

A Chromosome-level Genome Assembly of the Reed Warbler (*Acrocephalus scirpaceus*)

Camilla Lo Cascio Sætre^{1*}, Fabrice Eroukhmanoff¹, Katja Rönkä^{2,3}, Edward Kluen^{2,3}, Rose Thorogood^{2,3}, James Torrance⁴, Alan Tracey⁴, William Chow⁴, Sarah Pelan⁴, Kerstin Howe⁴, Kjetill S. Jakobsen¹, Ole K. Tørresen¹.

¹Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway

²HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki 00011, Finland

³Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00011, Finland

⁴Wellcome Sanger Institute, Cambridge, UK

*Corresponding author: E-mail: c.l.c.satre@ibv.uio.no

Abstract

The reed warbler (*Acrocephalus scirpaceus*) is a long-distance migrant passerine with a wide distribution across Eurasia. This species has fascinated researchers for decades, especially its role as host of a brood parasite, and its capacity for rapid phenotypic change in the face of climate change. Currently, it is expanding its range northwards in Europe, and is altering its migratory behaviour in certain areas. Thus, there is great potential to discover signs of recent evolution and its impact on the genomic composition of the reed warbler. Here we present a high-quality reference genome for the reed warbler, based on PacBio, 10X and Hi-C sequencing. The genome has an assembly size of 1,075,083,815 bp with a scaffold N50 of 74,438,198 bp and a contig N50 of 12,742,779 bp. BUSCO analysis using *aves_odb10* as a model showed that 95.7% of genes in the assembly were complete. We found unequivocal evidence of two separate macrochromosomal fusions in the reed warbler genome, in addition to the previously identified fusion between chromosome Z and a part of chromosome 4A in the Sylvioidea superfamily. We annotated 14,645 protein-coding genes, of which 97.5% were complete BUSCO orthologs. This reference genome will serve as an important resource, and will provide new insights into the genomic effects of evolutionary drivers such as coevolution, range expansion, and adaptations to climate change, as well as chromosomal rearrangements in birds.

32 **Keywords:** genome assembly, Hi-C sequencing, long reads, reference genome, *Acrocephalus*

33 *scirpaceus*.

34

35 **Significance statement**

36 The reed warbler (*Acrocephalus scirpaceus*) has been lacking a genomic resource, despite having
37 been broadly researched in studies of coevolution, ecology and adaptations to climate change. Here,
38 we generated a chromosome-length genome assembly of the reed warbler, and found evidence of
39 macrochromosomal fusions in its genome, which are likely of recent origin. This genome will provide
40 the opportunity for a deeper understanding of the evolution of genomes in birds, as well as the
41 evolutionary path and possible future of the reed warbler.

42

43 **Introduction**

44 The ecology and evolution of the reed warbler (*Acrocephalus scirpaceus*) has been of interest for over
45 40 years (Thorogood et al. 2019) as it is one of the favourite host species of the brood-parasitic
46 common cuckoo (*Cuculus canorus*) (Davies and Brooke 1989; Stokke et al. 2018). Decades of field
47 experiments have demonstrated behavioural coevolution and spatial and temporal variation in species
48 interactions (e.g., Thorogood and Davies 2013). However, the reed warbler's response to climate
49 change has begun to attract increasing attention. Reed warblers are experiencing far less severe
50 declines in population size than is typical for long-distance migrants (Both et al. 2010; Vickery et al.
51 2014). In fact, they are expanding their breeding range northwards into Fennoscandia (Järvinen and
52 Ulfstrand 1980; Røed 1994; Stolt 1999; Brommer et al. 2012), and have generally increased their
53 productivity following the rise in temperature (Schaefer et al. 2006; Eglington et al. 2015; Meller et
54 al. 2018). They are also showing rapid changes in phenology (Halupka et al. 2008), and migratory
55 behaviour; instead of crossing the Sahara, monitoring suggests that some reed warblers now remain
56 on the Iberian Peninsula over winter (Chamorro et al. 2019). Morphological traits such as body mass
57 and wing shape have been shown to change rapidly in reed warbler populations, indicating possible

58 local adaptation (Salewski et al. 2010; Kralj et al. 2010; Sætre et al. 2017). Genetic differentiation is
59 generally low between reed warbler populations, but moderate levels of differentiation have been
60 connected to both migratory behaviour (Procházka et al. 2011) and wing shape (Kralj et al. 2010).
61 Reed warblers thus provide a promising system to study population, phenotypic, and genetic
62 responses to climate change.

