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Abstract:‌ ‌ 

Macrophages‌ ‌populate‌ ‌every‌ ‌organ‌ ‌during‌ ‌homeostasis‌ ‌and‌ ‌disease,‌ ‌displaying‌ ‌features‌ ‌of‌‌ 

tissue‌ ‌imprinting‌ ‌and‌ ‌heterogeneous‌ ‌activation.‌ ‌The‌ ‌disjointed‌ ‌picture‌ ‌of‌ ‌macrophage‌ ‌biology‌‌ 

that‌ ‌emerged‌ ‌from‌ ‌these‌ ‌observations‌ ‌are‌ ‌a‌ ‌barrier‌ ‌for‌ ‌integration‌ ‌across‌ ‌models‌ ‌or‌ ‌with‌ ‌‌in‌ ‌vitro‌‌ 

macrophage‌ ‌activation‌ ‌paradigms.‌ ‌We‌ ‌set‌ ‌out‌ ‌to‌ ‌contextualize‌ ‌macrophage‌ ‌heterogeneity‌‌ 

across‌ ‌mouse‌ ‌tissues‌ ‌and‌ ‌inflammatory‌ ‌conditions,‌ ‌specifically‌ ‌aiming‌ ‌to‌ ‌define‌ ‌a‌ ‌common‌‌ 

framework‌ ‌of‌ ‌macrophage‌ ‌activation.‌ ‌We‌ ‌built‌ ‌a‌ ‌predictive‌ ‌model‌ ‌with‌ ‌which‌ ‌we‌ ‌mapped‌ ‌the‌‌ 

activation‌ ‌of‌ ‌macrophages‌ ‌across‌ ‌12‌ ‌tissues‌ ‌and‌ ‌25‌ ‌biological‌ ‌conditions,‌ ‌finding‌ ‌a‌ ‌striking‌‌ 

commonality‌ ‌and‌ ‌finite‌ ‌number‌ ‌of‌ ‌transcriptional‌ ‌profiles,‌ ‌which‌ ‌we‌ ‌modelled‌ ‌as‌ ‌defined‌ ‌stages‌‌ 

along‌ ‌four‌ ‌conserved‌ ‌activation‌ ‌paths.‌ ‌We‌ ‌verified‌ ‌this‌ ‌model‌ ‌with‌ ‌adoptive‌ ‌cell‌ ‌transfer‌‌ 

experiments‌ ‌and‌ ‌identified‌ ‌transient‌ ‌RELMɑ‌ ‌expression‌ ‌as‌ ‌a‌ ‌feature‌ ‌of‌ ‌macrophage‌ ‌tissue‌‌ 

engraftment.‌ ‌We‌ ‌propose‌ ‌that‌ ‌this‌ ‌integrative‌ ‌approach‌ ‌of‌ ‌macrophage‌ ‌classification‌ ‌allows‌ ‌the‌‌ 

establishment‌ ‌of‌ ‌a‌ ‌common‌ ‌predictive‌ ‌framework‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌in‌ ‌inflammation‌ ‌and‌‌ 

homeostasis.‌‌ ‌  
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‌ 

Main‌ ‌Text:‌ ‌ 

Introduction‌ ‌ 

Macrophages‌ ‌can‌ ‌be‌ ‌found‌ ‌in‌ ‌every‌ ‌organ‌ ‌and‌ ‌displaying‌ ‌a‌ ‌unique‌ ‌transcriptional‌ ‌profile‌ ‌in‌ ‌each‌ 

setting‌ ‌‌(‌1‌,‌ ‌‌2‌)‌.‌ ‌This‌ ‌profound‌ ‌specialization‌ ‌to‌ ‌match‌ ‌their‌ ‌tissue‌ ‌of‌ ‌residence‌ ‌is‌ ‌a‌ ‌necessary‌‌ 

aspect‌ ‌of‌ ‌the‌ ‌function‌ ‌of‌ ‌these‌ ‌cells‌ ‌during‌ ‌homeostasis‌ ‌‌(‌3‌)‌.‌ ‌The‌ ‌engraftment‌ ‌of‌ ‌macrophages‌ ‌in‌‌ 

most‌ ‌tissues‌ ‌occurs‌ ‌early‌ ‌during‌ ‌embryonic‌ ‌development‌ ‌‌(‌4‌,‌ ‌‌5‌)‌.‌ ‌In‌ ‌adults,‌ ‌circulating‌ ‌monocytes‌‌ 

contribute‌ ‌to‌ ‌the‌ ‌replenishment‌ ‌of‌ ‌these‌ ‌tissue-resident‌ ‌macrophage‌ ‌pools‌ ‌at‌ ‌different‌ ‌rates,‌ ‌or‌‌ 

not‌ ‌at‌ ‌all,‌ ‌depending‌ ‌on‌ ‌the‌ ‌organ‌ ‌in‌ ‌question‌ ‌‌(‌5‌–‌9‌)‌.‌ ‌The‌ ‌extent‌ ‌of‌ ‌the‌ ‌contribution‌ ‌of‌ ‌monocytes‌‌ 

to‌ ‌tissue‌ ‌macrophage‌ ‌populations‌ ‌during‌ ‌adulthood‌ ‌is‌ ‌an‌ ‌area‌ ‌of‌ ‌debate‌ ‌and‌ ‌findings‌ ‌from‌ ‌newly‌‌ 

developed‌ ‌fate-mapping‌ ‌tools‌ ‌require‌ ‌ongoing‌ ‌revision‌ ‌of‌ ‌macrophage‌ ‌ontogeny‌ ‌models‌ ‌‌(‌4‌,‌ ‌‌6‌,‌‌ 

10‌)‌.‌ ‌These‌ ‌observations‌ ‌have‌ ‌only‌ ‌recently‌ ‌been‌ ‌expanded‌ ‌to‌ ‌humans‌ ‌‌(‌11‌)‌.‌ ‌However,‌ ‌the‌‌ 

relatively‌ ‌simplistic‌ ‌view‌ ‌held‌ ‌for‌ ‌decades‌ ‌after‌ ‌the‌ ‌introduction‌ ‌of‌ ‌the‌ ‌mononuclear‌ ‌phagocyte‌‌ 

system‌ ‌‌(‌12‌)‌,‌ ‌in‌ ‌which‌ ‌all‌ ‌macrophages‌ ‌differentiate‌ ‌from‌ ‌bone-marrow‌ ‌derived‌ ‌monocytes,‌ ‌has‌ 

been‌ ‌abandoned.‌ ‌ 

As‌ ‌focus‌ ‌has‌ ‌shifted‌ ‌to‌ ‌the‌ ‌origin‌ ‌of‌ ‌macrophages‌ ‌and‌ ‌the‌ ‌impact‌ ‌of‌ ‌tissue‌ ‌imprinting‌ ‌‌(‌1‌)‌,‌ ‌the‌‌ 

engagement‌ ‌of‌ ‌recruited‌ ‌versus‌ ‌resident‌ ‌macrophages‌ ‌during‌ ‌the‌ ‌immune‌ ‌response‌ ‌has‌‌ 

received‌ ‌greater‌ ‌scrutiny.‌ ‌However,‌ ‌these‌ ‌efforts‌ ‌have‌ ‌been‌ ‌hampered‌ ‌by‌ ‌the‌ ‌limitations‌ ‌inherent‌‌ 

to‌ ‌phenotyping‌ ‌techniques‌ ‌that‌ ‌rely‌ ‌on‌ ‌bulk‌ ‌population‌ ‌averaging‌ ‌(e.g.‌ ‌RNA‌ ‌sequencing),‌ ‌few‌‌ 

simultaneous‌ ‌measurements‌ ‌(e.g.‌ ‌flow‌ ‌cytometry)‌ ‌and‌ ‌poorly‌ ‌characterised‌ ‌macrophage‌ ‌subset‌‌ 

markers.‌ ‌This‌ ‌is‌ ‌especially‌ ‌challenging‌ ‌as‌ ‌incoming‌ ‌monocytes‌ ‌are‌ ‌able,‌ ‌with‌ ‌time,‌ ‌to‌ ‌adopt‌‌ 

nearly‌ ‌indistinguishable‌ ‌transcriptional‌ ‌profiles‌ ‌to‌  ‌resident‌ ‌macrophages‌ ‌in‌ ‌the‌ ‌tissue‌ ‌that‌ ‌they‌‌ 

are‌ ‌entering‌ ‌‌(‌13‌)‌.‌ ‌Despite‌ ‌these‌ ‌limitations,‌ ‌some‌ ‌have‌ ‌taken‌ ‌the‌ ‌sum‌ ‌of‌ ‌these‌ ‌studies‌ ‌to‌ 

suggest‌ ‌that‌ ‌macrophages‌ ‌in‌ ‌different‌ ‌tissues‌ ‌should‌ ‌be‌ ‌regarded‌ ‌as‌ ‌entirely‌ ‌different‌ ‌cells‌ ‌‌(‌3‌)‌,‌‌ 

or‌ ‌that‌ ‌paradigms‌ ‌of‌ ‌macrophage‌ ‌M1‌ ‌(classical)/M2‌ ‌(alternative)‌ ‌activation‌ ‌should‌ ‌be‌ ‌abandoned‌‌ 

(‌14‌–‌16‌)‌.‌ ‌This‌ ‌later‌ ‌view‌ ‌in‌ ‌particular‌ ‌is‌ ‌supported‌ ‌by‌ ‌the‌ ‌extensive‌ ‌plasticity‌ ‌that‌ ‌macrophages‌‌ 

display‌ ‌when‌ ‌stimulated‌ ‌with‌ ‌cocktails‌ ‌of‌ ‌cytokines,‌ ‌pattern‌ ‌recognition‌ ‌receptor‌ ‌ligands‌ ‌and‌‌ 

other‌ ‌immunomodulatory‌ ‌molecules‌ ‌‌(‌17‌,‌ ‌‌18‌)‌.‌ ‌Thus,‌ ‌the‌ ‌emerging‌ ‌picture‌ ‌of‌ ‌macrophage‌‌ 

activation‌ ‌suggests‌ ‌a‌ ‌flexible‌ ‌spectrum‌ ‌of‌ ‌different‌ ‌activation‌ ‌states,‌ ‌with‌ ‌tissue‌ ‌and‌‌ 

context-specific‌ ‌parameters‌ ‌viewed‌ ‌as‌ ‌dominant‌ ‌predictors‌ ‌of‌ ‌macrophage‌ ‌function.‌ ‌ 

This‌ ‌complex‌ ‌landscape‌ ‌of‌ ‌macrophage‌ ‌phenotype‌ ‌has‌ ‌been‌ ‌further‌ ‌thrown‌ ‌into‌ ‌relief‌ ‌by‌ ‌the‌‌ 

emergence‌ ‌of‌ ‌single‌ ‌cell‌ ‌RNA‌ ‌sequencing‌ ‌(scRNA-seq).‌ ‌This‌ ‌technology‌ ‌overcomes‌ ‌the‌‌ 

limitations‌ ‌of‌ ‌bulk‌ ‌population‌ ‌averaging‌ ‌and‌ ‌does‌ ‌not‌ ‌rely‌ ‌on‌ ‌previously‌ ‌defined‌ ‌surface‌ ‌markers‌‌ 
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‌ 

for‌ ‌macrophage‌ ‌subset‌ ‌sorting.‌ ‌As‌ ‌more‌ ‌studies‌ ‌employing‌ ‌this‌ ‌technique‌ ‌are‌ ‌published,‌ ‌the‌‌ 

observed‌ ‌heterogeneity‌ ‌in‌ ‌macrophage‌ ‌activation‌ ‌states‌ ‌has‌ ‌further‌ ‌increased,‌ ‌with‌ ‌new‌ ‌subsets‌‌ 

or‌ ‌phenotypes‌ ‌frequently‌ ‌identified‌ ‌‌(‌19‌–‌28‌)‌.‌ ‌Consequently,‌ ‌the‌ ‌field‌ ‌of‌ ‌macrophage‌ ‌biology‌‌ 

currently‌ ‌lacks‌ ‌a‌ ‌common‌ ‌reference‌ ‌framework‌ ‌to‌ ‌describe‌ ‌the‌ ‌state‌ ‌of‌ ‌activation‌ ‌of‌‌ 

macrophages‌ ‌in‌ ‌tissues.‌ ‌ 

In‌ ‌light‌ ‌of‌ ‌this‌ ‌rapidly‌ ‌evolving‌ ‌situation,‌ ‌we‌ ‌wondered‌ ‌whether‌ ‌the‌ ‌construction‌ ‌of‌ ‌such‌ ‌a‌‌ 

common‌ ‌framework‌ ‌would‌ ‌be‌ ‌possible.‌ ‌We‌ ‌reasoned‌ ‌that‌ ‌a‌ ‌unifying‌ ‌model‌ ‌could‌ ‌be‌ ‌built‌ ‌by‌‌ 

comparing‌ ‌macrophage‌ ‌activation‌ ‌profiles‌ ‌across‌ ‌tissues‌ ‌under‌ ‌multiple‌ ‌inflammatory‌ ‌conditions.‌‌ 

We‌ ‌expected‌ ‌that‌ ‌either‌ ‌we‌ ‌would‌ ‌succeed‌ ‌in‌ ‌finding‌ ‌common‌ ‌activation‌ ‌features‌ ‌or‌ ‌that‌‌ 

tissue-specific‌ ‌transcriptional‌ ‌programs‌ ‌would‌ ‌dominate‌ ‌the‌ ‌data.‌ ‌With‌ ‌this‌ ‌in‌ ‌mind,‌ ‌we‌ ‌built‌ ‌a‌‌ 

predictive‌ ‌model‌ ‌with‌ ‌which‌ ‌we‌ ‌mapped‌ ‌the‌ ‌activation‌ ‌of‌ ‌macrophages‌ ‌across‌ ‌12‌ ‌mouse‌ ‌tissues‌‌ 

and‌ ‌25‌ ‌biological‌ ‌conditions,‌ ‌finding‌ ‌a‌ ‌strikingly‌ ‌common‌ ‌and‌ ‌finite‌ ‌number‌ ‌of‌ ‌transcriptional‌‌ 

profiles‌ ‌which‌ ‌we‌ ‌modelled‌ ‌as‌ ‌stages‌ ‌along‌ ‌4‌ ‌conserved‌ ‌activation‌ ‌paths.‌ ‌These‌ ‌activation‌‌ 

stages‌ ‌placed‌ ‌cells‌ ‌with‌ ‌varying‌ ‌frequencies‌ ‌along‌ ‌a‌ ‌“phagocytic”‌ ‌regulatory‌ ‌path,‌ ‌an‌‌ 

“inflammatory”‌ ‌cytokine‌ ‌producing‌ ‌path,‌ ‌an‌ ‌“oxidative‌ ‌stress”‌ ‌apoptotic‌ ‌path‌ ‌or‌ ‌a‌ ‌“remodelling”‌‌ 

extracellular-matrix‌ ‌(ECM)‌ ‌deposition‌ ‌path.‌ ‌We‌ ‌verified‌ ‌our‌ ‌model‌ ‌with‌ ‌adoptive‌ ‌cell‌ ‌transfer‌‌ 

experiments,‌ ‌noting‌ ‌that‌ ‌incoming‌ ‌monocytes‌ ‌displayed‌ ‌a‌ ‌remarkable‌ ‌plasticity‌ ‌to‌ ‌rapidly‌ ‌adopt‌‌ 

all‌ ‌the‌ ‌transcriptional‌ ‌signatures‌ ‌we‌ ‌detected.‌ ‌Moreover,‌ ‌we‌ ‌identified‌ ‌transient‌ ‌RELMɑ‌ 

expression‌ ‌as‌ ‌a‌ ‌feature‌ ‌of‌ ‌macrophage‌ ‌tissue‌ ‌engraftment‌ ‌and‌ ‌propose‌ ‌that‌ ‌historical‌ ‌RELMɑ‌‌ 

expression‌ ‌may‌ ‌serve‌ ‌to‌ ‌identify‌ ‌monocyte‌ ‌contribution‌ ‌to‌ ‌tissue‌ ‌resident‌ ‌macrophage‌‌ 

populations.‌ ‌Lastly,‌ ‌we‌ ‌posit‌ ‌that‌ ‌this‌ ‌integrative‌ ‌approach‌ ‌of‌ ‌macrophage‌ ‌classification‌ ‌allows‌‌ 

the‌ ‌establishment‌ ‌of‌ ‌a‌ ‌common‌ ‌predictive‌ ‌framework‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌that‌ ‌may‌ ‌serve‌‌ 

to‌ ‌contextualize‌ ‌these‌ ‌cells‌ ‌in‌ ‌future‌ ‌studies‌ ‌and‌ ‌for‌ ‌this‌ ‌reason‌ ‌we‌ ‌provide‌ ‌a‌ ‌list‌ ‌of‌ ‌surface‌‌ 

markers‌ ‌that‌ ‌may‌ ‌be‌ ‌used‌ ‌to‌ ‌identify‌ ‌these‌ ‌cells.‌ ‌For‌ ‌this‌ ‌purpose,‌ ‌we‌ ‌built‌ ‌a‌ ‌web‌ ‌interface‌‌ 

where‌ ‌interested‌ ‌researchers‌ ‌may‌ ‌explore‌ ‌our‌ ‌findings‌ ‌interactively‌‌ 

(https://www.macrophage-framework.jhmi.edu).‌ ‌ 

‌ 
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‌ 

Results‌ ‌ 

Macrophages‌ ‌in‌ ‌inflammatory‌ ‌conditions‌ ‌co-exist‌ ‌in‌ ‌diverse‌ ‌functional‌ ‌states‌ ‌ 

scRNA-seq‌ ‌has‌ ‌highlighted‌ ‌extensive‌ ‌heterogeneity‌ ‌in‌ ‌macrophage‌ ‌populations‌ ‌across‌ ‌tissues‌‌ 

and‌ ‌conditions‌ ‌‌(‌5‌,‌ ‌‌11‌,‌ ‌‌22‌,‌ ‌‌24‌,‌ ‌‌27‌,‌ ‌‌29‌)‌,‌ ‌and‌ ‌the‌ ‌picture‌ ‌of‌ ‌macrophage‌ ‌biology‌ ‌that‌ ‌has‌ ‌emerged‌‌ 

from‌ ‌these‌ ‌studies‌ ‌can‌ ‌be‌ ‌difficult‌ ‌to‌ ‌integrate‌ ‌with‌ ‌the‌ ‌paradigms‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌that‌‌ 

have‌ ‌developed‌ ‌from‌‌ ‌in‌ ‌vitro‌ ‌‌studies.‌ ‌For‌ ‌this‌ ‌reason,‌ ‌we‌ ‌set‌ ‌out‌ ‌to‌ ‌contextualize‌ ‌macrophage‌‌ 

heterogeneity‌ ‌across‌ ‌tissues‌ ‌in‌ ‌diverse‌ ‌inflammatory‌ ‌conditions,‌ ‌specifically‌ ‌aiming‌ ‌to‌ ‌define‌‌ 

common‌ ‌aspects‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌during‌ ‌infection‌ ‌and‌ ‌inflammation‌ ‌(Figure‌ ‌1A).‌ ‌For‌‌ 

this‌ ‌purpose‌ ‌we‌ ‌built‌ ‌a‌ ‌reference‌ ‌dataset‌ ‌(Figure‌ ‌1A-B)‌ ‌based‌ ‌on‌ ‌2‌ ‌inflammatory‌ ‌conditions‌‌ 

historically‌ ‌seen‌ ‌as‌ ‌representing‌ ‌either‌ ‌a‌ ‌classical‌ ‌inflammatory‌ ‌response‌ ‌during‌ ‌bacterial‌‌ 

infection‌ ‌using‌ ‌‌Listeria‌ ‌monocytogenes‌‌ ‌(‌L.‌ ‌mono‌),‌ ‌or‌ ‌a‌ ‌type-2‌ ‌immune‌ ‌response‌ ‌to‌‌ 

Heligmosomoides‌ ‌polygyrus‌‌ ‌(‌H.‌ ‌poly‌)‌ ‌larvae.‌ ‌Given‌ ‌our‌ ‌goal‌ ‌of‌ ‌encapsulating‌ ‌most‌ ‌macrophage‌‌ 

activation‌ ‌states,‌ ‌the‌ ‌completeness‌ ‌of‌ ‌our‌ ‌reference‌ ‌dataset‌ ‌was‌ ‌critical.‌ ‌We‌ ‌reasoned‌ ‌that‌ ‌the‌‌ 

two‌ ‌settings‌ ‌we‌ ‌chose,‌ ‌which‌ ‌both‌ ‌induce‌ ‌multi-cellular‌ ‌and‌ ‌systemic‌ ‌responses,‌ ‌would‌ ‌provide‌‌ 

a‌ ‌sufficiently‌ ‌broad‌ ‌spectrum‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌to‌ ‌begin‌ ‌our‌ ‌study.‌ ‌ 

Initially,‌ ‌we‌ ‌sequenced‌ ‌all‌ ‌stromal‌ ‌vascular‌ ‌fraction‌ ‌cells‌ ‌from‌ ‌mesenteric‌ ‌fat‌ ‌(Figure‌ ‌S1A),‌‌ 

adjacent‌ ‌to‌ ‌the‌ ‌site‌ ‌of‌ ‌‌H.‌ ‌poly‌‌ ‌infection,‌ ‌and‌ ‌popliteal‌ ‌fat‌ ‌(Figure‌ ‌S1B),‌ ‌which‌ ‌is‌ ‌directly‌ ‌invaded‌‌ 

by‌ ‌‌L.‌ ‌mono‌‌ ‌following‌ ‌footpad‌ ‌injection.‌ ‌We‌ ‌then‌ ‌evaluated‌ ‌the‌ ‌distribution‌ ‌of‌ ‌macrophage‌ ‌gene‌‌ 

expression‌ ‌markers‌ ‌in‌ ‌these‌ ‌datasets‌ ‌(Figure‌ ‌S1A-B)‌ ‌and‌ ‌extracted,‌ ‌integrated‌ ‌and‌ ‌re-clustered‌‌ 

identified‌ ‌macrophages.‌ ‌To‌ ‌ensure‌ ‌a‌ ‌balanced‌ ‌representation‌ ‌of‌ ‌each‌ ‌condition,‌ ‌only‌ ‌500‌‌ 

macrophages‌ ‌were‌ ‌taken‌ ‌from‌ ‌each‌ ‌dataset,‌ ‌plus‌ ‌500‌ ‌macrophages‌ ‌from‌ ‌matched‌ ‌naive‌‌ 

controls.‌ ‌Gene‌ ‌expression‌ ‌was‌ ‌distinct‌ ‌within‌ ‌each‌ ‌identified‌ ‌cluster‌ ‌(Figure‌ ‌S1C‌ ‌&‌‌ 

Supplemental‌ ‌Table‌ ‌1)‌ ‌and‌ ‌could‌ ‌be‌ ‌associated‌ ‌with‌ ‌specific‌ ‌biological‌ ‌processes‌ ‌via‌ ‌pathway‌‌ 

enrichment‌ ‌analysis‌ ‌(Figure‌ ‌1C).‌ ‌To‌ ‌better‌ ‌visualize‌ ‌gene‌ ‌expression‌ ‌programs‌ ‌we‌ ‌calculated‌‌ 

gene‌ ‌set‌ ‌scores‌ ‌within‌ ‌each‌ ‌cell‌ ‌for‌ ‌groups‌ ‌of‌ ‌genes‌ ‌mapping‌ ‌to‌ ‌diverse‌ ‌functions‌ ‌(Supplemental‌‌ 

Table‌ ‌2).‌ ‌These‌ ‌gene‌ ‌set‌ ‌scores‌ ‌were‌ ‌specific‌ ‌to‌ ‌different‌ ‌identified‌ ‌clusters,‌ ‌thus‌ ‌underscoring‌‌ 

the‌ ‌functional‌ ‌diversity‌ ‌of‌ ‌sequenced‌ ‌macrophages‌ ‌in‌ ‌the‌ ‌conditions‌ ‌studied.‌‌ ‌  

We‌ ‌observed‌ ‌that‌ ‌clusters‌ ‌0‌ ‌and‌ ‌3‌ ‌were‌ ‌enriched‌ ‌for‌ ‌genes‌ ‌associated‌ ‌with‌ ‌macrophage‌‌ 

alternative‌ ‌activation‌ ‌(e.g.‌ ‌‌Cd36,‌ ‌Clec10a,‌ ‌Mrc1‌),‌ ‌antigen‌ ‌presentation‌ ‌(e.g.‌ ‌‌H2-Aa,‌ ‌H2-Eb1,‌‌ 

H2-Ab1‌)‌ ‌and‌ ‌the‌ ‌complement‌ ‌cascade‌ ‌(e.g.‌ ‌‌C1qc,‌ ‌C1qb‌)‌ ‌(Figure‌ ‌1C,‌ ‌S1C‌ ‌&‌ ‌Supplemental‌ ‌Table‌‌ 

1).‌ ‌Cluster‌ ‌2‌ ‌was‌ ‌enriched‌ ‌for‌ ‌genes‌ ‌involved‌ ‌in‌ ‌extracellular‌ ‌matrix‌ ‌(ECM)‌ ‌receptor-interactions‌‌ 

(e.g.‌ ‌‌Cd44,‌ ‌Sdc1,‌ ‌Fn1‌)‌ ‌and‌ ‌cytoskeleton‌ ‌regulation‌ ‌(e.g.‌ ‌‌Pfn1,‌ ‌Actg1,‌ ‌Tmsb4x‌).‌ ‌Cluster‌ ‌4‌‌ 
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displayed‌ ‌high‌ ‌expression‌ ‌of‌ ‌genes‌ ‌participating‌ ‌in‌ ‌antigen‌ ‌presentation‌ ‌(e.g.‌ ‌‌H2-Oa,‌ ‌H2-DMb2,‌‌ 

Cd74‌).‌ ‌Clusters‌ ‌6‌ ‌and‌ ‌7,‌ ‌and‌ ‌to‌ ‌a‌ ‌lesser‌ ‌extent‌ ‌5,‌ ‌were‌ ‌enriched‌ ‌for‌ ‌genes‌ ‌associated‌ ‌with‌ ‌the‌‌ 

phagosome‌ ‌(e.g.‌ ‌‌Fcgr1,‌ ‌Ncf4,‌ ‌Fcgr3‌)‌ ‌and‌ ‌oxidative‌ ‌stress‌ ‌(e.g.‌ ‌‌Prdx5,‌ ‌Txn1,‌ ‌Gsr‌),‌ ‌with‌ ‌cluster‌ ‌6‌‌ 

in‌ ‌particular‌ ‌enriched‌ ‌for‌ ‌innate‌ ‌immune‌ ‌response‌ ‌genes‌ ‌(e.g.‌ ‌‌Ifitm3,‌ ‌Fcgr1,‌ ‌Isg20‌).‌ ‌ECM‌‌ 

organization‌ ‌genes‌ ‌(e.g.‌ ‌‌Col1a1,‌ ‌Col3a1,‌ ‌Ddr2‌)‌ ‌were‌ ‌highest‌ ‌in‌ ‌Cluster‌ ‌8,‌ ‌while‌ ‌Cluster‌ ‌9‌‌ 

displayed‌ ‌high‌ ‌expression‌ ‌of‌ ‌cell‌ ‌cycle‌ ‌associated‌ ‌genes‌ ‌(e.g.‌ ‌‌Cks1b,‌ ‌H2afx,‌ ‌Cks2‌).‌‌ 

Interestingly,‌ ‌all‌ ‌but‌ ‌one‌ ‌cluster‌ ‌could‌ ‌be‌ ‌assigned‌ ‌a‌ ‌functional‌ ‌specialization‌ ‌in‌ ‌the‌ ‌manner‌‌ 

described‌ ‌above.‌ ‌Cluster‌ ‌1,‌ ‌which‌ ‌also‌ ‌occupied‌ ‌the‌ ‌center‌ ‌of‌ ‌the‌ ‌UMAP,‌ ‌had‌ ‌no‌ ‌distinctly‌‌ 

regulated‌ ‌genes‌ ‌(Figure‌ ‌S1C‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌1)‌ ‌and‌ ‌therefore‌ ‌no‌ ‌pathway‌ ‌assignment‌‌ 

(Figure‌ ‌1C).‌ ‌Thus,‌ ‌our‌ ‌analysis‌ ‌shows‌ ‌that‌ ‌macrophages‌ ‌within‌ ‌a‌ ‌tissue‌ ‌simultaneously‌‌ 

specialize‌ ‌into‌ ‌multiple‌ ‌functional‌ ‌stages,‌ ‌echoing‌ ‌findings‌ ‌in‌ ‌other‌ ‌studies‌ ‌where‌ ‌this‌ ‌diversity‌‌ 

has‌ ‌been‌ ‌reported‌ ‌‌(‌22‌,‌ ‌‌24‌,‌ ‌‌27‌)‌.‌‌ ‌  

Macrophages‌ ‌in‌ ‌inflammatory‌ ‌conditions‌ ‌are‌ ‌arranged‌ ‌along‌ ‌activation‌ ‌paths‌ ‌ 

In‌ ‌our‌ ‌data,‌ ‌cluster‌ ‌1‌ ‌could‌ ‌not‌ ‌be‌ ‌associated‌ ‌with‌ ‌a‌ ‌distinct‌ ‌function‌ ‌as‌ ‌it‌ ‌displayed‌ ‌no‌‌ 

up-regulated‌ ‌genes‌ ‌using‌ ‌the‌ ‌thresholds‌ ‌we‌ ‌established‌ ‌(average‌ ‌log‌ ‌fold‌ ‌change‌ ‌>‌ ‌1,‌ ‌percent‌‌ 

cells‌ ‌expressing‌ ‌gene‌ ‌>‌ ‌0.4‌ ‌and‌ ‌an‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌<‌ ‌0.01).‌ ‌Despite‌ ‌these‌ ‌high‌ ‌stringency‌‌ 

filters,‌ ‌we‌ ‌reasoned‌ ‌that‌ ‌cluster‌ ‌1‌ ‌could‌ ‌in‌ ‌fact‌ ‌represent‌ ‌an‌ ‌intermediate‌ ‌state‌ ‌of‌ ‌activation,‌‌ 

suggesting‌ ‌that‌ ‌rather‌ ‌than‌ ‌different‌ ‌populations‌ ‌of‌ ‌macrophages,‌ ‌our‌ ‌transcriptional‌ ‌analysis‌‌ 

captured‌ ‌activation‌ ‌paths‌ ‌being‌ ‌followed‌ ‌by‌ ‌infiltrating‌ ‌macrophages.‌ ‌To‌ ‌address‌ ‌this‌ ‌hypothesis‌‌ 

we‌ ‌analysed‌ ‌our‌ ‌data‌ ‌with‌ ‌Slingshot‌ ‌‌(‌30‌)‌‌ ‌to‌ ‌calculate‌ ‌first‌ ‌lineage‌ ‌breaking‌ ‌points‌ ‌(Figure‌ ‌1D)‌‌ 

and‌ ‌later‌ ‌lineage‌ ‌curves‌ ‌associated‌ ‌with‌ ‌pseudotime‌ ‌(Figure‌ ‌1E),‌ ‌generating‌ ‌a‌ ‌model‌ ‌of‌‌ 

macrophage‌ ‌activation‌ ‌in‌ ‌the‌ ‌tissue.‌ ‌This‌ ‌analysis‌ ‌required‌ ‌the‌ ‌selection‌ ‌of‌ ‌a‌ ‌starting‌ ‌point‌ ‌for‌‌ 

the‌ ‌curves.‌ ‌To‌ ‌establish‌ ‌this‌ ‌starting‌ ‌point,‌ ‌we‌ ‌calculated‌ ‌a‌ ‌gene‌ ‌set‌ ‌score‌ ‌associated‌ ‌with‌‌ 

monocytes‌ ‌(Figure‌ ‌1D‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌2)‌ ‌based‌ ‌on‌ ‌their‌ ‌transcriptional‌ ‌profile‌ ‌‌(‌1‌)‌.‌ ‌Given‌‌ 

the‌ ‌reported‌ ‌increase‌ ‌in‌ ‌Major‌ ‌histocompatibility‌ ‌complex‌ ‌class‌ ‌II‌ ‌(MHC-II)‌ ‌in‌ ‌infiltrating‌‌ 

monocytes‌ ‌transitioning‌ ‌to‌ ‌macrophages‌ ‌‌(‌31‌)‌‌ ‌and‌ ‌the‌ ‌increased‌ ‌monocyte‌ ‌signature‌ ‌we‌‌ 

observed,‌ ‌we‌ ‌reasoned‌ ‌that‌ ‌cluster‌ ‌4‌ ‌(Figure‌ ‌1B-D,‌ ‌black‌ ‌arrow)‌ ‌was‌ ‌a‌ ‌suitable‌ ‌starting‌ ‌point‌ ‌for‌‌ 

our‌ ‌activation‌ ‌model.‌‌ ‌  

Our‌ ‌analysis‌ ‌identified‌ ‌4‌ ‌activation‌ ‌paths‌ ‌that‌ ‌we‌ ‌labelled‌ ‌as‌ ‌“Phagocytic”,‌ ‌“Oxidative‌ ‌stress”,‌‌ 

“Inflammatory”‌ ‌and‌ ‌“Remodelling”‌ ‌according‌ ‌to‌ ‌the‌ ‌enriched‌ ‌pathway‌ ‌at‌ ‌the‌ ‌end‌ ‌point‌ ‌clusters‌ ‌of‌‌ 

each‌ ‌lineage‌ ‌(Figure‌ ‌1E).‌ ‌Our‌ ‌analysis‌ ‌also‌ ‌revealed‌ ‌that‌ ‌at‌ ‌least‌ ‌three‌ ‌clusters‌ ‌(4,‌ ‌2,‌ ‌1)‌‌ 

represented‌ ‌common‌ ‌early‌ ‌stages‌ ‌of‌ ‌macrophage‌ ‌activation.‌ ‌For‌ ‌clarity,‌ ‌we‌ ‌named‌ ‌these‌ ‌early‌‌ 
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stages‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌according‌ ‌to‌ ‌their‌ ‌relative‌ ‌position‌ ‌in‌ ‌the‌ ‌pseudotime‌‌ 

progression‌ ‌as‌ ‌“Initial”‌ ‌(cluster‌ ‌4),‌ ‌“Early”‌ ‌(cluster‌ ‌2)‌ ‌and‌ ‌“Intermediate”‌ ‌(cluster‌ ‌1)‌ ‌stages.‌ ‌The‌‌ 

remaining‌ ‌clusters‌ ‌were‌ ‌renamed‌ ‌as‌ ‌either‌ ‌“Late”‌ ‌or‌ ‌“Final”,‌ ‌with‌ ‌the‌ ‌activation‌ ‌path‌ ‌appended‌ ‌at‌‌ 

the‌ ‌end‌ ‌of‌ ‌the‌ ‌stage‌ ‌(Figure‌ ‌1F),‌ ‌so‌ ‌that‌ ‌for‌ ‌instance‌ ‌“Late.P1”‌ ‌corresponded‌ ‌to‌ ‌the‌ ‌cluster‌ ‌in‌‌ 

activation‌ ‌path‌ ‌1‌ ‌(P1)‌ ‌that‌ ‌is‌ ‌between‌ ‌the‌ ‌“Intermediate”‌ ‌and‌ ‌“Final”‌ ‌stage.‌‌ ‌  

Next‌ ‌we‌ ‌investigated‌ ‌how‌ ‌these‌ ‌activation‌ ‌stages‌ ‌were‌ ‌distributed‌ ‌across‌ ‌the‌ ‌biological‌‌ 

conditions‌ ‌in‌ ‌the‌ ‌data‌ ‌(Figure‌ ‌1G).‌ ‌We‌ ‌observed‌ ‌that‌ ‌the‌ ‌distribution‌ ‌of‌ ‌naive‌ ‌cells‌ ‌into‌ ‌different‌‌ 

functional‌ ‌stages‌ ‌in‌ ‌different‌ ‌fat‌ ‌deposits‌ ‌was‌ ‌comparable,‌ ‌and‌ ‌diverse,‌ ‌perhaps‌ ‌indicating‌ ‌an‌‌ 

active‌ ‌process‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌as‌ ‌monocytes‌ ‌replenish‌ ‌these‌ ‌sites‌ ‌in‌ ‌steady‌ ‌state‌‌ 

(Figure‌ ‌1G).‌ ‌We‌ ‌also‌ ‌noted‌ ‌that‌ ‌both‌ ‌helminth‌ ‌and‌ ‌bacterial‌ ‌infections‌ ‌altered‌ ‌the‌ ‌proportions‌ ‌of‌‌ 

several‌ ‌of‌ ‌these‌ ‌stages,‌ ‌such‌ ‌that‌ ‌‌L.‌ ‌mono‌‌ ‌infection‌ ‌favored‌ ‌the‌ ‌“oxidative‌ ‌stress”‌ ‌path,‌ ‌while‌ ‌‌H.‌‌ 

poly‌‌ ‌infection‌ ‌favored‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌when‌ ‌compared‌ ‌to‌ ‌each‌ ‌other‌ ‌(Figure‌ ‌1G).‌ ‌Notably,‌‌ 

all‌ ‌stages‌ ‌were‌ ‌present‌ ‌in‌ ‌each‌ ‌condition,‌ ‌underscoring‌ ‌the‌ ‌difficulty‌ ‌of‌ ‌relying‌ ‌on‌ ‌bulk‌‌ 

phenotyping‌ ‌techniques‌ ‌to‌ ‌capture‌ ‌the‌ ‌overall‌ ‌picture‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌‌ex‌ ‌vivo‌.‌‌ 

Moreover,‌ ‌the‌ ‌changes‌ ‌in‌ ‌diversity‌ ‌induced‌ ‌by‌ ‌infection‌ ‌were‌ ‌notably‌ ‌different‌ ‌between‌ ‌the‌‌ 

inflammatory‌ ‌conditions‌ ‌studied.‌ ‌While‌ ‌‌H.‌ ‌poly‌‌ ‌infection‌ ‌resulted‌ ‌in‌ ‌increases‌ ‌in‌ ‌numbers‌ ‌of‌ ‌cells‌‌ 

within‌ ‌less-well‌ ‌represented‌ ‌stages,‌ ‌‌L.‌ ‌mono‌‌ ‌infection‌ ‌resulted‌ ‌in‌ ‌2‌ ‌stages‌ ‌becoming‌ ‌dominant.‌‌ 

These‌ ‌differences‌ ‌could‌ ‌be‌ ‌explained‌ ‌both‌ ‌by‌ ‌the‌ ‌specific‌ ‌immune‌ ‌responses‌ ‌tailored‌ ‌to‌ ‌the‌‌ 

pathogens‌ ‌involved,‌ ‌but‌ ‌also‌ ‌by‌ ‌the‌ ‌time‌ ‌at‌ ‌which‌ ‌samples‌ ‌were‌ ‌collected‌ ‌(Supplementary‌ ‌Table‌‌ 

3;‌ ‌day‌ ‌1‌ ‌p.i,‌ ‌for‌ ‌the‌ ‌‌L.‌ ‌mono‌‌ ‌dataset,‌ ‌day‌ ‌14‌ ‌p.i.‌ ‌for‌ ‌the‌ ‌‌H.‌ ‌poly‌ ‌‌dataset).‌ ‌ 

In‌ ‌summary,‌ ‌our‌ ‌model‌ ‌predicts‌ ‌that‌ ‌macrophages‌ ‌in‌ ‌an‌ ‌inflamed‌ ‌tissue‌ ‌are‌ ‌progressing‌ ‌through‌‌ 

several‌ ‌distinct‌ ‌activation‌ ‌stages‌ ‌with‌ ‌unique‌ ‌transcriptional‌ ‌profiles.‌ ‌Moreover,‌ ‌the‌ ‌balance‌ ‌of‌‌ 

this‌ ‌progression‌ ‌is‌ ‌influenced‌ ‌by‌ ‌the‌ ‌type‌ ‌of‌ ‌immune‌ ‌response‌ ‌that‌ ‌dominates‌ ‌the‌‌ 

microenvironment‌ ‌but‌ ‌perhaps‌ ‌also‌ ‌the‌ ‌timing‌ ‌of‌ ‌this‌ ‌response.‌ ‌Finally,‌ ‌our‌ ‌model‌ ‌suggests‌ ‌that‌‌ 

although‌ ‌a‌ ‌tissue‌ ‌can‌ ‌become‌ ‌dominated‌ ‌by‌ ‌relatively‌ ‌few‌ ‌activation‌ ‌stages,‌ ‌there‌ ‌are‌ ‌still‌‌ 

macrophages‌ ‌present‌ ‌that‌ ‌have‌ ‌committed‌ ‌to‌ ‌other‌ ‌paths.‌ ‌ 

Macrophage‌ ‌gene‌ ‌expression‌ ‌is‌ ‌regulated‌ ‌along‌ ‌activation‌ ‌paths‌ ‌ 

Our‌ ‌initial‌ ‌analysis‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌relied‌ ‌on‌ ‌comparing‌ ‌gene‌ ‌expression‌ ‌in‌ ‌each‌‌ 

cluster‌ ‌to‌ ‌all‌ ‌remaining‌ ‌cells‌ ‌in‌ ‌the‌ ‌dataset‌ ‌(Figure‌ ‌S1C).‌ ‌We‌ ‌complemented‌ ‌this‌ ‌analysis‌ ‌with‌ ‌a‌‌ 

different‌ ‌approach,‌ ‌where‌ ‌gene‌ ‌expression‌ ‌was‌ ‌modelled‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(Figure‌‌ 

2A).‌ ‌We‌ ‌reasoned‌ ‌that‌ ‌as‌ ‌macrophages‌ ‌progress‌ ‌along‌ ‌each‌ ‌of‌ ‌the‌ ‌activation‌ ‌paths‌ ‌we‌ ‌defined‌‌ 

(Figure‌ ‌1E-F),‌ ‌gene‌ ‌expression‌ ‌would‌ ‌be‌ ‌regulated‌ ‌to‌ ‌allow‌ ‌these‌ ‌cells‌ ‌to‌ ‌become‌ ‌fully‌‌ 
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functional.‌ ‌As‌ ‌we‌ ‌thought‌ ‌it‌ ‌would‌ ‌be‌ ‌unlikely‌ ‌that‌ ‌the‌ ‌relationship‌ ‌between‌ ‌gene‌ ‌expression‌ ‌and‌‌ 

pseudotime‌ ‌would‌ ‌be‌ ‌linear,‌ ‌we‌ ‌instead‌ ‌fitted‌ ‌a‌ ‌general‌ ‌additive‌ ‌model‌ ‌(GAM),‌ ‌using‌‌ 

non-parametric‌ ‌locally‌ ‌estimated‌ ‌scatterplot‌ ‌smoothing‌ ‌(loess),‌ ‌explaining‌ ‌the‌ ‌expression‌ ‌of‌ ‌a‌‌ 

gene‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌the‌ ‌relative‌ ‌position‌ ‌of‌ ‌a‌ ‌cell‌ ‌along‌ ‌an‌ ‌activation‌ ‌path‌ ‌(Figure‌ ‌2A).‌ ‌We‌‌ 

included‌ ‌in‌ ‌this‌ ‌analysis‌ ‌only‌ ‌the‌ ‌top‌ ‌2000‌ ‌most‌ ‌variable‌ ‌genes‌ ‌in‌ ‌the‌ ‌cells‌ ‌of‌ ‌each‌ ‌path,‌ ‌and‌‌ 

ranked‌ ‌the‌ ‌resulting‌ ‌models‌ ‌based‌ ‌on‌ ‌the‌ ‌p‌ ‌value‌ ‌of‌ ‌the‌ ‌association‌ ‌of‌ ‌pseudotime‌ ‌and‌ ‌gene‌‌ 

expression‌ ‌(Figure‌ ‌S2A).‌ ‌We‌ ‌found‌ ‌that‌ ‌collectively‌ ‌the‌ ‌expression‌ ‌of‌ ‌828‌ ‌genes‌ ‌(p‌ ‌value‌ ‌<‌‌ 

