

Antibiotic treatment induces activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus

Gürsel Çalışkan^{1,2, *† #}, Timothy French^{3, #}, Markus M. Heimesaat⁴, Ildiko Rita Dunay^{2,3, †},
Oliver Stork^{1,2, †}

¹*Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany*

²*Center for Behavioral Brain Sciences, Magdeburg, Germany*

³*Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany*

⁴*Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Berlin, Germany*

Short Title: Antibiotics, immune function and hippocampal physiology

#Shared first authorship

†Equally contributed last authorship

***Corresponding Author**

Dr. Gürsel Çalışkan

Institute of Biology

Otto-von-Guericke-University

Leipziger Str. 44, Haus 91

Magdeburg, 39120, Germany

Tel: +49-391-6755108

Fax: +49-391-6755102

E-mail: guersel.caliskan@ovgu.de

Keywords: Antibiotics, immune function, microglia, hippocampus, synaptic transmission, gamma oscillations

Word count: 7259 (including figure legends)

1 **Abstract (251 words)**

2 Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use
3 may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well
4 as cognitive performance. Still, a striking lack of knowledge exists concerning
5 electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior.
6 Here, we investigated changes in the synaptic transmission and plasticity together with
7 behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. The
8 prolonged antibiotic treatment led to a strong reduction of myeloid cell pools in bone marrow,
9 circulation and those surveilling the brain. Upon antibiotic treatment, circulating Ly6C^{hi}
10 inflammatory monocytes adopted a proinflammatory phenotype with increased expression of
11 CD40 and MHC II. In the central nervous system, microglia displayed typical signs of
12 activation with elevated CD40 and MHC II expression, as well as increased IL-6 and TNF
13 production. Concomitantly, we detected a substantial reduction in the synaptic transmission
14 in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic
15 gamma oscillation were reduced upon antibiotic treatment while the incidence of
16 hippocampal sharp waves was elevated. These changes were associated with the global
17 changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide
18 synthase, both of which have been shown to influence cholinergic functions. Overall, our
19 study demonstrates that antibiotic-induced changes in the gut microbiome and immune cell
20 function are associated with a drastic reduction in the synaptic transmission and gamma
21 oscillations in the hippocampus, a brain region that is critically involved in mediation of innate
22 and cognitive behavior.

23

24 **1. Introduction**

25 Millions of humans are being prescribed antibiotics (Abx) every day (Suda et al., 2014).
26 However, accumulating evidence from human and rodent studies indicate that the long-term
27 use of antibiotics can lead to detrimental effects on hematopoiesis, brain physiology, innate
28 behavior, and cognitive functions (Desbonnet et al., 2015; Fröhlich et al., 2016a; Josefsdottir
29 et al., 2017; Möhle et al., 2016b). This is due, at least in part, to the decimation of microbiota
30 that colonize our intestinal tract and the disruption of normal gut microbiota-to-brain
31 signaling.

32 Converging evidence points toward a critical role of microbiota in regulation of the crosstalk
33 between peripheral immune cells and the central nervous system (CNS) (Baruch et al., 2015;
34 Schwartz et al., 2013). We have previously shown that prolonged antibiotic-induced microbial
35 depletion reduces hippocampal neurogenesis and memory retention. Moreover, we
36 demonstrated that these changes are partially mediated by circulating Ly6C^{hi} monocytes as
37 adoptive transfer of these cells from naïve mice could rescue the observed neurogenesis and
38 memory decreases (Möhle et al., 2016b). Monocytes and monocyte-derived macrophages
39 comprise a fundamental leukocyte subset of the innate immune response with multifaceted
40 roles in maintenance of host tissue homeostasis (Biswas et al., 2015; Hammond et al., 2014;
41 Möhle et al., 2016a). Depending on the environment, infiltrating monocytes and CNS resident
42 microglia support diverse functions ranging from inducing to resolving neuroinflammation
43 (Cardona et al., 2006; Michell-Robinson et al., 2015; Shechter and Schwartz, 2013).
44 However, the details of this crosstalk in the homeostatic regulation of normal CNS function
45 remains largely elusive.

46 One hub region mediating distinct aspects of cognitive function as well as affective behavior
47 is the hippocampus (Çalışkan and Stork, 2018; Maren et al., 2013; Möhle et al., 2016b).
48 Changes in the synaptic transmission and plasticity in hippocampal circuitries have been
49 studied for decades as correlates of these functions (Citri and Malenka, 2008). Indeed,
50 abnormal hippocampal synaptic transmission or plasticity has been reported in numerous
51 neuropsychiatric, neurodegenerative and/or neurodevelopmental conditions with aberrant
52 neurocognitive functions (Annamneedi et al., 2018; Connor et al., 2011; Maggio and Segal,
53 2011; Rowan et al., 2003). Despite the convincing evidence for the importance of
54 healthy/intact gut microbiota for normal emotional and executive behavior (Bercik and
55 Collins, 2014; Desbonnet et al., 2015; Heijtz et al., 2011; Mayer, 2011; Möhle et al., 2016b;
56 Mostafa and Miller, 2014; Neufeld et al., 2011; Sarkar et al., 2020), to date, there is no direct
57 evidence for the impact of antibiotic-induced gut dysbiosis on hippocampal synaptic
58 transmission and its plasticity.

59 The hippocampus generates diverse oscillatory rhythms that represent distinct behavioral
60 and cognitive states (Buzsaki, 2004). Specifically, gamma oscillations (30-100 Hz) serve as a
61 common oscillatory mechanism not only for memory encoding/retrieval (Fell and Axmacher,
62 2011; Montgomery and Buzsaki, 2007), but also for affective behaviors such as fear and
63 anxiety (Headley and Paré, 2013). In the hippocampus, generation and sustainment of
64 gamma oscillations are strongly dependent on cholinergic level both *in vitro* and *in vivo*
65 (Caliskan et al., 2015; Fisahn et al., 1998; Vandecasteele et al., 2014). Of note, neurotrophic
66 factors such as nerve growth factor (NGF) are important regulators of cholinergic activity and
67 potentially can influence hippocampal gamma oscillations (Conner et al., 2009). In addition,
68 microglia activity and glia-associated factors such as tumor necrosis factor (TNF) and
69 inducible nitric oxide synthase (iNOS) can modulate hippocampal synaptic transmission or
70 gamma oscillations (Adaikkan and Tsai, 2020; Beattie et al., 2002; Iaccarino et al., 2016;
71 Martorell et al., 2019; Papageorgiou et al., 2016; Ta et al., 2019). On the other hand, under
72 low cholinergic tonus, hippocampal circuits generate sharp wave-ripples both *in vivo* and *in*
73 *vitro* (Buzsáki, 2015; Maier et al., 2003). These events may represent on-going plasticity in
74 hippocampal circuitries (Çalışkan and Stork, 2018) and are associated with successful
75 memory consolidation (Girardeau and Zugaro, 2011); pathological alterations in their
76 incidence have been observed in association with abnormal memory formation (Çalışkan et
77 al., 2016; Polepalli et al., 2017). To our knowledge, however, no studies have investigated
78 the impact of antibiotic-induced gut dysbiosis on these behaviourally relevant hippocampal
79 network activities to date.

80 Given the profound impact of antibiotic treatment on cognitive performance and affective
81 behavior (Desbonnet et al., 2015; Fröhlich et al., 2016b; Möhle et al., 2016b), we
82 hypothesized that antibiotic-induced gut dysbiosis might be associated with aberrant
83 changes in the hippocampal synaptic physiology and associated brain rhythms. Accordingly,
84 we elucidated several factors associated with peripheral and central immunoregulation,
85 cytokine and neurotrophin levels in the CNS, and investigated hippocampal synaptic
86 transmission as well as network oscillations upon antibiotic treatment. Our study indicates
87 that gut dysbiosis is associated with strong alterations in the peripheral and CNS immune
88 function and provides first insights into the potential impact of gut dysbiosis on hippocampal
89 synaptic transmission and behaviorally-relevant hippocampal network activities.

90

91 **2. Methods**

92 **2.1. Animals**

93 C57B/6J BomTac mice were obtained from M&B Taconic, Germany, and bred in the animal
94 facility at the Otto-von-Guericke University Magdeburg (12h light/dark cycle with lights
95 switched on at 19:00 hr with a 30 min dawn phase; food and water *ad libitum*). All
96 experiments were conducted in accordance with the European and German regulations for
97 animal experiments and were approved by the Landesverwaltungsamt Saxony-Anhalt
98 (Permission Nr. 203.h-42502-2-887 OvGMD; 203.h-42502-2-1206 UniMDOVGU).

99

100 **2.2. Antibiotic Treatment and microbiota assessment**

101 Male mice were group-housed (3 to 6 mice per cage) and treated with broad-spectrum
102 antibiotics (Abx) according to the protocol previously published (Möhle et al., 2016b). The
103 Abx compounds consisting of ampicillin plus sulbactam (1.5□g/L; Pfizer), vancomycin (500
104 mg/l; Cell Pharm), ciprofloxacin (200 mg/l; Bayer Vital), imipenem plus cilastatin (250 mg/l;
105 MSD) and metronidazole (1 g/l; Fresenius) were dissolved in 1 L autoclaved water.
106 Treatment began with an initial per oral challenge of 200 µL Abx mixture using an oral
107 gavage. Then Abx mixture was applied via the drinking water *ad libitum* and continued until
108 the end of the experiment. Drinking water was switched with fresh Abx twice a week. Mice
109 were relocated to new cages every other day to prevent recolonization from feces.

