

1 **Title**

2 A mechanosensing mechanism mediated by IRSp53 controls plasma membrane
3 shape homeostasis at the nanoscale.

4
5 **Authors**

6 Xarxa Quiroga¹, Nikhil Walani², Albert Chavero³, Alexandra Mittens¹, Andrea
7 Disanza⁴, Francesc Tebar³, Xavier Trepat¹, Robert G. Parton⁵, Giorgio Scita⁴,
8 Maria Isabel Geli⁶, Marino Arroyo^{1,2,7}, Anabel-Lise Le Roux^{1*}, Pere Roca-
9 Cusachs^{1,3*}

10
11 **Affiliations**

12 ¹ Institute for Bioengineering of Catalonia, the Barcelona Institute of
13 Technology (BIST), 08028 Barcelona, Spain

14 ² Universitat Politècnica de Catalunya (UPC), Campus Nord, Carrer de Jordi
15 Girona, 1, 3, 08034 Barcelona, Spain

16 ³ Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de
17 Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut
18 d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de
19 Barcelona, 08036 Barcelona.

20 ⁴ IFOM - The FIRC Institute of Molecular Oncology, Milan 20139 and
21 Department of Oncology and Haemato-Oncology, University of Milan, Italy

22 ⁵ Institute for Molecular Bioscience and Centre for Microscopy and
23 Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia

24 ⁶ Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028
25 Barcelona, Spain

26 ⁷ Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034
27 Barcelona, Spain

28 * authors for correspondence, at aleroux@ibecbarcelona.eu and
proca@ibecbarcelona.eu.

29
30 **Abstract**

31 As cells migrate and experience forces from their surroundings, they constantly
32 undergo mechanical deformations which reshape their plasma membrane (PM).
33 To maintain homeostasis, cells need to detect and restore such changes, not only
34 in terms of overall PM area and tension as previously described, but also in
35 terms of local, nano-scale topography. Here we describe a novel phenomenon,
36 by which cells sense and restore mechanically induced PM nano-scale
37 deformations. We show that cell stretch and subsequent compression reshape the
38 PM in a way that generates local membrane evaginations in the 100 nm scale.
39 These evaginations are recognized by the I-BAR protein IRSp53, which triggers
40 a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin
41 polymerization burst subsequently re-flattens the evagination, completing the
42 mechanochemical feedback loop. Our results demonstrate a new
43 mechanosensing mechanism for PM shape homeostasis, with potential
44 applicability in different physiological scenarios.

45 **Teaser**

46 Cell stretch cycles generate PM evaginations of \approx 100 nm which are sensed by
47 IRSp53, triggering a local event of actin polymerization that flattens and
48 recovers PM shape.

49

50 Introduction

51 Cells constantly exchange information with their surroundings, and external
52 inputs are first received by their outermost layer, the plasma membrane (PM).
53 This interface, far from being an inert wall, integrates and transmits incoming
54 stimuli, ultimately impacting cell behaviour. In this context, the traditional view
55 of such stimuli as biochemical messengers has now changed to include the
56 concept that physical perturbations are also of major importance (1–3). By
57 sensing and responding to physical and biochemical stimuli, one of the main
58 functions of the PM is to adapt to the changes in shape that cells experience as
59 they migrate or are mechanically deformed, in a variety of physiological
60 conditions (4–9). To date, research in this area has largely focused on the
61 regulation of PM area and tension, at the level of the whole cell (10–12). For
62 instance, cell stretch or decrease in medium osmolarity have been commonly
63 used to raise PM tension, unfolding membrane reserves (ruffles, caveolae),
64 inhibiting endocytosis and promoting exocytosis (13–17). Conversely, cell
65 exposure to a hypertonic solution or cell compression have been employed to
66 decrease PM tension, leading to an increase on the activity of different endocytic
67 pathways (18–21). These studies have shown that PM tension homeostasis is
68 maintained by regulating PM area through mechanisms like endocytosis,
69 exocytosis, or the assembly and disassembly of PM structures like ruffles and
70 caveolae.

71 However, changes in cell PM area upon mechanical perturbations are
72 necessarily accompanied by changes in topography at the local scale. This is
73 clearly exemplified by caveolae flattening upon cell stretch (22) or creation of
74 PM folds at the sub- μm scale upon cell compression (20). Curvature also arise
75 when membranes are exposed to either external topographical cues (23, 24) or
76 internal pulling by actin filaments (25–27). To maintain PM homeostasis, cells
77 should thus be able to not only respond to overall changes in PM tension or area,
78 but also to local changes in PM topography. This requirement is even clearer if
79 one considers recent findings showing that tension does not propagate
80 extensively throughout the whole ensemble of the PM, but dissipates in small
81 areas of less than 5 μm (28). However, if such local PM shape homeostasis
82 mechanisms exist, and how they operate, is still unknown.

83 Here, we studied this problem by using as a model the controlled compression of
84 fibroblasts through the application and release of stretch. We show that upon cell
85 compression, bud-shaped PM deformations of negative curvature (evaginations)
86 on the 100 nm scale are formed and enriched by IRSp53, a negative curvature-
87 sensing protein. This creates a local node where specific PM topography is
88 selectively coupled through IRSp53 to activate actin polymerization mediated by
89 Rac1 and Arp2/3. The activation of this cascade flattens the structure, recovering
90 the PM shape to its initial state. Our findings demonstrate a local
91 mechanosensing mechanism that controls PM homeostasis when perturbed
92 through compression.

93

94 Results

95 **Compression generates dynamic PM evaginations of 100 nm in width.**

96 To study how PM topography is regulated, we submitted normal human dermal
97 fibroblasts (NHDF) transfected with an EGFP-membrane marker to a
98 physiologically relevant 5% equibiaxial stretch by using a custom-made stretch
99 system composed by a PDMS stretchable membrane clamped between two
100 metal rings, as previously described in (29) (see methods). Cell response during
101 and after stretch was monitored by live fluorescence imaging. As previously
102 described, when tensile stress was applied cells increased their area by depleting
103 PM reservoirs, such as ruffles (10, 20). After 3 minutes, stretch was released,
104 resulting in a compression stimulus. At this point, excess membrane was stored
105 again in folds, visualized as bright fluorescent spots of \approx 500 nm (Fig. 1A and
106 Supp. Video SV01). These spots incorporate approximately 1.5% of PM area
107 (Supp. Fig. 1A), and thus store an important fraction of the area modified by cell
108 stretch. As we have previously published (20), these spots are formed passively
109 by the PM to accommodate compression, analogously to what occurs when
110 compressing synthetic lipid bilayers (30). In cells however, passive fold
111 formation is followed by active resorption involving actin cytoskeleton
112 rearrangements, allowing for topography equilibration within 2 minutes (Fig.
113 1B). As the diffraction limit of a standard fluorescence microscope lays in the
114 range of 500 nm, we characterized the structure of the compression-generated
115 folds in more detail using electron microscopy. Cells transfected with a PM
116 marker were seeded in a 3D patterned PDMS membrane, stretched and
117 immediately fixed after the release of the stimulus. Next, brightfield and
118 fluorescent images of the 3D pattern and the cells on it were acquired and
119 samples were further processed for SEM imaging. Computational alignment
120 tools allowed for correlation between brightfield, fluorescence and SEM images.
121 De-stretched cells displayed numerous bud-shaped evaginations at their apical
122 PM side that correlated with the bright spots seen by fluorescence (Figs. 1C and
123 D), showing that the PM bends outwards (thereby minimizing friction with the
124 underlying cortex). To accurately measure the size of these evaginations we
125 moved into transmission electron microscopy (TEM). By comparing non
126 stretched to stretched-released cells, we observed that the first displayed a
127 homogeneously flat PM, while the second group displayed bud-shaped
128 evaginations on the apical side (Fig. 1E). Analysis of the shape profile of
129 compression-induced evaginations yielded an average diameter in the neck
130 (cylindrical shape) of 83 nm and of 115 nm in the head (spherical shape), and
131 average curvatures of 0.03 and 0.02 nm^{-1} respectively (Figs. 1F, G and H).
132 These data indicate that PM compression led primarily to the formation of
133 evaginations of regular size and shape at the apical side, which are immediately
134 resorbed by the cell in an active process to re-equilibrate PM topography and
135 tension.

136 **Actin is recruited to evaginations through the curvature-sensing protein**
137 **IRSp53.**

138 In light of these results, we wondered if the PM evaginations formed upon
139 compression could be detected by the cell, triggering a mechanism to recover
140 PM shape. Based on previous results showing that actin depolymerization by
141 either Latrunculin A or Cytochalasin D blocked PM remodeling after stretch
142 (20), we hypothesized that the first step for recovery likely involved
143 reattachment of the evaginated PM to the actin cortex. To explore this idea, we

144 submitted NHDFs to a cycle of stretch and we imaged their response after
145 stretch release. To visualize actin dynamics, cells were co-transfected with a PM
146 marker together with a plasmid expressing an actin nanobody bound to a GFP
147 fluorophore (ACG). As evaginations were being resorbed, actin was recruited to
148 the same spot (Fig. 2A and Supp. Video SV02). Quantification of fluorescence
149 intensity of PM and ACG markers showed a recruitment of actin which was
150 delayed with respect to the PM marker (Figs. 2B and C), reaching a maximum at
151 15 s. This was followed by a decrease in the intensity of both markers that
152 concluded when evaginations were resorbed (Fig. 2B). This suggests that the
153 PM quickly reattaches to the underlying cortex, which then mediates remodeling
154 of the structure. To further confirm the hypothesis and to prevent any
155 mechanical interference caused by actin manipulation (31), we repeated the
156 same experiment over-expressing the PM-cortex linker ezrin (32, 33).
157 mEmerald-Ezrin also co-localized with evaginations during their resorption (Fig.
158 2D and Supp. Video SV03) and fluorescence analysis of PM and ezrin markers
159 revealed a recruitment of the protein that mimicked, with a delay of 10 s, the one
160 seen with actin (Figs. 2E and F).

161 The burst in actin polymerization at the evaginated PM and the simultaneous
162 reattachment to the cortex suggest that the local topography generated by
163 compression may act as the mechanical input triggering the subsequent
164 polymerization event. Indeed, membrane curvature can recruit different
165 signaling molecules (19, 34–37), chief among them curvature-sensing BAR
166 proteins (38–41). The superfamily of BAR proteins includes molecules
167 containing different curvature sensing and generating BAR domains: The N-
168 BAR and F-BAR domains, which interact with positively curved membranes
169 (invaginations), and the I-BAR domain for the opposite type of curvature
170 (negatively curved membranes or evaginations). In addition, these proteins also
171 contain other domains, many of them reported to recruit actin nucleation
172 promoting factors (NPFs) or even directly binding actin monomers (42).
173 Interestingly, a recent work described how ezrin needs to act in partnership with
174 the I-BAR protein IRSp53 to enrich in negatively curved membranes (43).
175 Previous work done on IRSp53 has related this protein to PM ruffling (44, 45),
176 filopodia formation (46–49) and endocytosis (50), but, so far, no
177 mechanosensing mechanism relying on its capacity to bind negatively-curved
178 membranes has been described. Moreover, recent studies in vitro and in vivo
179 have pointed out that the I-BAR domain of IRSp53 displays a peak of sorting at
180 evaginations with curvatures of 0.05 nm^{-1} , and that lower curvature values
181 comparable to the ones obtained by TEM imaging of our evaginations also led
182 to a two-fold enrichment of this domain with respect to a control membrane
183 marker (47, 51).

184 Prompted by this idea, we tested if IRSp53 could be the molecular linker
185 between PM shape and actin dynamics in our system. To do so, we created
186 stable cell lines expressing IRSp53 shRNA and control Non-Targeting shRNA
187 (NT-shRNA). By plotting the decrease in PM fluorescence at the location of the
188 evagination as a function of time for both control and IRSp53 silencing, we
189 compared how lack of this protein affected the resorption process of PM
190 evaginations (Supp. Figs. 1B and C and Supp. Video SV04). To assess the
191 effectiveness of resorption (and since not all curves in all conditions could be

192 fitted to an exponential equation with a characteristic time scale), we compared
193 residual PM fluorescence at the end of experiments, 180 s. Full reabsorption of
194 evaginations leads to a complete return to fluorescent baseline, while presence
195 of a residual fluorescence indicates non-reabsorbed evaginations. Concordant
196 with our hypothesis, IRS $p53$ -depleted NHDFs did not complete evaginations
197 resorption after 180 s (Supp. Figs. 1C, D and Suppl. Video SV04), even though
198 they stretched by the same amount as non-depleted cells (Supp. Fig. 1E and
199 Supp. Video SV05). To corroborate this result, we used isogenic mouse
200 embryonic fibroblasts (MEFs) derived from IRS $p53$ null mice, that were stably
201 infected either with a control (IRS $p53^{-/-}$) or an IRS $p53$ -retroviral vector (IRS $p53^{-/-R}$)
202 to restore expression levels of IRS $p53$ similar to wild type fibroblasts, as
203 previously described (52–54). IRS $p53^{-/-}$ cells also stretched by the same amount
204 as IRS $p53^{-/-R}$ cells (Supp. Fig. 1F) and did not display significant changes in the
205 number of evaginations generated after compression (Supp. Fig. 1G) or in the
206 area stored by those (Supp. Fig 1H). However, and reinforcing the previous
207 result, they showed a severe impairment in the resorption of the evaginations
208 even 180 s after stretch release. We further re-introduced EGFP-tagged full-
209 length (FL) wild type IRS $p53$ into IRS $p53^{-/-}$ by transient transfection. The
210 reintroduction of IRS $p53$ -FL rescued the phenotype, leading to a full recovery of
211 PM topography by resorbing the compression-generated evaginations in a lapse
212 of 90 s (Figs. 2G-I and Supp. Videos SV06, SV07, SV08). Further, IRS $p53^{-/-}$
213 cells exhibited a recruitment of actin to PM evaginations that was weakened
214 with respect to IRS $p53^{-/-R}$ cells (Fig. 2J-M and Supp. Videos SV09 and SV10),
215 illustrating that actin assembly at the PM evaginations is dependent on the
216 presence of the I-BAR protein.

217 Next, we tested whether the effect of IRS $p53$ in PM reshaping was local at
218 evaginations, or a general non-specific cell-level effect due to the ability of
219 IRS $p53$ to organize different NPFs (55, 56). To this end, we generated PM folds
220 of very different nature and curvature. We transiently exposed cells to hypo-
221 osmotic medium, leading to cell swelling. As previously described, re-exposure
222 to iso-osmotic medium generates a water outflow from cells. For cells seeded on
223 non-porous substrate such as PDMS, expelled water becomes trapped between
224 the cell and the substrate, forming the dome-shaped invaginations known as
225 vacuole-like dilations (VLDs). VLDs are much larger than compression-
226 generated bud-shaped evaginations (several μ m in size), with much lower
227 curvature, and resorb in the order of minutes (20). Confirming the local,
228 evagination-specific effect of IRS $p53$, VLD resorption was equivalent in
229 IRS $p53^{-/-R}$ and IRS $p53^{-/-}$ cells (Supp. Fig. 2A, B, C and Supp. Videos SV11 and
230 SV12). IRS $p53$ has also been related to actin polymerization in lamellipodia (44,
231 57). To discard that flattening of the evaginations was due to potential
232 lamellipodial extension (cell spreading) after compression, we analyzed cell
233 spreading dynamics. After a stretch-release cycle, cells did extend lamellipodia
234 and spread during approximately 1 minute (Suppl. Fig. 2D). However, the time
235 constant of spreading (obtained by fitting an exponential curve to the
236 experimental curve) and the amount of area recovered were not altered by the
237 loss of IRS $p53$ (Supp. Fig. 2E-G), discarding a role of this process in the
238 resorption of evaginations.

239 **Homeostasis recovery after stretch requires integrity of SH3 and IBAR**
240 **IRSp53 domains**

241 So far, we have shown that PM remodeling of compression-generated
242 evaginations is a local event, which depends on IRSp53 to organize a burst of
243 actin polymerization that flattens the PM. Next, we investigated if this could be
244 part of a mechanosensing mechanism. Indeed, the I-BAR domain of IRSp53
245 may recognize the curvature generated at the evaginations and further recruit
246 NPFs to coordinate the polymerization event. However, IRSp53 possesses
247 multiple domains with multiple interactors, as illustrated in Fig. 3A. First, the I-
248 BAR domain of IRSp53 can not only interact with charged curved membranes,
249 but also possesses a Rac Binding domain (RCB) which enables binding to
250 activated Rac. Additionally, it has been described to bundle actin (58). IRSp53
251 also contains an atypical CRIB domain that binds to activated Cdc42, but not
252 Rac1 (59) and, further, an SH3 domain that recruits different NPFs, such as
253 WAVE2, Eps8 or N-WASP (55). To test the role of these different domains, we
254 used a cohort of IRSp53 mutants each affecting a specific domain and impeding
255 a specific interaction, as described in Fig. 3B. EGFP-labelled mutants disrupting
256 the function of IBAR, CRIB and SH3 domains were expressed in the
257 background of IRSp53^{-/-} cells, and PM remodeling after stretch was analyzed.
258 Whereas a set of mutants was able to rescue the wild type phenotype (Figs. 3C,
259 D and F), another group was not (Fig. 3C, E and G). The I-BAR mutant 4KE, in
260 which positively charged Lysines 142, 143, 145 and 147 belonging to a basic
261 patch involved in PM and actin binding were replaced by negatively charged
262 Glutamic Acid to disrupt this interaction (58, 60), rescued the phenotype (Supp.
263 Video SV13). Mutation of these amino acids was probably not efficient enough
264 in preventing PM binding. Phenotype recovery was also observed with the
265 I268N mutant in the CRIB domain, which impairs the interaction with Cdc42
266 (Supp. Video SV14). However, the full deletion of the I-BAR domain or point
267 mutations I403P and W413G in the SH3, that impair the association of IRSp53
268 with all its SH3 interactors, including WAVE2 (61), VASP and Eps8 (52, 62),
269 did not rescue homeostasis recovery after stretch release (Supp. Videos SV15,
270 16 and 17). Moreover, the over-expression of the I-BAR domain alone also
271 failed to rescue the phenotype (Supp. Video SV18), suggesting that the
272 interaction with the PM and active Rac1 is not sufficient to drive PM flattening
273 in response to stretch. This ensemble of results points at a mechanism where the
274 I-BAR domain of IRSp53 would interact with the curved membrane of
275 evaginations, leading to actin polymerization via active Rac1 and activation of
276 NPFs through its SH3 domain.