63 Although there has been an increasing number of avian genome assemblies in recent years
64 (e.g., Feng et al. 2020), many non-model species, including the reed warbler, are still lacking a
65 genome resource. To date, the closest relative to the reed warbler with a published reference genome
66 is the great tit (*Parus major*) (GCA_001522545.3, deposited in NCBI; Laine et al. 2016), but the
67 unpublished genome of the garden warbler (*Sylvia borin*) is available in public databases
68 (GCA_014839755.1, deposited in NCBI). There is also a genome in preprint from the *Acrocephalus*
69 genus, the great reed warbler (*A. arundinaceus*) (Sigeman et al. 2020a), but the scaffolds are not
70 chromosome-length.

71 Here, we present the first genome assembly of the reed warbler, based on PacBio, 10X and
72 Hi-C sequencing, with descriptions of the assembly, manual curation and annotation. This genome
73 will be a valuable resource for a number of studies, including studies of coevolution, population
74 genomics, adaptive evolution and comparative genomics. For reduced-representation sequencing
75 (e.g., RAD-seq) studies, it will help produce a more robust SNP set than with a *de novo* approach
76 (Shafer et al. 2017). It will facilitate the detection of selective sweeps, and provide the physical
77 localization of variants (Manel et al. 2016), thus giving insight into the potential genes involved in
78 adaptation. Furthermore, the genome will be an important resource in the study of chromosomal
79 rearrangements in birds.

80

81 **Materials and Methods**

82

83 **Sampling and isolation of genomic DNA**

84 Blood was collected from a brachial vein of a female reed warbler (subspecies *A. scirpaceus*
85 *scirpaceus*, NCBI Taxonomy ID: 126889) in Storminnet, Porvoo (60°19'24.9"N 25°35'23.0"E),
86 Finland, on May 22, 2019. Catching and sampling procedures complied with the Finnish law on
87 animal experiments and permits were licenced by the National Animal Experiment Board
88 (ESAVI/3920/2018) and Southwest Finland Regional Environment Centre (VARELY/758/2018).

89 Reed warblers were trapped with a mist net, ringed and handled by E.K. under his ringing licence.

90 The blood (~80 ml) was divided and stored separately in 500 ml ethanol, and in 500 ml SET
91 buffer (0.15M NaCl, 0.05M Tris, 0.001M EDTA, pH 8.0). The samples were immediately placed in
92 liquid nitrogen, and kept at -80 °C when stored. We performed phenol-chloroform DNA isolation on
93 the sample stored in SET buffer, following a modified protocol from Sambrook et al. (1989).

94

95 **Library preparation and sequencing**

96 DNA quality was checked using a combination of a fluorometric (Qubit, Invitrogen), UV absorbance
97 (Nanodrop, Thermo Fisher) and DNA fragment length assays (HS-50 kb fragment kit from AATI,
98 now part of Agilent Inc.). The PacBio library was prepared using the Pacific Biosciences Express
99 library preparation protocol. DNA was fragmented to 35 kb. Size selection of the final library was
100 performed using BluePippin with a 15 kb cut-off. Six single-molecule real-time (SMRT) cells were
101 sequenced using Sequel Polymerase v3.0 and Sequencing chemistry v3.0 on a PacBio RS II
102 instrument. The 10X Genomics Chromium linked-read protocol (10X Genomics Inc) was used to
103 prepare the 10X library, and due to the reed warbler's smaller sized genome, only 0.7 ng/µl of high
104 molecular weight DNA was used as input. A high-throughput chromosome conformation capture (Hi-
105 C) library was constructed using 50 µl of blood, following step 10 and onwards in the Arima Hi-C
106 (Arima Genomics) library protocol for whole blood. Adaptor ligation with Unique dual indexing
107 (Illumina), were chosen to match the indexes from the 10X linked-read library for simultaneous
108 paired-end sequencing (150 bp) on the same lane on an Illumina HiSeq X platform. Both libraries
109 were quality controlled using a Fragment analyzer NGS kit (AATI) and qPCR with the Kapa library
110 quantification kit (Roche) prior to sequencing.

111 The sequencing was provided by the Norwegian Sequencing Centre
112 (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and
113 supported by the "Functional Genomics" and "Infrastructure" programs of the Research Council of
114 Norway and the South-Eastern Regional Health Authorities.

115

116 **Genome size estimation and genome assembly**

117 The genome size of the reed warbler was estimated by a k-mer analysis of 10X reads using Jellyfish v.
118 2.3.0 (Marçais and Kingsford 2011) and Genome Scope v. 1.0 (Vurture et al. 2017), with a k-mer size
119 of 21. The estimated genome size was 1,130,626,830 bp.

