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Abstract

The contemporary European genetic makeup formed in the last 8000 years as the combination
of three main genetic components: the local Western Hunter-Gatherers, the incoming Neolithic
Farmers from Anatolia and the Bronze Age component from the Pontic Steppes. When meeting
into the post-Neolithic European environment, the genetic variants accumulated during their
three distinct evolutionary histories mixed and came into contact with new environmental chal-
lenges.
Here we investigate how this genetic legacy reflects on the complex trait landscape of contem-
porary European populations, using the Estonian Biobank as a case study.
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For the first time we directly connect the phenotypic information available from biobank sam-
ples with the genetic similarity to these ancestral groups, both at a genome-wide level and
focusing on genomic regions associated with each of the 27 complex traits we investigated. We
also found SNPs connected to pigmentation, cholesterol, sleep, diastolic blood pressure, and
body mass index (BMI) to show signals of selection following the post Neolithic admixture
events. We recapitulate existing knowledge about pigmentation traits, corroborate the connec-
tion between Steppe ancestry and height and highlight novel associations. Among others, we
report the contribution of Hunter Gatherer ancestry towards high BMI and low blood choles-
terol levels.
Our results show that the ancient components that form the contemporary European genome
were differentiated enough to contribute ancestry-specific signatures to the phenotypic vari-
ability displayed by contemporary individuals in at least 11 out of 27 of the complex traits
investigated here.

1 Introduction1

Since its origins, ancient human genetics showed that the current European genetic landscape2

formed only recently, in the last 8000 years, as the combination of three main genetic compo-3

nents: 1) the local Western Hunter-Gatherers (WHG), 2) the incoming Neolithic Farmers from4

the Near East (Anatolia N) and 3) the Bronze Age component from the Pontic Steppes, often5

identified with the Yamnaya culture (Yamnaya)1–3. As a result, any modern European popu-6

lation is a combination of at least these three components, in variable proportions depending7

on its particular genetic history and geographic location. Before their arrival in Europe, the8

ancestors of these three components evolved in different areas and environments for thousands9

of years, hence differentiating through neutral genetic drift but also adapting to the different10

climatic, nutritional and pathogenic conditions. When coming together into the post-Neolithic11

European environment, the genetic variants accumulated during their three distinct evolution-12

ary histories admixed and came into contact with new environmental challenges.13

Previous research efforts have indeed characterized evolutionary events specific to these popu-14

lations which putatively affected their phenotype and appearance, through the tracking of few15

highly characterized SNPs4–6 or polygenic scores7,8. Nevertheless, while the first approach is16

limited in the number of variants analyzed and largely blind with regards to complex poly-17

genic traits, the second builds on population-dependent effect sizes9,10 estimated in Genome18

Wide Association Studies (GWAS). Such summary statistics, especially in their genome-wide19

aggregations, may lead to directional bias and lower predictive accuracy in populations different20

to the one where the GWAS study was performed11–15 and have sometimes led to ambiguous21

results about polygenic adaptation16–19.22

Here we capitalize on the Estonian Biobank by measuring the relative genetic distance of23

contemporary individuals to a given ancestry and associating it with their phenotype, thus24

measuring the influence of these ancient genetic sources on the complex traits distribution of25

contemporary Europeans. By connecting directly the phenotypic information with the genetic26
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similarity to these ancestral groups we avoid the step of producing and interpreting association1

summary statistics which might compress information or produce the spurious results men-2

tioned above. For the same reason, our conclusions are applicable to contemporary individuals3

of European ancestry, where the phenotypes were collected. Conversely, using them to extrap-4

olate features of ancient populations, although tempting, should be done with caution due to5

the interaction of their genetic legacy with a radically different lifestyle and environment.6

We started by selecting 27 complex traits of interest, for which we have sufficient data in the7

Estonian Biobank, a collection of samples from a relatively homogeneous European popula-8

tion which is among the ones with the highest fraction of remnant Hunter Gatherer genomic9

component and additionally includes a Siberian (Siberia) component associated with Iron Age10

movements20,21. In order to associate a phenotype to the contribution of a specific ancient11

European ancestry we introduce covA, the covariance between allele frequencies in contempo-12

rary individuals and a given ancestral population with respect to the contemporary and ancient13

average frequencies (see Methods and Supplementary Notes for further details). We computed14

covA for each pair of Estonian individuals and ancestries, defined models in which each trait is15

predicted by covA of a specific ancestry and used them to elucidate ancestry/trait associations.16