277 **IRSp53 acts as a mechanosensor by recognizing mechanically-induced PM**
278 **curvature**

279 To evaluate whether IRSp53 itself was directly recruited to evaginations, we
280 imaged the dynamics of the EGFP-IRSp53-FL or mutant forms, expressed in
281 IRSp53^{-/-} cells. Colocalization of the fluorescently labeled protein, either WT or
282 mutated, and the PM marker was found in all cases (Supp. Fig. 3A-G),
283 indicating that the presence of IRSp53 in the PM is not mediated exclusively by
284 the I-BAR domain and rather occurs as an interplay of all different domains, as
285 already suggested in previous studies (63, 64). We next analyzed the dynamics

286 of EGFP-IRSp53-FL at the resorbing evaginations. Because IRSp53 is already
287 bound to the PM, colocalization of the protein with the evaginations was
288 observed from the first timepoint after stretch release. However, the decay in
289 fluorescence of the IRSp53 coupled fluorophore was significantly slower than
290 that of the PM marker (Figs. 4C and D), indicating that there is a progressive
291 enrichment of IRSp53 to the evaginations while those are disappearing. To
292 confirm this, we used APEX technology (65, 66) to visualize IRSp53 at PM
293 evaginations using TEM. We co-transfected IRSp53^{-/-} cells with csAPEX2-GBP,
294 a conditionally stable APEX marker bound to a nanobody specifically
295 recognizing GFP (also called GFP-binding protein, GBP), and either EGFP-
296 IRSp53-FL or a GFP-bound mitochondrial marker (Mito-GFP). As expected, a
297 strong APEX signal (visible as a darker signal in the TEM image) was observed
298 around the mitochondrial membrane for Mito-GFP-transfected cells (Supp. Fig.
299 3M), and at the tip of filopodia for EGFP-IRSp53-FL transfected cells (Supp.
300 Fig. 3N) (47, 50). Confirming that IRSp53 is recruited to PM evaginations
301 generated by a stretch-release cycle, such evaginations showed an increase in
302 APEX signal in IRSp53-FL transfected cells (Fig. 4E), but not in control mito-
303 GFP transfected cells (Fig. 4F).

304 Given that IRSp53 recognizes evaginations, we checked whether different
305 mutants recognized the structure differently. The fluorescence dynamics of the
306 IRSp53 mutants that had little effect on PM evaginations resorption followed a
307 similar decay to the WT form (Supp. Figs. 3H and I). However, the mutants
308 slowing down the resorption followed different dynamics, with an initial
309 recruitment phase before the decay in fluorescence (Fig. 4G and Supp. Figs. 3J-
310 L). This is illustrated in its most prominent example by the ΔIBAR mutant (Fig.
311 4G). These results indicate a delay in the recruitment of IRSp53 WT to the
312 curved PM upon stretch as well. Indeed, due to the experimental time required to
313 refocus samples and start imaging after compression (around 5-10 s), our time
314 lapses fail to capture the process of PM evagination formation, or the
315 recruitment of WT IRSp53. However, when the process is impaired due to
316 IRSp53 mutations, dynamics are slowed down and we can capture the
317 recruitment phase.

318 This led us to hypothesize that, although presence at the PM is a feature that
319 does not depend on a single domain, recruitment at the curved evaginations
320 could define the efficiency of homeostasis recovery after stretch. To quantify
321 this, we measured the lag time between the timepoints of maximum intensity of
322 the fluorescence signals of the PM and of the different IRSp53 mutant proteins
323 (as illustrated in Fig. 4G). Confirming our hypothesis, plotting the lag time
324 against the PM fluorescence intensity of the PM marker after 180 s (used
325 previously as a marker for the efficiency of resorption of the evaginations) led to
326 a strong positive correlation (Fig. 4H): the more IRSp53 recruitment was
327 delayed with respect to the PM marker, the less efficient the resorption was.
328 Removal of the I-BAR domain displayed the longest lags and the least efficient
329 resorption, supporting the idea that curvature sensing through this domain is
330 needed to couple the mechanical stress to active PM remodeling. If the domain
331 is absent, IRSp53 cannot perform a quick binding to the evagination and start
332 the mechanochemical loop. I403P and W413G mutations of the SH3 domain
333 also led to long lags and inefficient resorption. Although in this case the I-BAR

334 domain is not impaired, lack of interaction of IRSp53 with NPFs, which could
335 be already bound to the PM and target IRSp53 there (56, 64), could delay both
336 recruitment and the subsequent resorption process. Similarly, the I268N-CRIB
337 mutant is probably delayed due to the lack of interaction with active Cdc42
338 already bound to the PM. Nevertheless, this delay is short and does not impair
339 evagination resorption, also because all the different effectors involved in PM
340 remodeling can still be recruited by IRSp53. In the case of the I-BAR domain
341 alone, which senses PM curvature and couples it to active Rac1, the delay in
342 recruitment was similar to SH3 mutants but with a stronger impairment in
343 homeostasis recovery. This suggests that the IBAR domain alone, which is
344 expected to be already bound to PM to a certain extent before evagination
345 formation (67), keeps on aggregating at the curved structures in accordance with
346 the sensing mechanism proposed for BAR domains (42, 51), but evagination
347 flattening is impaired by the lack of remaining domains.

348 Taken together, these data indicate that the recruitment of IRSp53 to the
349 mechanically induced bud-shaped evaginations is necessary for the PM to be
350 successfully remodeled after stretch. The efficiency in the recruitment of this
351 protein ultimately determines the ability of the cell to set in place the fast
352 mechanism mediating PM flattening in response to the physical perturbation.

353 **Actin polymerization is driven by Rac1 and Arp2/3 activation**

354 Our results point at a role of active Rac1 and further interaction with NPFs to
355 successfully perform PM homeostasis recovery after stretch. Previous work on
356 PM ruffling showed that IRSp53 couples Rac1 to the activation of the WAVE
357 Regulatory Complex (WRC), and the subsequent nucleation of branched actin
358 filaments mediated by Arp2/3 (68–70). However, activation of Arp2/3
359 downstream of IRSp53 can also be mediated by Cdc42 and N-WASP (41, 56,
360 59) and, additionally, IRSp53 can coordinate the action of formins mDia1 and
361 mDia2, which drive actin polymerization related to filopodia formation (48, 71).
362 Finally, PM reattachment to the actin cortex may also rely on contractile
363 mechanisms mediated by myosin and not only actin polymerization, as in the
364 case of blebs (72). To discriminate between these mechanisms, we treated
365 IRSp53^{-/-R} cells with different inhibitors and examined evagination resorption
366 after compression. First, cell treatment with 10 µM of the N-WASP inhibitor
367 Wiskostatin (73) reduced filopodia number as expected (74) (Supp. Figs. 4A and
368 B), but did not modify evagination resorption (Figs. 5A, E and I and Supp.
369 Video SV19). Of note, this is consistent with our finding that evagination
370 resorption is not impaired in I268N-CRIB mutant condition in which IRSp53
371 interaction with Cdc42 is impaired. Second, treatment with 15 µM of the formin
372 inhibitor SMIFH2 (75) reduced the number of filopodia as expected (76) (Suppl.
373 Fig. 4C and D), but did not affect evagination resorption either (Figs. 5B, F and
374 J and Supp. Video SV20). Third, treatment with 10 µM of the myosin II
375 inhibitor Para-nitroblebbistatin (77) affected the integrity of stress fibers as
376 expected (78), (Supp. Fig. 4E) but, again, did not impair evagination resorption
377 (Figs. 5C, G and K and Supp. Video SV21), highlighting that actin
378 polymerization alone is sufficient to drive PM flattening. Consistently and more
379 importantly, treatment with the Arp2/3 inhibitor CK-666 (79) significantly

380 impaired evagination resorption in comparison to DMSO treated controls (Figs.
381 5D, H and L and Supp. Video 22).

382 Thus, evagination resorption upon compression involves the recruitment of
383 IRSp53, leading to actin polymerization in a myosin-independent and Arp2/3-
384 dependent manner. IRSp53 has been described to indirectly promote Arp2/3-
385 mediated actin polymerization acting both as an upstream (80) and downstream
386 regulator of the small GTPase Rac1. To verify whether this was the case in our
387 system, we examined evagination resorption after overexpressing constitutively
388 active (G12V) and dominant negative (T17N) forms of Rac1. Confirming the
389 involvement of Rac1, the expression of Rac1-G12V accelerated evagination
390 resorption significantly whereas Rac1-T17N slowed it down in NHDF (Supp.
391 Figs. 5A, B and C). Finally, and further showing that Rac1 activation is
392 sufficient to trigger evagination resorption, overexpression of constitutively
393 active Rac1-G12V drastically accelerated evaginations resorption even in the
394 background of IRSp53^{-/-} cells (Supp. Fig. 5D, E and F), consistent with an
395 ancillary/modulatory role of IRSp53 in mediating Rac1-dependent activation of
396 the WAVE/Arp2/3 complexes.

397 A mechanical mechanism for actin-mediated evagination flattening

398 Previous work on IRSp53-mediated actin polymerization described the
399 formation of out-of-plane protrusions in the form of filopodia or lamellipodia
400 (41, 48, 49, 51, 62, 80). The physical mechanism supporting further protrusion
401 relies on the natural notion that polymerization induces out-of-plane forces on
402 the PM (81), which in the case of polymerization by Arp2/3 should push
403 outwards, or at least stabilize protrusions (82). At larger scales, polymerization
404 of an actin cortex retracts and flattens cellular blebs, but this mechanism
405 depends on myosin contractility (72), and hence is not applicable here. In
406 contrast, our results show a novel flattening rather than protruding response. To
407 propose a plausible mechanism, we developed a theoretical model coupling the
408 PM and the actin cortex (see methods). We hypothesized that, rather than out-of-
409 plane forces, flattening may be the result of in-plane actin flows around
410 evaginations. We thus approximated the actin cortex as a flat 2D active gel. In
411 this model, the PM is adhered to the underlying cortex from which it can
412 delaminate, and experiences frictional in-plane forces proportional to relative
413 slippage (28). This is coupled to our previous model describing interactions
414 between the PM and curved proteins (83). We coarse-grained the signaling
415 pathway triggered by IRSp53 localization and leading to actin polymerization
416 through a regulator species with normalized areal density ψ , which is produced
417 beyond a threshold in IRSp53 enrichment, degraded, and transported by
418 diffusion, with dynamics on time-scales comparable to those of actin dynamics.
419 The effect of this regulator is to locally favor actin polymerization by the Arp2/3
420 complex, and hence bias the competition between a formin-polymerized
421 contractile network component and a branched extensile component (84, 85).
422 We thus modelled the mechanical effect of local polymerization by locally
423 reducing contractility.

424 Our model predicted that curvature-sensitive IRSp53 molecules became
425 enriched in the evagination within a second after its formation. This led to

426 recruitment of the regulator species ψ , resulting in a tension gradient in the
427 vicinity of the evagination. In turn, this induced a centrifugal cortical flow,
428 which frictionally dragged the membrane outwards until flattening. In the
429 absence of curvature, the IRSp53-enriched domain dissolved, the regulator
430 species recovered its uniform baseline, and the cortex recovered its quiescent
431 steady-state (Fig. 5M and N). Whereas predicted actin flows occur at a scale
432 well below the diffraction limit and can therefore not be observed
433 experimentally, the predicted relative trends of PM and regulator densities
434 qualitatively match our experimental observations when comparing PM and
435 actin (Fig. 2B) or ezrin (Fig. 2E). We note that in the real system, the proposed
436 mechanism based on in-plane actin flows and cortex-PM friction should
437 compete with the classical mechanism based on out-of-plane forces. This may
438 explain why resorption dynamics in experiments (Fig. 2B and E) were
439 significantly longer and less abrupt than those predicted by the model (Fig. 5N).
440 Predictions are also consistent with our observation that evagination resorption
441 is impaired when inhibiting Arp2/3 (Fig. 5D) but not myosin or formin activity
442 (Fig. 5B and C). Indeed, the mechanism is based on a local gradient in extensile
443 versus contractile behavior around the evagination, so it should depend on
444 Arp2/3 (which acts locally at the evagination) and not on formin or myosin,
445 which would regulate overall contractility levels and not specifically local
446 gradients. Thus, our model suggests a chemo-mechanical signaling system that
447 autonomously restores homeostasis of membrane shape.

448 Discussion

449 Our work shows that stretch-compression cycles generate evaginations on the
450 apical PM of the cells with a size on the 100 nm scale, compatible with the
451 sensing range of IBAR proteins (47, 51). Further, we demonstrate the
452 recognition of this curved templates by the curvature-sensing protein IRSp53.
453 The role of IRSp53 is not due to general cell-scale effects, such as lamellipodial
454 extension (44, 57) or endocytosis. Indeed, cell spreading after the stretch-
455 compression cycle was not affected by IRSp53 (Supp. Fig. 2). Regarding
456 endocytosis, IRSp53 has been described to regulate the CLIC-GEEC endocytic
457 pathway (50), which is in turn activated upon cell compression (18). However,
458 the I268N-CRIB and 4KE-IBAR IRSp53 mutants strongly impaired endocytosis
459 (50), but fully rescued evagination resorption (Fig. 3F), showing that IRSp53
460 affects both phenomena through different mechanisms. Further supporting this
461 possibility, the resorption of low-curvature VLDs formed upon transient
462 exposure of cells to hypo-osmotic media, a treatment which also activates CLIC-
463 GEEC endocytosis (18), was not affected by IRSp53.

464 Thus, our findings demonstrate a novel mechanosensing mechanism: upon cell
465 compression, cells are known to use caveolae formation (22) and the CLIC-
466 GEEC endocytic pathway (18) to store material from the PM and recover resting
467 tension. On top of this, we demonstrate a new event at the local scale, which
468 involves the progressive flattening of the PM and not its scission, which would
469 have involved an abrupt loss of evagination fluorescence (and the appearance of
470 fluorescent membrane vesicles) which we never observed in experiments. To
471 achieve such flattening, cells employ the IRSp53-Rac1-Arp2/3 network, well

473 described to polymerize actin in the context of lamellipodia extension or ruffling
474 (86, 87), and revisited here to describe its action in response to physical
475 perturbations. In this regard, we describe a novel mechanism, and biophysical
476 framework, in which Arp2/3 mediated actin polymerization can lead to
477 membrane flattening rather than protrusion.

478 While stretch is often studied separately from subsequent compression provoked
479 by its release (88–90), here we put in relevance the coupling between the two at
480 the single cell level. Such coupling takes place for instance in heart beating,
481 breathing, the musculoskeletal system, or in many developmental scenarios.
482 Thus, and although this remains to be explored, our mechanism could be
483 relevant in events such as the fast compressions of cells embedded in connective
484 tissues (91), or apical expansion and contractions of amnioserosa cells during
485 dorsal closure in *Drosophila* embryos (92), among many others. In conclusion,
486 our findings reveal a new mechanosensing mechanism explaining how PM
487 detects physical stimuli at a local, sub- μ m scale, and further coordinates a
488 response allowing for quick adaptation to a changing environment.

489

490 Materials and Methods

491 Cell culture, expression vectors and reagents

492 NHDF were purchased from Lonza (CC-2511) and cultured in DMEM without
493 pyruvate (ThermoFisher 41965-039) supplemented with 10% FBS (v/v), 1%
494 penicillin-streptomycin (v/v) and 1% Insulin-Transferrin-Selenium (v/v)
495 (ThermoFisher 41400045). IRSp53^{-/-} MEF infected with an empty pBABE or a
496 pBABE-IRSp53-WT retroviral vector were generated by G. Scita (IFOM,
497 Milan) as previously described (52–54), leading to a cell line that we
498 note IRSp53^{-/-R}. The culture was maintained in DMEM supplemented with 1 %
499 penicillin-streptomycin (v/v) and 1 μ mL puromycin to selectively maintain
500 cells expressing the selection vector. CO2 independent media (ThermoFisher
501 18045088) was used for microscopy imaging and was supplemented with
502 10 μ g/mL of rutin (Sigma R5143) to prevent photobleaching (93). mCherry,
503 EGFP and EYFP membrane markers contained a fusion protein consisting in
504 one of the three fluorophores coupled to the 20 last amino acids of
505 Neuromodulin which is post-translationally palmitoylated and targets the
506 fluorophore to PM (20). IRSp53 60950 shRNA and control Non-Targeting
507 shRNA were purchased from Sigma Mission for viral transfection and stable cell
508 line creation. mEmerald-Ezrin was from Addgene (#54090). EGFP-IRSp53-FL
509 (62), EGFP-IRSp53-4KE, EGFP-IRSp53-I268N (50) and EGFP-IRSp53-I403P
510 (52) contained isoform 2 of the murine protein either wild type or carrying the
511 mentioned mutations in the pC1-EGFP backbone. EGFP-IRSp53-
512 W413G, EGFP-IRSp53- Δ IBAR and EGFP-IBAR (52) were created based on
513 the sequence of isoform 4 of the human protein inserted in the pC1-EGFP
514 backbone. A point mutation was included in the SH3, the first 312 amino acids
515 were removed in the case of the Δ IBAR and the first 250 amino acids were
516 expressed to obtain the IBAR-domain. The dominant constitutively active Rac1-
517 G12V and the dominant negative Rac1-T17N were described previously (94).

518 Actin was marked using the mammalian expression vector encoding the
519 cytoskeleton marker Actin-VHH fused to either or RFP or GFP2 and
520 commercially sold as Actin-Chromobody® (Chromotek)

521 On the day prior to the experiment, cells were transfected by electroporation
522 with the selected plasmids using the NeonTM Transfection System (Invitrogen)
523 following the protocol provided by the company. CK-666 was purchased from
524 Merck (Ref 182515), SMIFH2 was from Abcam (ab218296), Wiskostatin was
525 bought from Sigma (W2270) and Para-Nitro-Blebbistatin was from Optopharma
526 (DR-N-111). All compounds were diluted in DMSO and conserved according to
527 manufacturer's instructions. On the day of the experiment, drugs were diluted in
528 culture media, filtered through a 0,22 µm filter and warmed up to 37°C prior to
529 addition to the culture. Cells were treated with 25 µM of CK-666 for 30 min, 10
530 µM of PNB for 30-40 min and 10 µM Wiskostatin or 15 µM SMIFH for 1 h
531 prior to the experiment.