120 We assembled the long-read PacBio sequencing data with FALCON and FALCON-Unzip
121 (falcon-kit 1.5.2 and falcon-unzip 1.3.5) (Chin et al. 2016). Falcon was run with the following
122 parameters: length_cutoff = -1; length_cutoff_pr = 1000; pa_HPCdaligner_option = -v -B128 -M24;
123 pa_daligner_option = -e0.8 -l2000 -k18 -h480 -w8 -s100; ovlp_HPCdaligner_option = -v -B128 -
124 M24; ovlp_daligner_option = -k24 -e.94 -l3000 -h1024 -s100; pa_DBsplit_option = -x500 -s200;
125 ovlp_DBsplit_option = -x500 -s200; falcon_sense_option = -output-multi -min-idt 0.70 -min-cov 3
126 -max-n-read 200; overlap_filtering_setting = -max-diff 100 -max-cov 100 -min-cov 2. Falcon-unzip
127 was run with default settings. The purge_haplotype pipeline v. 1.1.0 (Roach et al. 2018) was used to
128 curate the diploid assembly, with -l5, -m35, -h190 for the contig coverage, and -a60 for the purge
129 pipeline. Next, we scaffolded the curated assembly with the 10X reads using Scaff10X v. 4.1
130 (<https://github.com/wtsi-hpag/Scaff10X>), and the Hi-C reads using SALSA v. 2.2 (Ghurye et al.
131 2017). Finally, we polished the assembly (combined with the alternative assembly from Falcon-
132 Unzip), first with PacBio reads using pbmm2 v. 1.2.1, which uses minimap2 (Li 2018) internally (v.
133 2.17), and then with 10X reads for two rounds with Long Ranger v. 2.2.2 (Marks et al. 2019) and
134 FreeBayes v. 1.3.1 (Garrison and Marth 2012).

135

136 **Curation**

137 The assembly was decontaminated and manually curated using the gEVAL browser (Chow et al.
138 2016; Howe et al. 2021), resulting in 521 corrections (breaks, joins and removal of erroneously

139 duplicated sequence). HiGlass (Kerpedjiev et al. 2018) and PretextView (<https://github.com/wtsi-hpag/PretextView>) were used to visualize and rearrange the genome using Hi-C data, and
140 PretextSnapshot (<https://github.com/wtsi-hpag/PretextSnapshot>) was used to generate an image of
141 the Hi-C contact map. The corrections made reduced the total length of scaffolds by 0.5% and the
142 scaffold count by 44.6%, and increased the scaffold N50 by 20.2%. Curation identified and
143 confirmed 29 autosomes and the Z and W chromosomes, to which 98.6% of the assembly
144 sequences were assigned.

146

147 **Genome quality evaluation**

148 We assessed the quality of the assembly with the assemblathon_stats.pl script (Bradnam et al. 2013)
149 and investigated the completeness of the genome with Benchmarking Universal Single-Copy
150 Orthologs (BUSCO) v. 5.0.0 (Simão et al. 2015), searching for 8338 universal avian single-copy
151 orthologs (aves_odb10).

152 We aligned the assembly against the great tit (*Parus major*) and the garden warbler (*Sylvia*
153 *borin*) genome assemblies with minimap2 v. 2.18-r1015 and extracted only alignments longer than
154 5000 bp. The bundlelinks from circos-tools v. 0.23 was used to merge neighbouring links using
155 default options and a plot was created using circos v. 0.69-8.

156

157 **Genome annotation**

158 We used a repeat library provided by Alexander Suh called bird_library_25Oct2020 and described in
159 Peona et al. (2020) to softmask repeats in the reed warbler genome assembly. Softmasked genome
160 assemblies for golden eagle (*Aquila chrysaetos*), chicken (*Gallus gallus*), great tit (*Parus major*),
161 Anna's hummingbird (*Calypte anna*), zebra finch (*Taeniopygia guttata*), great reed warbler
162 (*Acrocephalus arundinaceus*), icterine warbler (*Hippolais icterina*), collared flycatcher (*Ficedula*
163 *albicollis*) and New Caledonian crow (*Corvus monedulaoides*) were downloaded from NCBI. The
164 triangle subcommand from Mash v. 2.3 (Ondov et al. 2016) was used to estimate a lower-triangular
165 distance matrix, and a Python script (<https://github.com/marbl/Mash/issues/9#issuecomment->

166 [509837201](#)) was used to convert the distance matrix into a full matrix. The full matrix was used as
167 input to RapidNJ v. 2.3.2 (Simonsen et al. 2008) to create a guide tree based on the neighbour-joining
168 method. Cactus v. 1.3.0 (Armstrong et al. 2020) was run with the guide tree and the softmasked
169 genome assemblies as input.