We refined our approach by focusing on the ancestry similarity patterns in genomic regions17

potentially connected to each trait according to GWAS catalog22. Based only on the SNPs18

contained in such regions, we then measured covA as above and used it as a predictor to model19

traits, also in comparison with random genomic sets with matching size. Finally we set out to20

independently analyze if those regions that are associated with the genetic contribution of a21

specific ancestry also experienced a post-admixture selective pressure.22

2 Results23

2.1 covA measures similarity with ancestral groups24

We computed covA for each pair of Estonian individuals and ancestries among WHG, Anato-25

lia N, Yamnaya and Siberia using manually curated and other ancient individuals shortlisted26

by genetic and chronological proximity (see Methods and Table S1). By observing covA joint27

distributions in Figure 1a,b (see Figure S1 for all combinations) we can see that as expected,28

covAs calculated on the various ancestries are strongly interdependent, mainly because they29

include as term the average ancestral frequency and partly because of varying grades of simi-30

larity among the ancestries for historical demographic reasons. In particular they tend to be31

negatively correlated except for covA for Yamnaya being associated with covA for WHG, re-32

flecting complex demographic relationships between the two, due to WHG-like Eastern Hunter33

Gatherer ancestry presence in Yamnaya2,3,23. Even if by European standards Estonia can be34

considered relatively genetically uniform, as recently shown in Pankratov et al. [24] the south-35

eastern inland counties tend to have higher haplotype sharing with Latvians, Lithuanians and36

Russians compared with the rest of the country, and especially the northern coast: this is37

reflected by median covA for WHG being higher in those Estonian counties, see Figure 1c.38

Conversely, as shown by median covA for Siberia in Figure 1c, the Siberian ancestry seems to39
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Figure 1: covA distributions. a,b covA joint distributions for two ancestry couplings. Each
dot is an individual, dots in denser areas are lighter. The red line shows a linear regression,
with its R coefficient. c,d covAs for WHG and Siberia across Estonian counties. Color indicates
median covA computed in each county, with the sign reflecting excess or lack of a given ancestry,
while asterisks indicate those counties for which the covA distribution is significantly different
than the rest of Estonia (two-tailed Wilcoxon-Mann-Whitney test, p ≤ 0.001)

be more abundant in the north-east, consistently with Finnish ancestry shown in Pankratov1

et al. [24]. Yamnaya and Anatolia N covAs are instead more evenly distributed (Figure S2).2

2.2 Connecting complex trait variation to genome-wide ancestry similarity3

We examined 27 complex traits (31 if considering pigmentation variants) which were corrected4

and adjusted for covariates (including sex, age, genotyping platform and others, see Table5

S2), and expecting varying degrees of influence from genome-wide ancestry depending on their6

heritability as captured by our dataset(Figure 2a).7

As shown above, covA exhibits a high correlation across ancestries. Thus we avoided imple-8

menting a model with largely multicollinear predictors including covA for all ancestries and9

instead adopted separate models for each ancestry, complementing them with a regression on10

covA PCs (Figure 2b). While covAs (Figure 2c,e) highlight the overall excess or lack of certain11

ancestries in relation with a given phenotype but are largely intertwined, PCs (Figure 2d,f) can12

be interpreted as independent axes defined by 2 or 3 covAs (Figure 2b). Being independent13

variables in a comprehensive predictive model, they provide a clue to disentangle the poten-14

tially collinear covA signal and can be reliably used to evaluate significance. When applying15

this approach, at least one covA-based PC had a significant coefficient (coefficient p value signif-16

icant at Benjamini-Hochberg FDR=0.05) in the 16 traits shown in Figure 2c-f out of 27 tested.17