1x10‌9‌)‌ ‌could‌ ‌be‌ ‌modelled‌ ‌in‌ ‌this‌ ‌way‌ ‌and‌ ‌we‌ ‌show‌ ‌the‌ ‌top‌ ‌most‌ ‌significant‌ ‌association‌ ‌for‌ ‌each‌‌ 

pathway‌ ‌(Figure‌ ‌2B).‌ ‌Moreover,‌ ‌we‌ ‌observed‌ ‌that‌ ‌the‌ ‌regulation‌ ‌of‌ ‌typical‌ ‌macrophage‌ 

activation‌ ‌markers‌ ‌followed‌ ‌expected‌ ‌behaviours‌ ‌in‌ ‌our‌ ‌modelling‌ ‌approach‌ ‌and‌ ‌corresponded‌‌ 

to‌ ‌defined‌ ‌activation‌ ‌paths‌ ‌(Figure‌ ‌2C‌ ‌&‌ ‌S2B).‌ ‌For‌ ‌instance,‌ ‌only‌ ‌cells‌ ‌in‌ ‌the‌ ‌“phagocytic”‌ ‌path‌‌ 

exhibited‌ ‌a‌ ‌steep‌ ‌and‌ ‌continuous‌ ‌increase‌ ‌in‌ ‌alternative‌ ‌activation‌ ‌markers‌ ‌(‌Il4ra‌,‌ ‌‌Mrc1‌,‌‌ 

Clec10a‌)‌ ‌and‌ ‌the‌ ‌mitochondrial‌ ‌metabolism‌ ‌gene‌ ‌‌mt-Co1‌‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(Figure‌‌ 

2C).‌ ‌Conversely,‌ ‌expression‌ ‌of‌ ‌inflammatory‌ ‌genes‌ ‌(‌Il6‌,‌ ‌‌Il1b‌)‌ ‌was‌ ‌only‌ ‌retained‌ ‌at‌ ‌high‌ ‌levels‌ ‌in‌‌ 

the‌ ‌“inflammatory”‌ ‌and‌ ‌“remodelling”‌ ‌paths‌ ‌(Figure‌ ‌2C).‌ ‌ 

We‌ ‌next‌ ‌reasoned‌ ‌that‌ ‌not‌ ‌only‌ ‌individual‌ ‌genes‌ ‌but‌ ‌also‌ ‌gene‌ ‌set‌ ‌scores‌ ‌could‌ ‌be‌ ‌modelled‌ ‌in‌‌ 

this‌ ‌manner.‌ ‌Consequently,‌ ‌we‌ ‌calculated‌ ‌the‌ ‌aggregate‌ ‌expression‌ ‌of‌ ‌genes‌ ‌associated‌ ‌with‌‌ 

apoptosis‌ ‌(Supplemental‌ ‌Table‌ ‌2)‌ ‌and‌ ‌visualized‌ ‌the‌ ‌regulation‌ ‌of‌ ‌this‌ ‌gene‌ ‌expression‌ ‌program‌‌ 

across‌ ‌activation‌ ‌paths‌ ‌(Figure‌ ‌2D).‌ ‌Interestingly,‌ ‌cells‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌“oxidative‌ ‌stress”‌ ‌path‌‌ 

displayed‌ ‌the‌ ‌highest‌ ‌levels‌ ‌for‌ ‌the‌ ‌apoptosis‌ ‌score‌ ‌(Figure‌ ‌2D,‌ ‌red‌ ‌lines),‌ ‌while‌ ‌cells‌ ‌at‌ ‌the‌ ‌end‌‌ 

of‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌had‌ ‌the‌ ‌lowest‌ ‌(Figure‌ ‌2D,‌ ‌orange‌ ‌line).‌ ‌In‌ ‌addition‌ ‌to‌ ‌aligning‌ ‌with‌‌ 

reports‌ ‌demonstrating‌ ‌that‌ ‌macrophage‌ ‌activation‌ ‌can‌ ‌result‌ ‌in‌ ‌cell‌ ‌death‌ ‌‌(‌32‌–‌34‌)‌,‌ ‌these‌ ‌results‌ 

could‌ ‌indicate‌ ‌that‌ ‌commitment‌ ‌to‌ ‌an‌ ‌activation‌ ‌path‌ ‌might‌ ‌be‌ ‌unidirectional:‌ ‌in‌ ‌other‌ ‌words,‌‌ 

macrophages‌ ‌would‌ ‌not‌ ‌transition‌ ‌from‌ ‌one‌ ‌path‌ ‌to‌ ‌another,‌ ‌although‌ ‌this‌ ‌would‌ ‌need‌ ‌to‌ ‌be‌‌ 

demonstrated‌ ‌experimentally.‌ ‌Finally,‌ ‌these‌ ‌results‌ ‌indicate‌ ‌that‌ ‌cells‌ ‌committed‌ ‌to‌ ‌the‌‌ 

“phagocytic”‌ ‌path,‌ ‌might‌ ‌be‌ ‌long-lived‌ ‌and‌ ‌go‌ ‌on‌ ‌to‌ ‌replace‌ ‌tissue‌ ‌resident‌ ‌cells.‌ ‌Collectively,‌ ‌our‌‌ 

results‌ ‌show‌ ‌that‌ ‌the‌ ‌proposed‌ ‌activation‌ ‌model‌ ‌broadly‌ ‌agrees‌ ‌with‌ ‌published‌ ‌expectations‌ ‌of‌‌ 

macrophage‌ ‌gene‌ ‌expression‌ ‌regulation‌ ‌and‌ ‌offers‌ ‌the‌ ‌possibility‌ ‌to‌ ‌uncover‌ ‌new‌ ‌aspects‌ ‌of‌‌ 

macrophage‌ ‌biology.‌‌ ‌  

Macrophages‌ ‌transition‌ ‌through‌ ‌a‌ ‌RELMɑ‌ ‌expressing‌ ‌activation‌ ‌stage‌ ‌ 

Defining‌ ‌trajectories‌ ‌based‌ ‌on‌ ‌scRNA-seq‌ ‌data‌ ‌greatly‌ ‌depends‌ ‌on‌ ‌the‌ ‌dimensional‌ ‌projection‌‌ 

upon‌ ‌which‌ ‌the‌ ‌analysis‌ ‌is‌ ‌based.‌ ‌Consequently,‌ ‌we‌ ‌sought‌ ‌to‌ ‌validate‌ ‌the‌ ‌activation‌ ‌model‌ ‌by‌‌ 
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‌ 

exploiting‌ ‌our‌ ‌gene‌ ‌expression‌ ‌analysis‌ ‌approach‌ ‌to‌ ‌extract‌ ‌markers‌ ‌of‌ ‌an‌ ‌intermediate‌ ‌stage‌‌ 

defined‌ ‌in‌ ‌our‌ ‌results.‌ ‌Our‌ ‌initial‌ ‌exploration‌ ‌of‌ ‌the‌ ‌data‌ ‌revealed‌ ‌that‌ ‌the‌ ‌RELMɑ‌ ‌encoding‌ ‌gene‌‌ 

Retnla‌‌ ‌was‌ ‌found‌ ‌both‌ ‌in‌ ‌cells‌ ‌committed‌ ‌to‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌(P1)‌ ‌(Figure‌ ‌2E‌ ‌-‌ ‌left),‌ ‌which‌‌ 

expressed‌ ‌several‌ ‌other‌ ‌markers‌ ‌of‌ ‌alternative‌ ‌macrophage‌ ‌activation‌ ‌(Figure‌ ‌2C‌ ‌and‌‌ 

Supplemental‌ ‌Table‌ ‌1),‌ ‌and‌ ‌also‌ ‌in‌ ‌the‌ ‌“Early”‌ ‌activation‌ ‌stage‌ ‌shared‌ ‌by‌ ‌all‌ ‌paths‌ ‌(Figure‌ ‌2E‌ ‌-‌‌ 

left).‌ ‌Exploring‌ ‌the‌ ‌relationship‌ ‌between‌ ‌‌Retnla‌‌ ‌expression‌ ‌and‌ ‌pseudotime,‌ ‌we‌ ‌observed‌ ‌that‌‌ 

our‌ ‌model‌ ‌predicted‌ ‌a‌ ‌wave‌ ‌of‌ ‌expression‌ ‌early‌ ‌during‌ ‌activation‌ ‌(Figure‌ ‌2E‌ ‌-‌ ‌right).‌ ‌We‌‌ 

observed‌ ‌also‌ ‌that‌ ‌this‌ ‌was‌ ‌not‌ ‌the‌ ‌case‌ ‌for‌ ‌all‌ ‌genes‌ ‌expressed‌ ‌in‌ ‌this‌ ‌stage‌ ‌and‌ ‌show‌ ‌that‌‌ 

Ear2‌‌ ‌expression,‌ ‌like‌ ‌‌Retnla‌,‌ ‌peaks‌ ‌at‌ ‌this‌ ‌early‌ ‌stage,‌ ‌but‌ ‌then‌ ‌steadily‌ ‌drops‌ ‌(Figure‌ ‌2E).‌ ‌ 

We‌ ‌reasoned‌ ‌that‌ ‌if‌ ‌our‌ ‌model‌ ‌was‌ ‌correct,‌ ‌then‌ ‌monocytes‌ ‌would‌ ‌start‌ ‌expressing‌ ‌‌Retnla‌‌ 

shortly‌ ‌after‌ ‌entering‌ ‌a‌ ‌tissue;‌ ‌this‌ ‌would‌ ‌occur‌ ‌regardless‌ ‌of‌ ‌the‌ ‌inflammatory‌ ‌state‌ ‌of‌ ‌that‌‌ 

tissue.‌ ‌To‌ ‌test‌ ‌this,‌ ‌we‌ ‌isolated‌ ‌bone‌ ‌marrow‌ ‌monocytes‌ ‌from‌ ‌CD45.1‌+‌‌ ‌mice‌ ‌(Figure‌ ‌S2C),‌ ‌and‌‌ 

adoptively‌ ‌transferred‌ ‌them‌ ‌into‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌of‌ ‌CD45.2‌+‌‌ ‌naive‌ ‌hosts‌ ‌(Figure‌ ‌2F).‌ ‌We‌‌ 

then‌ ‌evaluated‌ ‌the‌ ‌abundance‌ ‌of‌ ‌‌Retnla‌‌ ‌mRNA‌ ‌and‌ ‌RELMɑ‌ ‌protein‌ ‌in‌ ‌CD45.1‌+‌‌ ‌macrophages‌‌ 

recovered‌ ‌on‌ ‌days‌ ‌2,‌ ‌4‌ ‌and‌ ‌8‌ ‌days‌ ‌after‌ ‌adoptive‌ ‌transfer‌ ‌(Figure‌ ‌2G‌ ‌and‌ ‌S2D).‌ ‌Confirming‌ ‌the‌‌ 

model’s‌ ‌predictions,‌ ‌we‌ ‌observed‌ ‌that‌  ‌macrophages‌ ‌that‌ ‌had‌ ‌differentiated‌ ‌from‌ ‌transferred‌‌ 

monocytes‌ ‌began‌ ‌to‌ ‌express‌ ‌RELMɑ‌ ‌4‌ ‌days‌ ‌post-adoptive‌ ‌transfer‌ ‌and‌ ‌that‌ ‌expression‌‌ 

continued‌ ‌to‌ ‌increase‌ ‌until‌ ‌~80%‌ ‌of‌ ‌the‌ ‌cells‌ ‌were‌ ‌positive‌ ‌for‌ ‌this‌ ‌molecule‌ ‌(Figure‌ ‌2G).‌ ‌RELMɑ‌‌ 

induction‌ ‌occurred‌ ‌in‌ ‌the‌ ‌absence‌ ‌of‌ ‌IL-4Rɑ‌ ‌stimulation,‌ ‌as‌ ‌we‌ ‌did‌ ‌not‌ ‌detect‌ ‌changes‌ ‌in‌ ‌RELMɑ‌‌ 

expression‌ ‌in‌ ‌the‌ ‌resident‌ ‌cells‌ ‌in‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌and‌ ‌moreover‌ ‌IL-4Rɑ‌-/-‌‌ ‌monocytes‌‌ 

displayed‌ ‌similar‌ ‌RELMɑ‌ ‌expression‌ ‌compared‌ ‌to‌ ‌IL-4Rɑ‌+/+‌‌ ‌cells‌ ‌(Figure‌ ‌2H).‌ ‌Finally,‌ ‌mature‌‌ 

CD45.1‌+‌ ‌‌peritoneal‌ ‌macrophages‌ ‌did‌ ‌not‌ ‌express‌ ‌RELMɑ‌ ‌after‌ ‌transfer‌ ‌into‌ ‌CD45.2‌+‌‌ ‌naive‌‌ 

recipients‌ ‌(Figure‌ ‌2H).‌ ‌Thus,‌ ‌our‌ ‌experimental‌ ‌data‌ ‌support‌ ‌the‌ ‌view‌ ‌that‌ ‌monocytes‌‌ 

differentiating‌ ‌into‌ ‌macrophages‌ ‌early‌ ‌after‌ ‌entry‌ ‌into‌ ‌a‌ ‌tissue‌ ‌begin‌ ‌to‌ ‌express‌ ‌RELMɑ‌‌ 

independently‌ ‌of‌ ‌IL-4‌ ‌signalling.‌ ‌These‌ ‌findings‌ ‌add‌ ‌weight‌ ‌to‌ ‌our‌ ‌predicted‌ ‌model‌ ‌of‌‌ 

macrophage‌ ‌activation.‌ ‌ 

Macrophage‌ ‌activation‌ ‌stages‌ ‌are‌ ‌conserved‌ ‌across‌ ‌tissues‌ ‌and‌ ‌inflammatory‌ ‌conditions‌ ‌ 

Our‌ ‌findings‌ ‌in‌ ‌the‌ ‌adipose‌ ‌tissue‌ ‌datasets‌ ‌indicate‌ ‌that‌ ‌observed‌ ‌heterogeneity‌ ‌in‌ ‌macrophage‌‌ 

activation‌ ‌occurs‌ ‌as‌ ‌these‌ ‌cells‌ ‌enter‌ ‌a‌ ‌tissue‌ ‌and‌ ‌begin‌ ‌transiting‌ ‌through‌ ‌defined‌ ‌activation‌‌ 

paths.‌ ‌Our‌ ‌results‌ ‌further‌ ‌indicate‌ ‌that‌ ‌an‌ ‌early‌ ‌stage‌ ‌of‌ ‌activation‌ ‌is‌ ‌characterized‌ ‌by‌ ‌a‌ ‌transient‌‌ 

wave‌ ‌of‌ ‌RELMɑ‌ ‌expression,‌ ‌which‌ ‌we‌ ‌confirmed‌ ‌at‌ ‌a‌ ‌distinct‌ ‌site,‌ ‌the‌ ‌peritoneal‌ ‌cavity.‌ ‌Based‌‌ 

on‌ ‌this‌ ‌observation,‌ ‌there‌ ‌should‌ ‌be‌ ‌evidence‌ ‌of‌ ‌historical‌ ‌‌Retnla‌‌ ‌expression‌ ‌in‌ ‌tissue‌ ‌resident‌‌ 
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‌ 

macrophages.‌ ‌Consistent‌ ‌with‌ ‌this,‌ ‌historical‌ ‌RELMɑ‌ ‌expression‌ ‌has‌ ‌been‌ ‌reported‌ ‌before‌ ‌in‌‌ 

many‌ ‌resident‌ ‌macrophage‌ ‌populations‌ ‌‌(‌35‌)‌‌ ‌and‌ ‌some‌ ‌studies‌ ‌have‌ ‌used‌ ‌RELMɑ‌ ‌expression‌ ‌to‌‌ 

identify‌ ‌cells‌ ‌of‌ ‌a‌ ‌distinct‌ ‌tissue-restricted‌ ‌phenotype‌ ‌‌(‌22‌)‌‌ ‌or‌ ‌in‌ ‌an‌ ‌immature‌ ‌state‌ ‌of‌‌ 

differentiation‌ ‌‌(‌8‌)‌.‌ ‌Our‌ ‌data,‌ ‌which‌ ‌is‌ ‌broadly‌ ‌in‌ ‌agreement‌ ‌with‌ ‌these‌ ‌past‌ ‌reports,‌ ‌indicates‌ ‌that‌‌ 

historical‌ ‌RELMɑ‌ ‌expression‌ ‌should‌ ‌be‌ ‌evident‌ ‌in‌ ‌tissues‌ ‌where‌ ‌circulating‌ ‌monocytes‌ ‌replace‌‌ 

tissue‌ ‌resident‌ ‌macrophages.‌ ‌Moreover,‌ ‌our‌ ‌data‌ ‌suggest‌ ‌that‌ ‌transit‌ ‌via‌ ‌a‌ ‌RELMɑ‌+‌‌ ‌stage‌ ‌is‌ ‌a‌‌ 

common‌ ‌feature‌ ‌of‌ ‌all‌ ‌macrophages‌ ‌and‌ ‌not‌ ‌restricted‌ ‌to‌ ‌a‌ ‌single‌ ‌tissue‌ ‌or‌ ‌macrophage‌ ‌subset.‌‌ 

To‌ ‌evaluate‌ ‌these‌ ‌ideas‌ ‌further‌ ‌and‌ ‌test‌ ‌to‌ ‌what‌ ‌extent‌ ‌our‌ ‌defined‌ ‌activation‌ ‌paths‌ ‌were‌‌ 

conserved‌ ‌across‌ ‌inflammatory‌ ‌conditions‌ ‌and‌ ‌tissues,‌ ‌we‌ ‌set‌ ‌out‌ ‌to‌ ‌use‌ ‌our‌ ‌adipose‌ ‌tissue‌‌ 

dataset‌ ‌as‌ ‌a‌ ‌reference‌ ‌to‌ ‌interrogate‌ ‌multiple‌ ‌other‌ ‌situations‌ ‌of‌ ‌tissue‌ ‌inflammation‌‌ 

(Supplemental‌ ‌Table‌ ‌3).‌‌ ‌  

First,‌ ‌we‌ ‌took‌ ‌advantage‌ ‌of‌ ‌a‌ ‌recent‌ ‌data‌ ‌transfer‌ ‌implementation‌ ‌‌(‌36‌)‌.‌ ‌This‌ ‌approach‌ ‌identifies‌‌ 

pairs‌ ‌of‌ ‌cells‌ ‌across‌ ‌datasets‌ ‌with‌ ‌similar‌ ‌transcriptional‌ ‌profiles,‌ ‌and‌ ‌then‌ ‌uses‌ ‌these‌ ‌“anchors”‌‌ 

to‌ ‌transfer‌ ‌data‌ ‌from‌ ‌a‌ ‌reference‌ ‌to‌ ‌a‌ ‌query‌ ‌dataset,‌ ‌assigning‌ ‌a‌ ‌probability‌ ‌of‌ ‌accuracy‌ ‌to‌ ‌the‌‌ 

assigned‌ ‌labels.‌ ‌In‌ ‌addition‌ ‌to‌ ‌labels,‌ ‌this‌ ‌approach‌ ‌allows‌ ‌for‌ ‌the‌ ‌imputation‌ ‌of‌ ‌expression‌ ‌data,‌‌ 

that‌ ‌is‌ ‌inferring‌ ‌and‌ ‌assigning‌ ‌missing‌ ‌gene‌ ‌expression‌ ‌values,‌ ‌thus‌ ‌enabling‌ ‌the‌ ‌construction‌ ‌of‌‌ 

cell‌ ‌atlases‌ ‌despite‌ ‌large‌ ‌technical‌ ‌variations‌ ‌between‌ ‌component‌ ‌data‌ ‌‌(‌36‌)‌.‌ ‌Moreover,‌ ‌this‌‌ 

strategy‌ ‌was‌ ‌found‌ ‌to‌ ‌be‌ ‌the‌ ‌most‌ ‌accurate‌ ‌tool‌ ‌available‌ ‌‌(‌37‌)‌.‌ ‌As‌ ‌anchor‌ ‌selection‌ ‌is‌ ‌critical‌ ‌in‌‌ 

this‌ ‌process,‌ ‌we‌ ‌performed‌ ‌extensive‌ ‌benchmarking‌ ‌of‌ ‌the‌ ‌parameters‌ ‌used‌ ‌to‌ ‌find,‌ ‌filter‌ ‌and‌‌ 

then‌ ‌apply‌ ‌these‌ ‌transformations,‌ ‌selecting‌ ‌values‌ ‌that‌ ‌would‌ ‌retain‌ ‌only‌ ‌high‌ ‌quality‌ ‌anchors.‌‌ 

Moreover,‌ ‌we‌ ‌tested‌ ‌this‌ ‌approach‌ ‌on‌ ‌datasets‌ ‌which‌ ‌contained‌ ‌a‌ ‌mixture‌ ‌of‌ ‌macrophages‌ ‌and‌‌ 

other‌ ‌CD45‌+‌‌ ‌cells,‌ ‌using‌ ‌the‌ ‌adipose‌ ‌tissue‌ ‌as‌ ‌a‌ ‌reference,‌ ‌reasoning‌ ‌that‌ ‌only‌ ‌macrophages‌‌ 

should‌ ‌have‌ ‌high‌ ‌probability‌ ‌scores‌ ‌as‌ ‌a‌ ‌consequence‌ ‌of‌ ‌the‌ ‌activation‌ ‌stage‌ ‌label‌ ‌transfer‌‌ 

process‌ ‌(Figure‌ ‌S3A-H).‌ ‌In‌ ‌the‌ ‌first‌ ‌control‌ ‌dataset,‌ ‌where‌ ‌the‌ ‌relative‌ ‌abundance‌ ‌of‌‌ 

macrophages‌ ‌to‌ ‌other‌ ‌immune‌ ‌cells‌ ‌was‌ ‌balanced,‌ ‌we‌ ‌observed‌ ‌a‌ ‌bimodal‌ ‌label‌ ‌probability‌‌ 

distribution‌ ‌(Figure‌ ‌S3A).‌ ‌Upon‌ ‌closer‌ ‌inspection,‌ ‌we‌ ‌determined‌ ‌that‌ ‌the‌ ‌population‌ ‌of‌ ‌cells‌ ‌with‌‌ 

a‌ ‌high‌ ‌label‌ ‌probability‌ ‌could‌ ‌be‌ ‌identified‌ ‌as‌ ‌macrophages,‌ ‌either‌ ‌based‌ ‌on‌ ‌a‌ ‌macrophage‌ ‌gene‌‌ 

set‌ ‌score‌ ‌(Figure‌ ‌S3B-C‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌2)‌ ‌or‌ ‌by‌ ‌examining‌ ‌individual‌ ‌macrophage‌ ‌genes‌‌ 

(Figure‌ ‌S3D).‌ ‌Using‌ ‌a‌ ‌label‌ ‌probability‌ ‌threshold‌ ‌of‌ ‌80%‌ ‌(or‌ ‌0.8)‌ ‌almost‌ ‌exclusively‌‌ 

macrophages‌ ‌were‌ ‌assigned‌ ‌a‌ ‌label‌ ‌(Figure‌ ‌S3B-C,‌ ‌colored‌ ‌cells),‌ ‌while‌ ‌most‌ ‌other‌ ‌immune‌‌ 

cells‌ ‌were‌ ‌not‌ ‌(Figure‌ ‌S3B-C,‌ ‌gray‌ ‌cells).‌ ‌In‌ ‌a‌ ‌second‌ ‌control‌ ‌dataset,‌ ‌where‌ ‌macrophages‌‌ 

made‌ ‌up‌ ‌only‌ ‌a‌ ‌small‌ ‌portion‌ ‌of‌ ‌all‌ ‌CD45‌+‌‌ ‌cells‌ ‌(Figure‌ ‌S3E-H),‌ ‌we‌ ‌observed‌ ‌that‌ ‌the‌ ‌label‌‌ 

probability‌ ‌distribution‌ ‌was‌ ‌skewed‌ ‌towards‌ ‌0%‌ ‌(Figure‌ ‌S3E).‌ ‌Nevertheless,‌ ‌applying‌ ‌a‌ ‌similar‌‌ 
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threshold‌ ‌as‌ ‌before‌ ‌we‌ ‌found‌ ‌that‌ ‌almost‌ ‌exclusively‌ ‌cells‌ ‌with‌ ‌a‌ ‌high‌ ‌macrophage‌ ‌score‌ ‌(Figure‌‌ 

S3F-G)‌ ‌and‌ ‌expressing‌ ‌macrophage‌ ‌specific‌ ‌genes‌ ‌(Figure‌ ‌S3H)‌ ‌were‌ ‌labeled.‌ ‌Thus,‌ ‌we‌ ‌felt‌‌ 

confident‌ ‌that‌ ‌using‌ ‌the‌ ‌benchmarked‌ ‌parameters‌ ‌in‌ ‌this‌ ‌data‌ ‌transfer‌ ‌approach,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌‌ 

defined‌ ‌threshold,‌ ‌we‌ ‌would‌ ‌be‌ ‌able‌ ‌to‌ ‌interrogate‌ ‌multiple‌ ‌tissues‌ ‌and‌ ‌inflammatory‌ ‌conditions‌‌ 

using‌ ‌the‌ ‌adipose‌ ‌tissue‌ ‌dataset‌ ‌as‌ ‌a‌ ‌reference.‌ ‌ 

We‌ ‌retrieved‌ ‌several‌ ‌publicly‌ ‌available‌ ‌scRNA-seq‌ ‌datasets‌ ‌containing‌ ‌macrophages,‌‌ 

representing‌ ‌9‌ ‌different‌ ‌tissues‌ ‌and‌ ‌13‌ ‌inflammatory‌ ‌conditions‌ ‌with‌ ‌their‌ ‌respective‌ ‌healthy‌‌ 

controls,‌ ‌including‌ ‌infections,‌ ‌injuries,‌ ‌cancer‌ ‌and‌ ‌dietary‌ ‌interventions‌ ‌(Figure‌ ‌3‌ ‌&‌ ‌Supplemental‌‌ 

Table‌ ‌3).‌ ‌In‌ ‌all‌ ‌cases,‌ ‌we‌ ‌extracted‌ ‌macrophage‌ ‌transcriptomes‌ ‌by‌ ‌calculating‌ ‌a‌ ‌macrophage‌‌ 

score‌ ‌as‌ ‌described‌ ‌before,‌ ‌harmonized‌ ‌the‌ ‌data‌ ‌within‌ ‌each‌ ‌tissue‌ ‌to‌ ‌remove‌ ‌batch‌ ‌effects‌ ‌and‌‌ 

finally‌ ‌applied‌ ‌the‌ ‌transfer‌ ‌process,‌ ‌assigning‌ ‌cells‌ ‌to‌ ‌the‌ ‌distinct‌ ‌activation‌ ‌stages‌ ‌defined‌ ‌in‌‌ 

Figure‌ ‌1,‌ ‌with‌ ‌a‌ ‌label‌ ‌probability‌ ‌(Figure‌ ‌3)‌ ‌and‌ ‌imputed‌ ‌gene‌ ‌expression‌ ‌data‌ ‌(Figure‌ ‌S3I-Q).‌‌ 

Imputed‌ ‌data‌ ‌was‌ ‌used‌ ‌to‌ ‌cluster‌ ‌and‌ ‌to‌ ‌calculate‌ ‌a‌ ‌UMAP‌ ‌for‌ ‌each‌ ‌dataset.‌ ‌As‌ ‌expected,‌‌ 

imputation‌ ‌altered‌ ‌the‌ ‌gene‌ ‌expression‌ ‌values‌ ‌in‌ ‌the‌ ‌original‌ ‌data,‌ ‌however‌ ‌the‌ ‌overall‌‌ 

expression‌ ‌patterns‌ ‌were‌ ‌maintained‌ ‌(Figure‌ ‌S3I-Q).‌ ‌We‌ ‌also‌ ‌examined‌ ‌the‌ ‌label‌ ‌probability‌‌ 

distribution‌ ‌across‌ ‌identified‌ ‌clusters‌ ‌within‌ ‌each‌ ‌dataset‌ ‌(Figure‌ ‌S4).‌ ‌For‌ ‌any‌ ‌given‌ ‌tissue,‌ ‌we‌‌ 

could‌ ‌see‌ ‌that‌ ‌identified‌ ‌clusters‌ ‌would‌ ‌frequently‌ ‌be‌ ‌dominated‌ ‌by‌ ‌a‌ ‌single‌ ‌activation‌ ‌stage‌‌ 

label‌ ‌(e.g.‌ ‌Figure‌ ‌S4B,‌ ‌clusters‌ ‌3,‌ ‌4,‌ ‌6‌ ‌&‌ ‌7;‌ ‌Figure‌ ‌S4D,‌ ‌clusters‌ ‌0,‌ ‌1,‌ ‌3,‌ ‌4,‌ ‌6,‌ ‌7,‌ ‌10,‌ ‌11,‌ ‌12‌ ‌&‌ ‌13),‌‌ 

even‌ ‌if‌ ‌not‌ ‌all‌ ‌the‌ ‌cells‌ ‌in‌ ‌that‌ ‌cluster‌ ‌passed‌ ‌the‌ ‌80%‌ ‌probability‌ ‌threshold‌ ‌previously‌‌ 

established.‌ ‌We‌ ‌decided‌ ‌that‌ ‌as‌ ‌all‌ ‌the‌ ‌cells‌ ‌in‌ ‌any‌ ‌given‌ ‌cluster‌ ‌are‌ ‌transcriptionally‌ ‌similar,‌ ‌it‌‌ 

was‌ ‌reasonable‌ ‌to‌ ‌assign‌ ‌a‌ ‌dominant‌ ‌label‌ ‌to‌ ‌these‌ ‌cells,‌ ‌even‌ ‌if‌ ‌label‌ ‌probability‌ ‌levels‌ ‌for‌ ‌some‌‌ 

of‌ ‌them‌ ‌were‌ ‌below‌ ‌the‌ ‌established‌ ‌threshold‌ ‌(Figure‌ ‌S4).‌ ‌We‌ ‌did‌ ‌this‌ ‌exclusively‌ ‌where‌ ‌a‌ ‌single‌‌ 

label‌ ‌was‌ ‌dominant‌ ‌and‌ ‌a‌ ‌sizable‌ ‌portion‌ ‌of‌ ‌the‌ ‌labelled‌ ‌cells‌ ‌passed‌ ‌the‌ ‌confidence‌ ‌threshold.‌‌ 

Macrophages‌ ‌that‌ ‌did‌ ‌not‌ ‌meet‌ ‌this‌ ‌criteria‌ ‌were‌ ‌marked‌ ‌as‌ ‌“not‌ ‌classified”,‌ ‌that‌ ‌is‌ ‌cells‌ ‌in‌‌ 

clusters‌ ‌where‌ ‌no‌ ‌dominant‌ ‌label‌ ‌was‌ ‌observed‌ ‌or‌ ‌where‌ ‌the‌ ‌label‌ ‌probability‌ ‌was‌ ‌low.‌ ‌Strikingly,‌‌ 

our‌ ‌analysis‌ ‌revealed‌ ‌that‌ ‌in‌ ‌all‌ ‌interrogated‌ ‌datasets,‌ ‌we‌ ‌could‌ ‌identify‌ ‌most‌ ‌of‌ ‌the‌ ‌activation‌‌ 

stages‌ ‌defined‌ ‌in‌ ‌our‌ ‌reference‌ ‌(Figure‌ ‌3‌ ‌-‌ ‌colored‌ ‌cells)‌ ‌with‌ ‌a‌ ‌reasonable‌ ‌proportion‌ ‌of‌ ‌cells‌‌ 

with‌ ‌a‌ ‌high‌ ‌label‌ ‌transfer‌ ‌probability‌ ‌(Figure‌ ‌3).‌ ‌ 

The‌ ‌distribution‌ ‌of‌ ‌activation‌ ‌stage‌ ‌labels‌ ‌was‌ ‌different‌ ‌in‌ ‌each‌ ‌studied‌ ‌tissue‌ ‌and‌ ‌then‌ ‌modified‌ 

by‌ ‌the‌ ‌corresponding‌ ‌inflammatory‌ ‌conditions‌ ‌(Figure‌ ‌3).‌ ‌This‌ ‌could‌ ‌reflect‌ ‌the‌ ‌influence‌ ‌of‌ ‌the‌‌ 

tissue‌ ‌micro-environment‌ ‌in‌ ‌shaping‌ ‌the‌ ‌immune‌ ‌response,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌ ‌way‌ ‌in‌ ‌which‌ ‌the‌‌ 

immune‌ ‌response‌ ‌is‌ ‌tailored‌ ‌to‌ ‌a‌ ‌specific‌ ‌insult.‌ ‌For‌ ‌example,‌ ‌in‌ ‌the‌ ‌large‌ ‌intestine‌ ‌lamina‌‌ 

propria‌ ‌(Figure‌ ‌3A),‌ ‌infiltrating‌ ‌monocytes‌ ‌in‌ ‌the‌ ‌“Initial”‌ ‌activation‌ ‌stage‌ ‌were‌ ‌abundant‌ ‌in‌ ‌steady‌‌ 
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state‌ ‌(Figure‌ ‌3A,‌ ‌bottom‌ ‌right)‌ ‌in‌ ‌line‌ ‌with‌ ‌the‌ ‌reported‌ ‌turn-over‌ ‌of‌ ‌macrophages‌ ‌in‌ ‌this‌ ‌tissue‌‌ 

(‌9‌)‌.‌ ‌However,‌ ‌after‌ ‌12‌ ‌weeks‌ ‌of‌ ‌high‌ ‌fat‌ ‌diet‌ ‌(HFD)‌ ‌the‌ ‌proportion‌ ‌of‌ ‌“Initial”‌ ‌stage‌ ‌macrophages‌‌ 

diminished,‌ ‌being‌ ‌replaced‌ ‌by‌ ‌cells‌ ‌in‌ ‌the‌ ‌“Final”‌ ‌stage‌ ‌of‌ ‌the‌ ‌“inflammatory”‌ ‌path‌ ‌(Figure‌ ‌3A,‌ ‌ 

Final.P3‌ ‌-‌ ‌light‌ ‌purple‌ ‌cells),‌ ‌in‌ ‌accordance‌ ‌with‌ ‌increased‌ ‌inflammation‌ ‌as‌ ‌a‌ ‌result‌ ‌of‌ ‌this‌‌ 

intervention‌ ‌‌(‌21‌)‌.‌ ‌This‌ ‌correspondence‌ ‌between‌ ‌our‌ ‌labelling‌ ‌strategy‌ ‌and‌ ‌established‌ ‌biology‌‌ 

could‌ ‌be‌ ‌seen‌ ‌in‌ ‌all‌ ‌datasets.‌ ‌For‌ ‌instance,‌ ‌in‌ ‌sciatic‌ ‌nerve‌ ‌injury‌ ‌‌(‌22‌)‌‌ ‌a‌ ‌wave‌ ‌of‌ ‌inflammatory‌‌ 

cells‌ ‌(Final.P3)‌ ‌could‌ ‌be‌ ‌seen‌ ‌1‌ ‌day‌ ‌post‌ ‌wounding‌ ‌(dpw)‌ ‌which‌ ‌receded‌ ‌by‌ ‌day‌ ‌5,‌ ‌when‌ ‌cells‌ ‌in‌‌ 

the‌ ‌“Final”‌ ‌stage‌ ‌of‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌took‌ ‌over‌ ‌(Figure‌ ‌3B,‌ ‌Final.P1‌ ‌-‌ ‌dark‌ ‌orange‌ ‌cells).‌ ‌In‌‌ 

breast‌ ‌tumors‌ ‌‌(‌23‌)‌,‌ ‌the‌ ‌macrophage‌ ‌landscape‌ ‌appeared‌ ‌dominated‌ ‌by‌ ‌cells‌ ‌in‌ ‌the‌ ‌“phagocytic”‌‌ 

path‌ ‌(Figure‌ ‌3C,‌ ‌Late.P1‌ ‌&‌ ‌Final.P1‌ ‌-‌ ‌orange‌ ‌cells),‌ ‌which‌ ‌as‌ ‌we‌ ‌mentioned‌ ‌above‌ ‌displayed‌‌ 

markers‌ ‌of‌ ‌alternatively‌ ‌activated‌ ‌cells.‌ ‌The‌ ‌same‌ ‌appeared‌ ‌true‌ ‌in‌ ‌regressing‌ ‌atherosclerotic‌‌ 

plaque‌ ‌lesions‌ ‌‌(‌24‌)‌‌ ‌(Figure‌ ‌3D)‌ ‌and‌ ‌in‌ ‌liver‌ ‌fibrosis‌ ‌‌(‌25‌)‌‌ ‌(Figure‌ ‌3E),‌ ‌while‌ ‌fungal‌ ‌infection‌ ‌in‌ ‌the‌‌ 

lung‌ ‌‌(‌26‌)‌‌ ‌resulted‌ ‌in‌ ‌an‌ ‌increase‌ ‌in‌ ‌cells‌ ‌in‌ ‌the‌ ‌“inflammatory”‌ ‌path‌ ‌(Figure‌ ‌3F,‌  ‌Final.P3‌ ‌-‌ ‌light‌‌ 

purple‌ ‌cells).‌ ‌In‌ ‌infarcted‌ ‌heart‌ ‌‌(‌27‌)‌‌ ‌and‌ ‌retinal‌ ‌damage‌ ‌‌(‌28‌)‌,‌ ‌an‌ ‌expansion‌ ‌of‌ ‌cells‌ ‌in‌ ‌the‌‌ 

“phagocytic”‌ ‌path‌ ‌was‌ ‌also‌ ‌evident‌ ‌(Figure‌ ‌3G-H,‌ ‌Late.P1‌ ‌&‌ ‌Final.P1‌ ‌-‌ ‌orange‌ ‌cells),‌ ‌although‌‌ 

the‌ ‌diversity‌ ‌of‌ ‌activation‌ ‌stages‌ ‌in‌ ‌each‌ ‌tissue‌ ‌was‌ ‌strikingly‌ ‌different,‌ ‌with‌ ‌few‌ ‌identified‌ ‌stages‌‌ 

in‌ ‌the‌ ‌Retina‌ ‌both‌ ‌in‌ ‌steady‌ ‌state‌ ‌and‌ ‌after‌ ‌light‌ ‌induced‌ ‌neurodegeneration‌ ‌(Figure‌ ‌3H).‌ ‌In‌‌ 

contrast,‌ ‌skeletal‌ ‌muscle‌ ‌macrophages‌ ‌‌(‌19‌)‌‌ ‌displayed‌ ‌diverse‌ ‌activation‌ ‌stages,‌ ‌with‌ ‌chronic‌‌ 

parasitic‌ ‌infection‌ ‌having‌ ‌a‌ ‌modest‌ ‌effect‌ ‌on‌ ‌the‌ ‌stage‌ ‌distribution‌ ‌in‌ ‌this‌ ‌tissue‌ ‌(Figure‌ ‌3I),‌‌ 

although‌ ‌increased‌ ‌“inflammatory”‌ ‌path‌ ‌macrophages‌ ‌were‌ ‌apparent‌ ‌(Final.P3‌ ‌-‌ ‌light‌ ‌purple‌‌ 

cells).‌ ‌Finally,‌ ‌we‌ ‌observed‌ ‌“Early”‌ ‌stage‌ ‌cells,‌ ‌co-expressing‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Ear2‌,‌ ‌in‌ ‌nearly‌ ‌all‌‌ 

analyzed‌ ‌datasets‌ ‌(Figure‌ ‌3A-D,‌ ‌G‌ ‌&‌ ‌I),‌ ‌underscoring‌ ‌how‌ ‌this‌ ‌activation‌ ‌step‌ ‌is‌ ‌common‌ ‌to‌‌ 

macrophages‌ ‌in‌ ‌most‌ ‌tissues.‌ ‌ 

Despite‌ ‌demonstrable‌ ‌utility‌ ‌of‌ ‌our‌ ‌labelling‌ ‌approach,‌ ‌in‌ ‌terms‌ ‌of‌ ‌the‌ ‌immediate‌ ‌parallels‌ ‌that‌‌ 

could‌ ‌be‌ ‌drawn‌ ‌between‌ ‌the‌ ‌data‌ ‌and‌ ‌published‌ ‌observations,‌ ‌there‌ ‌remained‌ ‌a‌ ‌number‌ ‌of‌ ‌cells‌‌ 

with‌ ‌no‌ ‌label‌ ‌assignment‌ ‌(i.e.‌ ‌“not‌ ‌classified”).‌ ‌At‌ ‌least‌ ‌2‌ ‌explanations‌ ‌for‌ ‌the‌ ‌abundance‌ ‌of‌ ‌these‌‌ 

cells‌ ‌in‌ ‌the‌ ‌studied‌ ‌datasets‌ ‌come‌ ‌to‌ ‌mind.‌ ‌First,‌ ‌our‌ ‌approach‌ ‌hinges‌ ‌on‌ ‌stringently‌ ‌identifying‌‌ 

anchor‌ ‌pairs‌ ‌between‌ ‌the‌ ‌data,‌ ‌obtaining‌ ‌a‌ ‌high‌ ‌score‌ ‌and/or‌ ‌having‌ ‌dominant‌ ‌labels‌ ‌in‌ ‌the‌‌ 

clusters.‌ ‌Consequently,‌ ‌we‌ ‌are‌ ‌less‌ ‌efficient‌ ‌at‌ ‌identifying‌ ‌transcriptional‌ ‌profiles‌ ‌of‌ ‌cells‌ ‌in‌‌ 

between‌ ‌defined‌ ‌activation‌ ‌stages.‌ ‌For‌ ‌this‌ ‌reason,‌ ‌many‌ ‌of‌ ‌the‌ ‌“not‌ ‌classified”‌ ‌cells‌ ‌in‌ ‌our‌‌ 

analysis‌ ‌could‌ ‌be‌ ‌seen‌ ‌in‌ ‌between‌ ‌labelled‌ ‌clusters‌ ‌in‌ ‌the‌ ‌UMAP,‌ ‌and‌ ‌would‌ ‌often‌ ‌share‌ ‌low‌ 

probability‌ ‌labels‌ ‌for‌ ‌flanking‌ ‌clusters‌ ‌with‌ ‌a‌ ‌more‌ ‌defined‌ ‌signature‌ ‌(e.g.‌ ‌Figure‌ ‌S4D,‌ ‌cluster‌ ‌2‌‌ 

flanked‌ ‌by‌ ‌1,‌ ‌4,‌ ‌7‌ ‌&‌ ‌9).‌ ‌Likely‌ ‌for‌ ‌this‌ ‌reason,‌ ‌“Intermediate”‌ ‌stage‌ ‌cells‌ ‌were‌ ‌relatively‌ ‌rare‌ ‌in‌ ‌our‌‌ 
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analysis‌ ‌of‌ ‌the‌ ‌query‌ ‌datasets,‌ ‌as‌ ‌these‌ ‌were‌ ‌the‌ ‌least‌ ‌defined‌ ‌transitional‌ ‌state‌ ‌that‌ ‌we‌‌ 

identified‌ ‌in‌ ‌our‌ ‌reference‌ ‌data.‌ ‌Second,‌ ‌embryonically‌ ‌seeded‌ ‌tissue‌ ‌resident‌ ‌macrophages‌‌ 

display‌ ‌a‌ ‌transcriptional‌ ‌profile‌ ‌that‌ ‌is‌ ‌unique‌ ‌‌(‌4‌,‌ ‌‌5‌)‌,‌ ‌and‌ ‌thus‌ ‌might‌ ‌not‌ ‌easily‌ ‌relate‌ ‌to‌ ‌activated‌‌ 

macrophages‌ ‌originating‌ ‌from‌ ‌circulating‌ ‌monocytes‌ ‌in‌ ‌inflammatory‌ ‌settings.‌ ‌Indeed,‌ ‌we‌‌ 

observed‌ ‌the‌ ‌most‌ ‌unclassified‌ ‌cells‌ ‌in‌ ‌tissues‌ ‌where‌ ‌monocyte‌ ‌infiltration‌ ‌is‌ ‌rare‌ ‌(Retina‌ ‌-‌‌ 