532 **PDMS membrane fabrication**

533 The stretchable PDMS membranes were prepared as described in (20). To
534 produce a patterned support to further obtain patterned-PDMS membranes
535 PMMA dishes were plasma cleaned for 20 min and warmed up to 95°C for 5
536 min. After cooling down using a nitrogen gun, SU 2010 resin was spinned on
537 top of the dish to create a 10 µm layer and prebaked 2,5 min at 95°C. Dishes
538 were then placed on a mask aligner and exposed for 7,5 s in presence of the
539 designed acetate mask. After post-baking for 3,5 min at 95°C, the pattern was
540 revealed for 1 min and subsequently extensively washed with isopropanol and
541 verified under the microscope. Finally, PMMA dishes were silanized by 30 s
542 plasma cleaning activation followed by 1 h silane treatment under vacuum.
543 Standard or patterned membranes were mounted on metal rings of our
544 customized stretch system, cleaned, sterilized, and coated with 10 µg/ml
545 fibronectin (Sigma) overnight at 4°C prior to experiments. Patterns were
546 designed as a grid with letters and numbers to allow for correct orientation.

547 **Stretch and osmolarity experiments**

548 After overnight fibronectin coating, PDMS membranes were quickly washed
549 and 3000 cells were seeded on top and allowed to spread for 45min to 1h in the
550 incubator. Then, rings were mounted on the stretch device coupled to the
551 microscope stage, vacuum was applied for 3 min to stretch the membrane, and
552 then vacuum was released to come back to the initial shape as described in (20).
553 Calibration of the system was done to adjust the vacuum applied to obtain 5 %
554 stretch of the PDMS surface. Hypo-osmotic shocks were performed by exposing
555 cells during 3 min to CO2 independent medium mixed at 50% with de-ionized
556 water in which the concentrations of Ca²⁺ and Mg²⁺ had been corrected. Iso-
557 osmotic medium was added after the 3 min incubation period.

558 **Scanning electron microscopy experiments**

559 Cells were prepared as explained in the previous section. Right after stretch
560 release, the sample was fixed in 2.5 % glutaraldehyde EM grade (Electron

561 Microscopy Sciences 16220) plus 2 % PFA (Electron Microscopy Sciences
562 15710-S) diluted in 0.1 M PB buffer at 37°C for 1 h. Samples were then washed
563 4x for 10 min in 0.1 M Phosphate Buffer (PB) and imaged with epifluorescence
564 microscopy as described below to acquire fluorescence images of the cell PM.
565 PDMS membranes were then cut into 1x0.5 cm rectangles in which the pattern
566 was centered and placed on top of 12 mm coverslips for further processing.
567 Dehydration was carried out by soaking samples in increasing ethanol
568 concentrations (50, 70, 90, 96 and 100 %). After this, samples were critical point
569 dried and covered with a thin layer of gold to be imaged.

570 **Transmission electron microscopy experiments**

571 Cells were fixed, washed and PDMS membranes were cut and mounted as for
572 SEM imaging. After this, samples were postfixed with 1% OsO₄ and 0.8 %
573 K₃Fe(CN)₆ for 1 h at 4°C in the dark. Next, dehydration in increasing ethanol
574 concentrations (50, 70, 90, 96 and 100%) was done. Samples were then
575 embedded in increasing concentrations of Pelco® EPONATE 12TM resin
576 (Pelco 18010) mixed with acetone. 1:3 infiltration was done for 1 h then 2:2 for
577 1h and finally 3:1 overnight. On the next day, embedding was continued with
578 EPON12 without catalyzer for 3x2 h washes and then overnight. Last, samples
579 were embedded in EPON12 plus catalyzer DMP-30 (Pelco 18010) for 2x3 h. To
580 finish, blocks were mounted and polymerized for 48 h at 60°C. PDMS
581 membrane was next peeled off and ultrathin sections were cut and mounted on
582 grids for imaging.

583 **APEX labelling for TEM imaging**

584 Two days prior to the experiment, cells were co-transfected by electroporation
585 with mKate2-P2A-APEX2-csGBP (Addgene #108875) and EGFP-IRSp53-FL
586 in a 3:1 ratio, using the Neon™ Transfection System (Invitrogen) following the
587 protocol provided by the company. Before seeding, cells were sorted for double
588 positive mKate and GFP fluorescence, excluding very high and very low
589 transfection levels. Cells were subsequently seeded and stretched in the same
590 conditions as explained in the stretch experiments section. Right after stretch
591 release, the sample was fixed in 2.5 % glutaraldehyde EM grade (Electron
592 Microscopy Sciences 16220) diluted in 0.1 M Cacodylate buffer at 37°C for 10
593 min, followed by incubation on ice for 50 min in presence of the fixative. All
594 subsequent steps were performed on ice. The sample was washed 3 times with
595 cold 0.1 M Cacodylate buffer, and next cut into 1x0.5 cm rectangles containing
596 the fixed cells. Cells were washed for 2 min with a fresh cold 1 mg/ml 3,3'-
597 diaminobenzidine (DAB) (tablets, Sigmafast, D4293) solution in 0.1 M
598 Cacodylate buffer. Cells were immediately incubated with a fresh cold 1 mg/ml
599 DAB solution in cold 0.1 M Cacodylate buffer supplemented with 5,88 mM
600 hydrogen peroxidase (PERDROGENT™ 30% H₂O₂, 31642, Sigma). The
601 samples were washed 3 times with cold 0.1 M Cacodylate buffer, and
602 subsequently incubated for 30 minutes with cold 1% OsO₄. Dehydration, resin
603 embedding, and block mounting was done as described in the TEM experiments
604 section.

605 **Image acquisition**

606 Fluorescence images were acquired with Metamorph software using an upright
607 microscope (Nikon eclipse Ni-U) with a 60x water dipping objective (NIR Apo
608 60X/WD 2.8, Nikon) and an Orca Flash 4.0 camera (Hamamatsu). Fluorophore
609 emission was collected every 3s. Cells were imaged in a relaxed state and then
610 for 3 min at 5% stretch, and for 3 min during the release of stretch. SEM images
611 were taken using the xTm Microscope Control software in a NOVA NanoSEM
612 230 microscope (FEI Company) under the high vacuum mode using ET and TL
613 detectors to acquire high and ultra-high resolution images of the cell surface.
614 TEM Samples were observed in a Jeol 1010 microscope (Gatan, Japan)
615 equipped with a tungsten cathode in the CCiTUB EM and Cryomicroscopy
616 Units. Images were acquired at 80 kv with a CCD Megaview 1kx1k.

617 **Fluorescence analysis**

618 All images used for time course analysis were aligned using the Template
619 Matching plugin from Fiji to correct the drift. To assess the evolution of PM
620 evaginations, VLDs or the different marked proteins, their fluorescence was
621 quantified. To ensure that we only considered the fluorescence of structures
622 induced by stretch or osmotic shocks, the analysis was carried out in regions
623 devoid of visible endomembrane structures before the application of stretch or
624 osmotic shocks. For each evagination, we calculated the integrated fluorescence
625 signal of a small region of interest containing the evagination (I_{evag}), the
626 integrated fluorescence signal of a neighboring region of interest of the same
627 size and devoid of any structures (I_{PM}), the integrated fluorescence signal of the
628 entire cell (I_{cell}) and the integrated fluorescence signal of a background region of
629 the same size as the cell (I_{BG}). Then, the final evagination signal I_{final} was
630 computed as:

631
$$I_{final} = \frac{(I_{evag} - I_{PM})}{(I_{cell} - I_{BG})}$$

632 The numerator of this expression corrects evagination fluorescence so that only
633 the signal coming from the evagination itself and not neighboring PM is
634 quantified. The denominator normalizes by total cell fluorescence, and also
635 accounts for progressive photobleaching. All control curves were normalized to
636 1 (maximal fluorescence after stretch release) and the rest of the data
637 represented in the same graph were normalized to the control. Exceptionally,
638 actin and ezrin curves were normalized to 0.5 (maximal fluorescence after the
639 release of stretch) for visualization purposes. To quantify the degree of
640 resorption of the evaginations, as the experimental data could not always be
641 fitted with single exponential decay curve, we adopted the strategy of comparing
642 the residual fluorescence intensity of the PM marker at the last timepoint of
643 acquisition (t180s), on which statistical analysis can be performed. Full
644 reabsorption of evaginations leads to a complete return to fluorescent baseline
645 (≈ 0), while presence of a residual fluorescence indicates non-reabsorbed
646 evaginations. Lag time was calculated by identifying the maximum intensity
647 timepoints in the protein and PM channels, and subtracting them to obtain the
648 time between the two events.

649 **Area analysis**

650 To compute the changes in cell area with time after stretch, automated area
651 analysis for each timepoint was done using CellProfiler (95)
652 (<https://cellprofiler.org/>). To calculate the time constant (k) of each experimental
653 curve, data was fitted to a one-phase decay (for time course dynamics of PM
654 evaginations, VLDs and protein markers) or one-phase association equation
655 (area analysis after stretch) using GraphPad and k was extracted from the fittings
656 to be further compared by statistical analysis.

657 **Quantification of number and PM Area % stored by evaginations**

658 3 regions of different parts of the cell where randomly chosen from every cell at
659 the timepoint t0s (right after the release of stretch) and the number of
660 evaginations was manually counted by comparing the analyzed images with the
661 images of the cell during stretch, to discard PM structures not formed by stretch-
662 release. For stored area calculation, the membrane area fraction mf contained in
663 evaginations was estimated as:

664
$$mf = \frac{i_{ze} - i_{zf}}{i_{zf} - bg}$$

665 Where i_{ze} is the average fluorescence intensity of a cell zone (containing
666 evaginations), i_{zf} is the average fluorescence intensity of a neighbouring flat
667 patch of membrane (small enough so that it does not contain any evaginations),
668 and bg is the average intensity of background. For each cell, this was done for 3
669 random regions containing evaginations.

670 **Fluorescence and SEM correlation**

671 Images of the fixed sample were acquired in fluorescence and brightfield and
672 positions of the imaged cells in the pattern were noted down. Sample was then
673 processed for SEM imaging and the same cells were found by manually
674 following their location on the pattern and visual verification was done to check
675 for correct matching. Fluorescent and SEM images were then aligned by using
676 the BigWrap plugin on Fiji.

677 **Statistical analysis**

678 In the case of data following a normal distribution, T-test or ANOVA was done
679 depending on whether there were 2 or more datasets to compare. For data not
680 following normal distributions, Mann-Whitney or Kruskal-Wallis test were
681 applied depending on whether there were 2 or more datasets to test. All data are
682 shown as mean \pm SEM. Specific P and N values can be found in each one of the
683 graphs shown in the figures.

684 **Theoretical Model**

685 To understand the physical mechanism leading to the active flattening of
686 membrane evaginations caused by compression of the PM, we focused on a
687 single evagination and described it mathematically under the assumption of
688 axisymmetry. We modelled the membrane as locally inextensible thin sheet with

689 bending rigidity $\kappa = 20 k_B T$ using the Helfrich model and accounted for the
690 viscous stresses due to membrane shearing with membrane 2D viscosity $\eta_m =$
691 $3 \cdot 10^{-3} \text{ pN s}/\mu\text{m}$ (28, 30, 96). We modelled the cortex as a 2D planar active
692 gel adjacent to the membrane. We thus ignored the out-of-plane protrusive
693 forces caused by localized actin polymerization at evaginations enriched in
694 IRSp53, which in a classical view can lead to further protrusion rather than
695 flattening (55). Instead, we focused on the in-plane effect of localized actin
696 polymerization to explain active flattening. In the actual system, we expect both
697 effects to compete.

698 To model the interaction between the membrane and the cortex, we considered
699 an adhesion potential depending on the distance between the membrane and the
700 cortex enabling decohesion with an adhesion tension of $\gamma = 1.5 \cdot 10^{-5} \text{ N/m}$
701 (30), (Supp. Fig. 6). We also considered in-plane frictional tractions between the
702 membrane and the cortex proportional to their relative velocity, $\tau = \mu(v_m - v_c)$
703 where v_m is the membrane velocity, v_c is the cortex velocity, and μ is a friction
704 coefficient, which we took as $\mu = 20 \text{ nN s}/\mu\text{m}^3$ (28).

705 We generated evaginations with dimensions comparable to those in (Fig. 1) by
706 laterally compressing an adhered membrane patch of radius R_0 as discussed in
707 (30). We considered $R_0 = 150 \text{ nm}$, consistent with the typical separation
708 between evaginations (Fig. 1C). After formation of the evagination, we applied
709 at the boundary of our computational domain the surface tension required to
710 stabilize the evagination, consistent with the long-time stability of such
711 compression-generated evaginations of the PM when cellular activity is
712 abrogated (20).

713 We then considered the model in (83) to capture the interaction between an
714 ensemble of curved proteins (IRSp53) and a membrane. In this model, proteins
715 are described by their area fraction ϕ . We fixed the chemical potential of such
716 proteins at the boundary of our computational domain, corresponding to a
717 relatively low area fraction of proteins, $\bar{\phi} = 0.05$. We set the saturation
718 coverage to $\phi^{\max} = 0.35$ due to crowding by other species but in our
719 calculations, coverage did not come close to this limit. We considered an
720 effective surface area per dimer of 300 nm^2 . In this model, the curvature energy
721 density of the membrane-protein system is given by $\frac{\kappa}{2}(H - C_0\phi)$ where H is the
722 mean curvature and C_0 is a parameter combining the intrinsic curvature of
723 proteins and their stiffness (83). We took $C_0 = 3 \cdot 10^{-3} \text{ nm}^{-1}$, which lead to
724 curvature sensing but no significant protein-induced membrane reshaping. With
725 a protein diffusivity of $0.1 \mu\text{m}^2/\text{s}$, we obtained protein enrichments on the
726 evagination of about 3-fold within 0.5 s.

727 To model in a coarse grained manner the signalling pathway triggered by
728 IRSp53 localization and leading to actin polymerization, we considered a
729 regulator species given by a normalized surface density ψ , which was produced
730 with a rate depending on IRSp53 enrichment and given by $r\left(\frac{\phi}{\bar{\phi}}\right) =$
731 $k_1 \min \left\{ \left\langle \frac{\phi}{\bar{\phi}} - e_t \right\rangle; e_s - e_t \right\}$, where e_t is a threshold IRSp53 enrichment for
732 signaling, e_s is an enrichment saturation threshold beyond which the production

733 of Ψ saturates, and $\langle a \rangle$ is 0 if $a < 0$ and a otherwise. We considered $e_t = 2$,
734 $e_s = 3$ and $k_1 = 1 \text{ s}^{-1}$. This regulator was degraded with rate $k_2\psi$, with $k_2 = 1$
735 s^{-1} and diffused with an effective diffusivity of $D = 0.1 \cdot 10^{-3} \mu\text{m}^2/\text{s}$, much
736 smaller than that of membrane proteins since the regulator is viewed as an actin-
737 binding species. In polar coordinates, the governing equation for the transport of
738 this regulator is thus

739
$$\frac{\partial\psi}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D \frac{\partial\psi}{\partial r} \right) + r(\phi/\bar{\phi}) - k_2\psi$$

740 This equation results in a region enriched with ψ , co-localizing with the
741 evagination, and reaching a maximum value of about 1 within about 10 s,
742 comparable to the typical times of actin dynamics. Not being a detailed
743 description of a specific network, the details of this model for ψ are not
744 essential. The key points are that the production of ψ is triggered by IRSp53
745 enrichment, and that k_1 , k_2 and D are such that over the time-scales of actin
746 dynamics (significantly slower than those of IRSp53 enrichment) a region of
747 high ψ develops close to the evagination.

748 The effect of this regulator is to locally favour actin polymerization by the
749 Arp2/3 complex. The cortex can be viewed as a composite system of
750 interpenetrating actin networks, one polymerized by formins leading to linear
751 filaments and producing contractile forces through the action of myosins and
752 other crosslinkers, and one polymerized by the Arp2/3 complex, with a branched
753 architecture and producing extensile forces by polymerization (84). Combining
754 these two effects, the net active force generation in the actin cortex is contractile.
755 These two networks compete for actin monomers (85), and hence a local
756 enrichment in the regulator leading to enhanced polymerization of the branched
757 network should bias this competition and locally lower contractility in the
758 vicinity of the evagination. In turn, the resulting contractility gradient should
759 generate an in-plane centrifugal cortical flow, which if large enough, might drag
760 the membrane outwards due to frictional forces and actively flatten the
761 evagination.

762 To model such actin flow, we considered simple active gel model where the
763 cortical velocity v_c is obtained by force balance between viscous and active
764 forces in the cortex, and given by

765
$$0 = 2\eta_c \left[-\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_c}{\partial r} \right) \right] + \frac{\partial \sigma^a}{\partial r}$$

766 where η_c is the viscosity of the cortex and $\sigma^a(\psi)$ is the active tension, which we
767 assume to be a function of the regulator ψ . We note that we neglect in the
768 equation above the force caused by friction between the membrane and the
769 cortex as they slip past each other. This is justified because the hydrodynamic
770 length for the cortex is in the order of microns and above, and hence in the
771 smaller length-scales considered here viscosity dominates over friction. In our
772 calculations, we took $\sigma^a(\psi) = \sigma^0 (1 - \frac{\psi}{2})$, so that active tension is
773 approximately halved near the evagination when the normalized regulator

774 density ψ reaches about 1 and is equal to σ^0 far away from it. As boundary
775 conditions, we considered $v_c(0) = 0$ consistent with polar symmetry and
776 $\frac{\partial v_c}{\partial r}(R) = 0$, so that at $r = R$ the stress at the gel is σ^0 . We chose σ^0/η_c so that
777 the resulting cortical velocities due to gradients in active tension gradients were
778 of about $0.1 \mu\text{m/s}$, comparable to the typical actin velocities due to
779 polymerization in the lamellipodium (97).