Furthermore, it is also visible how WHG and Yamnaya tend to be linked with the phenotypic18
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Figure 2: Genome-wide ancestry-trait associations. a All traits analyzed and their
estimated heritability after covariate adjustment. Numbers in parentheses indicate the number
of unrelated samples for which phenotypic information was available for each trait. b Loading
matrix for genome wide covAs and their PCs. PCs can be interpreted as axes defined by 2
or 3 covAs. c-f Genome-wide covA or covA-based PCs estimated coefficients for traits which
have at least one significant PC coefficient. β for continuous c,d and Odds Ratios (OR) for
categorical e,f traits. Pastel dots are deemed not significant at Benjamini-Hochberg FDR =
0.05 (double-sided coefficient p value) c,e β/ORs of covA for a specific ancestry in a model
including it together with socioeconomic covariates. Independent models are run for different
covAs; colors label the probed ancestry. d,f β/ORs of first three covA PCs in a model including
them together with socioeconomic covariates. The legend also describes an interpretation of
the PCs.
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ranges in a similar fashion. As an example, the genomes of taller individuals tend to be more1

similar to WHG and Yamnaya, while the opposite is true for Anatolia N and Siberia. PCs2

are largely consistent with this result, with the PC discriminating Yamnaya and WHG lacking3

significance.4

As we are not controlling for genotype-based PCs in order not to hide potential genome-wide5

signals, we run the risk of obtaining spurious ancestry/trait associations not caused by genet-6

ics. This is due to uneven ancestry similarity across Estonia concurrent with geographically7

associated socio-economic differences that can influence a trait. Even if such risk is reduced8

by the extensive sampling of a relatively uniform population, small differences tied to histor-9

ical reasons24 are still visible in covA (see Figure 1c,d, Figure S2 ). Therefore, we include a10

city/countryside residency covariate in the models, defined as 1 for people living in Tallinn’s11

county (the wealthiest and most populous) and 0 otherwise, and a covariate for educational12

attainment, which is a good proxy for family socioeconomic status25,26. This control allows us13

to suggest a significant influence of genomic ancestry on the 16 traits in Figure 2c-f, even when14

geographical and social stratification is present.15

2.3 Phenotype-associated genomic regions show specific similarity pat-16

terns17

To narrow down the signal emerging from the genome-wide analyses we defined three sets18

of candidate regions by considering windows of 5kb, 50kb or 500kb centered around GWAS19

catalog22 hits for appropriate categories (see Methods and Table S3). As shown in Figure S3,20

these genomic regions harbor a higher heritability intensity (h2/Mb) than the whole genome,21

supporting their appropriateness as candidate regions for the traits of interest.22

We then asked whether candidate regions for a given trait showed significantly different coef-23

ficients when compared to 50 size-matching random genomic sets, and found it true in 11 out24

of 27 traits(double-sided Z-test, Benjamini-Hochberg FDR = 0.05), see Z-scores in Figure 3.25

This analysis has the advantage of naturally controlling for all potential confounders that apply26

to the genome in its entirety, e.g. social, economic and cultural statuses as introduced in the27

previous section, thus allowing us to not include any covariates. In addition, this analysis pin-28

points genetic signals that are likely to be functionally connected to the trait. Among others,29

blood cholesterol levels are shown to be positively correlated with similarity to Yamnaya in30

cholesterol-associated regions with respect to the rest of the genome, while the opposite is true31

for WHG.32

Again, to better interpret the signal and avoid multicollinearity, we transformed covAs with33

the loadings yielded by the PC analysis on whole genome covAs (Figure 2b). This, though34

not returning actual PCs in each candidate region, drastically reduces the collinearity (highest35

Variance Inflation Factor=1.62 in hair color 50kb candidate regions), while allowing simpler36

interpretation and, crucially, cross-region comparisons required for Z-scores computation. In-37

deed this analysis confirms the significance of the association between cholesterol levels and the38

Yamnaya-WHG axis previously mentioned. In contrast to our genome-wide results, candidate39
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Figure 3: Ancestry-trait association on candidate regions. a Z-scores of covA co-
efficients, the color refers to the ancestry probed. b Z-scores of coefficients associated with
covA independent components (IC) computed with whole genome-based covA PC loadings.
Each color is associated with one of the three ICs. For each trait we show the Z-score of the
standardized coefficient associated with candidate regions against a distribution of 50 random
genomic regions of matching size. Candidate regions are determined around GWAS hits for
appropriate traits as windows with three different widths: 5 (small dot), 50 (medium dot) and
500 (large dot) kilobases. Pastel dots are deemed not significant at Benjamini-Hochberg FDR
= 0.05, p value from double-sided Z-test; asterisks mark traits to be considered significant
according to b; dotted lines correspond to absolute Z-scores = 2.
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regions no longer yield concordance between WHG and Yamnaya trends across the traits spec-1

trum, both when considering covA and their independent components (IC), suggesting a higher2