Figure‌ ‌3H)‌ ‌or‌ ‌where‌ ‌specialized‌ ‌macrophage‌ ‌subsets‌ ‌are‌ ‌common‌ ‌(alveolar‌ ‌macrophages‌ ‌in‌ ‌the‌‌ 

Lung‌ ‌-‌ ‌Figure‌ ‌3F).‌ ‌In‌ ‌fact,‌ ‌the‌ ‌distinct‌ ‌cluster‌ ‌of‌ ‌“not‌ ‌classified”‌ ‌cells‌ ‌present‌ ‌on‌ ‌the‌ ‌left‌ ‌of‌ ‌the‌‌ 

Lung‌ ‌UMAP‌ ‌(Figure‌ ‌3F)‌ ‌was‌ ‌enriched‌ ‌for‌ ‌alveolar‌ ‌macrophage‌ ‌markers,‌ ‌thus‌ ‌explaining‌ ‌the‌‌ 

striking‌ ‌bimodal‌ ‌label‌ ‌distribution‌ ‌in‌ ‌this‌ ‌dataset‌ ‌(Figure‌ ‌3F).‌ ‌By‌ ‌contrast,‌ ‌the‌ ‌label‌ ‌assignment‌ ‌in‌‌ 

the‌ ‌atherosclerotic‌ ‌plaque‌ ‌dataset‌ ‌was‌ ‌nearly‌ ‌global‌ ‌(Figure‌ ‌3D)‌ ‌likely‌ ‌as‌ ‌only‌ ‌circulating‌‌ 

monocytes-derived‌ ‌macrophages‌ ‌were‌ ‌studied‌ ‌‌(‌24‌)‌.‌ ‌ 

We‌ ‌explored‌ ‌the‌ ‌issue‌ ‌of‌ ‌macrophage‌ ‌embryonic‌ ‌origin‌ ‌and‌ ‌tissue‌ ‌immune‌ ‌privilege‌ ‌in‌ ‌more‌‌ 

detail‌ ‌by‌ ‌studying‌ ‌a‌ ‌dataset‌ ‌where‌ ‌microglia‌ ‌were‌ ‌recovered‌ ‌and‌ ‌sequenced‌ ‌at‌ ‌different‌‌ 

developmental‌ ‌stages‌ ‌from‌ ‌naive‌ ‌mice‌ ‌(Figure‌ ‌4A‌ ‌and‌ ‌Supplemental‌ ‌Table‌ ‌3)‌ ‌‌(‌29‌)‌.‌ ‌In‌ ‌line‌ ‌with‌‌ 

our‌ ‌expectations,‌ ‌we‌ ‌observed‌ ‌very‌ ‌poor‌ ‌label‌ ‌probability‌ ‌distributions‌ ‌for‌ ‌all‌ ‌investigated‌ ‌ages‌‌ 

(Figure‌ ‌4A).‌ ‌Interestingly,‌ ‌the‌ ‌probability‌ ‌threshold‌ ‌was‌ ‌never‌ ‌surpassed‌ ‌and‌ ‌indeed‌ ‌these‌‌ 

distributions‌ ‌were‌ ‌skewed‌ ‌progressively‌ ‌towards‌ ‌0‌ ‌as‌ ‌the‌ ‌age‌ ‌of‌ ‌the‌ ‌investigated‌ ‌animals‌‌ 

increased.‌ ‌ 

Taken‌ ‌together,‌ ‌our‌ ‌label‌ ‌transfer‌ ‌analysis‌ ‌shows‌ ‌that‌ ‌macrophages‌ ‌across‌ ‌tissues‌ ‌and‌‌ 

inflammatory‌ ‌conditions‌ ‌share‌ ‌common‌ ‌transcriptional‌ ‌profiles‌ ‌that‌ ‌correspond‌ ‌to‌ ‌definable‌‌ 

activation‌ ‌paths.‌ ‌Our‌ ‌analysis‌ ‌also‌ ‌suggests‌ ‌that‌ ‌embryonically‌ ‌seeded‌ ‌and‌ ‌highly‌ ‌specialized‌‌ 

tissue‌ ‌resident‌ ‌macrophages‌ ‌do‌ ‌not‌ ‌respond‌ ‌to‌ ‌inflammatory‌ ‌conditions‌ ‌in‌ ‌a‌ ‌way‌ ‌analogous‌ ‌to‌‌ 

that‌ ‌of‌ ‌infiltrating‌ ‌monocytes,‌ ‌with‌ ‌the‌ ‌latter‌ ‌encapsulating‌ ‌most‌ ‌of‌ ‌the‌ ‌functional‌ ‌diversity‌ ‌found‌‌ 

in‌ ‌all‌ ‌the‌ ‌studied‌ ‌datasets.‌ ‌Finally,‌ ‌well-established‌ ‌paradigms‌ ‌of‌ ‌macrophage‌ ‌biology‌ ‌are‌‌ 

reinforced‌ ‌by‌ ‌the‌ ‌functional‌ ‌stages‌ ‌we‌ ‌defined,‌ ‌making‌ ‌these‌ ‌labels‌ ‌a‌ ‌potential‌ ‌tool‌ ‌to‌ ‌probe‌‌ 

deeper‌ ‌into‌ ‌the‌ ‌functional‌ ‌specialization‌ ‌of‌ ‌macrophages‌ ‌during‌ ‌inflammation.‌ ‌ 

Exploiting‌ ‌the‌ ‌predictive‌ ‌nature‌ ‌of‌ ‌the‌ ‌proposed‌ ‌macrophage‌ ‌activation‌ ‌model‌ ‌ 

In‌ ‌light‌ ‌of‌ ‌the‌ ‌predictive‌ ‌nature‌ ‌of‌ ‌our‌ ‌activation‌ ‌model,‌ ‌and‌ ‌its‌ ‌ability‌ ‌to‌ ‌assign‌ ‌activation‌ ‌stage‌‌ 

labels‌ ‌to‌ ‌macrophages‌ ‌engaged‌ ‌in‌ ‌inflammatory‌ ‌conditions,‌ ‌we‌ ‌decided‌ ‌to‌ ‌explore‌ ‌in‌ ‌greater‌‌ 

detail‌ ‌potential‌ ‌biological‌ ‌insights‌ ‌that‌ ‌might‌ ‌be‌ ‌gleaned‌ ‌from‌ ‌the‌ ‌analysis.‌ ‌For‌ ‌this‌ ‌purpose‌ ‌we‌‌ 

turned‌ ‌to‌ ‌the‌ ‌atherosclerotic‌ ‌plaque‌ ‌and‌ ‌breast‌ ‌tumor‌ ‌datasets‌ ‌(Figure‌ ‌4).‌ ‌In‌ ‌both‌ ‌cases,‌‌ 

investigators‌ ‌introduced‌ ‌interventions‌ ‌that‌ ‌ameliorated‌ ‌disease‌ ‌progression‌ ‌(Supplemental‌ ‌Table‌‌ 
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3)‌ ‌‌(‌23‌,‌ ‌‌24‌)‌.‌ ‌Additionally,‌ ‌we‌ ‌observed‌ ‌in‌ ‌both‌ ‌datasets‌ ‌an‌ ‌alteration‌ ‌in‌ ‌the‌ ‌proportion‌ ‌of‌‌ 

macrophages‌ ‌in‌ ‌the‌ ‌“Late”‌ ‌stage‌ ‌of‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌(Figure‌ ‌3C-D,‌ ‌Late.P1‌ ‌-‌ ‌light‌ ‌orange).‌‌ 

Thus,‌ ‌we‌ ‌reasoned‌ ‌that‌ ‌these‌ ‌data‌ ‌provided‌ ‌an‌ ‌attractive‌ ‌opportunity‌ ‌to‌ ‌explore‌ ‌the‌ ‌activation‌‌ 

model‌ ‌more‌ ‌closely.‌ ‌ 

Dietary‌ ‌and‌ ‌pharmacological‌ ‌intervention‌ ‌(Supplemental‌ ‌Table‌ ‌3)‌ ‌were‌ ‌reported‌ ‌to‌ ‌induce‌‌ 

regression‌ ‌of‌ ‌atherosclerotic‌ ‌plaque‌ ‌lesions‌ ‌‌(‌24‌)‌,‌ ‌which‌ ‌are‌ ‌dominated‌ ‌by‌ ‌macrophages‌ ‌in‌ ‌the‌‌ 

“phagocytic”‌ ‌path‌ ‌(Figure‌ ‌4B,‌ ‌dark‌ ‌and‌ ‌light‌ ‌orange‌ ‌cells).‌ ‌Strikingly,‌ ‌there‌ ‌was‌ ‌a‌ ‌shift‌ ‌between‌‌ 

“Late”‌ ‌and‌ ‌“Final”‌ ‌activation‌ ‌stages‌ ‌in‌ ‌regressing‌ ‌lesions,‌ ‌with‌ ‌a‌ ‌sizable‌ ‌decrease‌ ‌in‌ ‌the‌‌ 

proportion‌ ‌of‌ ‌“Late.P1”‌ ‌cells‌ ‌(Figure‌ ‌4C).‌ ‌We‌ ‌investigated‌ ‌which‌ ‌genes‌ ‌were‌ ‌altered‌ ‌in‌‌ 

expression‌ ‌within‌ ‌cells‌ ‌in‌ ‌this‌ ‌activation‌ ‌stage‌ ‌between‌ ‌progressing‌ ‌and‌ ‌regressing‌ ‌lesions.‌‌ 

Critically,‌ ‌we‌ ‌performed‌ ‌this‌ ‌analysis‌ ‌on‌ ‌the‌ ‌original,‌ ‌not‌ ‌on‌ ‌the‌ ‌imputed‌ ‌expression‌ ‌data,‌‌ 

guaranteeing‌ ‌that‌ ‌our‌ ‌label‌ ‌predictions‌ ‌served‌ ‌to‌ ‌orient‌ ‌the‌ ‌analysis‌ ‌without‌ ‌affecting‌ ‌the‌‌ 

underlying‌ ‌measurements.‌ ‌We‌ ‌then‌ ‌compared‌ ‌these‌ ‌regulated‌ ‌genes‌ ‌with‌ ‌those‌ ‌associated‌ ‌with‌‌ 

the‌ ‌“phagocytic”‌ ‌path‌ ‌based‌ ‌on‌ ‌our‌ ‌pseudotime‌ ‌analysis‌ ‌(Figure‌ ‌2).‌ ‌Interestingly,‌ ‌all‌ ‌but‌ ‌one‌ ‌of‌‌ 

the‌ ‌genes‌ ‌in‌ ‌this‌ ‌stage‌ ‌had‌ ‌increased‌ ‌expression‌ ‌in‌ ‌regressing‌ ‌lesions‌ ‌(Figure‌ ‌4D).‌ ‌Moreover,‌ ‌all‌‌ 

but‌ ‌one‌ ‌of‌ ‌these‌ ‌genes‌ ‌tended‌ ‌to‌ ‌be‌ ‌expressed‌ ‌more‌ ‌strongly‌ ‌as‌ ‌cells‌ ‌progressed‌ ‌from‌‌ 

“Late.P1”‌ ‌(Figure‌ ‌4E‌ ‌-‌ ‌dashed‌ ‌lines)‌ ‌to‌ ‌“Final.P1”.‌ ‌Collectively‌ ‌this‌ ‌data‌ ‌suggest‌ ‌that‌ ‌the‌‌ 

intervention‌ ‌causing‌ ‌lesions‌ ‌to‌ ‌regress,‌ ‌induced‌ ‌the‌ ‌accelerated‌ ‌transit‌ ‌of‌ ‌macrophages‌ ‌along‌‌ 

the‌ ‌“phagocytic”‌ ‌path,‌ ‌as‌ ‌indicated‌ ‌by‌ ‌the‌ ‌increased‌ ‌expression‌ ‌of‌ ‌genes‌ ‌associated‌ ‌with‌ ‌this‌‌ 

trajectory‌ ‌in‌ ‌“Late.P1”‌ ‌cells,‌ ‌which‌ ‌concomitantly‌ ‌decrease‌ ‌in‌ ‌abundance.‌ ‌ 

Next‌ ‌we‌ ‌turned‌ ‌to‌ ‌the‌ ‌breast‌ ‌cancer‌ ‌dataset,‌ ‌where‌ ‌macrophage‌ ‌specific‌ ‌‌Dab2‌‌ ‌depletion‌ ‌was‌‌ 

reported‌ ‌to‌ ‌dampen‌ ‌tumor‌ ‌progression‌ ‌(Figure‌ ‌4F-J‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌3)‌ ‌‌(‌23‌)‌.‌ ‌We‌ ‌observed‌‌ 

that‌ ‌‌Dab2‌‌ ‌was‌ ‌most‌ ‌highly‌ ‌expressed‌ ‌in‌ ‌“Late”‌ ‌and‌ ‌“Final”‌ ‌stage‌ ‌macrophages‌ ‌in‌ ‌the‌‌ 

“phagocytic”‌ ‌path‌ ‌(Figure‌ ‌4F-G),‌ ‌with‌ ‌the‌ ‌former‌ ‌being‌ ‌more‌ ‌abundant.‌ ‌In‌ ‌fact,‌ ‌we‌ ‌observed‌ ‌an‌‌ 

increase‌ ‌in‌ ‌“Late”‌ ‌stage‌ ‌‌Dab2‌‌ ‌deficient‌ ‌macrophages‌ ‌(Figure‌ ‌4H),‌ ‌leading‌ ‌us‌ ‌to‌ ‌examine‌‌ 

differentially‌ ‌expressed‌ ‌genes‌ ‌between‌ ‌these‌ ‌cells‌ ‌and‌ ‌their‌ ‌WT‌ ‌counterparts.‌ ‌As‌ ‌above,‌ ‌we‌‌ 

performed‌ ‌this‌ ‌analysis‌ ‌on‌ ‌the‌ ‌original‌ ‌data,‌ ‌using‌ ‌the‌ ‌label‌ ‌assignment‌ ‌only‌ ‌as‌ ‌guidance.‌ ‌Our‌‌ 

results‌ ‌show‌ ‌that‌ ‌from‌ ‌15‌ ‌regulated‌ ‌genes‌ ‌also‌ ‌included‌ ‌in‌ ‌the‌ ‌pseudotime‌ ‌analysis,‌ ‌11‌ ‌were‌‌ 

differentially‌ ‌down-regulated‌ ‌between‌ ‌these‌ ‌two‌ ‌groups‌ ‌(Figure‌ ‌4I).‌ ‌Of‌ ‌these‌ ‌15‌ ‌genes,‌ ‌13‌ ‌were‌‌ 

highly‌ ‌expressed‌ ‌at‌ ‌this‌ ‌stage‌ ‌of‌ ‌activation‌ ‌in‌ ‌our‌ ‌reference‌ ‌data‌ ‌(Figure‌ ‌4J‌ ‌-‌ ‌dashed‌ ‌lines).‌ ‌The‌‌ 

downregulation‌ ‌of‌ ‌these‌ ‌path-associated‌ ‌genes‌ ‌and‌ ‌the‌ ‌accumulation‌ ‌of‌ ‌“Late.P1”‌ ‌cells‌ ‌could‌‌ 

indicate‌ ‌that‌ ‌the‌ ‌absence‌ ‌of‌ ‌‌Dab2‌‌ ‌stalls‌ ‌the‌ ‌progression‌ ‌of‌ ‌macrophages‌ ‌in‌ ‌the‌ ‌“phagocytic”‌‌ 

path.‌‌ ‌  
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‌ 

Monocytes‌ ‌enter‌ ‌wounds‌ ‌populating‌ ‌the‌ ‌functional‌ ‌diversity‌ ‌predicted‌ ‌by‌ ‌the‌ ‌proposed‌‌ 
macrophage‌ ‌activation‌ ‌model‌ ‌ 

Our‌ ‌data‌ ‌indicate‌ ‌that‌ ‌macrophages‌ ‌can‌ ‌be‌ ‌found‌ ‌in‌ ‌similar‌ ‌activation‌ ‌stages‌ ‌in‌ ‌different‌ ‌tissues‌‌ 

and‌ ‌conditions,‌ ‌and‌ ‌that‌ ‌the‌ ‌flux‌ ‌of‌ ‌macrophages‌ ‌through‌ ‌these‌ ‌activation‌ ‌stages‌ ‌might‌ ‌be‌‌ 

influenced‌ ‌by‌ ‌the‌ ‌immunological‌ ‌processes‌ ‌occurring‌ ‌therein.‌ ‌Moreover,‌ ‌our‌ ‌model‌ ‌predicts‌ ‌that‌‌ 

incoming‌ ‌monocytes‌ ‌are‌ ‌able‌ ‌to‌ ‌assume‌ ‌the‌ ‌phenotype‌ ‌of‌ ‌existing‌ ‌macrophages‌ ‌in‌ ‌the‌ ‌tissue‌‌ 

and‌ ‌populate‌ ‌all‌ ‌functional‌ ‌stages‌ ‌described.‌ ‌Indeed,‌ ‌in‌ ‌the‌ ‌atherosclerotic‌ ‌plaque‌ ‌dataset,‌ ‌all‌‌ 

sequenced‌ ‌cells‌ ‌were‌ ‌derived‌ ‌from‌ ‌circulating‌ ‌precursors‌ ‌‌(‌24‌)‌.‌ ‌In‌ ‌order‌ ‌to‌ ‌formally‌ ‌evaluate‌ ‌this,‌‌ 

and‌ ‌to‌ ‌validate‌ ‌our‌ ‌predictions,‌ ‌we‌ ‌performed‌ ‌a‌ ‌fate‌ ‌mapping‌ ‌experiment‌ ‌where‌ ‌we‌ ‌traced‌ ‌the‌‌ 

influx‌ ‌of‌ ‌monocytes‌ ‌into‌ ‌wounded‌ ‌skin‌ ‌(Figure‌ ‌5A-B‌ ‌&‌ ‌S5).‌ ‌Red‌ ‌fluorescent‌ ‌monocytes‌ ‌(tdRFP‌+‌)‌‌ 

were‌ ‌administered‌ ‌i.v.‌ ‌2‌ ‌or‌ ‌12‌ ‌dpw,‌ ‌and‌ ‌all‌ ‌wound‌ ‌macrophages‌ ‌were‌ ‌harvested‌ ‌4‌ ‌and‌ ‌14‌ ‌dpw‌‌ 

(Figure‌ ‌5B),‌ ‌using‌ ‌index‌ ‌sorting‌ ‌to‌ ‌retain‌ ‌fluorescence‌ ‌values‌ ‌from‌ ‌barcoded‌ ‌cells‌ ‌for‌ ‌further‌‌ 

analysis.‌ ‌We‌ ‌mapped,‌ ‌clustered‌ ‌(Figure‌ ‌S5A)‌ ‌and‌ ‌labelled‌ ‌the‌ ‌sequenced‌ ‌cells‌ ‌(Figure‌ ‌5A)‌ ‌as‌ 

described‌ ‌above,‌ ‌applying‌ ‌similar‌ ‌thresholds‌ ‌and‌ ‌evaluating‌ ‌label‌ ‌probability‌ ‌distributions‌ ‌for‌ ‌the‌‌ 

entire‌ ‌dataset‌ ‌(Figure‌ ‌5C)‌ ‌and‌ ‌across‌ ‌clusters‌ ‌(Figure‌ ‌S5A-B).‌ ‌Like‌ ‌in‌ ‌other‌ ‌analyzed‌ ‌tissues,‌‌ 

wounded‌ ‌skin‌ ‌also‌ ‌exhibited‌ ‌most‌ ‌previously‌ ‌defined‌ ‌activation‌ ‌stages,‌ ‌again‌ ‌demonstrating‌ ‌the‌‌ 

robustness‌ ‌of‌ ‌our‌ ‌activation‌ ‌model.‌ ‌ 

We‌ ‌observed‌ ‌a‌ ‌global‌ ‌label‌ ‌probability‌ ‌distribution‌ ‌skewed‌ ‌towards‌ ‌1‌ ‌(Figure‌ ‌5C),‌ ‌indicating‌ ‌a‌‌ 

good‌ ‌agreement‌ ‌with‌ ‌our‌ ‌reference‌ ‌data.‌ ‌Moreover,‌ ‌label‌ ‌distribution‌ ‌across‌ ‌conditions‌ ‌was‌‌ 

consistent‌ ‌with‌ ‌expectations‌ ‌based‌ ‌on‌ ‌established‌ ‌literature‌ ‌‌(‌38‌)‌,‌ ‌with‌ ‌an‌ ‌early‌ ‌wave‌ ‌of‌‌ 

inflammatory‌ ‌cells‌ ‌at‌ ‌4‌ ‌dpw‌ ‌(Figure‌ ‌5D,‌ ‌light‌ ‌purple)‌ ‌and‌ ‌a‌ ‌later‌ ‌increase‌ ‌in‌ ‌regulatory‌ 

“phagocytic”‌ ‌path‌ ‌cells‌ ‌at‌ ‌14‌ ‌dpw‌ ‌(Figure‌ ‌5D,‌ ‌orange).‌ ‌Transferred‌ ‌fluorescent‌ ‌cells‌ ‌were‌‌ 

detected‌ ‌at‌ ‌both‌ ‌4‌ ‌and‌ ‌14‌ ‌dpw‌ ‌(Figure‌ ‌S5C),‌ ‌although‌ ‌only‌ ‌when‌ ‌given‌ ‌on‌ ‌day‌ ‌2‌ ‌(Figure‌ ‌S5D).‌‌ 

Infiltrating‌ ‌monocytes‌ ‌were‌ ‌distributed‌ ‌across‌ ‌all‌ ‌detected‌ ‌clusters‌ ‌and‌ ‌assigned‌ ‌stage‌ ‌labels‌‌ 

(Figure‌ ‌5E-G),‌ ‌with‌ ‌the‌ ‌distribution‌ ‌in‌ ‌particular‌ ‌mirroring‌ ‌closely‌ ‌the‌ ‌distribution‌ ‌for‌ ‌all‌‌ 

macrophages‌ ‌sequenced‌ ‌(Figure‌ ‌5D‌ ‌&‌ ‌G).‌ ‌As‌ ‌predicted‌ ‌by‌ ‌our‌ ‌model,‌ ‌fluorescent‌ ‌cells‌ ‌were‌‌ 

only‌ ‌assigned‌ ‌to‌ ‌the‌ ‌“Initial”‌ ‌stage‌ ‌at‌ ‌4‌ ‌dpw‌ ‌(Figure‌ ‌5G),‌ ‌which‌ ‌is‌ ‌to‌ ‌say‌ ‌2‌ ‌days‌ ‌post‌ ‌adoptive‌‌ 

transfer.‌ ‌Similarly,‌ ‌only‌ ‌at‌ ‌4‌ ‌dpw‌ ‌were‌ ‌fluorescent‌ ‌cells‌ ‌in‌ ‌the‌ ‌“Final”‌ ‌stage‌ ‌of‌ ‌the‌ ‌“inflammatory”‌‌ 

path‌ ‌(Figure‌ ‌5G‌ ‌–‌ ‌light‌ ‌purple)‌ ‌further‌ ‌emphasizing‌ ‌the‌ ‌transitory‌ ‌nature‌ ‌of‌ ‌the‌ ‌early‌ 

inflammatory‌ ‌wave‌ ‌which‌ ‌occurs‌ ‌during‌ ‌tissue‌ ‌repair.‌ ‌By‌ ‌contrast,‌ ‌transferred‌ ‌monocytes‌‌ 

mapped‌ ‌preferentially‌ ‌to‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌at‌ ‌14‌ ‌dpw‌ ‌(Figure‌ ‌5G‌ ‌-‌ ‌orange)‌ ‌and‌ ‌to‌ ‌a‌ ‌lesser‌‌ 

extent‌ ‌to‌ ‌the‌ ‌“Early”‌ ‌activation‌ ‌stage‌ ‌(Figure‌ ‌5G‌ ‌-‌ ‌blue).‌ ‌Collectively,‌ ‌these‌ ‌data‌ ‌support‌ ‌our‌‌ 

model,‌ ‌showing‌ ‌that‌ ‌monocytes‌ ‌enter‌ ‌a‌ ‌tissue‌ ‌and‌ ‌flux‌ ‌through‌ ‌distinct‌ ‌activation‌ ‌stages‌ ‌in‌ ‌a‌‌ 
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dynamic‌ ‌manner,‌ ‌assuming‌ ‌all‌ ‌defined‌ ‌functional‌ ‌stages.‌ ‌The‌ ‌fact‌ ‌that‌ ‌transferred‌ ‌cells‌ ‌only‌‌ 

mapped‌ ‌to‌ ‌the‌ ‌“Initial”‌ ‌stage‌ ‌on‌ ‌day‌ ‌4,‌ ‌and‌ ‌that‌ ‌by‌ ‌day‌ ‌14‌ ‌they‌ ‌had‌ ‌assumed‌ ‌other‌ ‌identities,‌‌ 

reflects‌ ‌the‌ ‌number‌ ‌of‌ ‌days‌ ‌since‌ ‌these‌ ‌cells‌ ‌accessed‌ ‌the‌ ‌wound.‌ ‌ 

Our‌ ‌data‌ ‌showed‌ ‌an‌ ‌increase‌ ‌in‌ ‌“Early”‌ ‌stage‌ ‌macrophages‌ ‌at‌ ‌14‌ ‌dpw‌ ‌(Figure‌ ‌5G‌ ‌–‌ ‌blue)‌‌ 

compared‌ ‌to‌ ‌day‌ ‌4,‌ ‌which‌ ‌co-expressed‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Ear2‌‌ ‌(Figure‌ ‌5H‌ ‌-‌ ‌showing‌ ‌transferred‌ ‌cells‌‌ 

only).‌ ‌Although‌ ‌we‌ ‌expected‌ ‌to‌ ‌find‌ ‌cells‌ ‌labelled‌ ‌in‌ ‌this‌ ‌manner,‌ ‌as‌ ‌in‌ ‌several‌ ‌other‌ ‌studied‌‌ 

tissues,‌ ‌the‌ ‌timing‌ ‌of‌ ‌their‌ ‌appearance‌ ‌is‌ ‌somewhat‌ ‌difficult‌ ‌to‌ ‌explain.‌ ‌Our‌ ‌model‌ ‌would‌ ‌predict‌‌ 

that‌ ‌cells‌ ‌in‌ ‌the‌ ‌“Late”‌ ‌and‌ ‌“Final”‌ ‌stages‌ ‌of‌ ‌the‌ ‌“phagocytic”‌ ‌and‌ ‌“inflammatory”‌ ‌paths‌ ‌should‌‌ 

have‌ ‌gone‌ ‌through‌ ‌this‌ ‌“Early”‌ ‌phase,‌ ‌yet‌ ‌few‌ ‌cells‌ ‌were‌ ‌labelled‌ ‌as‌ ‌such‌ ‌at‌ ‌4‌ ‌dpw‌ ‌(Figure‌ ‌5G).‌‌ 

It‌ ‌is‌ ‌possible‌ ‌that‌ ‌in‌ ‌the‌ ‌2‌ ‌days‌ ‌since‌ ‌the‌ ‌adoptive‌ ‌transfer,‌ ‌fluorescent‌ ‌monocytes‌ ‌have‌ ‌indeed‌‌ 

gone‌ ‌through‌ ‌this‌ ‌“Early”‌ ‌stage‌ ‌and‌ ‌progressed‌ ‌further‌ ‌in‌ ‌their‌ ‌activation.‌ ‌It‌ ‌is‌ ‌also‌ ‌possible‌ ‌that‌‌ 

cells‌ ‌bypass‌ ‌this‌ ‌stage‌ ‌to‌ ‌adapt‌ ‌rapidly‌ ‌during‌ ‌inflammation.‌ ‌Our‌ ‌adoptive‌ ‌transfer‌ ‌data‌ ‌into‌ ‌the‌‌ 

peritoneum‌ ‌demonstrated‌ ‌that‌ ‌under‌ ‌steady‌ ‌state‌ ‌conditions‌ ‌2‌ ‌days‌ ‌were‌ ‌insufficient‌ ‌to‌ ‌observe‌‌ 

Retnla‌‌ ‌expression‌ ‌in‌ ‌infiltrating‌ ‌cells‌ ‌(Figure‌ ‌2G).‌ ‌In‌ ‌fact,‌ ‌the‌ ‌increased‌ ‌proportion‌ ‌of‌ ‌“Early”‌‌ 

stage‌ ‌cells‌ ‌at‌ ‌14‌ ‌dpw‌ ‌(Figure‌ ‌5G),‌ ‌is‌ ‌in‌ ‌line‌ ‌with‌ ‌our‌ ‌earlier‌ ‌findings‌ ‌that‌ ‌after‌ ‌8‌ ‌days‌ ‌a‌ ‌higher‌‌ 

percentage‌ ‌of‌ ‌infiltrating‌ ‌cells‌ ‌would‌ ‌fall‌ ‌in‌ ‌this‌ ‌stage.‌ ‌Thus,‌ ‌we‌ ‌propose‌ ‌that‌ ‌the‌ ‌relative‌ ‌speed‌ ‌at‌‌ 

which‌ ‌macrophages‌ ‌traverse‌ ‌defined‌ ‌activation‌ ‌paths‌ ‌is‌ ‌influenced‌ ‌by‌ ‌the‌ ‌inflammatory‌‌ 

conditions‌ ‌at‌ ‌the‌ ‌site‌ ‌of‌ ‌immunological‌ ‌insult,‌ ‌so‌ ‌that‌ ‌cells‌ ‌may‌ ‌accelerate‌ ‌their‌ ‌passage‌ ‌through‌‌ 

identified‌ ‌stages‌ ‌to‌ ‌better‌ ‌adapt‌ ‌to‌ ‌the‌ ‌required‌ ‌immune‌ ‌response.‌ ‌ 

Next,‌ ‌we‌ ‌took‌ ‌advantage‌ ‌of‌ ‌the‌ ‌indexed‌ ‌nature‌ ‌of‌ ‌the‌ ‌skin‌ ‌wound‌ ‌dataset‌ ‌to‌ ‌validate‌ ‌our‌‌ 

labelling‌ ‌strategy‌ ‌with‌ ‌common‌ ‌macrophage‌ ‌phenotypic‌ ‌markers.‌ ‌For‌ ‌this‌ ‌purpose,‌ ‌we‌ ‌scaled‌‌ 

the‌ ‌fluorescent‌ ‌signal‌ ‌of‌ ‌CD301b,‌ ‌CD45,‌ ‌F4/80,‌ ‌CD11b,‌ ‌MHCII‌ ‌and‌ ‌Ly6C,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌ ‌side‌‌ 

and‌ ‌forward‌ ‌scatter‌ ‌parameters,‌ ‌across‌ ‌all‌ ‌cells‌ ‌and‌ ‌calculated‌ ‌a‌ ‌UMAP‌ ‌for‌ ‌this‌ ‌flow‌ ‌cytometry‌‌ 

data,‌ ‌retaining‌ ‌the‌ ‌stage‌ ‌labelling‌ ‌based‌ ‌on‌ ‌the‌ ‌transcriptional‌ ‌profile‌ ‌of‌ ‌the‌ ‌cells‌ ‌(Figure‌ ‌5I).‌ ‌We‌‌ 

then‌ ‌identified‌ ‌clusters‌ ‌using‌ ‌k-means‌ ‌(Figure‌ ‌5J‌ ‌&‌ ‌S5E).‌ ‌Strikingly,‌ ‌we‌ ‌observed‌ ‌that‌ ‌cells‌ ‌in‌ ‌the‌‌ 

“Late.P1”,‌ ‌“Final.P1‌ ‌and‌ ‌“Final.P3”‌ ‌stages‌ ‌each‌ ‌dominated‌ ‌a‌ ‌cluster‌ ‌(Figure‌ ‌5L‌ ‌-‌ ‌clusters‌ ‌4,‌ ‌5‌‌ 

and‌ ‌6‌ ‌respectively),‌ ‌while‌ ‌“Early”‌ ‌stage‌ ‌cells‌ ‌localized‌ ‌predominantly‌ ‌to‌ ‌cluster‌ ‌2‌ ‌(Figure‌ ‌5J&L).‌‌ 

As‌ ‌expected,‌ ‌transferred‌ ‌monocytes‌ ‌were‌ ‌evenly‌ ‌distributed‌ ‌across‌ ‌these‌ ‌clusters‌ ‌(Figure‌ ‌5K‌ ‌&‌‌ 

S5F),‌ ‌further‌ ‌emphasizing‌ ‌the‌ ‌ability‌ ‌of‌ ‌these‌ ‌cells‌ ‌to‌ ‌differentiate‌ ‌into‌ ‌all‌ ‌identified‌ ‌functional‌‌ 

stages.‌ ‌Finally,‌ ‌we‌ ‌show‌ ‌that‌ ‌these‌ ‌flow‌ ‌cytometry‌ ‌based‌ ‌clusters‌ ‌are‌ ‌associated‌ ‌with‌‌ 

significantly‌ ‌different‌ ‌protein‌ ‌expression‌ ‌levels‌ ‌(Figure‌ ‌5M‌ ‌-‌ ‌p‌ ‌value‌ ‌<‌ ‌0.001).‌ ‌ 
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Collectively,‌ ‌these‌ ‌data‌ ‌show‌ ‌that‌ ‌monocytes‌ ‌entering‌ ‌a‌ ‌wound‌ ‌respond‌ ‌to‌ ‌this‌ ‌environment‌ ‌by‌‌ 

becoming‌ ‌activated‌ ‌in‌ ‌accordance‌ ‌to‌ ‌the‌ ‌model‌ ‌proposed‌ ‌in‌ ‌this‌ ‌study.‌ ‌These‌ ‌cells‌ ‌gained‌‌ 

access‌ ‌to‌ ‌the‌ ‌inflamed‌ ‌tissue‌ ‌and‌ ‌followed‌ ‌distinct‌ ‌activation‌ ‌paths‌ ‌towards‌ ‌different‌ ‌functional‌‌ 

outcomes.‌ ‌The‌ ‌relative‌ ‌proportion‌ ‌of‌ ‌stage‌ ‌labels‌ ‌our‌ ‌model‌ ‌assigns‌ ‌to‌ ‌these‌ ‌cells,‌ ‌mirrors‌ ‌the‌‌ 

expectations‌ ‌of‌ ‌established‌ ‌wound‌ ‌repair‌ ‌paradigms,‌ ‌while‌ ‌also‌ ‌validating‌ ‌the‌ ‌observations‌ ‌we‌‌ 

have‌ ‌made‌ ‌in‌ ‌other‌ ‌studied‌ ‌tissues.‌ ‌Overall,‌ ‌our‌ ‌results‌ ‌show‌ ‌that‌ ‌proposed‌ ‌activation‌ ‌stages‌‌ 

are‌ ‌not‌ ‌only‌ ‌distinct‌ ‌in‌ ‌their‌ ‌transcriptional‌ ‌profile,‌ ‌but‌ ‌that‌ ‌they‌ ‌can‌ ‌be‌ ‌observed‌ ‌based‌ ‌on‌‌ 

protein‌ ‌expression.‌ ‌ 

Macrophage‌ ‌activation‌ ‌stages‌ ‌in‌ ‌tissues‌ ‌have‌ ‌distinct‌ ‌transcriptional‌ ‌markers‌ ‌ 

Our‌ ‌approach‌ ‌to‌ ‌define‌ ‌activation‌ ‌stages‌ ‌and‌ ‌paths‌ ‌has‌ ‌relied‌ ‌so‌ ‌far‌ ‌on‌ ‌the‌ ‌use‌ ‌of‌ ‌a‌ ‌reference‌ ‌to‌ 

interrogate‌ ‌each‌ ‌queried‌ ‌dataset.‌ ‌This‌ ‌approach‌ ‌revealed‌ ‌a‌ ‌striking‌ ‌conservation‌ ‌of‌ ‌macrophage‌‌ 

activation‌ ‌dynamics,‌ ‌despite‌ ‌differences‌ ‌in‌ ‌tissue‌ ‌of‌ ‌origin‌ ‌and‌ ‌inflammatory‌ ‌condition.‌ ‌We‌‌ 

detected‌ ‌all‌ ‌reference‌ ‌activation‌ ‌stages‌ ‌in‌ ‌one‌ ‌or‌ ‌more‌ ‌tissues‌ ‌(Figure‌ ‌6A),‌ ‌and‌ ‌we‌ ‌discussed‌‌ 

how‌ ‌the‌ ‌relative‌ ‌abundance‌ ‌of‌ ‌each‌ ‌activation‌ ‌stage‌ ‌and‌ ‌the‌ ‌presence‌ ‌of‌ ‌“not‌ ‌classified”‌ ‌cells‌‌ 

may‌ ‌be‌ ‌explained.‌ ‌However,‌ ‌our‌ ‌approach‌ ‌relied‌ ‌on‌ ‌the‌ ‌quality‌ ‌of‌ ‌anchor‌ ‌pairs‌ ‌identified‌ ‌across‌‌ 

datasets‌ ‌to‌ ‌transfer‌ ‌labels‌ ‌and‌ ‌impute‌ ‌gene‌ ‌expression‌ ‌data.‌ ‌As‌ ‌these‌ ‌processes‌ ‌by‌ ‌necessity‌‌ 

transform‌ ‌the‌ ‌original‌ ‌expression‌ ‌data,‌ ‌we‌ ‌sought‌ ‌to‌ ‌determine‌ ‌the‌ ‌robustness‌ ‌of‌ ‌our‌ ‌approach‌‌ 

by‌ ‌interrogating‌ ‌labelled‌ ‌cells‌ ‌directly‌ ‌(Figure‌ ‌6B).‌ ‌For‌ ‌this‌ ‌purpose‌ ‌we‌ ‌took‌ ‌all‌ ‌high‌ ‌label‌‌ 

probability‌ ‌cells‌ ‌(>80%)‌ ‌from‌ ‌10‌ ‌query‌ ‌datasets,‌ ‌and‌ ‌combined‌ ‌these‌ ‌with‌ ‌a‌ ‌randomly‌ ‌sampled‌‌ 

portion‌ ‌(n=‌ ‌500)‌ ‌of‌ ‌macrophages‌ ‌from‌ ‌our‌ ‌reference,‌ ‌retaining‌ ‌only‌ ‌the‌ ‌label‌ ‌assignment‌ ‌and‌‌ 

original‌ ‌uncorrected‌ ‌gene‌ ‌expression‌ ‌data‌ ‌(Figure‌ ‌6B).‌ ‌Once‌ ‌extracted,‌ ‌these‌ ‌macrophages‌ ‌(n‌ ‌=‌‌ 

2843)‌ ‌were‌ ‌integrated‌ ‌across‌ ‌tissues,‌ ‌without‌ ‌giving‌ ‌priority‌ ‌to‌ ‌any‌ ‌dataset,‌ ‌then‌ ‌clustered‌ ‌and‌‌ 

visualized‌ ‌as‌ ‌a‌ ‌UMAP‌ ‌(Figure‌ ‌6C).‌ ‌ 

Our‌ ‌expectation‌ ‌for‌ ‌this‌ ‌analysis‌ ‌was‌ ‌that‌ ‌the‌ ‌transcriptional‌ ‌tissue‌ ‌signature‌ ‌would‌ ‌not‌ ‌obscure‌‌ 

the‌ ‌activation‌ ‌stage‌ ‌label.‌ ‌That‌ ‌is,‌ ‌our‌ ‌model‌ ‌would‌ ‌predict‌ ‌that‌ ‌tissues‌ ‌would‌ ‌not‌ ‌define‌ ‌the‌‌ 

resulting‌ ‌cell‌ ‌clustering,‌ ‌but‌ ‌rather‌ ‌that‌ ‌the‌ ‌activation‌ ‌stage‌ ‌of‌ ‌these‌ ‌cells‌ ‌would‌ ‌be‌ ‌sufficient‌ ‌to‌‌ 

group‌ ‌them‌ ‌in‌ ‌this‌ ‌unsupervised‌ ‌analysis.‌ ‌Critically,‌ ‌this‌ ‌was‌ ‌the‌ ‌outcome‌ ‌we‌ ‌observed‌ ‌(Figure‌‌ 

6D).‌ ‌Cells‌ ‌with‌ ‌identical‌ ‌activation‌ ‌labels‌ ‌clustered‌ ‌together,‌ ‌regardless‌ ‌of‌ ‌the‌ ‌tissue‌ ‌of‌ ‌origin‌ ‌or‌‌ 

the‌ ‌inflammatory‌ ‌condition.‌ ‌This‌ ‌demonstrated‌ ‌that‌ ‌our‌ ‌initial‌ ‌anchor,‌ ‌label‌ ‌transfer‌ ‌and‌ ‌data‌‌ 

imputation‌ ‌approach‌ ‌was‌ ‌valid.‌ ‌Importantly,‌ ‌having‌ ‌all‌ ‌macrophages‌ ‌clustered‌ ‌in‌ ‌this‌ ‌manner,‌‌ 

allowed‌ ‌for‌ ‌the‌ ‌extraction‌ ‌of‌ ‌tissue-independent‌ ‌transcriptional‌ ‌markers‌ ‌for‌ ‌all‌ ‌activation‌ ‌stages.‌‌ 

Indeed,‌ ‌we‌ ‌found‌ ‌genes‌ ‌associated‌ ‌with‌ ‌cell‌ ‌surface‌ ‌expression‌ ‌(Figure‌ ‌6E‌ ‌&‌ ‌Supplemental‌‌ 
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Table‌ ‌5)‌ ‌and‌ ‌other‌ ‌upregulated‌ ‌genes‌ ‌(Figure‌ ‌6F‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌4)‌ ‌corresponding‌ ‌to‌‌ 

each‌ ‌identified‌ ‌activation‌ ‌stage,‌ ‌which‌ ‌largely‌ ‌aligned‌ ‌with‌ ‌the‌ ‌genes‌ ‌we‌ ‌originally‌ ‌associated‌‌ 

with‌ ‌each‌ ‌label‌ ‌(Figure‌ ‌S1C‌ ‌&‌ ‌Supplemental‌ ‌Table‌ ‌1).‌ ‌ 

Finally,‌ ‌we‌ ‌observed‌ ‌that‌ ‌integrated‌ ‌macrophages‌ ‌were‌ ‌organized‌ ‌similarly‌ ‌to‌ ‌our‌ ‌reference‌‌ 

data.‌ ‌The‌ ‌“Initial”,‌ ‌“Early”‌ ‌and‌ ‌“Cycling”‌ ‌stages‌ ‌clustered‌ ‌near‌ ‌each‌ ‌other,‌ ‌while‌ ‌the‌‌ 

“Intermediate”‌ ‌stage‌ ‌separated‌ ‌the‌ ‌“phagocytic”‌ ‌and‌ ‌“remodelling”‌ ‌paths‌ ‌at‌ ‌the‌ ‌bottom‌ ‌from‌ ‌the‌‌ 

“oxidative‌ ‌stress”‌ ‌and‌ ‌“inflammatory”‌ ‌paths‌ ‌at‌ ‌the‌ ‌top‌ ‌of‌ ‌the‌ ‌UMAP‌ ‌(Figure‌ ‌6D).‌ ‌This‌ ‌distribution‌‌ 

of‌ ‌clusters‌ ‌adds‌ ‌weight‌ ‌to‌ ‌our‌ ‌proposed‌ ‌activation‌ ‌trajectories‌ ‌and‌ ‌emphasizes‌ ‌the‌ ‌relative‌‌ 

relationship‌ ‌between‌ ‌the‌ ‌activation‌ ‌stages‌ ‌defined.‌ ‌ 

Transcriptional‌ ‌network‌ ‌analysis‌ ‌reveals‌ ‌macrophage‌ ‌gene‌ ‌expression‌ ‌hubs‌ ‌and‌‌ 
upstream‌ ‌regulators‌ ‌ 

