dioxide and hydrogen for

209 growth (**Fig. 3**). Indeed, the plasmid-based expression of the deleted genes relieved the phenotype
210 and enabled autotrophy with carbon dioxide and hydrogen for both strains (**Table 2, Fig. 3**). The
211 control strains that carried an empty plasmid failed to grow autotrophically, as we had already
212 observed for the non-complemented deletion strains.

213 However, *C. ljungdahlii* Δ RNF pMTL83151_P_{nat}_rnfCDGEAB reached only 71% ($P = 0.02$) of the
214 maximum OD₆₀₀ with ammonium when compared to the wild type, which is significantly less (**Table**
215 **2**). Furthermore, the complemented strain had a prolonged *lag* phase of 71 h (**Fig. 3A**). The pH
216 decrease occurred slower compared to the wild type (**Fig. 3B**). The *C. ljungdahlii* Δ RNF
217 pMTL83151_P_{nat}_rnfCDGEAB strain reached a maximum acetate concentration of 46.7 \pm 3.4 mM,
218 which is a significant reduction of 22% ($P = 0.009$) when compared to the wild type (**Table 2, Fig. 3C**).
219 The maximum ethanol concentration was similar in comparison to the wild type (**Fig. 3D**). In contrast,
220 the *C. ljungdahlii* Δ rseC pMTL83152_rseC strain reached a maximum OD₆₀₀ of 0.66 \pm 0.03, which is a
221 significant increase of 17% ($P = 0.02$) compared to the wild type (**Table 2, Fig. 3A**). Instead of a
222 prolonged *lag* phase, we observed a shortened *lag* phase for this strain when compared to the wild
223 type (**Fig. 1A, 3A**). Notably, the medium for the complementation experiments always contained
224 antibiotics, which generally caused a slightly negative impact on growth of plasmid-carrying *C.*
225 *ljungdahlii* strains such as in the *C. ljungdahlii* Δ RNF pMTL83151_P_{nat}_rnfCDGEAB strain. In contrast,
226 this was not the case for the *C. ljungdahlii* Δ rseC pMTL83152_rseC strain. The complemented strain
227 reached a maximum acetate concentration of 63.2 \pm 0.2 mM (**Fig. 3C**), which is a significant increase of
228 6% ($P = 0.04$) when compared to the wild type (**Table 2, Fig. 2**). However, this strain did not produce
229 any detectable ethanol during the cultivation (**Table 2, Fig. 3D**). Furthermore, the pH value did not
230 show any notable change, when compared to the wild type (**Fig. 3B**).

231 **Plasmid-based overexpression of the *rseC* gene enhanced autotrophic growth**

232 We observed a growth stimulating effect in the *C. ljungdahlii* Δ rseC pMTL83152_rseC strain. To
233 investigate whether overexpression of *rseC* in the wild-type strain increases autotrophic growth
234 further, we generated the *C. ljungdahlii* pMTL83152_rseC strain. This strain carries the
235 complementation plasmid with the constitutive P_{thi} promoter in the wild-type background. During
236 autotrophy with carbon dioxide and hydrogen in ammonium-containing medium, the *C. ljungdahlii*
237 pMTL83152_rseC strain had a shortened *lag* phase and a 13.2% faster but not significantly increased
238 growth rate (0.21 h⁻¹, $P = 0.2$) compared to the wild type (**Fig. 2A, Supplementary Fig. S3A**). In addition,
239 this overexpression strain reached similar maximum OD₆₀₀ values (**Supplementary Fig. S3A**). The
240 maximum acetate concentration was significantly reduced by 22% ($P \leq 0.001$), and ethanol was not
241 produced (**Supplementary Fig. S3C, S3D**).

242 We also attempted to generate a plasmid that carries the *rnfCDGEAB* gene cluster under the control
243 of a constitutive promoter. However, any attempts to generate a fusion of the constitutive promoter
244 P_{thl} with the *rnfCDGEAB* gene cluster failed already during the cloning steps in *E. coli*. Thus, for the
245 expression of *rnfCDGEAB* in the wild type, we also used the native P_{nat} promoter sequence, which most
246 likely is under the same expression control as the genomic copy of the RNF-gene cluster. Not
247 surprisingly, the cultivation of *C. ljungdahlii* pMTL83151_ P_{nat} *rnfCDGEAB* did not show any notable
248 impact on growth and product formation when compared to the control strain that carried an empty
249 plasmid (**Supplementary Fig. S3**).

250 **The gene expression profiles of *rnf* genes and the *rseC* gene in the deletion strains revealed
251 regulatory effects**

252 We had found that autotrophy was abolished in the *rseC* deletion strain, while heterotrophy was not
253 impacted. Thus, we further investigated the activating or repressing function on the gene expression
254 of the RNF-gene cluster by RseC. For this, we performed qRT-PCR analyses to investigate the individual
255 expression profiles of the genes *rnfC*, *rnfD*, *rnfG*, *rnfE*, *rnfA*, *rnfB*, and *rseC* in the *C. ljungdahlii* $\Delta rseC$
256 strain. We included the *C. ljungdahlii* ΔRNF and *C. ljungdahlii* WT strains as controls (**Materials and
257 Methods**). We analyzed samples after 3 h and 20 h of cultivation time to investigate the transcriptomic
258 response after inoculating the autotrophic and heterotrophic main cultures from heterotrophic pre-
259 cultures. During the cultivation of the six main cultures (three strains, two conditions), *C. ljungdahlii*
260 WT grew during autotrophy and heterotrophy, while *C. ljungdahlii* ΔRNF and *C. ljungdahlii* $\Delta rseC$ only
261 grew during heterotrophy.

262 The qRT-PCR results in this paragraph are given as \log_2 (fold change in gene expression), where a value
263 of ≤ -1 (0.5-fold) refers to a significant downregulation, and a value of $\geq +1$ (2-fold) refers to a
264 significant upregulation (**Fig. 4**). We did not measure any expression signals for any of the deleted RNF
265 genes in the *C. ljungdahlii* ΔRNF strain and for the deleted *rseC* gene in the *C. ljungdahlii* $\Delta rseC$ strain.
266 We found that all RNF-gene cluster genes were significantly downregulated (ranging from -1.8 to -4.7)
267 in the *C. ljungdahlii* $\Delta rseC$ strain, when cultivating non-growing cells of this strain autotrophically with
268 hydrogen and carbon dioxide (**Fig. 4**). We observed a similar pattern of downregulation for the 3-h
269 and 20-h samples of the *C. ljungdahlii* $\Delta rseC$ strain (**Fig. 4A and 4C**). In the heterotrophic samples, all
270 RNF-gene cluster genes, except of *rnfB*, were significantly downregulated in the 3-h samples (ranging
271 from -1.0 to -1.8). However, after 20 h of cultivation time during heterotrophy, we observed a less
272 pronounced but still significant downregulation of the *rnfC* gene, while all other genes were either not
273 significantly different from the wild type (*rnfD*) or significantly upregulated (**Fig. 4**). In the *C. ljungdahlii*
274 ΔRNF strain as a control, we found that *rseC* expression was significantly upregulated in the 3-h

275 samples during autotrophy (+2.4) and during heterotrophy (+1.3) (**Fig. 4B**). The upregulation was less
276 pronounced but still significant after 20 h of cultivation (**Fig. 4D**). For the wild type, all genes (except
277 for *rnfE* in the 3-h sample) were significantly upregulated during autotrophy when compared to
278 heterotrophy for the 3-h samples (ranging from +1.0 to +5.4), and for the 20 h samples (ranging from
279 +2.8 to +3.8), respectively (**Supplementary Fig. S4**). Thus, RseC positively regulated the RNF-gene
280 cluster during autotrophy, but not during heterotrophy.

281 **The *rseC* gene is abundantly found among acetogens**

282 While *rseC* was annotated as a putative transcriptional regulator, the regulatory function was not
283 known. We had found in our cultivation experiments and qRT-PCR analyses that the *rseC* gene plays a
284 critical role for the function of the RNF complex, and thus for autotrophy. We investigated whether
285 *rseC* genes are also present in genomes of other microbes that possess RNF complex genes. Indeed,
286 we found putative *rseC* genes in the genomes of *C. ljungdahlii*, *Clostridium autoethanogenum*, *A.*
287 *woodii*, *Eubacterium limosum*, *Clostridium carboxidovorans*, *Clostridium kluyveri*, *R. capsulatus*, and *E.*
288 *coli*. On the contrary, we did not find a putative *rseC* gene in the genome of *Moorella thermoacetica*
289 or *Thermoanaerobacter kivui*, which possess an energy-converting hydrogenase (Ech) complex instead
290 of an RNF complex (26). Next, we took a detailed look at the genomic location and distance to the
291 RNF-gene cluster (**Fig. 5**). We noticed that the *rseC* gene was located directly upstream of the RNF
292 complex gene cluster in *C. ljungdahlii* (CLJU_c11350), *C. autoethanogenum* (CAETHG_3225), *C.*
293 *carboxidovorans* (Ccar_25725), and *C. kluyveri* (CKL_1263). The *rseC* gene in *A. woodii* (Awo_C21740)
294 and *E. limosum* (B2M23_08890), however, was not in direct genetic vicinity of the RNF-gene cluster.
295 Furthermore, we identified a second gene with homologies to *rseC* in *C. carboxidovorans* (Cca_07835)
296 and *C. kluyveri* (CKL_2767), but neither RNF complex genes nor other genes that are involved in the
297 autotrophic metabolism, such as the genes for the Wood-Ljungdahl pathway, are located in the direct
298 vicinity of this second *rseC* homolog (**Table 3**). Notably, we also identified a *rseC* gene in the non-
299 acetogenic bacterium *R. capsulatus*, which is the microbe in which the RNF complex was first
300 described (12). The *rseC* gene in *R. capsulatus* is located upstream of *rnfF* instead of *rnfC*, which is
301 separated by five genes (**Fig. 5**). Also *E. coli* possesses one *rseC* gene that is organized in the *rseABC*
302 gene cluster (**Fig. 5, Supplementary Text S1D**) (19).

303 The conservation of the RseC amino-acid sequence was between 59% and 100% for *C. ljungdahlii*,
304 *C. autoethanogenum*, *C. carboxidovorans*, and *C. kluyveri*, which is a high similarity (**Supplementary**
305 **Table S2, Supplementary Fig. S5**). In addition, the amino-acid sequence length is nearly identical with
306 138 amino acids (*C. ljungdahlii*, *C. autoethanogenum*, and *C. carboxidovorans*) and 137 amino acids
307 (*C. kluyveri*), respectively. The second RseC homolog from *C. carboxidovorans* and *C. kluyveri* shared

308 an identity of 65% with each other, but only between 25% and 49% to all other RseC proteins
309 (**Supplementary Table S2, Supplementary Fig. S5**). The RseC from *A. woodii* and *E. limosum* shared a
310 similarity of 57% with each other, and only of 34% to 35% with the RseC proteins that are encoded
311 directly upstream of the RNF-gene clusters (**Fig. 5, Supplementary Table S2, Supplementary Fig. S5**).
312 The RseC proteins from *R. capsulatus* and *E. coli* have the same amino-acid sequence length (159
313 amino acids), but shared low similarities to each other (31%) as well as to the RseC proteins from the
314 other microbes (18-34%) (**Supplementary Table S2, Supplementary Fig. S5**). The similarity of the RseC
315 protein from *C. ljungdahlii* and *R. capsulatus* was only 23%, while it was 36% for the RseC protein from
316 *C. ljungdahlii* in comparison to the RseC protein from *E. coli*. Overall, the RseC protein sequence seems
317 to be highly conserved in acetogens that contain an RNF-gene cluster.

318 **The *nar* gene cluster encodes a functional nitrate reductase in *C. ljungdahlii***

319 We had found that nitrate reduction during heterotrophy is impacted for the *C. ljungdahlii* ΔRNF strain
320 but not the *C. ljungdahlii* ΔrseC strain. Thus, we aimed to explore nitrate metabolism and the interplay
321 with the RNF complex further. For *C. ljungdahlii*, it was postulated that nitrate is reduced by nitrate
322 reductase to nitrite and, subsequently, converted *via* nitrite reductase and hydroxylamine reductase
323 into ammonium, and the involved genes were predicted in the genome (14, 27). Emerson *et al.* (23)
324 had found that in the presence of nitrate the expression level of the genes that encode the putative
325 nitrate reductase (CLJU_c23710-30) were significantly increased. The three genes are annotated as
326 nitrate reductase NADH oxidase subunit (CLJU_c23710), nitrate reductase electron transfer subunit
327 (CLJU_c23720), and nitrate reductase catalytic subunit (CLJU_c23730) (14). We refer to these three
328 genes (CLJU_c23710-30) as the *nar* gene cluster. We verified the absence of the *nar* gene cluster from
329 the genome of the *C. ljungdahlii* Δnar strain, after mediating the deletion with our CRISPR-Cas12a
330 system (**Supplementary Fig. S2B**). This strain was able to grow during autotrophy and heterotrophy,
331 but had completely lost the ability to reduce nitrate under both conditions (**Fig. 6F, Supplementary**
332 **Fig. S6F**). We observed similar growth and pH behavior for cultures of *C. ljungdahlii* Δnar during
333 autotrophy with either ammonium or nitrate (**Fig. 6A, 6B, Supplementary Fig. S6A, S6B**). Enhanced
334 autotrophic growth in nitrate-containing medium when compared to ammonium-containing medium,
335 such as with the wild-type strain, was not detected (**Fig. 6A**).

336 However, we still observed differences in the growth when compared to *C. ljungdahlii* WT. Growth
337 rates during autotrophy of *C. ljungdahlii* Δnar were 0.018 h^{-1} for ammonium- and 0.017 h^{-1} for nitrate-
338 containing medium, which is a significant reduction of 24% ($P = 0.04$) and 76% ($P \leq 0.001$) in
339 comparison to the wild type (**Table 1**). The maximum observed OD_{600} values were both 0.44 ± 0.01 ,
340 which is a significant decrease of 21% ($P \leq 0.001$) for ammonium cultures and 55% ($P = 0.002$) for

341 nitrate cultures when compared to the wild type (**Fig. 6A**). A pH increase as a consequence of
342 ammonium production, such as observed for the wild type, was not observed in cultures of *C.*
343 *ljungdahlii Δnar* (**Fig. 6B**). The maximum acetate concentrations were significantly reduced by 25%
344 (44.8±0.2 mM, $P \leq 0.001$) for ammonium cultures and by 16% (41.9±1.9 mM, $P = 0.01$) for nitrate
345 cultures of *C. ljungdahlii Δnar* (**Fig. 6C, Table 1**). The maximum ethanol concentrations were
346 significantly increased by 79% (3.3±0.2 mM, $P = 0.02$) and significantly decreased by 64% (2.9±0.4 mM,
347 $P = 0.02$) for ammonium and for nitrate conditions with carbon dioxide and hydrogen, respectively
348 (**Fig. 6D, Table 1**). Even though *C. ljungdahlii Δnar* was not able to use nitrate, cultures still
349 accumulated 3-4 mM ammonium until the end of the cultivation in nitrate-containing medium (**Fig.**
350 **6E**).

351 The growth rates for heterotrophic cultures were 0.071 h⁻¹ for ammonium- and 0.067 h⁻¹ for nitrate
352 containing medium (**Supplementary Table S1**). The maximum observed OD₆₀₀ value was 2.35±0.04 for
353 ammonium cultures of *C. ljungdahlii Δnar*, which is similar to the performance of *C. ljungdahlii* WT
354 (**Supplementary Fig. S6A**). For nitrate cultures the maximum observed OD₆₀₀ value was 1.51±0.03 and
355 corresponds to a significant reduction of 32% ($P \leq 0.001$) when compared to *C. ljungdahlii* WT under
356 the same conditions (**Supplementary Fig. S6A**). The maximum acetate concentrations were 51.9±0.9
357 mM for ammonium- and 28.7±1.1 for nitrate-containing medium, which is a reduction of 1% ($P = 0.6$)
358 and a significant reduction of 34% ($P \leq 0.001$), respectively (**Supplementary Fig. S6C**). Interestingly,
359 the maximum ethanol concentrations for *C. ljungdahlii Δnar* significantly increased by 45% (15.3±0.1
360 mM, $P \leq 0.001$) when ammonium and fructose were provided, and by 234% (16.6±0.2, $P \leq 0.001$) when
361 nitrate and fructose were provided (**Supplementary Table S1, Supplementary Fig. S6D**). The provided
362 fructose was only consumed completely by *C. ljungdahlii Δnar* in ammonium-containing but not in
363 nitrate-containing medium (**Supplementary Fig. S6G**).