780 The formation of the evagination triggered in this model a sequence of chemo-
781 mechanical signaling event restoring autonomously homeostasis of membrane
782 shape and of all the signaling network. Indeed, within a few seconds, IRSp53
783 became enriched in the evagination by curvature sensing. Then, over a about 10
784 seconds, the actin regulator ψ progressively built up in the vicinity of the
785 evagination, creating a gradient in active tension σ , which in turn created a
786 centrifugal cortical flow. This flow frictionally dragged the membrane outward
787 ironing out the evagination. In the absence of curvature, the IRSp53 domain
788 rapidly dissolved and according to Eq. (1) ψ dropped to zero everywhere,
789 eventually stopping the cortical flow and thus recovering a homeostatic state
790 with a planar membrane and a quiescent cortex.

791 We note that our model is consistent with the fact that myosin inhibition does
792 not affect the resorption process. Indeed, myosin inhibition should lower the
793 baseline active tension, σ_0 , but should not change the fact that localized
794 polymerization would locally induce and extensile stress, and hence establish a
795 tension gradient and an actin flow.

796 One important difference between our model and the experiments is that, in our
797 calculations, the evaginations rapidly flattened once the contact angle of the
798 evagination became smaller than 90 degrees, whereas in the experiments, the
799 decay of membrane fluorescence was more gradual over a timescale of 3
800 minutes. We hypothesize that this may be due to the fact that localized actin
801 polymerization may fill the evagination with branched actin network, which
802 should apply an out-of-plane force competing with the flattening force causing
803 the centrifugal flow and whose material needs to be cleared out even when
804 localized polymerization has stopped. Both of these effects should slow down
805 the resorption process.

806
807 **References**
808

- 809 1. G. Apodaca, Modulation of membrane traffic by mechanical stimuli. *Am. J. Physiol. Renal Physiol.* **282**, F179–F190 (2002).
- 810 2. A. E. M. Beedle, A. Williams, J. Relat-Goberna, S. Garcia-Manyes, Mechanobiology-chemical origin of membrane mechanical resistance and force-dependent signaling. *Curr. Opin. Chem. Biol.* **29**, 87–93 (2015).
- 811 3. A.-L. Le Roux, X. Quiroga, N. Walani, M. Arroyo, P. Roca-Cusachs, The plasma membrane as a mechanochemical transducer. *Philos. Trans. R. Soc. B Biol. Sci.* **374**, 20180221 (2019).
- 812 4. M. Innocenti, New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. *Cell Adhes. Migr.* **12**, 401–416

819 (2018).

820 5. A. Diz-Muñoz, K. Thurley, S. Chintamen, S. J. Altschuler, L. F. Wu, D. A.
821 Fletcher, O. D. Weiner, Membrane Tension Acts Through PLD2 and mTORC2
822 to Limit Actin Network Assembly During Neutrophil Migration. *PLoS Biol.* **14**,
823 1–30 (2016).

824 6. J. P. X. Cheng, C. Mendoza-Topaz, G. Howard, J. Chadwick, E. Shvets, A. S.
825 Cowburn, B. J. Dunmore, A. Crosby, N. W. Morrell, B. J. Nichols, Caveolae
826 protect endothelial cells from membrane rupture during increased cardiac output.
827 *J. Cell Biol.* **211**, 53–61 (2015).

828 7. X. Li, A. Garcia-Elias, B. Benito, S. Nattel, The effects of cardiac stretch on
829 atrial fibroblasts: Analysis of the evidence and potential role in atrial fibrillation.
830 *Cardiovasc. Res.* **00**, 1–21 (2021).

831 8. M. Aragona, A. Sifrim, M. Malfait, Y. Song, J. Van Herck, S. Dekoninck, S.
832 Gargouri, G. Lapouge, B. Swedlund, C. Dubois, P. Baatsen, K. Vints, S. Han, F.
833 Tissir, T. Voet, B. D. Simons, C. Blanpain, Mechanisms of stretch-mediated skin
834 expansion at single-cell resolution. *Nature*. **584**, 268–273 (2020).

835 9. G. N. Maksym, in *Stud Mechanobiol Tissue Eng Biomater* (Springer-Verlag
836 Berlin Heidelberg, School of Biomedical Engineering, Dalhousie University,
837 Halifax, NS, B3H 1W2, Canada, 2010), pp. 201–245.

838 10. N. C. Gauthier, T. A. Masters, M. P. Sheetz, Mechanical feedback between
839 membrane tension and dynamics. *Trends Cell Biol.* **22**, 527–535 (2012).

840 11. B. Pontes, P. Monzo, N. C. Gauthier, Membrane tension: A challenging but
841 universal physical parameter in cell biology. *Semin. Cell Dev. Biol.* **71** (2017),
842 pp. 30–41.

843 12. N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, M. P. Sheetz, Temporary
844 increase in plasma membrane tension coordinates the activation of exocytosis
845 and contraction during cell spreading. *Proc Natl Acad Sci U S A.* **108**, 14467–
846 14472 (2011).

847 13. O. L. Gervasio, W. D. Phillips, L. Cole, D. G. Allen, Caveolae respond to cell
848 stretch and contribute to stretch-induced signaling. *J. Cell Sci.* **124**, 3581–3590
849 (2011).

850 14. J. Dai, M. P. Sheetz, X. Wan, C. E. Morris, Membrane tension in swelling and
851 shrinking molluscan neurons. *J. Neurosci.* **18**, 6681–6692 (1998).

852 15. M. Riggi, C. Bourgoint, M. Macchione, S. Matile, R. Loewith, A. Roux, TORC2
853 controls endocytosis through plasma membrane tension. *J. Cell Biol.* **218**, 2265–
854 2276 (2019).

855 16. G. Wang, T. Galli, Reciprocal link between cell biomechanics and exocytosis.
856 *Traffic*, 1–9 (2018).

857 17. J. Lemière, Y. Ren, J. Berro, Rapid adaptation of endocytosis, exocytosis and
858 eisosomes after an acute increase in membrane tension in yeast cells. *bioRxiv*,
859 342030 (2018).

860 18. J. J. Thottacherry, A. J. Kosmalska, A. Kumar, A. S. Vishen, A. Elosegui-Artola,
861 S. Pradhan, S. Sharma, P. P. Singh, M. C. Guadamilas, N. Chaudhary, R.
862 Vishwakarma, X. Trepat, M. A. del Pozo, R. G. Parton, M. Rao, P. Pullarkat, P.
863 Roca-Cusachs, S. Mayor, Mechanochemical feedback control of dynamin
864 independent endocytosis modulates membrane tension in adherent cells. *Nat.
865 Commun.* **9** (2018), doi:10.1038/s41467-018-06738-5.

866 19. A. Echarri, D. M. Pavón, S. Sánchez, M. García-García, E. Calvo, C. Huerta-
867 López, D. Velázquez-Carreras, C. Viaris de Lesegno, N. Ariotti, A. Lázaro-
868 Carrillo, R. Strippoli, D. De Sancho, J. Alegre-Cebollada, C. Lamaze, R. G.

869 Parton, M. A. Del Pozo, An Abl-FBP17 mechanosensing system couples local
870 plasma membrane curvature and stress fiber remodeling during
871 mechanoadaptation. *Nat. Commun.* **10** (2019), doi:10.1038/s41467-019-13782-2.

872 20. A. J. Kosmalska, L. Casares, A. Elosegui-Artola, J. J. Thottacherry, R. Moreno-
873 Vicente, V. Gonzalez-Tarrago, M. A. del Pozo, S. Mayor, M. Arroyo, D.
874 Navajas, X. Trepat, N. C. Gauthier, P. Roca-Cusachs, Physical principles of
875 membrane remodelling during cell mechanoadaptation. *Nat. Commun.* **6**, 7292
876 (2015).

877 21. S. Wang, R. D. Singh, L. Godin, R. E. Pagano, D. Hubmayr, A. Pingitore, E.
878 Garbella, P. Piaggi, D. Menicucci, F. Frassi, V. Lionetti, A. Piarulli, G.
879 Catapano, V. Lubrano, M. Passera, D. Bella, C. Castagnini, S. Pellegrini, M. R.
880 Metelli, R. Bedini, A. L. Abbate, S. Wang, R. D. Singh, L. Godin, R. E. Pagano,
881 R. D. Hubmayr, Endocytic response of type I alveolar epithelial cells to
882 hypertonic stress. *Am J Physiol Lung Cell Mol Physiol.* **55905**, 560–568 (2011).

883 22. B. Sinha, D. Koster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V Stan,
884 G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo,
885 P. Sens, C. Lamaze, P. Nassoy, Cells respond to mechanical stress by rapid
886 disassembly of caveolae. *Cell.* **144**, 402–413 (2011).

887 23. W. Zhao, L. Hanson, H. Y. Lou, M. Akamatsu, P. D. Chowdary, F. Santoro, J. R.
888 Marks, A. Grassart, D. G. Drubin, Y. Cui, B. Cui, Nanoscale manipulation of
889 membrane curvature for probing endocytosis in live cells. *Nat. Nanotechnol.* **12**,
890 750–756 (2017).

891 24. H. Y. Lou, W. Zhao, X. Li, L. Duan, A. Powers, M. Akamatsu, F. Santoro, A. F.
892 McGuire, Y. Cui, D. G. Drubin, B. Cui, Membrane curvature underlies actin
893 reorganization in response to nanoscale surface topography. *Proc. Natl. Acad.
894 Sci. U. S. A.* **116**, 23143–23151 (2019).

895 25. M. Galic, S. Jeong, F. C. Tsai, L. M. Joubert, Y. I. Wu, K. M. Hahn, Y. Cui, T.
896 Meyer, External push and internal pull forces recruit curvature-sensing N-BAR
897 domain proteins to the plasma membrane. *Nat. Cell Biol.* **14**, 874–881 (2012).

898 26. T. Itoh, K. S. Erdmann, A. Roux, B. Habermann, H. Werner, P. De Camilli,
899 Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane
900 invagination by BAR and F-BAR proteins. *Dev. Cell.* **9**, 791–804 (2005).

901 27. H.-F. Renard, M. Simunovic, J. Lemière, E. Boucrot, M. D. Garcia-Castillo, S.
902 Arumugam, V. Chambon, C. Lamaze, C. Wunder, A. K. Kenworthy, A. a.
903 Schmidt, H. T. McMahon, C. Sykes, P. Bassereau, L. Johannes, Endophilin-A2
904 functions in membrane scission in clathrin-independent endocytosis. *Nature.* **517**,
905 493–6 (2015).

906 28. Z. Shi, Z. T. Gruber, T. Baumgart, H. A. Stone, A. E. Cohen, Cell Membranes
907 Resist Flow. *Cell.* **175**, 1769–1779.e13 (2018).

908 29. L. Casares, R. Vincent, D. Zalvidea, N. Campillo, D. Navajas, M. Arroyo, X.
909 Trepat, Hydraulic fracture during epithelial stretching. *Nat Mater.* **14**, 343–351
910 (2015).

911 30. M. Staykova, M. Arroyo, M. Rahimi, H. A. Stone, Confined Bilayers Passively
912 Regulate Shape and Stress. *Phys. Rev. Lett.* **110**, 28101 (2013).

913 31. L. R. Flores, M. C. Keeling, X. Zhang, K. Sliogeryte, N. Gavara, Lifeact-GFP
914 alters F-actin organization, cellular morphology and biophysical behaviour. *Sci.
915 Rep.* **9**, 1–13 (2019).

916 32. A. I. McClatchey, ERM proteins at a glance. *J. Cell Sci.* **127**, 3199–3204 (2014).

917 33. M. Fritzsche, R. Thorogate, G. Charras, Quantitative analysis of ezrin turnover
918 dynamics in the actin cortex. *Biophys. J.* **106**, 343–353 (2014).

919 34. P. Bassereau, R. Jin, T. Baumgart, M. Deserno, R. Dimova, V. A. Frolov, P. V
920 Bashkirov, H. Grubmüller, R. Jahn, H. J. Risselada, L. Johannes, M. M. Kozlov,
921 R. Lipowsky, T. J. Pucadyil, W. F. Zeno, J. C. Stachowiak, D. Stamou, A.
922 Breuer, L. Lauritsen, C. Simon, C. Sykes, G. A. Voth, T. R. Weikl, The 2018
923 biomembrane curvature and remodeling roadmap. *J. Phys. D. Appl. Phys.* **51**,
924 343001 (2018).

925 35. M. P. Ebrahimkutty, M. Galic, Receptor-Free Signaling at Curved Cellular
926 Membranes. *BioEssays*. **41** (2019), p. 1900068.

927 36. A. Diz-Muñoz, D. A. Fletcher, O. D. Weiner, Use the force: membrane tension as
928 an organizer of cell shape and motility. *Trends Cell Biol.* **23**, 47–53 (2013).

929 37. M. Riggi, K. Niewola-Staszkowska, N. Chiaruttini, A. Colom, B. Kusmider, V.
930 Mercier, S. Soleimanpour, M. Stahl, S. Matile, A. Roux, R. Loewith, Decrease in
931 plasma membrane tension triggers PtdIns(4,5)P₂ phase separation to inactivate
932 TORC2. *Nat. Cell Biol.* **20**, 1043–1051 (2018).

933 38. P. J. Carman, R. Dominguez, BAR domain proteins—a linkage between cellular
934 membranes, signaling pathways, and the actin cytoskeleton. *Biophys. Rev.* **10**
935 (2018), pp. 1587–1604.

936 39. W. M. Henne, E. Boucrot, M. Meinecke, E. Evergren, Y. Vallis, R. Mittal, H. T.
937 McMahon, FCHo Proteins Are Nucleators of Clathrin-Mediated Endocytosis.
938 *Science (80-.).* **328**, 1281–1284 (2010).

939 40. R. Lundmark, G. J. Doherty, M. T. Howes, K. Cortese, Y. Vallis, R. G. Parton,
940 H. T. McMahon, The GTPase-Activating Protein GRAF1 Regulates the
941 CLIC/GEEC Endocytic Pathway. *Curr. Biol.* **18**, 1802–1808 (2008).

942 41. B. L. Kim, W. Bu, I. G. Wah, E. Koh, H. O. Siew, T. Pawson, T. Sudhaharan, S.
943 Ahmed, The Cdc42 effector IRSp53 generates filopodia by coupling membrane
944 protrusion with actin dynamics. *J. Biol. Chem.* **283**, 20454–20472 (2008).

945 42. M. Simunovic, G. A. Voth, A. Callan-Jones, P. Bassereau, When Physics Takes
946 Over: BAR Proteins and Membrane Curvature. *Trends Cell Biol.* **25**, 780–792
947 (2015).

948 43. F. C. Tsai, A. Bertin, H. Bousquet, J. Manzi, Y. Senju, M. C. Tsai, L. Picas, S.
949 Miserey-Lenkei, P. Lappalainen, E. Lemichez, E. Coudrier, P. Bassereau, Ezrin
950 enrichment on curved membranes requires a specific conformation or interaction
951 with a curvature-sensitive partner. *Elife.* **7**, 1–27 (2018).

952 44. H. Miki, H. Yamaguchi, S. Suetsugu, T. Takenawa, IRSp53 is an essential
953 intermediate between Rac and WAVE in the regulation of membrane ruffling.
954 *Nature.* **408**, 732–735 (2000).

955 45. H. Miki, T. Takenawa, WAVE2 serves a functional partner of IRSp53 by
956 regulating its interaction with Rac. *Biochem. Biophys. Res. Commun.* **293**, 93–99
957 (2002).

958 46. A. Yamagishi, M. Masuda, T. Ohki, H. Onishi, N. Mochizuki, A Novel Actin
959 Bundling/Filopodium-forming Domain Conserved in Insulin Receptor Tyrosine
960 Kinase Substrate p53 and Missing in Metastasis Protein. *J. Biol. Chem.* **279**,
961 14929–14936 (2004).

962 47. A. Breuer, L. Lauritsen, E. Bertseva, I. Vonkova, D. Stamou, Quantitative
963 investigation of negative membrane curvature sensing and generation by I-BARs
964 in filopodia of living cells. *Soft Matter.* **15**, 9829–9839 (2019).

965 48. W. I. Goh, K. B. Lim, T. Sudhaharan, K. P. Sem, W. Bu, A. M. Chou, S. Ahmed,
966 mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are
967 involved in filopodium formation. *J. Biol. Chem.* **287**, 4702–4714 (2012).

968 49. D. J. Kast, R. Dominguez, IRSp53 coordinates AMPK and 14-3-3 signaling to

969 regulate filopodia dynamics and directed cell migration. *Mol. Biol. Cell.* **30**,
970 1285–1297 (2019).

971 50. M. Sathe, G. Muthukrishnan, J. Rae, A. Disanza, M. Thattai, G. Scita, R. Parton,
972 S. Mayor, Small GTPases and BAR domain proteins regulate branched actin to
973 make clathrin and dynamin independent endocytic vesicles, 170753 (2017).

974 51. C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P.
975 Bassereau, IRS_p53 senses negative membrane curvature and phase separates
976 along membrane tubules. *Nat. Commun.* **6** (2015), doi:10.1038/ncomms9529.

977 52. A. Disanza, S. Bisi, M. Winterhoff, F. Milanesi, D. S. Ushakov, D. Kast, P.
978 Marighetti, G. Romet-Lemonne, H. M. Müller, W. Nickel, J. Linkner, D.
979 Waterschoot, C. Ampè, S. Cortellino, A. Palamidessi, R. Dominguez, M. F.
980 Carlier, J. Faix, G. Scita, CDC42 switches IRS_p53 from inhibition of actin
981 growth to elongation by clustering of VASP. *EMBO J.* **32**, 2735–2750 (2013).

982 53. S. M. Weiss, M. Ladwein, D. Schmidt, J. Ehinger, S. Lommel, K. Städling, U.
983 Beutling, A. Disanza, R. Frank, L. Jänsch, G. Scita, F. Gunzer, K. Rottner, T. E.
984 B. Stradal, IRS_p53 Links the Enterohemorrhagic *E. coli* Effectors Tir and EspFU
985 for Actin Pedestal Formation. *Cell Host Microbe.* **5**, 244–258 (2009).