Our‌ ‌analysis‌ ‌has‌ ‌shown‌ ‌that‌ ‌macrophages‌ ‌in‌ ‌inflamed‌ ‌tissues‌ ‌flux‌ ‌through‌ ‌conserved‌ ‌activation‌‌ 

paths‌ ‌in‌ ‌order‌ ‌to‌ ‌respond‌ ‌to‌ ‌inflammatory‌ ‌insults.‌ ‌Similarly,‌ ‌we‌ ‌have‌ ‌established‌ ‌that‌ ‌these‌‌ 

activation‌ ‌paths‌ ‌and‌ ‌stages‌ ‌are‌ ‌robust‌ ‌and‌ ‌associated‌ ‌with‌ ‌distinct‌ ‌transcriptional‌ ‌profiles‌ ‌that‌‌ 

provide‌ ‌functional‌ ‌insights‌ ‌about‌ ‌these‌ ‌cells.‌ ‌Lastly,‌ ‌we‌ ‌hypothesized‌ ‌that‌ ‌changes‌ ‌in‌ ‌the‌ 

regulation‌ ‌of‌ ‌genes‌ ‌associated‌ ‌with‌ ‌defined‌ ‌activation‌ ‌paths‌ ‌was‌ ‌likely‌ ‌to‌ ‌stall‌ ‌or‌ ‌promote‌‌ 

macrophage‌ ‌activation.‌ ‌To‌ ‌explore‌ ‌this‌ ‌final‌ ‌aspect‌ ‌of‌ ‌the‌ ‌data‌ ‌more‌ ‌closely,‌ ‌we‌ ‌returned‌ ‌to‌ ‌the‌‌ 

genes‌ ‌that‌ ‌we‌ ‌associated‌ ‌with‌ ‌pseudotime‌ ‌(Figure‌ ‌2)‌ ‌and‌ ‌built‌ ‌a‌ ‌network‌ ‌based‌ ‌on‌ ‌known‌‌ 

protein-protein‌ ‌interactions‌ ‌(Figure‌ ‌S6A),‌ ‌calculating‌ ‌the‌ ‌edge‌ ‌weight‌ ‌as‌ ‌a‌ ‌combination‌ ‌of‌ ‌the‌‌ 

confidence‌ ‌of‌ ‌the‌ ‌interaction‌ ‌and‌ ‌the‌ ‌goodness‌ ‌of‌ ‌the‌ ‌model‌ ‌fit‌ ‌across‌ ‌all‌ ‌paths‌ ‌for‌ ‌the‌ ‌pair‌ ‌of‌‌ 

connected‌ ‌nodes.‌ ‌We‌ ‌then‌ ‌filtered‌ ‌the‌ ‌network,‌ ‌to‌ ‌retain‌ ‌only‌ ‌high‌ ‌weight‌ ‌edges‌ ‌(Figure‌ ‌S6B,‌‌ 

edge‌ ‌weight‌ ‌threshold‌ ‌blue‌ ‌dashed‌ ‌line)‌ ‌and‌ ‌removed‌ ‌disconnected‌ ‌nodes.‌ ‌Finally,‌ ‌we‌ ‌clustered‌‌ 

the‌ ‌resulting‌ ‌network,‌ ‌performed‌ ‌GO‌ ‌term‌ ‌enrichment‌ ‌analysis‌ ‌in‌ ‌each‌ ‌cluster‌ ‌(Figure‌ ‌S6C)‌ ‌and‌‌ 

labelled‌ ‌the‌ ‌network‌ ‌according‌ ‌to‌ ‌the‌ ‌most‌ ‌enriched‌ ‌term‌ ‌in‌ ‌the‌ ‌gene‌ ‌set.‌ ‌The‌ ‌resulting‌ ‌network‌‌ 

(Figure‌ ‌7A,‌ ‌242‌ ‌genes)‌ ‌shows‌ ‌10‌ ‌clusters‌ ‌associated‌ ‌with‌ ‌“Superoxide‌ ‌metabolic‌ ‌process”,‌‌ 

“Leukotriene‌ ‌synthesis”,‌ ‌“Response‌ ‌to‌ ‌external‌ ‌stimulus”,‌ ‌“Lipid‌ ‌synthesis”,‌ ‌“Myeloid‌‌ 

differentiation”,‌ ‌“Antigen‌ ‌processing‌ ‌and‌ ‌presentation”,‌ ‌“Protein‌ ‌complex‌ ‌oligomerization”,‌‌ 

“Chemotaxis”,‌ ‌“Lipid‌ ‌transport”‌ ‌and‌ ‌“Cytoskeleton‌ ‌organization”.‌ ‌These‌ ‌gene‌ ‌sets‌ ‌are‌ ‌not‌‌ 

engaged‌ ‌similarly‌ ‌by‌ ‌all‌ ‌activation‌ ‌paths,‌ ‌as‌ ‌revealed‌ ‌by‌ ‌subsetting‌ ‌the‌ ‌network‌ ‌to‌ ‌include‌ ‌only‌‌ 

genes‌ ‌significantly‌ ‌associated‌ ‌with‌ ‌pseudotime‌ ‌in‌ ‌each‌ ‌path‌ ‌(Figure‌ ‌7B).‌‌ ‌  

We‌ ‌next‌ ‌extracted‌ ‌three‌ ‌types‌ ‌of‌ ‌information‌ ‌from‌ ‌this‌ ‌transcriptional‌ ‌network.‌ ‌First,‌ ‌we‌‌ 

examined‌ ‌which‌ ‌genes‌ ‌had‌ ‌the‌ ‌potential‌ ‌to‌ ‌act‌ ‌as‌ ‌central‌ ‌nodes‌ ‌of‌ ‌information‌ ‌transfer,‌ ‌as‌ ‌these‌‌ 

18‌ ‌ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/
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could‌ ‌be‌ ‌targets‌ ‌for‌ ‌therapeutic‌ ‌intervention.‌ ‌We‌ ‌reasoned‌ ‌that‌ ‌these‌ ‌information‌ ‌hubs‌ ‌could‌ ‌be‌‌ 

represented‌ ‌by‌ ‌highly‌ ‌connected‌ ‌nodes,‌ ‌which‌ ‌articulated‌ ‌the‌ ‌network‌ ‌by‌ ‌connecting‌ ‌2‌ ‌or‌ ‌more‌ 

clusters,‌ ‌and‌ ‌that‌ ‌were‌ ‌overrepresented‌ ‌in‌ ‌the‌ ‌paths‌ ‌connecting‌ ‌pairs‌ ‌of‌ ‌nodes‌ ‌in‌ ‌the‌ ‌network‌‌ 

(i.e.‌ ‌high‌ ‌betweenness).‌ ‌Examining‌ ‌genes‌ ‌meeting‌ ‌these‌ ‌criteria‌ ‌(Figure‌ ‌6C)‌ ‌highlighted‌ ‌both‌‌ 

some‌ ‌well-known‌ ‌macrophage‌ ‌regulators‌ ‌(e.g.‌ ‌‌Lyz2‌,‌ ‌‌Csf1r‌),‌ ‌but‌ ‌also‌ ‌genes‌ ‌whose‌ ‌function‌ ‌has‌‌ 

not‌ ‌been‌ ‌widely‌ ‌studied‌ ‌in‌ ‌the‌ ‌context‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌(e.g.‌ ‌‌Gngt2‌,‌ ‌‌Srgn‌),‌ ‌thus‌‌ 

warranting‌ ‌further‌ ‌exploration.‌ ‌Second,‌ ‌we‌ ‌identified‌ ‌transcription‌ ‌factors‌ ‌(TF)‌ ‌upstream‌ ‌of‌ ‌the‌‌ 

transcriptional‌ ‌network‌ ‌clusters,‌ ‌which‌ ‌were‌ ‌themselves‌ ‌regulated‌ ‌dynamically‌ ‌along‌ ‌the‌‌ 

activation‌ ‌paths.‌ ‌We‌ ‌ranked‌ ‌these‌ ‌based‌ ‌on‌ ‌the‌ ‌number‌ ‌of‌ ‌times‌ ‌they‌ ‌were‌ ‌associated‌ ‌with‌ ‌a‌‌ 

gene‌ ‌set‌ ‌in‌ ‌our‌ ‌clusters‌ ‌(Figure‌ ‌7D,‌ ‌word‌ ‌cloud)‌ ‌and‌ ‌show‌ ‌the‌ ‌dynamic‌ ‌regulation‌ ‌of‌ ‌6‌ ‌TF‌ ‌in‌‌ 

each‌ ‌activation‌ ‌path‌ ‌(Figure‌ ‌7D,‌ ‌bottom).‌ ‌Interestingly,‌ ‌some‌ ‌TF‌ ‌had‌ ‌opposing‌ ‌behaviours‌ ‌(‌Rel‌‌ 

vs.‌ ‌‌Maf‌),‌ ‌while‌ ‌others‌ ‌behaved‌ ‌similarly‌ ‌in‌ ‌all‌ ‌paths‌ ‌except‌ ‌one,‌ ‌where‌ ‌they‌ ‌suddenly‌ ‌veered‌ ‌in‌‌ 

opposing‌ ‌directions‌ ‌(‌Spi1‌‌ ‌vs.‌ ‌‌Fos‌/‌Jun‌).‌ ‌As‌ ‌these‌ ‌sudden‌ ‌direction‌ ‌changes,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌‌ 

relative‌ ‌levels‌ ‌of‌ ‌one‌ ‌TF‌ ‌to‌ ‌another‌ ‌could‌ ‌represent‌ ‌important‌ ‌decision‌ ‌points‌ ‌in‌ ‌activation‌ ‌paths,‌‌ 

these‌ ‌TFs‌ ‌too‌ ‌warrant‌ ‌further‌ ‌examination.‌ ‌Finally,‌ ‌we‌ ‌wished‌ ‌to‌ ‌provide‌ ‌a‌ ‌more‌ ‌detailed‌‌ 

process‌ ‌enrichment‌ ‌profile‌ ‌for‌ ‌each‌ ‌activation‌ ‌path.‌ ‌Consequently,‌ ‌we‌ ‌took‌ ‌the‌ ‌top‌ ‌3‌ ‌GO‌‌ 

enriched‌ ‌terms‌ ‌in‌ ‌each‌ ‌cluster‌ ‌(Figure‌ ‌7E‌ ‌&‌ ‌S6C)‌ ‌and‌ ‌all‌ ‌enriched‌ ‌KEGG‌ ‌pathways‌ ‌detected‌‌ 

(Figure‌ ‌7F)‌ ‌and‌ ‌calculated‌ ‌gene‌ ‌set‌ ‌scores‌ ‌for‌ ‌each‌ ‌of‌ ‌these‌ ‌(Supplemental‌ ‌Table‌ ‌2).‌ ‌We‌ ‌then‌‌ 

estimated‌ ‌the‌ ‌variance‌ ‌of‌ ‌every‌ ‌gene‌ ‌set‌ ‌score‌ ‌within‌ ‌cells‌ ‌of‌ ‌each‌ ‌activation‌ ‌path‌ ‌and‌‌ 

represented‌ ‌these‌ ‌data‌ ‌as‌ ‌a‌ ‌heatmap‌ ‌(Figure‌ ‌7E-F),‌ ‌finding‌ ‌a‌ ‌distinct‌ ‌profile‌ ‌for‌ ‌each‌ ‌path‌ ‌for‌‌ 

these‌ ‌functions.‌ ‌In‌ ‌this‌ ‌manner‌ ‌we‌ ‌highlight‌ ‌the‌ ‌relative‌ ‌regulation‌ ‌of‌ ‌several‌ ‌processes‌ ‌of‌‌ 

interest‌ ‌in‌ ‌the‌ ‌activation‌ ‌paths‌ ‌we‌ ‌defined,‌ ‌as‌ ‌a‌ ‌guide‌ ‌to‌ ‌researchers‌ ‌wishing‌ ‌to‌ ‌explore‌ ‌these‌‌ 

aspects‌ ‌of‌ ‌macrophage‌ ‌function‌ ‌in‌ ‌more‌ ‌detail.‌ ‌ 

In‌ ‌summary,‌ ‌we‌ ‌employed‌ ‌a‌ ‌predictive‌ ‌model‌ ‌of‌ ‌label‌ ‌transfer‌ ‌to‌ ‌encompass‌ ‌all‌ ‌forms‌ ‌of‌‌ 

macrophage‌ ‌activation‌ ‌irrespective‌ ‌of‌ ‌tissue‌ ‌or‌ ‌inflammatory‌ ‌condition.‌ ‌We‌ ‌demonstrate‌ ‌that‌ ‌this‌‌ 

model‌ ‌is‌ ‌robust,‌ ‌aligning‌ ‌with‌ ‌well-established‌ ‌paradigms‌ ‌of‌ ‌macrophage‌ ‌function,‌ ‌while‌‌ 

providing‌ ‌novel‌ ‌avenues‌ ‌for‌ ‌investigation.‌ ‌We‌ ‌provide‌ ‌surface‌ ‌and‌ ‌global‌ ‌gene‌ ‌expression‌‌ 

profiles‌ ‌for‌ ‌these‌ ‌activation‌ ‌stages‌ ‌to‌ ‌aid‌ ‌in‌ ‌their‌ ‌identification‌ ‌in‌ ‌future‌ ‌studies.‌ ‌Lastly,‌ ‌we‌ ‌have‌‌ 

prepared‌ ‌an‌ ‌online‌ ‌tool‌ ‌(https://www.macrophage-framework.jhmi.edu)‌ ‌to‌ ‌aid‌ ‌in‌ ‌exploring‌ ‌the‌‌ 

data‌ ‌contained‌ ‌in‌ ‌this‌ ‌study.‌ ‌Our‌ ‌results‌ ‌emphasize‌ ‌the‌ ‌conservation‌ ‌and‌ ‌relative‌ ‌homogeneity‌‌ 

of‌ ‌macrophage‌ ‌activation‌ ‌across‌ ‌tissues,‌ ‌transcending‌ ‌macrophage‌ ‌tissue‌ ‌residence,‌ ‌while‌ ‌still‌‌ 

allowing‌ ‌for‌ ‌activation‌ ‌diversity.‌‌ ‌  
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Discussion‌ ‌ 

Advances‌ ‌in‌ ‌the‌ ‌understanding‌ ‌of‌ ‌macrophage‌ ‌ontogeny‌ ‌and‌ ‌of‌ ‌differential‌ ‌gene‌ ‌expression‌‌ 

signatures‌ ‌linked‌ ‌to‌ ‌macrophage‌ ‌tissue‌ ‌residence‌ ‌has‌ ‌revealed‌ ‌inherent‌ ‌complexity‌ ‌within‌ ‌this‌‌ 

cell‌ ‌type.‌ ‌Moreover,‌ ‌the‌ ‌transcriptional‌ ‌profile‌ ‌of‌ ‌macrophages‌ ‌following‌ ‌exposure‌ ‌to‌ ‌a‌ ‌broad‌‌ 

range‌ ‌of‌ ‌stimuli‌ ‌for‌ ‌which‌ ‌they‌ ‌are‌ ‌known‌ ‌to‌ ‌express‌ ‌receptors‌ ‌revealed‌ ‌a‌ ‌spectrum‌ ‌of‌ ‌potential‌‌ 

activation‌ ‌states‌ ‌not‌ ‌captured‌ ‌by‌‌ ‌in‌ ‌vitro‌‌ ‌models.‌ ‌In‌ ‌light‌ ‌of‌ ‌these‌ ‌findings,‌ ‌it‌ ‌has‌ ‌become‌ ‌difficult‌‌ 

to‌ ‌relate‌ ‌macrophage‌ ‌activation‌ ‌across‌ ‌investigations.‌ ‌Our‌ ‌study‌ ‌offers‌ ‌an‌ ‌alternative‌ ‌view‌ ‌of‌‌ 

macrophage‌ ‌activation‌ ‌in‌ ‌tissues‌ ‌during‌ ‌inflammation.‌ ‌By‌ ‌comparing‌ ‌the‌ ‌transcriptional‌ ‌profiles‌‌ 

of‌ ‌macrophages‌ ‌recovered‌ ‌from‌ ‌different‌ ‌tissues‌ ‌from‌ ‌mice‌ ‌experiencing‌ ‌distinct‌‌ 

diseases/conditions,‌ ‌we‌ ‌identified‌ ‌a‌ ‌limited‌ ‌and‌ ‌consistent‌ ‌number‌ ‌of‌ ‌transcriptional‌ ‌profiles‌ ‌that‌‌ 

were‌ ‌unobscured‌ ‌by‌ ‌the‌ ‌tissue‌ ‌or‌ ‌stimulus‌ ‌studied.‌ ‌We‌ ‌modelled‌ ‌these‌ ‌conserved‌ ‌and‌ ‌yet‌‌ 

diverse‌ ‌signatures‌ ‌as‌ ‌stages‌ ‌across‌ ‌four‌ ‌activation‌ ‌paths,‌ ‌finding‌ ‌that‌ ‌“phagocytic”‌ ‌and‌‌ 

“inflammatory”‌ ‌paths‌ ‌were‌ ‌most‌ ‌common.‌ ‌These‌ ‌paths‌ ‌have‌ ‌features‌ ‌in‌ ‌common‌ ‌with‌ ‌M2‌ ‌and‌‌ 

M1‌ ‌respectively,‌ ‌encompassing‌ ‌those‌ ‌references‌ ‌while‌ ‌offering‌ ‌a‌ ‌broader‌ ‌and‌ ‌dynamic‌‌ 

alternative.‌ ‌Finally,‌ ‌our‌ ‌analysis‌ ‌offers‌ ‌insights‌ ‌into‌ ‌the‌ ‌information‌ ‌hubs,‌ ‌transcription‌ ‌factors‌‌ 

and‌ ‌gene‌ ‌expression‌ ‌programs‌ ‌that‌ ‌are‌ ‌responsible‌ ‌for‌ ‌shaping‌ ‌macrophage‌ ‌function.‌ ‌ 

The‌ ‌macrophage‌ ‌activation‌ ‌model‌ ‌we‌ ‌propose,‌ ‌where‌ ‌cells‌ ‌transit‌ ‌through‌ ‌“initial”‌ ‌and‌ ‌“early”‌‌ 

stages‌ ‌of‌ ‌commitment‌ ‌to‌ ‌a‌ ‌particular‌ ‌path,‌ ‌is‌ ‌evident‌ ‌in‌ ‌other‌ ‌independent‌ ‌analyses.‌ ‌For‌‌ 

instance,‌ ‌in‌ ‌a‌ ‌murine‌ ‌model‌ ‌of‌ ‌non-alcoholic‌ ‌steatohepatitis‌ ‌(NASH)‌ ‌a‌ ‌monocyte‌ ‌derived‌‌ 

population‌ ‌of‌ ‌Ly6C‌lo‌‌ ‌macrophages‌ ‌expressed‌ ‌high‌ ‌levels‌ ‌of‌ ‌‌Ccr2‌,‌ ‌‌Klrd1‌‌ ‌and‌ ‌MHC-II‌ ‌‌(‌39‌)‌,‌‌ 

comparable‌ ‌to‌ ‌genes‌ ‌expressed‌ ‌in‌ ‌“initial”‌ ‌stage‌ ‌cells‌ ‌in‌ ‌our‌ ‌analysis‌ ‌(Supplemental‌ ‌Table‌ ‌1‌ ‌and‌‌ 

https://www.macrophage-framework.jhmi.edu).‌ ‌‌Ccr2‌‌ ‌expression‌ ‌in‌ ‌particular‌ ‌gives‌ ‌credence‌ ‌to‌‌ 

our‌ ‌choice‌ ‌of‌ ‌starting‌ ‌point‌ ‌for‌ ‌the‌ ‌model‌ ‌as‌ ‌this‌ ‌encodes‌ ‌a‌ ‌critical‌ ‌tissue-homing‌ ‌receptor‌ ‌in‌‌ 

circulating‌ ‌monocytes‌ ‌‌(‌40‌)‌.‌ ‌Notably,‌ ‌a‌ ‌closely‌ ‌associated‌ ‌cell‌ ‌population‌ ‌in‌ ‌the‌ ‌NASH‌ ‌dataset‌‌ 

expressed‌ ‌both‌ ‌‌Ear2‌‌ ‌and‌ ‌‌Fn1‌,‌ ‌mirroring‌ ‌“early”‌ ‌stage‌ ‌macrophages‌ ‌(Supplemental‌ ‌Table‌ ‌1).‌ 

Moreover,‌ ‌in‌ ‌the‌ ‌context‌ ‌of‌ ‌this‌ ‌disease,‌ ‌this‌ ‌population‌ ‌gave‌ ‌rise‌ ‌to‌ ‌Kupffer‌ ‌cells‌ ‌‌(‌39‌)‌,‌ ‌which‌‌ 

expressed‌ ‌high‌ ‌levels‌ ‌of‌ ‌‌Mrc1‌,‌ ‌‌Apoe‌‌ ‌and‌ ‌complement‌ ‌associated‌ ‌genes,‌ ‌similarly‌ ‌to‌‌ 

“phagocytic”‌ ‌path‌ ‌macrophages.‌ ‌Another‌ ‌instance‌ ‌where‌ ‌this‌ ‌progression‌ ‌is‌ ‌evident‌ ‌is‌ ‌in‌ ‌joint‌‌ 

synovial‌ ‌macrophages‌ ‌‌(‌41‌)‌.‌ ‌In‌ ‌this‌ ‌setting,‌ ‌two‌ ‌populations‌ ‌of‌ ‌interstitial‌ ‌macrophages,‌ ‌one‌‌ 

MHC-II‌high‌‌ ‌and‌ ‌one‌ ‌RELMɑ‌+‌‌ ‌reminiscent‌ ‌of‌ ‌the‌ ‌“initial”‌ ‌and‌ ‌“early”‌ ‌stages‌ ‌described‌ ‌herein,‌‌ 

respectively,‌ ‌replenished‌ ‌long-lived‌ ‌synovial‌ ‌tissue-resident‌ ‌cells‌ ‌‌(‌41‌)‌.‌ ‌The‌ ‌possibility‌ ‌to‌‌ 

reconstruct‌ ‌our‌ ‌model‌ ‌in‌ ‌these‌ ‌independent‌ ‌analyses‌ ‌demonstrates‌ ‌the‌ ‌robustness‌ ‌and‌‌ 

universality‌ ‌of‌ ‌our‌ ‌findings.‌‌  
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Our‌ ‌model‌ ‌highlights‌ ‌the‌ ‌role‌ ‌of‌ ‌incoming‌ ‌monocytes‌ ‌into‌ ‌tissues,‌ ‌both‌ ‌under‌ ‌homeostasis‌ ‌and‌‌ 

inflammatory‌ ‌conditions.‌ ‌The‌ ‌input‌ ‌of‌ ‌monocyte-derived‌ ‌macrophages‌ ‌to‌ ‌the‌ ‌overall‌ ‌tissue‌‌ 

macrophage‌ ‌pool‌ ‌during‌ ‌homeostasis‌ ‌varies‌ ‌from‌ ‌organ‌ ‌to‌ ‌organ‌ ‌‌(‌4‌)‌,‌ ‌and‌ ‌under‌ ‌these‌ ‌conditions‌‌ 

we‌ ‌found‌ ‌that‌ ‌the‌ ‌contribution‌ ‌of‌ ‌the‌ ‌four‌ ‌identified‌ ‌activation‌ ‌paths‌ ‌was‌ ‌intriguingly‌ ‌diverse‌‌ 

between‌ ‌tissues,‌ ‌likely‌ ‌as‌ ‌a‌ ‌result‌ ‌of‌ ‌microenvironmental‌ ‌signals‌ ‌that‌ ‌are‌ ‌themselves‌‌ 

heterogenous.‌ ‌Thus,‌ ‌our‌ ‌data‌ ‌indicate‌ ‌that‌ ‌the‌ ‌commitment‌ ‌of‌ ‌monocytes‌ ‌to‌ ‌these‌ ‌activation‌‌ 

paths‌ ‌is‌ ‌regulated‌ ‌not‌ ‌just‌ ‌by‌ ‌the‌ ‌inflammatory‌ ‌settings,‌ ‌which‌ ‌invariably‌ ‌altered‌ ‌the‌ ‌proportion‌ ‌of‌‌ 

cells‌ ‌in‌ ‌each‌ ‌stage,‌ ‌but‌ ‌also‌ ‌the‌ ‌specific‌ ‌nature‌ ‌of‌ ‌the‌ ‌tissue.‌ ‌We‌ ‌further‌ ‌demonstrated‌ ‌that‌ ‌the‌‌ 

emphasis‌ ‌of‌ ‌our‌ ‌model‌ ‌on‌ ‌monocyte-derived‌ ‌macrophages‌ ‌was‌ ‌likely‌ ‌due‌ ‌to‌ ‌the‌ ‌unique‌‌ 

transcriptional‌ ‌profile‌ ‌of‌ ‌embryonically‌ ‌derived‌ ‌macrophages‌ ‌‌(‌2‌)‌,‌ ‌which‌ ‌were‌ ‌labeled‌ ‌as‌ ‌“not‌‌ 

classified”‌ ‌in‌ ‌our‌ ‌analysis.‌ ‌One‌ ‌implication‌ ‌of‌ ‌this‌ ‌finding‌ ‌is‌ ‌that‌ ‌incoming‌ ‌monocytes‌ ‌give‌ ‌rise‌ ‌to‌ 

most‌ ‌of‌ ‌the‌ ‌functional‌ ‌diversity‌ ‌in‌ ‌any‌ ‌given‌ ‌tissue,‌ ‌while‌ ‌the‌ ‌resident‌ ‌cells‌ ‌remain‌ ‌more‌‌ 

transcriptionally‌ ‌stable‌ ‌regardless‌ ‌of‌ ‌the‌ ‌insult.‌ ‌Similar‌ ‌conclusions‌ ‌were‌ ‌drawn‌ ‌recently‌ ‌‌(‌10‌)‌‌ 

from‌ ‌observations‌ ‌on‌ ‌alveolar‌ ‌macrophages,‌ ‌which‌ ‌have‌ ‌been‌ ‌shown‌ ‌to‌ ‌be‌ ‌less‌ ‌plastic,‌ ‌less‌‌ 

phagocytic,‌ ‌more‌ ‌permissive‌ ‌to‌ ‌infection,‌ ‌less‌ ‌responsive‌ ‌to‌ ‌IL-4‌ ‌stimulation,‌ ‌and‌ ‌generally‌ ‌less‌‌ 

engaged‌ ‌in‌ ‌ongoing‌ ‌local‌ ‌immune‌ ‌responses‌ ‌than‌ ‌are‌ ‌monocyte-derived‌ ‌cells‌ ‌‌(‌42‌–‌44‌)‌.‌ ‌Tissue‌‌ 

resident‌ ‌macrophages‌ ‌in‌ ‌other‌ ‌tissues,‌ ‌specifically‌ ‌the‌ ‌peritoneal‌ ‌cavity,‌ ‌have‌ ‌also‌ ‌been‌ ‌shown‌‌ 

to‌ ‌be‌ ‌less‌ ‌immunologically‌ ‌active‌ ‌‌(‌45‌)‌,‌ ‌even‌ ‌if‌ ‌they‌ ‌are‌ ‌highly‌ ‌proliferative‌ ‌‌(‌46‌)‌.‌ ‌Likewise,‌‌ 

monocyte-derived‌ ‌macrophages‌ ‌have‌ ‌been‌ ‌shown‌ ‌to‌ ‌play‌ ‌a‌ ‌dominant‌ ‌role‌ ‌in‌ ‌tumors‌ ‌‌(‌47‌)‌.‌ ‌The‌‌ 

mechanisms‌ ‌restricting‌ ‌tissue-resident‌ ‌macrophage‌ ‌activation‌ ‌have‌ ‌not‌ ‌been‌ ‌elucidated,‌‌ 

although‌ ‌epigenetic‌ ‌imprinting‌ ‌‌(‌1‌,‌ ‌‌10‌)‌‌ ‌and‌ ‌autophagy-enforced‌ ‌quiescence‌ ‌‌(‌48‌)‌‌ ‌are‌ ‌likely‌ 

candidates.‌ ‌Overall,‌ ‌the‌ ‌emerging‌ ‌picture‌ ‌is‌ ‌one‌ ‌where‌ ‌macrophage‌ ‌functional‌ ‌plasticity‌ ‌in‌‌ 

response‌ ‌to‌ ‌a‌ ‌loss‌ ‌of‌ ‌homeostasis‌ ‌within‌ ‌tissues,‌ ‌is‌ ‌a‌ ‌feature‌ ‌of‌ ‌cells‌ ‌derived‌ ‌from‌ ‌recruited‌‌ 

monocytes,‌ ‌which‌ ‌participate‌ ‌in‌ ‌the‌ ‌induction‌ ‌and‌ ‌resolution‌ ‌of‌ ‌inflammation‌ ‌by‌ ‌moving‌ ‌along‌‌ 

defined‌ ‌activation‌ ‌paths.‌ ‌This‌ ‌view‌ ‌does‌ ‌not‌ ‌exclude‌ ‌the‌ ‌possibility‌ ‌that‌ ‌tissue‌ ‌resident‌‌ 

macrophages‌ ‌are‌ ‌contributing‌ ‌to‌ ‌the‌ ‌response‌ ‌to‌ ‌tissue‌ ‌damage,‌ ‌but‌ ‌it‌ ‌does‌ ‌predict‌ ‌that‌‌ 

monocyte-derived‌ ‌cells‌ ‌are‌ ‌the‌ ‌major‌ ‌contributors‌ ‌in‌ ‌this‌ ‌regard.‌ ‌ ‌   

In‌ ‌our‌ ‌model,‌ ‌we‌ ‌postulate‌ ‌that‌ ‌macrophages‌ ‌become‌ ‌activated‌ ‌through‌ ‌4‌ ‌possible‌ ‌paths‌ ‌and‌‌ 

that‌ ‌these‌ ‌paths‌ ‌are‌ ‌unidirectional‌ ‌such‌ ‌that‌ ‌cells‌ ‌become‌ ‌committed‌ ‌exclusively‌ ‌to‌ ‌one‌ ‌route.‌‌ 

We‌ ‌infer‌ ‌that‌ ‌only‌ ‌cells‌ ‌in‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌go‌ ‌on‌ ‌to‌ ‌replace‌ ‌tissue-resident‌ ‌macrophages.‌‌ 

Several‌ ‌independent‌ ‌lines‌ ‌of‌ ‌investigation‌ ‌support‌ ‌this‌ ‌hypothesis:‌ ‌Increased‌ ‌expression‌ ‌of‌‌ 

complement‌ ‌genes‌ ‌has‌ ‌been‌ ‌reported‌ ‌in‌ ‌Kupffer‌ ‌cells‌ ‌‌(‌39‌)‌‌ ‌and‌ ‌alveolar‌ ‌macrophages‌ ‌‌(‌49‌)‌‌ 

derived‌ ‌from‌ ‌monocytes;‌  ‌Phagocytosis‌ ‌appears‌ ‌to‌ ‌be‌ ‌a‌ ‌key‌ ‌feature‌ ‌of‌ ‌tissue‌ ‌resident‌‌ 
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macrophages‌ ‌‌(‌50‌)‌;‌ ‌Phagocytic‌ ‌receptors‌ ‌like‌ ‌‌Mrc1‌,‌ ‌‌Cd163‌,‌ ‌‌Timd4‌‌ ‌and‌ ‌‌Mertk‌,‌ ‌all‌ ‌highly‌‌ 

expressed‌ ‌in‌ ‌“phagocytic”‌ ‌path‌ ‌cells,‌ ‌are‌ ‌associated‌ ‌with‌ ‌tissue‌ ‌resident‌ ‌macrophages‌ ‌‌(‌50‌)‌.‌ ‌It‌ ‌is‌‌ 

possible‌ ‌that‌ ‌through‌ ‌phagocytosis,‌ ‌macrophages‌ ‌become‌ ‌tissue‌ ‌imprinted.‌ ‌Thus,‌ ‌by‌ ‌engulfing‌‌ 

apoptotic‌ ‌cells,‌ ‌macrophages‌ ‌might‌ ‌indirectly‌ ‌absorb‌ ‌factors‌ ‌that‌ ‌convey‌ ‌tissue‌ ‌identity.‌ ‌ 

By‌ ‌far‌ ‌the‌ ‌most‌ ‌abundant‌ ‌gene‌ ‌signature‌ ‌we‌ ‌observed‌ ‌in‌ ‌our‌ ‌analysis‌ ‌was‌ ‌that‌ ‌of‌ ‌the‌ ‌later‌‌ 

stages‌ ‌of‌ ‌the‌ ‌“phagocytic”‌ ‌path.‌ ‌As‌ ‌mentioned‌ ‌above,‌ ‌this‌ ‌transcriptional‌ ‌profile‌ ‌is‌ ‌evident‌‌ 

elsewhere‌ ‌‌(‌39‌,‌ ‌‌49‌)‌.‌ ‌Indeed,‌ ‌during‌ ‌lung‌ ‌fibrosis‌ ‌‌Apoe‌‌ ‌and‌ ‌complement‌ ‌gene‌ ‌expression‌ ‌became‌‌ 

dominant‌ ‌features‌ ‌of‌ ‌disease‌ ‌progression‌ ‌‌(‌20‌)‌.‌ ‌Interestingly,‌ ‌this‌ ‌gene‌ ‌signature‌ ‌can‌ ‌be‌‌ 

extended‌ ‌to‌ ‌human‌ ‌macrophages‌ ‌involved‌ ‌in‌ ‌injury‌ ‌resolution‌ ‌‌(‌51‌)‌.‌ ‌Our‌ ‌proposal‌ ‌that‌ ‌these‌ ‌cells‌‌ 

give‌ ‌rise‌ ‌to‌ ‌tissue-resident‌ ‌macrophages‌ ‌explains‌ ‌in‌ ‌part‌ ‌this‌ ‌relative‌ ‌abundance.‌ ‌However,‌ ‌their‌‌ 

transcriptional‌ ‌profile‌ ‌also‌ ‌overlaps‌ ‌with‌ ‌genes‌ ‌associated‌ ‌with‌ ‌alternative‌ ‌activation‌ ‌‌(‌17‌)‌.‌‌ 

Moreover,‌ ‌the‌ ‌complement‌ ‌product‌ ‌‌C1q‌‌ ‌has‌ ‌been‌ ‌linked‌ ‌to‌ ‌macrophage‌ ‌proliferation‌ ‌‌(‌52‌)‌,‌ ‌a‌‌ 

characteristic‌ ‌of‌ ‌alternatively‌ ‌activated‌ ‌macrophages.‌ ‌It‌ ‌is‌ ‌intriguing‌ ‌that‌ ‌these‌ ‌macrophages‌ ‌are‌‌ 

critical‌ ‌to‌ ‌restoring‌ ‌homeostasis‌ ‌by‌ ‌removing‌ ‌dead‌ ‌cells,‌ ‌which‌ ‌boosts‌ ‌their‌ ‌IL-4‌ ‌driven‌‌ 

phenotype‌ ‌‌(‌53‌)‌,‌ ‌yet‌ ‌they‌ ‌also‌ ‌have‌ ‌a‌ ‌clear‌ ‌role‌ ‌in‌ ‌the‌ ‌pathology‌ ‌of‌ ‌several‌ ‌of‌ ‌the‌ ‌conditions‌‌ 

explored‌ ‌herein.‌ ‌Indeed,‌ ‌our‌ ‌findings‌ ‌suggest‌ ‌that‌ ‌stalling‌ ‌macrophages‌ ‌along‌ ‌the‌ ‌“phagocytic”‌‌ 

path‌ ‌can‌ ‌be‌ ‌both‌ ‌beneficial,‌ ‌as‌ ‌seen‌ ‌in‌ ‌the‌ ‌case‌ ‌of‌ ‌breast‌ ‌tumors,‌ ‌or‌ ‌detrimental,‌ ‌as‌ ‌observed‌ ‌in‌‌ 

atherosclerotic‌ ‌plaques‌ ‌(Figure‌ ‌4).‌ ‌In‌ ‌fact,‌ ‌even‌ ‌tissue-imprinted‌ ‌pathogenic‌ ‌microglia‌ ‌associated‌‌ 

with‌ ‌Alzheimer's‌ ‌disease‌ ‌converged‌ ‌into‌ ‌an‌ ‌‌Apoe‌-expressing‌ ‌phenotype‌ ‌‌(‌54‌)‌.‌ ‌Based‌ ‌on‌ ‌this,‌ ‌we‌‌ 

postulate‌ ‌that‌ ‌determining‌ ‌how‌ ‌to‌ ‌manipulate‌ ‌progression‌ ‌along‌ ‌the‌ ‌“phagocytic”‌ ‌path‌ ‌may‌ ‌offer‌‌ 

therapeutic‌ ‌opportunities.‌ ‌ 

While‌ ‌in‌ ‌depth‌ ‌identification‌ ‌of‌ ‌the‌ ‌drivers‌ ‌of‌ ‌macrophage‌ ‌transit‌ ‌through‌ ‌the‌ ‌proposed‌ ‌activation‌‌ 

paths‌ ‌is‌ ‌beyond‌ ‌the‌ ‌scope‌ ‌of‌ ‌this‌ ‌study,‌ ‌our‌ ‌initial‌ ‌exploration‌ ‌of‌ ‌the‌ ‌data‌ ‌revealed‌ ‌242‌ ‌highly‌‌ 

interconnected‌ ‌genes‌ ‌with‌ ‌some‌ ‌common‌ ‌upstream‌ ‌regulators‌ ‌and‌ ‌mapping‌ ‌to‌ ‌diverse‌ 

functions.‌ ‌How‌ ‌this‌ ‌transcriptional‌ ‌network‌ ‌is‌ ‌shaped‌ ‌within‌ ‌each‌ ‌tissue‌ ‌will‌ ‌be‌ ‌of‌ ‌great‌ ‌interest‌‌ 

moving‌ ‌forward.‌ ‌However,‌ ‌the‌ ‌fact‌ ‌that‌ ‌the‌ ‌number‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌stages‌ ‌we‌ ‌defined‌‌ 

was‌ ‌conserved‌ ‌and‌ ‌limited,‌ ‌despite‌ ‌the‌ ‌diversity‌ ‌of‌ ‌insults‌ ‌and‌ ‌tissues‌ ‌studied,‌ ‌suggests‌ ‌that‌‌ 

common‌ ‌undercurrents‌ ‌guiding‌ ‌macrophage‌ ‌activation‌ ‌might‌ ‌be‌ ‌built‌ ‌into‌ ‌tissues.‌ ‌One‌ ‌potential‌‌ 

set‌ ‌of‌ ‌candidates‌ ‌for‌ ‌orchestrating‌ ‌these‌ ‌processes‌ ‌would‌ ‌be‌ ‌signals‌ ‌associated‌ ‌with‌ ‌tissue‌‌ 

damage,‌ ‌which‌ ‌is‌ ‌ubiquitous‌ ‌during‌ ‌inflammation.‌ ‌Indeed,‌ ‌the‌ ‌production‌ ‌of‌ ‌alarmins‌ ‌by‌ ‌stromal‌‌ 

cells‌ ‌leading‌ ‌to‌ ‌the‌ ‌activation‌ ‌of‌ ‌resident‌ ‌innate‌ ‌immune‌ ‌cells‌ ‌(e.g.‌ ‌innate‌ ‌lymphoid‌ ‌cells,‌ ‌mast‌‌ 

cells)‌ ‌might‌ ‌be‌ ‌an‌ ‌important‌ ‌driver‌ ‌of‌ ‌macrophage‌ ‌tissue‌ ‌engraftment,‌ ‌particularly‌ ‌as‌ ‌the‌ ‌signals‌‌ 

they‌ ‌produce‌ ‌are‌ ‌capable‌ ‌of‌ ‌guiding‌ ‌both‌ ‌pro-‌ ‌and‌ ‌anti-inflammatory‌ ‌phenotypes.‌ ‌Thus,‌‌ 
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seemingly‌ ‌opposing‌ ‌signals‌ ‌(i.e.‌ ‌IL-4,‌ ‌TNF,‌ ‌IL-1β,‌ ‌IL-10,‌ ‌IL-13,‌ ‌PGE2)‌ ‌produced‌ ‌concomitantly‌‌ 

by‌ ‌tissue-embedded‌ ‌mast‌ ‌cells‌ ‌‌(‌55‌,‌ ‌‌56‌)‌‌ ‌and‌ ‌ILC2s‌ ‌‌(‌57‌)‌‌ ‌might‌ ‌be‌ ‌partly‌ ‌responsible‌ ‌for‌ ‌the‌‌ 

diversity‌ ‌of‌ ‌observed‌ ‌macrophage‌ ‌activation‌ ‌paths‌ ‌in‌ ‌all‌ ‌conditions.‌ ‌It‌ ‌is‌ ‌feasible‌ ‌that‌ ‌additional‌‌ 

signals‌ ‌provided‌ ‌by‌ ‌metabolites‌ ‌‌(‌58‌)‌‌ ‌‌might‌ ‌contribute‌ ‌to‌ ‌these‌ ‌outcomes.‌‌ ‌  

Especially‌ ‌as‌ ‌we‌ ‌move‌ ‌into‌ ‌the‌ ‌era‌ ‌of‌ ‌single‌ ‌cell‌ ‌genomics,‌ ‌establishing‌ ‌a‌ ‌lingua‌ ‌franca‌ ‌that‌‌ 

allows‌ ‌us‌ ‌to‌ ‌describe‌ ‌macrophage‌ ‌biology‌ ‌in‌ ‌humans‌ ‌and‌ ‌other‌ ‌animals,‌ ‌and‌ ‌across‌ ‌tissues‌ ‌and‌‌ 

diseases,‌ ‌is‌ ‌critical.‌ ‌Not‌ ‌only‌ ‌is‌ ‌this‌ ‌a‌ ‌matter‌ ‌of‌ ‌transferring‌ ‌insights‌ ‌from‌ ‌one‌ ‌study‌ ‌to‌ ‌another,‌‌ 

but‌ ‌also‌ ‌in‌ ‌shaping‌ ‌our‌ ‌understanding‌ ‌of‌ ‌the‌ ‌function‌ ‌of‌ ‌macrophages‌ ‌‌in‌ ‌vivo‌,‌ ‌especially‌ ‌in‌‌ 

inflammatory‌ ‌diseases.‌ ‌Moreover,‌ ‌moving‌ ‌the‌ ‌focus‌ ‌away‌ ‌from‌ ‌individual‌ ‌genes‌ ‌and‌ ‌towards‌‌ 

gene‌ ‌signatures,‌ ‌might‌ ‌allow‌ ‌for‌ ‌better‌ ‌transferability‌ ‌of‌ ‌findings‌ ‌between‌ ‌mouse‌ ‌and‌ ‌human‌‌ 

models.‌ ‌Indeed,‌ ‌our‌ ‌data‌ ‌readily‌ ‌finds‌ ‌parallels‌ ‌in‌ ‌human‌ ‌conditions‌ ‌‌(‌51‌)‌.‌ ‌Finally,‌ ‌understanding‌‌ 

how‌ ‌the‌ ‌local‌ ‌microenvironment‌ ‌shapes‌ ‌the‌ ‌immune‌ ‌response‌ ‌is‌ ‌possible‌ ‌only‌ ‌if‌ ‌we‌ ‌are‌ ‌able‌ ‌to‌‌ 

define‌ ‌the‌ ‌common‌ ‌threads‌ ‌of‌ ‌that‌ ‌response‌ ‌in‌ ‌the‌ ‌first‌ ‌place.‌ ‌In‌ ‌this‌ ‌context,‌ ‌our‌ ‌approach‌‌ 

highlights‌ ‌the‌ ‌overarching‌ ‌similarity‌ ‌that‌ ‌can‌ ‌be‌ ‌found‌ ‌in‌ ‌the‌ ‌way‌ ‌in‌ ‌which‌ ‌macrophages‌ ‌diversify‌‌ 

their‌ ‌function,‌ ‌without‌ ‌dismissing‌ ‌the‌ ‌influence‌ ‌that‌ ‌inflammatory‌ ‌conditions‌ ‌and‌ ‌tissue‌ ‌niches‌‌ 

impose‌ ‌on‌ ‌that‌ ‌functionality.‌ ‌We‌ ‌consider‌ ‌our‌ ‌approach‌ ‌is‌ ‌a‌ ‌step‌ ‌towards‌ ‌building‌ ‌a‌ ‌common‌‌ 

framework‌ ‌to‌ ‌describe‌ ‌macrophage‌ ‌activation‌ ‌that‌ ‌can‌ ‌be‌ ‌applied‌ ‌broadly‌ ‌to‌ ‌explore‌ ‌the‌ ‌biology‌‌ 

of‌ ‌these‌ ‌important‌ ‌cells.‌ ‌ 

‌ ‌   
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Materials‌ ‌and‌ ‌Methods‌ ‌ 