364 Finally, we confirmed that the complementation of *C. ljungdahlii Δnar* with the plasmid
365 pMTL83152_nar, which encodes the *nar* gene cluster under the expression control of the constitutive
366 P_{thi} promoter, enabled the *C. ljungdahlii Δnar* pMTL83152_nar strain to utilize nitrate under
367 autotrophic conditions again, while this was not possible in an empty plasmid control strain
368 (**Supplementary Fig. S7**). The nitrate cultures of *C. ljungdahlii Δnar* pMTL83152_nar reached a growth
369 rate of 0.054 h⁻¹ and maximum observed OD₆₀₀ values of 1.54±0.03, which is a significant reduction of
370 26% ($P = 0.004$) and a significant increase of 54% ($P \leq 0.001$) in comparison to the wild type when
371 growing with nitrate (**Table 2**). Maximum acetate concentrations were 41.7±2.5 mM, while maximum
372 ethanol concentrations were 3.4±0.5 mM (**Supplementary Fig. S7C, S7D**). This is a significant reduction
373 of 17% ($P = 0.02$) and of 57% ($P \leq 0.001$) in contrast to the nitrate-grown cultures of *C. ljungdahlii* WT

374 (Table 2). Therefore, we revealed that the expression of the *nar* gene cluster led to the only functional
375 nitrate reductase in *C. ljungdahlii* under the tested conditions.

376 Discussion

377 A functional RNF complex is essential for autotrophy but not for heterotrophy in *C. ljungdahlii*

378 Here, we provided further insight into the autotrophy of *C. ljungdahlii* and the connection to nitrate
379 metabolism. With the strain *C. ljungdahlii* Δ RNF, we confirmed that the absence of the RNF complex
380 leads to a complete loss of autotrophy in *C. ljungdahlii*. Unlike in a previous study by Tremblay *et al.*
381 (13), this strain provides a stable genotype that cannot revert back to the wild-type genotype, which
382 can be used to further study the energy conservation principles in this acetogen (Fig. 1B, 2).
383 Heterotrophic growth in this strain was still possible, but considerably reduced when compared to the
384 wild type (Fig. 1C, Supplementary Fig. S1). While we did not measure the difference in the headspace
385 gas composition during heterotrophy for *C. ljungdahlii* Δ RNF and wild type, we argue that *C. ljungdahlii*
386 Δ RNF lost the ability to fixate the carbon dioxide that is released during glycolysis, which is the defining
387 feature of acetogens (1, 10). Thus, even though the Wood-Ljungdahl pathway was still present, this
388 strain was not able to balance the electrons in the metabolism to drive the Wood-Ljungdahl pathway.
389 Further research is required to confirm this hypothesis. The RNF deletion in *A. woodii* did also lead to
390 reduced acetate production during heterotrophy, but the strain reached similar OD₆₀₀ values
391 compared to the *A. woodii* wild type (25). In comparison to *C. ljungdahlii*, the RNF complex of *A. woodii*
392 uses sodium ions instead of protons to generate the chemiosmotic gradient, which is then consumed
393 by a sodium-dependent F₁F₀ ATPase to generate ATP (28, 29). Overall, this further confirms the
394 meticulous differences in the energy conservation and redox balancing in different acetogens (2),
395 which have to be considered to apply acetogens for biotechnological purposes.

396 RseC is a positive regulator of the RNF complex genes and plays a critical role during autotrophy

397 We further investigated the regulation of the RNF-gene cluster by the putative regulator RseC. The
398 *rseC* gene is known to encode a transcriptional regulator in other microbes such as *E. coli* and *S.*
399 *typhimurium* (Supplementary Text S1D) (17, 19, 20, 30). Our results demonstrated that RseC played
400 a critical role for the formation of a functional RNF complex in *C. ljungdahlii* (Table 2, Fig. 2). A deletion
401 of the *rseC* gene led to the complete loss of autotrophy (Fig. 2). With our qPCR analyses, we confirmed
402 that RseC, indeed, had a positive regulatory effect on the expression of the RNF-gene cluster during
403 autotrophy. Our results indicate that RseC is essential for the activation of RNF-gene cluster expression
404 during autotrophy, but not during heterotrophy, while we cannot rule out other modulating activities
405 (Fig. 4A, 4C, 7, Supplementary Fig. S4, Supplementary Text S1E). Further biochemical and molecular

406 biological investigations, such as the purification of the RseC protein and DNA-binding assays, or the
407 study of the subcellular localization, will be required to unravel the regulatory functions of RseC in *C.*
408 *ljungdahlii* and other acetogens with an RNF complex in more detail.

409 **Nitrate reduction does not require a functional RNF complex but benefits from a correct electron
410 balance**

411 Furthermore, we investigated the nitrate metabolism in *C. ljungdahlii*. We confirmed that the genes
412 CLU_c23710-30 encode the functional subunits of the only nitrate reductase under the tested
413 conditions for *C. ljungdahlii* (Fig. 6, Supplementary Fig. S6, S7). In the presence of nitrate, *C. ljungdahlii*
414 WT quickly utilized all nitrate even though a sufficient amount of nitrogen-source was covered by the
415 added yeast extract (Fig. 2F, Supplementary Fig. SF1). Thus, nitrate reduction in *C. ljungdahlii* is mainly
416 used for energy conversion, and therefore must be of a dissimilatory function (23) (Supplementary
417 Text S1F). The stoichiometry for nitrate reduction in *C. ljungdahlii* is proposed as follows: $4 \text{ H}_2 + 2 \text{ H}^+$
418 $+ \text{NO}_3^- + 1.5 \text{ ADP} + 1.5 \text{ P}_i \rightleftharpoons 4 \text{ H}_2\text{O} + \text{NH}_4^+ + 1.5 \text{ ATP}$ with $\Delta_r G' = -150 \text{ kJ/mol H}_2$ (23, 31). This mechanism
419 would require electron bifurcation from the hydrogenases and the activity of the RNF complex, but
420 would then provide ATP completely independent of the Wood-Ljungdahl pathway (or more general,
421 independent of the carbon metabolism) (23, 32). Thus, we hypothesized that nitrate reduction in *C.*
422 *ljungdahlii* requires a functional RNF complex for a correct electron balance. Indeed, non-growing cells
423 of both *C. ljungdahlii* Δ RNF and *C. ljungdahlii* Δ rseC were not able to reduce nitrate during autotrophy
424 (Fig. 2F). However, nitrate reduction still proceeded in both deletion strains during heterotrophy
425 (Supplementary Fig. S1F). In *C. ljungdahlii* Δ RNF a functional RNF complex was not present during
426 heterotrophy because the RNF-complex encoding genes were deleted, but the required reducing
427 equivalents for nitrate reduction were likely provided by glycolysis (Fig. 7). In contrast, in *C. ljungdahlii*
428 Δ rseC, nitrate reduction was not impacted during heterotrophy, because the RNF complex genes were
429 not repressed under these conditions and a functional RNF complex was formed (Fig. 4, 7). It remains
430 to be answered whether there is a direct interplay between the nitrate reductase and the RNF
431 complex, and whether this interplay is different during heterotrophy and autotrophy.

432 **The electron balance in the deletion strains is impacted beyond nitrate reduction**

433 In general, the reduced growth indicated that *C. ljungdahlii* Δ RNF was not able to balance the electrons
434 from glycolysis efficiently during heterotrophy. This led to the reduction in biomass and acetate
435 production, while ethanol production was completely absent in heterotrophic cultures of *C. ljungdahlii*
436 Δ RNF, which indicates that reducing power for a further reduction of acetate was not available
437 (Supplementary Table S1, Supplementary Fig. S1D). In the batch experiments of Emerson *et al.* (23),
438 *C. ljungdahlii* WT did not produce considerable amounts of ethanol when growing with nitrate (and

439 carbon dioxide and hydrogen). When *C. ljungdahlii* WT was cultivated in pH-controlled bioreactors
440 under continuous conditions, enhanced biomass and increased ethanol production rates were
441 observed (24). This observation could not be fully explained yet, but it was assumed that electrons are
442 predominantly used for the reduction of nitrate rather than for the reduction of acetate. This
443 distribution of electrons changed in the absence of the nitrate reductase in the *C. ljungdahlii* Δ nar
444 strain and higher maximum ethanol concentrations were observed (**Supplementary Text S1G**). It
445 remains elusive, how the change in the distribution of electrons affects other NADH-dependent
446 metabolic pathways in more detail. While further research is required to understand the regulatory
447 mechanisms during autotrophy and the mechanism of energy conservation during nitrate reduction,
448 with this work, we provide a deeper insight into the autotrophic metabolism and nitrate reduction in
449 *C. ljungdahlii*.

450 **Methods**

451 **Bacterial strains and growth**

452 *Escherichia coli* TOP10 (Invitrogen), *E. coli* EPI300 (Lucigen), and *E. coli* HB101 PKR2013 (DSM 5599)
453 were grown at 37°C in Luria Broth (LB) medium containing (per liter): 5 g NaCl; 10 g peptone; and 5 g
454 yeast extract. *C. ljungdahlii* ATCC13528 was generally cultivated in anaerobic Rich Clostridial Medium
455 (RCM) containing per liter: 5 g fructose; 3 g yeast extract; 10 g meat extract; 10 g peptone; 5 g NaCl; 1
456 g soluble starch; 3 g sodium acetate; 0.5 g L-cysteine HCl; and 4 mL resazurin-solution (0.025 vol-%).
457 For growth experiments with *C. ljungdahlii*, standard PETC medium (24) was used containing (per
458 liter): 1 g yeast extract; 1.0 g NH₄Cl; 0.1 g KCl; 0.2 g MgSO₄·7 H₂O; 0.8 g NaCl; 0.1 g KH₂PO₄; 0.02 g
459 CaCl₂·2 H₂O; 4 mL resazurin-solution (0.025 vol-%); 10 mL trace element solution (TE, 100x); 10 mL
460 Wolfe's vitamin solution (100x); 10 mL reducing agent (100x); and 20 mL of fructose/2-(N-
461 morpholino)ethanesulfonic acid (MES) solution (50x). TE was prepared as 100x stock solution
462 containing (per liter): 2 g nitrilotriacetic acid (NTA); 1 g MnSO₄·H₂O; 0.8 g Fe(SO₄)₂·(NH₄Cl)₂·6 H₂O; 0.2
463 g CoCl₂·6 H₂O; 0.0002 g ZnSO₄·7 H₂O; 0.2 g CuCl₂·2 H₂O; 0.02 g NiCl₂·6 H₂O; 0.02 g Na₂MoO₄·2 H₂O;
464 0.02 g Na₂SeO₄; and 0.02 g Na₂WO₄. The pH of the TE was adjusted to 6.0 after adding NTA. The
465 solution was autoclaved and stored at 4°C. Wolfe's vitamin solution was prepared aerobically
466 containing (per liter): 2 mg biotin; 2 mg folic acid; 10 mg pyridoxine-hydrochloride; 5 mg thiamin-HCl;
467 5 mg riboflavin; 5 mg nicotinic acid; 5 mg calcium pantothenate; 5 mg p-aminobenzoic acid; 5 mg lipoic
468 acid; and 0.1 mg cobalamin. The vitamin solution was sterilized using a sterile filter (0.2 μ m), sparged
469 with N₂ through a sterile filter, and stored at 4°C. The 50x fructose/MES solution contained (per 100
470 mL): 25 g fructose; and 10 g MES. The pH was adjusted to 6.0 by adding KOH. For autotrophic
471 experiments, fructose was omitted. In nitrate experiments, ammonium chloride was replaced with

472 sodium nitrate (NaNO_3) in the equal molar amount (=18.7 mM). The reducing agent solution contained
473 (per 100 mL): 0.9 g NaCl and 4 g L-cysteine HCl and was prepared with anaerobic water under
474 anaerobic conditions. The reducing agent was stored at room temperature. For solid LB medium, 1.5
475 weight-% agar was added. For solid RCM or PETC medium 1.0-2.0 weight-% agar was added. For
476 conjugation of *C. ljungdahlii* cells (see below) a modified PETC medium (PETC+5gS) was used
477 containing additionally (per liter): 5 g peptone and 5 g meat extract.

478 Liquid *E. coli* cultures and autotrophic *C. ljungdahlii* cultures were agitated at 150 revolutions per
479 minute (rpm) (Lab Companion Incubator Shaker ISS-7100R, Jeio Tech). Heterotrophic cultures of *C.*
480 *ljungdahlii* and LB plates with *E. coli* cells were incubated without shaking (Incubator IN260,
481 Memmert). Anaerobic work was performed in an anaerobic chamber (Glovebox-System UNIlab Pro,
482 MBraun) with an N_2 (100 vol-%) atmosphere. However, *C. ljungdahlii* cultures in bottles were
483 transferred at the bench with sterile syringes and needles. Before each transfer between serum
484 bottles, we flamed the top of the rubber stopper with ethanol (70 vol-%) at a Bunsen burner. All plating
485 work with *C. ljungdahlii* was performed in the anaerobic chamber with a maximum of 5 parts per
486 million (ppm) oxygen in the atmosphere. All plating work with *E. coli* was carried out in a lamina flow
487 bench (Hera Safe KS18, Thermo Fischer Scientific). Antibiotics (see below) were added to maintain
488 plasmid stability in recombinant cultures of *E. coli* and *C. ljungdahlii*.

489 **Antibiotics**

490 Chloramphenicol (30 mg/mL), ampicillin (100 mg/mL), and kanamycin (50 mg/mL) were applied to
491 maintain plasmids in *E. coli* strains, while thiamphenicol (5 mg/mL) was used for recombinant strains
492 of *C. ljungdahlii*. Thiamphenicol was prepared as aerobic stock solution (25 mg/mL) in DMSO (100 vol-
493 %) and diluted with sterile water (1:10) before use. The diluted thiamphenicol solution (2.5 mg/mL)
494 was transferred into a sterile 1 mL syringe. 100 μL of this solution was used to add to a 50 mL RCM or
495 PETC medium (final concentration of 5 mg/mL). The use of DMSO over ethanol as solvent for
496 thiamphenicol prevented the addition of external ethanol to cultures of *C. ljungdahlii*, which is a
497 metabolite. The thiamphenicol stock solution was stored at -20°C.

498 **Design and generation of CRISPR-FnCas12a plasmids for gene deletion**

499 The broad-host plasmid pMTL83152 (Heap et al. 2009) was used as backbone (**Table 4**). All PCR steps
500 were performed with Q5® High-Fidelity DNA Polymerase (New England Biolabs) and primers provided
501 by IDT (Integrated DNA Technologies) (**Table 5**). PCR products were purified with QIAquick PCR
502 Purification Kit (Qiagen). The gene *Fncas12a* of *Francisella novicida* (Zetche et al. 2015) was obtained
503 from plasmid pY001 (Addgene #69973) and amplified with primers *cas12a_fwd_BamHI* and

504 cas12a_rv_Ncol generating *Bam*HI and *Ncol* restriction sites for a subsequent restriction cloning to
505 generate pMTL83152::*FnCas12a*. Two homology-directed repair arms (HDR1/HDR2) each with a size
506 of 1000-1200 bp, which flank the targeted gene, were individually amplified with HDR_upst_fwd/rv
507 and HDR_dwst_fwd/rv primers generating an overlap of 25-40 bp to each other. The fragments were
508 purified, and 50-100 ng of both fragments were used as template for a subsequent fusion PCR using
509 HDR_upst_fwdOv and HDR_dwst_rvOv primers, which generated new overlaps at 5' and 3' (fusion
510 fragment HDR1/2). An crRNA array was synthesized and cloned as minigene into plasmid pUC19 by
511 IDT (Integrated DNA Technologies) (**Table 6**). The crRNA array sequence contained the mini-promoter
512 P4 (5'-TTGACAAATTATTTTTAAAGTTAAAATTAAGTTG-3') (33), the *FnCas12a*-specific directed
513 repeats (DR) sequence (5'-TAATTCTACTGTTAGAT-3') (34), 1-2 sgRNA for the targeted gene(s) (Pam
514 sequence TTV for target RNF and TTTV for target *rseC* and *nar*), and the rrnb-T1-terminator (35). The
515 crRNA array fragment was amplified with primers minigene_crRNA_fwd/rv creating overhangs to the
516 fused HDR1/2 fragment and the plasmid backbone. For gene targets with a size >2 kb, such as
517 *rnfCDGEAB* and *nar*, two sgRNA (and two DRs) were used in the same crRNA array (**Table 6**). For the
518 assembly reaction (Gibson Assembly Ultra Kit, Synthetic Genomics), the plasmid
519 pMTL83152::*Fncas12a* was first digested using *Bbv*CI and CIP (New England Biolabs) for 3h at 37°C,
520 purified by PCR-clean, and then mixed with the purified fused HDR1/2 fragment and the crRNA array
521 fragment. Using electrocompetent *E. coli* EPI300 cells (TransforMax™, Lucigen) and electroporation
522 for transformation highly increased cloning efficiency for the CRISPR-Cas12a constructs in *E. coli*. For
523 inducible Cas12a expression, the *P_{thi}* module was replaced with the *tetR-O1* promoter module (*P_{tetR-O1}*) (36)
524 using restriction sites *Sbf*I and *Bam*HI, for all generated CRISPR-Cas12a plasmids.