110 Fecal samples were taken to monitor antibiosis in antibiotic-treated mice. DNA from fecal
111 samples was extracted as described previously (Heimesaat et al., 2010). Briefly, DNA
112 extracts and plasmids were quantified using QuantiT PicoGreen reagent (Invitrogen) and
113 adjusted to 1 ng/µL. Main bacterial groups abundant in the murine conventional intestinal
114 microbiota were assessed by quantitative RT-PCR with group-specific 16S rRNA gene
115 primers (Tib MolBiol) (Rausch et al., 2013). The number of 16S rRNA gene copies per ng
116 DNA of each sample was determined and frequencies of respective bacterial groups
117 calculated proportionally to the eubacteria amplicon.

118

119 **2.3. Immunology methods**

120 **2.3.1 Cell Isolation**

121 Blood immune cells from mice were collected from the vena cava and prepared as previously
122 described (Biswas et al., 2015). Mice were deeply anaesthetized by isoflurane inhalation (CP
123 Pharma) and intracardially perfused with 60 mL sterile phosphate-buffered saline (PBS) prior
124 to organ extraction. To isolate bone marrow cells, the femur and tibia were isolated and

125 surrounding tissue was removed. The bone ends were removed, the bone marrow cells were
126 washed out with FACS buffer using a syringe and a 26 \times G needle and sieved through a 40
127 μ m strainer. Brains were homogenized in a buffer containing HBSS (Gibco), 1M HEPES (pH
128 7.3, Thermo Fisher) and 45% glucose before sieving through a 70 μ m cell strainer. The
129 homogenate was fractioned on a discontinuous 30-70 % Percoll gradient (GE Healthcare).
130 Immune cells were collected from the 30/70 % Percoll interphase, washed in PBS and
131 stained for flow cytometric analysis.

132

133 **2.3.2 Flow cytometry**

134 Flow cytometry stainings were performed as previously described (Düsedau et al., 2019).
135 Single Cell suspensions were incubated with an anti-Fc γ III/II receptor antibody (clone 93,
136 eBioscience) to block unspecific binding and Zombie NIRTM (Biolegend), a fixable viability
137 dye. Thereafter, cells were stained with fluorochrome-conjugated antibodies against cell
138 surface markers: CD45 (30-F11), CD11b (M1/70), Ly6C (HK1.4), CD40 (HM-40-3), F4/80
139 (BM8), Ly6G (1A8) and MHCII (M5/114.15.2) all purchased from BioLegend; CD40 (HM-40-
140 3) purchased from eBioscience in FACS buffer at 4 $^{\circ}$ C for 30 \times min. Matched FMO controls
141 were used to assess the level of background fluorescence in the respective detection
142 channel.

143 To measure cytokine production, intracellular staining was performed as previously
144 described (Düsedau et al., 2019). Cells were incubated with an anti-Fc γ III/II receptor
145 antibody and Zombie NIRTM (Biolegend). Then surface staining was performed on the cells
146 with antibodies against CD45 (30-F11), CD11b (M1/70), Ly6C (HK1.4) and Ly6G (1A8) in
147 FACS buffer. Cells were then fixed in 4% paraformaldehyde and permeabilized using
148 Permeabilization buffer (Biolegend). Intracellular proteins were stained with antibodies
149 against TNF (MP6-XT22) and IL-6 (MP5-20F3) purchased from eBioscience. Matched
150 isotype controls were used to assess the level of non-specific binding. Flow cytometric
151 analysis was performed on an Attune NxT Flow Cytometer (Thermo Fisher) and analyzed
152 with FlowJo (version 10, FlowJo LLC).

153

154 **2.3.3 RNA Isolation**

155 To isolate total RNA, samples were homogenized in BashingBeads tubes (Zymo Research)
156 and RNA was isolated using peqGOLD total RNA kit (Peqlab) according to the
157 manufacturer's instructions.

158

159 **2.3.4 RT-qPCR**

160 Gene expression was determined using the TaqMan® RNA-to-CT™ 1-Step Kit (Life
161 Technologies), as previously described (French et al., 2019; Lang et al., 2018). TaqMan®
162 Gene Expression Assays (Life Technologies) were used for mRNA amplification of *Tnf*
163 (Mm00443258_m1), *Il6* (Mm00446190_m1), *Ifny* (Mm00801778_m1), *Gfap*
164 (Mm01253033_m1), *Cx3cr1* (Mm02620111_s1), *Slc17a7* (Mm00812886_m1), *Slc1a2*
165 (Mm01275814_m1), *Gabra1* (Mm00439046_m1), *Gria1* (Mm00433753_m1), *Gria2*
166 (Mm00442822_m1), *Bdnf* (Mm04230607_s1), *Ngf* (Mm00443039_m1), *Ntf3*
167 (Mm01182924_m1), *Nox4* (Mm00479246_m1), *Cox2* (Mm00478374_m1) and *Nos2*
168 (Mm00440485_m1). Expression of *Hprt* (Mm01545399_m1) was chosen as reference, and
169 target/reference ratios were calculated with the LightCycler® 96 software version 1.1
170 (Roche). All results were further normalized to the mean of the (naive) group.

171

172 **2.4. Slice Electrophysiology**

173 Slice electrophysiology was performed as described previously (Caliskan et al., 2015;
174 Çalışkan et al., 2019). After 6 weeks of chronic antibiotic treatment, decapitation of mice and
175 brain extraction were performed under deep isoflurane anesthesia. ~400 µm thick brain
176 slices that contain ventral-to-mid hippocampus were cut in horizontal plane using an angled
177 platform (12° in the fronto-occipital direction) in ice-cold, carbogenated (5% CO₂ / 95% O₂)
178 artificial cerebrospinal fluid (aCSF) containing (in mM) 129 NaCl, 21 NaHCO₃, 3 KCl, 1.6
179 CaCl₂, 1.8 MgCl, 1.25 NaH₂PO₄ and 10 glucose (pH 7.4, ~300 mosmol / kg) with a vibrating
180 microtome (Campden Instruments; Model 752) and quickly transferred to an interface
181 chamber perfused with aCSF at 32 ± 0.5 °C (flow rate: 2.0 ± 0.2 mL / min). A minimum of one
182 hour of slice recovery was allowed before starting recordings. Field potentials (FP) were
183 recorded using borosilicate glass electrodes filled with aCSF with a resistance of ~1 MΩ. FP
184 responses were evoked with a constant current stimulator and a bipolar tungsten wire
185 stimulation electrode (exposed tips: ~20 µm; tip separations of ~75 µm; electrode resistance
186 in aCSF: ~0.1 MΩ). FP signals were pre-amplified using a custom-made amplifier and
187 low-pass filtered at 3 kHz. Signals were sampled at a frequency of 10 kHz and stored on a
188 computer hard disc for off-line analysis (Cambridge Electronic Design, Cambridge, UK).

189

190 **2.4.1. Evoked field potential recordings**

191 To obtain field excitatory postsynaptic potential (fEPSP) responses from CA (Cornu
192 Ammonis) 3-to-CA1 synapse, the recording electrode was placed at the apical dendrites of
193 area CA1 (Stratum RADIATUM: SR) and the bipolar stimulation electrode was placed on the
194 Schaffer collaterals (SC) at the proximal CA1 close to the CA2 subregion. After placing the
195 electrodes, responses were recorded for ten-to-twenty min until they were stabilized (inter-
196 stimulus interval of 30 sec and stimulation duration of 100 μ s). Then, an input-output (I-O)
197 curve was recorded using intensities ranging from 10 to 50 μ A. This was followed by paired-
198 pulse (PP) recording protocol with intervals ranging from 10 to 500 ms. After PP protocol,
199 baseline responses were recorded for another 20 min and LTP induction was commenced
200 with a train of 100 pulses (100 Hz) repeated 2 times with 20 s interval. This was followed by
201 test pulses recorded for 40 min (0.033 Hz). MATLAB-based analysis tools were used for the
202 analysis of fEPSPs (MathWorks, Natick, MA). For calculation of fEPSP slopes, the slope
203 (V/s) between the 20 and 80% of the fEPSP amplitudes were measured. We also calculated
204 an average baseline transmission rate per slice by dividing each fEPSP slope value with the
205 corresponding FV value followed by averaging these values leading to one transmission rate
206 (ms^{-1}) value per slice. Paired-pulse responses were analyzed by dividing the slope of the
207 second fEPSP to the first one. For the analysis of LTP, the data were normalized to baseline
208 responses obtained for 20 min before LTP induction.

209

210 **2.4.2. Cholinergic gamma oscillations**

211 To induce gamma oscillations, the temperature of interface chamber was set to 35°C and
212 freshly-diluted carbachol (CBh, 5 μ M) was applied via continuous bath perfusion. Fifty-to-
213 seventy min after CBh perfusion, three-to-five min recordings were obtained from pyramidal
214 layer of CA3 subregion (stratum pyramidale: SP). Custom-made spike2 scripts were used to
215 analyze gamma oscillations (Cambridge Electronic Design, Cambridge, UK). From each
216 recording 2 min artifact free data was extracted, and power spectra were generated using
217 Fast Fourier Transformation with a frequency resolution of 0.8192 Hz. Peak frequency (Hz)
218 and Integrated power (20-80 Hz; μ V²) were calculated from the power spectra. Gamma
219 recordings with peak powers lower than 40 μ V² and peak frequencies lower than 20 Hz were
220 discarded. For the autocorrelation analysis auto-correlograms were calculated from the 2 min
221 data. The value of the 2nd positive peak of auto-correlogram was used to report the gamma
222 correlation strength of local CA3 gamma oscillations.