Data‌ ‌and‌ ‌Code‌ ‌Availability‌ ‌ 

Publicly‌ ‌available‌ ‌R‌ ‌packages‌ ‌were‌ ‌used‌ ‌to‌ ‌analyse‌ ‌all‌ ‌data‌ ‌contained‌ ‌within‌ ‌this‌ ‌manuscript.‌‌ 

Relevant‌ ‌packages‌ ‌are‌ ‌referenced‌ ‌through-out‌ ‌the‌ ‌methods‌ ‌section.‌ ‌Annotated‌ ‌code‌ ‌to‌‌ 

reproduce‌ ‌key‌ ‌analysis‌ ‌modules‌ ‌and‌ ‌recreate‌ ‌figures‌ ‌was‌ ‌deposited‌ ‌on‌ ‌github‌ ‌and‌ ‌may‌ ‌be‌‌ 

accessed‌ ‌at‌ ‌‌https://github.com/davidsanin/Macrophage_framework‌.‌‌ ‌  

An‌ ‌interactive‌ ‌shiny‌ ‌application‌ ‌to‌ ‌visualize‌ ‌critical‌ ‌aspects‌ ‌of‌ ‌the‌ ‌data‌ ‌in‌ ‌this‌ ‌publication‌ ‌can‌ ‌be‌‌ 

accessed‌ ‌at‌ ‌https://www.macrophage-framework.jhmi.edu.‌ ‌scRNAseq‌ ‌datasets‌ ‌generated‌‌ 

specifically‌ ‌for‌ ‌this‌ ‌publication‌ ‌may‌ ‌be‌ ‌retrieved‌ ‌from‌ ‌publicly‌ ‌available‌ ‌repositories‌ ‌with‌ ‌no‌‌ 

restrictions‌ ‌on‌ ‌their‌ ‌use,‌ ‌under‌ ‌the‌ ‌following‌ ‌accession‌ ‌numbers:‌ ‌helminth‌ ‌infection‌ ‌of‌ ‌adipose‌‌ 

tissue‌ ‌(GSE157313),‌ ‌bacterial‌ ‌infection‌ ‌of‌ ‌adipose‌ ‌tissue‌ ‌(GSE171328),‌ ‌High‌ ‌fat‌ ‌diet‌ ‌lamina‌‌ 

propria‌ ‌(GSE171330)‌ ‌and‌ ‌skin‌ ‌wound‌ ‌(GSE‌ ‌).‌ ‌Accession‌ ‌numbers,‌ ‌associated‌ ‌publications‌ ‌and‌‌ 

experimental‌ ‌details‌ ‌of‌ ‌these‌ ‌and‌ ‌all‌ ‌other‌ ‌datasets‌ ‌included‌ ‌in‌ ‌this‌ ‌study‌ ‌are‌ ‌listed‌ ‌in‌‌ 

Supplemental‌ ‌Table‌ ‌3.‌ ‌ 

Mouse‌ ‌Models‌ ‌ 

C57BL/6J‌ ‌(RRID:‌ ‌IMSR_JAX:000664),‌ ‌B6.129P2-Lyz2‌tm1(cre)lfo/J‌‌ ‌(RRID:‌ ‌MGI:5014089)‌ ‌and‌‌ 

CD45.1‌ ‌congenic‌ ‌(RRID:‌ ‌IMSR_JAX:002014)‌ ‌mouse‌ ‌strains‌ ‌were‌ ‌purchased‌ ‌from‌ ‌The‌ ‌Jackson‌‌ 

Laboratory.‌ ‌Mice‌ ‌were‌ ‌macrophages‌ ‌were‌ ‌deficient‌ ‌for‌ ‌the‌ ‌expression‌ ‌of‌ ‌IL-4Rɑ‌ ‌(IL-4Rɑ‌-/-‌)‌ ‌were‌‌ 

generated‌ ‌by‌ ‌crossing‌ ‌B6.129P2-Lyz2‌tm1(cre)lfo/J‌‌ ‌with‌ ‌B6-Il4ra‌tm(loxp)‌‌ ‌‌(‌59‌)‌.‌ ‌These‌ ‌strains‌ ‌were‌‌ 

maintained‌ ‌at‌ ‌the‌ ‌Max‌ ‌Planck‌ ‌Institute‌ ‌for‌ ‌Immunobiology‌ ‌and‌ ‌Epigenetics.‌ ‌Experimental‌‌ 

procedures‌ ‌including‌ ‌helminth‌ ‌or‌ ‌bacterial‌ ‌infection,‌ ‌adoptive‌ ‌cell‌ ‌transfer‌ ‌into‌ ‌the‌ ‌peritoneum‌‌ 

and‌ ‌experimental‌ ‌diets‌ ‌were‌ ‌performed‌ ‌at‌ ‌the‌ ‌Max‌ ‌Planck‌ ‌Institute‌ ‌for‌ ‌Immunobiology‌ ‌and‌ 

Epigenetics.‌ ‌Animal‌ ‌care‌ ‌was‌ ‌undertaken‌ ‌in‌ ‌accordance‌ ‌with‌ ‌Institutional‌ ‌Animal‌ ‌Use‌ ‌and‌ ‌Care‌‌ 

Guidelines‌ ‌with‌ ‌approval‌ ‌by‌ ‌the‌ ‌animal‌ ‌care‌ ‌committee‌ ‌of‌ ‌the‌ ‌Regierungspraesidium‌ ‌Freiburg,‌‌ 

Germany.‌ ‌All‌ ‌animals‌ ‌used‌ ‌for‌ ‌tissue‌ ‌harvest‌ ‌or‌ ‌experimental‌ ‌procedures‌ ‌were‌ ‌female‌ ‌and‌ ‌aged‌ 

between‌ ‌6-8‌ ‌weeks‌ ‌at‌ ‌the‌ ‌start‌ ‌of‌ ‌the‌ ‌experiment.‌ ‌Animals‌ ‌were‌ ‌humanely‌ ‌sacrificed‌ ‌by‌ ‌carbon‌‌ 

dioxide‌ ‌asphyxiation‌ ‌followed‌ ‌by‌ ‌cervical‌ ‌dislocation‌ ‌and‌ ‌tissue‌ ‌dissection.‌ ‌Mice‌ ‌were‌ ‌bred‌ ‌under‌‌ 

specific‌ ‌pathogen‌ ‌free‌ ‌standards.‌ ‌ 

For‌ ‌skin‌ ‌wound‌ ‌model,‌ ‌B6.RFP‌ ‌mice‌ ‌with‌ ‌ubiquitous‌ ‌tdRFP‌ ‌expression‌ ‌were‌ ‌generated‌ ‌by‌‌ 

germline‌ ‌excision‌ ‌of‌ ‌the‌ ‌loxP‌ ‌flanked‌ ‌STOP‌ ‌cassette‌ ‌(LSL)‌ ‌in‌ ‌R26‌LSL-tdRFP‌‌ ‌animals‌ ‌‌(‌60‌)‌‌ ‌employing‌‌ 

the‌ ‌pgk-Cre‌ ‌transgene‌ ‌‌(‌61‌)‌.‌ ‌This‌ ‌strain,‌ ‌alongside‌ ‌recipient‌ ‌C57BL/6JRj‌ ‌(RRID:‌ ‌MGI:2670020)‌‌ 
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‌ 

mice‌ ‌were‌ ‌housed‌ ‌in‌ ‌individually‌ ‌ventilated‌ ‌cages‌ ‌under‌ ‌specific-pathogen‌ ‌free‌ ‌environment‌ ‌at‌‌ 

the‌ ‌Experimental‌ ‌Center‌ ‌of‌ ‌the‌ ‌Medical‌ ‌Faculty,‌ ‌TU‌ ‌Dresden.‌ ‌Wound‌ ‌and‌ ‌adoptive‌ ‌cell‌ ‌transfer‌‌ 

experiments‌ ‌were‌ ‌conducted‌ ‌according‌ ‌to‌ ‌institutional‌ ‌guidelines‌ ‌and‌ ‌in‌ ‌accordance‌ ‌with‌ ‌the‌‌ 

German‌ ‌Law‌ ‌for‌ ‌Protection‌ ‌of‌ ‌Animals‌ ‌approved‌ ‌by‌ ‌Landesdirektion‌ ‌Dresden‌ ‌(TVV‌ ‌62/2015).‌‌ ‌  

Adipose‌ ‌tissue‌ ‌infection‌ ‌and‌ ‌cell‌ ‌isolation‌ ‌ 

Experimental‌ ‌infections‌ ‌ 

L3‌ ‌infectious‌ ‌stage‌ ‌‌Heligmosomoides‌ ‌polygyrus‌‌ ‌(‌H.‌ ‌poly‌)‌ ‌larvae‌ ‌were‌ ‌kindly‌ ‌provided‌ ‌by‌ ‌Dr.‌‌ 

Joseph‌ ‌Urban‌ ‌Jr,‌ ‌USDA,‌ ‌ARS,‌ ‌Beltsville‌ ‌Human‌ ‌Nutrition‌ ‌Research‌ ‌Center,‌ ‌Diet‌ ‌Genomics‌ ‌and‌‌ 

Immunology‌ ‌Laboratory,‌ ‌Beltsville,‌ ‌USA‌  ‌and‌ ‌maintained‌ ‌at‌ ‌4°C‌ ‌until‌ ‌required.‌ ‌To‌ ‌induce‌ ‌‌H.‌ ‌poly‌‌ 

infection‌ ‌mice‌ ‌were‌ ‌gavaged‌ ‌with‌ ‌200‌ ‌L3‌ ‌infectious‌ ‌stage‌ ‌larvae‌ ‌in‌ ‌PBS.‌ ‌Mice‌ ‌were‌ ‌left‌ ‌for‌ ‌13‌‌ 

days‌ ‌before‌ ‌being‌ ‌sacrificed.‌ ‌ 

A‌ ‌wild‌ ‌type‌ ‌strain‌ ‌of‌ ‌‌Listeria‌ ‌monocytogenes‌‌ ‌(‌L.‌ ‌mono‌)‌ ‌was‌ ‌used‌ ‌for‌ ‌infections.‌ ‌Mice‌ ‌were‌‌ 

infected‌ ‌subcutaneously‌ ‌on‌ ‌the‌ ‌footpad‌ ‌with‌ ‌a‌ ‌sublethal‌ ‌dose‌ ‌of‌ ‌1‌ ‌×‌ ‌10‌6‌‌ ‌colony-forming‌ ‌units‌‌ 

(CFU).‌ ‌Mice‌ ‌were‌ ‌left‌ ‌for‌ ‌1‌ ‌day‌ ‌before‌ ‌being‌ ‌sacrificed.‌ ‌ 

Stromal‌ ‌vascular‌ ‌fraction‌ ‌isolation‌ ‌ 

For‌ ‌isolation‌ ‌of‌ ‌cells‌ ‌from‌ ‌mesenteric‌ ‌adipose‌ ‌tissue,‌ ‌mice‌ ‌were‌ ‌euthanized‌ ‌and‌ ‌transcardially‌‌ 

perfused‌ ‌with‌ ‌ice-cold‌ ‌PBS.‌ ‌Adipose‌ ‌tissue‌ ‌was‌ ‌separated‌ ‌from‌ ‌lymph‌ ‌nodes‌ ‌and‌ ‌surrounding‌‌ 

organs‌ ‌(i.e.‌ ‌intestine,‌ ‌omentum),‌ ‌minced‌ ‌and‌ ‌digested‌ ‌in‌ ‌low‌ ‌glucose‌ ‌DMEM‌ ‌(Gibco)‌ ‌containing‌‌ 

25‌ ‌mM‌ ‌HEPES,‌ ‌1%‌ ‌low‌ ‌fatty‌ ‌acid‌ ‌bovine‌ ‌serum‌ ‌albumin,‌ ‌2‌ ‌mM‌ ‌L-glutamine,‌ ‌100‌ ‌U/mL‌‌ 

Penicillin/Streptomycin,‌ ‌0.2‌ ‌mg/mL‌ ‌Liberase‌ ‌TL‌ ‌(Roche)‌ ‌and‌ ‌0.25‌ ‌mg/mL‌ ‌DNase‌ ‌I‌ ‌(Roche)‌ ‌for‌‌ 

30-40‌ ‌min‌ ‌at‌ ‌37°C‌ ‌with‌ ‌gentle‌ ‌rotation.‌ ‌After‌ ‌digestion‌ ‌DMEM‌ ‌containing‌ ‌2‌ ‌mM‌ ‌EDTA‌ ‌was‌ ‌added‌‌ 

and‌ ‌suspension‌ ‌filtered‌ ‌through‌ ‌a‌ ‌70‌ ‌µm‌ ‌strainer.‌ ‌Cells‌ ‌in‌ ‌stromal‌ ‌vascular‌ ‌fraction‌ ‌(SVF)‌ ‌were‌‌ 

separated‌ ‌from‌ ‌the‌ ‌adipocyte‌ ‌layer‌ ‌by‌ ‌centrifugation.‌ ‌ 

For‌ ‌isolation‌ ‌of‌ ‌cells‌ ‌from‌ ‌popliteal‌ ‌adipose‌ ‌tissue,‌ ‌mice‌ ‌were‌ ‌euthanized‌ ‌and‌ ‌adipose‌ ‌tissue‌ ‌was‌‌ 

separated‌ ‌from‌ ‌lymph‌ ‌nodes‌ ‌and‌ ‌surrounding‌ ‌muscle.‌ ‌Isolated‌ ‌tissue‌ ‌was‌ ‌then‌ ‌minced‌ ‌and‌‌ 

digested‌ ‌in‌ ‌DMEM‌ ‌(Gibco)‌ ‌containing‌ ‌2.5%‌ ‌bovine‌ ‌serum‌ ‌albumin,‌ ‌2‌ ‌mM‌ ‌L-glutamine,‌ ‌100‌ ‌U/mL‌‌ 

Penicillin/Streptomycin,‌ ‌2‌ ‌mg/mL‌ ‌Collagenase‌ ‌I‌ ‌(Thermo)‌ ‌and‌ ‌2‌ ‌mg/mL‌ ‌Collagenase‌ ‌II‌ ‌(Thermo)‌‌ 

for‌ ‌45‌ ‌min‌ ‌at‌ ‌37°C‌ ‌with‌ ‌gentle‌ ‌rotation.‌ ‌During‌ ‌the‌ ‌last‌ ‌15‌ ‌minutes‌ ‌of‌ ‌incubation‌ ‌2‌ ‌mM‌ ‌EDTA‌ ‌was‌‌ 

added‌ ‌to‌ ‌the‌ ‌media.‌ ‌Finally,‌ ‌the‌ ‌cell‌ ‌suspension‌ ‌was‌ ‌filtered‌ ‌through‌ ‌a‌ ‌100‌ ‌µm‌ ‌strainer.‌ ‌Cells‌ ‌in‌‌ 

stromal‌ ‌vascular‌ ‌fraction‌ ‌(SVF)‌ ‌were‌ ‌separated‌ ‌from‌ ‌the‌ ‌adipocyte‌ ‌layer‌ ‌by‌ ‌centrifugation.‌‌ ‌  
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‌ 

Single‌ ‌live‌ ‌cells‌ ‌were‌ ‌further‌ ‌purified‌ ‌via‌ ‌fluorescent‌ ‌activated‌ ‌cell‌ ‌sorting,‌ ‌excluding‌ ‌dead‌ ‌cells‌‌ 

labelled‌ ‌with‌ ‌LIVE/DEAD‌ ‌Fixable‌ ‌Aqua‌ ‌Dead‌ ‌Cell‌ ‌Stain‌ ‌Kit‌ ‌and‌ ‌doublets‌ ‌based‌ ‌on‌ ‌side‌ ‌and‌‌ 

forward‌ ‌light‌ ‌scatter.‌‌ ‌  

Single‌ ‌cell‌ ‌barcoding‌ ‌and‌ ‌library‌ ‌preparation‌ ‌ 

scRNA-seq‌ ‌of‌ ‌SVF‌ ‌cells‌ ‌was‌ ‌performed‌ ‌using‌ ‌a‌ ‌10X‌ ‌Genomics‌ ‌Chromium‌ ‌Controller.‌ ‌Single‌‌ 

cells‌ ‌were‌ ‌processed‌ ‌with‌ ‌GemCode‌ ‌Single‌ ‌Cell‌ ‌Platform‌ ‌using‌ ‌GemCode‌ ‌Gel‌ ‌Beads,‌ ‌Chip‌ ‌and‌‌ 

Library‌ ‌Kits‌ ‌(v2)‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌protocol‌ ‌loading‌ ‌sufficient‌ ‌cells‌ ‌to‌ ‌obtain‌ ‌5000‌ ‌cells‌‌ 

per‌ ‌lane‌ ‌following‌ ‌manufacturer’s‌ ‌guidelines.‌ ‌Libraries‌ ‌were‌ ‌sequenced‌ ‌on‌ ‌HiSeq‌ ‌3000‌‌ 

(Illumina)‌ ‌to‌ ‌achieve‌ ‌50000‌ ‌reads‌ ‌per‌ ‌cell.‌ ‌ 

Macrophage‌ ‌isolation‌ ‌and‌ ‌adoptive‌ ‌cell‌ ‌transfer‌ 

Monocyte‌ ‌isolation‌ ‌and‌ ‌transfer‌ ‌ 

A‌ ‌single‌ ‌cell‌ ‌suspension‌ ‌from‌ ‌bone‌ ‌marrow‌ ‌isolated‌ ‌from‌ ‌freshly‌ ‌sacrificed‌ ‌CD45.1‌+‌‌ ‌or‌ ‌IL-4Rɑ‌-/-‌ ‌ 

mice‌ ‌was‌ ‌prepared‌ ‌by‌ ‌flushing‌ ‌the‌ ‌the‌ ‌tibia‌ ‌and‌ ‌femurs‌ ‌of‌ ‌dissected‌ ‌animals‌ ‌with‌ ‌PBS,‌ ‌then‌‌ 

passing‌ ‌resulting‌ ‌suspension‌ ‌through‌ ‌a‌ ‌70‌ ‌µm‌ ‌strainer.‌ ‌Red‌ ‌blood‌ ‌cells‌ ‌were‌ ‌removed‌ ‌by‌ ‌brief‌‌ 

incubation‌ ‌in‌ ‌ACK‌ ‌Lysing‌ ‌Buffer‌ ‌(ThermoFisher‌ ‌scientific).‌ ‌Cell‌ ‌suspension‌ ‌was‌ ‌incubated‌ ‌in‌ ‌1%‌‌ 

fetal‌ ‌bovine‌ ‌serum‌ ‌in‌ ‌PBS‌ ‌for‌ ‌30‌ ‌min‌ ‌on‌ ‌ice‌ ‌with‌ ‌fluorochrome-conjugate‌ ‌monoclonal‌ ‌antibodies‌‌ 

plus‌ ‌anti-CD16/CD32‌ ‌(Biozol)‌ ‌and‌ ‌finally‌ ‌dead‌ ‌cells‌ ‌were‌ ‌labelled‌ ‌with‌ ‌LIVE/DEAD‌ ‌Fixable‌ ‌Aqua‌‌ 

Dead‌ ‌Cell‌ ‌Stain‌ ‌Kit‌ ‌(Thermo‌ ‌scientific)‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌instructions.‌ ‌After‌ ‌staining,‌‌ 

bone‌ ‌marrow‌ ‌cells‌ ‌were‌ ‌maintained‌ ‌in‌ ‌1%‌ ‌fetal‌ ‌bovine‌ ‌serum‌ ‌in‌ ‌PBS‌ ‌at‌ ‌4°C,‌ ‌then‌ ‌target‌‌ 

population‌ ‌isolated‌ ‌using‌ ‌a‌ ‌BD‌ ‌FACSaria‌TM‌‌ ‌Fusion‌ ‌cell‌ ‌sorter‌ ‌into‌ ‌50%‌ ‌fetal‌ ‌bovine‌ ‌serum‌ ‌in‌‌ 

PBS.‌ ‌Used‌ ‌fluorochrome-conjugate‌ ‌monoclonal‌ ‌antibodies‌ ‌included:‌ ‌CD11b‌ ‌(Biolegend,‌ ‌clone:‌‌ 

M1/70),‌ ‌F4/80‌ ‌(Biozol,‌ ‌clone:‌ ‌BM8),‌ ‌SiglecF‌ ‌(BD‌ ‌Horizon,‌ ‌clone:‌ ‌E50-2440),‌ ‌Ly6G‌ ‌(BioLegend,‌‌ 

clone:‌ ‌1A8),‌ ‌CD11c‌ ‌(BioLegend,‌ ‌clone:‌ ‌N418),‌ ‌MHC-II‌ ‌(BioLegend,‌ ‌clone:‌ ‌M5/114.15.2),‌ ‌Ly6C‌ 

(BioLegend,‌ ‌clone:‌ ‌HK1.4).‌ ‌ 

Sorted‌ ‌bone‌ ‌marrow‌ ‌monocytes‌ ‌were‌ ‌stained‌ ‌with‌ ‌Cell‌ ‌Trace‌ ‌Violet‌ ‌(Life‌ ‌Technologies),‌‌ 

following‌ ‌the‌ ‌manufacturer’s‌ ‌instructions,‌ ‌counted‌ ‌and‌ ‌then‌ ‌5x10‌5‌‌ ‌cells/mouse‌ ‌were‌ ‌transferred‌‌ 

via‌ ‌intraperitoneal‌ ‌injection‌ ‌to‌ ‌littermates‌ ‌randomly‌ ‌assigned‌ ‌to‌ ‌experimental‌ ‌groups.‌ ‌ 

Peritoneal‌ ‌macrophage‌ ‌isolation‌ ‌and‌ ‌transfer‌ ‌ 

Peritoneal‌ ‌lavage‌ ‌was‌ ‌harvested‌ ‌from‌ ‌CD45.1‌+‌‌ ‌by‌ ‌injecting‌ ‌10‌ ‌mL‌ ‌of‌ ‌ice-cold‌ ‌2%‌ ‌fetal‌ ‌bovine‌‌ 

serum‌ ‌in‌ ‌PBS‌ ‌into‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌of‌ ‌freshly‌ ‌sacrificed‌ ‌animals,‌ ‌then‌ ‌gently‌ ‌tapping‌ ‌the‌‌ 
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sides‌ ‌of‌ ‌the‌ ‌mouse‌ ‌to‌ ‌dislodge‌ ‌peritoneal‌ ‌cells,‌ ‌followed‌ ‌by‌ ‌slow‌ ‌retrieval‌ ‌of‌ ‌lavage‌ ‌solution.‌‌ 

Cells‌ ‌were‌ ‌recovered‌ ‌via‌ ‌centrifugation‌ ‌and‌ ‌stained‌ ‌as‌ ‌described‌ ‌above‌ ‌using‌ ‌a‌ ‌biotinylated‌‌ 

monoclonal‌ ‌antibody‌ ‌against‌ ‌TIM4‌ ‌(Miltenyi‌ ‌Biotec,‌ ‌clone:‌ ‌REA999),‌ ‌the‌ ‌isolated‌ ‌with‌ ‌anti-biotin‌‌ 

Microbeads‌ ‌(Miltenyi‌ ‌Biotec,‌ ‌Cat#‌ ‌130-090-485)‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌instructions.‌‌ 

Purified‌ ‌TIM4‌+‌‌ ‌tissue‌ ‌resident‌ ‌macrophages‌ ‌were‌ ‌then‌ ‌stained‌ ‌with‌ ‌Cell‌ ‌Trace‌ ‌Violet‌ ‌(Life‌‌ 

Technologies),‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌instructions,‌ ‌counted‌ ‌and‌ ‌then‌ ‌5x10‌5‌‌ ‌cells/mouse‌‌ 

were‌ ‌transferred‌ ‌via‌ ‌intraperitoneal‌ ‌injection‌ ‌to‌ ‌littermates‌ ‌randomly‌ ‌assigned‌ ‌to‌ ‌experimental‌‌ 

groups.‌ ‌ 

Monocyte‌ ‌recovery‌ ‌and‌ ‌RELMα‌ ‌staining‌ ‌ 

Peritoneal‌ ‌lavage‌ ‌was‌ ‌harvested‌ ‌from‌ ‌mice‌ ‌2,‌ ‌4‌ ‌and‌ ‌8‌ ‌days‌ ‌post‌ ‌adoptive‌ ‌cell‌ ‌transfer,‌ ‌by‌‌ 

injecting‌ ‌10‌ ‌mL‌ ‌of‌ ‌ice-cold‌ ‌2%‌ ‌fetal‌ ‌bovine‌ ‌serum‌ ‌in‌ ‌PBS‌ ‌into‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌of‌ ‌freshly‌‌ 

sacrificed‌ ‌animals,‌ ‌then‌ ‌gently‌ ‌tapping‌ ‌the‌ ‌sides‌ ‌of‌ ‌the‌ ‌mouse‌ ‌to‌ ‌dislodge‌ ‌peritoneal‌ ‌cells,‌‌ 

followed‌ ‌by‌ ‌slow‌ ‌retrieval‌ ‌of‌ ‌lavage‌ ‌solution.‌ ‌Cells‌ ‌were‌ ‌recovered‌ ‌via‌ ‌centrifugation‌ ‌and‌ ‌stained‌‌ 

for‌ ‌flow‌ ‌cytometric‌ ‌analysis‌ ‌as‌ ‌described‌ ‌above‌ ‌using‌ ‌the‌ ‌following‌ ‌fluorochrome-conjugate‌‌ 

monoclonal‌ ‌antibodies:‌ ‌TIM4‌ ‌(BioLegend,‌ ‌clone:‌ ‌F31-5G3),‌ ‌CD45.1‌ ‌(BioLegend,‌ ‌clone:‌ ‌A20)‌‌ 

and‌ ‌CD115‌ ‌(BioLegend,‌ ‌clone:‌ ‌AFS98).‌ ‌Detection‌ ‌of‌ ‌intracellular‌ ‌‌Retnla‌‌ ‌mRNA‌ ‌and‌ ‌RELMα‌‌ 

protein‌ ‌was‌ ‌performed‌ ‌using‌ ‌PrimeFlow‌ ‌RNA‌ ‌Assays‌ ‌(Thermo‌ ‌scientific)‌ ‌following‌ ‌the‌‌ 

manufacturer’s‌ ‌instructions.‌ ‌Briefly,‌ ‌surface-stained‌ ‌peritoneal‌ ‌lavage‌ ‌cells‌ ‌were‌ ‌fixed‌ ‌and‌‌ 

permeabilized‌ ‌using‌ ‌the‌ ‌kit’s‌ ‌reagents,‌ ‌then‌ ‌incubated‌ ‌with‌ ‌anti-RELMα‌ ‌primary‌ ‌antibody‌‌ 

(Peprotech,‌ ‌Cat#‌ ‌500-P214),‌ ‌and‌ ‌subsequently‌ ‌an‌ ‌anti-rabbit‌ ‌secondary‌ ‌antibody‌ ‌(Life‌‌ 

technologies).‌ ‌Probe‌ ‌hybridization,‌ ‌signal‌ ‌amplification‌ ‌and‌ ‌fluorochrome‌ ‌conjugation‌ ‌with‌‌ 

PrimeFlow‌ ‌target-specific‌ ‌probes‌ ‌for‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Actb‌‌ ‌(as‌ ‌a‌ ‌positive‌ ‌control)‌ ‌were‌ ‌carried‌ ‌out‌‌ 

over‌ ‌the‌ ‌course‌ ‌of‌ ‌2‌ ‌days‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌guidelines.‌ ‌Data‌ ‌from‌ ‌stained‌ ‌cells‌ ‌were‌‌ 

collected‌ ‌using‌ ‌LSR‌ ‌Fortessa‌ ‌flow‌ ‌cytometers‌ ‌(BDBiosciences)‌ ‌with‌ ‌FACSDiva‌ ‌v.‌ ‌9.0‌ ‌and‌ ‌data‌‌ 

were‌ ‌processed‌ ‌using‌ ‌FlowJo‌ ‌v.‌ ‌10.6.‌ ‌ 

Dietary‌ ‌intervention‌ ‌and‌ ‌large‌ ‌intestine‌ ‌lamina‌ ‌propria‌ ‌cell‌ ‌isolation‌ ‌ 

High‌ ‌fat‌ ‌diet‌ ‌treatment‌ ‌ 

Obesity‌ ‌was‌ ‌induced‌ ‌by‌ ‌ad‌ ‌libitum‌ ‌feeding‌ ‌of‌ ‌C57/BL6‌ ‌mice‌ ‌for‌ ‌12‌ ‌week‌ ‌with‌ ‌irradiated‌ ‌high‌ ‌fat‌‌ 

diet‌ ‌(Rodent‌ ‌Diet‌ ‌60%‌ ‌kcal‌ ‌from‌ ‌fat,‌ ‌Research‌ ‌Diets,‌ ‌Inc.,‌ ‌Cat‌ ‌#D12492).‌ ‌Control‌ ‌diet‌ ‌(chow)‌‌ 

containing‌ ‌24%‌ ‌protein,‌ ‌47.5%‌ ‌carbohydrate,‌ ‌and‌ ‌4.9%‌ ‌fat,‌ ‌was‌ ‌given‌ ‌to‌ ‌age‌ ‌and‌ ‌sex‌ ‌matched‌‌ 

animals‌ ‌as‌ ‌a‌ ‌control‌ ‌group.‌‌ ‌  
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Cell‌ ‌isolation‌ ‌ 

At‌ ‌the‌ ‌end‌ ‌of‌ ‌treatment,‌ ‌animals‌ ‌were‌ ‌sacrificed,‌ ‌and‌ ‌cells‌ ‌from‌ ‌large‌ ‌intestine‌ ‌lamina‌ ‌propria‌‌ 

recovered.‌ ‌Briefly,‌ ‌the‌ ‌large‌ ‌intestine‌ ‌was‌ ‌separated‌ ‌at‌ ‌the‌ ‌junction‌ ‌with‌ ‌the‌ ‌cecum,‌ ‌and‌ ‌all‌‌ 

remaining‌ ‌connective‌ ‌and‌ ‌fat‌ ‌tissue‌ ‌removed.‌ ‌Isolated‌ ‌intestine‌ ‌was‌ ‌then‌ ‌opened‌ ‌longitudinally,‌‌ 

cleaned,‌ ‌cut‌ ‌into‌ ‌0.4-1‌ ‌cm‌ ‌pieces‌ ‌and‌ ‌washed‌ ‌with‌ ‌ice-cold‌ ‌25‌ ‌mM‌ ‌HEPES‌ ‌in‌ ‌PBS.‌ ‌Tissue‌‌ 

fragments‌ ‌were‌ ‌then‌ ‌placed‌ ‌in‌ ‌RPMI‌ ‌(Gibco)‌ ‌medium‌ ‌containing‌ ‌3%‌ ‌fetal‌ ‌bovine‌ ‌serum,‌ ‌25‌ ‌mM‌ 

HEPES,‌ ‌5‌ ‌mM‌ ‌EDTA‌ ‌plus‌ ‌3.5‌ ‌mM‌ ‌Dithiothreitol‌ ‌and‌ ‌incubated‌ ‌for‌ ‌15‌ ‌min‌ ‌in‌ ‌37°C‌ ‌with‌ ‌gentle‌‌ 

agitation.‌ ‌Tissue‌ ‌fragments‌ ‌were‌ ‌recovered‌ ‌via‌ ‌filtering‌ ‌and‌ ‌vigorously‌ ‌washed‌ ‌thrice‌ ‌with‌ ‌2‌ ‌mM‌‌ 

EDTA‌ ‌in‌ ‌RPMI,‌ ‌discarding‌ ‌supernatants.‌ ‌Washed‌ ‌fragments‌ ‌were‌ ‌minced‌ ‌then‌ ‌incubated‌ ‌in‌‌ 

RPMI‌ ‌supplemented‌ ‌with‌ ‌0.5%‌ ‌fetal‌ ‌bovine‌ ‌serum,‌ ‌2‌ ‌mg/mL‌ ‌Collagenase‌ ‌VIII‌ ‌(Roche)‌ ‌and‌  ‌0.5‌‌ 

mg/mL‌ ‌DNAse‌ ‌I‌ ‌(Roche)‌ ‌for‌ ‌30-40‌ ‌min‌ ‌at‌ ‌37ºC‌ ‌with‌ ‌gentle‌ ‌agitation.‌ ‌Cell‌ ‌suspension‌ ‌and‌ ‌tissue‌‌ 

fragments‌ ‌were‌ ‌filtered‌ ‌through‌ ‌a‌ ‌70‌ ‌μm‌ ‌strainer,‌ ‌and‌ ‌dissociated‌ ‌with‌ ‌the‌ ‌rubber‌ ‌end‌ ‌of‌ ‌a‌‌ 

syringe‌ ‌plunger.‌ ‌Resulting‌ ‌cell‌ ‌suspension‌ ‌was‌ ‌centrifuged‌ ‌and‌ ‌further‌ ‌filtered‌ ‌through‌ ‌a‌ ‌40‌ ‌μm‌‌ 

cell‌ ‌strainer.‌ ‌Finally,‌ ‌live‌ ‌cells‌ ‌were‌ ‌passed‌ ‌through‌ ‌a‌ ‌Percoll‌ ‌gradient‌ ‌(35%/70%),‌ ‌recovered‌‌ 

from‌ ‌the‌ ‌interface,‌ ‌washed‌ ‌and‌ ‌counted.‌ ‌ 

Single‌ ‌cell‌ ‌barcoding‌ ‌and‌ ‌library‌ ‌preparation‌ ‌ 

Lamina‌ ‌propria‌ ‌cells‌ ‌were‌ ‌prepared‌ ‌for‌ ‌cell‌ ‌sorting‌ ‌as‌ ‌described‌ ‌above,‌ ‌using‌ ‌only‌ ‌LIVE/DEAD‌‌ 

dye‌ ‌and‌ ‌an‌ ‌anti-CD45‌ ‌(BioLegend,‌ ‌clone:‌ ‌30-F11)‌ ‌fluorochrome-conjugated‌ ‌antibody.‌‌ 

Recovered‌ ‌CD45‌ ‌positive‌ ‌cells‌ ‌were‌ ‌prepared‌ ‌for‌ ‌scRNAseq‌ ‌analysis‌ ‌using‌ ‌a‌ ‌10X‌ ‌Genomics‌‌ 

Chromium‌ ‌Controller.‌ ‌Single‌ ‌cells‌ ‌were‌ ‌processed‌ ‌with‌ ‌GemCode‌ ‌Single‌ ‌Cell‌ ‌Platform‌ ‌using‌‌ 

GemCode‌ ‌Gel‌ ‌Beads,‌ ‌Chip‌ ‌and‌ ‌Library‌ ‌Kits‌ ‌(v2)‌ ‌following‌ ‌the‌ ‌manufacturer’s‌ ‌protocol.‌ ‌Libraries‌‌ 

were‌ ‌sequenced‌ ‌on‌ ‌HiSeq‌ ‌3000‌ ‌(Illumina).‌ ‌ 

Skin‌ ‌wounding‌ ‌and‌ ‌cell‌ ‌isolation‌ ‌ 

Skin‌ ‌wounding‌ ‌and‌ ‌tdRFP‌ ‌monocyte‌ ‌adoptive‌ ‌transfer‌‌ ‌  

Monocytes‌ ‌were‌ ‌isolated‌ ‌from‌ ‌B6.RFP‌ ‌mice‌ ‌via‌ ‌Immuno-magnetic‌ ‌depletion‌ ‌of‌ ‌whole‌ ‌bone‌‌ 

marrow‌ ‌by‌ ‌incubating‌ ‌samples‌ ‌with‌ ‌biotinylated‌ ‌antibodies‌ ‌against:‌ ‌CD3‌ ‌(eBioscience,‌ ‌clone:‌‌ 

145-2C11),‌ ‌CD4‌ ‌(eBioscience,‌ ‌clone:‌ ‌GK1.5),‌ ‌CD8‌ ‌(eBioscience,‌ ‌clone:‌ ‌53-6.7),‌ ‌CD45R‌‌ 

(Biolegend,‌ ‌clone:‌ ‌RA3-6B2),‌ ‌CD19‌ ‌(eBioscience,‌ ‌clone:‌ ‌eBio1D3),‌ ‌NK1.1‌ ‌(eBioscience,‌ ‌clone:‌‌ 

PK136),‌ ‌Ter119‌ ‌(Biolegend),‌ ‌CD49b‌ ‌(Biolegend,‌ ‌clone:‌ ‌DX5),‌ ‌Ly6G‌ ‌(Biolegend,‌ ‌clone:‌ ‌1A8)‌ ‌and‌‌ 

CD117‌ ‌(Biolgend,‌ ‌clone:‌ ‌2B8).‌ ‌Anti-Biotin‌ ‌microbeads‌ ‌(Miltenyi)‌ ‌were‌ ‌then‌ ‌used‌ ‌according‌ ‌to‌ ‌the‌‌ 
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manufacturer's‌ ‌protocol.‌ ‌Enrichment‌ ‌was‌ ‌validated‌ ‌by‌ ‌staining‌ ‌purified‌ ‌bone‌ ‌marrow‌ ‌monocytes‌‌ 

with‌ ‌antibodies‌ ‌against‌ ‌CD115‌ ‌(Biolegend,‌ ‌clone:‌ ‌AFS98),‌ ‌Ly6C‌ ‌(BD‌ ‌Bioscience,‌ ‌clone:‌ ‌AL-21).‌ ‌ 

Wounding‌ ‌and‌ ‌preparation‌ ‌of‌ ‌wound‌ ‌tissue‌ ‌was‌ ‌performed‌ ‌as‌ ‌previously‌ ‌described‌ ‌‌(‌62‌)‌.‌ ‌Briefly,‌‌ 

mice‌ ‌were‌ ‌anesthetized‌ ‌by‌ ‌i.p.‌ ‌injection‌ ‌of‌ ‌Ketanest/Rompun‌ ‌(Park‌ ‌Davis,‌ ‌Bayer).‌ ‌Back‌ ‌skin‌ ‌was‌‌ 

shaved‌ ‌and‌ ‌full-thickness‌ ‌excisional‌ ‌wounds‌ ‌were‌ ‌created‌ ‌using‌ ‌a‌ ‌standard‌ ‌biopsy‌ ‌puncher‌ 

(Stiefel).‌ ‌Mice‌ ‌were‌ ‌housed‌ ‌individually‌ ‌during‌ ‌the‌ ‌entire‌ ‌time‌ ‌course‌ ‌of‌ ‌healing.‌ ‌Monocytes‌ ‌from‌‌ 

female‌ ‌B6.RFP‌ ‌mice‌ ‌were‌ ‌isolated‌ ‌as‌ ‌described‌ ‌above,‌ ‌counted‌ ‌and‌ ‌then‌ ‌3x10‌6‌‌ ‌cells‌ ‌were‌‌ 

adoptively‌ ‌transferred‌ ‌into‌ ‌each‌ ‌previously‌ ‌wounded‌ ‌C57/BL6‌ ‌recipient‌ ‌via‌ ‌intravenous‌ ‌injection,‌‌ 

either‌ ‌2‌ ‌or‌ ‌12‌ ‌days‌ ‌after‌ ‌injury.‌ ‌Wounds‌ ‌were‌ ‌excised‌ ‌4‌ ‌or‌ ‌14‌ ‌days‌ ‌after‌ ‌injury.‌ ‌ 

Cell‌ ‌isolation‌ ‌ 

Excised‌ ‌wound‌ ‌tissue‌ ‌was‌ ‌sectioned‌ ‌with‌ ‌a‌ ‌scalpel,‌ ‌placed‌ ‌in‌ ‌DMEM‌ ‌with‌ ‌30‌ ‌µg/mL‌ ‌Liberase‌‌ 

TM‌ ‌Research‌ ‌Grade‌ ‌(Roche‌ ‌Applied‌ ‌Science)‌ ‌and‌ ‌incubated‌ ‌at‌ ‌37°C‌ ‌for‌ ‌90‌ ‌min‌ ‌(shaking).‌‌ 

Digested‌ ‌wound‌ ‌tissue‌ ‌was‌ ‌mechanically‌ ‌disrupted‌ ‌for‌ ‌5‌ ‌min‌ ‌using‌ ‌the‌ ‌Medimachine‌ ‌System‌‌ 

(BD‌ ‌Biosciences).‌ ‌Cells‌ ‌were‌ ‌passed‌ ‌through‌ ‌70‌ ‌µm‌ ‌and‌ ‌40‌ ‌µm‌ ‌cell‌ ‌strainer‌ ‌and‌ ‌washed‌ ‌with‌‌ 

1%‌ ‌bovine‌ ‌serum‌ ‌albumin‌ ‌and‌ ‌2‌ ‌mM‌ ‌EDTA‌ ‌in‌ ‌PBS.‌ ‌Isolated‌ ‌cells‌ ‌were‌ ‌stained‌ ‌for‌ ‌flow‌‌ 

cytometry‌ ‌and‌ ‌cell‌ ‌sorting‌ ‌as‌ ‌described‌ ‌above,‌ ‌using‌ ‌the‌ ‌following‌ ‌fluorochrome-conjugated‌‌ 

antibodies:‌ ‌CD11b‌ ‌(eBioscience,‌ ‌clone:‌ ‌M1/70),‌ ‌F4/80‌ ‌(eBioscience,‌ ‌clone:‌ ‌BM8‌ ‌or‌ ‌AbD‌‌ 

Serotec,‌ ‌clone:‌ ‌CI:A3-1),‌ ‌MHC-II‌ ‌(eBioscience,‌ ‌clone:‌ ‌M5/114.15.2),‌ ‌Ly6C‌ ‌(BD,‌ ‌clone:‌ ‌AL-21),‌‌ 

CD45‌ ‌(eBioscience,‌ ‌clone:‌ ‌30-F11)‌ ‌and‌ ‌CD301b‌ ‌(Biolegend,‌ ‌clone:‌ ‌URA-1).‌ ‌Dead‌ ‌cells‌ ‌were‌‌ 

excluded‌ ‌by‌ ‌labelling‌ ‌them‌ ‌with‌ ‌50‌ ‌ng/mL‌ ‌DAPI‌ ‌(ThermoFisher‌ ‌scientific).‌‌ ‌  

Single‌ ‌cell‌ ‌barcoding‌ ‌and‌ ‌library‌ ‌preparation‌ ‌ 

Single‌ ‌macrophages‌ ‌from‌ ‌wounded‌ ‌skin‌ ‌were‌ ‌index-sorted‌‌ ‌(BD‌ ‌FACS‌ ‌Aria‌ ‌II‌ ‌SORP)‌ ‌‌into‌ ‌384‌ ‌well‌‌ 

plates‌ ‌containing‌ ‌0.5‌ ‌µl‌ ‌of‌ ‌nuclease‌ ‌free‌ ‌water‌ ‌with‌ ‌0.2%‌ ‌Triton-X‌ ‌100‌ ‌and‌ ‌4‌ ‌U‌ ‌murine‌ ‌RNase‌‌ 

Inhibitor‌ ‌(NEB),‌ ‌spun‌ ‌down‌ ‌and‌ ‌frozen‌ ‌at‌ ‌−80°C.‌ ‌Libraries‌ ‌were‌ ‌prepared‌ ‌following‌ ‌the‌‌ 

Smart-seq2‌ ‌workflow‌ ‌‌(‌63‌)‌.‌ ‌Briefly,‌ ‌after‌ ‌thawing,‌ ‌0.5‌ ‌µl‌ ‌of‌ ‌a‌ ‌primer‌ ‌mix‌ ‌were‌ ‌added‌ ‌(5‌ ‌mM‌ ‌dNTP‌‌ 