525 **Generation of overexpression and complementation plasmids**

526 The broad-host shuttle-vector system pMTL80000 (37) was used for all cloning steps. All generated
527 plasmids of this study (**Table 4**) were cloned with restriction endonucleases and T4 ligase from NEB
528 (New England Biolabs) or Gibson assembly (NEBuilder® HiFi DNA Assembly, New England Biolabs). PCR
529 work was carried out with primers provided by IDT (Integrated DNA Technologies) (**Table 5**) and with
530 a proof-reading Q5® High-Fidelity DNA Polymerase (New England Biolabs) according to the
531 manufacturer's guidelines. Genomic DNA (gDNA) was purified from 2 mL of exponential cultures of *C.*
532 *Ijungdahlii* with the NucleoSpin Tissue Mini kit (Macherey-Nagel) and used as PCR-template. Notably,
533 instead of performing harsh cell disruption according to the manufacturer's recommendation, we
534 applied a 6x10 sec vortex interval during the procedure. The *rnfCDGEAB* gene cluster (CLJU_c11360-
535 410) and a 213-bp sequence located upstream of *rnfC*, which contains the putative native promoter
536 sequence (*P_{nat}*), were amplified as one fragment using primers *rnfCDGEAB+213bp_fwd* and
537 *rnfCDGEAB_rv*. The *rseC* gene (CLJU_c11350) was amplified using primers *rseC_fwd* and *rseC_rv*. The

538 gene cluster CLU_c23710-30, here referred to as *nar*, was amplified as one fragment using primers
539 nar-full_fwd and nar-full_rv. All PCR products were purified with the QIAquick PCR Purification kit
540 (Qiagen). Subsequently, the purified fragments were ligated into pMinit2.0 (New England Biolabs) and
541 used for transformation of CaCl₂-competent *E. coli* TOP10 cells (38). Next, the plasmid DNA was
542 digested using the restriction sites determined by the used PCR primers and the fragment was cloned
543 into the pMTL83151 plasmid generating pMTL83151_P_{nat}_rnfCDGEAB or into the pMTL83152 plasmid
544 generating pMTL83152_rseC and pMTL83152_nar. Subsequently, all cloned fragments were verified
545 again with test-digestion of the plasmid DNA and Sanger sequencing to exclude mutations in the gene
546 sequences.

547 **Screening for correct plasmid DNA and genome editing**

548 For screening and continuous purity control of our *C. ljungdahlii* strains (**Table 7**), we performed PCRs
549 from culture samples or from purified DNA with the Phire Plant Direct PCR Master Mix (Thermo Fischer
550 Scientific). *E. coli* colonies grown on selective LB plates after receiving plasmid constructs were
551 analyzed for the correctly assembled plasmids using the Phire Plant Direct PCR Master Mix (Thermo
552 Fischer Scientific). A small amount of recombinant *E. coli* cell material was directly transferred to the
553 reaction mix. For *C. ljungdahlii* cells, 0.5-1 mL culture sample was harvested by centrifugation for 3
554 min at 13806 rpm (Centrifuge 5424, FA-45-24-11, Eppendorf) and resuspended in 100-500 µL 10 mM
555 NaOH depending on the size of the cell pellet. Subsequently, cell suspensions were boiled for 10 min
556 at 98°C. The hot reaction tubes were incubated on ice for 1 min and quickly vortexed before they
557 served as a DNA template. In general, we used 20 µL PCR master mix, which consisted of 10 µL Phire
558 Plant Mix 2x, 0.8 µL of each primer, 1 µL cell lysate sample, and 7.4 µL nuclease-free water. The PCR
559 reaction was carried out according to the manufacturer's guidelines. We generally used the primers
560 tra60bp_fwd and repH_401bp_rv or repH_643bp_rv for these control PCRs (**Table 5**), because they
561 bind to the plasmid backbone of every pMTL plasmid used in this study. Verification of gene deletion
562 in the genome of *C. ljungdahlii* was performed with "outside" primers, which bound upstream and
563 downstream of the used homology-directed repair arms (HDR1/2) on the genomic DNA (**Table 5**). In
564 addition, we performed test-digestion of the generated plasmids with restriction enzymes (New
565 England Biolabs), and analyzed the fragment pattern *via* gel electrophoresis. The final plasmid
566 sequence was verified by Sanger sequencing. Plasmid DNA was purified from *E. coli* with hand-made
567 purification buffers (described below). Correct plasmid DNA was then purified with the QIAprep Spin
568 Miniprep kit (Qiagen) *prior* to further use.

569 **A fast method for plasmid purification from *E. coli* without use of a commercial kit**

570 For screening of successfully transformed *E. coli* cells we used a time- and money-saving protocol to
571 purify plasmid DNA from multiple samples without using a commercial kit, which is a modified alkaline
572 lysis protocol adapted from (39). All centrifugation steps were performed at 13806 rpm for 5 min
573 (Centrifuge 5424, FA-45-24-11, Eppendorf). Recombinant *E. coli* cells were grown overnight in 5 mL
574 selective liquid LB at 37°C and 150 rpm. 1.5-3 mL cell suspension were harvested in 1.5 mL reaction
575 tubes. The supernatant was discarded, and the pellet was resuspended by vortexing in 150 µl P1-
576 buffer (50 mM Tris, 10 mM EDTA, 100 µg/mL RNaseA, pH 8.0 with HCl). Cells were lysed in 150 µl P2-
577 buffer (200 mM NaOH, 1 vol-% SDS) and inverted five times. Proteins were precipitated by adding 250
578 µl P3-buffer (2.55 M Na-acetate, pH 4.8 with acetic acid). The samples were inverted five times and
579 centrifuged. Subsequently, 500 µL of the supernatant were transferred into new 1.5 mL tubes and
580 mixed with 500 µl isopropanol. The samples were quickly vortexed and centrifuged again. Afterwards,
581 the supernatant was discarded. At this step, the precipitated and non-visible plasmid-DNA pellet
582 remained on the bottom of the tube. The pellet was washed twice with ice-cold EtOH (70 vol-%)
583 omitting resuspending the DNA. After the second washing, the supernatant was discarded completely
584 and the remaining EtOH was first removed by snapping the tube on a piece of clean paper towel and
585 then through drying at 50-65°C for 10 min. The dried pellet was resuspended in 30 µL elution buffer
586 (Tris/EDTA, pH 7.2) or deionized water. Purified plasmid-DNA with a concentration of 250-500 ng/µL
587 was clean enough for subsequent cloning steps and test-digestion, however, an additional clean-up
588 with the QIAquick PCR Purification Kit (Qiagen) was carried out when a Sanger sequencing reaction
589 was necessary. P1-buffer needed to be stored at 4°C to maintain RNase activity for up to 3 months.
590 P2- and P3-buffer were stored at room temperature.

591 **A modified conjugation protocol for *C. ljungdahlii***

592 This protocol was adapted and modified according to Mock *et al.* (40). Cells of *C. ljungdahlii* were
593 grown in RCM overnight to mid exponential growth until an OD₆₀₀ of 0.4-0.8 was reached
594 (NanoPhotometer® NP80, Implen). *E. coli* HB101 pKR2013 (DSM 5599) harboring the desired CRISPR-
595 Cas12a-plasmid was grown as pre-culture in selective 5 mL LB medium overnight. The plasmid
596 pKR2013 contains essential genes to mediate conjugation and a kanamycin resistance cassette. 1-2
597 mL of the *E. coli* cells were used to inoculate 10 mL selective LB medium in 50 mL baffled flask and
598 cultivated until mid-exponential growth (OD₆₀₀ 0.5-1.0). Subsequently, the *E. coli* culture was cooled
599 to 4°C and 2 mL were transferred into sterile 2 mL reaction tubes. The *C. ljungdahlii* culture was kept
600 at room temperature until use. Inside the anaerobic chamber, *E. coli* cells were centrifuged softly at
601 2900 rpm (mySpin™ 12 mini centrifuge, Thermo Fischer Scientific) to protect pili, and washed once
602 with sterile and anaerobic 0.1 M phosphate buffer saline (PBS) at pH 6.0. Afterwards, the washed
603 pellet was resuspended gently in 100-150 µL cell suspension of *C. ljungdahlii* and directly transferred

604 to well-dried RCM-agar plates (2 vol-% agar). Spot-mating was carried out at 37°C inside the anaerobic
605 chamber overnight. After 8-24 h the spot was resuspended with anaerobic PBS (pH 6.0) and
606 centrifuged at 10000 rpm (mySpin™ 12 mini centrifuge, Thermo Fischer Scientific) for 3 min. The
607 supernatant was discarded, and the pellet was resuspended in the remaining volume of the tube.
608 Subsequently, 100 µL of the cell suspension was plated onto selective PETC+5gS-agar plates, which
609 contained 5 g/L of peptone and 5 g/L meat extract to support growth. Selective agar plates should not
610 be older than 2-3 days. Thiamphenicol was added for plasmid selectivity. Trimethoprim (10 mg/mL)
611 was added to counter-select against *E. coli*. Growth was obtained after 4-5 days at 37°C inside the
612 anaerobic chamber. *C. ljungdahlii* colonies were transferred into Hungate tubes containing 5 mL RCM
613 with the respective antibiotics. A successful transformation of *C. ljungdahlii* with the correct plasmid
614 was confirmed as follow: **1)** Growth in selective RCM with a characteristic pH decrease due to
615 acetogenesis; **2)** control PCRs with primers for plasmid specific fragments; and **3)** plasmid purification
616 from the culture and re-transformation into *E. coli* TOP10 cells.

617 **Electroporation of *C. ljungdahlii* cells**

618 Electroporation of *C. ljungdahlii* cells was performed as previously reported (Xia et al. 2020) and
619 applied for all non-CRISPR-based plasmids. Single colonies growing on selective plates were verified
620 by PCR analyses and by re-transformation of plasmid DNA, which was extracted from *C. ljungdahlii*
621 into *E. coli*.

622 **Growth experiments with *C. ljungdahlii***

623 In general, all recombinant *C. ljungdahlii* strains were pre-grown in 50 mL RCM in 100 mL serum bottles
624 for 24-48 h. Subsequently, 2 mL cell suspension were used to inoculate 50 mL PETC medium in 100 mL
625 serum bottles. This PETC pre-culture was cultivated for 40-48h at 37°C until mid-exponential growth
626 phase at OD₆₀₀ of 0.5-1.0. Afterwards, cells were transferred anaerobically into 50 mL reaction tubes,
627 which were equilibrated for 3-5 days inside the anaerobic chamber. Cell harvest was performed
628 outside the anaerobic chamber at 3700 rpm for 12 min (Centrifuge 5920R, S-4x1000, Eppendorf) at
629 room temperature. After the centrifugation, the tubes were transferred back immediately into the
630 anaerobic chamber, to keep the time at aerobic conditions at a minimum. Inside the anaerobic
631 chamber, the supernatant was discarded, and the pellet was resuspended in fresh PETC medium to
632 adjust to an OD₆₀₀ of 5-10. The concentrated cell suspension was then transferred into sterile and
633 anaerobic 10 mL Hungate tubes, sealed carefully, and used to inoculate main cultures outside of the
634 anaerobic chamber. 1 mL of the cell suspension was used to inoculate 100 mL PETC main cultures. For
635 heterotrophic growth experiment, 240 mL serum bottles were used. Autotrophic growth experiments
636 were performed in 1000 mL Duran pressure plus bottles (Schott), to provide a high medium-to-

637 headspace ratio. The Duran pressure plus bottles were sealed with butyl stoppers and a GL45 ring cap.
638 Before inoculation of autotrophic cultures, the N₂ headspace was replaced with a sterile gas mixture
639 consisting of H₂/CO₂ (80/20 vol-%). Each bottle contained 0.5 bar overpressure. All cultures were
640 cultivated in biological triplicates as batch cultures. The gas headspace was not refilled during the
641 experiments. However, for the strain *C. ljungdahlii* pMTL83151_P_{nat}_rnfCDGEAB and the control strain
642 *C. ljungdahlii* pMTL83151 we refilled the headspace during this experiment with the same gas mixture
643 to 0.5 bar overpressure at time points 44.5 h, 73.5 h, and 148.5 h (**Supplementary Fig. S3**). Culture
644 samples of 3 mL were taken at the bench and used for: **1)** OD₆₀₀ measurement; **2)** pH measurement;
645 **3)** HPLC analyses (acetate and ethanol); and **4)** FIA analyses (nitrate, nitrite, and ammonium). All
646 culture samples were stored at -20°C until use. OD₆₀₀ samples were diluted with medium or PBS buffer
647 when the absorbance was > 0.5. We applied a two-tailed student's t-test for all cultivation data. All p-
648 values (P) below 0.001 indicate high significance and are given as ≤ 0.001.

649 **HPLC analyses**

650 HPLC analyzes were performed as described before (24). In addition, all frozen supernatant samples
651 were thawed at 30°C for 10 min and 300 rpm, vortexed briefly, and centrifuged for 3 min at 13806
652 rpm (Centrifuge 5424, FA-45-24-11, Eppendorf) before use. All HPLC samples were randomized.

653 **Measurement of nitrate, nitrite, and ammonium**

654 Nitrate and nitrite concentrations were measured in a FIA continuous-flow analyzer system (AA3 HR
655 AutoAnalyzer System, Seal Analytical GmbH, Germany) as described before (41). Briefly, nitrate is
656 reduced to nitrite with hydrazine and then reacts with sulfanilamide and NEDD
657 (N-1-Naphthylethylenediamine di-HCl) to form a pink complex, which can be quantified photo-
658 metrically at 550 nm. The protocol follows the DIN 38405/ISO 13395 standard methods. Ammonium
659 concentrations were measured in the same system but with salicylate and dichloroisocyanuric acid
660 forming a blue complex that is measured at 660 nm instead. The protocol was following
661 DIN 38406/ISO 11732 standard methods. Culture samples of *C. ljungdahlii* were treated as explained
662 above for HPLC preparation. However, we prepared 1:50 dilution in 1 mL with deionized water *prior*
663 to the FIA analyses. Standards for nitrate, nitrite, and ammonium were measured before and during
664 the analyses for a standard curve and to minimize drift effects. Nitrate concentrations of each sample
665 were calculated by the difference of the amount of nitrite measured with and without the *prior*
666 reduction by hydrazine.

667 **Growth experiment for RNA extraction from *C. ljungdahlii***

668 For the expression analyses, we grew the strains *C. ljungdahlii* WT, *C. ljungdahlii* ΔRNF, and
669 *C. ljungdahlii* ΔrseC under autotrophic and heterotrophic conditions as described above. The
670 cultivation medium was PETC with ammonium as nitrogen source. Pre-cultures were grown in
671 heterotrophic medium for 48 h. Next, the cells were transferred into the anaerobic chamber and
672 harvested for 12 min at 25°C and 3700 rpm (Centrifuge 5920 R, S-4x1000, Eppendorf) outside of the
673 anaerobic chamber. The supernatant was discarded under anaerobic conditions and the pellet was
674 resuspended in fresh medium of the main cultures. The start OD₆₀₀ for autotrophic main cultures was
675 0.2, while it was 0.15 for heterotrophic conditions. The cultures were cultivated at 37°C. 10 mL culture
676 samples were taken after 3 h and 20 h. The samples were immediately cooled on ice and centrifuged
677 for 12 min at 4°C and 3700 rpm (Centrifuge 5920 R, S-4x1000, Eppendorf). The cell pellets were stored
678 at -20°C until RNA extraction.

679 RNA was purified from *C. ljungdahlii* with the RNeasy Mini Kit (Qiagen) as described before (42). For
680 the RNA extraction, we used 2·10⁸ cells, which was approximately 10 mL of a *C. ljungdahlii* culture at
681 OD₆₀₀ 0.2. The cell lysis was performed in the lysis buffer of the kit with 50 mg glass beads (0.1 mm
682 silica spheres, MP Biomedicals) in a bead beater (5G-FastPrep, MP Biomedicals) for 2x 60s at 9 m/s.
683 RNA samples were eluted in 30 µL nuclease-free water. After the extraction procedure, an additional
684 DNase I digest (RNase free Kit, Thermo-Scientific) was performed to remove potential DNA
685 contamination. Elimination of genomic DNA was confirmed with PCR analyses and gel electrophoresis.
686 cDNA synthesis was performed with the QuantiTect Reverse Transcriptase Kit (Qiagen) according to
687 the manufacturer's instructions. We used 500 ng RNA as template for each reaction. cDNA was stored
688 at -20°C until further use.