170 We also downloaded the annotation for chicken, and used it as input to the Comparative
171 Annotation Toolkit (CAT) v. 2.2.1-36-gfc1623d (Fiddes et al. 2018) together with the hierarchical
172 alignment format file from Cactus. Chicken was used as reference genome, reed warbler as the target
173 genome and the AUGUSTUS (Stanke et al. 2008) species parameter was set to ‘chicken’.
174 InterProScan v. 5.34-73 (Jones et al. 2014) was run on the predicted proteins to find functional
175 annotations, and DIAMOND v. 2.0.7 (Buchfink et al. 2021) was used to compare the predicted
176 proteins against UniProtKB/Swiss-Prot release 2021_03 (The UniProt Consortium 2021). AGAT v.
177 0.5.3 (Dainat 2021) was used to generate statistics from the GFF3 file with annotations and to add
178 functional annotations from InterProScan and gene names from UniProtKB/Swiss-Prot. BUSCO v.
179 5.0.0 was used to assess the completeness of the annotation.

180

181 **Results and Discussion**

182

183 **Genome assembly**

184 We generated 3,810,665 reads with PacBio, with an average read length of 16 kb at 61x coverage. We
185 further obtained 277,617,608 paired-end reads (2 x 150) with 10X Genomics, and 185,974,525
186 paired-end reads (2 x 150) with Hi-C, at 83x and 56x coverage, respectively. The final genome
187 assembly was 1.08 Gb in length, and contains 1081 contigs (contig N50 of 13 Mb) and 200 scaffolds
188 (scaffold N50 of 74 Mb) (Table 1).

189

190 **Genome quality evaluation**

191 The completeness of the assembled genome is high: of the 8338 universal avian single-copy
192 orthologs, we identified 7978 complete BUSCOs (95.7%), including 7920 single-copy (95.0%) and

193 58 duplicated BUSCOs (0.7%). 59 BUSCOs (0.7%) were fragmented, and 301 BUSCOs (3.6%) were
194 missing.

195 The reed warbler genome showed high synteny with the great tit genome, though with some
196 notable differences (Figure 1). The reed warbler chromosome 6 is a fusion of great tit chromosomes 7
197 and 8, and reed warbler chromosome 8 is a fusion of great tit chromosomes 6 and 9. Interestingly,
198 these chromosomes are not fused in the garden warbler genome (Supplementary figure 1), but
199 correspond to the great tit chromosomes. This suggests that the fusions evolved relatively recently,
200 perhaps at the base of the Acrocephalidae branch within Sylvioidea, but further research is needed to
201 determine this. Hi-C contact maps confirm that the chromosomes assembled in the reed warbler
202 genome are unbroken (Supplementary figure 2). Interchromosomal rearrangements are rare in avian
203 evolution (Ellegren 2010; Skinner and Griffin 2012), with some exceptions, such as in the orders
204 Falconiformes (Damas et al. 2017) and Psittaciformes (Furo et al. 2018). In fact, in all or most species
205 of Psittaciformes, chicken chromosomes 6 and 7, and 8 and 9 are fused (Furo et al. 2018; Kretschmer
206 et al. 2018) – the same chromosomes involved in the fusions discovered in the reed warbler genome.
207 We can only speculate about the significance of this without more data. Passeriformes, the sister
208 group of Psittaciformes, exhibit much lower rates of interchromosomal rearrangements, despite being
209 a large, highly diverse order (Kretschmer et al. 2021). There is still a large knowledge gap in the
210 cytogenetics of birds (Degrandi et al. 2020), and more research is needed to determine the rarity of the
211 fusions we discovered in the reed warbler genome.

212 We furthermore confirm the previously identified neo-sex chromosome (Pala et al. 2012;
213 Sigeman et al. 2020b), a fusion between the ancestral chromosome Z and a part of chromosome 4A
214 (according to chromosome naming from the zebra finch). This fusion is thought to have occurred at
215 the base of the Sylvioidea branch (Pala et al. 2012), and is shared with all species of Sylvioidea
216 studied so far (Sigeman et al. 2020b). Figure 1 clearly shows that reed warbler chromosome Z
217 corresponds to great tit chromosome Z, plus a part of great tit chromosome 4A, whereas reed warbler
218 chromosome Z corresponds to garden warbler chromosome Z (Supplementary figure 1).

219

220 **Genome annotation**

221 The GC content of the reed warbler genome assembly was 41.9%. The total repeat content of the
222 assembly was 10.94%, with LTR elements as the most common type of repeat (4.50%) followed by
223 LINEs (4.11%).

224 Using the Comparative Annotation Toolkit, based on a whole-genome multiple alignment
225 from Cactus, we predicted 14,645 protein coding genes, with an average Coding DNA Sequence
226 (CDS) length of 1782 bp, and an average intron length of 2918 bp (Table 1). The annotated genes had
227 97.5% completeness (based on predicted proteins).