(Invitrogen),‌ ‌0.5‌ ‌µM‌ ‌dT-primer‌‌ 

(C6-aminolinker-AAGCAGTGGTATCAACGCAGAGTCGACTTTTTTTTTTTTTTTTTTTTTTTTTTT‌

TTTVN),‌ ‌1‌ ‌U‌ ‌RNase‌ ‌Inhibitor‌ ‌(NEB)).‌ ‌RNA‌ ‌was‌ ‌denatured‌ ‌for‌ ‌3‌ ‌minutes‌ ‌at‌ ‌72°C‌ ‌and‌ ‌the‌ ‌reverse‌‌ 

transcription‌ ‌(RT)‌ ‌was‌ ‌performed‌ ‌at‌ ‌42°C‌ ‌for‌ ‌90‌ ‌min‌ ‌after‌ ‌filling‌ ‌up‌ ‌to‌ ‌10‌ ‌µl‌ ‌with‌ ‌RT‌ ‌buffer‌ ‌mix‌ ‌for‌‌ 

a‌ ‌final‌ ‌concentration‌ ‌of‌ ‌1x‌ ‌superscript‌ ‌II‌ ‌buffer‌ ‌(Invitrogen),‌ ‌1‌ ‌M‌ ‌betaine,‌ ‌5‌ ‌mM‌ ‌DTT,‌ ‌6‌ ‌mM‌‌ 

MgCl2,‌ ‌1‌ ‌µM‌ ‌TSO-primer‌ ‌(AAGCAGTGGTATCAACGCAGAGTACATrGrGrG),‌ ‌9‌ ‌U‌ ‌RNase‌‌ 
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‌ 

Inhibitor‌ ‌and‌ ‌90‌ ‌U‌ ‌Superscript‌ ‌II.‌ ‌After‌ ‌synthesis,‌ ‌the‌ ‌reverse‌ ‌transcriptase‌ ‌was‌ ‌inactivated‌ ‌at‌‌ 

70°C‌ ‌for‌ ‌15‌ ‌min.‌ ‌The‌ ‌cDNA‌ ‌was‌ ‌amplified‌ ‌using‌ ‌Kapa‌ ‌HiFi‌ ‌HotStart‌ ‌Readymix‌ ‌(Peqlab)‌ ‌at‌ ‌a‌ ‌final‌‌ 

1x‌ ‌concentration‌ ‌and‌ ‌0.1‌ ‌µM‌ ‌UP-primer‌ ‌(AAGCAGTGGTATCAACGCAGAGT)‌ ‌under‌ ‌following‌‌ 

cycling‌ ‌conditions:‌ ‌initial‌ ‌denaturation‌ ‌at‌ ‌98°C‌ ‌for‌ ‌3‌ ‌min,‌ ‌23‌ ‌cycles‌ ‌[98°C‌ ‌20‌ ‌sec,‌ ‌67°C‌ ‌15‌ ‌sec,‌‌ 

72°C‌ ‌6‌ ‌min]‌ ‌and‌ ‌final‌ ‌elongation‌ ‌at‌ ‌72°C‌ ‌for‌ ‌5‌ ‌min.‌ ‌The‌ ‌amplified‌ ‌cDNA‌ ‌was‌ ‌purified‌ ‌using‌ ‌1x‌‌ 

volume‌ ‌of‌ ‌hydrophobic‌ ‌Sera-Mag‌ ‌SpeedBeads‌ ‌(GE‌ ‌Healthcare)‌ ‌resuspended‌ ‌in‌ ‌a‌ ‌buffer‌‌ 

consisting‌ ‌of‌ ‌10‌ ‌mM‌ ‌Tris,‌ ‌20‌ ‌mM‌ ‌EDTA,‌ ‌18.5‌ ‌%‌ ‌(w/v)‌ ‌PEG‌ ‌8000‌ ‌and‌ ‌2‌ ‌M‌ ‌sodium‌ ‌chloride‌‌ 

solution.‌ ‌The‌ ‌cDNA‌ ‌was‌ ‌eluted‌ ‌in‌ ‌12‌ ‌µl‌ ‌nuclease‌ ‌free‌ ‌water‌ ‌and‌ ‌the‌ ‌concentration‌ ‌of‌ ‌the‌‌ 

samples‌ ‌was‌ ‌measured‌ ‌with‌ ‌a‌ ‌Tecan‌ ‌plate‌ ‌reader‌ ‌Infinite‌ ‌200‌ ‌pro‌ ‌in‌ ‌384‌ ‌well‌ ‌black‌ ‌flat‌ ‌bottom‌‌ 

low‌ ‌volume‌ ‌plates‌ ‌(Corning)‌ ‌using‌ ‌AccuBlue‌ ‌Broad‌ ‌range‌ ‌chemistry‌ ‌(Biotium).‌ ‌ 

For‌ ‌library‌ ‌preparation‌ ‌up‌ ‌to‌ ‌700‌ ‌pg‌ ‌cDNA‌ ‌was‌ ‌desiccated‌ ‌and‌ ‌rehydrated‌ ‌in‌ ‌1‌ ‌µl‌ ‌Tagmentation‌‌ 

mix‌ ‌(1x‌ ‌TruePrep‌ ‌Tagment‌ ‌Buffer‌ ‌L,‌ ‌0.1‌ ‌µl‌ ‌TruePrep‌ ‌Tagment‌ ‌Enzyme‌ ‌V50;‌ ‌from‌ ‌TruePrep‌ ‌DNA‌‌ 

Library‌ ‌Prep‌ ‌Kit‌ ‌V2‌ ‌for‌ ‌Illumina;‌ ‌Vazyme)‌ ‌and‌ ‌tagmented‌ ‌at‌ ‌55°C‌ ‌for‌ ‌5‌ ‌min.‌ ‌Subsequently,‌‌ 

Illumina‌ ‌indices‌ ‌were‌ ‌added‌ ‌during‌ ‌PCR‌ ‌(72°C‌ ‌3‌ ‌min,‌ ‌98°C‌ ‌30‌ ‌sec,‌ ‌13‌ ‌cycles‌ ‌[98°C‌ ‌10‌ ‌sec,‌‌ 

63°C‌ ‌20‌ ‌sec,‌ ‌72°C‌ ‌1‌ ‌min],‌ ‌72°C‌ ‌5‌ ‌min)‌ ‌with‌ ‌1x‌ ‌concentrated‌ ‌KAPA‌ ‌Hifi‌ ‌HotStart‌ ‌Ready‌ ‌Mix‌ ‌and‌‌ 

300‌ ‌nM‌ ‌dual‌ ‌indexing‌ ‌primers.‌ ‌After‌ ‌PCR,‌ ‌libraries‌ ‌were‌ ‌quantified‌ ‌with‌ ‌AccuBlue‌ ‌Broad‌ ‌range‌‌ 

chemistry,‌ ‌equimolarly‌ ‌pooled‌ ‌and‌ ‌purified‌ ‌twice‌ ‌with‌ ‌1x‌ ‌volume‌ ‌Sera-Mag‌ ‌SpeedBeads.‌ ‌This‌‌ 

was‌ ‌followed‌ ‌by‌ ‌Illumina‌ ‌50‌ ‌bp‌ ‌paired-end‌ ‌sequencing‌ ‌on‌ ‌a‌ ‌Novaseq6000‌ ‌aiming‌ ‌at‌ ‌an‌ ‌average‌‌ 

sequencing‌ ‌depth‌ ‌of‌ ‌0.5‌ ‌mio‌ ‌reads‌ ‌per‌ ‌cell.‌ ‌ 

Single‌ ‌cell‌ ‌RNA‌ ‌sequencing‌ ‌analysis:‌ ‌ 

Adipose‌ ‌tissue‌ ‌pre-processing‌ ‌ 

Samples‌ ‌were‌ ‌demultiplexed‌ ‌and‌ ‌aligned‌ ‌using‌ ‌Cell‌ ‌Ranger‌ ‌2.2‌ ‌(10X‌ ‌genomics)‌ ‌to‌ ‌genome‌ 

build‌ ‌GRCm38‌ ‌to‌ ‌obtain‌ ‌a‌ ‌raw‌ ‌read‌ ‌count‌ ‌matrix‌ ‌of‌ ‌barcodes‌ ‌corresponding‌ ‌to‌ ‌cells‌ ‌and‌ ‌features‌‌ 

corresponding‌ ‌to‌ ‌detected‌ ‌genes.‌ ‌Read‌ ‌count‌ ‌matrices‌ ‌were‌ ‌processed,‌ ‌analyzed‌ ‌and‌‌ 

visualized‌ ‌in‌ ‌R‌ ‌v.‌ ‌4.0.0‌ ‌‌(‌64‌)‌‌ ‌using‌ ‌Seurat‌ ‌v.‌ ‌3‌ ‌‌(‌36‌)‌‌ ‌with‌ ‌default‌ ‌parameters‌ ‌in‌ ‌all‌ ‌functions,‌ ‌unless‌‌ 

specified.‌ ‌Poor‌ ‌quality‌ ‌cells,‌ ‌with‌ ‌low‌ ‌total‌ ‌unique‌ ‌molecular‌ ‌identifier‌ ‌(UMI)‌ ‌counts‌ ‌and‌ ‌high‌‌ 

percent‌ ‌mitochondrial‌ ‌gene‌ ‌expression,‌ ‌were‌ ‌excluded.‌ ‌Filtered‌ ‌samples‌ ‌were‌ ‌normalized‌ ‌using‌‌ 

a‌ ‌regularized‌ ‌negative‌ ‌binomial‌ ‌regression‌ ‌(SCTransform)‌ ‌‌(‌65‌)‌‌ ‌and‌ ‌integrated‌ ‌with‌ ‌the‌ ‌reciprocal‌‌ 

principal‌ ‌component‌ ‌analysis‌ ‌(rpca)‌ ‌approach‌ ‌followed‌ ‌by‌ ‌mutual‌ ‌nearest‌ ‌neighbors,‌ ‌using‌ ‌50‌‌ 

principal‌ ‌components.‌ ‌Integrated‌ ‌gene‌ ‌expression‌ ‌matrices‌ ‌were‌ ‌visualized‌ ‌with‌ ‌a‌ ‌Uniform‌‌ 

Manifold‌ ‌Approximation‌ ‌and‌ ‌Projection‌ ‌(UMAP)‌ ‌‌(‌66‌)‌‌ ‌as‌ ‌a‌ ‌dimensionality‌ ‌reduction‌ ‌approach.‌‌ 

Resolution‌ ‌for‌ ‌cell‌ ‌clustering‌ ‌was‌ ‌determined‌ ‌by‌ ‌evaluating‌ ‌hierarchical‌ ‌clustering‌ ‌trees‌ ‌at‌ ‌a‌‌ 
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‌ 

range‌ ‌of‌ ‌resolutions‌ ‌(0‌ ‌-‌ ‌1.2)‌ ‌with‌ ‌Clustree‌ ‌‌(‌67‌)‌,‌ ‌selecting‌ ‌a‌ ‌value‌ ‌inducing‌ ‌minimal‌ ‌cluster‌‌ 

instability.‌ ‌Datasets‌ ‌were‌ ‌subsetted‌ ‌to‌ ‌include‌ ‌only‌ ‌macrophages,‌ ‌based‌ ‌on‌ ‌the‌ ‌expression‌ ‌of‌‌ 

key‌ ‌macrophage‌ ‌markers‌ ‌(‌Adgre1‌,‌ ‌‌Csf1r‌,‌ ‌‌H2-Ab1‌,‌ ‌‌Cd68‌,‌ ‌‌Lyz2‌,‌ ‌‌Itgam‌,‌‌ ‌Mertk‌),‌ ‌retaining‌ ‌only‌ ‌500‌‌ 

randomly‌ ‌selected‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition.‌ ‌Macrophage‌ ‌only‌ ‌datasets‌ ‌were‌ ‌then‌ ‌split‌ ‌along‌‌ 

conditions,‌ ‌and‌ ‌processed‌ ‌anew‌ ‌as‌ ‌described‌ ‌above,‌ ‌to‌ ‌obtain‌ ‌a‌ ‌reference‌ ‌macrophage‌ ‌dataset.‌ ‌ 

Differential‌ ‌gene‌ ‌expression,‌ ‌pathway‌ ‌enrichment‌ ‌analysis‌ ‌and‌ ‌gene‌ ‌set‌ ‌score‌ ‌calculation‌ ‌ 

Differentially‌ ‌expressed‌ ‌genes‌ ‌between‌ ‌clusters‌ ‌were‌ ‌identified‌ ‌as‌ ‌those‌ ‌expressed‌ ‌in‌ ‌at‌ ‌least‌‌ 

40%‌ ‌of‌ ‌cells‌ ‌with‌ ‌a‌ ‌greater‌ ‌than‌ ‌+1‌ ‌log‌ ‌fold‌ ‌change‌ ‌and‌ ‌an‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌ ‌than‌ ‌0.01,‌‌ 

using‌ ‌the‌ ‌FindMarkers‌ ‌function‌ ‌in‌ ‌Seurat‌ ‌v.3‌ ‌with‌ ‌all‌ ‌other‌ ‌parameters‌ ‌set‌ ‌to‌ ‌default.‌ ‌Ribosomal‌‌ 

protein‌ ‌genes‌ ‌were‌ ‌excluded‌ ‌from‌ ‌results.‌ ‌ 

Cluster‌ ‌specific‌ ‌genes‌ ‌were‌ ‌explored‌ ‌for‌ ‌pathway‌ ‌enrichment‌ ‌using‌ ‌StringDB‌ ‌‌(‌68‌)‌,‌ ‌where‌‌ 

characteristic‌ ‌gene‌ ‌sets‌ ‌were‌ ‌mapped‌ ‌to‌ ‌specific‌ ‌functions‌ ‌(Supplemental‌ ‌Table‌ ‌2).‌ ‌Gene‌ ‌set‌‌ 

scores‌ ‌were‌ ‌calculated‌ ‌using‌ ‌the‌ ‌AddModuleScore‌ ‌function‌ ‌in‌ ‌Seurat‌ ‌v.3‌ ‌with‌ ‌default‌‌ 

parameters.‌ ‌Briefly,‌ ‌the‌ ‌average‌ ‌expression‌ ‌levels‌ ‌of‌ ‌each‌ ‌identified‌ ‌gene‌ ‌set‌ ‌was‌ ‌calculated‌ ‌on‌‌ 

a‌ ‌single‌ ‌cell‌ ‌level‌ ‌and‌ ‌subtracted‌ ‌by‌ ‌the‌ ‌aggregated‌ ‌expression‌ ‌of‌ ‌randomly‌ ‌selected‌ ‌control‌‌ 

gene‌ ‌sets.‌ ‌For‌ ‌this‌ ‌purpose,‌ ‌target‌ ‌genes‌ ‌are‌ ‌binned‌ ‌based‌ ‌on‌ ‌averaged‌ ‌expression,‌ ‌and‌‌ 

corresponding‌ ‌control‌ ‌genes‌ ‌are‌ ‌randomly‌ ‌selected‌ ‌from‌ ‌each‌ ‌bin.‌ ‌ 

Trajectory‌ ‌inference,‌ ‌pseudotime‌ ‌calculation‌ ‌and‌ ‌trajectory‌ ‌dependent‌ ‌gene‌ ‌regulation‌ ‌ 

Macrophage‌ ‌activation‌ ‌trajectories‌ ‌and‌ ‌pseudotime‌ ‌estimations‌ ‌were‌ ‌calculated‌ ‌with‌ ‌slingshot‌ ‌v.‌‌ 

1.6.1‌ ‌‌(‌30‌)‌,‌ ‌using‌ ‌UMAP‌ ‌projection‌ ‌and‌ ‌pre-calculated‌ ‌clustering‌ ‌as‌ ‌input‌ ‌for‌ ‌getLineages‌ ‌and‌‌ 

getCurves‌ ‌functions‌ ‌with‌ ‌default‌ ‌parameters,‌ ‌setting‌ ‌origin‌ ‌to‌ ‌cluster‌ ‌4.‌ ‌Cells‌ ‌in‌ ‌the‌ ‌reference‌‌ 

dataset‌ ‌were‌ ‌then‌ ‌assigned‌ ‌an‌ ‌activation‌ ‌trajectory‌ ‌and‌ ‌corresponding‌ ‌pseudotime‌ ‌value.‌‌ ‌  

Trajectory‌ ‌dependent‌ ‌gene‌ ‌regulation‌ ‌was‌ ‌calculated‌ ‌first‌ ‌by‌ ‌extracting‌ ‌the‌ ‌2000‌ ‌genes‌ ‌with‌ ‌the‌‌ 

most‌ ‌variance‌ ‌in‌ ‌expression‌ ‌in‌ ‌cells‌ ‌participating‌ ‌in‌ ‌each‌ ‌detected‌ ‌pathway,‌ ‌then‌ ‌fitting‌ ‌general‌‌ 

additive‌ ‌models‌ ‌(GAM)‌ ‌to‌ ‌these‌ ‌genes‌ ‌and‌ ‌extracting‌ ‌the‌ ‌coefficient’s‌ ‌p‌ ‌value‌ ‌using‌ ‌gam‌ ‌v.‌ ‌1.20‌‌ 

(‌69‌)‌.‌ ‌Fitted‌ ‌models‌ ‌had‌ ‌the‌ ‌expression‌ ‌of‌ ‌each‌ ‌gene‌ ‌as‌ ‌a‌ ‌response‌ ‌variable‌ ‌(G)‌ ‌and‌ ‌pseudotime‌‌ 

(t)‌ ‌as‌ ‌an‌ ‌independent‌ ‌variable‌ ‌using‌ ‌locally‌ ‌estimated‌ ‌scatterplot‌ ‌smoothing‌ ‌(loess)‌ ‌smooth‌‌ 

terms‌ ‌(lo):‌ ‌ 

Equation 1. ‌  oG ~ l (t)  
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Extracted‌ ‌coefficient‌ ‌p‌ ‌values‌ ‌were‌ ‌adjusted‌ ‌for‌ ‌multiple‌ ‌comparisons‌ ‌using‌ ‌a‌ ‌false‌ ‌discovery‌‌ 

rate‌ ‌correction‌ ‌with‌ ‌the‌ ‌p.adjust‌ ‌function‌ ‌from‌ ‌stats‌ ‌v.‌ ‌4.0.0‌ ‌‌(‌64‌)‌.‌ ‌Adjusted‌ ‌p‌ ‌values‌ ‌were‌ ‌used‌ ‌to‌‌ 

rank‌ ‌genes,‌ ‌and‌ ‌an‌ ‌arbitrary‌ ‌threshold‌ ‌was‌ ‌used‌ ‌to‌ ‌select‌ ‌most‌ ‌significant‌ ‌model‌ ‌fits.‌ ‌ 

Query‌ ‌dataset‌ ‌retrieval‌ ‌and‌ ‌preprocessing‌ ‌ 

Lamina‌ ‌propria‌ ‌samples‌ ‌containing‌ ‌CD45‌+‌‌ ‌cells‌ ‌were‌ ‌demultiplexed,‌ ‌mapped,‌ ‌filtered,‌ ‌clustered‌‌ 

and‌ ‌projected‌ ‌as‌ ‌described‌ ‌above,‌ ‌maintaining‌ ‌individual‌ ‌biological‌ ‌conditions‌ ‌separate.‌ ‌A‌‌ 

“Macrophage‌ ‌score”‌ ‌(Supplemental‌ ‌Table‌ ‌2)‌ ‌was‌ ‌calculated‌ ‌for‌ ‌this‌ ‌dataset‌ ‌as‌ ‌described‌ ‌above,‌‌ 

and‌ ‌clusters‌ ‌containing‌ ‌macrophages‌ ‌extracted.‌ ‌ 

Remaining‌ ‌query‌ ‌datasets‌ ‌available‌ ‌from‌ ‌public‌ ‌repositories‌ ‌were‌ ‌retrieved‌ ‌(Supplemental‌ ‌Table‌‌ 

3),‌ ‌obtaining‌ ‌matrices‌ ‌with‌ ‌raw‌ ‌unfiltered‌ ‌read‌ ‌counts‌ ‌for‌ ‌detected‌ ‌genes‌ ‌in‌ ‌barcoded‌ ‌cells.‌ ‌Low‌‌ 

quality‌ ‌cells‌ ‌were‌ ‌removed‌ ‌and‌ ‌then‌ ‌datasets‌ ‌were‌ ‌subsequently‌ ‌clustered‌ ‌and‌ ‌projected‌ ‌as‌‌ 

specified‌ ‌above.‌ ‌Where‌ ‌non-macrophage‌ ‌cells‌ ‌were‌ ‌included‌ ‌in‌ ‌the‌ ‌sequencing‌ ‌experiment,‌ ‌a‌‌ 

“Macrophage‌ ‌score”‌ ‌(Supplemental‌ ‌Table‌ ‌2)‌ ‌was‌ ‌calculated,‌ ‌and‌ ‌these‌ ‌cells‌ ‌extracted,‌ ‌keeping‌‌ 

at‌ ‌most‌ ‌500‌ ‌randomly‌ ‌selected‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition.‌ ‌ 

Data‌ ‌imputation‌ ‌and‌ ‌label‌ ‌transfer‌ ‌ 

Query‌ ‌datasets‌ ‌were‌ ‌individually‌ ‌normalized‌ ‌with‌ ‌SCTransform,‌ ‌then‌ ‌integrated‌ ‌within‌ ‌tissues‌‌ 

using‌ ‌the‌ ‌rpca‌ ‌approach‌ ‌as‌ ‌described‌ ‌above.‌ ‌Each‌ ‌resulting‌ ‌integrated‌ ‌dataset‌ ‌was‌ ‌then‌‌ 

compared‌ ‌to‌ ‌the‌ ‌reference‌ ‌dataset‌ ‌to‌ ‌transfer‌ ‌identified‌ ‌labels‌ ‌and‌ ‌harmonize‌ ‌data‌ ‌via‌‌ 

imputation‌ ‌using‌ ‌the‌ ‌FindTransferAnchors‌ ‌(dims‌ ‌=‌ ‌50,‌ ‌npcs‌ ‌=‌ ‌50,‌ ‌k.filter‌ ‌=‌ ‌5,‌ ‌max.features‌ ‌=‌‌ 

100,‌ ‌k.anchor‌ ‌=‌ ‌5)‌ ‌and‌ ‌TransferData‌ ‌(dims‌ ‌=‌ ‌30,‌ ‌k.weight‌ ‌=‌ ‌25,‌ ‌sd.weight‌ ‌=‌ ‌1)‌ ‌functions‌ ‌from‌‌ 

Seurat‌ ‌v.3‌ ‌with‌ ‌the‌ ‌specified‌ ‌parameters.‌ ‌These‌ ‌were‌ ‌benchmarked‌ ‌using‌ ‌two‌ ‌negative‌ ‌control‌‌ 

datasets‌ ‌containing‌ ‌multiple‌ ‌types‌ ‌of‌ ‌immune‌ ‌cells,‌ ‌selecting‌ ‌values‌ ‌reducing‌ ‌the‌ ‌number‌ ‌of‌ ‌low‌‌ 

quality‌ ‌anchors‌ ‌and‌ ‌increasing‌ ‌the‌ ‌label‌ ‌probability‌ ‌score.‌ ‌A‌ ‌threshold‌ ‌of‌ ‌80%‌ ‌(0.8)‌ ‌was‌ ‌set‌ ‌for‌‌ 

the‌ ‌label‌ ‌probability‌ ‌based‌ ‌on‌ ‌negative‌ ‌controls‌ ‌to‌ ‌consider‌ ‌label‌ ‌allocation‌ ‌as‌ ‌successful.‌‌ 

Additionally,‌ ‌label‌ ‌probability‌ ‌distributions‌ ‌across‌ ‌clusters‌ ‌in‌ ‌query‌ ‌datasets‌ ‌were‌ ‌investigated‌ ‌to‌‌ 

evaluate‌ ‌goodness‌ ‌of‌ ‌transfer.‌ ‌Where‌ ‌a‌ ‌cluster‌ ‌was‌ ‌found‌ ‌to‌ ‌be‌ ‌dominated‌ ‌by‌ ‌a‌ ‌single‌ ‌label,‌ ‌and‌‌ 

a‌ ‌portion‌ ‌of‌ ‌the‌ ‌cells‌ ‌within‌ ‌the‌ ‌cluster‌ ‌had‌ ‌a‌ ‌high‌ ‌label‌ ‌probability‌ ‌score,‌ ‌the‌ ‌corresponding‌ ‌label‌‌ 

was‌ ‌assigned‌ ‌to‌ ‌the‌ ‌entire‌ ‌cluster.‌ ‌ 
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Differential‌ ‌gene‌ ‌expression‌ ‌analysis‌ ‌within‌ ‌biological‌ ‌conditions‌ ‌ 

Differentially‌ ‌expressed‌ ‌genes‌ ‌between‌ ‌biological‌ ‌conditions‌ ‌within‌ ‌a‌ ‌particular‌ ‌macrophage‌‌ 

activation‌ ‌stage‌ ‌were‌ ‌identified‌ ‌as‌ ‌those‌ ‌expressed‌ ‌in‌ ‌at‌ ‌least‌ ‌25%‌ ‌of‌ ‌cells‌ ‌with‌ ‌a‌ ‌greater‌ ‌than‌‌ 

+0.25‌ ‌log‌ ‌fold‌ ‌change‌ ‌and‌ ‌an‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌ ‌than‌ ‌0.01,‌ ‌using‌ ‌the‌ ‌FindMarkers‌ ‌function‌‌ 

in‌ ‌Seurat‌ ‌v.3‌ ‌with‌ ‌all‌ ‌other‌ ‌parameters‌ ‌set‌ ‌to‌ ‌default.‌ ‌Gene‌ ‌expression‌ ‌differences‌ ‌were‌ ‌based‌‌ 

on‌ ‌normalized‌ ‌data,‌ ‌not‌ ‌on‌ ‌imputed‌ ‌data.‌ ‌Ribosomal‌ ‌protein‌ ‌genes‌ ‌were‌ ‌excluded‌ ‌from‌ ‌results.‌ ‌ 

Wounded‌ ‌skin‌ ‌pre-processing,‌ ‌label‌ ‌transfer‌ ‌and‌ ‌analysis‌ ‌ 

Raw‌ ‌reads‌ ‌were‌ ‌mapped‌ ‌to‌ ‌the‌ ‌mouse‌ ‌genome‌ ‌(GRCm38)‌ ‌and‌ ‌splice-site‌ ‌information‌ ‌from‌‌ 

Ensembl‌ ‌release‌ ‌87‌ ‌with‌ ‌gsnap‌ ‌v.2018-07-04‌ ‌‌(‌70‌)‌.‌ ‌Uniquely‌ ‌mapped‌ ‌reads‌ ‌and‌ ‌gene‌‌ 

annotations‌ ‌from‌ ‌Ensembl‌ ‌release‌ ‌87‌ ‌were‌ ‌used‌ ‌as‌ ‌input‌ ‌for‌ ‌featureCounts‌ ‌v.‌ ‌1.6.2‌ ‌‌(‌71‌)‌‌ ‌to‌‌ 

create‌ ‌counts‌ ‌per‌ ‌gene‌ ‌and‌ ‌cell.‌ ‌Filtering,‌ ‌clustering‌ ‌and‌ ‌projection‌ ‌was‌ ‌performed‌ ‌as‌ ‌described‌‌ 

above,‌ ‌with‌ ‌the‌ ‌addition‌ ‌of‌ ‌filtering‌ ‌based‌ ‌on‌ ‌reads‌ ‌mapping‌ ‌to‌ ‌ERCC‌ ‌spike-in‌ ‌controls.‌ ‌Label‌‌ 

and‌ ‌data‌ ‌transferred‌ ‌was‌ ‌performed‌ ‌as‌ ‌described‌ ‌above.‌ ‌ 

Flow‌ ‌cytometry‌ ‌data‌ ‌associated‌ ‌with‌ ‌individually‌ ‌barcoded‌ ‌cells‌ ‌was‌ ‌used‌ ‌to‌ ‌calculate‌ ‌a‌ ‌UMAP‌‌ 

projection‌ ‌using‌ ‌uwot‌ ‌‌(‌72‌)‌,‌ ‌which‌ ‌was‌ ‌then‌ ‌clustered‌ ‌with‌ ‌kmeans‌ ‌v.‌ ‌4.0.0‌ ‌‌(‌64‌)‌,‌ ‌setting‌ ‌k‌ ‌based‌‌ 

on‌ ‌the‌ ‌total‌ ‌within‌ ‌cluster‌ ‌sum‌ ‌of‌ ‌squares.‌ ‌ 

Cross-condition‌ ‌data‌ ‌integration‌ ‌and‌ ‌marker‌ ‌selection‌ ‌ 

Cells‌ ‌in‌ ‌each‌ ‌dataset‌ ‌with‌ ‌a‌ ‌high‌ ‌label‌ ‌probability‌ ‌score‌ ‌were‌ ‌extracted,‌ ‌split‌ ‌by‌ ‌tissue‌ ‌retaining‌‌ 

only‌ ‌the‌ ‌depth‌ ‌corrected‌ ‌RNA‌ ‌counts‌ ‌and‌ ‌label‌ ‌assignment,‌ ‌then‌ ‌normalized‌ ‌using‌‌ 

SCTransform.‌ ‌These‌ ‌datasets‌ ‌were‌ ‌then‌ ‌integrated,‌ ‌clustered‌ ‌and‌ ‌projected‌ ‌as‌ ‌described‌‌ 

above,‌ ‌without‌ ‌giving‌ ‌priority‌ ‌to‌ ‌the‌ ‌reference‌ ‌data,‌ ‌which‌ ‌was‌ ‌further‌ ‌subsampled‌ ‌(500‌‌ 

randomly‌ ‌selected‌ ‌cells)‌ ‌prior‌ ‌to‌ ‌integration.‌ ‌Differentially‌ ‌expressed‌ ‌genes‌ ‌between‌‌ 

macrophage‌ ‌activation‌ ‌stages‌ ‌were‌ ‌identified‌ ‌as‌ ‌those‌ ‌expressed‌ ‌in‌ ‌at‌ ‌least‌ ‌25%‌ ‌of‌ ‌cells‌ ‌with‌ ‌a‌‌ 

greater‌ ‌than‌ ‌+0.25‌ ‌log‌ ‌fold‌ ‌change‌ ‌and‌ ‌an‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌ ‌than‌ ‌0.01,‌ ‌using‌ ‌the‌‌ 

FindMarkers‌ ‌function‌ ‌in‌ ‌Seurat‌ ‌v.3‌ ‌with‌ ‌all‌ ‌other‌ ‌parameters‌ ‌set‌ ‌to‌ ‌default.‌ ‌Surface‌ ‌expression‌ ‌of‌‌ 

genes‌ ‌was‌ ‌determined‌ ‌based‌ ‌on‌ ‌GO‌ ‌annotation‌ ‌(Cell‌ ‌surface‌ ‌–‌ ‌GO:0009986).‌ ‌ 

Transcriptional‌ ‌network,‌ ‌transcription‌ ‌factor‌ ‌and‌ ‌pathway‌ ‌enrichment‌ ‌analysis‌ ‌ 

Genes,‌ ‌for‌ ‌which‌ ‌a‌ ‌significant‌ ‌association‌ ‌between‌ ‌pseudotime‌ ‌and‌ ‌gene‌ ‌expression‌ ‌was‌ ‌found,‌‌ 

were‌ ‌analysed‌ ‌using‌ ‌StringDB‌ ‌‌(‌68‌)‌‌ ‌to‌ ‌build‌ ‌a‌ ‌network‌ ‌of‌ ‌protein-protein‌ ‌interactions‌ ‌based‌ ‌on‌‌ 
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‌ 

experimental‌ ‌evidence,‌ ‌reported‌ ‌co-expression‌ ‌and‌ ‌database‌ ‌mining.‌ ‌Resulting‌ ‌undirected‌‌ 

network‌ ‌was‌ ‌retrieved‌ ‌and‌ ‌analysed‌ ‌using‌ ‌igraph‌ ‌v.‌ ‌1.2.5‌ ‌‌(‌73‌)‌‌ ‌and‌ ‌ggraph‌ ‌v.‌ ‌2.0.2‌ ‌‌(‌74‌)‌.‌ ‌Weight‌‌ 

of‌ ‌edges‌ ‌connecting‌ ‌nodes‌ ‌was‌ ‌calculated‌ ‌as‌ ‌follows:‌ ‌ 

Equation 2. ,‌ ‌S  w =   c × −( ∑
4

i = 1
log10 p.val( ′

A, i × p.val′B, j))  

where‌ ‌‌w‌‌ ‌is‌ ‌the‌ ‌edge‌ ‌weight,‌ ‌‌S‌c‌‌ ‌is‌ ‌the‌ ‌confidence‌ ‌score,‌ ‌‌p.val‌’‌‌ ‌is‌ ‌the‌ ‌scaled‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌for‌‌ 

the‌ ‌pair‌ ‌of‌ ‌connected‌ ‌genes‌ ‌A‌ ‌and‌ ‌B‌ ‌in‌ ‌activation‌ ‌path‌ ‌‌i‌,‌ ‌with‌ ‌‌i‌‌ ‌ranging‌ ‌through‌ ‌the‌ ‌four‌ ‌defined‌‌ 

activation‌ ‌paths.‌ ‌Adjusted‌ ‌p‌ ‌values‌ ‌were‌ ‌scaled‌ ‌within‌ ‌each‌ ‌activation‌ ‌path‌ ‌to‌ ‌center‌ ‌the‌ ‌values‌‌ 

around‌ ‌0‌ ‌making‌ ‌them‌ ‌more‌ ‌comparable‌ ‌across‌ ‌paths.‌ ‌Low‌ ‌weight‌ ‌edges‌ ‌and‌ ‌disconnected‌‌ 

nodes‌ ‌were‌ ‌filtered,‌ ‌and‌ ‌resulting‌ ‌network‌ ‌nodes‌ ‌were‌ ‌annotated‌ ‌for‌ ‌betweenes,‌ ‌degree,‌‌ 

eigen-centrality‌ ‌and‌ ‌strength‌ ‌using‌ ‌native‌ ‌function‌ ‌provided‌ ‌in‌ ‌igraph.‌ ‌The‌ ‌Fruchterman-Reingold‌‌ 

algorithm‌ ‌was‌ ‌used‌ ‌to‌ ‌calculate‌ ‌the‌ ‌network’s‌ ‌layout.‌ ‌Network‌ ‌clustering‌ ‌was‌ ‌performed‌ ‌using‌‌ 

the‌ ‌cluster_louvain‌ ‌function‌ ‌‌(‌75‌)‌.‌ ‌ 

Network‌ ‌clusters‌ ‌were‌ ‌interrogated‌ ‌for‌ ‌pathway‌ ‌enrichment‌ ‌using‌ ‌either‌ ‌Biological‌ ‌process‌ ‌Gene‌‌ 

Ontology‌ ‌annotation‌ ‌or‌ ‌KEGG‌ ‌pathways‌ ‌with‌ ‌goseq‌ ‌v.‌ ‌1.40.0‌ ‌‌(‌76‌)‌.‌ ‌Gene‌ ‌set‌ ‌scores‌‌ 

(Supplemental‌ ‌Table‌ ‌2)‌ ‌for‌ ‌top‌ ‌enriched‌ ‌pathways‌ ‌were‌ ‌calculated‌ ‌as‌ ‌specified‌ ‌above‌ ‌and‌ ‌the‌‌ 

pathway‌ ‌score‌ ‌variance‌ ‌calculated‌ ‌across‌ ‌cells‌ ‌within‌ ‌each‌ ‌activation‌ ‌trajectory.‌ ‌Resulting‌‌ 

variances‌ ‌were‌ ‌used‌ ‌for‌ ‌heatmaps‌ ‌as‌ ‌a‌ ‌proxy‌ ‌for‌ ‌enriched‌ ‌pathway‌ ‌regulation‌ ‌within‌ ‌each‌‌ 

activation‌ ‌trajectory.‌ ‌ 

Transcription‌ ‌factor‌ ‌enrichment‌ ‌analysis‌ ‌was‌ ‌performed‌ ‌with‌ ‌RcisTarget‌ ‌v.‌ ‌1.8.0‌ ‌‌(‌77‌,‌ ‌‌78‌)‌.‌ ‌The‌‌ 

number‌ ‌of‌ ‌incidences‌ ‌of‌ ‌each‌ ‌identified‌ ‌transcription‌ ‌factor‌ ‌across‌ ‌all‌ ‌clusters‌ ‌was‌ ‌counted,‌ ‌and‌‌ 

visualized‌ ‌as‌ ‌a‌ ‌word‌ ‌cloud‌ ‌using‌ ‌wordcloud2‌ ‌v‌ ‌0.2.1‌ ‌‌(‌79‌)‌.‌ ‌ 

Quantification‌ ‌and‌ ‌statistical‌ ‌analysis‌ ‌ 

Statistical‌ ‌analysis‌ ‌was‌ ‌performed‌ ‌in‌ ‌R‌ ‌v.‌ ‌4.0.0‌ ‌‌(64)‌,‌ ‌using‌ ‌functions‌ ‌from‌ ‌the‌ ‌base‌ ‌stats‌ ‌package‌‌ 

to‌ ‌calculate‌ ‌a‌ ‌single‌ ‌factor‌ ‌anova‌ ‌with‌ ‌aov‌ ‌followed‌ ‌by‌ ‌Tukey‌ ‌Honest‌ ‌Significant‌ ‌Differences‌ ‌to‌‌ 

determine‌ ‌statistically‌ ‌significant‌ ‌differences‌ ‌between‌ ‌means‌ ‌(Figure‌ ‌2G-H)‌ ‌or‌ ‌only‌ ‌a‌ ‌single‌‌ 

factor‌ ‌anova‌ ‌to‌ ‌establish‌ ‌significant‌ ‌clustering‌ ‌effects‌ ‌(Figure‌ ‌5M).‌ ‌Ex‌ ‌vivo‌ ‌results‌ ‌are‌‌ 

represented‌ ‌as‌ ‌dots‌ ‌for‌ ‌individual‌ ‌mice.‌ ‌Selection‌ ‌of‌ ‌sample‌ ‌size‌ ‌was‌ ‌based‌ ‌on‌ ‌extensive‌‌ 

experience‌ ‌with‌ ‌similar‌ ‌assays.‌ ‌ 

‌ ‌   
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List‌ ‌of‌ ‌Supplementary‌ ‌Materials‌ ‌ 

Fig.‌ ‌S1.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌1.‌ ‌ 

Fig.‌ ‌S2.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌2.‌ ‌ 

Fig.‌ ‌S3.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌3.‌ ‌ 

Fig.‌ ‌S4.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌3.‌ ‌ 

Fig.‌ ‌S5.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌5.‌ ‌ 

Fig.‌ ‌S6.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌7.‌ ‌ 

Supplemental‌ ‌Table‌ ‌1.‌ ‌Differentially‌ ‌expressed‌ ‌genes‌ ‌across‌ ‌identified‌ ‌activation‌ ‌stages‌‌ 
in‌ ‌reference‌ ‌dataset,‌ ‌related‌ ‌to‌ ‌Figures‌ ‌1‌ ‌and‌ ‌S1.‌ ‌ 

Identified‌ ‌differentially‌ ‌expressed‌ ‌genes‌ ‌associated‌ ‌with‌ ‌each‌ ‌defined‌ ‌cluster‌ ‌in‌ ‌Figure‌ ‌1,‌ ‌filtering‌‌ 

for‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌ ‌than‌ ‌0.01,‌ ‌a‌ ‌percent‌ ‌expression‌ ‌greater‌ ‌than‌ ‌0.4‌ ‌and‌ ‌a‌ ‌positive‌ ‌log‌‌ 

fold‌ ‌change‌ ‌greater‌ ‌than‌ ‌1.‌ ‌The‌ ‌top‌ ‌15‌ ‌most‌ ‌significantly‌ ‌regulated‌ ‌genes‌ ‌from‌ ‌these‌ ‌results‌ ‌are‌‌ 

presented‌ ‌in‌ ‌Figure‌ ‌S1C.‌ ‌ 

Supplemental‌ ‌Table‌ ‌2.‌ ‌Gene‌ ‌set‌ ‌scores‌ ‌ 

Genes‌ ‌used‌ ‌in‌ ‌calculating‌ ‌all‌ ‌gene‌ ‌set‌ ‌scores‌ ‌shown‌ ‌in‌ ‌the‌ ‌study.‌ ‌ 

Supplemental‌ ‌Table‌ ‌3.‌ ‌Dataset‌ ‌description‌ ‌and‌ ‌source‌ ‌ 

A‌ ‌description‌ ‌of‌ ‌single‌ ‌cell‌ ‌RNA-seq‌ ‌datasets‌ ‌used‌ ‌in‌ ‌the‌ ‌study,‌ ‌including‌ ‌a‌ ‌brief‌ ‌outline‌ ‌of‌ ‌the‌‌ 

immunological‌ ‌conditions‌ ‌within‌ ‌each‌ ‌dataset,‌ ‌is‌ ‌presented.‌ ‌Accession‌ ‌codes‌ ‌and‌ ‌associated‌‌ 

publications‌ ‌are‌ ‌also‌ ‌given.‌ ‌ 

Supplemental‌ ‌Table‌ ‌4.‌ ‌Differentially‌ ‌expressed‌ ‌genes‌ ‌in‌ ‌cross-condition‌ ‌data‌ ‌integration,‌‌ 
related‌ ‌to‌ ‌Figure‌ ‌5.‌ ‌ 

Identified‌ ‌differentially‌ ‌expressed‌ ‌genes‌ ‌associated‌ ‌with‌ ‌each‌ ‌defined‌ ‌activation‌ ‌stage‌ ‌in‌ ‌Figure‌‌ 

5,‌ ‌filtering‌ ‌for‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌ ‌than‌ ‌0.01,‌ ‌a‌ ‌percent‌ ‌expression‌ ‌greater‌ ‌than‌ ‌0.25‌ ‌and‌ ‌a‌‌ 

positive‌ ‌log‌ ‌fold‌ ‌change‌ ‌greater‌ ‌than‌ ‌0.25.‌ ‌The‌ ‌top‌ ‌5‌ ‌most‌ ‌significantly‌ ‌regulated‌ ‌genes‌ ‌from‌‌ 

these‌ ‌results‌ ‌are‌ ‌presented‌ ‌in‌ ‌Figure‌ ‌5F.‌ ‌ 
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Supplemental‌ ‌Table‌ ‌5.‌ ‌Cell‌ ‌surface‌ ‌associated‌ ‌differentially‌ ‌expressed‌ ‌genes‌ ‌from‌‌ 
cross-condition‌ ‌data‌ ‌integration,‌ ‌related‌ ‌to‌ ‌Figure‌ ‌5.‌ ‌ 

Identified‌ ‌differentially‌ ‌expressed‌ ‌genes‌ ‌associated‌ ‌with‌ ‌each‌ ‌defined‌ ‌activation‌ ‌stage‌ ‌in‌ ‌Figure‌‌ 

5‌ ‌and‌ ‌with‌ ‌Gene‌ ‌Ontology‌ ‌term‌ ‌“Cell‌ ‌surface”‌ ‌(GO:0009986),‌ ‌filtering‌ ‌for‌ ‌adjusted‌ ‌p‌ ‌value‌ ‌of‌ ‌less‌‌ 

than‌ ‌0.01,‌ ‌a‌ ‌percent‌ ‌expression‌ ‌greater‌ ‌than‌ ‌0.25‌ ‌and‌ ‌a‌ ‌positive‌ ‌log‌ ‌fold‌ ‌change‌ ‌greater‌ ‌than‌‌ 

0.25.‌ ‌The‌ ‌top‌ ‌4‌ ‌most‌ ‌significantly‌ ‌regulated‌ ‌genes‌ ‌from‌ ‌these‌ ‌results‌ ‌are‌ ‌presented‌ ‌in‌ ‌Figure‌ ‌5E.‌ 
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Fig.‌ ‌1.‌ ‌Macrophage‌ ‌activation‌ ‌in‌ ‌inflamed‌ ‌tissues‌ ‌follows‌ ‌predefined‌ ‌paths.‌ ‌ 