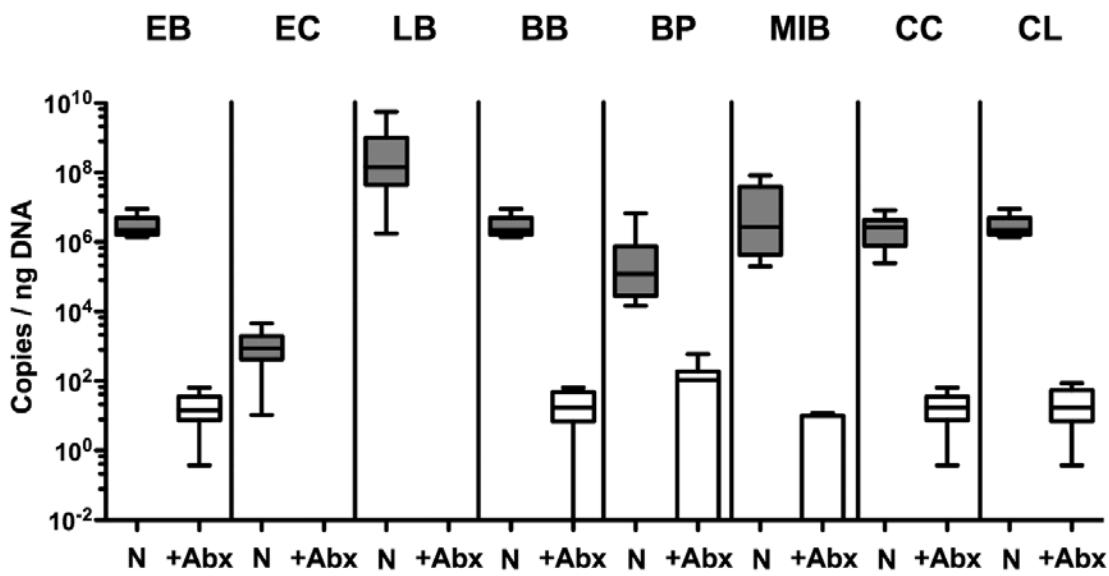
223

224 **2.4.3. Sharp Wave-Ripples**

225 Glass electrodes were placed at the SP of CA1 subregion. Data were recorded for three-to-
226 five min and two min artifact free data were extracted as MATLAB files to be further analyzed
227 using a custom written MATLAB-scripts (MathWorks, Natick, MA). For sharp wave (SW)
228 detection, the data was low-pass filtered at 45 Hz (FFT filter). The SW events were detected
229 with threshold set to 2.5 times the standard deviation (SD) of the lowpass-filtered signal. The
230 minimum interval between two subsequent SW was set to 80 ms. Data stretches of 125 ms
231 centered to the maximum of the sharp wave event were stored for further analysis. The start
232 and the end point of SW was determined by the points crossing the mean of the data. The area
233 under curve (AUC) was calculated using the low pass filtered data using these two
234 points as the start and end of the SW event. Ripples were isolated using band-pass filter at
235 120-300 Hz (FFT filter). 15 ms before and 10 ms after the maximum of SW event (25 ms)
236 were stored for further analysis of the ripples. The ripple events were detected with threshold
237 set to 3 times the SD of the bandpass-filtered signal. Ripple amplitude was analyzed using
238 triple-point-minimax-determination. Only ripples with lower than 75% difference between
239 falling and rising component were included in the analysis. The time between the through of
240 subsequent ripples were used for calculation of ripple frequencies.

241

242 **2.5. Statistical analysis**


243 Electrophysiological data were statistically analyzed using SigmaPlot for Windows Version
244 11.0 (Systat software). Before statistical comparison of different groups, normality test
245 (Shapiro-Wilk Test) and equal variance test were performed. I-O and PP curves were
246 statistically compared using two-way repeated measures ANOVA. For comparison of
247 baseline transmission rate per slice Student's two-tailed t-test was used. For LTP data,
248 normalized data obtained 30-40 min after LTP induction was used for statistical comparison
249 with Mann-Whitney U test. For hippocampal network oscillations, statistical differences were
250 determined by Student's two-tailed t-test or Mann-Whitney U test. For the statistical
251 comparison of gamma power, log transformed data was used. Data from RT-qPCR, flow
252 cytometry cell populations and cell activation were analyzed by Mann-Whitney U test. All
253 Mann-Whitney U tests were two tailed. Probability values of $p < 0.05$ were considered as
254 statistically significant. Sample sizes are provided in figure captions (N: Number of mice; n:
255 Number of slices).

256

257 **3. Results**

258 **3.1. Microbiota depletion upon antibiotic treatment**

259 Adult mice were treated with a broad-spectrum antibiotic cocktail for 4 weeks. This antibiotic
260 cocktail has been shown to effectively deplete the intestinal microbiota (Möhle et al., 2016b).
261 To confirm the eradication of the commensal gut bacterial species, the feces from mice with
262 and without antibiotic treatment (+Abx vs. naïve, respectively) were collected and analyzed
263 by 16S rRNA sequencing. As expected, broad-spectrum antibiotic treatment led to an
264 elimination of the most abundant gut bacterial groups, genera and species (Fig. 1). Of note,
265 all fecal samples derived from gut microbiota of Abx-treated mice were culture-negative for
266 aerobic, microaerophilic and obligate anaerobic bacteria applying both, solid and enrichment
267 media (data not shown).

268

269 **Fig. 1. Microbiota depletion upon antibiotic treatment.**

270 The gut microbiota composition was quantitatively assessed in fecal samples derived from mice that
271 had been subjected to broad-spectrum antibiotic treatment (+Abx; white boxes, n=10) and from
272 untreated naïve counterparts (N; grey boxes n=10) applying quantitative 16S rRNA-based bacterial
273 real-time PCR amplifying variable regions of the following bacterial groups (expressed as copies per
274 ng DNA): EB, enterobacteria; EC, enterococci; LB, lactobacilli; BB, bifidobacteria; BP,
275 Bacteroides/Prevotella species; MIB, Mouse Intestinal Bacteroides; CC, Clostridium coccoides group;
276 CL, Clostridium leptum group. Box plots represent the 75th and 25th percentiles of the medians (black
277 bar within box).


278

279

280 **3.2. Reduced frequency of circulating Ly6C^{hi} monocytes and increased immune
281 activation upon antibiotic treatment**

282 Circulating Ly6C^{hi} monocytes exhibit a multifaceted set of functions for the host that have
283 been shown to be beneficial, such as transforming into and replenishing tissue resident DCs
284 or macrophages, or detrimental by exacerbating immunopathology (Cryan and Dinan, 2015;
285 Möhle et al., 2016b; Shi and Pamer, 2011). Thus, we aimed to examine the effect of broad-
286 spectrum Abx treatment on the pool of Ly6C^{hi} monocytes in bone marrow, blood and brain by
287 flow cytometry. Monocytes were distinguished from neutrophils via the surface markers
288 CD11b, Ly6C and Ly6G and from microglia by expression of CD45. Monocytes were gated
289 as CD45^{hi}CD11b⁺Ly6C⁺Ly6G⁻ (Fig. 2A, 2C, 2G). Gating of immune cell subsets in the brain
290 that distinguishes recruited myeloid cells from microglia is shown in Fig. 3C. We observed
291 that Abx treatment led to a significant reduction in the frequency of Ly6C^{hi} cells in bone
292 marrow (Fig. 2B; Mann-Whitney U test; p=0.0079), circulating in the blood (Fig. 2D; Mann-
293 Whitney U test; p=0.008) and those infiltrating the brain (Fig. 2H; Mann-Whitney U test;
294 p=0.0079). To investigate if Abx treatment was altering the activation status of the circulating
295 monocytes, we analyzed their expression of MHC II and CD40, markers associated with
296 classically activated M1 immune cells and upregulated upon TLR engagement (Andrade et
297 al., 2005; Sica and Mantovani, 2012). We detected a significant increase in the expression of
298 both MHC II and CD40 in blood Ly6C^{hi} monocytes (Fig 2E-F; Mann-Whitney U test; MHC II,
299 p=0.016; CD40, p=0.016) and increase of CD40 on those infiltrating the brain (Fig 2I-J;
300 Mann-Whitney U test; MHC II, p=0.52; CD40, p=0.021) upon Abx treatment. These results
301 highlight that prolonged Abx treatment associates with a global reduction of the available
302 Ly6C^{hi} monocyte pool and shift towards an activated phenotype. However, MHC II
303 expression remains unaltered when the CNS is infiltrated, suggesting there might be a
304 certain amount of translocation of the remaining gut microbes which promote inflammation
305 locally. We observed an enlarged and inflamed cecum in Abx-treated animals which is
306 comparable to other Abx treatment studies in mice (Ge et al., 2017; Sun et al., 2021). Since
307 the spleen is a primary filter of blood-borne pathogens and antigens and serves as detector
308 of systemic inflammation (Altamura et al., 2001; Cobb et al., 2002), we analyzed the gene
309 expression of TNF and IL-6. Gene expression analysis revealed that Abx treatment led to an
310 increase of both TNF and IL-6 expression compared to naïve animals (Fig 2K; Mann-Whitney
311 U test; TNF, p=0.002; IL-6, p=0.028). These data indicate that microbiota are necessary to
312 maintain the steady-state myeloid populations.