986 54. C. Sawallisch, K. Berhörster, A. Disanza, S. Mantoani, M. Kintscher, L.
987 Stoenica, A. Dityatev, S. Sieber, S. Kindler, F. Morellini, M. Schweizer, T. M.
988 Boeckers, M. Korte, G. Scita, H. J. Kreienkamp, The insulin receptor substrate of
989 53 kDa (IRS_p53) limits hippocampal synaptic plasticity. *J. Biol. Chem.* **284**,
990 9225–9236 (2009).

991 55. G. Scita, S. Confalonieri, P. Lappalainen, S. Suetsugu, IRS_p53: crossing the road
992 of membrane and actin dynamics in the formation of membrane protrusions.
993 *Trends Cell Biol.* **18** (2008), pp. 52–60.

994 56. S. Kurisu, T. Takenawa, The WASP and WAVE family proteins. *Genome Biol.*
995 **10** (2009), p. 226.

996 57. H. Nakagawa, H. Miki, M. Nozumi, T. Takenawa, S. Miyamoto, J. Wehland, J.
997 V. Small, IRS_p53 is colocalised with WAVE2 at the tips of protruding
998 lamellipodia and filopodia independently of Mena. *J. Cell Sci.* **116** (2003), pp.
999 2577–2583.

1000 58. S. Suetsugu, K. Murayama, A. Sakamoto, K. Hanawa-Suetsugu, A. Seto, T.
1001 Oikawa, C. Mishima, M. Shirouzu, T. Takenawa, S. Yokoyama, The RAC
1002 binding domain/IRS_p53-MIM homology domain of IRS_p53 induces RAC-
1003 dependent membrane deformation. *J. Biol. Chem.* **281**, 35347–35358 (2006).

1004 59. D. J. Kast, C. Yang, A. Disanza, M. Boczkowska, Y. Madasu, G. Scita, T.
1005 Svitkina, R. Dominguez, Mechanism of IRS_p53 inhibition and combinatorial
1006 activation by Cdc42 and downstream effectors. *Nat. Struct. Mol. Biol.* **21**, 413–
1007 422 (2014).

1008 60. P. K. Mattila, A. Pykäläinen, J. Saarikangas, V. O. Paavilainen, H. Vihtinen, E.
1009 Jokitalo, P. Lappalainen, Missing-in-metastasis and IRS_p53 deform PI(4,5)P₂-
1010 rich membranes by an inverse BAR domain-like mechanism. *J. Cell Biol.* **176**,
1011 953–964 (2007).

1012 61. J. Choi, J. Ko, B. Racz, A. Burette, J. R. Lee, S. Kim, M. Na, H. W. Lee, K. Kim,
1013 R. J. Weinberg, E. Kim, Regulation of dendritic spine morphogenesis by insulin
1014 receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases.
1015 *J. Neurosci.* **25**, 869–879 (2005).

1016 62. A. Disanza, S. Mantoani, M. Hertzog, S. Gerboth, E. Frittoli, A. Steffen, K.
1017 Berhoerster, H. J. Kreienkamp, F. Milanesi, P. P. Di Fiore, A. Ciliberto, T. E. B.
1018 Stradal, G. Scita, Regulation of cell shape by Cdc42 is mediated by the synergic

1019 actin-bundling activity of the Eps8-IRSp53 complex. *Nat. Cell Biol.* **8**, 1337–
1020 1347 (2006).

1021 63. J. M. Robens, L. Yeow-Fong, E. Ng, C. Hall, E. Manser, Regulation of IRSp53-
1022 Dependent Filopodial Dynamics by Antagonism between 14-3-3 Binding and
1023 SH3-Mediated Localization. *Mol. Cell. Biol.* **30**, 829–844 (2010).

1024 64. S. Bisi, S. Marchesi, A. Rizvi, D. Carra, G. V. Beznoussenko, I. Ferrara, G.
1025 Deflorian, A. Mironov, G. Bertalot, F. Pisati, A. Oldani, A. Cattaneo, G.
1026 Saberamoli, S. Pece, G. Viale, A. Bachi, C. Tripodo, G. Scita, A. Disanza,
1027 IRSp53 controls plasma membrane shape and polarized transport at the nascent
1028 lumen in epithelial tubules. *Nat. Commun.* **11**, 1–23 (2020).

1029 65. J. D. Martell, T. J. Deerinck, S. S. Lam, M. H. Ellisman, A. Y. Ting, Electron
1030 microscopy using the genetically encoded APEX2 tag in cultured mammalian
1031 cells. *Nat. Protoc.* **12**, 1792–1816 (2017).

1032 66. N. Ariotti, J. Rae, N. Giles, N. Martel, E. Sierecki, Y. Gambin, T. E. Hall, R. G.
1033 Parton, Ultrastructural localisation of protein interactions using conditionally
1034 stable nanobodies. *PLoS Biol.* **16**, 1–11 (2018).

1035 67. T. Sudhaharan, S. Hariharan, J. S. Y. Lim, J. Z. Liu, Y. L. Koon, G. D. Wright,
1036 K. H. Chiam, S. Ahmed, Superresolution microscopy reveals distinct localisation
1037 of full length IRSp53 and its I-BAR domain protein within filopodia. *Sci. Rep.* **9**
1038 (2019), doi:10.1038/s41598-019-38851-w.

1039 68. W. Abou-Kheir, B. Isaac, H. Yamaguchi, D. Cox, Membrane targeting of
1040 WAVE2 is not sufficient for WAVE2-dependent actin polymerization: A role for
1041 IRSp53 in mediating the interaction between Rac and WAVE2. *J. Cell Sci.* **121**,
1042 379–390 (2008).

1043 69. S. Suetsugu, S. Kurisu, T. Oikawa, D. Yamazaki, A. Oda, T. Takenawa,
1044 Optimization of WAVE2 complex-induced actin polymerization by membrane-
1045 bound IRSp53, PIP3, and Rac. *J. Cell Biol.* **173**, 571–585 (2006).

1046 70. E. D. Goley, M. D. Welch, The ARP2/3 complex: An actin nucleator comes of
1047 age. *Nat. Rev. Mol. Cell Biol.* **7** (2006), pp. 713–726.

1048 71. T. Fujiwara, A. Mammoto, Y. Kim, Y. Takai, Rho small G-protein-dependent
1049 binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2.
1050 *Biochem. Biophys. Res. Commun.* **271**, 626–629 (2000).

1051 72. G. T. Charras, C. K. Hu, M. Coughlin, T. J. Mitchison, Reassembly of contractile
1052 actin cortex in cell blebs. *J. Cell Biol.* **175**, 477–490 (2006).

1053 73. K. Tsujita, T. Takenawa, T. Itoh, Feedback regulation between plasma membrane
1054 tension and membrane-bending proteins organizes cell polarity during leading
1055 edge formation. *Nat. Cell Biol.* **17**, 749–758 (2015).

1056 74. W. Yang, P. fei Wu, J. xing Ma, M. jun Liao, L. shan Xu, L. Yi, TRPV4
1057 activates the Cdc42/N-wasp pathway to promote glioblastoma invasion by
1058 altering cellular protrusions. *Sci. Rep.* **10**, 14151 (2020).

1059 75. S. A. Rizvi, E. M. Neidt, J. Cui, Z. Feiger, C. T. Skau, M. L. Gardel, S. A.
1060 Kozmin, D. R. Kovar, Identification and Characterization of a Small Molecule
1061 Inhibitor of Formin-Mediated Actin Assembly. *Chem. Biol.* **16**, 1158–1168
1062 (2009).

1063 76. Y. Wakayama, S. Fukuhara, K. Ando, M. Matsuda, N. Mochizuki, Cdc42
1064 mediates Bmp - Induced sprouting angiogenesis through Fmn13-driven assembly
1065 of endothelial filopodia in zebrafish. *Dev. Cell.* **32**, 109–122 (2015).

1066 77. M. Képíró, B. H. Várkuti, L. Végner, G. Vörös, G. Hegyi, M. Varga, A. Málnási-
1067 Csizmadia, Para-nitroblebbistatin, the non-cytotoxic and photostable myosin II
1068 inhibitor. *Angew. Chemie - Int. Ed.* **53**, 8211–8215 (2014).

1069 78. S. Tojkander, G. Gateva, P. Lappalainen, Actin stress fibers - Assembly,
1070 dynamics and biological roles. *J. Cell Sci.* **125**, 1855–1864 (2012).

1071 79. B. Hetrick, M. S. Han, L. A. Helgeson, B. J. Nolen, Small molecules CK-666 and
1072 CK-869 inhibit actin-related protein 2/3 complex by blocking an activating
1073 conformational change. *Chem. Biol.* **20**, 701–712 (2013).

1074 80. B. A. Connolly, J. Rice, L. A. Feig, R. J. Buchsbaum, Tiam1-IRSp53 Complex
1075 Formation Directs Specificity of Rac-Mediated Actin Cytoskeleton Regulation.
1076 *Mol. Cell. Biol.* **25**, 4602–4614 (2005).

1077 81. N. S. Gov, Guided by curvature: Shaping cells by coupling curved membrane
1078 proteins and cytoskeletal forces. *Philos. Trans. R. Soc. B Biol. Sci.* **373** (2018), ,
1079 doi:10.1098/rstb.2017.0115.

1080 82. A. Allard, M. Bouzid, T. Betz, C. Simon, M. Abou-Ghali, J. Lemière, F.
1081 Valentino, J. Manzi, F. Brochard-Wyart, K. Guevorkian, J. Plastino, M. Lenz, C.
1082 Campillo, C. Sykes, Actin modulates shape and mechanics of tubular
1083 membranes. *Sci. Adv.* **6**, eaaz3050 (2020).

1084 83. C. Tozzi, N. Walani, M. Arroyo, Out-of-equilibrium mechanochemistry and self-
1085 organization of fluid membranes interacting with curved proteins. *New J. Phys.*
1086 **21** (2019), doi:10.1088/1367-2630/ab3ad6.

1087 84. P. Chugh, E. K. Paluch, The actin cortex at a glance. *J. Cell Sci.* **131** (2018),
1088 doi:10.1242/jcs.186254.

1089 85. C. Suarez, D. R. Kovar, Internetwork competition for monomers governs actin
1090 cytoskeleton organization. *Nat. Rev. Mol. Cell Biol.* **17** (2016), pp. 799–810.

1091 86. C. Teodorof, J. Il Bae, S. M. Kim, H. J. Oh, Y. S. Kang, J. Choi, J. S. Chun, W.
1092 K. Song, SPIN90-IRSp53 complex participates in Rac-induced membrane
1093 ruffling. *Exp. Cell Res.* **315**, 2410–2419 (2009).

1094 87. P. Suraneni, B. Rubinstein, J. R. Unruh, M. Durnin, D. Hanein, R. Li, The
1095 Arp2/3 complex is required for lamellipodia extension and directional fibroblast
1096 cell migration. *J. Cell Biol.* **197**, 239–251 (2012).

1097 88. S. A. Gudipaty, J. Lindblom, P. D. Loftus, M. J. Redd, K. Edes, C. F. Davey, V.
1098 Krishnegowda, J. Rosenblatt, Mechanical stretch triggers rapid epithelial cell
1099 division through Piezo1. *Nature*. **543**, 118–121 (2017).

1100 89. S. Massou, F. Nunes Vicente, F. Wetzel, A. Mehidi, D. Strehle, C. Leduc, R.
1101 Voituriez, O. Rossier, P. Nassoy, G. Giannone, Cell stretching is amplified by
1102 active actin remodelling to deform and recruit proteins in mechanosensitive
1103 structures. *Nat. Cell Biol.* **22**, 1011–1023 (2020).

1104 90. Y. Chen, Z. Li, L. A. Ju, Tensile and compressive force regulation on cell
1105 mechanosensing. *Biophys. Rev.* **11** (2019), pp. 311–318.

1106 91. Z. Zhao, Y. Li, M. Wang, S. Zhao, Z. Zhao, J. Fang, Mechanotransduction
1107 pathways in the regulation of cartilage chondrocyte homoeostasis. *J. Cell. Mol.*
1108 *Med.* **24** (2020), pp. 5408–5419.

1109 92. A. K. Jayasinghe, S. M. Crews, D. N. Mashburn, M. S. Hutson, Apical
1110 oscillations in amnioserosa cells: Basolateral coupling and mechanical autonomy.
1111 *Biophys. J.* **105**, 255–265 (2013).

1112 93. A. M. Bogdanov, E. I. Kudryavtseva, K. A. Lukyanov, Anti-Fading Media for
1113 Live Cell GFP Imaging. *PLoS One.* **7**, 53004 (2012).

1114 94. D. Soriano-castell, A. Chavero, C. Rentero, M. Bosch, M. Vidal-, A. Pol, C.
1115 Enrich, F. Tebar, ROCK1 is a novel Rac1 effector to regulate tubular endocytic
1116 membrane formation during clathrin-independent endocytosis. *Sci. Rep.*, 1–17
1117 (2017).

1118 95. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman,

1119 D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, D. M.
1120 Sabatini, CellProfiler: Image analysis software for identifying and quantifying
1121 cell phenotypes. *Genome Biol.* **7**, R100 (2006).

1122 96. M. Arroyo, A. Desimone, Relaxation dynamics of fluid membranes. *Phys. Rev. E*
1123 - *Stat. Nonlinear, Soft Matter Phys.* **79** (2009),
1124 doi:10.1103/PhysRevE.79.031915.

1125 97. P. Maiuri, J. F. Rupprecht, S. Wieser, V. Ruprecht, O. Bénichou, N. Carpi, M.
1126 Coppey, S. De Beco, N. Gov, C. P. Heisenberg, C. Lage Crespo, F.
1127 Lautenschlaeger, M. Le Berre, A. M. Lennon-Dumenil, M. Raab, H. R. Thiam,
1128 M. Piel, M. Sixt, R. Voituriez, Actin flows mediate a universal coupling between
1129 cell speed and cell persistence. *Cell.* **161**, 374–386 (2015).

1130

1131 **Acknowledgments**

1132 We thank V. González-Tarragó for assistance with the stretch system and
1133 statistics analysis, L. Rosetti for support with Fiji scripts, I. Granero for helping
1134 with CellProfiler pipelines, N. Castro, S. Usieto and A. Menéndez for technical
1135 assistance and the members of the P.R.-C. and X.T. laboratories for technical
1136 assistance and discussions. We also would like to acknowledge the support
1137 given by the Unitat de Criomicroscòpia Electrònica TEM/SEM (Centres
1138 Científics i Tecnològics de la Universitat de Barcelona, CCiTUB) and the
1139 MicroFabSpace and Microscopy Characterization Facility, Unit 7 of ICTS
1140 “NANBIOSIS” from CIBER-BBN at IBEC.

1141 **Funding:**

1142 Spanish Ministry of Science and Innovation (BFU2015-66785-P to F.T.,
1143 PGC2018-099645-B-I00 to X.T., PID2019-110949GB-I00 to M.A., BFU2016-
1144 79916-P and PID2019-110298GB-I00 to P. R.-C, and BFU2016-79916-P to XQ)
1145 European Commission (H2020-FETPROACT-01-2016-731957)

1146 European Research Council (CoG-616480 to X.T. and CoG-681434 to M.A.)
1147 Generalitat de Catalunya (2017-SGR-1602 to X.T. and P.R.-C., 2017-SGR-1278 to
1148 M.A.)

1149 The prize “ICREA Academia” for excellence in research to M.A. and P.R.-C.
1150 Fundació la Marató de TV3

1151 Obra Social “La Caixa”

1152 IBEC and CIMNE are recipients of a Severo Ochoa Award of Excellence from
1153 the MINECO

1154 AC was supported by a FPU fellowship from Ministerio de Educación, Cultura y
1155 Deporte (Spain).

1156 Associazione Italiana per la Ricerca sul Cancro AIRC-IG 18621 and
1157 5XMille22759 to GS

1158 The Italian Ministry of University and Scientific Research (PRIN 2017-Prot.
1159 2017HWTP2K to GS)

1160 **Author contributions:**

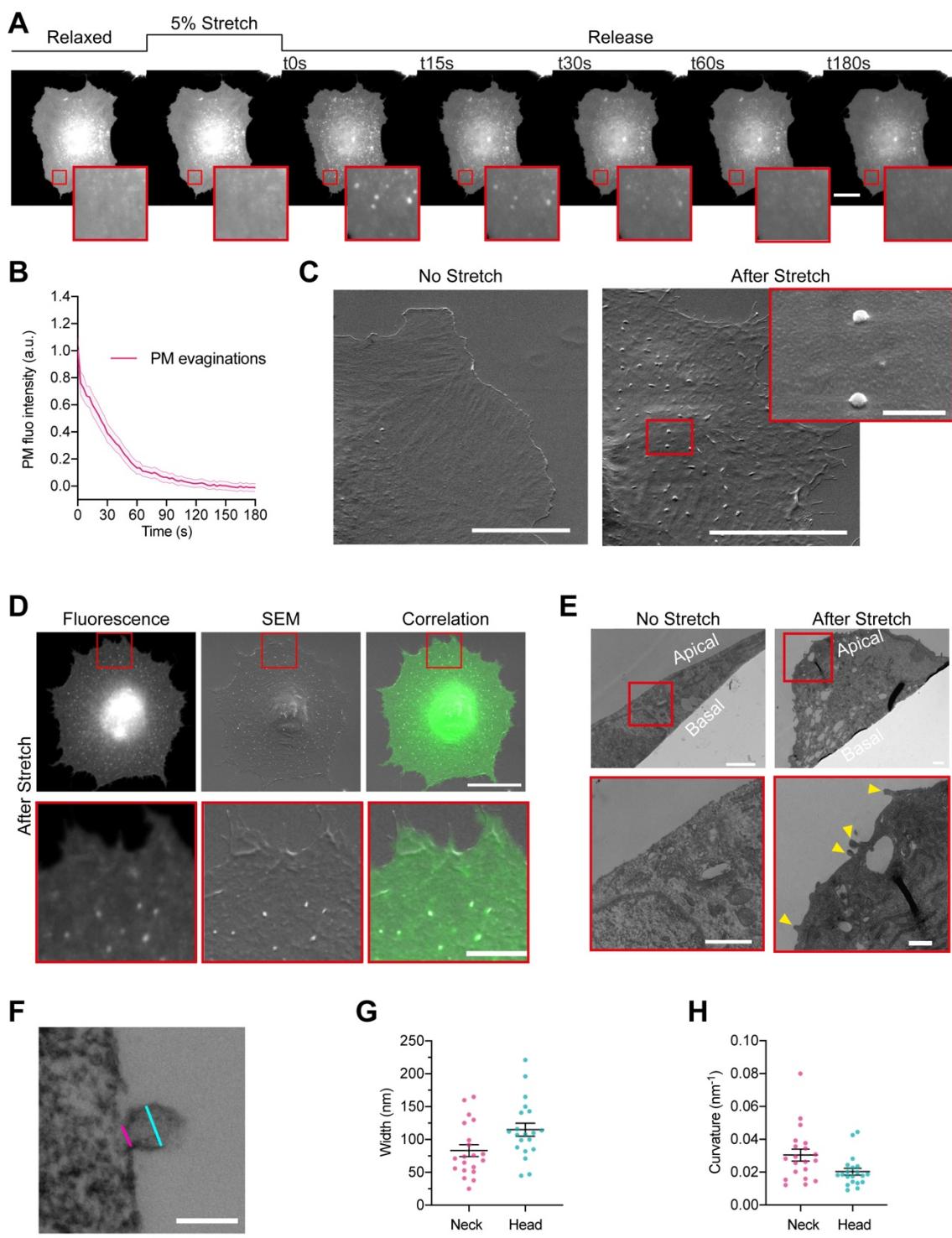
1161 Conceptualization: PRC, ALLR, XQ and MA