228

229 Conclusion

230 In this study, we present the first assembled and annotated genome for the reed warbler *A. scirpaceus*.
231 We have accomplished this through utilizing long read PacBio sequencing, and scaffolding with
232 paired-end 10X and Hi-C reads. In addition to the previously identified autosome-sex chromosome
233 fusion shared by all members of Sylvioidea, we found unequivocal evidence of two novel
234 macrochromosomal fusions in the reed warbler genome. Further research is needed to determine the
235 evolutionary age of these fusions, especially because they are not present in the garden warbler
236 genome, suggesting they are relatively new. This genome will serve as an important resource to
237 increase our knowledge of chromosomal rearrangements in birds, both their prevalence and their
238 significance for avian evolution. Furthermore, the genome will, through the identification of genetic
239 variants and information of the function of associated genes, provide a deeper insight into the
240 evolution of the reed warbler, a bird which will continue to fascinate researchers for years to come.

241

242

243

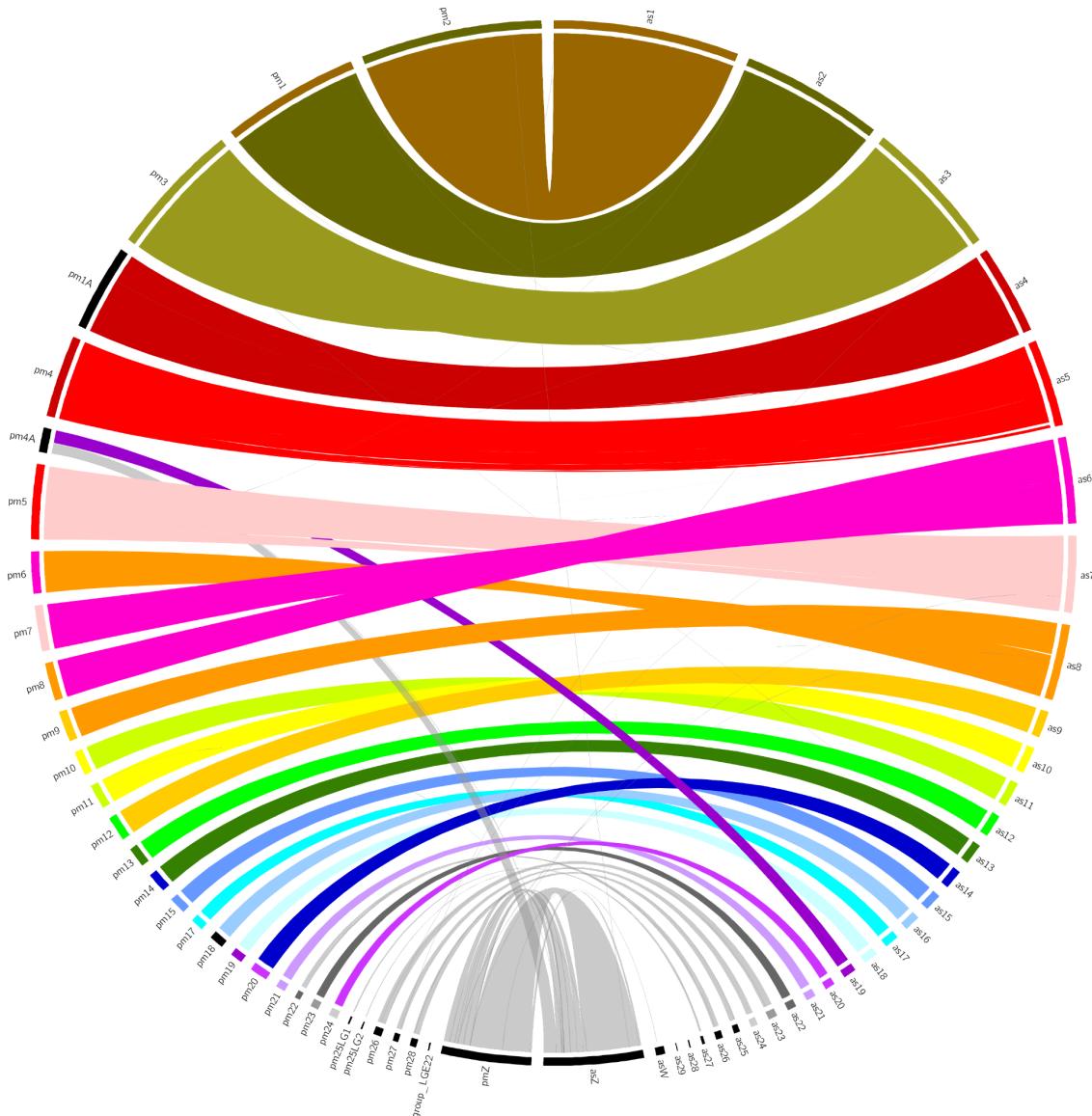
244

245

246

247

248


249 Table 1. Summary statistics of the reed warbler genome assembly and annotation.

Genome Assembly	Estimated genome size	1.13 Gb	
	Guanine and Cytosine content	41.91%	
	N50 length (contig)	13 Mb	
	Longest contig	48 Mb	
	Total length of contigs	1.07 Gb	
	N50 length (scaffold)	74.44 Mb	
	Longest scaffold	153.80 Mb	
	Total length of scaffolds	1.08 Gb	
Transposable elements	Annotation	Percent (%)	Total length
	DNA	0.22	2.35 Mb
	LINE	4.11	44.2 Mb
	SINE	0.09	0.98 Mb
	LTR	4.50	48.4 Mb
	Unknown	0.55	5.9 Mb
	Other (satellites, simple repeats and low complexity)	1.49	16 Mb
	Total	10.94	117.6 Mb
Protein-coding genes	Predicted genes	14,645	
	Average coding sequence length (bp)	1782	
	Average exon length (bp)	284	
	Average intron length (bp)	2918	

250

251

252

253

254 Figure 1. Circos plot showing the synteny between the reed warbler (on the right side, denoted with
255 the prefix as [*Acrocephalus scirpaceus*]) and the great tit (left side, prefix pm [*Parus major*]) genome
256 assemblies. The reed warbler chromosome 6 is a fusion of great tit chromosomes 7 and 8, while reed
257 warbler chromosome 8 is a fusion of great tit chromosomes 6 and 9 (see Hi-C contact maps in
258 supplementary figure 2). The reed warbler chromosome Z corresponds to great tit chromosome Z,
259 and a part of great tit chromosome 4A.

260

261

262

263

264 **Supplementary Material**

265 Supplementary data are available at *Genome Biology and Evolution* online.

266

267 **Acknowledgements**

268 We would like to thank Marjo Saastamoinen, Suvi Sallinen, Paolo Momigliano and the Molecular