(A)‌ ‌Schematic‌ ‌depiction‌ ‌of‌ ‌reference‌ ‌dataset‌ ‌construction,‌ ‌outlining‌ ‌overall‌ ‌goals‌ ‌of‌ ‌strategy.‌ ‌ 

(B)‌ ‌scRNA-seq‌ ‌analysis‌ ‌of‌ ‌macrophages‌ ‌(cells‌ ‌=‌ ‌2000)‌ ‌from‌ ‌the‌ ‌stromal‌ ‌vascular‌ ‌fraction‌ ‌(SVF)‌‌ 

of‌ ‌adipose‌ ‌tissue‌ ‌from‌ ‌naïve,‌ ‌‌H.‌ ‌poly‌‌ ‌or‌ ‌‌L.‌ ‌mono‌‌ ‌infected‌ ‌animals‌ ‌(n‌ ‌=‌ ‌1-8‌ ‌per‌ ‌group)‌ ‌shown‌ ‌as‌ ‌a‌‌ 

UMAP,‌ ‌highlighting‌ ‌identified‌ ‌clusters.‌ ‌ 

(C)‌ ‌Relative‌ ‌levels‌ ‌(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌gene‌ ‌set‌ ‌scores‌ ‌associated‌ ‌with‌ ‌identified‌ ‌clusters.‌ ‌ 

(D)‌ ‌Relative‌ ‌levels‌ ‌(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌gene‌ ‌set‌ ‌scores‌ ‌associated‌ ‌with‌ ‌Monocyte‌‌ 

signature‌ ‌(left)‌ ‌and‌ ‌predicted‌ ‌lineage‌ ‌breaking‌ ‌points‌ ‌(right).‌ ‌ 

(E)‌ ‌Lineage‌ ‌and‌ ‌pseudotime‌ ‌calculation‌ ‌showing‌ ‌activation‌ ‌trajectories.‌ ‌Cells‌ ‌assigned‌ ‌to‌‌ 

identified‌ ‌paths‌ ‌are‌ ‌colored‌ ‌to‌ ‌match‌ ‌stage‌ ‌labels.‌ ‌Non-participating‌ ‌cells‌ ‌are‌ ‌shown‌ ‌in‌ ‌gray.‌ ‌ 

(F)‌ ‌UMAP‌ ‌labelled‌ ‌according‌ ‌to‌ ‌path‌ ‌progression‌ ‌indicating‌ ‌shared‌ ‌(Initial‌ ‌>‌ ‌Early‌ ‌>‌‌ 

Intermediate)‌ ‌and‌ ‌path‌ ‌specific‌ ‌(Phagocytic:‌ ‌Late.P1‌ ‌>‌ ‌Final.P1;‌ ‌Oxidative‌ ‌stress:‌ ‌Late.P2‌ ‌>‌‌ 

Final.P2;‌ ‌Inflammatory:‌ ‌Final.P3;‌ ‌Remodelling:‌ ‌Final.P4)‌ ‌macrophage‌ ‌activation‌ ‌stages.‌ ‌Cluster‌ 

number‌ ‌indicated‌ ‌in‌ ‌brackets.‌ ‌ 

(G)‌ ‌Activation‌ ‌stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌a‌ ‌percentage‌ ‌of‌ ‌total‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition.‌ ‌ 
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Fig.‌ ‌2.‌ ‌Macrophage‌ ‌gene‌ ‌expression‌ ‌can‌ ‌be‌ ‌modelled‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌activation,‌‌ 
revealing‌ ‌a‌ ‌transitory‌ ‌stage‌ ‌of‌ ‌RELMɑ‌ ‌expressing‌ ‌cells.‌ 

(A)‌ ‌Macrophage‌ ‌activation‌ ‌stage‌ ‌UMAP,‌ ‌showing‌ ‌an‌ ‌example‌ ‌of‌ ‌a‌ ‌fitted‌ ‌general‌ ‌additive‌ ‌model‌‌ 

(GAM)‌ ‌for‌ ‌gene‌ ‌expression‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime.‌‌ ‌  

(B)‌ ‌Top‌ ‌most‌ ‌significant‌ ‌GAM‌ ‌fits‌ ‌for‌ ‌genes‌ ‌associated‌ ‌with‌ ‌identified‌ ‌paths,‌ ‌showing‌ ‌single‌ ‌cells‌‌ 

gene‌ ‌expression‌ ‌(dots‌ ‌-‌ ‌color‌ ‌matching‌ ‌activation‌ ‌stage)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(x‌ ‌axis)‌ ‌for‌‌ 

each‌ ‌activation‌ ‌path,‌ ‌with‌ ‌fitted‌ ‌models‌ ‌(black‌ ‌lines)‌ ‌and‌ ‌associated‌ ‌adjusted‌ ‌p‌ ‌values‌ ‌also‌‌ 

shown.‌ ‌  

(C)‌ ‌Fitted‌ ‌GAM‌ ‌models‌ ‌(colored‌ ‌lines‌ ‌matching‌ ‌activation‌ ‌paths)‌ ‌of‌ ‌gene‌ ‌expression‌ ‌of‌‌ 

macrophage‌ ‌activation‌ ‌markers‌ ‌(y‌ ‌axis‌ ‌-‌ ‌fixed‌ ‌across‌ ‌all‌ ‌paths‌ ‌for‌ ‌each‌ ‌gene)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌‌ 

pseudotime‌ ‌(x‌ ‌axis‌ ‌-‌ ‌specific‌ ‌to‌ ‌each‌ ‌path).‌ ‌ 

(D)‌ ‌Left‌ ‌-‌ ‌Fitted‌ ‌GAM‌ ‌models‌ ‌(colored‌ ‌lines‌ ‌matching‌ ‌activation‌ ‌paths)‌ ‌of‌ ‌Apoptosis‌ ‌score‌ ‌(y‌‌ 

axis)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(x‌ ‌axis).‌ ‌Right‌ ‌-‌ ‌Fitted‌ ‌GAM‌ ‌model‌ ‌of‌ ‌expression‌ ‌level‌ ‌(y‌ ‌axis)‌‌ 

of‌ ‌a‌ ‌subset‌ ‌of‌ ‌genes‌ ‌used‌ ‌in‌ ‌score‌ ‌calculation‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(x‌ ‌axis)‌ ‌shown‌ ‌for‌‌ 

“oxidative‌ ‌stress”‌ ‌path.‌ ‌ 

(E)‌ ‌Relative‌ ‌expression‌ ‌of‌ ‌RELMɑ‌ ‌coding‌ ‌gene‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Ear2‌‌ ‌shown‌ ‌as‌ ‌violin‌ ‌plots‌ ‌for‌ ‌each‌‌ 

activation‌ ‌stage‌ ‌(left)‌ ‌or‌ ‌as‌ ‌a‌ ‌fitted‌ ‌GAM‌ ‌models‌ ‌specifically‌ ‌for‌ ‌each‌ ‌activation‌ ‌path‌ ‌(right).‌‌ ‌  

(F)‌ ‌Schematic‌ ‌view‌ ‌of‌ ‌experimental‌ ‌set‌ ‌up‌ ‌for‌ ‌adoptive‌ ‌bone‌ ‌marrow‌ ‌monocyte‌ ‌transfer‌ ‌from‌‌ 

donor‌ ‌(CD45.1‌+‌)‌ ‌mice‌ ‌into‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌of‌ ‌naïve‌ ‌recipients‌ ‌(CD45.2‌+‌).‌ ‌ 

(G)‌ ‌Representative‌ ‌density‌ ‌flow‌ ‌cytometry‌ ‌plots‌ ‌(left)‌ ‌and‌ ‌quantification‌ ‌of‌ ‌percentage‌ ‌positive‌‌ 

cells‌ ‌(right)‌ ‌expressing‌ ‌RELMɑ‌ ‌protein‌ ‌and‌ ‌mRNA‌ ‌(‌Retnla‌)‌ ‌in‌ ‌adoptively‌ ‌transferred‌ ‌bone‌‌ 

marrow‌ ‌monocytes‌ ‌recovered‌ ‌from‌ ‌the‌ ‌peritoneal‌ ‌cavity‌ ‌of‌ ‌recipient‌ ‌mice‌ ‌at‌ ‌indicated‌ ‌times.‌‌ 

Individual‌ ‌dots‌ ‌represent‌ ‌biological‌ ‌replicates‌ ‌from‌ ‌combined‌ ‌experiments‌ ‌(n‌ ‌=‌ ‌10‌ ‌across‌ ‌2‌‌ 

repeats).‌ ‌Significant‌ ‌differences‌ ‌at‌ ‌each‌ ‌stage‌ ‌compared‌ ‌to‌ ‌day‌ ‌2‌ ‌are‌ ‌indicated‌ ‌(****:‌ ‌p‌ ‌value‌ ‌<‌‌ 

0.0001)‌ ‌based‌ ‌on‌ ‌single‌ ‌factor‌ ‌anova‌ ‌analysis‌ ‌followed‌ ‌by‌ ‌Tukey‌ ‌Honest‌ ‌Significant‌ ‌Differences‌‌ 

test.‌ ‌ 

(H)‌ ‌Quantification‌ ‌of‌ ‌percentage‌ ‌positive‌ ‌macrophages‌ ‌expressing‌ ‌RELMɑ‌ ‌4‌ ‌days‌ ‌post‌ ‌adoptive‌‌ 

cell‌ ‌transfer‌ ‌within‌ ‌host‌ ‌large‌ ‌peritoneal‌ ‌macrophages,‌ ‌adoptively‌ ‌transferred‌ ‌IL-4Rɑ‌ ‌sufficient‌‌ 

(IL-4Rɑ‌+/+‌)‌ ‌or‌ ‌deficient‌ ‌(IL-4Rɑ‌-/-‌)‌ ‌monocytes‌ ‌(left),‌ ‌or‌ ‌in‌ ‌adoptively‌ ‌transferred‌ ‌large‌ ‌peritoneal‌‌ 

macrophages‌ ‌(right).‌ ‌Individual‌ ‌dots‌ ‌represent‌ ‌biological‌ ‌replicates‌ ‌(n‌ ‌=‌ ‌4-18).‌ ‌Significant‌‌ 
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differences‌ ‌at‌ ‌each‌ ‌stage‌ ‌compared‌ ‌to‌ ‌host‌ ‌macrophages‌ ‌are‌ ‌indicated‌ ‌(**:‌ ‌p‌ ‌value‌ ‌<‌ ‌0.01;‌ ‌*:‌ ‌p‌‌ 

value‌ ‌<‌ ‌0.05;‌ ‌ns:‌ ‌p‌ ‌value‌ ‌>‌ ‌0.05)‌ ‌or‌ ‌between‌ ‌transferred‌ ‌cells‌ ‌(ns:‌ ‌p‌ ‌value‌ ‌>‌ ‌0.05)‌ ‌based‌ ‌on‌‌ 

single‌ ‌factor‌ ‌anova‌ ‌analysis‌ ‌followed‌ ‌by‌ ‌Tukey‌ ‌Honest‌ ‌Significant‌ ‌Differences‌ ‌test.‌ ‌ 
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‌ 

Fig.‌ ‌3.‌ ‌Macrophage‌ ‌activation‌ ‌stages‌ ‌are‌ ‌conserved‌ ‌across‌ ‌tissues‌ ‌and‌ ‌inflammatory‌‌ 
conditions.‌ ‌ 

(A-I)‌ ‌Top‌ ‌left‌ ‌-‌ ‌UMAP‌ ‌of‌ ‌macrophages‌ ‌from‌ ‌indicated‌ ‌tissue‌ ‌and‌ ‌condition‌ ‌labelled‌ ‌according‌ ‌to‌‌ 

predicted‌ ‌activation‌ ‌stage,‌ ‌including‌ ‌“Not‌ ‌classified”‌ ‌cells‌ ‌(gray).‌ ‌Top‌ ‌right‌ ‌-‌ ‌Label‌ ‌probability‌‌ 

distribution‌ ‌from‌ ‌indicated‌ ‌tissue‌ ‌and‌ ‌condition,‌ ‌showing‌ ‌confidence‌ ‌threshold‌ ‌(dashed‌ ‌blue‌ ‌line)‌‌ 

for‌ ‌label‌ ‌assignment.‌ ‌Bottom‌ ‌right‌ ‌-‌ ‌Stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌a‌ ‌percentage‌ ‌of‌ ‌total‌ ‌cells‌ ‌per‌‌ 

biological‌ ‌condition,‌ ‌colored‌ ‌to‌ ‌match‌ ‌predicted‌ ‌labels.‌ ‌Bottom‌ ‌left‌ ‌-‌ ‌UMAP‌ ‌of‌ ‌relative‌ ‌expression‌‌ 

(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Ear2‌.‌ ‌Cell‌ ‌numbers:‌ ‌Lamina‌ ‌propria‌ ‌-‌ ‌332;‌ ‌Sciatic‌ ‌nerve‌ ‌-‌‌ 

1500;‌ ‌Breast‌ ‌tumor‌ ‌-‌ ‌1000;‌ ‌Atherosclerotic‌ ‌plaque‌ ‌-‌ ‌1000;‌ ‌Liver‌ ‌-‌ ‌1800;‌ ‌Lung‌ ‌-‌ ‌1000;‌ ‌Heart‌ ‌-‌ ‌773;‌‌ 

Retina‌ ‌-‌ ‌897;‌ ‌Skeletal‌ ‌muscle‌ ‌-‌ ‌1000.‌ ‌ 
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‌ 

Fig.‌ ‌4.‌ ‌Dysregulation‌ ‌of‌ ‌path-associated‌ ‌gene‌ ‌expression‌ ‌results‌ ‌in‌ ‌pathological‌‌ 
macrophage‌ ‌activation‌ ‌stalling.‌ ‌ 
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(A)‌ ‌Label‌ ‌probability‌ ‌distribution‌ ‌of‌ ‌microglial‌ ‌datasets‌ ‌obtained‌ ‌from‌ ‌mice‌ ‌at‌ ‌indicated‌‌ 

developmental‌ ‌stages.‌ ‌ 

(B)‌ ‌UMAP‌ ‌with‌ ‌stage‌ ‌labels‌ ‌from‌ ‌macrophages‌ ‌obtained‌ ‌from‌ ‌Atherosclerotic‌ ‌plaque‌ ‌regressing‌‌ 

(dark‌ ‌blue)‌ ‌and‌ ‌progressing‌ ‌(pink)‌ ‌lesions.‌ ‌ 

(C,‌ ‌H)‌ ‌Percentage‌ ‌of‌ ‌Late.P1‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition.‌ ‌ 

(D)‌ ‌Significantly‌ ‌(adjusted‌ ‌p‌ ‌value‌ ‌<‌ ‌0.01)‌ ‌regulated‌ ‌genes‌ ‌(log‌ ‌fold‌ ‌change‌ ‌>‌ ‌0.25)‌ ‌in‌‌ 

Progressing‌ ‌compared‌ ‌to‌ ‌Regressing‌ ‌lesion‌ ‌macrophages.‌ ‌ 

(E,‌ ‌J)‌ ‌Fitted‌ ‌GAM‌ ‌models‌ ‌for‌ ‌expression‌ ‌of‌ ‌differentially‌ ‌regulated‌ ‌genes‌ ‌(y‌ ‌axis)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌‌ 

Phagocytic‌ ‌path‌ ‌pseudotime‌ ‌(x‌ ‌axis)‌ ‌indicating‌ ‌Late.P1‌ ‌stage‌ ‌(dashed‌ ‌vertical‌ ‌lines).‌ ‌ 

(F)‌ ‌UMAP‌ ‌with‌ ‌stage‌ ‌labels‌ ‌from‌ ‌macrophages‌ ‌obtained‌ ‌from‌ ‌spontaneous‌ ‌breast‌ ‌cancer‌‌ 

tumors‌ ‌in‌ ‌animals‌ ‌with‌ ‌a‌ ‌macrophage‌ ‌specific‌ ‌‌Dab2‌‌ ‌deletion‌ ‌(‌Dab2‌‌ ‌KO‌ ‌-‌ ‌light‌ ‌blue)‌ ‌and‌ ‌wild‌ ‌type‌‌ 

littermates‌ ‌(WT‌ ‌-‌ ‌ochre).‌ ‌ 

(G)‌ ‌Violin‌ ‌plot‌ ‌of‌ ‌relative‌ ‌‌Dab2‌ ‌‌expression‌ ‌across‌ ‌activation‌ ‌stages.‌ ‌ 

(I)‌ ‌Significantly‌ ‌(adjusted‌ ‌p‌ ‌value‌ ‌<‌ ‌0.01)‌ ‌regulated‌ ‌genes‌ ‌(log‌ ‌fold‌ ‌change‌ ‌>‌ ‌0.25)‌ ‌in‌ ‌‌Dab2‌‌ ‌KO‌‌ 

compared‌ ‌to‌ ‌WT‌ ‌macrophages.‌ ‌ 
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‌ 

Fig.‌ ‌5.‌ ‌Wound‌ ‌macrophage‌ ‌recruitment‌ ‌confirms‌ ‌activation‌ ‌path‌ ‌model.‌ ‌ 

(A)‌ ‌UMAP‌ ‌with‌ ‌stage‌ ‌labels‌ ‌from‌ ‌macrophages‌ ‌(cells‌ ‌=‌ ‌1061)‌ ‌obtained‌ ‌from‌ ‌wounded‌ ‌skin‌‌ 

biopsies‌ ‌4‌ ‌and‌ ‌14‌ ‌dpw‌ ‌(n‌ ‌=‌ ‌5-9).‌ ‌ 

(B)‌ ‌Schematic‌ ‌overview‌ ‌of‌ ‌experimental‌ ‌set‌ ‌up‌ ‌for‌ ‌adoptive‌ ‌tdRFP‌+‌‌ ‌monocyte‌ ‌transfer‌ ‌into‌‌ 

wounded‌ ‌animals.‌ ‌ 

(C)‌ ‌Label‌ ‌probability‌ ‌distribution‌ ‌showing‌ ‌confidence‌ ‌threshold‌ ‌(dashed‌ ‌blue‌ ‌line)‌ ‌for‌ ‌label‌‌ 

assignment.‌ ‌ 

(D)‌ ‌Stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌a‌ ‌percentage‌ ‌of‌ ‌total‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition,‌ ‌colored‌ ‌to‌‌ 

match‌ ‌predicted‌ ‌labels.‌ ‌ 
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‌ 

(E)‌ ‌UMAP‌ ‌with‌ ‌tdRFP+‌ ‌monocytes‌ ‌labelled‌ ‌in‌ ‌red.‌ ‌ 

(F)‌ ‌tdRFP+‌ ‌fluorescence‌ ‌intensity‌ ‌(FI)‌ ‌in‌ ‌all‌ ‌cells‌ ‌across‌ ‌predicted‌ ‌labels.‌ ‌FI‌ ‌threshold‌ ‌for‌‌ 

transferred‌ ‌cell‌ ‌detection‌ ‌is‌ ‌indicated‌ ‌as‌ ‌a‌ ‌dashed‌ ‌line.‌ ‌ 

(G)‌ ‌Stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌a‌ ‌percentage‌ ‌of‌ ‌total‌ ‌tdRFP‌+‌‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition,‌‌ 

colored‌ ‌to‌ ‌match‌ ‌predicted‌ ‌labels.‌ ‌ 

(H)‌ ‌Relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌in‌ ‌tdRFP‌+‌‌ ‌cells‌ ‌of‌ ‌‌Retnla‌‌ ‌and‌ ‌‌Ear2‌‌ ‌shown‌ ‌as‌‌ 

UMAPs‌ ‌(left)‌ ‌and‌ ‌as‌ ‌violin‌ ‌plots‌ ‌for‌ ‌each‌ ‌activation‌ ‌stage‌ ‌(right).‌‌ ‌  

(I-K)‌ ‌UMAP‌ ‌calculated‌ ‌based‌ ‌on‌ ‌indexed‌ ‌flow‌ ‌cytometry‌ ‌data,‌ ‌labelled‌ ‌with‌ ‌predicted‌ ‌activation‌‌ 

stages‌ ‌(I),‌ ‌k‌ ‌means‌ ‌clustering‌ ‌(J)‌ ‌or‌ ‌tdRFP+‌ ‌monocytes‌ ‌(K).‌ ‌ 

(L)‌ ‌Stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌a‌ ‌percentage‌ ‌of‌ ‌total‌ ‌cells‌ ‌per‌ ‌flow‌ ‌cytometry‌ ‌cluster,‌ ‌colored‌ ‌to‌‌ 

match‌ ‌predicted‌ ‌labels.‌ ‌ 

(M)‌ ‌Relative‌ ‌mean‌ ‌fluorescence‌ ‌intensity‌ ‌(MFI;‌ ‌low‌ ‌-‌ ‌blue;‌ ‌high‌ ‌-‌ ‌orange)‌ ‌in‌ ‌flow‌ ‌cytometry‌ ‌ 

clusters.‌ ‌ 
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‌ 

Fig.‌ ‌6.‌ ‌Cross-condition‌ ‌data‌ ‌integration‌ ‌reveals‌ ‌stage-specific‌ ‌marker‌ ‌genes.‌ ‌ 
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(A)‌ ‌Activation‌ ‌stage‌ ‌distribution‌ ‌shown‌ ‌as‌ ‌percentages‌ ‌of‌ ‌total‌ ‌cells‌ ‌per‌ ‌biological‌ ‌condition‌ ‌and‌‌ 

tissue.‌ ‌Scale‌ ‌was‌ ‌modified‌ ‌with‌ ‌a‌ ‌square-root‌ ‌transformation‌ ‌for‌ ‌ease‌ ‌of‌ ‌visualization.‌ ‌ 

(B)‌ ‌Schematic‌ ‌overview‌ ‌of‌ ‌data‌ ‌reprocessing‌ ‌strategy.‌ ‌ 

(C-D)‌ ‌Integrated‌ ‌UMAP‌ ‌of‌ ‌macrophages‌ ‌(cells‌ ‌=‌ ‌2843)‌ ‌across‌ ‌conditions‌ ‌and‌ ‌tissues‌ ‌labelled‌‌ 

with‌ ‌identified‌ ‌clusters‌ ‌(C)‌ ‌or‌ ‌previously‌ ‌assigned‌ ‌activation‌ ‌stages‌ ‌(D).‌ ‌ 

(E)‌ ‌Dot‌ ‌plot‌ ‌of‌ ‌top‌ ‌significantly‌ ‌regulated‌ ‌genes‌ ‌associated‌ ‌with‌ ‌GO‌ ‌term‌ ‌“Cell‌ ‌surface”‌‌ 

(GO:0009986)‌ ‌across‌ ‌activation‌ ‌stages.‌ ‌ 

(F)‌ ‌Heatmap‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌blue;‌ ‌high‌ ‌-‌ ‌orange)‌ ‌of‌ ‌top‌ ‌significantly‌ ‌(adjusted‌‌ 

p‌ ‌value‌ ‌<‌ ‌0.01)‌ ‌regulated‌ ‌genes‌ ‌(log‌ ‌fold‌ ‌change‌ ‌>‌ ‌0.25)‌ ‌across‌ ‌activation‌ ‌stages.‌ ‌ 
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Fig.‌ ‌7.‌ ‌Macrophage‌ ‌transcriptional‌ ‌network‌ ‌across‌ ‌activation‌ ‌paths.‌ ‌ 
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(A)‌ ‌Transcriptional‌ ‌network‌ ‌of‌ ‌protein-protein‌ ‌interactions,‌ ‌depicting‌ ‌genes‌ ‌(n‌ ‌=‌ ‌242)‌ ‌as‌ ‌nodes‌‌ 

and‌ ‌interactions‌ ‌as‌ ‌edges‌ ‌(n‌ ‌=‌ ‌716).‌ ‌Node‌ ‌size‌ ‌corresponds‌ ‌to‌ ‌calculated‌ ‌strength.‌ ‌Node‌ ‌color‌ ‌is‌ 

associated‌ ‌with‌ ‌the‌ ‌assigned‌ ‌network‌ ‌cluster.‌ ‌Edge‌ ‌opacity‌ ‌corresponds‌ ‌to‌ ‌calculated‌ ‌weight‌ ‌of‌‌ 

interaction.‌ ‌The‌ ‌most‌ ‌enriched‌ ‌GO‌ ‌term‌ ‌associated‌ ‌with‌ ‌each‌ ‌cluster‌ ‌is‌ ‌indicated.‌ ‌ 

(B)‌ ‌Transcriptional‌ ‌network‌ ‌as‌ ‌in‌ ‌A,‌ ‌but‌ ‌split‌ ‌along‌ ‌activation‌ ‌paths,‌ ‌with‌ ‌arbitrary‌ ‌node‌ ‌size‌ ‌and‌‌ 

edge‌ ‌opacity.‌ ‌ 

(C)‌ ‌Transcriptional‌ ‌network‌ ‌as‌ ‌in‌ ‌A,‌ ‌limited‌ ‌to‌ ‌nodes‌ ‌with‌ ‌high‌ ‌betweenness‌ ‌(75%‌ ‌quantile)‌ ‌that‌‌ 

connect‌ ‌2‌ ‌or‌ ‌more‌ ‌clusters.‌ ‌Gene‌ ‌names‌ ‌indicated‌ ‌in‌ ‌red.‌ ‌ 

(D)‌ ‌Top‌ ‌-‌ ‌Transcription‌ ‌factor‌ ‌enrichment‌ ‌analysis‌ ‌shown‌ ‌as‌ ‌a‌ ‌word‌ ‌cloud‌ ‌where‌ ‌size‌ ‌of‌ ‌name‌ ‌is‌‌ 

proportional‌ ‌to‌ ‌the‌ ‌number‌ ‌of‌ ‌gene‌ ‌sets‌ ‌in‌ ‌transcriptional‌ ‌network‌ ‌clusters‌ ‌associated‌ ‌with‌ ‌the‌‌ 

specific‌ ‌transcription‌ ‌factor.‌ ‌Bottom‌ ‌-‌ ‌Fitted‌ ‌GAM‌ ‌models‌ ‌(colored‌ ‌lines‌ ‌matching‌ ‌activation‌‌ 

paths)‌ ‌of‌ ‌gene‌ ‌expression‌ ‌of‌ ‌enriched‌ ‌transcription‌ ‌factors‌ ‌(y‌ ‌axis‌ ‌-‌ ‌fixed‌ ‌across‌ ‌all‌ ‌paths‌ ‌for‌‌ 

each‌ ‌gene)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌pseudotime‌ ‌(x‌ ‌axis‌ ‌-‌ ‌specific‌ ‌to‌ ‌each‌ ‌path).‌ ‌ 

(E-F)‌ ‌Heatmap‌ ‌showing‌ ‌relative‌ ‌gene‌ ‌set‌ ‌score‌ ‌variance‌ ‌(low‌ ‌-‌ ‌blue;‌ ‌high‌ ‌-‌ ‌orange)‌ ‌of‌ ‌enriched‌‌ 

GO‌ ‌terms‌ ‌(E)‌ ‌or‌ ‌KEGG‌ ‌pathways‌ ‌(F).‌ ‌ 
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Figure‌ ‌S1.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌1.‌

‌ 
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(A)‌ ‌UMAP‌ ‌of‌ ‌CD45‌+‌‌ ‌SVF‌ ‌cells‌ ‌isolated‌ ‌from‌ ‌mesenteric‌ ‌adipose‌ ‌tissue‌ ‌of‌ ‌naïve‌ ‌and‌ ‌‌H.‌ ‌poly‌‌ ‌infected‌ 

mice,‌ ‌labelled‌ ‌and‌ ‌colorer‌ ‌according‌ ‌to‌ ‌identified‌ ‌clusters‌ ‌(top)‌ ‌or‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌‌ 

gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌macrophage‌ ‌marker‌ ‌genes‌ ‌(bottom).‌ ‌ 

(B)‌ ‌UMAP‌ ‌of‌ ‌SVF‌ ‌cells‌ ‌isolated‌ ‌from‌ ‌popliteal‌ ‌adipose‌ ‌tissue‌ ‌of‌ ‌naïve‌ ‌and‌ ‌‌L.‌ ‌mono‌‌ ‌infected‌ ‌mice,‌‌ 

labelled‌ ‌and‌ ‌colorer‌ ‌according‌ ‌to‌ ‌identified‌ ‌clusters‌ ‌(top)‌ ‌or‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌gray;‌‌ 

high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌macrophage‌ ‌marker‌ ‌genes‌ ‌(bottom).‌ ‌ 

(C)‌ ‌Heatmap‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌blue;‌ ‌high‌ ‌-‌ ‌orange)‌ ‌of‌ ‌top‌ ‌significantly‌ ‌(adjusted‌ ‌p‌‌ 

value‌ ‌<‌ ‌0.01)‌ ‌regulated‌ ‌genes‌ ‌(log‌ ‌fold‌ ‌change‌ ‌>‌ ‌0.25)‌ ‌genes‌ ‌across‌ ‌identified‌ ‌clusters‌ ‌in‌ ‌Figure‌ ‌1B.‌ ‌ 

‌ ‌   
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Figure‌ ‌S2.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌2.‌ ‌ 

‌ 
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(A)‌ ‌Adjusted‌ ‌p‌ ‌value‌ ‌distribution‌ ‌for‌ ‌GAM‌ ‌fits‌ ‌for‌ ‌each‌ ‌activation‌ ‌path,‌ ‌showing‌ ‌an‌ ‌arbitrary‌‌ 

significance‌ ‌threshold‌ ‌(blue‌ ‌dashed‌ ‌line‌ ‌-‌ ‌1x10‌-9‌).‌‌ ‌  

(B)‌ ‌Violin‌ ‌plots‌ ‌showing‌ ‌relative‌ ‌gene‌ ‌expression‌ ‌of‌ ‌macrophage‌ ‌activation‌ ‌markers‌ ‌across‌ ‌identified‌‌ 

stages.‌ ‌ 

(C-D)‌ ‌Representative‌ ‌flow‌ ‌cytometry‌ ‌plots‌ ‌showing‌ ‌gating‌ ‌strategy‌ ‌for‌ ‌the‌ ‌isolation‌ ‌of‌ ‌live‌ ‌bone‌‌ 

marrow‌ ‌monocyte‌ ‌precursors‌ ‌(C),‌ ‌or‌ ‌analysis‌ ‌of‌ ‌adoptively‌ ‌transferred‌ ‌cells‌ ‌in‌ ‌the‌ ‌peritoneal‌ ‌cavity‌‌ 

(D).‌ ‌ 

‌ ‌   
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Figure‌ ‌S3.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌3.‌ ‌ 

‌ 

(A-H)‌ ‌Analysis‌ ‌of‌ ‌CD45‌+‌‌ ‌cells‌ ‌from‌ ‌either‌ ‌the‌ ‌SVF‌ ‌of‌ ‌‌H.‌ ‌poly‌‌ ‌infected‌ ‌animals‌ ‌(A-D)‌ ‌or‌ ‌the‌ ‌lamina‌‌ 

propria‌ ‌(E-H).‌ ‌ 

(A,‌ ‌E)‌ ‌Label‌ ‌probability‌ ‌distribution‌ ‌showing‌ ‌confidence‌ ‌threshold‌ ‌(dashed‌ ‌blue‌ ‌line)‌ ‌for‌ ‌label‌‌ 

assignment.‌ ‌ 
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(B,‌ ‌F)‌ ‌Relationship‌ ‌between‌ ‌label‌ ‌probability‌ ‌and‌ ‌macrophage‌ ‌score‌ ‌in‌ ‌cells‌ ‌shown‌ ‌as‌ ‌dots‌ ‌and‌‌ 

colored‌ ‌according‌ ‌to‌ ‌transferred‌ ‌labels.‌ ‌Dashed‌ ‌blue‌ ‌line‌ ‌indicates‌ ‌confidence‌ ‌threshold‌ ‌(80%)‌ ‌for‌‌ 

label‌ ‌transfer.‌ ‌ 

(C,‌ ‌G)‌ ‌UMAP‌ ‌showing‌ ‌assigned‌ ‌labels‌ ‌(colored‌ ‌cells)‌ ‌and‌ ‌cells‌ ‌with‌ ‌no‌ ‌classification‌ ‌in‌ ‌grey.‌ ‌ 

(D,‌ ‌H)‌ ‌UMAP‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌macrophage‌ ‌specific‌ ‌genes.‌ ‌ 

(I-Q)‌ ‌UMAP‌ ‌showing‌ ‌relative‌ ‌expression‌ ‌(low‌ ‌-‌ ‌gray;‌ ‌high‌ ‌-‌ ‌blue)‌ ‌of‌ ‌2‌ ‌genes‌ ‌per‌ ‌indicated‌ ‌dataset,‌‌ 

illustrating‌ ‌the‌ ‌effects‌ ‌of‌ ‌data‌ ‌imputation‌ ‌procedure‌ ‌by‌ ‌comparing‌ ‌expression‌ ‌patterns‌ ‌in‌ ‌original‌‌ 

(bottom)‌ ‌and‌ ‌imputed‌ ‌(top)‌ ‌data.‌ ‌ 

‌ ‌   
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Figure‌ ‌S4.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌3.‌ ‌ 

(A-R)‌ ‌Query‌ ‌datasets‌ ‌were‌ ‌clustered‌ ‌and‌ ‌visualized‌ ‌as‌ ‌UMAPs‌ ‌(A,‌ ‌C,‌ ‌E,‌ ‌G,‌ ‌I,‌ ‌K,‌ ‌M,‌ ‌O,‌ ‌Q)‌ ‌and‌ ‌violin‌‌ 

plots‌ ‌illustrating‌ ‌the‌ ‌label‌ ‌probability‌ ‌distribution‌ ‌for‌ ‌every‌ ‌detected‌ ‌label‌ ‌within‌ ‌each‌ ‌identified‌ ‌cluster‌‌ 

(B,‌ ‌D,‌ ‌F,‌ ‌H,‌ ‌J,‌ ‌L,‌ ‌N,‌ ‌P,‌ ‌R).‌  ‌Dashed‌ ‌blue‌ ‌line‌ ‌indicates‌ ‌confidence‌ ‌threshold‌ ‌(80%)‌ ‌for‌ ‌label‌ ‌transfer.‌ ‌ 

‌ ‌   
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‌ 

Figure‌ ‌S5.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌5.‌ ‌ 

(A)‌ ‌UMAP‌ ‌of‌ ‌wounded‌ ‌skin‌ ‌macrophages‌ ‌indicating‌ ‌identified‌ ‌clusters.‌ ‌ 

(B)‌ ‌Violin‌ ‌plots‌ ‌illustrating‌ ‌the‌ ‌label‌ ‌probability‌ ‌distribution‌ ‌for‌ ‌every‌ ‌detected‌ ‌label‌ ‌within‌ ‌each‌‌ 

identified‌ ‌cluster.‌  ‌Dashed‌ ‌blue‌ ‌line‌ ‌indicates‌ ‌confidence‌ ‌threshold‌ ‌(80%)‌ ‌for‌ ‌label‌ ‌transfer.‌ ‌ 

(C-D)‌ ‌tdRFP+‌ ‌fluorescence‌ ‌intensity‌ ‌(FI)‌ ‌in‌ ‌all‌ ‌cells‌ ‌across‌ ‌harvest‌ ‌day‌ ‌(C)‌ ‌or‌ ‌adoptive‌ ‌transfer‌ ‌day‌‌ 

(D).‌‌ ‌  

(E)‌ ‌Total‌ ‌within‌ ‌cluster‌ ‌sum‌ ‌of‌ ‌squares‌ ‌(SS)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌k‌ ‌means‌ ‌(number‌ ‌of‌ ‌clusters).‌ ‌Dashed‌ ‌red‌‌ 

line‌ ‌indicates‌ ‌the‌ ‌selected‌ ‌number‌ ‌of‌ ‌clusters‌ ‌(k=‌ ‌6).‌ ‌ 

(F)‌ ‌UMAP‌ ‌calculated‌ ‌based‌ ‌on‌ ‌indexed‌ ‌flow‌ ‌cytometry‌ ‌data‌ ‌with‌ ‌day‌ ‌of‌ ‌tissue‌ ‌harvest‌ ‌indicated.‌ ‌ 

‌ ‌   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


‌ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure‌ ‌S6.‌ ‌Related‌ ‌to‌ ‌Figure‌ ‌7.‌ ‌ 

(A)‌ ‌Transcriptional‌ ‌network‌ ‌or‌ ‌protein-protein‌ ‌interactions,‌ ‌depicting‌ ‌genes‌ ‌as‌ ‌nodes‌ ‌(n‌ ‌=‌ ‌586)‌ ‌and‌‌ 

interactions‌ ‌as‌ ‌edges‌ ‌(n‌ ‌=‌ ‌3355).‌ ‌ 

(B)‌ ‌Edge‌ ‌weight‌ ‌distribution‌ ‌indicating‌ ‌threshold‌ ‌(dashed‌ ‌blue‌ ‌line)‌ ‌for‌ ‌edge‌ ‌trimming.‌ ‌ 

(C)‌ ‌Dot‌ ‌plot‌ ‌depicting‌ ‌top‌ ‌enriched‌ ‌GO‌ ‌terms‌ ‌for‌ ‌each‌ ‌identified‌ ‌network‌ ‌cluster.‌ ‌ ‌   
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Supplemental‌ ‌Table‌ ‌2.‌ ‌Gene‌ ‌set‌ ‌scores‌ ‌ 

Genes‌ ‌used‌ ‌in‌ ‌calculating‌ ‌all‌ ‌gene‌ ‌set‌ ‌scores‌ ‌shown‌ ‌in‌ ‌the‌ ‌study.‌ ‌ 

Score‌ ‌name‌ ‌  Associated‌ ‌genes‌ ‌  Fig.‌ ‌ 

Macrophage‌ ‌  Adgre1,‌ ‌Csf1r,‌ ‌H2-Ab1,‌ ‌Cd68,‌ ‌Lyz2,‌ ‌Itgam,‌ ‌Mertk‌ ‌  S1,‌ ‌S3‌ ‌ 

Complement‌ ‌&‌‌ 
Phagocytosis‌ ‌ 

C1qc,‌ ‌F13a1,‌ ‌C1qa,‌ ‌C4b,‌ ‌Cfh,‌ ‌C5ar1,‌ ‌Snx2,‌ ‌Tgfbr2,‌ ‌Dab2,‌ ‌Folr2,‌ ‌Cltc,‌ ‌Wwp1,‌‌ 
Cd209d,‌ ‌Mrc1,‌ ‌Cd209f,‌ ‌Cd209g,‌ ‌Cd36,‌ ‌Ctsb,‌ ‌Lgmn,‌ ‌Cltc,‌ ‌Cd63‌ ‌  1C‌ ‌ 

ECM‌ ‌&‌ ‌Actin‌ ‌Regulation‌ ‌  Cd44,‌ ‌Sdc1,‌ ‌Fn1,‌ ‌Pfn1,‌ ‌Fn1,‌ ‌Actg1,‌ ‌Tmsb4x‌ ‌  1C‌ ‌ 

Antigen‌ ‌Presentation‌ ‌  H2-Ab1,‌ ‌H2-Aa,‌ ‌H2-Eb1,‌ ‌H2-Oa,‌ ‌H2-DMb2,‌ ‌H2-Ob,‌ ‌H2-DMb1‌ ‌  1C‌ ‌ 

Innate‌ ‌Immune‌ ‌Response‌ ‌ 
Tnfaip8l2,‌ ‌Cyba,‌ ‌Rsad2,‌ ‌Anxa1,‌ ‌Ifitm3,‌ ‌Fcgr1,‌ ‌Fgr,‌ ‌Oasl2,‌ ‌Clec4e,‌ ‌Clec4d,‌‌ 
Pglyrp1,‌ ‌Oas3,‌ ‌Isg20,‌ ‌Samhd1,‌ ‌Hmgb2,‌ ‌Rnase6,‌ ‌Slpi,‌ ‌Msrb1,‌ ‌Gbp2‌ ‌  1C‌ ‌ 

Phagosome‌ ‌  Ctss,‌ ‌Cyba,‌ ‌Msr1,‌ ‌Fcgr1,‌ ‌Coro1a,‌ ‌Thbs1,‌ ‌Ncf4,‌ ‌Fcgr3‌ ‌  1C‌ ‌ 

Oxidative‌ ‌Stress‌ ‌  Prdx5,‌ ‌Txn1,‌ ‌Gsr,‌ ‌Ptgs2,‌ ‌Ccs,‌ ‌Prdx6,‌ ‌Gpx4,‌ ‌Sesn1,‌ ‌Sod3,‌ ‌Ltc4s‌ ‌  1C‌ ‌ 

ECM‌ ‌Organization‌ ‌  Col1a1,‌ ‌Nid1,‌ ‌Dpt,‌ ‌B4galt1,‌ ‌Lum,‌ ‌Col3a1,‌ ‌Ccdc80,‌ ‌Ramp2,‌ ‌Serpinh1,‌ ‌Ddr2‌ ‌  1C‌ ‌ 

Cycling‌ ‌ 
Racgap1,‌ ‌Cks1b,‌ ‌Stmn1,‌ ‌Ran,‌ ‌Cep57,‌ ‌Smc4,‌ ‌Top2a,‌ ‌Cks2,‌ ‌Ube2s,‌ ‌Ube2c,‌‌ 
Cenpw,‌ ‌Smc2,‌ ‌Anp32b,‌ ‌Ranbp1,‌ ‌Cenpa‌ ‌  1C‌ ‌ 

Monocyte‌ ‌ 
S100a4,‌ ‌Itgb7,‌ ‌Napsa,‌ ‌Cd300lg,‌ ‌Adora2b,‌ ‌Emb,‌ ‌Ly6c2,‌ ‌Ms4a4c,‌ ‌Fn1,‌ ‌Sell,‌‌ 
Padi2,‌ ‌Lilra6,‌ ‌Ccnb2,‌ ‌Galnt9,‌ ‌Upb1,‌ ‌Lmo1,‌ ‌F13a1,‌ ‌Ccr2,‌ ‌Gm15987,‌ ‌AI839979‌ ‌  1D‌ ‌ 

Apoptosis‌ ‌ 

Acin1,‌ ‌Acvr1c,‌ ‌Aifm1,‌ ‌Aifm3,‌ ‌Akt1,‌ ‌Ano6,‌ ‌Apaf1,‌ ‌Bax,‌ ‌Bbc3,‌ ‌Bcl2l1,‌ ‌Bcl10,‌‌ 
Blcap,‌ ‌Bok,‌ ‌Casp3,‌ ‌Casp7,‌ ‌Casp8,‌ ‌Casp14,‌ ‌Casp16,‌ ‌Cd24a,‌ ‌Cdk5rap3,‌‌ 
Cdkn2a,‌ ‌Cecr2,‌ ‌Cidea,‌ ‌Cideb,‌ ‌Cidec,‌ ‌Cxcr3,‌ ‌Dedd2,‌ ‌Dffa,‌ ‌Dffb,‌ ‌Dicer1,‌ ‌Dlc1,‌‌ 
Dnase1l3,‌ ‌Dnase2a,‌ ‌Dnase2b,‌ ‌Endog,‌ ‌Ern2,‌ ‌Exog,‌ ‌Fap,‌ ‌Foxl2,‌ ‌Fzd3,‌ ‌Gcg,‌‌ 
Gm20594,‌ ‌Gper1,‌ ‌Hsf1,‌ ‌Igfbp3,‌ ‌Il6,‌ ‌Madd,‌ ‌Nmnat1,‌ ‌Pak2,‌ ‌Pam16,‌ ‌Plscr1,‌‌ 
Plscr2,‌ ‌Ptgis,‌ ‌Rffl,‌ ‌Rnf34,‌ ‌Rps3,‌ ‌Sharpin,‌ ‌Sirt2,‌ ‌Stk24,‌ ‌Taok1,‌ ‌Tnf,‌ ‌Top2a,‌‌ 
Trp53,‌ ‌Trp53bp2,‌ ‌Trpc5,‌ ‌Xkr4,‌ ‌Xkr5,‌ ‌Xkr6,‌ ‌Xkr7,‌ ‌Xkr8,‌ ‌Xkr9,‌ ‌Zc3h12a‌ ‌  2D‌ ‌ 