specificity of this refined approach.3

2.4 Selection signatures at candidate regions with ancestry/trait associa-4

tion5

So far we only explored associations between a given trait and a local excess of a given an-6

cestry. The observed local admixture unbalance points to a role of that ancient contribution7

in explaining a given phenotype. However, these results alone do not show whether after the8

admixture event the incoming genetic material also underwent a selective sweep within the9

recipient population, altering population-wide allele frequencies as investigated in Mathieson10

et al. [5]. In other words, the local admixture imbalances we detected so far are not necessarily11

transferred to the whole population.12

We therefore independently asked whether the phenotypes that showed differential contribution13

from different ancestries exhibit signs of recent natural selection. We applied CLUES27 to the14

list of GWAS hits used above as index for our candidate regions to obtain per-SNP evidence of15

recent (up to 500 generations ago) natural selection, and to see which phenotypes show enrich-16

ment in SNPs with strong selection signals compared to a random set of GWAS hits. Out of17

the genomic regions responsible for ancestry/trait association shown in Figure 3, pigmentation-18

related SNPs (eye and hair color) showed extremely high CLUES logLR values (Figures 4a,19

S4) in accordance with previous results5,8,28, as well as SNPs related to BMI and cholesterol,20

pointing to ongoing or recent selection at these loci. Diastolic blood pressure (DBP) and sleep-21

related SNPs also showed the same extreme signature, but the candidate regions encompassing22

them did not reach significance in ancestry/trait association.23

The recent and putatively ongoing nature of the inferred selective pressure on the six traits24

shown in Figure 4a is further exemplified by the steep increase in derived allele frequencies over25

time inferred for the top 3 SNPs of each trait and shown in Figure 4b. These include some loci26

previously shown to be selected in West Eurasians (rs4988235 at MCM6/LCT29, pigmentation-27

related SNPs at HERC2/OCA2, TYRP1, TYR, TPCN28,28,30, rs653178 at ATXN231) and some28

other yet to be explored: rs17630235, rs11539148, rs74555583.29

3 Discussion30

Putting together the genome-wide, region-specific and selection results, the emerging picture31

points to a different role of each ancestry in having contributed to the phenotype landscape32

of contemporary Europeans. As a whole, the most affected traits include pigmentation and33

anthropometric traits together with blood cholesterol levels, caffeine consumption, heart rate34

and age at menarche.35
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Figure 4: Selection signatures. a CLUES log likelihood ratios (logLR) values distribution
for GWAS hits for six selected phenotypes. For each phenotype at most 100 top SNPs with
highest logLR values and the corresponding ranks from the random GWAS hits distribution
are shown. Grey dots show mean values for each rank in the background distribution while
the whiskers show the 5-95 percentile range. The logLR values for tested SNPs are shown in
red or blue depending on whether the value lies above the 95th percentile of the values from
the background distribution with a given rank. Number of tested SNPs for each phenotype are
shown in panel titles. b Maximum likelihood estimates of derived allele frequency trajectories
for top 3 SNPs with highest logLR values for each phenotype. When more than one SNPs come
from the same locus, only the top-scoring SNP is shown.

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454888
http://creativecommons.org/licenses/by-nd/4.0/


In particular WHG ancestry is linked to lower cholesterol levels, higher BMI and putatively con-1

tributed light (but not green) eye color to the contemporary Estonian population. Importantly,2

these associations stand when carefully considering covA ICs and, in addition, loci associated3

with these features also appear to have undergone selection in Estonians. Secondly, although4

WHG seems to have an association with hip circumference, caffeine consumption and brown5

hair pigmentation, these evidences are ambiguous.6

An enriched Yamnaya ancestry in the pigmentation candidate regions, in contrast with the7

genome wide analysis, is linked to dark eye and hair colors, consistently with what inferred8

from aDNA data from the Baltic region6. This ancestry is also linked to a strong build, with9

high stature (in agreement with previous literature5,7) and large hip and waist circumferences,10

both at genome-wide and region-specific levels, but also high cholesterol concentrations when11

focusing on candidate regions. The associations of Yamnaya and WHG ancestries to respec-12

tively higher and lower cholesterol levels, together with the clues of selection at loci connected13

to cholesterol and BMI, add a critical element to the knowledge of post-neolithic dietary adap-14

tation6,32,33 and might have important health-related implications.15

Caffeine consumption, although having significant associations, is difficult to connect to a spe-16