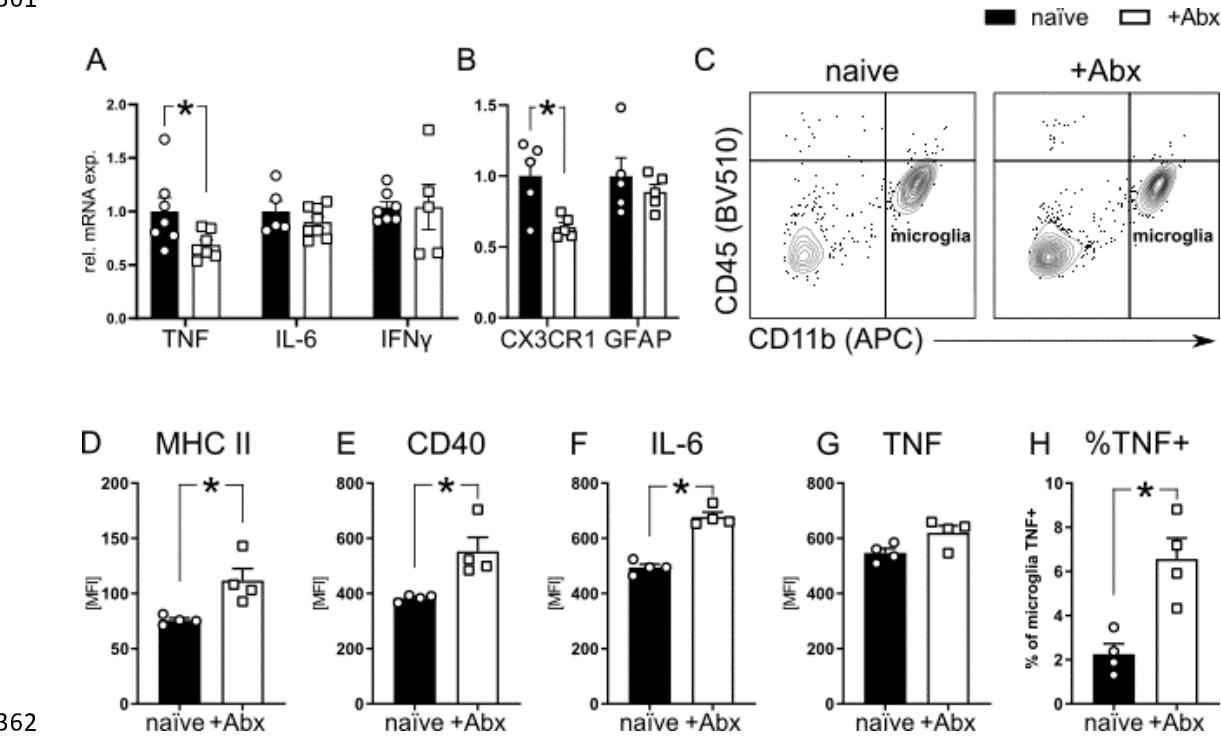
313

314
315 **Fig. 2. Reduced frequency of Ly6C^{hi} monocytes and increased immune activation upon**
316 **antibiotic treatment**

317 Immune cells from bone marrow, blood and brain were isolated from naïve (N=5 mice) and Abx-
318 treated (+Abx; N=5 mice) mice and analyzed by flow cytometry. (A, C, G) Representative Ly6C^{hi}
319 monocyte gating strategies for bone marrow, blood and brain. Events were gated on singlets and cells
320 were excluded based on forward and side scatter (FSC/SSC) and viability staining (dead cells).
321 Ly6C^{hi} monocytes were defined as CD11b⁺Ly6G⁻Ly6C^{hi} (bone marrow, blood) or CD45+CD11b+Ly6G-
322 Ly6Chi (brain, to exclude CD45lowCD11b+ microglia). (B, D, H) The frequency of Ly6C^{hi} monocytes is
323 presented as the percentage of living single cells. (E, F, I, J) The surface expression of MHC II and
324 CD40 was determined on Ly6Chi monocytes in naïve and Abx-treated mice by flow cytometric
325 analysis and presented as median fluorescence intensity (MFI). Spleens were collected from naïve
326 (N=6) and Abx-treated (N=6) mice and were homogenized. (K) Relative mRNA levels were normalized
327 to the mean expression of the naïve control group. Symbols represent individual animals. Data is
328 representative of three independent experiments presented as mean + SEM.

329

330 **3.3. Antibiotic treatment reduces CX3CR1 expression and increases activation of**
331 **resident microglia**


332 Microglia and recruited myeloid cells are vital for sustaining tissue homeostasis in the CNS
333 (Shechter and Schwartz, 2013). Given the observed reduction of circulating Ly6C^{hi}
334 monocytes and increased splenic TNF and IL-6 expression, we decided to first assess if Abx

335 treatment was also altering the gene expression of proinflammatory markers TNF, IL-6 and
336 IFNy in whole brain homogenates of naïve and Abx-treated mice. In contrast to the
337 periphery, we detected a decrease of TNF gene expression and no difference in IL-6 or IFNy
338 gene expression (Fig. 3A; Mann-Whitney U test; TNF, p=0.02; IL-6, p=0.35; IFNy, p=0.99) in
339 Abx-treated mice. TNF is primarily synthesized by glial cells in the brain (McCoy and Tansey,
340 2008). To determine if a particular resident glia cell type is altered upon Abx treatment, we
341 measured the gene expression of glial activation markers GFAP (astrocytes) and CX3CR1
342 (microglia) (Li et al., 2020; Wolf et al., 2013). Following antibiotic treatment, GFAP
343 expression was unchanged whereas expression of CX3CR1 was reduced (Fig. 3B, Mann-
344 Whitney U test; CX3CR1, p=0.03; GFAP, p=0.8), indicating that microglia in particular, are
345 influenced by Abx treatment.

346 CX3CL1 is mainly secreted by neurons and induces neuroprotective effects via interaction
347 with its receptor CX3CR1 on microglia (Nash et al., 2015). CX3CL1 thereby downregulates
348 the production of proinflammatory mediators such as TNF, NO and superoxides. Based on
349 the observed reduction in CX3CR1, we next examined the activation status of resident
350 microglia (CD11b⁺CD45^{int} cells) via flow cytometry, using MHC II and CD40 as phenotypic
351 markers (Fig. 3C). Upon Abx treatment, expression of MHC II (Fig. 3D; Mann-Whitney U test;
352 p=0.028) and CD40 (Fig. 3E; Mann-Whitney U test; p=0.020) significantly increased. To
353 further investigate the level of microglia activation, cytokine production was assessed. Here,
354 microglia of Abx-treated mice showed a significantly higher IL-6 expression (Fig. 3F; Mann-
355 Whitney U test; p=0.026) compared to naïve mice whereas TNF production remained
356 unchanged (Fig 3G; Mann-Whitney U test; p=0.11). However, there were significantly more
357 microglia producing TNF in Abx-treated mice compared to naïve (Fig. 3H; Mann-Whitney U
358 test; p=0.028). These data imply that the gut microbiome plays an important role in
359 modulating and maintaining microglial function.

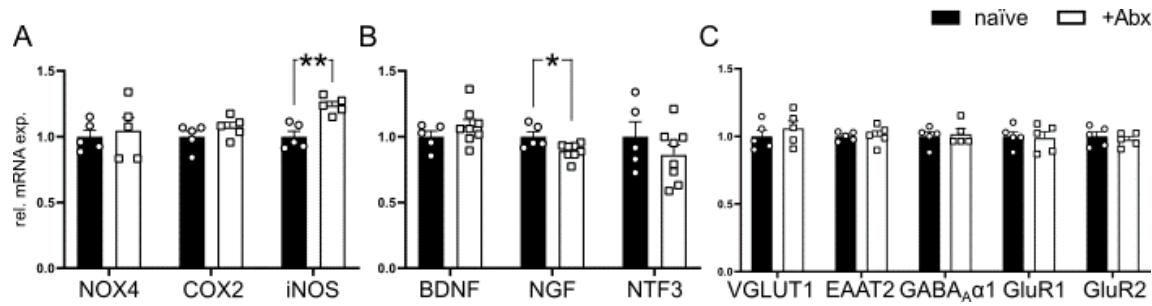
360

361

362

Fig. 3. Increased activation of microglia upon antibiotic treatment

364 *Relative expression of mRNA levels of (A) proinflammatory and (B) glial genes in naïve (N=5-7) and*
365 *Abx-treated (N=5-8). Relative mRNA levels were normalized to the mean of the naïve control group.*
366 *(C-H) Immune cells from brains of naïve (N=4) and Abx-treated (N=4) were isolated and analyzed by*
367 *flow cytometry. (C) Representative gating strategy of brain immune cells. Events were gated on*
368 *singlets and cells were excluded based on forward and side scatter (FSC/SSC) and viability staining*
369 *(dead cells). CD11b⁺CD45^{int} cells were defined as microglia. The surface expression of (D) MHC II,*
370 *(E) CD40 and intracellular production of (F) IL-6 and (G) TNF by microglia were quantified and*
371 *presented as MFI of their respective fluorochrome. (H) The percentage of microglia that are positively*
372 *producing TNF. RNA was isolated from whole brain homogenate of naïve and Abx-treated (+Abx)*
373 *mice for RT-qPCR analysis. Symbols represent individual animals. Data is representative of three*
374 *independent experiments and presented as mean + SEM.*