269 Ecology and Systematics laboratory in the University of Helsinki for facilitating DNA extraction. We
270 would like to thank Ave Tooming-Klunderud and the Norwegian Sequencing Centre for performing
271 the sequencing. We also thank Pasi Rastas from the HiLIFE BioData Analytics Service unit, for his
272 assistance with preliminary analyses. The computations were performed on resources provided by
273 UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in
274 Norway. This work was supported by Research Council of Norway by grants # 251076 and 300032
275 to KSJ and a HiLIFE Start-up grant and a University of Helsinki Faculty of Biological and
276 Environmental Sciences travel grant to R.T.

277

278 **Author Contributions**

279 C.L.C.S., F.E., K.R., K.S.J., O.K.T. and R.T. designed the research. E.K., K.R. and R.T. collected the
280 sample. K.R. extracted DNA. C.L.C.S. and O.K.T. performed the research and/or analysed the data.
281 A.T., J.T., K.H., S.P. and W.C. curated the assembly. C.L.C.S. drafted the manuscript. All authors
282 read and approved the final manuscript.

283

284 **Data Availability**

285 The reference genome of *Acrocephalus scirpaceus* (bAcrSci1), and the raw sequence data, have been
286 deposited in the European Nucleotide Archive under the BioProject number PRJEB45715.

287

288

289

290

291

- 292 **Literature cited**
- 293
- 294 Armstrong J et al. 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome
- 295 era. *Nature*. 587:246–251.
- 296
- 297 Both C et al. 2010. Avian population consequences of climate change are most severe for long-
- 298 distance migrants in seasonal habitats. *Proceedings of the Royal Society B*. 277:1259–1266.
- 299
- 300 Bradnam KR et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three
- 301 vertebrate species. *GigaScience*. 2:10.
- 302
- 303 Brommer JE, Lehikoinen A, Valkama J. 2012. The breeding ranges of central European and arctic
- 304 bird species move poleward. *PLoS ONE* 7(9): e43648.
- 305
- 306 Buchfink B, Reuter K, Drost HG. 2021. Sensitive protein alignments at tree-of-life scale using
- 307 DIAMOND. *Nature Methods*. 18:366–368.
- 308
- 309 Chamorro D, Nieto I, Real R, Muñoz AR. 2019. Wintering areas on the move in the face of warmer
- 310 winters. *Ornis Fennica*. 96:41–54.
- 311
- 312 Chin CS et al. 2016. Phased diploid genome assembly with single molecule real-time sequencing.
- 313 *Nature Methods*. 13:1050–1054.
- 314
- 315 Chow W et al. 2016. gEVAL — a web-based browser for evaluating genome assemblies.
- 316 *Bioinformatics*. 32:2508–2510.
- 317
- 318 Dainat J. 2021. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF/GFF format.
- 319 (Version v0.5.3). Zenodo. <https://www.doi.org/10.5281/zenodo.3552717>.