cific ancestry: Yamnaya ancestry seems to be linked with lower consumption, whereas the17

direction of Siberia and WHG associations depends on the genomic regions included in the18

analysis.19

An enriched Anatolia N ancestry in the pigmentation candidate regions has implications op-20

posite to Yamnaya, again in contrast with the genome-wide signal. This recurring localized21

peculiarity of pigmentation loci possibly reflects selection specific to strong GWAS hits as al-22

ready seen for skin pigmentation8. Notably, Anatolia N enrichment in trait-related genomic23

regions is connected with a reduced BMI-corrected waist/hip ratio and heart rate. After con-24

sidering covA ICs, this connection between Anatolia N and heart rate seems to be the one25

driving the apparent associations of all other ancestries.26

Lastly, the Siberia ancestry is connected with dark eye and hair pigmentation, but also green27

eye color and lower age at menarche. Again, even if this last trait has ambiguous associations28

with Anatolia N and WHG ancestries, covA ICs provide a clue to disentangle their interactions29

in favour of a more robust connection with the Siberia ancestry.30

Some ancestry/trait associations that were not considered significant at a genome-wide level,31

are instead discovered when comparing candidate regions to the rest of the genome, possibly due32

to the higher sensitivity of this approach. On the other hand, the opposite happens for alcohol33

consumption, depression, sleep duration, social jetlag, diopters, pulse pressure, creatinine levels.34

This might be due to a misleading or incomplete tagging of the actual functional regions by35

the GWAS catalog hits, or to an incomplete correction of socioeconomic and other non-genetic36

factors. In case of sleep-connected traits and DBP, the reported signal of recent or ongoing37

selection for loci associated to these phenotypes suggests a yet more complex picture.38

A general caveat about significance levels observed in this study is that as we refrain from39

reducing traits by arbitrary choices, even testing multiple alternatives of the same trait, we40

expose ourselves to inflated false negatives. Complex traits are often interdependent for biolog-41
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ical reasons; therefore, when correcting for multiple testing, this risk is intrinsic to this type of1

analysis. We deemed it best to acknowledge and control it by avoiding overly stringent multiple2

testing corrections as Bonferroni. In addition, as highly significant traits tend to have higher3

heritability, it is likely that our analysis might not have enough statistical power for poorly4

heritable traits.5

Taken together, our results show that the ancient components that form the contemporary Eu-6

ropean landscape were differentiated enough at a functional level to contribute ancestry-specific7

signatures on the phenotypic variability displayed by contemporary individuals irrespectively8

to which target population one may examine. In particular, when looking at Estonians, for 119

out of 27 traits surveyed here we could confirm a significant relationship between presence of a10

given ancestry in genetic regions associated with a given phenotype and how this is expressed11

by contemporary individuals. While showing that both autochthonous (WHG) and incoming12

groups contributed genetic material that shapes the phenotype landscape observed today, we13

also demonstrated that a subset of these loci further underwent positive selection in the last14

500 generations. Although not determining whether the selected alleles (and phenotypes) were15

predominantly contributed by the autochthonous or incoming groups, by connecting genotypic16

ancestry and complex traits measured in a large dataset, our results reveal both neutral and17

adaptive consequences of the post-neolithic admixture events on the European phenotype land-18

scape.19

4 Methods20

4.1 Sample selection and ancient European grouping21

We used 50,353 sequenced or genotyped individuals from the Estonian Biobank34 as con-22

temporary Estonian sampleset. After removing second-degree relatives (pi-hat > 0.25) we23

obtained a subset of 37,952 individuals and used it as a scaffold to perform a PC Analy-24

sis (PCA) with Eigensoft-6.1.4. Other individuals were projected on the same PCA space.25

Outliers identified in this process (with parameters numoutlieriter: 5 numoutlierevec: 1026

outliersigmathreshold: 6) were discarded. Samples that on the first round of genome-wide27

covAs were more distant than 8 Interquartile Ranges (IQR) from the upper or lower quartile28

against any of the ancestries were also discarded, resulting in 49811 individuals included in our29

sample set. For each trait of interest we first removed individuals with missing data for traits30

and covariates and subsequently discarded second-degree relatives.31

To define ancestral European groups we started from the Allen Ancient DNA Resource (AADR)32