689 **qRT-PCR analyses**

690 All qRT-PCR analyses were performed in a Quantstudio 3 Thermocycler (Applied Biosystems, Thermo
691 Scientific). The PCR reaction mix contained 10 µL SYBR Green Master mix (Thermo Scientific), 1 µL of
692 a fwd and rv qRT-PCR primer (final concentration 500 nM) (**Table 5**), and 1 µL (~5 ng) cDNA template.
693 We used the *rho* gene as reference gene, which was described before as suitable candidate for qRT-
694 PCR experiments with *C. ljungdahlii* (42). We added RNA controls to further exclude gDNA
695 contamination in our samples. All qRT-PCR reactions were performed in technical triplicate according
696 to the manufacturer's instructions. We set the Ct threshold to 0.1. The fold change in gene expression
697 between the samples was determined with the 2^{-ΔΔCt} method as described before (43). We examined
698 the PCR efficiency of our qPCR master mix by using plasmid DNA containing the sequence of each
699 tested gene in a series of dilutions (10⁻¹, 10⁻², 5·10⁻³, 10⁻³, 5·10⁻⁴, 10⁻⁴). The slopes were ranging from
700 0.04-0.09 for the RNF-gene cluster genes and 0.17 for *rseC*, and were thus, close to zero, which proofs

701 that the efficiencies are similar and the $2^{-\Delta\Delta Ct}$ can be used for interpretation of the qRT-PCR data (43).
702 We applied a two-tailed student's t-test based on our ΔCt values for each gene to analyze the
703 significance of our samples in comparison to the wild type.

704 **Strain preservation**

705 Cultures of *C. ljungdahlii* were stored at -80°C. For this, cultures were grown in RCM until late
706 exponential growth phase (OD_{600} 0.8-1.2) at 37°C for 36-48 h. The cells were transferred into anaerobic
707 50 mL reaction tubes inside the anaerobic chamber and harvested outside of the anaerobic chamber
708 for 12 min at 4°C and 3700 rpm (Centrifuge 5920 R, S-4x1000, Eppendorf). The supernatant was
709 discarded inside the anaerobic chamber and the pellet was resuspended in fresh RCM medium to an
710 OD_{600} of 5-10. 2 mL of the cell suspension was transferred into 10 mL serum bottles, which were
711 previously filled with 2 mL of 25-50 vol-% anaerobic and autoclaved glycerol. The serum bottles were
712 briefly vortexed outside the anaerobic chamber, incubated on ice for 10-15 min and subsequently
713 frozen at -80°C. For inoculation of a new RCM culture, a single serum bottle was quickly thawed up
714 under rinsing water and 1-2 mL of the cell suspension was immediately transferred with a syringe into
715 the medium bottle. Cultures of *E. coli* were stored at -80°C in sterile screw-cap tubes filled with 25-50
716 vol-% glycerol.

717

718 **References**

- 719 1. Drake HL, Gossner AS, Daniel SL. 2008. Old acetogens, new light. Annals of the New York
720 Academy of Sciences 1125:100-128.
- 721 2. Katsyv A, Müller V. 2020. Overcoming energetic barriers in acetogenic C1 conversion.
722 Frontiers in Bioengineering and Biotechnology 8.
- 723 3. Wood HG, Ragsdale SW, Pezacka E. 1986. The acetyl-CoA pathway of autotrophic growth.
724 FEMS Microbiology Reviews 2:345-362.
- 725 4. Ljungdahl LG. 2009. A life with acetogens, thermophiles, and cellulolytic anaerobes. Annual
726 Review of Microbiology 63:1-25.
- 727 5. Song Y, Lee JS, Shin J, Lee GM, Jin S, Kang S, Lee J-K, Kim DR, Lee EY, Kim SC. 2020. Functional
728 cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for autotrophic
729 growth of *Clostridium drakei*. Proceedings of the National Academy of Sciences of the United
730 States of America 117:7516-7523.
- 731 6. Fast AG, Papoutsakis ET. 2012. Stoichiometric and energetic analyses of non-photosynthetic
732 CO₂-fixation pathways to support synthetic biology strategies for production of fuels and
733 chemicals. Current Opinion in Chemical Engineering 1:380-395.
- 734 7. Ljungdhal LG. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria.
735 Annual Reviews in Microbiology 40:415-450.
- 736 8. Wood HG. 1991. Life with CO or CO₂ and H₂ as a source of carbon and energy. The FASEB
737 Journal 5:156-163.
- 738 9. Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO₂ fixation.
739 Biochimica et Biophysica Acta 1784:1873-98.

740 10. Schuchmann K, Müller V. 2014. Autotrophy at the thermodynamic limit of life: a model for
741 energy conservation in acetogenic bacteria. *Nature Reviews Microbiology* 12:809-821.

742 11. Biegel E, Schmidt S, Gonzalez JM, Müller V. 2011. Biochemistry, evolution and physiological
743 function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes.
744 *Cellular and Molecular Life Sciences* 68:613-34.

745 12. Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M,
746 Oelze J, Klipp W. 1993. Identification of a new class of nitrogen fixation genes in *Rhodobacter*
747 *capsulatus*: A putative membrane complex involved in electron transport to nitrogenase.
748 *Molecular Genetics and Genomics* 241:602-15.

749 13. Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR. 2012. The Rnf complex of *Clostridium*
750 *ljungdahlii* is a proton-translocating ferredoxin:NAD⁺ oxidoreductase essential for autotrophic
751 growth. *MBio* 4:e00406-12.

752 14. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk
753 G, Dürre P. 2010. *Clostridium ljungdahlii* represents a microbial production platform based on
754 syngas. *Proceedings of the National Academy of Sciences of the United States of America*
755 107:13087-13092.

756 15. Al-Bassam MM, Kim JN, Zaramela LS, Kellman BP, Zuniga C, Wozniak JM, Gonzalez DJ, Zengler
757 K. 2018. Optimization of carbon and energy utilization through differential translational
758 efficiency. *Nature Communications* 9:4474.

759 16. Tan Y, Liu J, Chen X, Zheng H, Li F. 2013. RNA-seq-based comparative transcriptome analysis
760 of the syngas-utilizing bacterium *Clostridium ljungdahlii* DSM 13528 grown autotrophically
761 and heterotrophically. *Molecular BioSystems* 9:2775-84.

762 17. De Las Peñas A, Connolly L, Gross CA. 1997. The σ^E -mediated response to extracytoplasmic
763 stress in *Escherichia coli* is transduced by RseA and RseB, two negative regulators of σ^E .
764 *Molecular Microbiology* 24:373-385.

765 18. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. 1997. Modulation of the
766 *Escherichia coli* σ^E (*rpoE*) heat-shock transcription-factor activity by the RseA, RseB and RseC
767 proteins. *Molecular Microbiology* 24:355-371.

768 19. Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH. 2003. A reducing
769 system of the superoxide sensor SoxR in *Escherichia coli*. *The EMBO Journal* 22:2614-2622.

770 20. Beck BJ, Connolly LE, De Las Peñas A, Downs DM. 1997. Evidence that *rseC*, a gene in the *rpoE*
771 cluster, has a role in thiamine synthesis in *Salmonella typhimurium*. *Journal of Bacteriology*
772 179:6504-6508.

773 21. Martinez-Salazar JM, Moreno S, Najera R, Boucher JC, Espín G, Soberon-Chavez G, Deretic V.
774 1996. Characterization of the genes coding for the putative sigma factor AlgU and its
775 regulators MucA, MucB, MucC, and MucD in *Azotobacter vinelandii* and evaluation of their
776 roles in alginate biosynthesis. *Journal of Bacteriology* 178:1800-1808.

777 22. Boucher JC, Schurr MJ, Yu H, Rowen DW, Deretic V. 1997. *Pseudomonas aeruginosa* in cystic
778 fibrosis: role of *mucC* in the regulation of alginate production and stress sensitivity.
779 *Microbiology* 143:3473-3480.

780 23. Emerson DF, Woolston BM, Liu N, Donnelly M, Currie DH, Stephanopoulos G. 2019. Enhancing
781 hydrogen-dependent growth of and carbon dioxide fixation by *Clostridium ljungdahlii* through
782 nitrate supplementation. *Biotechnology and Bioengineering* 116:294-306.

783 24. Klask CM, Kliem-Kuster N, Molitor B, Angenent LT. 2020. Nitrate feed improves growth and
784 ethanol production of *Clostridium ljungdahlii* with CO₂ and H₂, but results in stochastic
785 inhibition events. *Frontiers in Microbiology* 11:724.

786 25. Westphal L, Wiechmann A, Baker J, Minton NP, Muller V. 2018. The Rnf complex is an energy-
787 coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in
788 the acetogen *Acetobacterium woodii*. *Journal of Bacteriology* 200:e00357-18.

789 26. Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V. 2014. A genome-guided analysis of energy
790 conservation in the thermophilic, cytochrome-free acetogenic bacterium
791 *Thermoanaerobacter kivui*. *BMC Genomics* 15:1139.

792 27. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K. 2013. Characterizing
793 acetogenic metabolism using a genome-scale metabolic reconstruction of *Clostridium*
794 *Ijungdahlii*. *Microbial Cell Factories* 12:118.

795 28. Hess V, Schuchmann K, Müller V. 2013. The ferredoxin:NAD⁺ oxidoreductase (Rnf) from the
796 acetogen *Acetobacterium woodii* requires Na⁺ and is reversibly coupled to the membrane
797 potential. *Journal of Biological Chemistry* 288:31496-502.

798 29. Biegel E, Müller V. 2010. Bacterial Na⁺-translocating ferredoxin:NAD⁺ oxidoreductase.
799 *Proceedings of the National Academy of Sciences of the United States of America* 107:18138-
800 42.

801 30. Yura T, Nakahigashi K. 1999. Regulation of the heat-shock response. *Current Opinion in
802 Microbiology* 2:153-158.

803 31. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic anaerobic
804 bacteria. *Bacteriological Reviews* 41:100.

805 32. Buckel W, Thauer RK. 2018. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and
806 anaerobic respiration with protons (Ech) or NAD⁺ (Rnf) as electron acceptors: A historical
807 review. *Frontiers in Microbiology* 9:401.

808 33. Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. 2015. Efficient genome
809 editing in *Clostridium cellulolyticum* via CRISPR-Cas9 nickase. *Applied and Environmental
810 Microbiology* 81:4423-31.

811 34. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz
812 SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. 2015. Cpf1 is a single RNA-guided
813 endonuclease of a class 2 CRISPR-Cas system. *Cell* 163:759-71.

814 35. Orosz A, Boros I, Venetianer P. 1991. Analysis of the complex transcription termination region
815 of the *Escherichia coli rrn B* gene. *European Journal of Biochemistry* 201:653-659.

816 36. Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. 2018. Rediverting carbon flux in
817 *Clostridium Ijungdahlii* using CRISPR Interference (CRISPRi). *Metabolic Engineering*
818 doi:10.1016/j.ymben.2018.06.006.

819 37. Heap JT, Pennington OJ, Cartman ST, Minton NP. 2009. A modular system for *Clostridium*
820 shuttle plasmids. *Journal of Microbiological Methods* 78:79-85.

821 38. Sambrook J, Russell DW. 2006. Preparation and transformation of competent *Escherichia coli*
822 using calcium chloride. *Cold Spring Harbor Protocols* 2006.

823 39. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual. Cold Spring
824 Harbor Laboratory Press.

825 40. Mock J, Zheng Y, Müller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK.
826 2015. Energy conservation associated with ethanol formation from H₂ and CO₂ in *Clostridium*
827 *autoethanogenum* involving electron bifurcation. *Journal of Bacteriology* 197:2965-2980.

828 41. Klueglein N, Zeitvogel F, Stierhof Y-D, Floetenmeyer M, Konhauser KO, Kappler A, Obst M.
829 2014. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate
830 reduction by denitrifying bacteria. *Applied and Environmental Microbiology* 80:1051-1061.

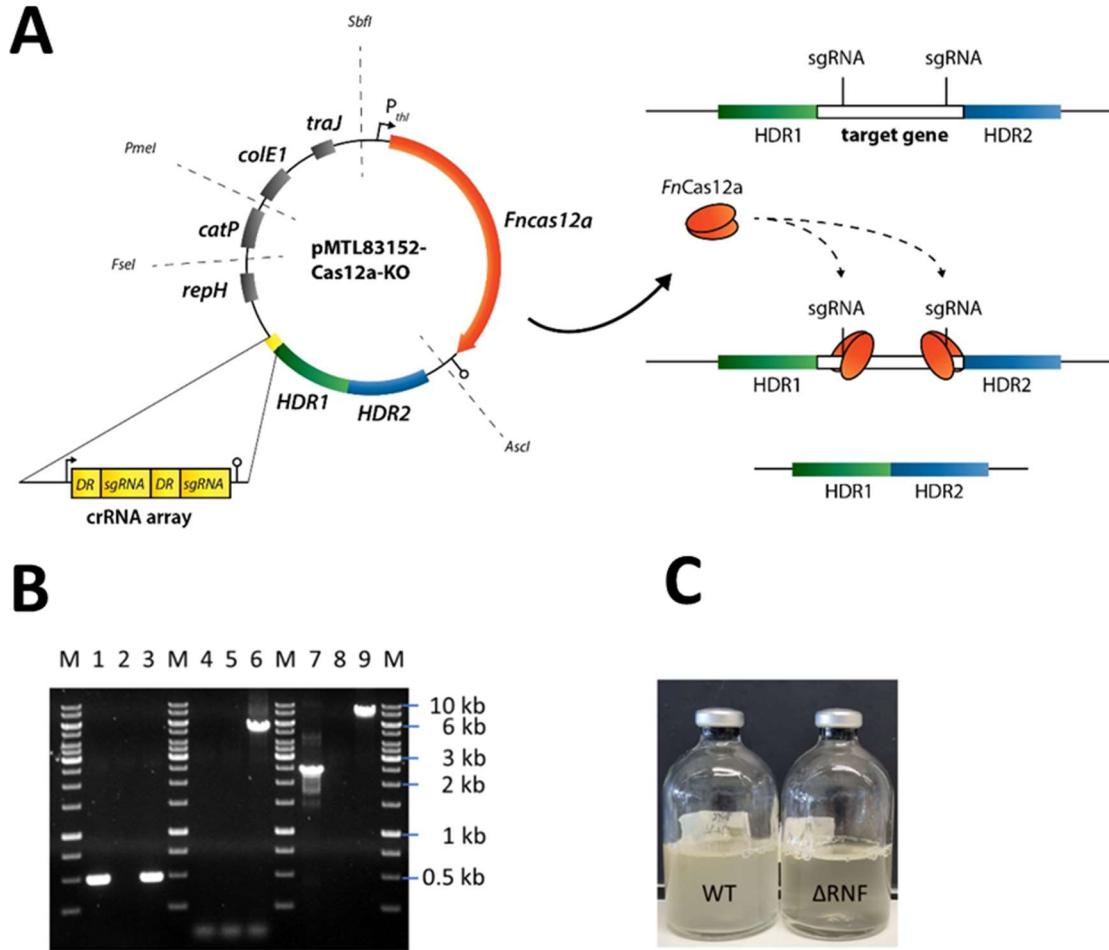
831 42. Liu J, Tan Y, Yang X, Chen X, Li F. 2013. Evaluation of *Clostridium Ijungdahlii* DSM 13528
832 reference genes in gene expression studies by qRT-PCR. *Journal of Bioscience and
833 Bioengineering* 116:460-4.

834 43. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time
835 quantitative PCR and the 2^{-ΔΔCT} method. *Methods* 25:402-408.