- 320
- 321 Damas J et al. 2017. Upgrading short-read animal genome assemblies to chromosome level using
- 322 comparative genomics and a universal probe set. *Genome Research*. 27:875–884.
- 323
- 324 Davies NB, Brooke ML. 1989. An experimental study of co-evolution between the cuckoo, *Cuculus*
- 325 *canorus*, and its hosts. I. Host egg discrimination. *Journal of Animal Ecology*. 58:207–224.
- 326
- 327 Degrandi TM et al. 2020. Introducing the bird chromosome database: an overview of cytogenetic
- 328 studies in birds. *Cytogenetic and Genome Research*. 160:199–205.
- 329
- 330 Eglington SM et al. 2015. Latitudinal gradients in the productivity of European migrant warblers have
- 331 not shifted northwards during a period of climate change. *Global Ecology and Biogeography*. 24:427–
- 332 436.
- 333
- 334 Ellegren H. 2010. Evolutionary stasis: the stable chromosomes of birds. *Trends in Ecology &*
- 335 *Evolution*. 25:283–291.
- 336
- 337 Feng S et al. 2020. Dense sampling of bird diversity increases power of comparative genomics.
- 338 *Nature*. 587:252–257.
- 339
- 340 Fiddes IT et al. 2018. Comparative Annotation Toolkit (CAT) – simultaneous clade and personal
- 341 genome annotation. *Genome Research*. 28:1029–1038.
- 342
- 343 Furo IDO et al. 2018. Chromosome painting in Neotropical long- and short-tailed parrots (Aves,
- 344 Psittaciformes): phylogeny and proposal for a putative ancestral karyotype for tribe Arini. *Genes*. 9.
- 345 <https://doi.org/10.3390/genes9100491>.
- 346
- 347

- 348 Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv
349 preprint arXiv:1207.3907 [q-bio.GN].
- 350
- 351 Ghurye J, Pop M, Koren S, Bickhart D, Chin CS. 2017. Scaffolding of long read assemblies using
352 long range contact information. BMC genomics. 18:527.
- 353
- 354 Halupka L, Dyracz A, Borowiec M. 2008. Climate change affects breeding of reed warblers
355 *Acrocephalus scirpaceus*. Journal of Avian Biology. 39:95–100.
- 356
- 357 Howe K et al. 2021. Significantly improving the quality of genome assemblies through curation.
358 GigaScience. 10. giaa153.
- 359
- 360 Järvinen O, Ulfstrand S. 1980. Species turnover of a continental bird fauna: Northern Europe, 1850–
361 1970. Oecologia. 46:186–195.
- 362
- 363 Jones P et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics.
364 30:1236–1240.
- 365
- 366 Kerpeljiev P et al. 2018. HiGlass: web-based visual exploration and analysis of genome interaction
367 maps. Genome Biology. 19, 125. <https://doi.org/10.1186/s13059-018-1486-1>.
- 368
- 369 Kralj J, Procházka P, Fainová D, Patzenhauerová H, Tutiš V. 2010. Intraspecific variation in the wing
370 shape and genetic differentiation of reed warblers *Acrocephalus scirpaceus* in Croatia. Acta
371 Ornithologica. 45:51–58.
- 372
- 373 Kretschmer R, Ferguson-Smith MA, de Oliveira EHC. 2018. Karyotype evolution in birds: from
374 conventional staining to chromosome painting. Genes. 9:181.
- 375

- 376 Kretschmer R et al. 2021. Karyotype evolution and genomic organization of repetitive DNAs in the
377 saffron finch, *Sicalis flaveola* (Passeriformes, Aves). *Animals*. 11, 1456.
378 <https://doi.org/10.3390/ani11051456>.
- 379
- 380 Laine VN et al. 2016. Evolutionary signals of selection on cognition from the great tit genome and
381 methylome. *Nature Communications*. 7, 10474. <https://doi.org/10.1038/ncomms10474>.
- 382
- 383 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34:3094–3100.
- 384
- 385 Manel S et al. 2016. Genomic resources and their influence on the detection of the signal of positive
386 selection in genome scans. *Molecular Ecology*. 25:170–184.
- 387
- 388 Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of
389 occurrences of k-mers. *Bioinformatics*. 27:764–770.
- 390
- 391 Marks P et al. 2019. Resolving the full spectrum of human genome variation using linked-reads.
392 *Genome Research*, 29:635–645.
- 393
- 394 Meller K, Piha M, Vähä-talo AV, Lehikoinen A. 2018. A positive relationship between spring
395 temperature and productivity in 20 songbird species in the boreal zone. *Oecologia*. 186:883–893.
- 396
- 397 Ondov BD et al. 2016. Mash: fast genome and metagenome distance estimation using MinHash.
398 *Genome Biology*. 17. <https://doi.org/10.1186/s13059-016-0997-x>.
- 399
- 400 Pala I et al. 2012. Evidence of a neo-sex chromosome in birds. *Heredity*. 108:264–272.
- 401