1162 Methodology: PRC, ALLR, XQ, MIG, GS, AD, FT, XT, RGP and MA.

1163 Investigation: XQ, NW, AC and AM

1164 Visualization: XQ

1165 Supervision: PRC and ALLR

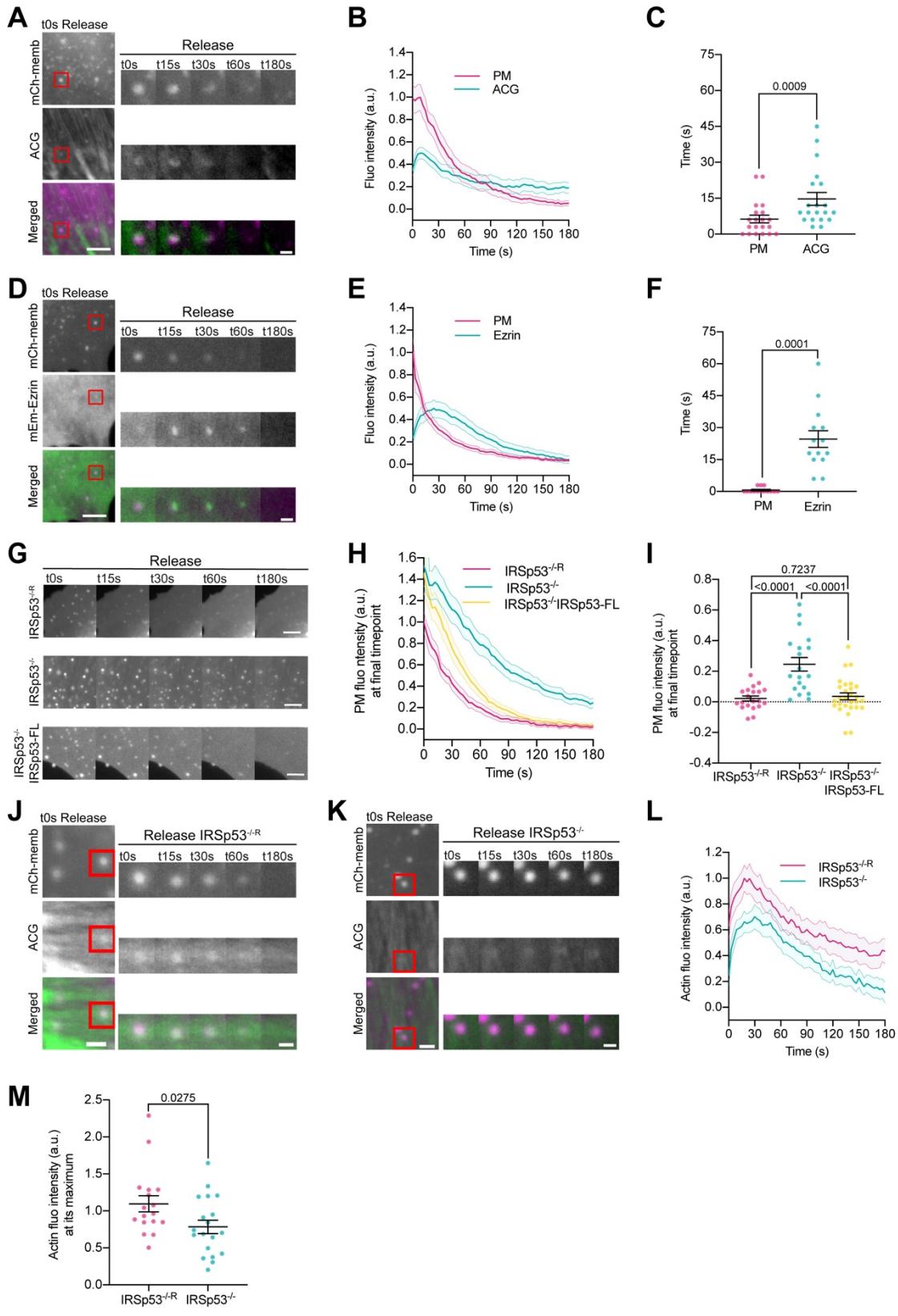

1169 Writing—original draft: XQ
1170 Writing—review & editing: MA, ALLR and PRC.
1171

1172 **Competing interests:** Authors declare they have no competing interests.
1173

1174 **Data and materials availability:** All data are available in the main text or the
1175 supplementary materials.
1176
1177

1178 **Figures and Tables**

1179



1180
1181

Fig. 1. Cellular stretch generates PM evaginations with a defined curvature.

1182 (A) Time course images of a NHDF transfected with EGFP-membrane marker
1183 before, during and after 5 % constant stretch application. PM evaginations are
1184 seen as bright fluorescent spots after the release of the stretch due to
1185 compression of the PM. Scale bar is 20 μ m. (B) Dynamics of PM evaginations
1186 after stretch release quantified as the change in fluorescence of the structure with
1187

1188 time. N=12 cells from 3 independent experiments. **(C)** NHDF imaged through
1189 SEM. A non-stretched cell (left), and a cell just after stretch release (right) are
1190 shown. Scale bars are 10 μ m in main images, 500 nm in magnified image
1191 (framed in red). **(D)** Correlation between fluorescence and SEM images of a
1192 non-stretched and stretched-released NHDF. Matching was achieved by using a
1193 patterned substrate together with computational tools for alignment. Scale bar is
1194 20 μ m for the main images and 2 μ m for the insets. **(E)** TEM images of a non-
1195 stretched and a stretched-released NHDF. Yellow arrows in magnified image
1196 point at PM evaginations formed at the apical side of the cell. Scale bars are
1197 1 μ m for the main images and 500 nm for the insets. **(F)** Detail of an evagination,
1198 cyan and magenta lines show evagination's head and neck diameters,
1199 respectively. Scale bar is 100 nm. **(G, H)** Corresponding evagination neck and
1200 head diameters **(G)** and curvatures **(H)**. N=22 evaginations from 3 independent
1201 experiments. Data show mean \pm s.e.m. In A, C, D, and E, red-framed images
1202 show a magnification of the areas marked in red in the main image.

1203
1204

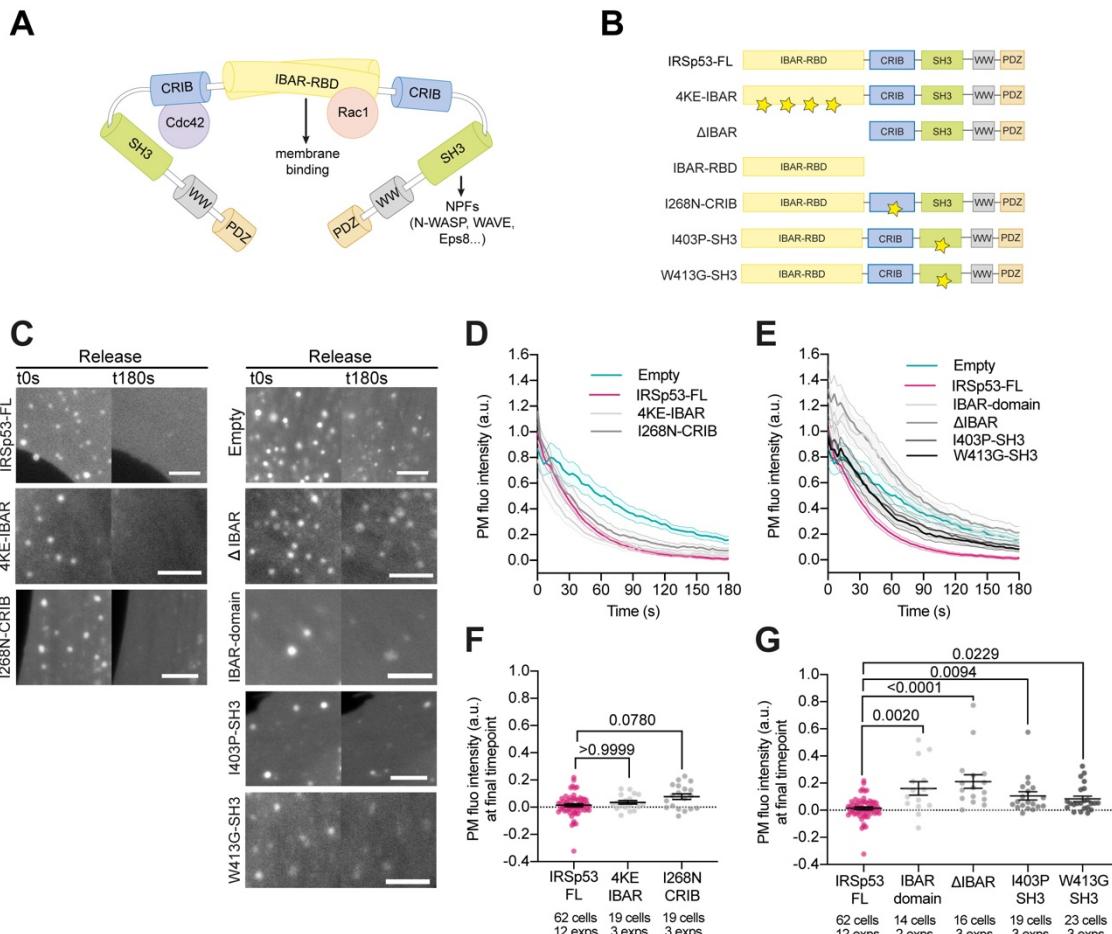
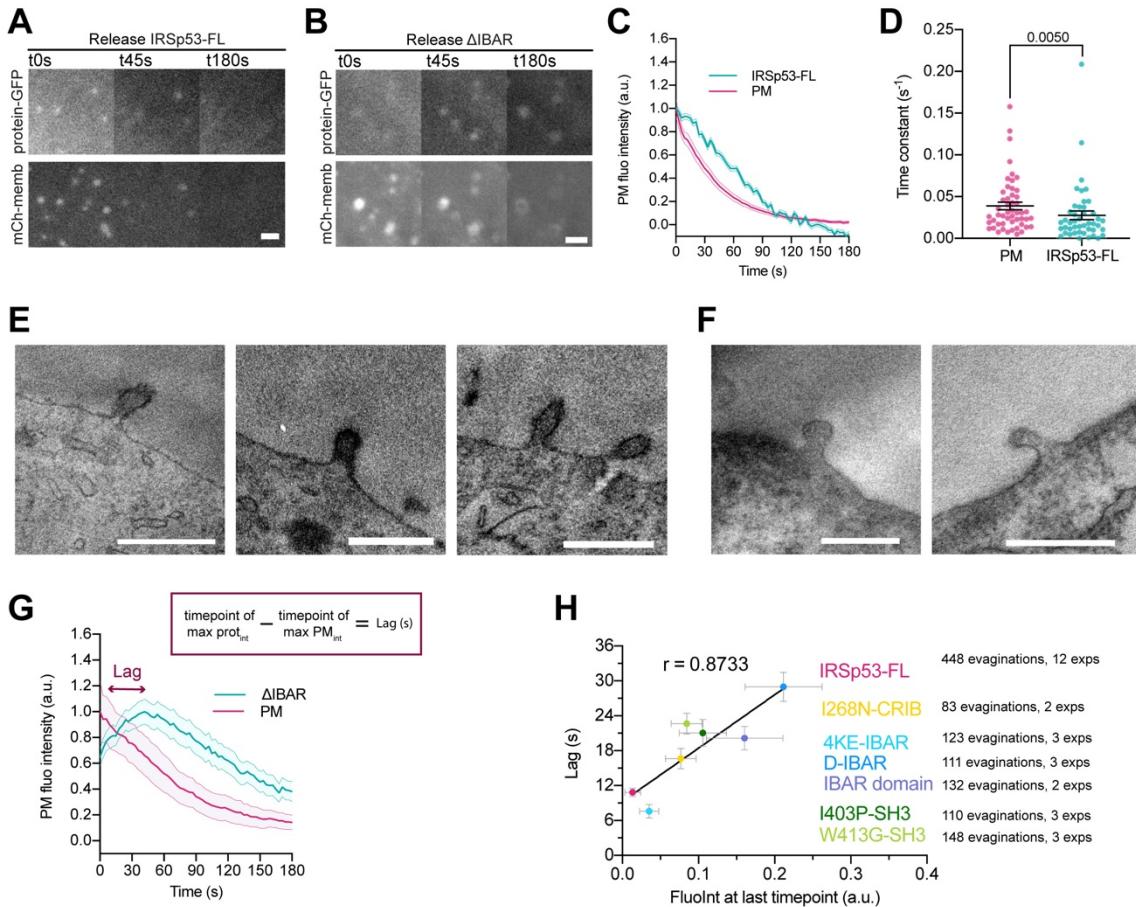

1205
1206
1207
1208

Fig. 2. PM evaginations trigger local actin recruitment mediated by the IBAR protein IRSp53. (A) Time course images of mCherry-membrane and Actin Chromobody-GFP (ACG) marking PM evaginations in NHDF after stretch release. (B) Dynamics of PM evaginations quantified through mCh-

1209 membrane or ACG fluorescence markers during stretch release in NHDF. N= 20
1210 cells from 3 independent experiments. **(C)** Timepoint of maximal fluorescence
1211 intensity of PM and ACG. Statistical significance was assessed through
1212 Wilcoxon test. N= 20 cells from 3 independent experiments. **(D)** Time course
1213 images of mCherry-membrane and mEmerald-Ezrin marking PM evaginations
1214 in NHDF after the release of the stretch. **(E)** Dynamics of PM evaginations
1215 quantified through mCh-membrane and mEmerald-Ezrin fluorescence markers
1216 after stretch release in NHDF. N= 14 cells from 2 independent experiments. **(F)**
1217 Timepoint of maximal fluorescence intensity of PM and ezrin markers.
1218 Statistical significance was assessed through Wilcoxon test. N= 14 cells from 2
1219 independent experiments. **(G)** Time course images of PM evaginations tagged
1220 by mCherry-membrane in IRS^{53-/-R}, IRS^{53-/-} and IRS^{53-/-} EGFP-FL-IRSp53
1221 cells after the release of stretch. **(H)** Dynamics of PM evaginations (mCh-
1222 membrane marker) after stretch in IRS^{53-/-R}, IRS^{53-/-} and IRS^{53-/-} EGFP-FL-
1223 IRS⁵³. **(I)** Differences in PM fluorescence intensity at the final timepoint of
1224 acquisition (180s after the release of the stretch). Significant differences were
1225 tested through ANOVA. N= 20, 19 and 28 cells from 3, 3 and 5 independent
1226 experiments. **(J, K)** Time course images of mCherry-membrane and ACG
1227 marking the evolution of both PM evaginations and actin after the release of the
1228 stretch in IRS^{53-/-R} MEF cells (J) and IRS^{53-/-} MEF (K). **(L)** ACG dynamics
1229 at PM evaginations after stretch in both IRS^{53-/-R} and IRS^{53-/-} MEF. **(M)**
1230 Maximal fluorescence intensity of ACG during the resorption process for
1231 IRS^{53-/-R} and IRS^{53-/-} cells. Statistical significance was assessed through
1232 Man-Whitney test. N= 17 and 19 cells from 4 independent experiments. For
1233 panels A, D, and G, scale bars are 5 μ m and 1 μ m for insets. For panels J and K,
1234 scale bars are 2 μ m and 1 μ m for insets. Data show mean \pm s.e.m.