836

837

838 **Acknowledgement**

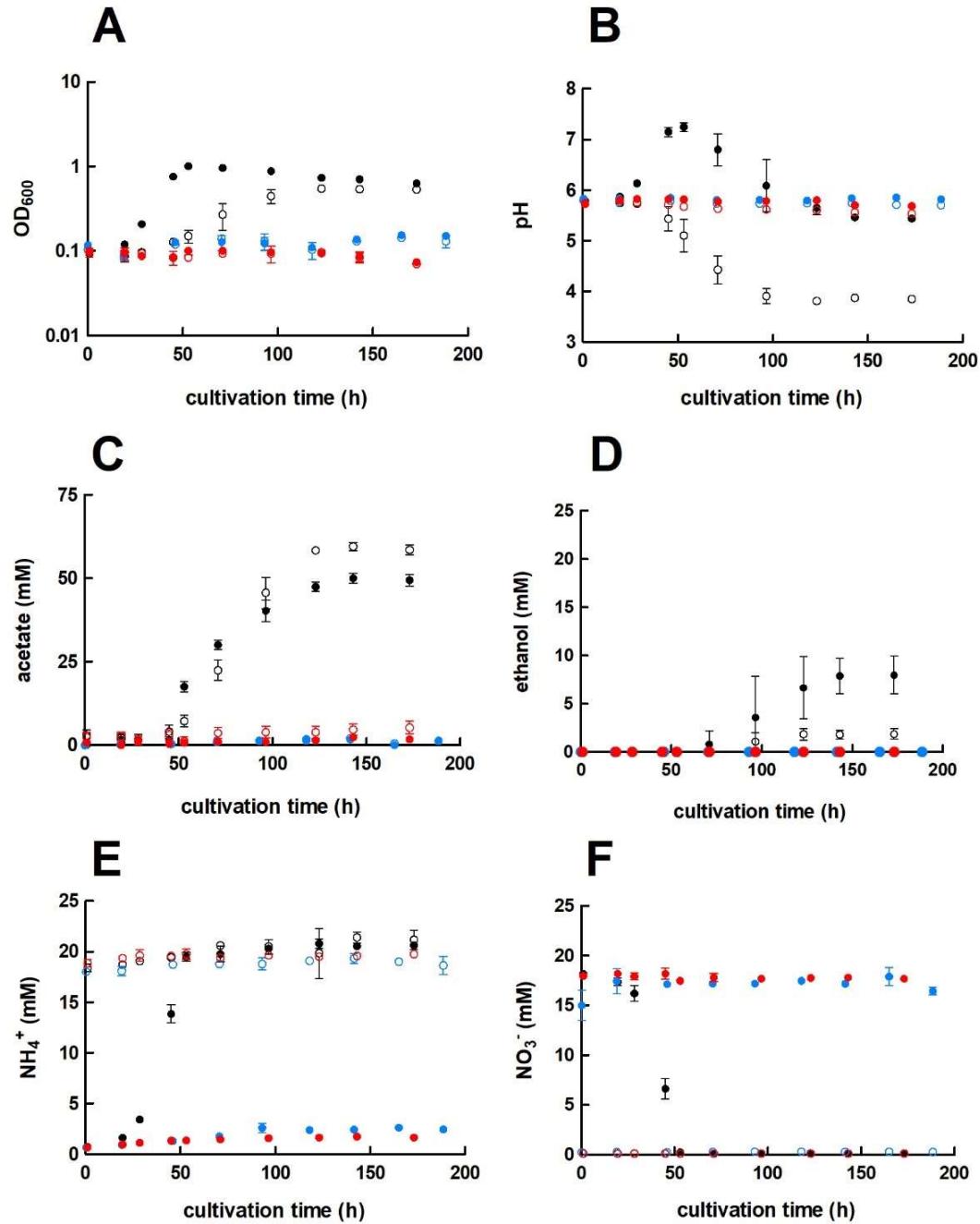

839 This work was funded through the Alexander von Humboldt Foundation in the framework of the
840 Alexander von Humboldt Professorship, which was awarded to L.T.A. We are also thankful for
841 additional funding to L.T.A. and B.M. from the Deutsche Forschungsgemeinschaft (DFG, German
842 Research Foundation) under Germany's Excellence Strategy – EXC 2124 – 390838134. The plasmid
843 pMTL2tet01gusA was kindly provided by Dr. Gregory Stephanopoulos (Department of Chemical
844 Engineering, Massachusetts Institute of Technology). We acknowledge support by the DFG and Open
845 Access Publishing Fund of the University of Tübingen. We thank Dr. Peng-Fei Xia (Environmental
846 Biotechnology Group, University of Tübingen) for his advice for the CRISPR design and Franziska
847 Schädler (Geomicrobiology and Microbial Ecology, University of Tübingen) for her support with the
848 nitrate and ammonium measurements. We thank Nicole Smith (Environmental Biotechnology Group,
849 University of Tübingen) for her support in medium preparations.

850 **Author's contribution**

851 Christian-Marco Klask (C.M.K.) and Bastian Molitor (B.M.) designed the experiments. C.M.K.
852 performed the genetic work, conducted the growth experiments, analyzed the metabolites, and
853 performed the *in-silico* research. C.M.K. and Benedikt Jäger (B.J.) performed the qRT-PCR experiments.
854 C.M.K. analyzed the experimental data. Largus T. Angenent (L.T.A.) and B.M. supervised the work.
855 C.M.K. and B.M. wrote the manuscript, and all authors edited the paper and approved the final
856 version.

857 **Competing Interest Statement:** The authors declare no conflict of interest.

858 **Figures**

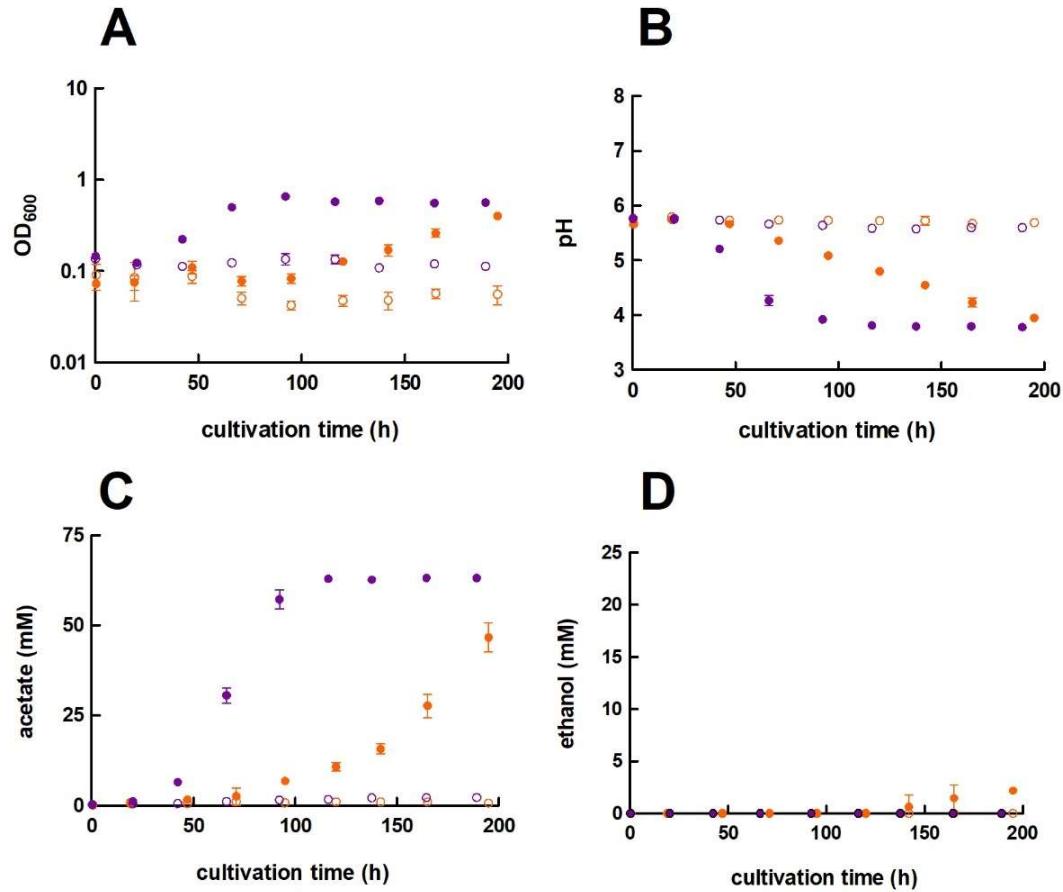


859

860 **Fig. 1** CRISPR-Cas12a-mediated *rnfCDGEAB* gene cluster deletion in *C. ljungdahlii*. **A**, modular
861 CRISPR-Cas12a system established in the pMTL80000 shuttle-vector system (37). The final CRISPR-
862 Cas12a plasmid for deletion of *rnfCDGEAB* contained the *Fncas12a* gene, homology-directed repair
863 arms (HDRs), and a specific crRNA array comprising two directed repeats (DRs) and two sgRNA, which
864 targeted the *rnfC* and *rnfB* genes. **B**, agarose gel with PCR-samples for the *fdhA* fragment (WT: 501 bp,
865 deletion strain: 501 bp), *rnfCDGEAB* fragment (WT: 5047 bp, deletion strain: no fragment), and for a
866 fragment that was amplified with primers that bind ~1250 bp upstream and downstream of the
867 *rnfCDGEAB* gene cluster locus (WT: 7550 bp, deletion strain: 2503 bp). DNA-template: gDNA of *C.*
868 *ljungdahlii* ΔRNF (lane 1, 4, and 7); gDNA of *C. ljungdahlii* WT (lane 3, 6, and 9); and water (lane 2, 5,
869 8). M: Generuler™ 1 kb DNA ladder. **C**, growth of the wild type (WT) and reduced growth of the
870 deletion strain (ΔRNF) with fructose in PETC medium. HDR1/2, homology-directed repair arm flanking
871 the targeted gene; crRNA array, sequence containing FnCas12a-specific DRs and sgRNAs; sgRNA, guide
872 RNA; *repH*, Gram-positive origin of replication; *catP*, antibiotic resistant cassette against

873 chloramphenicol/thiamphenicol; *colE1*, Gram-negative origin of replication; *traJ*, conjugation gene;
874 P_{thl} , promoter sequence of the thiolase gene in *Clostridium acetobutylicum*; *Ascl*, *Fsel*, *Pmel*, and *SbfI*
875 are unique-cutting restriction sites, which were preserved during the cloning to maintain the modular
876 functionality of the plasmid backbone.

877


878

879 **Fig. 2 Cultivation of *C. ljungdahlii* WT, *C. ljungdahlii* Δ RNF, and *C. ljungdahlii* Δ rseC in nitrate- or**

880 ammonium-containing medium with H_2 and CO_2 . Cultures of *C. ljungdahlii* strain WT (●, ○), Δ RNF (●, ○), and Δ rseC (●, ○) were grown in 100 mL PETC medium in 1 L bottles at 37°C and 150 rpm. The headspace consisted of H_2 and CO_2 (80/20 vol-%) and was set to 0.5 bar overpressure. The medium contained either 18.7 mM nitrate (NO_3^-) (filled circles) or 18.7 mM ammonium (NH_4^+) (open circles) as nitrogen source. The cultivation times were 173 h for cultures of *C. ljungdahlii* WT and *C. ljungdahlii* Δ RNF and 186 h for cultures of *C. ljungdahlii* Δ rseC. All cultures were grown in biological triplicates, data is given as mean values, with error bars indicating the standard deviation. **A**, growth; **B**, pH-

887 behavior; **C**, acetate concentrations; **D**, ethanol concentration; **E**, ammonium concentration; and **F**,
888 nitrate concentrations. WT, wild type; Δ RNF, RNF-gene cluster deletion; Δ rseC, rseC gene deletion.

889

890

891 **Fig. 3 Growth and pH behavior of plasmid-based complementation of *C. ljungdahlii* ΔRNF and *C.***

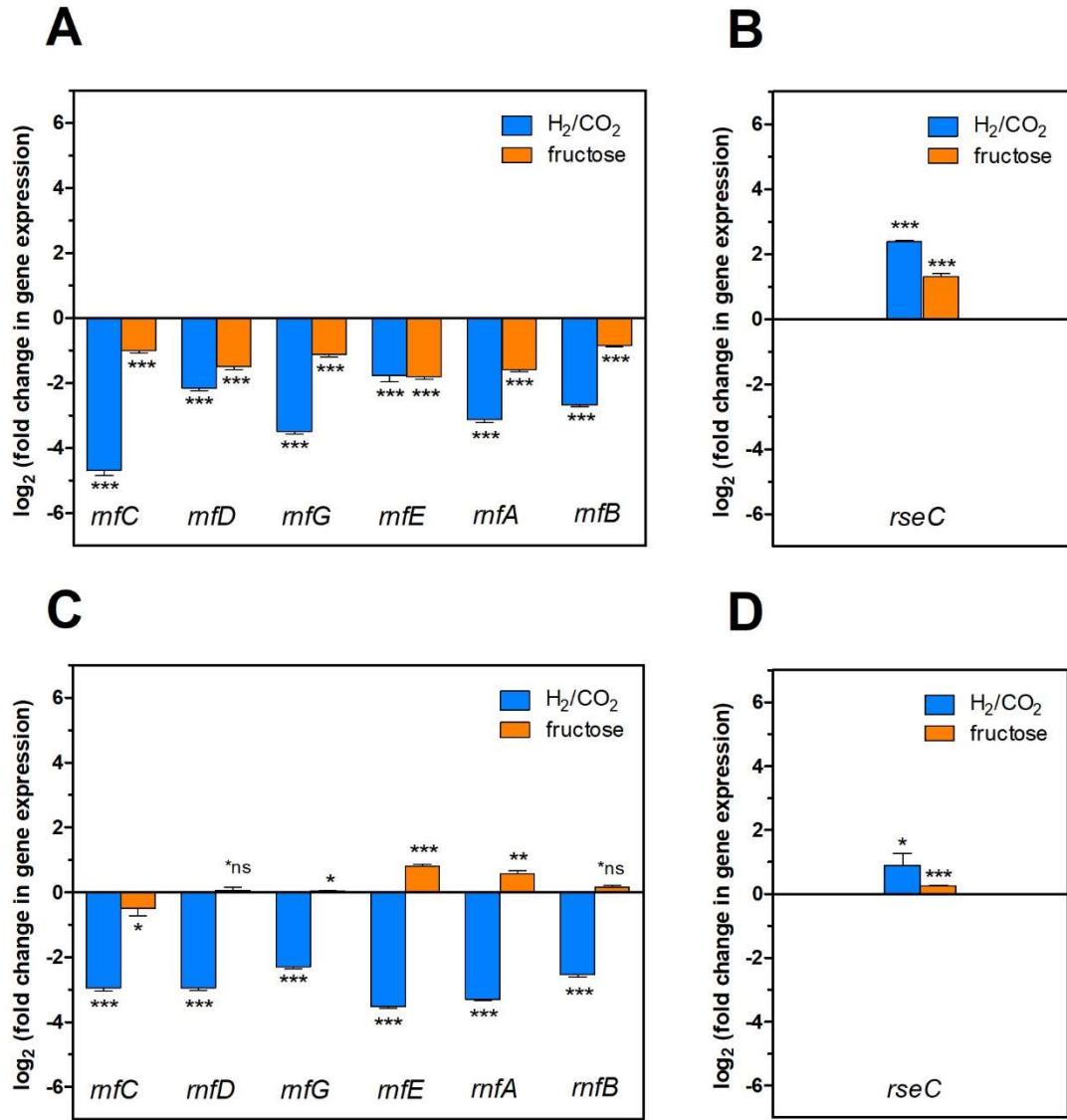
892 ***ljungdahlii* ΔrseC with H₂ and CO₂.** Cultures were grown in 100 mL PETC medium in 1 L bottles at 37°C

893 and 150 rpm for 195 h and 189 h, respectively. The headspace consisted of H₂ and CO₂ (80/20 vol-%)

894 and was set to 0.5 bar overpressure. Only 18.7 mM ammonium (NH₄⁺) but no nitrate was added to the

895 medium. All cultures were grown in biological triplicates, data is given as mean values, with error bars

896 indicating the standard deviation. **A**, growth and **B**, pH-behavior of *C. ljungdahlii* ΔRNF strains. **C**,

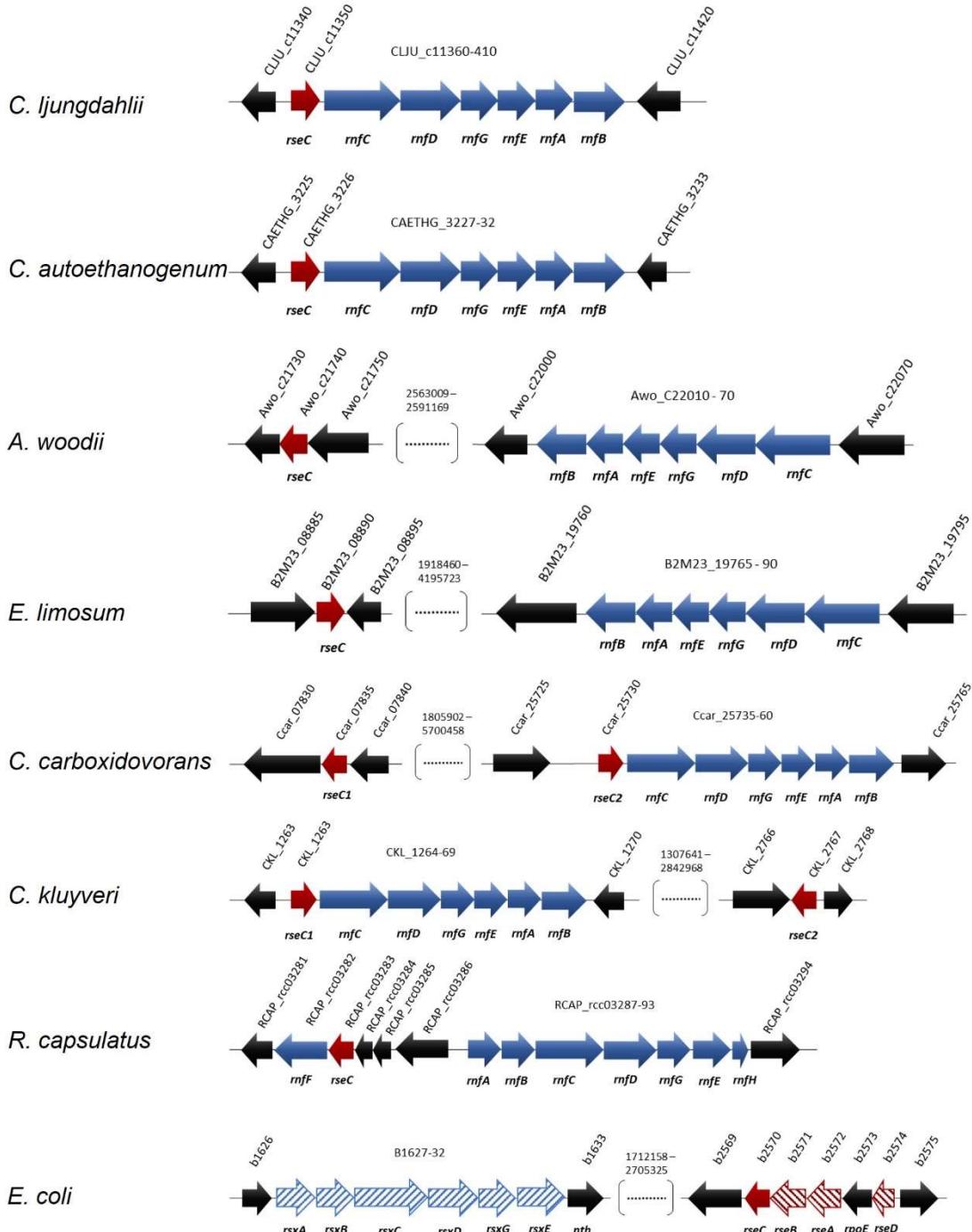

897 growth and **D**, pH-behavior of *C. ljungdahlii* ΔrseC strains. ● *C. ljungdahlii* ΔRNF

898 pMTL83151_P_{nat}_rnfCDGEAB; ○ *C. ljungdahlii* ΔRNF pMTL83151; ● *C. ljungdahlii* ΔrseC

899 pMTL83152_rseC; and ○ *C. ljungdahlii* ΔrseC pMTL83152. ΔRNF, rnfCDGEAB gene cluster deletion;

900 ΔrseC, deletion of rseC; P_{nat}, native promoter sequence upstream of rnfC; P_{thi}, promoter of the thiolase

901 gene in *C. acetobutylicum*; rpm, revolutions per minute; CO₂, carbon dioxide; and H₂, hydrogen.