375

376 **3.4. Enhanced iNOS expression and reduced NGF upon antibiotic treatment**

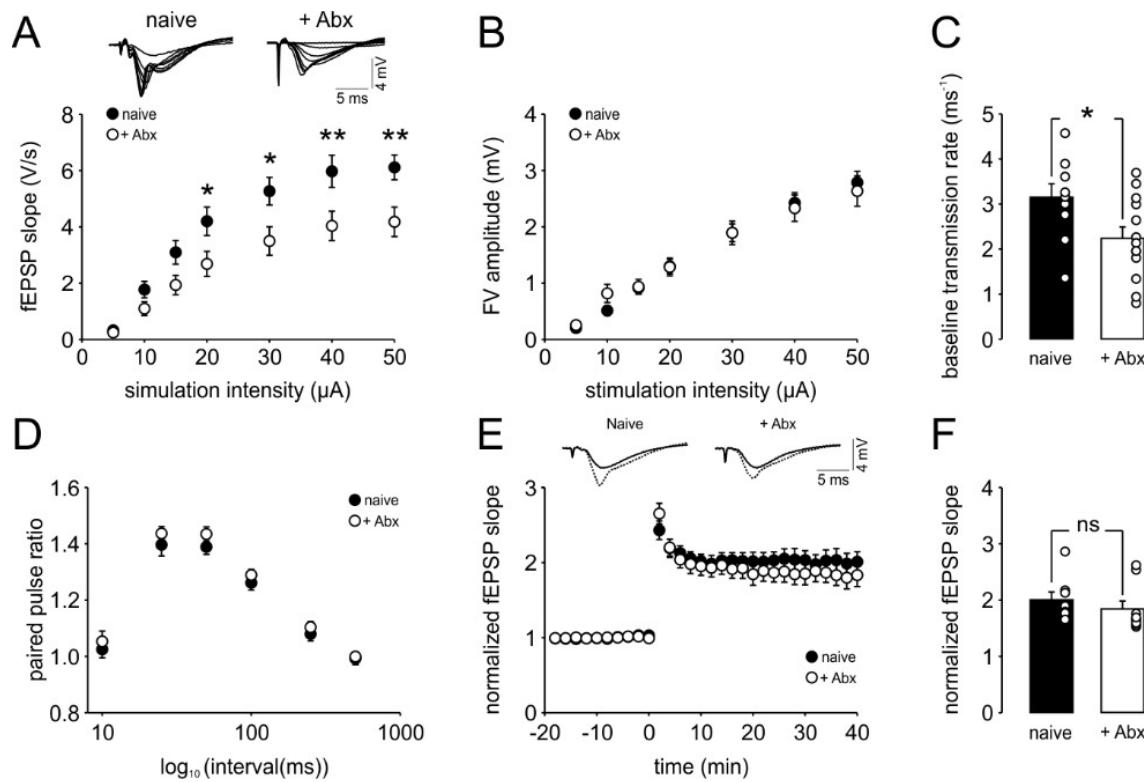
377 Microglia are known to upregulate reactive oxygen species (ROS) and reactive nitrogen
378 species (RNS) when activated (Mander and Brown, 2005; Ta et al., 2019). In excessive
379 quantities, ROS can lead to axonal and neuronal loss, for example, in neurodegenerative
380 diseases (Barbeito et al., 2004; Okuno et al., 2005). To investigate if Abx treatment leads to
381 alterations in the gene expression of RNS or ROS producing enzymes, we measured the
382 gene expression of NADPH-Oxidase (*Nox4*), cyclooxygenase 2 (*Cox2*) and inducible nitric
383 oxide synthase (*iNOS*; *Nos2*), two superoxide and NO producers affiliated with microglial

384 function (Dugan et al., 2009; Ta et al., 2019) via RT-qPCR analysis. Upon Abx treatment, no
385 change was detected in *Nox4* or *Cox2* gene expression whereas *Nos2* expression was
386 significantly increased (Fig. 4A; Mann-Whitney U test; *Nox4*, $p=0.99$; *Cox2*, $p=0.27$; *iNOS*,
387 $p=0.0079$). Upregulation of *iNOS* along with microglia activation has been linked to
388 disturbances in fast neuronal network oscillations underlying perception, attention and
389 memory (Ta et al., 2019). Moreover, we previously demonstrated (Möhle et al., 2016b) that
390 the same antibiotic cocktail disrupts learning and memory. Thus, we hypothesized that Abx
391 treatment may lead to dysregulation of crucial neurotrophins, and proteins involved in
392 synaptic homeostasis. To determine if Abx treatment led to changes in expression of
393 neurotrophins, we measured the mRNA levels of brain-derived neurotrophic factor (BDNF),
394 nerve growth factor (NGF) and neurotrophin-3 (NTF3). There were no gene expression
395 changes observed in BDNF or NTF3 between the groups whereas NGF gene expression
396 was diminished in Abx-treated brains (Fig. 4B; Mann-Whitney U test; *Bdnf*, $p=0.41$; *Ngf*,
397 $p=0.042$, *Ntf3*, $p=0.52$). To explore whether microglial activation and increased *Nos2*
398 expression result in changes to excitatory or inhibitory signal transduction, expression levels
399 of receptors and transporters involved in glutamatergic (Glur1/2, VGLUT1, EAAT2) and
400 GABAergic signaling ($\text{GABA}_{\text{A}}\alpha 1$) were determined. When looking at the gene expression for
401 all synaptic markers, we observed no change in expression after Abx treatment (Fig. 4C;
402 Mann-Whitney U test; $p>0.8$ for all).

403

404

Fig. 4. Increased *iNOS* and decreased *NGF* gene expression upon antibiotic treatment


405 RNA was isolated from whole brain homogenate of naïve and Abx-treated (+Abx) mice for RT-qPCR
406 analysis. Relative expression of mRNA levels of (A) reactive species, (B) neurotrophins and (C)
407 synaptic genes in naïve (N=5) and +Abx (5-8) mice. Relative mRNA levels were normalized to the
408 mean of the naïve control group. Symbols represent individual animals. Data is representative of three
409 independent experiments. Data is presented as mean + SEM.

411

412 3.5. Reduced hippocampal synaptic transmission upon antibiotic treatment

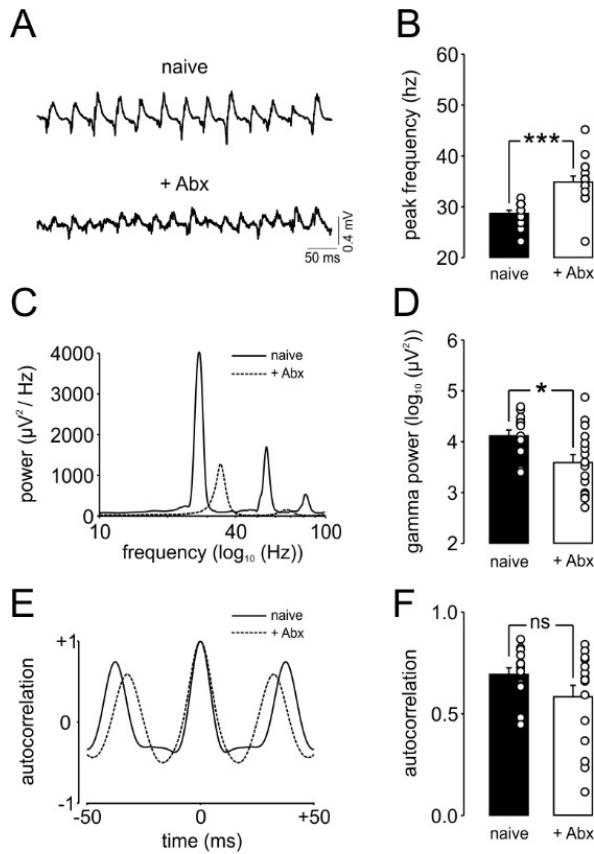
413 Due to the well-established role of cytokines and neurotrophins in sustaining synaptic
414 transmission and plasticity (Albenisi and Mattson, 2000; Beattie et al., 2002; Conner et al.,
415 2009; Curran and O'Connor, 2003; Hoshino et al., 2017; Leal et al., 2017), we assessed the
416 changes in synaptic physiology at the hippocampal CA3-to-CA1 synapse upon chronic Abx
417 treatment. We observed a profound decrease in the baseline transmission evident by lower
418 dendritic fEPSP responses to increasing stimulation strengths (Fig. 5A). We detected a
419 strong stimulation intensity x fEPSP slope interaction (Two-way repeated measures ANOVA;
420 $F(6, 27) = 4.569$, $p < 0.001$) with significant reduction at 20 μ A to 50 μ A stimulus intensities
421 (Fisher's LSD post hoc comparison; 20 μ A: $p = 0.25$; 30 μ A: $p = 0.012$; 40 μ A: $p = 0.008$; 50
422 μ A: $p = 0.008$). On the other hand, we observed no Abx treatment effect (Fig. 5B; Two-way
423 repeated measures ANOVA; $F(1, 21) = 4.569$, $p < 0.001$) for the presynaptic fiber volley (FV)
424 amplitudes suggesting a potential Abx-induced alteration restricted to the postsynaptic part.
425 Comparison of average baseline transmission rates per slice (see methods), also showed a
426 reduced baseline transmission rate (Fig. 5C; Student's two-tailed t-test; $T(21) = 2,156$, $p =$
427 0.043) suggesting a reduced efficacy of synaptic transmission at this hippocampal synapse.
428 Assessment of short-term plasticity via paired-pulse protocol revealed no statistical
429 differences after Abx treatment (Fig. 5D; Two-way repeated measures ANOVA; $F(1, 27) =$
430 1.378, $p < 0.251$). Last, we assessed long-term potentiation with a HFS protocol (see
431 methods). Both control and Abx-treated mice showed a strong potentiation which stayed
432 stable up to 40 min after HFS (Fig. 5E). Comparison of normalized fEPSP slope values 30-
433 40 min after HFS showed no effect of Abx treatment (Fig. 5F; Mann-Whitney U test; $p =$
434 0.075). These data suggest that chronic Abx treatment results in a profound decrease in the
435 baseline synaptic transmission at the hippocampal CA3-CA1 synapse without altering
436 synaptic plasticity.