Movement‌ ‌Of‌ ‌Cell‌ ‌Or‌‌ 
Subcellular‌ ‌Component‌ ‌ 

Actb,‌ ‌Adam8,‌ ‌Aif1,‌ ‌Aldoa,‌ ‌Apoe,‌ ‌App,‌ ‌Rhoc,‌ ‌C3ar1,‌ ‌C5ar1,‌ ‌Cd44,‌ ‌Cd63,‌‌ 
Coro1a,‌ ‌Ccr2,‌ ‌Cnn2,‌ ‌Csf1r,‌ ‌Ednrb,‌ ‌Fcer1g,‌ ‌Fcgr3,‌ ‌Fn1,‌ ‌Srgap2,‌ ‌Gas6,‌‌ 
B4galt1,‌ ‌Gna12,‌ ‌Grn,‌ ‌Cxcl1,‌ ‌Igf1,‌ ‌Cd74,‌ ‌Itgam,‌ ‌Itgb1,‌ ‌Itgb2,‌ ‌Itgb7,‌ ‌Jun,‌ ‌Jup,‌‌ 
Lamp1,‌ ‌Lgals3,‌ ‌Lrp1,‌ ‌Mif,‌ ‌Mmp9,‌ ‌Nck1,‌ ‌Pdpk1,‌ ‌Pfn1,‌ ‌Pltp,‌ ‌Lgmn,‌ ‌Ptger4,‌‌ 
Tmsb10,‌ ‌Tmsb4x,‌ ‌Rac2,‌ ‌Ccl6,‌ ‌Cxcl2,‌ ‌Cxcl12,‌ ‌Selplg,‌ ‌Sparc,‌ ‌Sdc3,‌ ‌Sdc4,‌‌ 
Thbs1,‌ ‌Trf,‌ ‌Vasp,‌ ‌Iqgap1,‌ ‌Bin1,‌ ‌Pik3cg,‌ ‌Sdcbp,‌ ‌Cxcl13,‌ ‌Ccl24,‌ ‌Pf4,‌ ‌Cxcl16,‌‌ 
Pycard,‌ ‌Arpc2,‌ ‌Trem2,‌ ‌Gpsm3,‌ ‌Arrb2,‌ ‌P2ry6,‌ ‌Myo1g‌ ‌  7E‌ ‌ 

Chemotaxis‌ ‌ 

Adam8,‌ ‌Aif1,‌ ‌App,‌ ‌C3ar1,‌ ‌C5ar1,‌ ‌Coro1a,‌ ‌Ccr2,‌ ‌Csf1r,‌ ‌Ear2,‌ ‌Ednrb,‌ ‌Fcer1g,‌‌ 
Fcgr3,‌ ‌Fn1,‌ ‌Gas6,‌ ‌Cxcl1,‌ ‌Cd74,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌Lgals3,‌ ‌Lrp1,‌ ‌Lsp1,‌ ‌Mif,‌ ‌Lgmn,‌ 
Rac2,‌ ‌Ccl6,‌ ‌Cxcl2,‌ ‌Cxcl12,‌ ‌Thbs1,‌ ‌Vasp,‌ ‌Pik3cg,‌ ‌Cxcl13,‌ ‌Ccl24,‌ ‌Pf4,‌ ‌Cxcl16,‌‌ 
Trem2,‌ ‌Gpsm3,‌ ‌Arrb2‌ ‌  7E‌ ‌ 
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G‌ ‌Protein-coupled‌‌ 
Receptor‌ ‌Signaling‌‌ 
Pathway‌ ‌ 

Apoe,‌ ‌C3ar1,‌ ‌C5ar1,‌ ‌Ccr2,‌ ‌Ednrb,‌ ‌Gna12,‌ ‌Gngt2,‌ ‌Itgb1,‌ ‌Lrp1,‌ ‌Psap,‌ ‌Ptger4,‌‌ 
Rac2,‌ ‌Ccl6,‌ ‌Ezr,‌ ‌Pik3cg,‌ ‌Ramp1,‌ ‌Ccl24,‌ ‌Gpr132,‌ ‌Pf4,‌ ‌Arhgef12,‌ ‌Hcar2,‌ ‌Arrb2,‌‌ 
P2ry6‌ ‌  7E‌ ‌ 

Cytoskeleton‌‌ 
Organization‌ ‌ 

Actb,‌ ‌Actg1,‌ ‌Aif1,‌ ‌Ap1g1,‌ ‌Rhoc,‌ ‌Arpc1b,‌ ‌Capza2,‌ ‌Coro1a,‌ ‌Cnn2,‌ ‌Csf1r,‌ ‌Ctsl,‌‌ 
Srgap2,‌ ‌Itgb1,‌ ‌Lrp1,‌ ‌Lsp1,‌ ‌Nck1,‌ ‌Pfn1,‌ ‌Ptger4,‌ ‌Tmsb10,‌ ‌Tmsb4x,‌ ‌Rac2,‌‌ 
S100a10,‌ ‌Sdc4,‌ ‌Trf,‌ ‌Tubb5,‌ ‌Tyrobp,‌ ‌Vasp,‌ ‌Ezr,‌ ‌Bin1,‌ ‌Sdcbp,‌ ‌Ccl24,‌ ‌Pycard,‌‌ 
Cotl1,‌ ‌Arpc2,‌ ‌Arhgap10,‌ ‌Mtss1,‌ ‌Gsn‌ ‌  7E‌ ‌ 

Actin‌ ‌Filament‌‌ 
Organization‌ ‌ 

Aif1,‌ ‌Rhoc,‌ ‌Arpc1b,‌ ‌Capza2,‌ ‌Coro1a,‌ ‌Nck1,‌ ‌Pfn1,‌ ‌Ptger4,‌ ‌Tmsb10,‌ ‌Tmsb4x,‌‌ 
Rac2,‌ ‌S100a10,‌ ‌Sdc4,‌ ‌Trf,‌ ‌Vasp,‌ ‌Ezr,‌ ‌Bin1,‌ ‌Ccl24,‌ ‌Pycard,‌ ‌Cotl1,‌ ‌Arpc2,‌‌ 
Mtss1,‌ ‌Gsn‌ ‌  7E‌ ‌ 

Actin‌ ‌Polymerization‌ ‌Or‌‌ 
Depolymerization‌ ‌ 

Aif1,‌ ‌Arpc1b,‌ ‌Capza2,‌ ‌Coro1a,‌ ‌Nck1,‌ ‌Pfn1,‌ ‌Tmsb10,‌ ‌Tmsb4x,‌ ‌Vasp,‌ ‌Bin1,‌‌ 
Ccl24,‌ ‌Pycard,‌ ‌Cotl1,‌ ‌Arpc2,‌ ‌Mtss1,‌ ‌Gsn‌ ‌  7E‌ ‌ 

Positive‌ ‌Regulation‌ ‌Of‌‌ 
Lipid‌ ‌Localization‌ ‌  Apoe,‌ ‌Anxa2,‌ ‌Cd36,‌ ‌Lpl,‌ ‌Lrp1,‌ ‌Mif,‌ ‌Pltp,‌ ‌Msr1‌ ‌  7E‌ ‌ 

Erk1‌ ‌And‌ ‌Erk2‌ ‌Cascade‌ 
Apoe,‌ ‌App,‌ ‌C5ar1,‌ ‌Cd36,‌ ‌Cd44,‌ ‌Csf1r,‌ ‌Fn1,‌ ‌Gas6,‌ ‌Igf1,‌ ‌Cd74,‌ ‌Il6,‌ ‌Jun,‌ ‌Lrp1,‌‌ 
Mif,‌ ‌Ptger4,‌ ‌Ccl6,‌ ‌Trf,‌ ‌Ezr,‌ ‌Ccl24,‌ ‌Pycard,‌ ‌Trem2,‌ ‌Arrb2,‌ ‌P2ry6‌ ‌  7E‌ ‌ 

Positive‌ ‌Regulation‌ ‌Of‌‌ 
Endocytosis‌ ‌ 

Apoe,‌ ‌B2m,‌ ‌Anxa2,‌ ‌Cd14,‌ ‌Cd36,‌ ‌Cd63,‌ ‌Fcgr1,‌ ‌Hfe,‌ ‌Itgb1,‌ ‌Itsn1,‌ ‌Lrp1,‌ ‌Trf,‌‌ 
Bin1,‌ ‌Trem2,‌ ‌Arrb2‌ ‌  7E‌ ‌ 

Regulation‌ ‌Of‌‌ 
Transcription‌ ‌By‌ ‌Rna‌‌ 
Polymerase‌ ‌Ii‌ ‌ 

Aebp2,‌ ‌App,‌ ‌Ciita,‌ ‌Cd36,‌ ‌Ednrb,‌ ‌Ezh2,‌ ‌Fos,‌ ‌Irf8,‌ ‌Igf1,‌ ‌Il6,‌ ‌Jun,‌ ‌Jup,‌ ‌Mafb,‌‌ 
Nck1,‌ ‌Ncoa3,‌ ‌Nfkb1,‌ ‌Slc11a1,‌ ‌Pbx1,‌ ‌Pfn1,‌ ‌Rel,‌ ‌Spi1,‌ ‌Ezr,‌ ‌H2afz,‌ ‌Ncoa6,‌ ‌Pf4,‌‌ 
Plac8‌ ‌  7E‌ ‌ 

Regulation‌ ‌Of‌ ‌Myeloid‌‌ 
Leukocyte‌ ‌Differentiation‌ ‌  Adam8,‌ ‌C1qc,‌ ‌Csf1r,‌ ‌Fos,‌ ‌Cd74,‌ ‌Jun,‌ ‌Mafb,‌ ‌Tyrobp,‌ ‌Pf4,‌ ‌Trem2‌ ‌  7E‌ ‌ 

Regulation‌ ‌Of‌ ‌Nitrogen‌‌ 
Compound‌ ‌Metabolic‌‌ 
Process‌ ‌ 

Actb,‌ ‌Adam8,‌ ‌Aebp2,‌ ‌Aif1,‌ ‌Prdx6,‌ ‌Fabp4,‌ ‌Aplp2,‌ ‌Apoe,‌ ‌App,‌ ‌Asah1,‌ ‌Serping1,‌‌ 
Ciita,‌ ‌C3ar1,‌ ‌C5ar1,‌ ‌Anxa2,‌ ‌Cct2,‌ ‌Cd36,‌ ‌Cd44,‌ ‌Ccr2,‌ ‌Csf1r,‌ ‌Cst3,‌ ‌Cstb,‌ ‌Ctsc,‌‌ 
Ctsd,‌ ‌Cybb,‌ ‌Ednrb,‌ ‌Ezh2,‌ ‌Fcgr1,‌ ‌Fcgr3,‌ ‌Fn1,‌ ‌Fos,‌ ‌Gas6,‌ ‌Gna12,‌ ‌Grn,‌ ‌H3f3b,‌‌ 
Hfe,‌ ‌Irf8,‌ ‌Igf1,‌ ‌Igfbp4,‌ ‌Cd74,‌ ‌Il6,‌ ‌Itgb1,‌ ‌Itgb2,‌ ‌Itm2b,‌ ‌Jun,‌ ‌Jup,‌ ‌Mafb,‌ ‌Psmb8,‌‌ 
Lrp1,‌ ‌Mif,‌ ‌Mmp9,‌ ‌Nck1,‌ ‌Ncoa3,‌ ‌Nfkb1,‌ ‌Slc11a1,‌ ‌Pbx1,‌ ‌Pdpk1,‌ ‌Pfn1,‌ ‌Ctsa,‌‌ 
Lgmn,‌ ‌Psap,‌ ‌Ptger4,‌ ‌Tmsb4x,‌ ‌Rel,‌ ‌Ccl6,‌ ‌Spi1,‌ ‌Slpi,‌ ‌Sdc4,‌ ‌Thbs1,‌ ‌Timp2,‌‌ 
Tnfrsf1b,‌ ‌Trf,‌ ‌Tfrc,‌ ‌Tyrobp,‌ ‌Ezr,‌ ‌Iqgap1,‌ ‌Bin1,‌ ‌Pik3cg,‌ ‌H2afz,‌ ‌Ramp1,‌ ‌Sdcbp,‌‌ 
Ccl24,‌ ‌Ncoa6,‌ ‌Pf4,‌ ‌Ncstn,‌ ‌Ctsz,‌ ‌Pycard,‌ ‌Cd209b,‌ ‌Trem2,‌ ‌Tlr7,‌ ‌Arrb2,‌ ‌Gsn,‌‌ 
Plac8,‌ ‌P2ry6‌ ‌  7E‌ ‌ 

Antigen‌ ‌Processing‌ ‌And‌‌ 
Presentation‌ ‌Of‌‌ 
Exogenous‌ ‌Peptide‌‌ 
Antigen‌ ‌ 

B2m,‌ ‌Fcer1g,‌ ‌Fcgr1,‌ ‌Fcgr3,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-K1,‌ ‌H2-DMa,‌‌ 
H2-DMb1,‌ ‌H2-DMb2,‌ ‌H2-Oa,‌ ‌Cd74,‌ ‌Unc93b1‌ ‌  7E‌ ‌ 

Immune‌ ‌System‌ ‌Process‌ ‌ 

Actg1,‌ ‌Adam8,‌ ‌Aif1,‌ ‌Ap1g1,‌ ‌Ap2a2,‌ ‌Apoe,‌ ‌App,‌ ‌B2m,‌ ‌Serping1,‌ ‌C1qa,‌ ‌C1qb,‌‌ 
C1qc,‌ ‌Ciita,‌ ‌C3ar1,‌ ‌C4b,‌ ‌C5ar1,‌ ‌Anxa2,‌ ‌Cd14,‌ ‌Cd36,‌ ‌Cd44,‌ ‌Cd68,‌ ‌Cd83,‌‌ 
Coro1a,‌ ‌Ccr2,‌ ‌Cnn2,‌ ‌Csf1r,‌ ‌Ctsc,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Ednrb,‌ ‌Fcer1g,‌ ‌Fcgr1,‌ ‌Fcgr3,‌‌ 
Fcgrt,‌ ‌Fos,‌ ‌Gas6,‌ ‌B4galt1,‌ ‌Grn,‌ ‌Cxcl1,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-K1,‌‌ 
H2-DMa,‌ ‌H2-DMb1,‌ ‌H2-DMb2,‌ ‌H2-Oa,‌ ‌H2-Ob,‌ ‌Hfe,‌ ‌Hp,‌ ‌Irf8,‌ ‌Igf1,‌ ‌Cd74,‌ ‌Il2rg,‌‌  7E‌ ‌ 
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Il6,‌ ‌Itgam,‌ ‌Itgb1,‌ ‌Itgb2,‌ ‌Itgb7,‌ ‌Jun,‌ ‌Klrd1,‌ ‌Mafb,‌ ‌Lamp1,‌ ‌Lgals1,‌ ‌Lgals3,‌‌ 
Psmb8,‌ ‌Lrp1,‌ ‌Lst1,‌ ‌Mif,‌ ‌Mmp9,‌ ‌Clec4d,‌ ‌Mpeg1,‌ ‌Mrc1,‌ ‌Nck1,‌ ‌Nfkb1,‌ ‌Slc11a1,‌‌ 
Pbx1,‌ ‌Pdpk1,‌ ‌Cfp,‌ ‌Lgmn,‌ ‌Ptger4,‌ ‌Rac2,‌ ‌Ccl6,‌ ‌Cxcl2,‌ ‌Cxcl12,‌ ‌Selplg,‌ ‌Spi1,‌‌ 
Slpi,‌ ‌Sdc4,‌ ‌Thbs1,‌ ‌Tnfrsf1b,‌ ‌Trf,‌ ‌Tfrc,‌ ‌Tyrobp,‌ ‌Ezr,‌ ‌Fyb,‌ ‌Hcst,‌ ‌Pik3cg,‌ 
Unc93b1,‌ ‌Cxcl13,‌ ‌Ccl24,‌ ‌Pf4,‌ ‌Ncstn,‌ ‌Cxcl16,‌ ‌Pycard,‌ ‌Rnase6,‌ ‌Hcar2,‌ ‌Trem2,‌‌ 
Gpsm3,‌ ‌Tlr7,‌ ‌Cd209a,‌ ‌Arrb2,‌ ‌Gsn,‌ ‌Clec12a,‌ ‌Myo1g‌ ‌ 

Innate‌ ‌Immune‌ ‌Response‌ ‌ 

Actg1,‌ ‌Adam8,‌ ‌Ap1g1,‌ ‌Apoe,‌ ‌Serping1,‌ ‌C1qa,‌ ‌C1qb,‌ ‌C1qc,‌ ‌Ciita,‌ ‌Cd14,‌‌ 
Coro1a,‌ ‌Csf1r,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Fcer1g,‌ ‌Fcgr1,‌ ‌Grn,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌Irf8,‌‌ 
Cd74,‌ ‌Klrd1,‌ ‌Lamp1,‌ ‌Lgals3,‌ ‌Mif,‌ ‌Clec4d,‌ ‌Mpeg1,‌ ‌Mrc1,‌ ‌Slc11a1,‌ ‌Cfp,‌ ‌Ccl6,‌‌ 
Slpi,‌ ‌Unc93b1,‌ ‌Ccl24,‌ ‌Cxcl16,‌ ‌Pycard,‌ ‌Rnase6,‌ ‌Trem2,‌ ‌Tlr7,‌ ‌Arrb2,‌ ‌Gsn‌ ‌  7E‌ ‌ 

Response‌ ‌To‌ ‌External‌‌ 
Stimulus‌ ‌ 

Actg1,‌ ‌Adam8,‌ ‌Aif1,‌ ‌Alox5ap,‌ ‌Ap1g1,‌ ‌Fabp4,‌ ‌Apoe,‌ ‌App,‌ ‌B2m,‌ ‌Serping1,‌‌ 
C1qa,‌ ‌C1qb,‌ ‌C1qc,‌ ‌Ciita,‌ ‌C3ar1,‌ ‌C5ar1,‌ ‌Anxa2,‌ ‌Cd14,‌ ‌Cd36,‌ ‌Cd44,‌ ‌Cd63,‌‌ 
Cd68,‌ ‌Coro1a,‌ ‌Ccr2,‌ ‌Cnn2,‌ ‌Csf1r,‌ ‌Ctsc,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Ear2,‌ ‌Ednrb,‌ ‌Fcer1g,‌‌ 
Fcgr1,‌ ‌Fcgr3,‌ ‌Fn1,‌ ‌Fos,‌ ‌Gas6,‌ ‌Grn,‌ ‌Cxcl1,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-K1,‌ 
Hfe,‌ ‌Hp,‌ ‌Irf8,‌ ‌Igf1,‌ ‌Cd74,‌ ‌Il6,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌Jun,‌ ‌Jup,‌ ‌Klrd1,‌ ‌Lamp1,‌ ‌Lamp2,‌‌ 
Lgals3,‌ ‌Lpl,‌ ‌Lrp1,‌ ‌Lsp1,‌ ‌Lyz2,‌ ‌Lyz1,‌ ‌Mif,‌ ‌Mmp9,‌ ‌Clec4d,‌ ‌Mpeg1,‌ ‌Mrc1,‌ ‌Nck1,‌‌ 
Nfkb1,‌ ‌Slc11a1,‌ ‌Cfp,‌ ‌Pros1,‌ ‌Lgmn,‌ ‌Ptger4,‌ ‌Rac2,‌ ‌Ccl6,‌ ‌Cxcl2,‌ ‌Cxcl12,‌ ‌Slfn2,‌‌ 
Slpi,‌ ‌Thbs1,‌ ‌Tnfrsf1b,‌ ‌Trf,‌ ‌Tfrc,‌ ‌Vasp,‌ ‌Cd52,‌ ‌Pik3cg,‌ ‌Unc93b1,‌ ‌Cxcl13,‌ ‌Ccl24,‌‌ 
Mgst1,‌ ‌Pf4,‌ ‌Cxcl16,‌ ‌Pycard,‌ ‌Cd209b,‌ ‌Cotl1,‌ ‌Rnase6,‌ ‌Trem2,‌ ‌Gpsm3,‌ ‌Tlr7,‌‌ 
Cd209d,‌ ‌Stab1,‌ ‌Arrb2,‌ ‌Gsn,‌ ‌Plac8‌ ‌  7E‌ ‌ 

Phagocytosis‌ ‌ 

Aif1,‌ ‌Cd36,‌ ‌Coro1a,‌ ‌Ccr2,‌ ‌Cnn2,‌ ‌Cyba,‌ ‌Fcer1g,‌ ‌Fcgr1,‌ ‌Fcgr3,‌ ‌Gas6,‌ ‌Irf8,‌ ‌Il2rg,‌‌ 
Itgb1,‌ ‌Itgb2,‌ ‌Lrp1,‌ ‌Ncf4,‌ ‌Slc11a1,‌ ‌Pros1,‌ ‌Msr1,‌ ‌Thbs1,‌ ‌Tyrobp,‌ ‌Pycard,‌‌ 
Cd209b,‌ ‌Trem2,‌ ‌Gsn,‌ ‌P2ry6,‌ ‌Myo1g‌ ‌  7E‌ ‌ 

Inflammatory‌ ‌Response‌ ‌ 

Adam8,‌ ‌Aif1,‌ ‌Alox5,‌ ‌Alox5ap,‌ ‌Fabp4,‌ ‌Apoe,‌ ‌App,‌ ‌C1qa,‌ ‌Ciita,‌ ‌C3ar1,‌ ‌C5ar1,‌‌ 
Cd14,‌ ‌Cd44,‌ ‌Cd68,‌ ‌Ccr2,‌ ‌Csf1r,‌ ‌Ctsc,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Ednrb,‌ ‌Fcer1g,‌ ‌Fcgr1,‌‌ 
Fcgr3,‌ ‌Fn1,‌ ‌B4galt1,‌ ‌Grn,‌ ‌Cxcl1,‌ ‌Hp,‌ ‌Igf1,‌ ‌Il6,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌Jun,‌ ‌Lpl,‌ ‌Lrp1,‌ ‌Mif,‌‌ 
Nfkb1,‌ ‌Slc11a1,‌ ‌Ptger4,‌ ‌Rel,‌ ‌Ccl6,‌ ‌Cxcl2,‌ ‌Thbs1,‌ ‌Tnfrsf1b,‌ ‌Tyrobp,‌ ‌Pik3cg,‌‌ 
Cxcl13,‌ ‌Ccl24,‌ ‌Pf4,‌ ‌Pycard,‌ ‌Trem2,‌ ‌Cd163,‌ ‌Gpsm3,‌ ‌Tlr7,‌ ‌Stab1‌ ‌  7E‌ ‌ 

Protein‌‌ 
Homooligomerization‌ ‌ 

Alox5ap,‌ ‌Apoe,‌ ‌App,‌ ‌Rhoc,‌ ‌B2m,‌ ‌Fcer1g,‌ ‌B4galt1,‌ ‌Lamp2,‌ ‌Mif,‌ ‌Vasp,‌ ‌Mgst1,‌‌ 
Pycard‌ ‌  7E‌ ‌ 

Protein‌ ‌Complex‌‌ 
Oligomerization‌ ‌ 

Alox5ap,‌ ‌Apoe,‌ ‌App,‌ ‌Rhoc,‌ ‌B2m,‌ ‌Anxa2,‌ ‌Fcer1g,‌ ‌B4galt1,‌ ‌Cd74,‌ ‌Jup,‌ ‌Lamp2,‌‌ 
Mif,‌ ‌Mmp9,‌ ‌Prkcsh,‌ ‌S100a10,‌ ‌Vasp,‌ ‌Hgsnat,‌ ‌Mgst1,‌ ‌Pycard‌ ‌  7E‌ ‌ 

Leukotriene‌ ‌Biosynthetic‌‌ 
Process‌ ‌  Alox5,‌ ‌Alox5ap,‌ ‌Ltc4s‌ ‌  7E‌ ‌ 

Icosanoid‌ ‌Biosynthetic‌‌ 
Process‌ ‌  Alox5,‌ ‌Alox5ap,‌ ‌Cd74,‌ ‌Fabp5,‌ ‌Ltc4s,‌ ‌Mif‌ ‌  7E‌ ‌ 

Carboxylic‌ ‌Acid‌ ‌Metabolic‌‌ 
Process‌ ‌ 

Aldoa,‌ ‌Alox5,‌ ‌Alox5ap,‌ ‌Fabp4,‌ ‌App,‌ ‌Cd36,‌ ‌Cd44,‌ ‌Idh1,‌ ‌Igf1,‌ ‌Cd74,‌ ‌Fabp5,‌ ‌Lpl,‌‌ 
Ltc4s,‌ ‌Mif,‌ ‌Nfkb1,‌ ‌Ptger4,‌ ‌Acly‌ ‌  7E‌ ‌ 

Superoxide‌ ‌Metabolic‌‌ 
Process‌ ‌  Cd36,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Cxcl1,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌Ncf4,‌ ‌Tyrobp‌ ‌  7E‌ ‌ 

Positive‌ ‌Regulation‌ ‌Of‌‌ 
Tumor‌ ‌Necrosis‌ ‌Factor‌‌ 

Adam8,‌ ‌App,‌ ‌Cd14,‌ ‌Cd36,‌ ‌Ccr2,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Fcer1g,‌ ‌Fcgr3,‌ ‌Lpl,‌ ‌Mif,‌ ‌Thbs1,‌‌ 
Tyrobp,‌ ‌Pf4,‌ ‌Pycard,‌ ‌Cd209b‌ ‌  7E‌ ‌ 
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Superfamily‌ ‌Cytokine‌‌ 
Production‌ ‌ 

Response‌ ‌To‌ ‌Hypoxia‌ ‌  Adam8,‌ ‌Cybb,‌ ‌Hmox2‌ ‌  7E‌ ‌ 

Defense‌ ‌Response‌ ‌To‌‌ 
Bacterium‌ ‌ 

C5ar1,‌ ‌Cd36,‌ ‌Cyba,‌ ‌Fcer1g,‌ ‌Fcgr1,‌ ‌Grn,‌ ‌H2-K1,‌ ‌Hp,‌ ‌Irf8,‌ ‌Lyz2,‌ ‌Lyz1,‌ ‌Clec4d,‌‌ 
Mpeg1,‌ ‌Slc11a1,‌ ‌Slpi,‌ ‌Cxcl13,‌ ‌Pycard,‌ ‌Rnase6,‌ ‌Trem2,‌ ‌Cd209d,‌ ‌Stab1,‌ ‌Plac8‌ ‌  7E‌ ‌ 

Regulation‌ ‌Of‌ ‌Proteolysis‌ ‌ 

Adam8,‌ ‌Apoe,‌ ‌App,‌ ‌Serping1,‌ ‌Anxa2,‌ ‌Cd44,‌ ‌Cst3,‌ ‌Cstb,‌ ‌Ctsc,‌ ‌Ctsd,‌ ‌Gas6,‌‌ 
Gna12,‌ ‌Grn,‌ ‌Hfe,‌ ‌Igf1,‌ ‌Il6,‌ ‌Psmb8,‌ ‌Mmp9,‌ ‌Lgmn,‌ ‌Slpi,‌ ‌Thbs1,‌ ‌Timp2,‌ ‌Tnfrsf1b,‌‌ 
Bin1,‌ ‌Sdcbp,‌ ‌Ctsz,‌ ‌Pycard,‌ ‌Trem2,‌ ‌Arrb2,‌ ‌Gsn‌ ‌  7E‌ ‌ 

Lipid‌ ‌Catabolic‌ ‌Process‌ ‌  Prdx6,‌ ‌Apoe,‌ ‌Asah1,‌ ‌Gm2a,‌ ‌Hexa,‌ ‌Idh1,‌ ‌Lpl,‌ ‌Lrp1,‌ ‌Neu1,‌ ‌Psap,‌ ‌Pik3cg,‌ ‌Hcar2‌ ‌  7E‌ ‌ 

Chemokine‌ ‌Signaling‌‌ 
Pathway‌ ‌ 

Cxcl1,‌ ‌Cxcl2,‌ ‌Cxcl12,‌ ‌Cxcl13,‌ ‌Cxcl16,‌ ‌Pf4,‌ ‌Ccl6,‌ ‌Ccl24,‌ ‌Ccr2,‌ ‌Pik3cg,‌ ‌Nfkb1,‌‌ 
Rac2,‌ ‌Gngt2,‌ ‌Arrb2‌ ‌  7D‌ ‌ 

Cytokine-cytokine‌‌ 
Receptor‌ ‌Interaction‌ ‌ 

Ccl6,‌ ‌Ccl24,‌ ‌Cxcl1,‌ ‌Cxcl2,‌ ‌Pf4,‌ ‌Cxcl13,‌ ‌Cxcl12,‌ ‌Cxcl16,‌ ‌Il6,‌ ‌Ccr2,‌ ‌Il2rg,‌ ‌Csf1r,‌‌ 
Tnfrsf1b‌ ‌  7D‌ ‌ 

Complement‌ ‌And‌‌ 
Coagulation‌ ‌Cascades‌ ‌ 

F10,‌ ‌F5,‌ ‌F13a1,‌ ‌Pros1,‌ ‌C1qa,‌ ‌C1qb,‌ ‌C1qc,‌ ‌C4b,‌ ‌C3ar1,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌C5ar1,‌‌ 
Serping1‌ ‌  7D‌ ‌ 

Aldosterone-regulated‌‌ 
Sodium‌ ‌Reabsorption‌ ‌  Igf1,‌ ‌Pdpk1‌ ‌  7D‌ ‌ 

mTOR‌ ‌Signaling‌ ‌Pathway‌ ‌  Igf1,‌ ‌Pdpk1‌ ‌  7D‌ ‌ 

Regulation‌ ‌Of‌ ‌Actin‌‌ 
Cytoskeleton‌ ‌ 

Cxcl12,‌ ‌Fn1,‌ ‌Itgam,‌ ‌Itgb1,‌ ‌Itgb2,‌ ‌Itgb7,‌ ‌Gna12,‌ ‌Arhgef12,‌ ‌Rac2,‌ ‌Arpc1b,‌‌ 
Arpc2,‌ ‌Actg1,‌ ‌Actb,‌ ‌Pfn1,‌ ‌Ezr,‌ ‌Tmsb4x,‌ ‌Iqgap1,‌ ‌Gsn‌ ‌  7D‌ ‌ 

Phagosome‌ ‌ 

Actg1,‌ ‌Actb,‌ ‌Coro1a,‌ ‌H2-K1,‌ ‌H2-K1,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-DMa,‌‌ 
H2-DMb1,‌ ‌H2-DMb2,‌ ‌H2-Oa,‌ ‌H2-Ob,‌ ‌Tfrc,‌ ‌Tubb5,‌ ‌Lamp1,‌ ‌Lamp2,‌ ‌Ctsl,‌ ‌Fcgr1,‌‌ 
Fcgr3,‌ ‌Itgam,‌ ‌Itgb2,‌ ‌Itgb1,‌ ‌Thbs1,‌ ‌Cd14,‌ ‌Mrc1,‌ ‌Cd209d,‌ ‌Cd209a,‌ ‌Cd209b,‌‌ 
Cd209f,‌ ‌Cd209g,‌ ‌Msr1,‌ ‌Cd36,‌ ‌Cyba,‌ ‌Cybb,‌ ‌Ncf4‌ ‌  7D‌ ‌ 

Leukocyte‌‌ 
Transendothelial‌‌ 
Migration‌ ‌ 

Itgam,‌ ‌Itgb2,‌ ‌Itgb1,‌ ‌Ezr,‌ ‌Actg1,‌ ‌Actb,‌ ‌Cybb,‌ ‌Cyba,‌ ‌Ncf4,‌ ‌Mmp9,‌ ‌Vasp,‌ ‌Cxcl12,‌‌ 
Rac2‌ ‌  7D‌ ‌ 

Focal‌ ‌Adhesion‌ ‌  Thbs1,‌ ‌Fn1,‌ ‌Itgb1,‌ ‌Itgb7,‌ ‌Igf1,‌ ‌Actg1,‌ ‌Actb,‌ ‌Vasp,‌ ‌Pdpk1,‌ ‌Rac2,‌ ‌Jun‌ ‌  7D‌ ‌ 

FC‌ ‌gamma‌ ‌R-mediated‌‌ 
phagocytosis‌ ‌  Fcgr1,‌ ‌Gsn,‌ ‌Vasp,‌ ‌Arpc1b,‌ ‌Arpc2,‌ ‌Rac2,‌ ‌Bin1‌ ‌  7D‌ ‌ 

ECM-receptor‌ ‌Interaction‌ ‌  Thbs1,‌ ‌Fn1,‌ ‌Itgb1,‌ ‌Itgb7,‌ ‌Cd44,‌ ‌Sdc4,‌ ‌Cd36‌ ‌  7D‌ ‌ 
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‌ 

‌ ‌   

Antigen‌ ‌Processing‌ ‌And‌‌ 
Presentation‌ ‌ 

H2-K1,‌ ‌H2-K1,‌ ‌B2m,‌ ‌Klrd1,‌ ‌Lgmn,‌ ‌Ctsb,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-DMa,‌‌ 
H2-DMb1,‌ ‌H2-DMb2,‌ ‌H2-Oa,‌ ‌H2-Ob,‌ ‌Cd74,‌ ‌Ctsl,‌ ‌Ciita‌ ‌  7D‌ ‌ 

Lysosome‌ 

Ctsa,‌ ‌Ctsb,‌ ‌Ctsc,‌ ‌Ctsd,‌ ‌Ctsl,‌ ‌Ctsz,‌ ‌Napsa,‌ ‌Lgmn,‌ ‌Hexa,‌ ‌Man2b1,‌ ‌Neu1,‌ ‌Gns,‌‌ 
Asah1,‌ ‌Psap,‌ ‌Gm2a,‌ ‌Lamp1,‌ ‌Lamp2,‌ ‌Cd68,‌ ‌Cd63,‌ ‌Npc2,‌ ‌Slc11a1,‌ ‌Laptm5,‌‌ 
Hgsnat,‌ ‌Clta,‌ ‌Ap1g1,‌ ‌Ap1b1,‌ ‌Ap1s2‌ ‌  7D‌ ‌ 

Hematopoietic‌ ‌Cell‌‌ 
Lineage‌ ‌ 

Il6,‌ ‌H2-Aa,‌ ‌H2-Ab1,‌ ‌H2-Eb1,‌ ‌H2-DMa,‌ ‌H2-DMb1,‌ ‌H2-DMb2,‌ ‌H2-Oa,‌ ‌H2-Ob,‌‌ 
Cd44,‌ ‌Tfrc,‌ ‌Fcgr1,‌ ‌Csf1r,‌ ‌Itgam,‌ ‌Cd14,‌ ‌Cd36‌ ‌  7D‌ ‌ 

Other‌ ‌Glycan‌‌ 
Degradation‌ ‌  Neu1,‌ ‌Hexa,‌ ‌Man2b1‌ ‌  7D‌ ‌ 
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Supplemental‌ ‌Table‌ ‌3.‌ ‌Dataset‌ ‌description‌ ‌and‌ ‌source‌ ‌ 

A‌ ‌description‌ ‌of‌ ‌single‌ ‌cell‌ ‌RNA-seq‌ ‌datasets‌ ‌used‌ ‌in‌ ‌the‌ ‌study,‌ ‌including‌ ‌a‌ ‌brief‌ ‌outline‌ ‌of‌ ‌the‌‌ 

immunological‌ ‌conditions‌ ‌within‌ ‌each‌ ‌dataset,‌ ‌is‌ ‌presented.‌ ‌Accession‌ ‌codes‌ ‌and‌ ‌associated‌‌ 

publications‌ ‌are‌ ‌also‌ ‌given.‌ ‌ 

Tissue‌ ‌  Cells‌ ‌  Conditions‌  Description‌ ‌  Timing‌ ‌  Source‌ ‌  Accession‌ ‌  Technology‌ ‌ 

Popliteal‌‌ 

adipose‌ ‌ 
Stromal‌‌ 

vascular‌‌ 

fraction‌ ‌ 

Naïve‌ ‌control‌ ‌or‌ ‌‌L.‌‌ 

monocytogenes‌‌ 

infection‌ ‌ 

Footpad‌ ‌s.c.‌ ‌injection‌‌ 
of‌‌ ‌L.‌ ‌monocytogenes‌ ‌  24‌ ‌hpi‌  This‌‌ 

publication‌ ‌  GSE171328‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Mesenteric‌‌ 

adipose‌ ‌ 
Stromal‌‌ 

vascular‌‌ 

fraction‌ ‌ 

Naïve‌ ‌control‌ ‌or‌ ‌‌H.‌‌ 

polygyrus‌‌ ‌infection‌ ‌ 

Oral‌ ‌infection‌ ‌with‌ ‌‌H.‌‌ 
polygyrus‌‌ ‌larvae‌ ‌  14‌ ‌dpi‌  This‌‌ 

publication‌ ‌  GSE157313‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Lamina‌‌ 

propria‌ ‌ 
CD45+‌ ‌cells‌ ‌ 

Control‌ ‌(chow)‌ ‌diet‌‌ 

or‌ ‌High‌ ‌fat‌ ‌diet‌ ‌ 

Rodent‌ ‌Diet‌ ‌60%‌ ‌kcal‌‌ 
from‌ ‌fat‌ ‌ 

12‌ ‌wks‌ ‌  This‌‌ 
publication‌ ‌  GSE171330‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Sciatic‌‌ 

nerve‌ ‌ 
Macrophages‌ ‌ 

Naïve‌ ‌control‌ ‌or‌‌ 

Nerve‌ ‌crush‌ 

Sciatic‌ ‌nerve‌ ‌was‌‌ 
chirurgically‌ ‌exposed‌‌ 
then‌ ‌crushed.‌ ‌ 

1‌ ‌and‌ ‌5‌‌ 
dpw‌ ‌ 

Ydens‌ ‌et‌‌ 
al.‌ ‌2020‌ ‌  GSE144707‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Breast‌‌ 

tumor‌ ‌ 
Myeloid‌ ‌cells‌ ‌ 

Spontaneous‌ ‌tumor‌‌ 

in‌ ‌mice‌ ‌with‌ ‌WT‌ ‌or‌‌ 

Dab2‌‌ ‌deficient‌‌ 

macrophages‌ ‌ 

Dissected‌‌ 
spontaneous‌ ‌lobular‌‌ 
breast‌ ‌carcinoma‌ ‌in‌‌ 
MMTV-PyMT‌ ‌Dab2fl/fl‌‌ 
Tie2-cre+‌ ‌or‌ ‌Tie2-cre-‌‌ 
mice‌ ‌ 

13‌ ‌wks‌ ‌ 
Marigo‌ ‌et‌‌ 
al.‌ ‌2020‌ ‌  GSE152674‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Atherosclero‌

tic‌ ‌plaque‌ ‌  Macrophages‌ ‌ 
Progressing‌ ‌or‌‌ 

Regressing‌ ‌lesion‌ ‌ 

20‌ ‌weeks‌ ‌western‌ ‌diet‌‌ 
or‌ ‌18‌ ‌weeks‌ ‌western‌‌ 
diet‌ ‌then‌ ‌2‌ ‌weeks‌‌ 
chow‌ ‌diet‌ ‌with‌‌ 
apolipoprotein‌ ‌B‌‌ 
antisense‌‌ 
oligonucleotide‌‌ 
treatment‌ ‌(50‌ ‌mg/kg,‌ ‌2‌‌ 
doses/wk)‌ ‌ 

20‌ ‌wks‌ ‌  Lin‌ ‌et‌ ‌al.‌‌ 
2019‌ ‌  GSE123587‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Lung‌ ‌  CD45+‌ ‌cells‌ ‌ 

Naïve‌ ‌control‌ ‌or‌‌ 

Cryptococcus‌‌ 

neoformans‌‌ 
infection‌ ‌ 

Oro-tracheal‌ ‌exposure‌‌ 
to‌ ‌‌Cryptococcus‌‌ 
neoformans‌‌ ‌yeasts‌ ‌ 

9‌ ‌hpi‌ ‌ 
Xu-Vanpal‌
a‌ ‌et‌ ‌al.‌‌ 
2020‌‌ ‌  

GSE146233‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Liver‌ ‌  Non-parenchy‌

mal‌ ‌liver‌ ‌cells‌‌ ‌  

Healthy‌ ‌control‌ ‌or‌‌ 

Fibrotic‌ ‌tissue‌ ‌ 

Overnight‌ ‌fasting‌‌ 
followed‌ ‌by‌ ‌o.g.‌‌ 
administration‌ ‌of‌‌ 
carbon‌ ‌tetrachloride‌ ‌in‌‌ 
corn‌ ‌oil‌ ‌(1:4)‌ ‌or‌ ‌vehicle‌‌ 
control‌ ‌twice‌ ‌per‌ ‌week‌ ‌ 

2‌ ‌and‌ ‌4‌‌ 
wks‌ ‌ 

Terkelsen‌‌ 
et‌ ‌al.‌ ‌2020‌ ‌  GSE145086‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Heart‌ ‌  CD45+‌ ‌cells‌ ‌ 
Healthy‌ ‌control‌ ‌or‌‌ 

Infarcted‌ ‌tissue‌ ‌ 

Left‌ ‌anterior‌‌ 
descending‌ ‌coronary‌‌ 
artery‌ ‌occlusion‌ ‌by‌‌ 
permanent‌ ‌suture‌‌ 
ligation.‌ ‌ 

4‌ ‌days‌ ‌  King‌ ‌et‌ ‌al.‌‌ 
2017‌ ‌  GSE106472‌ ‌ 

inDrop‌ ‌(‌Zilionis‌ ‌et‌‌ 

al,‌ ‌Nature‌ ‌Protocols‌‌ 

2016‌)‌ ‌ 
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‌ 

Retina‌ ‌  CD45+‌ ‌cells‌ ‌ 

Healthy‌ ‌(dark)‌‌ 

control‌ ‌or‌‌ 

Neurodegeneration‌‌ 

(light)‌ ‌ 

Arrestin‌ ‌1‌ ‌deficient‌‌ 
maintained‌ ‌in‌ ‌constant‌‌ 
darkness‌ ‌before‌‌ 
exposure‌ ‌to‌ ‌light‌ ‌(200‌‌ 
lux,‌ ‌48 hours).‌ ‌ 

48‌ ‌hours‌ ‌ 
Ronning‌ ‌et.‌‌ 
al.‌ ‌2019‌ ‌  GSE121081‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Skeletal‌‌ 

muscle‌ ‌ 
CD45+‌ ‌cells‌ ‌ 

Naïve‌ ‌control‌ ‌or‌‌ 

Toxoplasma‌ ‌gondii‌‌ 

infection‌ ‌ 

Oral‌ ‌infection‌ ‌with‌‌ 
ME49‌ ‌‌T.gondii‌‌ ‌cysts‌ ‌  28‌ ‌dpi‌  Jin‌ ‌et.‌ ‌al.‌‌ 

2018‌ ‌  GSE113111‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Brain‌ ‌  Microglia‌ ‌  Steady‌ ‌state‌ ‌  No‌ ‌intervention‌ ‌ 
E14,‌ ‌P4/5,‌‌ 
P30,‌ ‌P100‌ ‌ 

Hammond‌ ‌ 
et.‌ ‌al.‌ ‌2019‌ ‌  GSE121654‌ ‌  10X‌ ‌Chromium‌‌ 

controller‌ ‌ 

Skin‌ ‌  Macrophages‌ ‌  Wounded‌ ‌skin‌ ‌ 

Sterile‌ ‌wounding‌ ‌via‌‌ 
skin‌ ‌punch‌ ‌biopsies.‌‌ 
i.v.‌ ‌administration‌ ‌of‌‌ 
tdRFP+‌ ‌monocytes.‌ ‌ 

4‌ ‌or‌ ‌14‌‌ 
dpw‌ ‌ 

This‌‌ 
publication‌ ‌  GSE‌ ‌  Smart-Seq2‌ ‌ 
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