V44.3 merged with present-day individuals typed on the Human Origins array (see Data Avail-33

ability section). From this set we defined a manually curated core set for each ancestral group,34

then performed a PCA on a space defined by modern Eurasian and North African individuals35

west of Iran (included), where the ancient samples were projected. We expanded these core36

sets to other individuals from AADR dataset using multi-dimensional ellypses with diameters37
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equal to 3 core set SDs. We used 4 dimensions: the annotated dating and the first 3 PCs1

generated above. With this process we selected 90 WHG, 92 Anatolia N, 74 Yamnaya S1.2

In addition, from the ones available from the same dataset, we took 7 samples as representa-3

tive of the broader Siberian ancestry, assuming any Siberian individual would be equidistant4

to the other ancestral European groups: S Even-3.DG, S Even-1.DG, S Even-2.DG, Bur1.SG,5

Bur2.SG, Kor1.SG and Kor2.SG.6

4.2 Phenotypes treatment and heritability7

Continuous traits were treated as specified in Table S2 and regressed against the covariates8

according to the same table. Individuals with traits or covariates more distant than 4 IQRs9

from the upper or lower quartile were considered as outliers and discarded. The heritability10

was computed using LDAK 5.035. First we computed a kinship matrix with the LDAK-Thin11

Model: we thinned down SNPs on the non-related sample set defined above with parameters12

--window-prune .98 --window-kb 100, then used --calc-kins-direct with the resulting13

weights and --power .25. Finally we estimated heritability using REML solver.14

4.3 covA definition15

covA is the covariance in allele frequency (p) within a contemporary individual i (i.e. its allele
dosage) with the ancestral group of interest j, computed respectively against the allele frequency
pC of the contemporary population C and the average frequency pA in all the A ancient groups:

covA(i, j) = (pi − pC)(pj − pA) (1)

covA is expected to be high when the allele frequencies of the individual i and the ances-16

try j are similar in comparison with the differences within the contemporary population and17

across the ancestries that contributed to its genetic makeup. covA can be computed across the18

genome or for specific regions of interest, averaging over the contribution of multiple SNPs. See19

Supplementary Notes and Figures S5, S6 for further discussion of covA properties.20

4.4 Predicting traits with covA and covA-based PCs21

We fitted each standardized trait with a model including one standardized covA and, in case22

of the genome-wide analysis, socioeconomic covariates as described in the result section. This23

analysis was restricted to samples for which socioeconomic covariates were defined, i.e. 38,99624

samples (including relatives): the actual sample size for this analysis is therefore less than25

reported in Figure 2a and Table S2. The standardized coefficient (β or effect size), or the Odds26

Ratio (OR) were used to assess ancestry/trait association for continuous and categorical traits27

respectively. In particular, categorical traits were transformed to {0, 1} where 1 stands for28

the specified category and 0 for all the others. In addition, each trait was regressed against29
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three covA-based PCs, which explained all covA variability. PCs were standardized and included1

together as predictors, socioeconomic variables were again added as covariates. In the candidate2

regions analysis, we adopted exactly the same steps, performing individual regressions for all3

the covAs and coupling this with a model including all PC-transformed covAs. Notably, we4

transformed all covAs using the loadings of the whole genome covA PCs, obtaining components5

that were largely independent, yet not strictly principal. Furthermore, to evaluate association6

we used coefficient Z-scores computed against the same statistics extracted from 50 random7

genomic sets with matching size.8

4.5 Candidate genomic regions9

We downloaded GWAS hits from GWAS catalog22 (date of download: 20/11/2020) and then ex-10

tracted for each trait a set of hits connected to it filtering on the reported trait (”TRAIT/DISEASE”11

field) or selecting the appropriate trait in the Experimental Factor Ontology (EFO) field, as12

specified in Table S3. Then we took windows of 5, 50 and 500 Kbs centered on the selected13

hits and merged them where overlapping, obtaining three sets of candidate regions for each14

trait. To perform the Z-score analysis, for each of them we obtained 50 matching window sets15

randomly placed across the genome.16

4.6 Testing for signals of positive selection17

In order to test individual SNPs for signatures of positive selection we utilized the Relate/CLUES18

pipeline27,36. This was applied on a curated subset of 1800 unrelated samples; further details19

on its application are described in Relate/CLUES Supplementary Methods. CLUES was run20

once for each of the 14,712 unique GWAS hits for traits analyzed here with a derived allele21

frequency (DAF) above 1% and passing the 1000 Genomes strict mask. To obtain an expected22