437

438

439 **Fig 5. Reduced baseline transmission at the Schaffer collateral (SC)-CA1 synapse after chronic**
440 **antibiotic treatment (+Abx).** (A) Input-output curve showing reduced CA1 field excitatory

441 **postsynaptic potentials (fEPSP) in +Abx mice (N=5 mice, n=13 slices) in comparison to naive mice**
442 **(N=3 mice, n=10 slices). (B) Input-output curve showing unaltered presynaptic fiber volley amplitudes**
443 **in +Abx mice (N=5 mice, n=19 slices) in comparison to naive mice (N=3 mice, n=10 slices). (C)**
444 **Summary graph illustrating a reduced baseline transmission rate (averaged fEPSP slope / FV**
445 **amplitude values per slice) at the SC-CA1 synapse after Abx treatment (Naive mice: N=3 mice, n=10**
446 **slices; +Abx mice: N=5 mice, n=13 slices). (D) Short-term plasticity is not altered in +Abx mice evident**
447 **by the unchanged paired pulse ratios (Naive mice: N=3 mice, n=10 slices; +Abx mice N=5 mice, n=19**
448 **slices). (E) Increase in the fEPSP responses upon high frequency stimulation (HFS) of the SC in the**
449 **+Abx mice are comparable to the control mice indicating no change in long-term plasticity (LTP). (F)**
450 **Analysis of normalized fEPSP values obtained during 30-40 min after HFS reveal no significant**
451 **alteration between the naive (N=4 mice, n=8 slices) and +Abx (N=5 mice, n=9 slices) mice. Data are**
452 **presented as mean ± SEM.**


453

454 3.6. Reduced hippocampal gamma oscillations upon antibiotic treatment

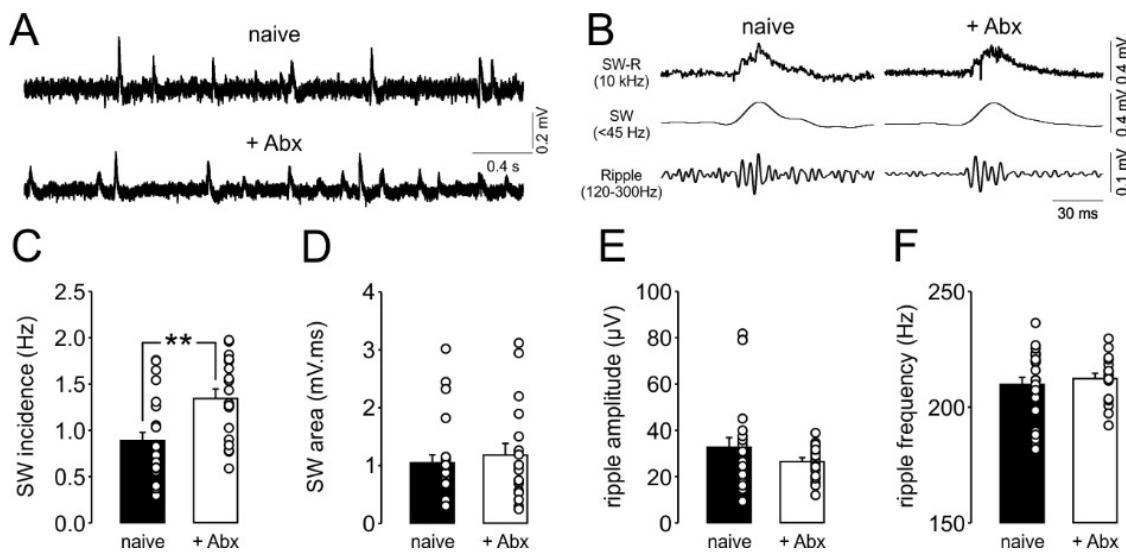
455 In order to assess the impact of the reduced hippocampal synaptic transmission on
456 behaviorally-relevant activities in the hippocampus, first, we recorded cholinergic gamma
457 oscillations in the CA3 subregion. Gamma oscillations appeared after ten-to-fifteen min and
458 stabilized after 50 min after CBh perfusion (Fig. 6A). Analysis of the power spectra revealed
459 a shift in the peak frequency of gamma oscillations (Fig. 6B-C; Mann-Whitney U test; p <

460 0.001) and strong reduction in the gamma power (Fig. 6C-D; Student's two-tailed t-test; $T(28)$
461 = 2.591, $p = 0.015$). Next, we measured local synchronization of gamma oscillations and
462 found no significant change in the gamma correlation upon Abx treatment (Fig. 6E-F; Mann-
463 Whitney U test; $p = 0.271$). Overall, gamma oscillations appear to be reduced in power upon
464 chronic Abx treatment.

465

466

467 **Fig 6. Reduced hippocampal cholinergic gamma oscillations after chronic antibiotic treatment.**
468 **(A)** Representative carbachol (CB_h, 5 μ M) induced local field potential (LFP) traces from hippocampal
469 CA3 of +Abx ($N=5$ mice, $n=16$ slices for all parameters) and naive ($N=4$ mice, $n=14$ slices for all
470 parameters) mice. **(B)** Summary graph illustrating an increased gamma peak frequency in +Abx mice.
471 **(C)** Representative power spectra illustrating a shift in the main gamma peak frequency and a
472 reduction in gamma-range oscillation power in the hippocampal CA3 of +Abx mice. **(D)** Summary
473 graph illustrating an increased gamma power (20-80 Hz) in the hippocampal CA3 of +Abx mice.
474 Representative auto-correlograms of CA3 LFP gamma oscillations. **(E)** Representative auto-
475 correlograms illustrating a shift in the 2nd positive peak indicating a reduced duration of gamma cycles,
476 thus, increased gamma peak frequency, in +Abx mice **(F)** Summary graph showing no significant
477 change in the amplitude of the 2nd peak of the gamma auto-correlograms of +Abx mice in comparison
478 to naive mice. Data are presented as mean \pm SEM.


479

480

481 **3.7. Increased incidence of sharp waves upon antibiotic treatment**

482 Horizontal or transverse-like slices obtained from the ventral-to-mid portion of the
483 hippocampus generates spontaneous sharp wave-ripple (SW-R) activity (Caliskan et al.,
484 2015; Çalışkan et al., 2016; Maier et al., 2003). Both *in vivo* and *in vitro*, these events have
485 been associated with emotional and spatial memory consolidation (Çalışkan et al., 2016;
486 Girardeau et al., 2017, 2009). Thus, we assessed the effect of chronic Abx treatment on
487 spontaneous SW-R activity in the CA1 subregion (Fig. 7A-B). We found a specific increase in
488 the incidence of SW (Fig. 7C; Student's two-tailed t-test; $T(40) = -3.291$, $p = 0.002$) without
489 any alterations in the SW area (Fig. 7D; Mann-Whitney U test; $p = 0.712$), ripple amplitude
490 (Fig. 7E; Mann-Whitney U test; $p = 0.585$) or ripple frequency (Fig. 7F; Mann-Whitney U test;
491 $p = 0.829$).

492

493
494 **Fig 7. Increased incidence of sharp wave-ripples in the CA1 subregion of the hippocampus**
495 **after chronic antibiotic treatment.** (A) Representative LFP traces showing an increased number of
496 sharp wave-ripples (SW-R) in the CA1 of +Abx ($N=5$ mice, $n=18$ slices for all parameters) in
497 comparison to -Abx mice ($N=7$ mice, $n=24$ slices for all parameters). (B) Representative LFP traces of
498 single SW-R, low-pass filtered SW (<45 Hz) and band-pass filtered ripples (120-300 Hz). Summary
499 graphs showing (C) an increased CA1 SW incidence and no change in (D) SW area, (E) ripple
500 amplitude and (F) ripple frequency upon chronic antibiotic treatment. Data are presented as mean \pm
501 SEM.

502

503 **4. Discussion**

504 In the current study, we demonstrate that alterations in homeostatic immunoregulation
505 induced by gut dysbiosis is associated with impaired synaptic transmission and behaviorally-
506 relevant brain rhythms in the hippocampus. We show that a four-week antibiotic treatment
507 leads to a virtual depletion of the gut microbiota and substantial reduction in the circulating
508 Ly6C^{hi} monocyte pool and decreased infiltration into the central nervous system (CNS). The
509 reduced recruitment of peripheral cells was accompanied by increased activation of resident
510 microglia with increased iNOS expression and reduced levels of the neurotrophin NGF and
511 TNF. In line with the role of cytokines and neurotrophins in the maintenance of synaptic
512 transmission, we observed a profound reduction of hippocampal CA3-to-CA1 synaptic
513 transmission and cholinergic gamma oscillations. Thus, our study provides further insights
514 into the interaction between gut microbiota and the CNS which is mediated by the immune
515 system.