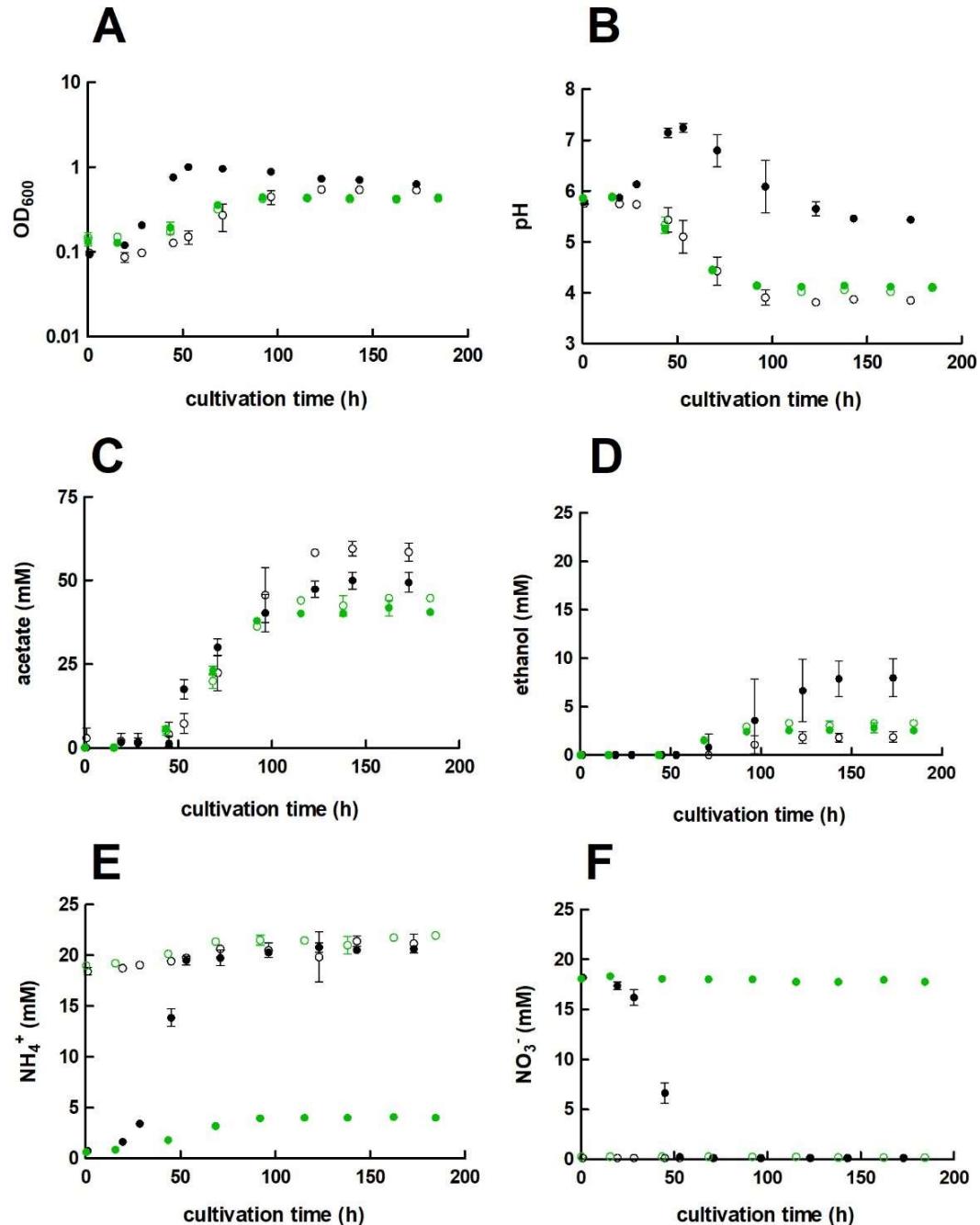


902

903 **Fig. 4 Gene expression change of the rnfCDGEAB cluster genes and the rseC gene in the ΔRNF**
904 **and ΔrseC deletion strains. A, gene expression change for the genes rnfC, rnfD, rnfG, rnfE, rnfA, and**
905 **rnfB in strain C. Ijungdahlii ΔrseC after 3h cultivation time; B, gene expression change for the gene rseC**
906 **in strain C. Ijungdahlii ΔRNF after 3 h cultivation time; C, gene expression change for the genes rnfC,**
907 **rnfD, rnfG, rnfE, rnfA, and rnfB in strain C. Ijungdahlii ΔrseC after 20 h cultivation time; and D, gene**
908 **expression change for the gene rseC in strain C. Ijungdahlii ΔRNF after 20 h cultivation time. RNA**
909 **samples were purified from cultures that were cultivated either autotrophically with hydrogen and**
910 **carbon dioxide (blue bars) or heterotrophically with fructose (orange bars). cDNA was synthesized**
911 **from the purified RNA samples and used as template for qRT-PCR analyses. The individual gene**
912 **expression profiles of each gene was calculated using the wild-type strain as reference, which was**
913 **grown under the same conditions. The rho gene was used as “housekeeping” gene. The fold change**
914 **in gene expression was determined with the 2^{-ΔΔCT} method (43). *** P ≤ 0.001; ** P ≤ 0.01; *, P ≤**

915 0.05; *ns, not significant ($P > 0.05$). We defined $\log_2(\text{fc}) \leq -1$ as downregulated genes and $\geq +1$ as
916 upregulated genes.

917

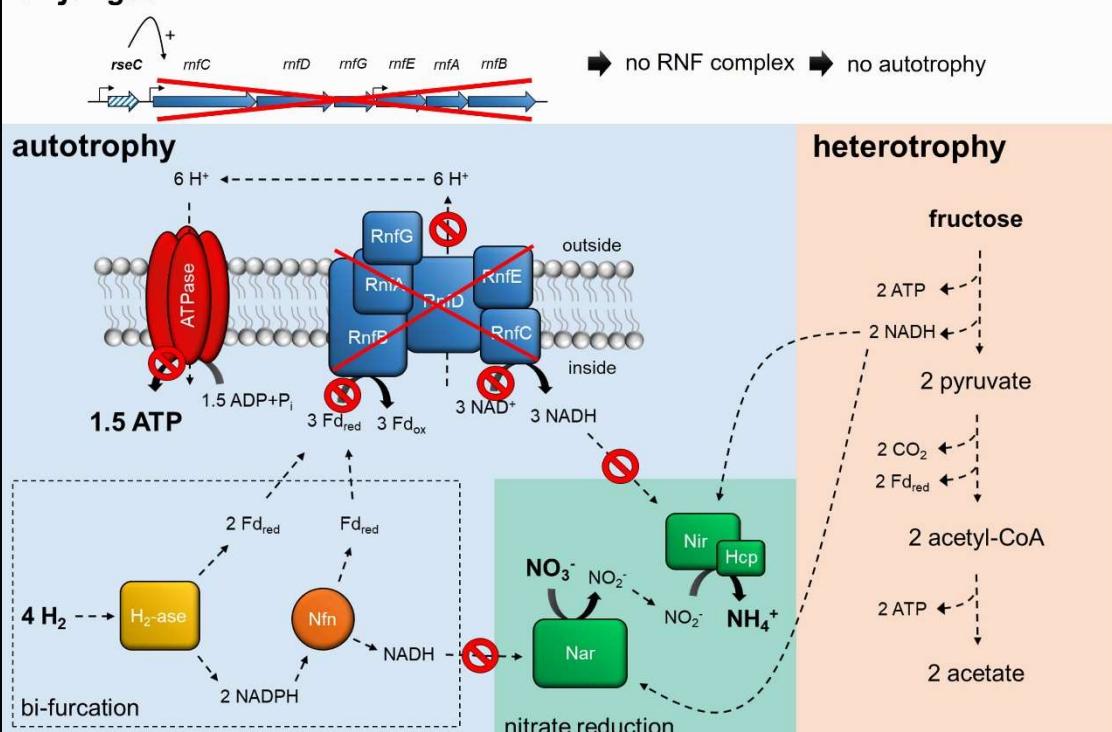

918

919 **Fig. 5 Location and orientation of rseC genes in microbes that possess RNF complex gene clusters.**

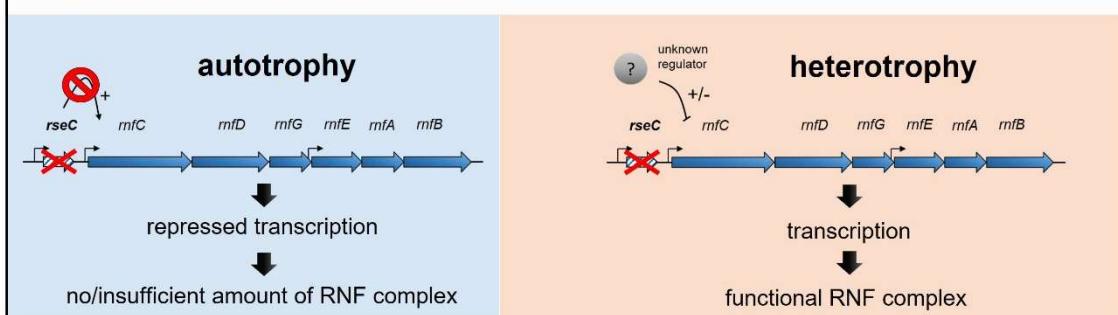
920 The conserved protein domain RseC_MucC (pfam04246) was identified in the rseC protein sequence
 921 of *C. ljungdahlii* and used to search for putative rseC genes in the genome of *C. autoethanogenum*, *A.*
 922 *woodii*, *E. limosum*, *C. carboxidovorans*, *C. kluyveri*, *R. capsulatus*, and *E. coli*. All sequence analyses
 923 and gene arrangements were adapted from the JGI platform and the NCBI database (03/2021). The
 924 type strains are listed in Table 3. In red, putative rseC genes; in red pattern fill, rseC-associated genes

925 in *E. coli*; in blue, RNF-complex gene cluster; in blue pattern fill, *rsx* genes, which are homologous to
926 the *rnf* genes in *R. capsulatus*.

927


928

929 **Fig. 6 Growth, pH behavior, nitrate reduction of *C. ljungdahlii* Δnar with H₂ and CO₂.** Cultures were
930 grown in 100 mL PETC medium in 1 L bottles at 37°C and 150 rpm for 185 h. The headspace consisted
931 of H₂ and CO₂ (80/20 vol-%) and was set to 0.5 bar overpressure. The medium contained either 18.7
932 mM nitrate (NO₃⁻) (●) or 18.7 mM ammonium (NH₄⁺) (○) as nitrogen source. The *C. ljungdahlii* WT data
933 (●, ○) from Supplementary Fig. S1 is given for comparison. All cultures were grown in biological
934 triplicates, data is given as mean values, with error bars indicating the standard deviation. **A**, growth;
935 **B**, pH-behavior; **C**, acetate concentrations; **D**, ethanol concentration; **E**, ammonium concentration;


936 and **F**, nitrate concentrations. *Δnar*, deletion of nitrate reductase gene cluster; rpm, revolutions per
937 minute; CO₂, carbon dioxide; and H₂, hydrogen.

938

C. Ijungdahlii Δ RNF

C. Ijungdahlii Δ rseC

939

940 **Fig. 7 Schematic model of RNF-gene regulation and nitrate reduction in the deletion strains C.**
941 ***Ijungdahlii* Δ RNF and C. Ijungdahlii Δ rseC during autotrophy and heterotrophy.** In both deletion
942 strains, nitrate reduction is not possible in non-growing cells during autotrophy with carbon dioxide
943 and hydrogen due to the lack of a functional RNF complex, and thus the missing regeneration of
944 reducing equivalents such as NADH. On the contrary, nitrate reduction can proceed in C. Ijungdahlii
945 Δ RNF during heterotrophy with NADH, which is provided by glycolysis of fructose. In C. Ijungdahlii
946 Δ rseC, the RNF complex genes are repressed during autotrophy but not during heterotrophy, which
947 indicates a further unknown regulation mechanism during heterotrophy. Thus, a functional RNF
948 complex is formed, and nitrate reduction can proceed such as proposed for the wild type.
949 Abbreviations: H₂, hydrogen; H⁺, proton, CO₂, carbon dioxide; NO₃⁻, nitrate; NO₂⁻, nitrite; NH₄⁺,
950 ammonium; ATP, adenosine triphosphate; ADP + P_i, adenosine diphosphate + phosphate; Fd_{red/ox},

951 reduced/oxidized ferredoxin; NADH/NAD⁺, reduced/oxidize nicotinamide adenine dinucleotide;
952 NADPH/NADP⁺, reduced/oxidized nicotinamide adenine dinucleotide phosphate; RnfCDGEAB, RNF-
953 complex subunits; Nar, nitrate reductase; Nir, nitrite reductase; Hcp, hydroxylamine reductase; H₂-
954 ase, bifurcating hydrogenase/lyase; Nfn, bifurcating transhydrogenase; e⁻, electron; ΔRNF, *C.*
955 *Ijungdahlii* ΔRNF; and ΔrseC, *C. Ijungdahlii* ΔrseC. The model was adapted from Emerson *et al.* (23).
956

957 **Tables**

958 **Table 1 Performance of all tested *C. ljungdahlii* strains in autotrophic batch cultivation experiments.**

959 Cultures were grown with carbon dioxide and hydrogen (autotrophy) in PETC medium, which
960 contained either ammonium or nitrate as nitrogen source. A gas atmosphere of H₂/CO₂ (80/20 vol-%)
961 with 0.5 bar overpressure was applied. Growth was not detected for any culture of *C. ljungdahlii* ΔRNF
962 or *C. ljungdahlii* ΔrseC. Data is represented as mean values from biological triplicates ± standard
963 deviation. WT, *C. ljungdahlii* wild type; ΔRNF, *C. ljungdahlii* with deleted *rnfCDGEAB* gene cluster;
964 ΔrseC, *C. ljungdahlii* with deleted *rseC* gene; and Δnar, *C. ljungdahlii* with deleted nitrate reductase
965 gene cluster. CO₂, carbon dioxide; and H₂, hydrogen.

strain	nitrogen source	growth rate (μ in h) ^a	maximum OD ₆₀₀ value	maximum acetate concentration (mM)	maximum ethanol concentration (mM)
WT	ammonium	0.024±0.002	0.56±0.01	59.5±1.8	1.9±0.4
WT	nitrate	0.072±0.004	1.00±0.06	50.1±2.1	8.0±1.6
ΔRNF	ammonium	-	-	5.7±3.0	n.d. ^b
ΔRNF	nitrate	-	-	2.3±1.1	n.d. ^b
ΔrseC	ammonium	-	-	2.0±0.5	n.d. ^b
ΔrseC	nitrate	-	-	1.9±0.1	n.d. ^b
Δnar	ammonium	0.018±0.001	0.44±0.01	44.8±0.2	3.3±0.2
Δnar	nitrate	0.017±0.003	0.44±0.01	41.9±1.9	2.9±0.4

966 ^a μ values were calculated based on the individual OD₆₀₀ values of each triplicate in the exponential growth phase.