distribution we randomly sampled 10,000 GWAS hits from the GWAS catalog meeting the same23

conditions and ran CLUES for positions not present among the 14,712 SNPs. Next, for each24

phenotype we compared its distribution of the logLR values to that of random GWAS hits. We25

took 1000 random subsets (with replacement) from the 10,000 logLR values each of the same26

length as the number of GWAS hits for a given phenotype and ranked the logLR values from27

lowest to highest within each subset. In this way we obtained 1000 values for each logLR rank28

from 1 to N where N is the number of SNPs analyzed for a given phenotype. For each rank we29

calculated the mean and the 5th and 95th percentiles. Finally, we rank SNPs within each trait30

and compare each logLR value to the mean and 5th−95th percentiles range for the correspond-31

ing rank of the background distribution. As we are interested in deviations in the higher ranks32

we focus on the top 100 ranks for each phenotype. Such an approach is conservative as we are33

testing not against presumably neutral SNPs but against random GWAS hits that are shown34

to be enriched in signals on natural selection compared to random SNPs in the genome36.35
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Data availability1

The datasets analyzed during the current study are publicly available and can be accessed2

from the following repositories: data from Estonian Biobank at https://genomics.ut.ee/en/3

access-biobank (accessed with Approval Number 285/T-13 obtained on 17/09/2018 by the4

University of Tartu Ethics Committee); AADR plus Human Origins dataset at https://reich.5

hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-6

day-and-ancient-dna-data; GWAS catalog at https://www.ebi.ac.uk/gwas/.7

Code Availability8

Code for analyses performed in this paper will be accessible upon publication.9

References10

1. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-11

day Europeans. Nature 513, 409–13 (2014).12

2. Haak, W. et al. Massive migration from the steppe was a source for Indo-European lan-13

guages in Europe. Nature 522, 207–211 (2015).14

3. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–17215

(2015).16

4. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old17

Mesolithic European. Nature 507, 225–8 (2014).18

5. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature19

528, 499–503 (2015).20

6. Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East21

European plain. Science Advances 7, eabd6535 (2021).22

7. Cox, S. L., Ruff, C. B., Maier, R. M. & Mathieson, I. Genetic contributions to variation23

in human stature in prehistoric Europe. Proceedings of the National Academy of Sciences24

of the United States of America 116, 21484–21492 (2019).25

8. Ju, D. & Mathieson, I. The evolution of skin pigmentation-associated variation in West26

Eurasia. Proceedings of the National Academy of Sciences of the United States of America27

118, e2009227118 (2021).28

9. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation.29

The American Journal of Human Genetics 101, 5–22 (2017).30

10. Martin, A. R. et al. Human Demographic History Impacts Genetic Risk Prediction across31

Diverse Populations. American journal of human genetics 100, 635–649 (2017).32

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454888doi: bioRxiv preprint 

https://genomics.ut.ee/en/access-biobank
https://genomics.ut.ee/en/access-biobank
https://genomics.ut.ee/en/access-biobank
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://www.ebi.ac.uk/gwas/
https://doi.org/10.1101/2021.08.03.454888
http://creativecommons.org/licenses/by-nd/4.0/


11. Manrai, A. K. et al. Genetic Misdiagnoses and the Potential for Health Disparities. New1

England Journal of Medicine 375, 655–665 (2016).2

12. Kim, M. S., Patel, K. P., Teng, A. K., Berens, A. J. & Lachance, J. Genetic disease risks3

can be misestimated across global populations. Genome Biology 19, 179 (2018).4

13. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health5

disparities. Nature Genetics 51, 584–591 (2019).6

14. Kerminen, S. et al. Geographic Variation and Bias in the Polygenic Scores of Complex7

Diseases and Traits in Finland. American journal of human genetics 104, 1169–11818

(2019).9

15. Marnetto, D. et al. Ancestry deconvolution and partial polygenic score can improve sus-10

ceptibility predictions in recently admixed individuals. Nature Communications 11, 162811