- 402 Peona V et al. 2020. The avian W chromosome is a refugium for endogenous retroviruses with likely
403 effects on female-biased mutational load and genetic incompatibilities. bioRxiv preprint doi:
404 <https://doi.org/10.1101/2020.07.31.230854>.
- 405
- 406 Procházka P et al. 2011. Low genetic differentiation among reed warbler *Acrocephalus scirpaceus*
407 populations across Europe. Journal of Avian Biology. 42:103–113.
- 408
- 409 Roach MJ, Schmidt SA, Borneman AR. 2018. Purge Haplotts: allelic contig reassignment for third-
410 gen diploid genome assemblies. BMC Bioinformatics. 19:460.
- 411
- 412 Røed, T. 1994. “Rørsanger.” In Norsk Fugleatlas, 382–383. Norsk Ornitologisk Forening.
- 413
- 414 Salewski V, Hochachka WM, Fiedler W. 2010. Global warming and Bergmann’s rule: do central
415 European passerines adjust their body size to rising temperatures? Oecologia. 162:247–260.
- 416
- 417 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold
418 Spring. Harbor Laboratory Press, New York.
- 419
- 420 Schaefer T, Ledebur G, Beier J, Leisler B. 2006. Reproductive responses of two related coexisting
421 songbird species to environmental changes: global warming, competition, and population sizes.
422 Journal of Ornithology. 147:47–56.
- 423
- 424 Shafer ABA et al. 2017. Bioinformatic processing of RAD-seq data dramatically impacts downstream
425 population genetic inference. Methods in Ecology and Evolution. 8:907–917.
- 426
- 427 Sigeman H et al. 2020a. Genomics of an avian neo-sex chromosome reveals the evolutionary
428 dynamics of recombination suppression and sex-linked genes. bioRxiv preprint doi:
429 <https://doi.org/10.1101/2020.09.25.314088>.

- 430
- 431 Sigeman H, Ponnikas S, Hansson B. 2020b. Whole-genome analysis across 10 songbird families
- 432 within *Sylvioidea* reveals a novel autosome-sex chromosome fusion. *Biology Letters*. 16.
- 433
- 434 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing
- 435 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. 31:3210–
- 436 3212.
- 437
- 438 Simonsen M, Mailund T, Pedersen CNS. 2008. Rapid Neighbour-Joining. In: Crandall KA, Lagergren
- 439 J (eds) *Algorithms in Bioinformatics*. WABI 2008. Lecture Notes in Computer Science, vol 5251.
- 440 Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_10.
- 441
- 442 Skinner BM, Griffin DK. 2012. Intrachromosomal rearrangements in avian genome evolution:
- 443 evidence for regions prone to breakpoints. *Heredity*. 108:37–41.
- 444
- 445 Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA
- 446 alignments to improve *de novo* gene finding. *Bioinformatics*. 24:637–644.
- 447
- 448 Stokke B et al. 2018. Characteristics determining host suitability for a generalist parasite. *Scientific*
- 449 *Reports*. 8.
- 450
- 451 Stolt BO. 1999. The Swedish reed warbler *Acrocephalus scirpaceus* population estimated by a
- 452 capture-recapture technique. *Ornis Svecica*. 9:35–46.
- 453
- 454 Sætre CL et al. 2017. Rapid adaptive phenotypic change following colonization of a newly restored
- 455 habitat. *Nature Communications*. 8:14159.
- 456

- 457 The UniProt Consortium. 2021. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids*
458 *Research*. 49:D480–D489.
- 459
- 460 Thorogood R, Davies NB. 2013. Reed warbler hosts fine-tune their defenses to track three decades of
461 cuckoo decline. *Evolution*. 67:3545–3555.
- 462
- 463 Thorogood R, Spottiswoode CN, Portugal SJ, Gloag R. 2019. The coevolutionary biology of brood
464 parasitism: a call for integration. *Philosophical Transactions of the Royal Society B*. 374.
- 465
- 466 Vickery JA et al. 2014. The decline of Afro-Palaearctic migrants and an assessment of potential
467 causes. *Ibis*. 156:1–22.
- 468
- 469 Vulture GW et al. 2017. GenomeScope: fast reference-free genome profiling from short reads.
470 *Bioinformatics*. 33:2202–2204.
- 471