1235


1236

1237

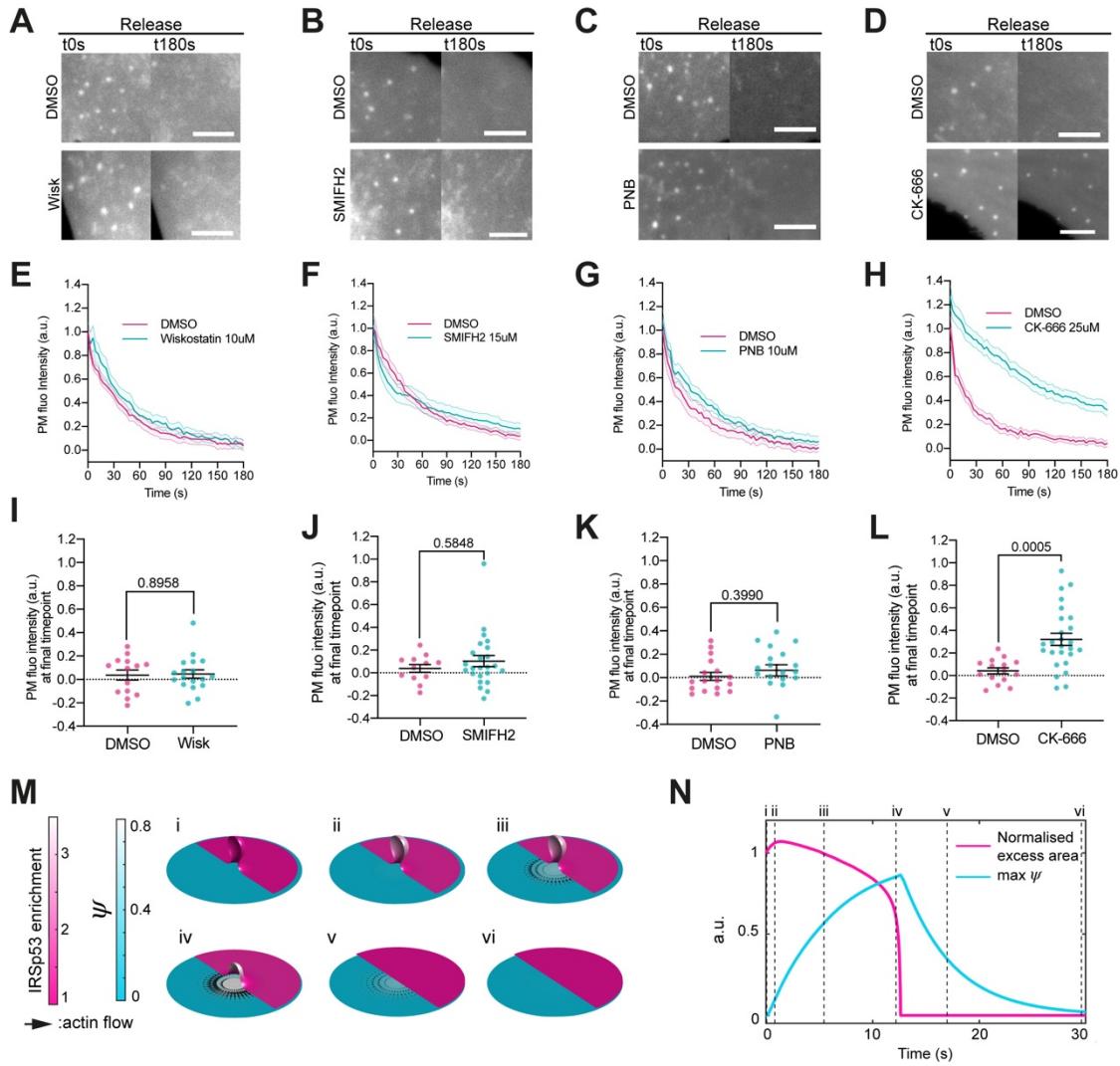
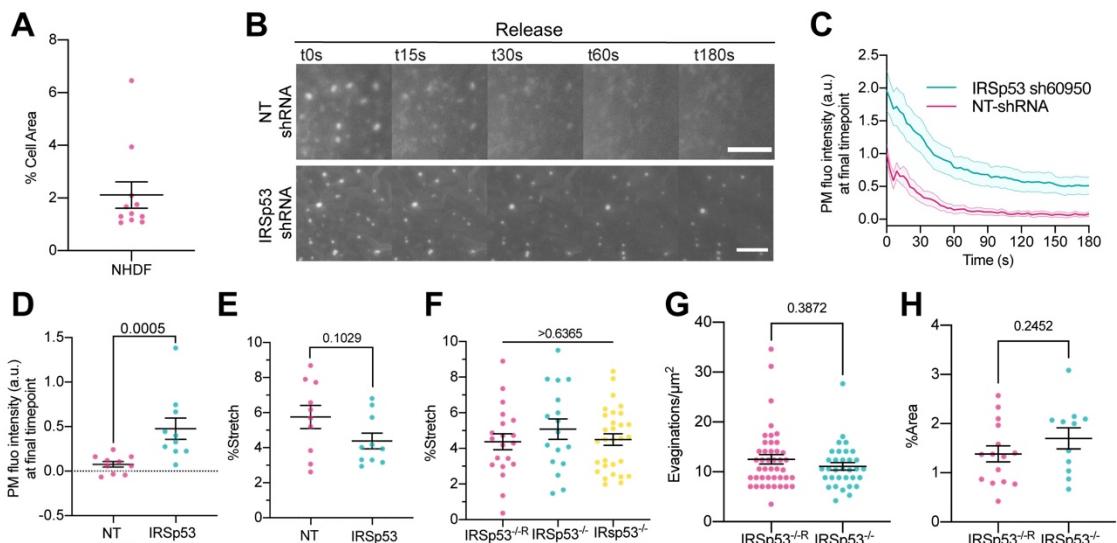

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

Fig. 3: IBAR and SH3 domains of IRSp53 regulate the resorption of PM evaginations. (A) Schematics representing the IBAR protein IRSp53 and the different molecules interacting with its different domains. **(B)** Schematics of the IRSp53 mutants used in this study. Stars denote the location of mutations impairing the function of the different domains. **(C)** Images of PM evaginations of IRSp53^{-/-} cells transfected with mCh-membrane alone (empty) or in combination with the different full length or mutant forms of EGFP-IRSp53 at the first (t0 s) and last (t180 s) timepoint of acquisition after stretch. Scale bars are 5 μm. **(D-E)** Time course dynamics of PM evaginations of mCh-membrane transfected IRSp53^{-/-} cells either empty or reconstituted with the different full length or mutant forms of IRSp53. (D) shows IRSp53 mutants that rescue PM recovery after stretch, (E) shows IRSp53 mutants that do not rescue PM recovery after stretch. **(F-G)** Corresponding fluorescence intensity of PM evaginations at the last timepoint of acquisition (t180 s) after the release of stretch. Statistical significance was assessed through Kruskal-Wallis test. Data show mean ± s.e.m.

1254

1255 **Fig. 4: IRSp53 acts as a mechanosensor of PM curvature.** (A, B) Images after
1256 stretch release of $\text{IRSp53}^{-/-}$ cells transfected with mCh-membrane and either FL
1257 or ΔIBAR forms of IRSp53 coupled to EGFP. Scale bars are $2\mu\text{m}$. (C)
1258 Dynamics of PM evaginations upon stretch release quantified through mCh-
1259 membrane or EGFP-IRSp53-FL fluorescence. (D) Time constants obtained by
1260 exponential fitting of the evagination resorption curves in the PM and EGFP-FL
1261 IRSp53 channels. Statistical significance was assessed through Mann-Whitney
1262 test. $N=53$ cells from 12 independent experiments. (E-F) TEM images of PM
1263 evaginations coming from cells co-transfected with either APEX-GBP and (E)
1264 EGFP-IRSP53-FL or (F) control condition mito-GFP. APEX staining can be
1265 observed at the PM evaginations of EGFP-IRSp53-FL transfected cells marking
1266 IRSp53 position. Scale bars are 500 nm . (G) Dynamics of PM evaginations upon
1267 stretch release quantified through mCh-membrane or EGFP- ΔIBAR
1268 fluorescence. The purple arrow indicates the lag between the PM and IRSp53
1269 signals, i.e., the time difference between the peaks of maximum intensity of both
1270 markers. $N=12$ cells from 3 independent experiments. (H) Time lag of FL or
1271 mutated IRSp53 plotted against the intensity of fluorescence at the last timepoint
1272 of acquisition. R indicates the Pearson correlation coefficient between both
1273 variables. Data show mean \pm s.e.m.

1274

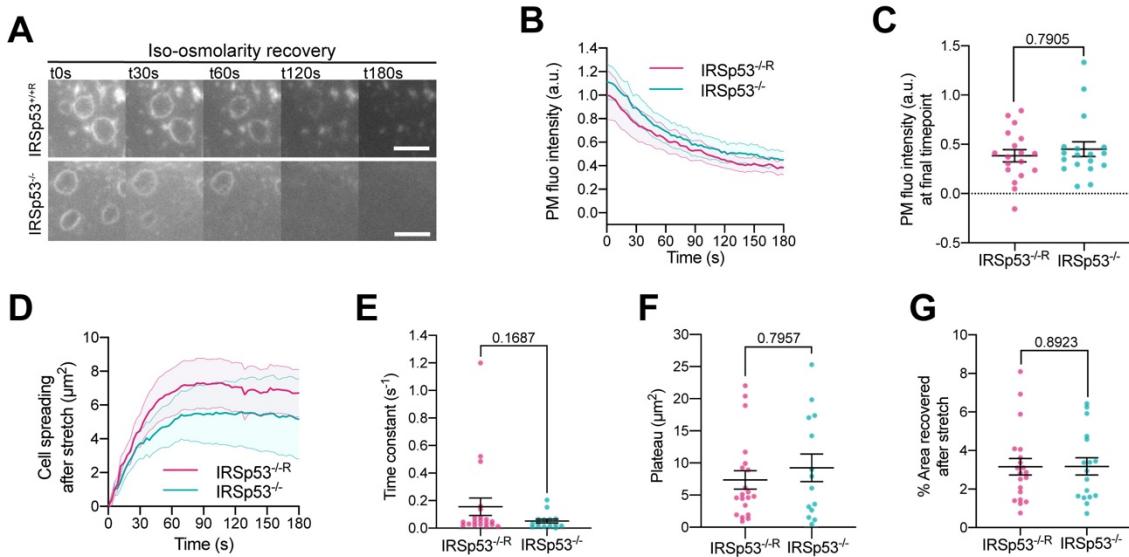

1275 **Fig. 5: IRSp53 organizes actin polymerization via Arp2/3 activation. (A-D)**
1276 Images after stretch release of PM evaginations, for IRSp53^{-/-R} cells treated with
1277 either vehicle (DMSO) or 10 μ M Wiskostatin, 15 μ M SMIFH2, 10 μ M PNB,
1278 and 25 μ M CK-666, respectively. Scale bars are 5 μ m. PM is marked with EGFP-
1279 membrane. **(E-H)** Corresponding dynamics of PM evaginations. **(I-L)**
1280 Differences in PM fluorescence intensity at the final timepoint of acquisition
1281 (t180 s after stretch) between DMSO treated control cells and drug treated cells.
1282 Statistical significance was assessed through unpaired T-test for CK-666 and
1283 PNB against their respective controls, and Mann-Whitney test for SMIFH2 and
1284 Wiskostatin against their respective controls. For Wiskostatin, N= 18 and 14
1285 cells, SMIFH2, N = 24 and 12 cells, PNB, N= 19 and 17 cells and CK-666, N=
1286 26 and 15 cells from 3 independent experiments for all cases. **(M)** Dynamics of
1287 the model of chemo-mechanical signaling, showing the local enrichment of
1288 IRSp53 from a baseline value of 1 (magenta, right side of images) and the
1289 concentration of an actin regulator ψ (cyan, left side of images). After the
1290 formation of the evagination (i), IRSp53 becomes enriched within 1 second (ii),
1291 which triggers the local increase in the concentration of actin regulator ψ over
1292 about 10 seconds (iii), thus creating a tension gradient and subsequent
1293 centrifugal cortex flow dragging and flattening the membrane (iv, v). Once
1294 planarity is restored, the IRSp53 domain rapidly disassembles, the actin

1295 regulator recovers its steady- state, and the flow ceases (v, vi). The radius of the
1296 membrane patch is 150 nm. (N) Corresponding quantifications of PM excess
1297 area contained in the evagination (where 0 corresponds to a flat membrane
1298 patch) and actin regulator concentration ψ , timepoints corresponding to
1299 configurations shown in N are indicated in roman numerals. Both quantifications
1300 are normalized to a maximum of 1. Data show mean \pm s.e.m.