(2020).12

16. Racimo, F., Berg, J. J. & Pickrell, J. K. Detecting Polygenic Adaptation in Admixture13

Graphs. Genetics 208, 1565–1584 (2018).14

17. Novembre, J. & Barton, N. H. Tread lightly interpreting polygenic tests of selection.15

Genetics 208, 1351–1355 (2018).16

18. Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected strat-17

ification in genome-wide association studies. eLife 8, 1–17 (2019).18

19. Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK biobank. eLife19

8, 1–47 (2019).20

20. Tambets, K. et al. Genes reveal traces of common recent demographic history for most of21

the Uralic-speaking populations. Genome Biology 19, 139 (2018).22

21. Saag, L. et al. The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic23

Speakers further East. Current Biology 29, 1701–1711.e16 (2019).24

22. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association25

studies, targeted arrays and summary statistics 2019. Nucleic Acids Research 47, D1005–26

D1012 (2019).27

23. Damgaard, P. d. B. et al. 137 ancient human genomes from across the Eurasian steppes.28

Nature 557, 369–374 (2018).29

24. Pankratov, V. et al. Differences in local population history at the finest level: the case of30

the Estonian population. European Journal of Human Genetics 28, 1580–1591 (2020).31

25. Liu, H. Genetic architecture of socioeconomic outcomes: Educational attainment, occupa-32

tional status, and wealth. Social Science Research 82, 137–147 (2019).33

26. Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. Population phenomena inflate34

genetic associations of complex social traits. Science Advances 6, eaay0328 (2020).35

27. Stern, A. J., Wilton, P. R. & Nielsen, R. An approximate full-likelihood method for infer-36

ring selection and allele frequency trajectories from DNA sequence data. PLOS Genetics37

15, e1008384 (2019).38

28. Key, F. M., Fu, Q., Romagne, F., Lachmann, M. & Andres, A. M. Human adaptation39

and population differentiation in the light of ancient genomes. Nature Communications 7,40

1–11 (2016).41

15

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454888
http://creativecommons.org/licenses/by-nd/4.0/


29. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase1

gene. American journal of human genetics 74, 1111–20 (2004).2

30. Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human3

populations. Genome Research 19, 826–837 (2009).4

31. Ding, K. & Kullo, I. J. Geographic differences in allele frequencies of susceptibility SNPs5

for cardiovascular disease. BMC medical genetics 12, 55 (2011).6

32. Buckley, M. T. et al. Selection in Europeans on Fatty Acid Desaturases Associated with7

Dietary Changes. Molecular Biology and Evolution 34, 1307–1318 (2017).8

33. Mathieson, S. & Mathieson, I. FADS1 and the Timing of Human Adaptation to Agricul-9

ture. Molecular Biology and Evolution 35, 2957–2970 (2018).10

34. Leitsalu, L. et al. International Journal of Epidemiology 44, 1137–1147 (2015).11

35. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using12

summary statistics. Nature Genetics 52, 458–462 (2020).13

36. Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy14

estimation for thousands of samples. Nature Genetics 51, 1321–1329 (2019).15

Acknowledgements16

This work is supported by the European Union through the European Regional Development17

Fund, project No. 2014-2020.4.01.16-0024, MOBTT53 (DM, KP, LM, LP); MOBEC008 (VP,18

MMo, MMe, AE); 2014-2020.4.01.16-0030 (FM, MMe); 2014-2020.4.01.15-0012 (MMe); through19

the Horizon 2020 research and innovation programme grant no. 810645 (VP, MMo, MMe, AE)20

and through the Horizon 2020 MSCA Initial Training Network, grant no. 765937 (RC). LS,21

MMe are supported by the Estonian Research Council through PUT PRG243. SM is supported22

by the STARS@UNIPD 2019 Consolidator Grant for the project CircadianCare.23

Author Contributions24

DM, LP conceived and designed the study; AE contributed in the statistical design; DM, VP25

performed data analyses; MMo, FM, KP, LV, LM, LP contributed to data analyses; SM, RC26

provided analyses and expertise about sleep traits; FM, LS, LL, MMe contributed with ancient27

genetics expertise; DM, LP drafted the manuscript; all authors reviewed and approved the28

submitted paper.29

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454888
http://creativecommons.org/licenses/by-nd/4.0/


Competing Interests1

The authors declare no competing interests.2

17

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454888doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454888
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Results
	covA measures similarity with ancestral groups
	Connecting complex trait variation to genome-wide ancestry similarity
	Phenotype-associated genomic regions show specific similarity patterns
	Selection signatures at candidate regions with ancestry/trait association

	Discussion
	Methods
	Sample selection and ancient European grouping
	Phenotypes treatment and heritability
	covA definition
	Predicting traits with covA and covA-based PCs
	Candidate genomic regions
	Testing for signals of positive selection