967 ^b n.d., not detectable.

968

969 **Table 1 Performance of the plasmid-based complemented deletion strains of *C. ljungdahlii* in**
970 **autotrophic batch cultivation experiments.** Cultures were grown with carbon dioxide and hydrogen
971 (autotrophy) in PETC medium, which contained either ammonium or nitrate as nitrogen source. A gas
972 atmosphere of H₂/CO₂ (80/20 vol-%) with 0.5 bar overpressure was applied. Data is represented as
973 mean values from biological triplicates \pm standard deviation. The WT data from Table 1 are shown
974 again for comparison. WT, wild type; Δ RNF, deletion of the *rnfCDGEAB* gene cluster; Δ rseC, deletion
975 of the *rseC* gene; Δ nar, deletion of the nitrate reductase gene cluster; Δ RNF compl., complementation
976 strain *C. ljungdahlii* pMTL83151_P_{nat}_rnfCDGEAB; Δ rseC compl., complementation strain *C. ljungdahlii*
977 pMTL83152_rseC; and Δ nar compl., complementation strain *C. ljungdahlii* pMTL83152_nar.

strain	nitrogen source	growth rate (μ in h) ^a	maximum OD ₆₀₀ value	maximum acetate concentration (mM)	maximum ethanol concentration (mM)
WT	ammonium	0.024 \pm 0.002	0.56 \pm 0.01	59.5 \pm 1.8	1.9 \pm 0.4
Δ RNF compl.	ammonium	0.024 \pm 0.001	0.40 \pm 0.03	46.7 \pm 3.7	2.2 \pm 0.2
Δ rseC compl.	ammonium	0.022 \pm 0.002	0.66 \pm 0.03	63.2 \pm 0.2	n.d. ^b
WT	nitrate	0.072 \pm 0.004	1.00 \pm 0.06	50.1 \pm 2.1	8.0 \pm 1.6
Δ nar compl.	nitrate	0.054 \pm 0.001	1.54 \pm 0.03	41.7 \pm 2.5	3.4 \pm 0.5

978 ^a μ values were calculated based on the individual OD₆₀₀ values of each triplicate in the exponential growth phase.

979 ^b n.d., not detectable.

980

981 **Table 3 Distribution of *rseC* genes.**

microbe ^a	amount of <i>rseC</i> genes ^b	RNF or Ech	<i>rseC</i> associated with RNF genes	gene locus
<i>Clostridium ljungdahlii</i>	1	RNF ^c	yes	CJLU_c11350
<i>Clostridium autoethanogenum</i>	1	RNF ^c	yes	CAETHG_3226
<i>Clostridium carboxidovorans</i>	2	RNF ^c	yes, one of them	Ccar_07835, Ccar_025730
<i>Clostridium kluyveri</i>	2	RNF ^c	yes, one of them	CKL_1263, CKL_2767
<i>Eubacterium limosum</i>	1	RNF ^d	no	B2M23_08890
<i>Acetobacterium woodii</i>	1	RNF ^d	no	Awo_c21740
<i>Thermotoga maritima</i>	1	RNF ^d	no	THEMA_1487
<i>Moorella thermoacetica</i>	0	Ech	no	-
<i>Thermoanaerobacter kivui</i>	0	Ech	no	-
<i>Rhodobacter capsulatus</i>	1	RNF ^e	yes	RCAP_rcc03283
<i>Escherichia coli</i>	1	Rsx ^f	no, but with Rsx	b2570

982 ^a The type strains were: *C. ljungdahlii* DSM13528; *C. autoethanogenum* DSM10061; *C. carboxidovorans* P7; *C. kluyveri* DSM555; *E. limosum* ATCC8486; *A. woodii* DSM1030; *T. maritima* DSM3109; *M. thermoacetica* ATCC39073; *T. kivui* DSM2030; *R. capsulatus* SB1003; and *E. coli* K-12.

983 ^b The pfam domain pfam04426 was used to search for putative *rseC* genes in each genome.

984 ^c The RNF complex uses (or is supposed to use) protons.

985 ^d The RNF complex uses (or is supposed to use) sodium ions.

986 ^e The RNF complex either uses protons or sodium ions. Experimental data are missing.

987 ^f Rsx is encoded by *rsxABCDGE* and is homologous to the RNF-gene cluster in *R. capsulatus*.

988

989

990

991

992

993 **Table 4 Plasmids used in this study.**

plasmid	function	source
pMTL83151	shuttle-vector	(37)
pMTL83152	shuttle-vector with constitutive thiolase promoter P_{thl}	(37)
pMTL2tetO1gusA	pMTL82254 with pminiThl:tetR and p2tetO1:gusA	(36)
pMTL8315tet	shuttle-vector with inducible promoter system $tetR-O1$	this study
pMTL83151_P _{nat} _rnfCDGEAB	overexpression of <i>rnfCDGEAB</i> through native promoter P_{nat}	this study
pMTL83152_rseC	overexpression of <i>rseC</i> through constitutive promoter P_{thl}	this study
pMTL83152_nar	overexpression of <i>nar</i> through constitutive promoter P_{thl}	this study
pY001_FnCpf1(Cas12a)	expression of FnCas12a	(34), Addgene 69973
pMTL83152_FnCas12a	constitutive expression of FnCas12a through P_{thl}	this study
pMTL83152_FnCas12a_DrseC	constitutive expression of FnCas12a through P_{thl} , constitutive expression of a single sgRNA targeting <i>rseC</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study
pMTL83152_FnCas12a_Dnar	constitutive expression of FnCas12a through P_{thl} , constitutive expression of two sgRNA targeting <i>nar</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study
pMTL83152_FnCas12a_DrnfCDGEAB	constitutive expression of FnCas12a through P_{thl} , constitutive expression of two sgRNA targeting <i>rnfCDGEAB</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study
pMTL8315tet_FnCas12a	inducible expression of FnCas12a through tetR-O1 promoter system	this study
pMTL8315tet_FnCas12a_DrseC	inducible expression of FnCas12a through tetR-O1 promoter system, constitutive expression of a single sgRNA targeting <i>rseC</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study
pMTL8315tet_FnCas12a_Dnar	inducible expression of FnCas12a through tetR-O1 promoter system, constitutive expression of two sgRNA targeting <i>nar</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study
pMTL8315te_FnCas12a_DrnfCDGEAB	inducible expression of FnCas12a through tetR-O1 promoter system, constitutive expression of two sgRNA targeting <i>rnfCDGEAB</i> on the genome, fused repair HDR1/2 fragment for homologous recombination and marker-less gene deletion	this study

994

995

996 **Table 5 Primers used in this study.**

primer	sequence (5'-> 3')	function
rnfCDGEAB+213bp_fw_BamHI	GGATCCGTAATTGTGTACAAACTTA ATTAATGGAGAGAC	amplification of the RNF complex gene cluster (CLJU_c11360-410) + and promoter sequence (P _{nat})
rnfCDGEAB_rv_Ncol	CCATGGTTATGAATTGCAGCAGCTTC ATTCTTG	amplification of the RNF complex gene cluster (CLJU_c11360-410) + and promoter sequence (P _{nat})
rseC_fwd_BamHI	GGATCCAGGAGGTTAAGAATGAAAAG AGAATCGGAGGGTATTG	amplification of the putative RNF regulator gene <i>rseC</i> (CLJU_c11350)
rseC_rv_Ncol	CCATGGTCAATACAATATCTTGATT ACTGGC	amplification of the putative RNF regulator gene <i>rseC</i> (CLJU_c11350)
nar-full_fwd_BamHI	GGCAGCTTACCGGGATCCAGGAGGTT AAGAATGAATTACGTGGAAGTAAAC AATCAAC	amplification of a gene cluster (CLJU_c23710-30) encoding for a nitrate reductase
nar-full_rv_Ncol	GCACGGTCGCGCCATGGTTAAAAGT ATACTCTAAATTTCTTTATATTTAAA AAGTC	amplification of a gene cluster (CLJU_c23710-30) encoding for a nitrate reductase
Seq1_RNF_744bp_fwd	GGAAAATTCAAGACAAGGTAGTTGC	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq2_RNF_1502bp_fwd	CAGAAAATAGAGCTGCAGGTGAAAG	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq3_RNF_2268bp_fwd	CTGGCAGATTCCAGTAGTAATGATTG	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq4_RNF_3000bp_fwd	GGGACAGTTAAGGATAAAAAGGCAG	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq5_RNF_3787bp_fwd	GCAAATGGAGGTGAAGCATAATG	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq6_RNF_4502bp_fwd	GTGAATCCACTTGTAGACTTAGAAG G	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq7_RNF_5047bp_rv	TTATGAATTGCAGCAGCTTCATTCTTG	sanger sequencing of the <i>rnfCDGEAB</i> fragment
Seq1_nar_456bp_rv	GCACCTCCTTACTCTAAAAGATTTG	sanger sequencing of the <i>nar</i> fragment
Seq2_nar_610bp_fwd	CTGTTTCAGATTCTCGGGTCAATTG	sanger sequencing of the <i>nar</i> fragment
Seq3_nar_1059bp_rv	CCAAAGCATAGAGAAGAAATTGC	sanger sequencing of the <i>nar</i> fragment
Seq4_nar_1186bp_fwd	CCCACAATGCCCTAATTCTCCG	sanger sequencing of the <i>nar</i> fragment
Seq5_nar_1677bp_rv	GTAAAGCTCATTATGAAGATGCAGCC	sanger sequencing of the <i>nar</i> fragment
Seq6_nar_1798bp_fwd	CCCTAGTTCTAGCTGGGTATGC	sanger sequencing of the <i>nar</i> fragment
Seq7_nar_2303bp_rv	CCAGATACCGGTATTGTAGAGTACG	sanger sequencing of the <i>nar</i> fragment
Seq8_nar_2476bp_fwd	CATCTAGCTACACACTGCGG	sanger sequencing of the <i>nar</i> fragment
Seq9_nar_2902bp_rv	GATGCACAAAAATAAGGATGCAGC	sanger sequencing of the <i>nar</i> fragment
Seq10_nar_3086bp_fwd	CTTCATATCTGCCTGCTGCA	sanger sequencing of the <i>nar</i> fragment
Seq11_nar_3385bp_rv	GGAATTGTAGCAGCTAGTAATATGGC	sanger sequencing of the <i>nar</i> fragment
tetR-O1_fwd_Sbfl	CCTGCAGGATAAAAAATTGTAGATAA ATTTTATAAAATAG	amplification of the inducible promoter system tetR-O1
tetR-O1_rv_BamHI	GGATCCTATTCAAATTCAAGTTATCG CTCTAATGAAC	amplification of the inducible promoter system tetR-O1
repH_401bp_rv	CTCTAACGGCTTGATGTGTTGG	primer binding in the backbone of pMTL83151 and pMTL83152 upstream of <i>repH</i>

fdhA_fwd	AGTGCAGCGTATTCGTAAGG	amplification of a 501 bp fragment of the <i>fdhA</i> gene in <i>C. ljunghdahlii</i>
fdhA_rv	TAATGAGGCCACGTCGTGTTG	amplification of a 501 bp fragment of the <i>fdhA</i> gene in <i>C. ljunghdahlii</i>
repH_643bp_rv	GCACGTGTTATGCCTTTGACTATCAC	primer binding in the backbone of pMTL83151 and pMTL83152 upstream of <i>repH</i>
traJ_60bp_fw	CATGCGCTCCATCAAGAAGAG	primer binding in the backbone of pMTL83151 and pMTL83152 downstream of <i>traJ</i>
rnfC_250bp_rv	CTCCTATATCTACAACCTTCAGAAGT AG	primer binding 250 bp upstream of <i>rnfC</i> , which was used for sanger sequencing and PCR screening
cas12a_fwd_BamHI	GGTACCGGATCCATGTCAATTATCAA GAATTGTTAATA	amplification of <i>Fncas12a</i>
cas12a_rv_Ncol	GGTACCCCATGGTTAGTTATTCTATT TGCAC	amplification of <i>Fncas12a</i>
Seq1_cas12a	CACAGATATAGATGAGGCG	sanger sequencing of <i>Fncas12a</i>
Seq2_cas12a	GCTTCTGGAGCTTGTCT	sanger sequencing of <i>Fncas12a</i>
Seq3_cas12a	GTAGTTACAACGATGCAAAG	sanger sequencing of <i>Fncas12a</i>
Seq4_cas12a	CCGCTGTACCAATAAACAC	sanger sequencing of <i>Fncas12a</i>
Seq5_cas12a	GGCTAATGGTGGGATAA	sanger sequencing of <i>Fncas12a</i>
Seq6_cas12a	CTTATTATCACACCCAG	sanger sequencing of <i>Fncas12a</i>
Seq7_cas12a	CAAGATGTGGTTATAAGC	sanger sequencing of <i>Fncas12a</i>
Seq8_cas12a	CCTCTTAGCTGGGTGAGTG	sanger sequencing of <i>Fncas12a</i>
Seq9_cas12a	CAAGGTAGAGAACGAGGTC	sanger sequencing of <i>Fncas12a</i>
Seq10_cas12a	GCTCTAACGACTCCCCAG	sanger sequencing of <i>Fncas12a</i>
Seq11_cas12a	GCTAACGACTAGTGTC	sanger sequencing of <i>Fncas12a</i>
Seq12_cas12a	CCATTACATCTGCTACTGG	sanger sequencing of <i>Fncas12a</i>
HDR_rnfB_fwdOv	TGTAAAATTATTGAAAGAGGTGTTA AGATGGCAGTGGAGCAAAGCTT	amplification of homology-directed repair arm downstream of <i>rnfB</i> with overhang to the homology-directed repair arm upstream of <i>rnfC</i>
HDR_rnfB_rv	ATGTAAAGGGTTCACATAAAATAGCTG T	amplification of homology-directed repair arm downstream of <i>rnfB</i>
HDR_rnfC_fwdOv	CAAGTTGAAAATTAAATAAAAAATA AGTGGCTGAAATCAATAGTTAACGCA ATAG	amplification of homology-directed repair arm upstream of <i>rnfC</i> with overhang to the <i>Fncas12a</i> sequence
HDR_rnfC_fwd	GGCTTGAAATCAATAGTTAACGCAATA G	amplification of homology-directed repair arm upstream of <i>rnfC</i> without overhang
HDR_rnfC_rvOV	TCAGCAAATTAAAGCTTGCTCCACTGC CATCTAACACCTTTCAATAATT ACAGC	amplification of homology-directed repair arm upstream of <i>rnfC</i> with overhang to the homology-directed repair arm downstream of <i>rnfB</i>
Seq_HDR_rnfB_881bp_fwd	GACCTGGTTCGGATATCCATCC	sanger sequencing of the HDR_rnfB fragment
minigene_crRNA_RNF_fwd	TTTATGTGAACCCTTACATTGACAAA TT	amplification of crRNA array consisting of 22-bp overhang to HDR_rnfB, p4-promoter, direct repeats, sgRNA (TTA), and rrnB-T1 terminator for genome target <i>rnfCDGEAB</i>
minigene_crRNA_all_rv	GTTGGTAGCTTAATATATAAGAATAAA ACGAAAGG	amplification of crRNA array consisting of 22-bp overhang to pMTL83152-Cas12a, p4-promoter, direct repeats, sgRNA (TTA), and