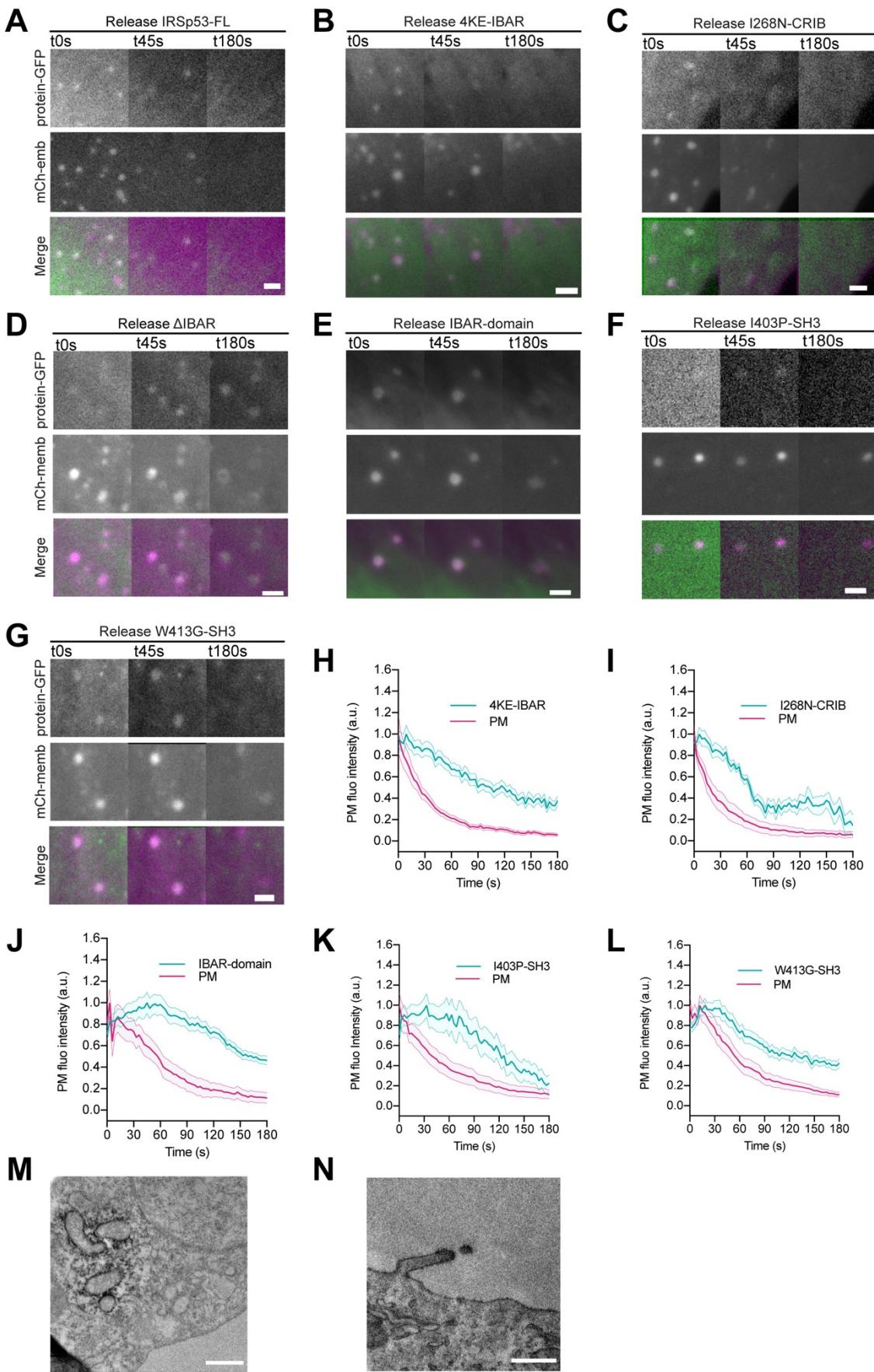
1301

1302

SUPPLEMENTARY MATERIALS

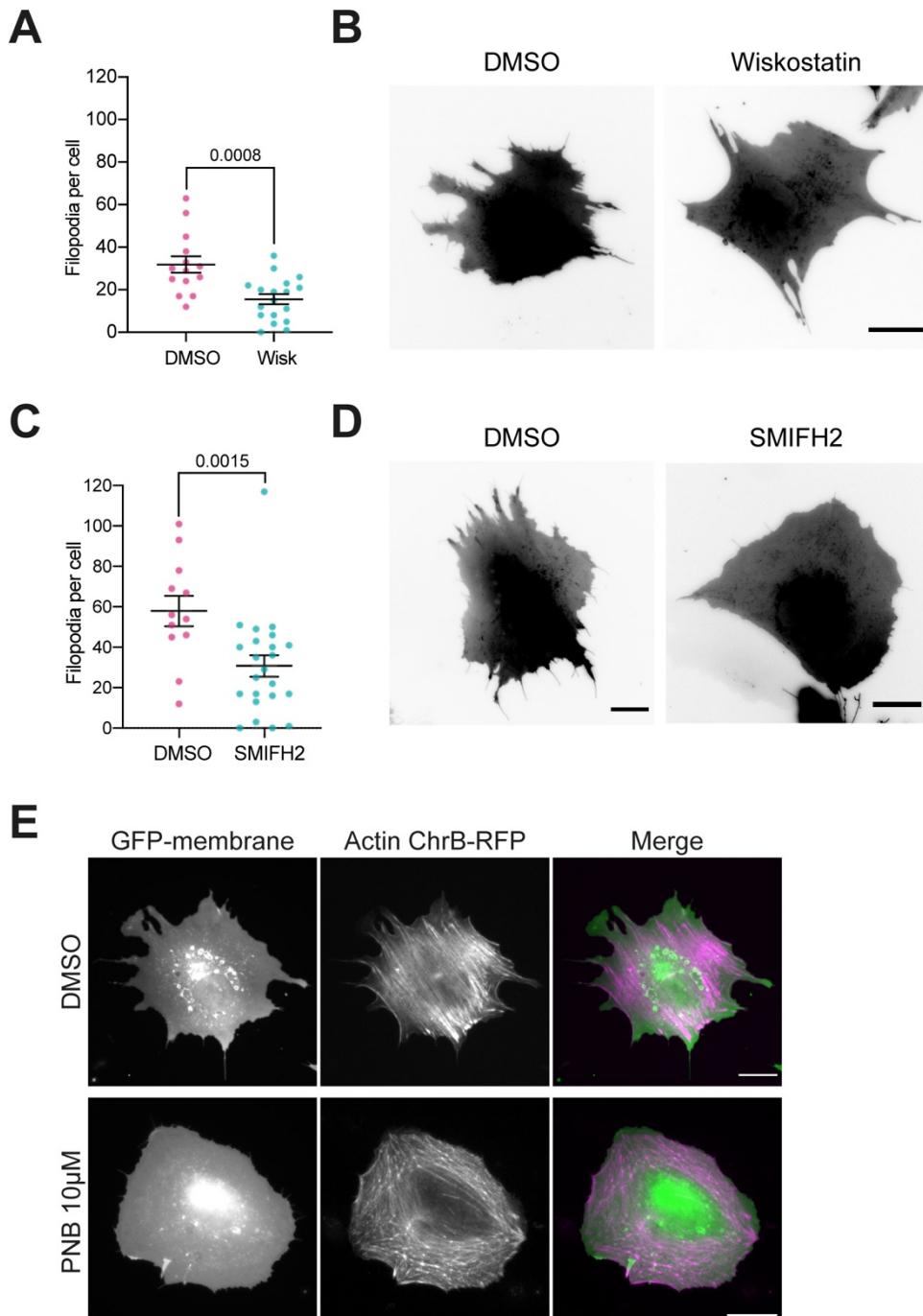

1303

1304


Supp. Fig. 1: IRSp53 silencing impairs compression-generated PM

1305

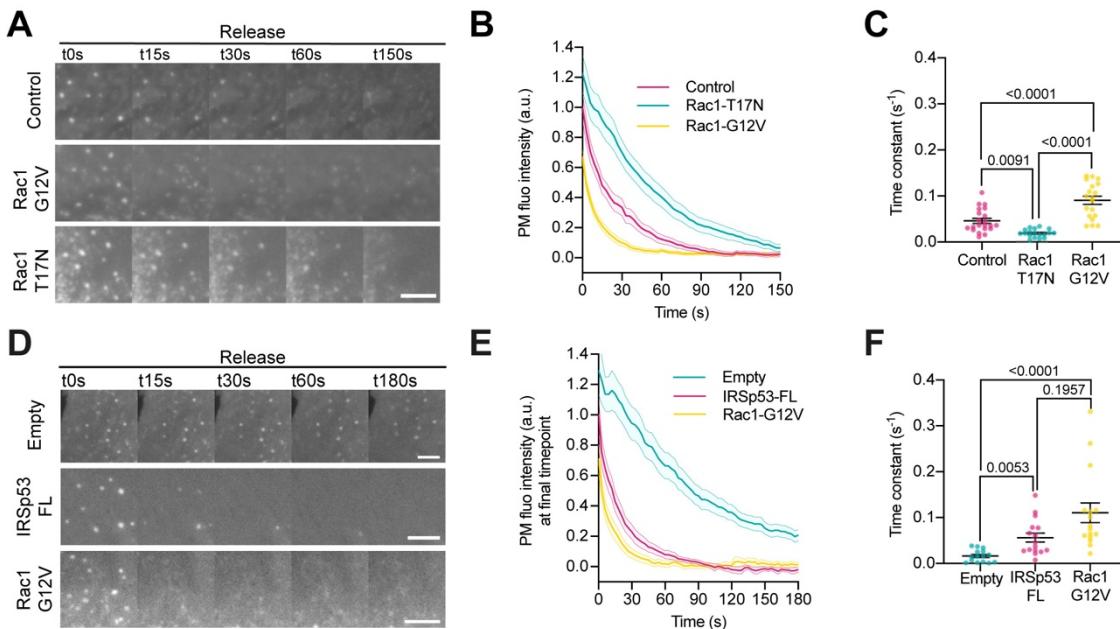
1306 evagination resorption in NHDF. **(A)** % of cell area stored in PM evaginations
1307 after stretch in NHDF. N = 11 from 3 independent experiments. **(B)** Time course
1308 images after stretch release of stable NHDF cell lines expressing either a non-
1309 targeting (NT) shRNA or an shRNA specifically targeting IRSp53. PM is
1310 marked with EGFP-membrane. Scale bars are 5 μm . **(C)** Quantification
1311 dynamics of EGFP-membrane tagged PM evaginations after stretch release in
1312 NT-shRNA and IRSp53 shRNA expressing cells. **(D)** Differences in EGFP-
1313 membrane fluorescence intensity at the final timepoint of acquisition after
1314 stretch in the conditions mentioned above. Significance was calculated through
1315 Mann-Whitney test. **(E)** Areal stretch experienced by NT-shRNA and IRSp53
1316 shRNA expressing cells under exposure to 7% PDMS membrane nominal
1317 stretch. Statistical differences were tested through unpaired T-test. N=8 and 10
1318 cells from 2 independent experiments. **(F)** Areal stretch experienced by IRSp53^{-/-R},
1319 IRSp53^{-/-} and IRSp53^{-/-}-EGFP-IRSp53-FL under exposure to 5% PDMS
1320 membrane nominal stretch. Statistical differences were tested through one-way
1321 ANOVA. N= 20, 19 and 28 cells from 3, 3 and 5 independent experiments. **(G)**
1322 Number of PM evaginations per μm^2 formed after stretch in IRSp53^{-/-R} and
1323 IRSp53^{-/-} MEF. N= 43 and 33 regions from 15 and 11 cells from 3 independent
1324 experiments. **(H)** % of cell area stored in PM evaginations after stretch in
1325 IRSp53^{-/-R} and IRSp53^{-/-} MEF. N = 15 and 11 cells from 3 independent
1326 experiments. Statistical differences were tested through Mann-Whitney test.
Data show mean \pm s.e.m.


1328 **Supp. Fig. 2: The role of IRSp53 is local and specific to PM evaginations.** (A) Time
1329 course images of VLDs (observed with a pYFP-membrane fluorescent marker
1330 transfection) formed by exposing cells to iso-osmolar medium after a transient exposure
1331 to a 50% hypo-osmotic medium. Results for IRSp53^{-/-R} and IRSp53^{-/-} cells are shown.
1332 Scale bars are 5 μm . (B) VLDs fluorescence quantification as a function of time. (C)
1333 Comparison of PM fluorescence intensity of VLDs at the last frame of acquisition (180s
1334 after the iso-osmotic medium recovery). Significance was assessed through Mann-
1335 Whitney test. N=18 cells from 3 independent experiments. (D) Cell spreading during
1336 PM recovery phase. 0 = cell area after the release of stretch. (E) Comparison of time
1337 constants resulting from the exponential fitting of the curves obtained from cell
1338 spreading during the recovery phase after stretch. (F) Comparison of plateau values
1339 resulting from the same exponential fitting. (G) Quantification of % of area recovered
1340 after stretch. N=20 and 17 cells from 4 independent experiments. Statistical significance
1341 was assessed through Mann-Whitney test. Data show mean \pm s.e.m.

1343 **Suppl. Fig. 3: Additional data on IRS_p53 mutants. (A-G)** Images of IRS_p53^{-/-}
1344 cells after stretch release transfected with mCh-membrane and either the FL form of
1345 IRS_p53 or different mutant forms of the protein coupled to EGFP. Scale bars are
1346 2μm. **(H-L)** Corresponding dynamics of PM evaginations upon stretch release
1347 quantified through mCh-membrane or GFP coupled to the different IRS_p53
1348 mutants. N= 15, 13, 14, 9 12 and 16 cells from 3, 3, 2, 3, 3 and 3 independent
1349 experiments. **(M-N)** TEM images of IRS_p53^{-/-} cells co-transfected with csAPEX2-
1350 GBP together with **(M)** mito-GFP or **(N)** EGFP-IRS_p53-FL. APEX staining can be
1351 observed around mitochondria (M), in the tips of filopodia and up to some extent in
1352 the PM of EGFP-IRS_p53-FL transfected cells (N), as expected. Scale bars are 500
1353 nm. Data show mean ± s.e.m.

1354

1355

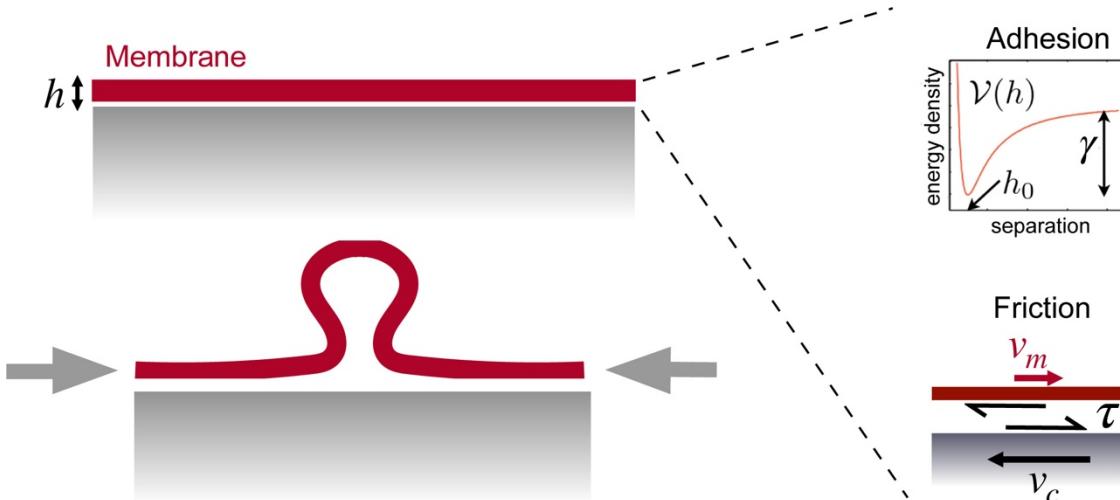

1356

1357 **Suppl. Fig. 4: Controls of drug treatment in IRS $53^{-/-}$ R MEF.** (A) Number of
1358 filopodia per cell in 10 μ M Wiskostatin or vehicle (DMSO) treated cells. Compound
1359 was incubated for 30 min at 37°C before experiments. N= 18 and 14 cells respectively
1360 from 3 independent experiments. Statistical significance was assessed through unpaired
1361 T-test. (B) Corresponding images of GFP-membrane transfected cells. (C) Number of
1362 filopodia per cell in 15 μ M SMIFH2 or vehicle (DMSO) treated cells. Compound was
1363 incubated for 1 h at 37°C before experiments. N=24 and 13 cells from 4 independent
1364 experiments. Statistical significance was assessed through Mann-Whitney test. (D)
1365 Corresponding images of GFP-membrane transfected cells. (E) IRS $53^{-/-}$ R MEF after 30
1366 min incubation at 37°C with either 10 μ M PNB or vehicle (DMSO). Cells were

1367 transfected with GFP-membrane and Actin Chromobody-RFP to mark both PM and
1368 actin. For all images scale bar is 20 μ m. Data show mean \pm s.e.m.

1369

1370



1371

1372 **Suppl. Fig. 5: Rac1 is involved in PM remodeling upon stretch.** **(A)** Time course
1373 images of PM evaginations after stretch release on NHDF expressing a PM marker
1374 alone, or a PM marker plus either a constitutively active (G12V) or a dominant
1375 negative (T17N) form of Rac1. PM was tagged with GFP-membrane marker. **(B)**
1376 Corresponding quantification of evagination resorption dynamics after stretch. **(C)**
1377 Time constants resulting from the exponential fitting of the curves in panel (B).
1378 Statistical significance was assessed through one-way ANOVA. N=21, 19 and 19
1379 cells from 4 independent experiments. **(D)** Time course images of PM evaginations
1380 after stretch on IRSp53^{-/-} MEF expressing either a constitutively active (G12V) form
1381 of Rac1 or EGFP-IRSp53-FL. PM was tagged with either GFP for Rac1-G12V and
1382 Empty cells or with mCherry for the EGFP-IRSp53-FL transfected cells. **(E)**
1383 Corresponding quantification of evagination resorption dynamics after stretch. **(F)**
1384 Time constants resulting from the exponential fitting of the curves in panel (E).
1385 Statistical significance was assessed through Kruskal-Wallis test. N= at least 19, 16
1386 and 16 cells from 3 independent experiments. For all images scale bars are 5 μ m.

1387

1388

1389

1390 **Suppl. Fig. 6: Considerations for the model.** Schematic of the interaction between
1391 the membrane and the 2D underlying cortex, separated by a distance h before
1392 evaginations form. The interaction is modelled through an adhesion potential $\mathcal{V}(h)$
1393 with a minimum at separation h_0 , with adhesion tension γ and a tangential frictional
1394 traction τ in the adhered part of the membrane proportional to the slippage velocity
1395 $v_m - v_c$.

1396

1397 **Supplementary Videos**

1398

1399 **Supplementary video 1** Time lapse of an NHDF cell labelled with GFP-
1400 membrane before, during, and after stretch application. Images on the right side
1401 show a magnification of the areas marked in red on the left side.

1402 **Supplementary video 2** Time lapse of an NHDF cell labelled with Actin
1403 Chromobody-GFP (ACG) and mCherry-membrane, before, during, and after
1404 stretch application. Images on the right side show a magnification of the areas
1405 marked in red on the left side.

1406 **Supplementary video 3** Time lapse of an NHDF cell labelled with mEmerald-
1407 Ezrin and mCherry-membrane, before, during, and after stretch
1408 application. Images on the right side show a magnification of the areas marked
1409 in red on the left side.

1410 **Supplementary video 4** Time lapse of a stable NHDF cell line expressing
1411 IRSp53 shRNA, labelled with GFP-membrane, before, during, and after stretch
1412 application. Images on the right side show a magnification of the areas marked
1413 in red on the left side.

1414 **Supplementary video 5** Time lapse of a stable NHDF cell line expressing
1415 control Non-Targeting shRNA, labelled with GFP-membrane, before, during,

1416 and after stretch application. Images on the right side show a magnification of
1417 the areas marked in red on the left side.

1418 **Supplementary video 6** Time lapse of an IRS $p53^{-/-}$ MEF cell, labelled with
1419 GFP-membrane before, during, and after stretch application. Images on the right
1420 side show a magnification of the areas marked in red on the left side.

1421 **Supplementary video 7** Time lapse of an IRS $p53^{-/-R}$ MEF cell, labelled with
1422 GFP-membrane before, during, and after stretch application. Images on the right
1423 side show a magnification of the areas marked in red on the left side.

1424 **Supplementary video 8** Time lapse of an IRS $p53^{-/-}$ MEF cell reconstituted with
1425 EGFP-IRS $p53$ -FL and labelled with mCherry-membrane before, during, and
1426 after stretch application. Images on the right side show a magnification of the
1427 areas marked in red on the left side.

1428 **Supplementary video 9** Time lapse of an IRS $p53^{-/-}$ MEF cell, labelled with
1429 Actin Chromobody-GFP (ACG) and mCherry-membrane before, during, and
1430 after stretch application. Images on the right side show a magnification of the
1431 areas marked in red on the left side.

1432 **Supplementary video 10** Time lapse of an IRS $p53^{-/-R}$ MEF cell, labelled with
1433 Actin Chromobody-GFP (ACG) and mCherry-membrane before, during, and
1434 after stretch application. Images on the right side show a magnification of the
1435 areas marked in red on the left side.

1436 **Supplementary video 11** Time lapse of an IRS $p53^{-/-R}$ MEF cell, labelled with
1437 pYFP-membrane. Cell is submitted to hypotonic treatment; the medium is
1438 subsequently restored to the initial isotonic condition Images on the right side
1439 show a magnification of the areas marked in red on the left side.

1440 **Supplementary video 12** Time lapse of an IRS $p53^{-/-}$ MEF cell, labelled with
1441 pYFP-membrane. Cell is submitted to hypotonic treatment; the medium is
1442 subsequently restored to the initial isotonic condition. Images on the right side
1443 show a magnification of the areas marked in red on the left side.

1444 **Supplementary video 13** Time lapse of an IRS $p53^{-/-}$ MEF cell, reconstituted
1445 with EGFP-IRS $p53$ -4KE and labelled with mCherry-membrane, before, during,
1446 and after stretch application. Images on the right side show a magnification of
1447 the areas marked in red on the left side.

1448 **Supplementary video 14** Time lapse of an IRS $p53^{-/-}$ MEF cell, reconstituted
1449 with EGFP-IRS $p53$ -I268N and labelled with mCherry-membrane, before,
1450 during, and after stretch application. Images on the right side show a
1451 magnification of the areas marked in red on the left side.

1452 **Supplementary video 15** Time lapse of an IRS $p53^{-/-}$ MEF cell, reconstituted
1453 with EGFP-IRS $p53$ -ΔIBAR and labelled with mCherry-membrane, before,
1454 during, and after stretch application. Images on the right side show a
1455 magnification of the areas marked in red on the left side.

1456 **Supplementary video 16** Time lapse of an IRS $^{53-/-}$ MEF cell, reconstituted
1457 with EGFP-IRS $^{53-/-}$ -I408P and labelled with mCherry-membrane, before,
1458 during, and after stretch application. Images on the right side show a
1459 magnification of the areas marked in red on the left side.

1460 **Supplementary video 17** Time lapse of an IRS $^{53-/-}$ MEF cell, reconstituted
1461 with EGFP-IRS $^{53-/-}$ -W413G and labelled with mCherry-membrane, before,
1462 during, and after stretch application. Images on the right side show a
1463 magnification of the areas marked in red on the left side.

1464 **Supplementary video 18** Time lapse of an IRS $^{53-/-}$ MEF cell, reconstituted
1465 with EGFP-IBAR and labelled with mCherry-membrane, before, during, and
1466 after stretch application. Images on the right side show a magnification of the areas
1467 marked in red on the left side.

1468 **Supplementary video 19** Time lapse of an IRS $^{53-/-R}$ MEF cell treated with
1469 10 μ M Wiskostatin and labelled with EGFP-membrane, before, during, and after
1470 stretch application. Images on the right side show a magnification of the areas
1471 marked in red on the left side.

1472 **Supplementary video 20** Time lapse of an IRS $^{53-/-R}$ MEF cell treated with
1473 15 μ M SMIFH2 and labelled with EGFP-membrane, before, during, and after
1474 stretch application. Images on the right side show a magnification of the areas
1475 marked in red on the left side.

1476 **Supplementary video 21** Time lapse of an IRS $^{53-/-R}$ MEF cell treated with
1477 10 μ M para-nitrolebbitstatin and labelled with EGFP-membrane, before, during,
1478 and after stretch application. Images on the right side show a magnification of
1479 the areas marked in red on the left side.

1480 **Supplementary video 22** Time lapse of an IRS $^{53-/-R}$ MEF cell treated with
1481 25 μ M CK-666 and labelled with EGFP-membrane, before, during, and after
1482 stretch application. Images on the right side show a magnification of the areas
1483 marked in red on the left side.

1484