516 We have previously highlighted the role of circulating Ly6C^{hi} monocytes in gut-brain
517 communication and their contribution to the recovery of Abx-induced impairment of
518 hippocampal neurogenesis and cognitive function in mice (Möhle et al., 2016b). In the
519 present study, we further investigated the consequences of the alterations in the circulating
520 Ly6C^{hi} monocyte pool upon Abx-induced dysbiosis of the gut microbiota. We provide
521 evidence for a shift towards an activated state of Ly6C^{hi} monocyte via enhanced expression
522 of MHC II and CD40 (Fig. 2). A possible explanation for this observation could be an
523 enhanced commensal translocation across intestinal epithelium and subsequent promotion
524 of inflammation as we did observe enhanced proinflammatory gene expression of TNF and
525 IL-6. This aligns with previous studies that described increased IL-17 and IFNy after Abx-
526 induced bacterial translocation or enhanced IL-6 and TNF in response to local bacterial
527 infection in the spleen (Knoop et al., 2016; Straub et al., 2000).

528 Peripheral inflammation is associated with altered proinflammatory cytokine levels and circuit
529 excitability in the brain (Galic et al., 2012). To gain insights into the potential regulation of
530 proinflammatory cytokines in the CNS upon Abx treatment, we assessed the expression
531 levels of TNF, IL-6 and IFNy in whole brain homogenates (Fig. 3). Surprisingly, we found a
532 moderate reduction in the TNF expression. In the brain, TNF is primarily synthesized in non-
533 neuronal cell populations, including microglia and astrocytes (McCoy and Tansey, 2008). In
534 contrast to the reduced TNF expression, we found a reduction in microglia-specific CX3CR1
535 expression, whereas we did not observe an altered GFAP expression (Fig. 4). Furthermore,
536 we detected increases in markers that would suggest an activated microglial phenotype.
537 Given the global reduction of TNF in the brain and the only basal infiltration of peripheral
538 immune cells, it is likely that the observed increase in the percentage of TNF-producing

539 microglia has only minimal influence on higher brain functions. While TNF has
540 neuromodulatory effects by influencing neurotrophin production at low concentrations (Perry
541 et al., 2002), high TNF concentrations are linked to neurotoxicity (Probert, 2015). Thus,
542 prolonged Abx treatment could presumably increase TNF levels and result in detrimental
543 effects. In line with the concept, a reduction in CX3CR1 expression or reduced interaction
544 with its ligand CX3CL1 is associated with increased microglia activation and overproduction
545 of pro-inflammatory cytokines (Cardona et al., 2006; Lyons et al., 2009; Rogers et al., 2011).
546 Moreover, CX3CR1^{-/-} mice show deficits in hippocampal synaptic physiology and reduced
547 coherence of distinct LFP network activities, including gamma oscillations (Rogers et al.,
548 2011; Zhan et al., 2014). These observations are consistent with the involvement of activated
549 microglia as mediators of reduced hippocampal synaptic transmission and gamma oscillatory
550 activity after prolonged Abx treatment.

551 Reduced glial TNF production and subsequent signaling in neurons leads to impairment of
552 excitatory synaptic transmission and synaptic scaling via regulation of surface AMPA-R
553 levels (Beattie et al., 2002; Stellwagen and Malenka, 2006). In our experiments, Abx
554 treatment lead to reduced expression of TNF and reduced hippocampal CA1 synaptic
555 strength upon (Fig. 5), known to be dependent on intact AMPA-R function (Chater and Goda,
556 2014). However, transcriptional alterations of two main AMPAR subunits (GluR1, GluR2), the
557 astrocytic (EAAT2), vesicular glutamate transporter (VGLUT1) and inhibitory GABA receptor
558 (GABA_Aα1) which play an important role in sustaining synaptic transmission and plasticity in
559 the brain, were not detected (Fig. 4). Thus, future studies assessing the cell-surface
560 expression levels of AMPA-R in a brain-region specific manner might help in gaining more
561 mechanistic insights into the impact of Abx treatment on circuit excitability.

562 Microglia activation can lead to increased generation of reactive oxygen species (ROS) and
563 reactive nitrogen species (RNS) (Ramalingam and Kim, 2012). Their imbalanced production
564 is associated with excessive oxidative stress which can be detrimental to cellular function
565 and is commonly observed during many pathological conditions (Dröge and Schipper, 2007;
566 Okuno et al., 2005; Sesti et al., 2010). Of note, cholinergic gamma oscillations appear to
567 require high levels of mitochondrial activity and use high levels of oxidative capacity (Kann et
568 al., 2011). These features make gamma oscillations especially vulnerable to oxidative stress
569 (Hasam-Henderson et al., 2018). While gene expression levels of ROS producing enzymes
570 NADPH-oxidase (*Nox4*) or Cyclooxygenase 2 (*Cox2*) were not altered, we measured a
571 significant increase in the expression of iNOS (*Nos2*) (Fig. 4). This finding is particularly
572 interesting in the light of the recent reports demonstrating that iNOS-mediated NO release
573 can modulate cholinergic hippocampal gamma oscillations *in vitro* (Papageorgiou et al.,
574 2016; Ta et al., 2019) and open a new perspective for synergistic interactions between

575 microglia/microglia-associated factors and sustainment of gamma oscillations in the context
576 of disease pathology (Adaikkan and Tsai, 2020; Iaccarino et al., 2016; Martorell et al., 2019).
577 Future studies investigating specific microglial factors and their relation to intrinsic oscillatory
578 brain activities in a brain-region specific manner will further help to understand the impact of
579 long-term Abx treatment on distinct brain functions.

580 Gut dysbiosis can have major impacts on CNS function that results in altered cognitive
581 function, mood and behavior (Irwin and Miller, 2007; Mayer, 2011; Sarkar et al., 2018).
582 Converging evidence from our previous studies and by other groups indicate that Abx
583 treatment leads to a distinct alteration memory, as evidenced by the novel object recognition
584 test (Desbonnet et al., 2015; Fröhlich et al., 2016b; Möhle et al., 2016b; Sarkar et al., 2020).
585 In addition to the previously described reduced hippocampal neurogenesis as a correlate of
586 this memory deficit (Möhle et al., 2016b), now, we found a strong reduction in CBh-induced
587 cholinergic gamma oscillations in the hippocampus upon Abx treatment (Fig. 6). In
588 accordance, increase in CA3 gamma power and gamma coherence along the hippocampal
589 CA3-CA1 axis appears to be critical for novel object recognition/exploration (Trimper et al.,
590 2014). Furthermore, deficit in object place recognition task in an Alzheimer's mouse model
591 can be rescued by optogenetic gamma stimulation (Etter et al., 2019). Thus, an insufficient
592 CA3 gamma power might underlie the deficit in this hippocampus-dependent memory. In
593 support of this argument, we describe a mild but significant reduction in, which is known to
594 positively regulate the cholinergic activity in the hippocampus (Conner et al., 2009).
595 Furthermore, a recent study (Sarkar et al., 2020) provides evidence for a substantial
596 elevation in brain ACh esterase levels upon Abx treatment. Such an increase in the ACh
597 esterase might reduce extracellular ACh concentration and potentially diminish cholinergic
598 gamma oscillations (Hollnagel et al., 2015). Interestingly, chronic Abx treatment leads to an
599 aberrant sleep/awake architecture and a mild reduction in theta power during sleep
600 suggesting a potential reduction of co-occurring gamma oscillations *in vivo* (Ogawa et al.,
601 2020). Thus, we propose that, upon Abx treatment, a potential decline in the cholinergic
602 tonus associated with reduced levels of NGF might contribute to the impairment of
603 cholinergic gamma oscillations.

604 The duration of Abx-administration appears to be critical for determining the impact of gut
605 dysbiosis on emotional behavior. While relatively short periods of Abx treatment (~1 w) had
606 no apparent effects on innate anxiety (Fröhlich et al., 2016b), longer Abx treatment (~7 w)
607 (Desbonnet et al., 2015) from weaning on reduced anxiety-like behavior in mice. Similarly,
608 germ-free mice show also reduced anxiety-like behavior (Heijtz et al., 2011; Neufeld et al.,
609 2011) resembling the behavioral alterations observed with longer periods of Abx treatment.
610 Our electrophysiological recordings were obtained from slices obtained from the ventral-to-

611 mid hippocampus. The ventral sector of the hippocampus has been implicated in mediating
612 anxiety (Fanselow and Dong, 2010) and its lesion leads to reduced innate anxiety (Kjelstrup
613 et al., 2002). Thus, a reduced baseline transmission and diminished gamma oscillations in
614 the ventral hippocampus align well with a reduced anxiety and might be involved in the
615 anxiolytic effects reported for long-term Abx treatment.

616 In addition to gamma oscillations, sharp wave-ripples (SW-R) are also generated in the CA3-
617 to-CA1 axis of the hippocampus and the balance between these network activities is highly
618 dependent on cholinergic tonus (Buzsáki, 2015; Çalışkan et al., 2016; Çalışkan and Stork,
619 2019). We found a profound increase in the incidence of SW-R upon long-term Abx
620 treatment (Fig. 7), similar to the findings of a previous study demonstrating an increased
621 hippocampal SW incidence in association with retarded extinction of contextual fear
622 memories (Çalışkan et al., 2016). Accordingly, a recent work (Chu et al., 2019) shows that
623 Abx-treated mice show impaired extinction of a cued fear memory. Both of these fear
624 paradigms are dependent on the functional interactions between the hippocampus and
625 amygdala (Çalışkan et al., 2019) and amygdalar activity appears to be recruited during SW
626 events (Girardeau et al., 2017). Thus, increased SW incidence might partially predispose for
627 re-consolidation of original fear memories and impair their extinction in Abx-treated mice.