		rrnB-T1 terminator for genome target <i>rnfCDGEAB</i> , <i>rseC</i> , and <i>nar</i>
outside_RNF_HDR_dwst_rv	GCATGGGAGTGTTAATATGAAAAAAAG GG	verification of <i>rnfCDGEAB</i> deletion
outside_RNF_HDR_upst_fwd	GGAGGCTATTAAGGGACCGT	verification of <i>rnfCDGEAB</i> deletion
HDR_rseC_dwst_fwdOv	CGCTAACAAATAATAGGAGGTATT TGTAATTGTGTACAAACTTAATTAAAT GGAGAGAC	amplification of a homology-directed repair arm downstream of <i>rseC</i> with 28-bp overlap to HDR_rseC_upst
HDR_rseC_dwst_rv	TAGTTGTAACCCCTCTGTATAAGTGGAA TTC	amplification of a homology-directed repair arm downstream of <i>rseC</i>
HDR_rseC_upst_fwd	CTCATTGAAGTATATGTTAATGGCAGA AAAAAAAGTTC	amplification of a homology-directed repair arm upstream of <i>rseC</i>
HDR_rseC_upst_fwdOv	CAAGTTGAAAAAATTAAATAAAAAAAATA AGTCTCATTGAAGTATATGTTAATGGC AGAAAAAAAGTTC	amplification of a homology-directed repair arm upstream of <i>rseC</i> with 30-bp overlap to pMTL83152-Cas12a
HDR_rseC_upst_rvOv	TCCATTAATTAAAGTTGTACACAAATT ACATAATACACCTCCTATTATTGTTAG CGTTTTC	amplification of a homology-directed repair arm upstream of <i>rseC</i> with 30-bp overlap to fragment HDR_rseC_dwst
minigene_crRNA_rseC_fwd	CTTATACAGAGGGTTACAACATTGAC AAATT	amplification of crRNA array consisting of 22- bp overhang to HDR_rseC_dwst, p4- promoter, direct repeats, sgRNA (TTA), and rrnB-T1 terminator for genome target <i>rseC</i>
outside_rseC_HDRdwst_rv	CCCATCATAGGTCCACCTGAAA	verification of <i>rseC</i> deletion
outside_rseC_HDRupst_fwd	CGAGCTGAAGGTTGAAAAATATCCG	verification of <i>rseC</i> deletion
seq_rseC_145bpupst_fwd	GAAGGTAATACTGTTCAATATCGATAC AGA	verification of <i>rseC</i> deletion
HDR_nar_dwst_fwdOv	TCTTTTCATAAATTAGAGTATACTTTC TCCACTTCTCAATATTTTACTGAAAA TAC	amplification of a homology-directed repair arm downstream of <i>nar</i> with overhang to HDR_nar_upst
HDR_nar_dwst_rv	TTGGAATGACAGGACTCTATAGTTA TGG	amplification of a homology-directed repair arm downstream
HDR_nar_upst_fwd	TACAACCTCTGTTAGTACTGCTGATATT ACATC	amplification of a homology-directed repair arm upstream of <i>nar</i>
HDR_nar_upst_fwdOv	CAAGTTGAAAAAATTAAATAAAAAAAATA AGTTACAACCTCTGTTAGTACTGCTGAT ATTACATC	amplification of a homology-directed repair arm upstream of <i>nar</i> with overhang to <i>Fncas12a</i>
HDR_nar_upst_rvOv	GTATTTTCAGTAAAAAATTGAGAAG TGGAGAAAGTACTCTAAATTATGA AAAAGAATTAA	amplification of a homology-directed repair arm upstream of <i>nar</i> with overhang to HDR_nar_dwst
minigene_nar_fwd	ATATAGAGTCCTGTCATTCAATTGACA AATT	amplification of crRNA array consisting of 22- bp overhang to HDR_nar_dwst, p4- promoter, direct repeats, sgRNA (TTA), and rrnB-T1 terminator for genome target <i>nar</i>
seq_nar_95bp_dwst_fwd	CCGGATAACCTTAGTGGGAAGT	verification of <i>nar</i> deletion
seq_nar_132bp_upst_rv	GCGCCATAATTCAAGGGGAT	verification of <i>nar</i> deletion
outside_nar_HDRdwst_rv	GGGTTGACGTAGATGGAGGAAG	verification of <i>nar</i> deletion
outside_nar_HDRupst_fwd	CCTTAAGCTCCACCATTGCC	verification of <i>nar</i> deletion
qPCR_rseC_fwd	GCTAGTAGACACGGAGATTG	amplification of a 142 bp fragment from <i>rseC</i>
qPCR_rseC_rv	CTGCCCATACATATTGCG	amplification of a 142 bp fragment from <i>rseC</i>
qPCR_rnfC_fwd	GCACCTATACCAAGATAAGGT	amplification of a 160 bp fragment from <i>rnfC</i>
qPCR_rnfC_rv	CCTTTCCAGAAGTAGATGCGAT	amplification of a 160 bp fragment from <i>rnfC</i>
qPCR_rnfD_fwd	CCTCATGTTCGTTGTGATG	amplification of a 157 bp fragment from <i>rnfD</i>
qPCR_rnfD_rv	CAAAGTACTCCGTAACACAGC	amplification of a 157 bp fragment from <i>rnfD</i>

qPCR_rnfG_fwd	CATCACCACTAGCAGCG	amplification of a 156 bp fragment from <i>rnfG</i>
qPCR_rnfG_rev	CTGCAGGTACAACATATGC	amplification of a 156 bp fragment from <i>rnfG</i>
qPCR_rnfE_fwd	TGTGTCCAGCACTGGC	amplification of a 138 bp fragment from <i>rnfE</i>
qPCR_rnfE_rev	CAGGGACACGTACCTTAG	amplification of a 138 bp fragment from <i>rnfE</i>
qPCR_rnfA_fwd	GCATCTGTAGGTATGGGTATG	amplification of a 136 bp fragment from <i>rnfA</i>
qPCR_rnfA_rev	CAATAAGAAGTACAAAAACTACCG	amplification of a 136 bp fragment from <i>rnfA</i>
qPCR_rnfB_fwd	GCAATGGAAGTGAATCCAC	amplification of a 155 bp fragment from <i>rnfB</i>
qPCR_rnfB_rev	GCTGCTTTCCAGGTAC	amplification of a 155 bp fragment from <i>rnfB</i>
qPCR_rho_fwd	GGACTCTTCAGGAGGACTA	amplification of a 243 bp fragment from <i>rho</i>
qPCR_rho_rev	ATACATCTATGGCAGGGAAT	amplification of a 243 bp fragment from <i>rho</i>

997

998

999 **Table 6 Synthesized mini genes that contain crRNA arrays for this study.** Gene synthesis was
1000 performed by IDT (Integrated DNA Technologies). Each mini gene contains 20-22-bp overhang to the
1001 pMTL-backbone and to the fused homology-directed repair arms. Directed-repeats sequence of 20
1002 bp (underlined). sgRNA with TTV PAM for the RNF complex gene cluster deletion and with TTTV PAM
1003 for the *nar* and *rseC* deletion (bold). Two sgRNAs were used to target RNF and *nar*.

name	sequence (3'-> 5')
minigene_crRNA-RNF	TTTATGTGAACCCTTACATTGACAAATTATTTAAAGTTAAAGTTAAGTTGAATTCTAC <u>TGTTGTAGATAAAAGTTTCGAGGTGGAGTACATAATTCTACTGTTGTAGAT</u> CAACAGCAGA GCAAGAATGAAGCATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTCGTTTATTCTTAT ATATTAAGCTACCAAC
minigene_crRNA-rseC	CTTATACAGAGGGTTACAACATTGACAAATTATTTAAAGTTAAAGTTAAGTTGAATTTC <u>TACTGTTGTAGATATAGATCTACAAGCAAAAATGAGATAAAACGAAAGGCTAGTCGAAAGA</u> CTGGGCCTTCGTTATTCTTATATTAAAGCTACCAAC
minigene_crRNA-nar	ATATAGAGTCCTGTCATTCAATTGACAAATTATTTAAAGTTAAAGTTAAGTTGAATTCT <u>ACTGTTGTAGATTATTCTTGTAGCTTCATTAAATTCTACTGTTGTAGAT</u> TACAGCAAA TCCATCATTACCATAAAACGAAAGGCTAGTCGAAAGACTGGGCCTTCGTTTATTCTTAT ATTAAGCTACCAAC

1004

1005

1006 **Table 7 Used and generated *C. ljungdahlii* strains in this study.**

clostridial strain	plasmid	phenotype	
		heterotrophic	autotrophic
<i>C. ljungdahlii</i> DSM13528	-	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83151	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83151_P _{tetR-O1}	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83152	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83151_P _{nat_rnfCDGEAB}	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83152_rseC	yes	yes
<i>C. ljungdahlii</i> DSM13528	pMTL83151_nar	yes	yes
<i>C. ljungdahlii</i> ΔRNF ^a	-	yes (reduced)	no
<i>C. ljungdahlii</i> ΔRNF ^a	pMTL83151	yes (reduced)	no
<i>C. ljungdahlii</i> ΔRNF ^a	pMTL83151_P _{nat_rnfCDGEAB}	yes	yes
<i>C. ljungdahlii</i> ΔrseC	-	yes	no
<i>C. ljungdahlii</i> ΔrseC	pMTL83152	yes	no
<i>C. ljungdahlii</i> ΔrseC	pMTL83152_rseC	yes	yes
<i>C. ljungdahlii</i> Δnar	-	yes	yes
<i>C. ljungdahlii</i> Δnar	pMTL83152	yes	yes
<i>C. ljungdahlii</i> Δnar	pMTL83152_nar	yes	yes

1007 ^a ΔRNF = ΔrnfCDGEAB

1008

1009 **Supplementary Figure legends**

1010 **Supplementary Fig. S1 Heterotrophic growth and metabolic products of *C. ljungdahlii* WT, Δ RNF,**

1011 and Δ rseC.

1012 Cultures of *C. ljungdahlii* WT (●, ○), Δ RNF (●, ○), and Δ rseC (●, ○) were grown in 100 mL

1013 PETC medium in 240 mL bottles at 37°C. The headspace consisted of N₂ (100 vol-%). Fructose (5 g/L)

1014 was added as carbon source. The medium contained either 18.7 mM nitrate (NO₃⁻) (filled circles) or

1015 18.7 mM ammonium (NH₄⁺) (open circles) as nitrogen source. The cultivation times were 79 h for the

1016 WT and Δ RNF strain, and 84 h for the Δ rseC strain. All cultures were grown in biological triplicates,

1017 data is given as mean values, with error bars indicating the standard deviation. **A**, growth; **B**, pH-

1018 behavior; **C**, acetate concentrations; **D**, ethanol concentration; **E**, ammonium concentration; and **F**,

nitrate concentrations. WT, wild type; Δ RNF, RNF-gene cluster deletion; Δ rseC, rseC gene deletion.

1019 **Supplementary Fig. S2 CRISPR-Cas12a-mediated rseC gene and nar gene cluster deletion in**

1020 ***C. ljungdahlii*.** **A**, verification of the rseC gene deletion. PCR-samples for the fdhA fragment (WT: 501

1021 bp, deletion strain: 501 bp), rseC fragment (WT: 417 bp, deletion strain: no fragment), and for a

1022 fragment that was amplified with primers that bind 1104 bp upstream and 1208 bp downstream of

1023 the rseC gene locus (WT: 2755 bp, deletion strain: 2338 bp). DNA-template: gDNA of *C. ljungdahlii*

1024 Δ rseC (lane A1, A4, and A7); gDNA of *C. ljungdahlii* WT (lane A3, A6, and A9); and water (lane A2, A5,

1025 A8). **B**, verification of the nar gene cluster deletion PCR samples for the fdhA fragment (WT: 501 bp,

1026 deletion strain: 501 bp), nar fragment (WT: 3739 bp, deletion strain: no fragment), and for a fragment

1027 that was amplified with primers that bind 1137 bp upstream and 1110 bp downstream of the nar gene

1028 cluster locus (WT: 5986 bp, deletion strain: 2247 bp). DNA-template: gDNA of *C. ljungdahlii* Δ nar (lane

1029 B1, B4, and B7); gDNA of *C. ljungdahlii* WT (lane B3, B6, and B9); and water (lane B2, B5, B8). M:

1030 GenerulerTM 1 kb.

1031 **Supplementary Fig. S3 Autotrophic growth and metabolic products of the overexpression strains *C.***

1032 ***ljungdahlii* pMTL83151_P_{nat}_rnfCDGEAB and *C. ljungdahlii* pMTL83152_rseC.**

1033 Cultures were grown in 100 mL PETC medium in 1 L bottles at 37°C and 150 rpm. The headspace consisted of H₂ and CO₂

1034 (80/20 vol-%) and was set to 0.5 bar overpressure. For the strain *C. ljungdahlii*

1035 pMTL83151_P_{nat}_rnfCDGEAB and the control strain *C. ljungdahlii* pMTL83151 we refilled the

1036 headspace during this experiment with the same gas mixture to 0.5 bar overpressure at time points

1037 44.5 h, 73.5 h, and 148.5 h. The medium contained 18.7 mM ammonium as nitrogen source.

1038 Thiamphenicol (5 µg/mL) was used for selection. All cultures were grown in biological triplicates, data

1039 is given as mean values, with error bars indicating the standard deviation. The cultivation time was

1040 185 h and 197 h for *C. ljungdahlii* pMTL83151_P_{nat}_rnfCDGEAB and *C. ljungdahlii* pMTL83152_rseC,

1041 respectively. (■) *C. ljungdahlii* pMTL83151_P_{nat}_rnfCDGEAB; (□) *C. ljungdahlii* pMTL83151 (empty

1042 plasmid); (■) *C. ljungdahlii* pMTL83152_rseC; (□) *C. ljungdahlii* pMTL83152 (empty plasmid). **A**,
1043 growth; **B**, pH-behavior; **C**, acetate concentrations; and **D**, ethanol concentration. rpm, revolutions per
1044 minute; CO₂, carbon dioxide; and H₂, hydrogen.

1045 **Supplementary Fig. S4 Gene expression change of the *rnfCDGEAB* cluster genes and the *rseC* gene**
1046 **in the wild-type strain from heterotrophy to autotrophy.** **A**, gene expression change after 3 h
1047 cultivation time; **B**, gene expression change after 20 h cultivation time. RNA samples were purified
1048 from cultures that were cultivated either autotrophically with hydrogen and carbon dioxide or
1049 heterotrophically with fructose. cDNA was synthesized from the purified RNA samples and used as
1050 template for qRT-PCR analyses. The *rho* gene was used as “housekeeping” gene. The fold change in
1051 gene expression was determined with the 2^{-ΔΔCT} method (43). ***, $P \leq 0.001$; and *ns, not significant
1052 ($P > 0.5$). We defined $\log_2(\text{fc}) \leq -1$ as downregulated genes and $\geq +1$ as upregulated genes.

1053 **Supplementary Fig. S5 Multiple sequence alignment of RseC amino-acid sequence using CLUSTAL**
1054 **Omega.** The symbols indicate low similarity (.), high similarity (:), and identical amino acids (*)
1055 between the amino acid sequences. Similar colors indicate similar amino acids. The type strains were
1056 *C. ljungdahlii* DSM13528; *C. autoethanogenum* DSM10061; *C. carboxidovorans* P7; *C. kluyveri*
1057 DSM555; *E. limosum* ATCC8486; *A. woodii* DSM1030; *R. capsulatus* SB1003; and *E. coli* K-12. Clustal
1058 omega version 1.2.4. with default settings was used for the analysis
1059 (<https://www.ebi.ac.uk/Tools/msa/clustalo/>, 05/2021).

1060 **Supplementary Fig. S6 Heterotrophic growth and metabolic products of *C. ljungdahlii* Δnar.**
1061 Cultures were grown in 100 mL PETC medium in 240 mL bottles at 37°C. Fructose (5 g/L) was added
1062 as carbon source. The headspace consisted of N₂ (100 vol-%). The medium contained either 18.7 mM
1063 nitrate (●) or 18.7 mM ammonium (○) as nitrogen source. All cultures were grown in biological
1064 triplicates, data is given as mean values, with error bars indicating the standard deviation. The
1065 cultivation times was 84 h. The *C. ljungdahlii* WT data (●, ○) from Supplementary Fig. S1 is given for
1066 comparison. **A**, growth; **B**, pH-behavior; **C**, acetate concentrations; **D**, ethanol concentration; **E**,
1067 ammonium concentration; **F**, nitrate concentrations; and **G**, fructose concentrations. Δnar, deletion
1068 of the nitrate reductase genes.

1069 **Supplementary Fig. S7 Autotrophic growth and metabolic products of plasmid-based**
1070 **complemented strain *C. ljungdahlii* Δnar pMTL83152_nar.** Cultures were grown in 100 mL PETC
1071 medium in 1 L bottles at 37°C and 150 rpm. The headspace consisted of H₂ and CO₂ (80/20 vol-%) and
1072 was set to 0.5 bar overpressure. The medium contained 18.7 mM nitrate (NO₃⁻) but no ammonium
1073 (NH₄⁺) as nitrogen source. Thiamphenicol (5 µg/mL) was used for selection. All cultures were grown in

1074 biological triplicates, data is given as mean values, with error bars indicating the standard deviation.
1075 The cultivation times was 192.5 h. (●) *C. ljungdahlii* Δ *nar* pMTL83152_*nar*; (○) *C. ljungdahlii* Δ *nar*
1076 pMTL83152 (empty plasmid); **A**, growth, **B**, pH-behavior; **C**, acetate concentrations; **D**, ethanol
1077 concentration; **E**, ammonium concentration; and **F**, nitrate concentrations. Δ *nar*, gene deletion of the
1078 nitrate reductase genes; rpm, revolutions per minute; CO₂, carbon dioxide; and H₂, hydrogen.