628 To the best of our knowledge, this is the first study demonstrating the alterations in the LFP
629 hippocampal network oscillations and synaptic properties of the hippocampus after long-term
630 Abx treatment in mice. These electrophysiological alterations are associated with an
631 enhanced activation of peripheral immune cells and microglia as well as alterations in the
632 expression of neurotrophic factors and cytokines in the brain. A very recent study on mice
633 raised under GF conditions from birth onwards, has demonstrated a reduced LTP in the
634 hippocampal CA1 of male GF mice while no alteration was detected in the baseline synaptic
635 transmission (Darch et al., 2021). As we found a profound reduction in the baseline synaptic
636 transmission but only a tendency for a reduction in the CA1 LTP (Fig. 5), a functional
637 microbiome during the early stages of life appears to be important for the sustainment of
638 hippocampal plasticity during adulthood. Thus, studies targeting distinct developmental
639 stages and adulthood are needed to elucidate the impact of Abx treatment on synaptic and
640 cognitive function in an age-dependent manner. Further studies that assess more defined
641 brain areas using causal intervention methods will increase our understanding of the brain-
642 region specific impact of Abx treatment. The observed electrophysiological and gene
643 expression changes after depletion of gut flora may have broader implications when
644 considering psychiatric and neurodegenerative conditions associated with specific alterations
645 in the immune homeostasis in humans.

646 **Declaration of Conflict of interest**

647 The authors declare that they have no known competing financial interests or personal
648 relationships that could have appeared to influence the work reported in this paper.

649

650 **Acknowledgements**

651 We are grateful to A. Koffi von Hoff, F. Blitz, G. Reifenberger, D. Zabler and S. Stork for
652 excellent technical assistance and to A. Bohnstedt and D. Al-Chackmakchie for excellent
653 animal care. We are grateful to Dr. J.O. Hollnagel for supporting us with the MATLAB-based
654 analysis tools.

655

656 **Funding**

657 The work was supported by grants from the German Research Foundation (362321501/RTG
658 2413 SynAGE to IRD and OS, and CRC1436/A07 to OS) and the Center for Behavioural
659 Brain Sciences - CBBS promoted by Europäische Fonds für regionale Entwicklung - EFRE
660 (ZS/2016/04/78113) to GC and CBBS - ScienceCampus funded by the Leibniz Association
661 (SAS-2015-LIN-LWC) to GC and OS. This work was also supported by the European
662 Structural and Investment Funds (ESF, 2014-2020; project number ZS/2016/08/80645) to
663 IRD. MMH received grant support from the German Federal Ministries of Education and
664 Research (BMBF; zoonoses research consortium PAC-*Campylobacter*, IP7 / 01KI1725D)
665 and from the Federal Ministry for Economic Affairs and Energy (ZIM, ZF4117908 AJ8).

References

Adaikkan, C., Tsai, L.H., 2020. Gamma Entrainment: Impact on Neurocircuits, Glia, and Therapeutic Opportunities. *Trends Neurosci.* 43, 24–41.
<https://doi.org/10.1016/j.tins.2019.11.001>

Albensi, B.C., Mattson, M.P., 2000. Evidence for the involvement of TNF and NF- κ B in hippocampal synaptic plasticity. *Synapse* 35, 151–159.
[https://doi.org/10.1002/\(SICI\)1098-2396\(200002\)35:2<151::AID-SYN8>3.0.CO;2-P](https://doi.org/10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-P)

Altamura, M., Caradonna, L., Amati, L., Pellegrino, N.M., Urgesi, G., Minello, S., 2001. Splenectomy and sepsis: The role of the spleen in the immune-mediated bacterial clearance. *Immunopharmacol. Immunotoxicol.* 23, 153–161.
<https://doi.org/10.1081/IPH-100103856>

Andrade, R.M., Portillo, J.A.C., Wessendarp, M., Subauste, C.S., 2005. CD40 signaling in macrophages induces activity against an intracellular pathogen independently of gamma interferon and reactive nitrogen intermediates. *Infect. Immun.* 73, 3115–3123.
<https://doi.org/10.1128/IAI.73.5.3115-3123.2005>

Annamneedi, A., Caliskan, G., Müller, S., Montag, D., Budinger, E., Angenstein, F., Fejtova, A., Tischmeyer, W., Gundelfinger, E.D., Stork, O., 2018. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. *Brain Struct. Funct.* 223, 3423–3445.
<https://doi.org/10.1007/s00429-018-1692-3>

Barbeito, L.H., Pehar, M., Cassina, P., Vargas, M.R., Peluffo, H., Viera, L., Estévez, A.G., Beckman, J.S., 2004. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. *Brain Res. Rev.* 47, 263–274.
<https://doi.org/10.1016/j.brainresrev.2004.05.003>

Baruch, K., Rosenzweig, N., Kertser, A., Deczkowska, A., Sharif, A.M., Spinrad, A., Tsitsou-Kampeli, A., Sarel, A., Cahalon, L., Schwartz, M., 2015. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer's disease pathology. *Nat. Commun.* 6. <https://doi.org/10.1038/ncomms8967>

Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Zastrow, M. Von, Beattie, M.S., Malenka, R.C., 2002. Control of Synaptic Strength by Glial TNFalpha. *Science* (80-). 295, 2282–2285. <https://doi.org/10.1126/science.1067859>

Bercik, P., Collins, S.M., 2014. The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis BT - Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. *Microb. Endocrinol. Microbiota-Gut-Brain Axis Heal. Dis.* 279–

289. <https://doi.org/10.1007/978-1-4939-0897-4>

Biswas, A., Bruder, D., Wolf, S.A., Jeron, A., Mack, M., Heimesaat, M.M., Dunay, I.R., 2015. Ly6C high Monocytes Control Cerebral Toxoplasmosis . *J. Immunol.* 194, 3223–3235. <https://doi.org/10.4049/jimmunol.1402037>

Buzsaki, G., 2004. Neuronal Oscillations in Cortical Networks. *Science* (80-). 304, 1926–1929. <https://doi.org/10.1126/science.1099745>

Buzsáki, G., 2015. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. *Hippocampus* 25, 1073–1188. <https://doi.org/10.1002/hipo.22488>

Çalışkan, G., Müller, I., Semtner, M., Winkelmann, A., Raza, A.S., Hollnagel, J.O., Rösler, A., Heinemann, U., Stork, O., Meier, J.C., 2016. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence. *Cereb. Cortex* 26, 2325–2340. <https://doi.org/10.1093/cercor/bhw001>

Caliskan, G., Schulz, S.B., Gruber, D., Behr, J., Heinemann, U., Gerevich, Z., 2015. Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. *Eur. J. Neurosci.* 41, 31–44. <https://doi.org/10.1111/ejn.12750>

Çalışkan, G., Müller, I., Semtner, M., Winkelmann, A., Raza, A.S., Hollnagel, J.O., Rösler, A., Heinemann, U., Stork, O., Meier, J.C., 2016. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence. *Cereb. Cortex* 26, 2325–2340. <https://doi.org/10.1093/cercor/bhw001>

Çalışkan, G., Raza, S.A., Demiray, Y.E., Kul, E., Sandhu, K. V., Stork, O., 2019. Depletion of dietary phytoestrogens reduces hippocampal plasticity and contextual fear memory stability in adult male mouse. *Nutr. Neurosci.* 1–12. <https://doi.org/10.1080/1028415X.2019.1698826>

Çalışkan, G., Stork, O., 2019. Hippocampal network oscillations at the interplay between innate anxiety and learned fear. *Psychopharmacology (Berl)*. 236, 321–338. <https://doi.org/10.1007/s00213-018-5109-z>

Çalışkan, G., Stork, O., 2018. Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. *Neurobiol. Learn. Mem.* 154, 37–53. <https://doi.org/10.1016/j.nlm.2018.02.022>

Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D.R., Kidd, G., Dombrowski, S., Dutta, R., Lee, J.C., Cook, D.N., Jung, S., Lira, S.A., Littman, D.R., Ransohoff, R.M., 2006. Control of microglial neurotoxicity by the fractalkine receptor. *Nat. Neurosci.* 9, 917–924. <https://doi.org/10.1038/nn1715>

Chater, T.E., Goda, Y., 2014. The role of AMPA receptors in postsynaptic mechanisms of

synaptic plasticity. *Front. Cell. Neurosci.* 8, 1–14.
<https://doi.org/10.3389/fncel.2014.00401>

Chu, C., Murdock, M.H., Jing, D., Won, T.H., Chung, H., Kressel, A.M., Tsaava, T., Addorisio, M.E., Putzel, G.G., Zhou, L., Bessman, N.J., Yang, R., Moriyama, S., Parkhurst, C.N., Li, A., Meyer, H.C., Teng, F., Chavan, S.S., Tracey, K.J., Regev, A., Schroeder, F.C., Lee, F.S., Liston, C., Artis, D., 2019. The microbiota regulate neuronal function and fear extinction learning. *Nature* 574, 543–548.
<https://doi.org/10.1038/s41586-019-1644-y>

Citri, A., Malenka, R.C., 2008. Synaptic plasticity: Multiple forms, functions, and mechanisms. *Neuropsychopharmacology* 33, 18–41. <https://doi.org/10.1038/sj.npp.1301559>

Cobb, J.P., Laramie, J.M., Stormo, G.D., Morrissey, J.J., Shannon, W.D., Qiu, Y., Karl, I.E., Buchman, T.G., Hotchkiss, R.S., 2002. Sepsis gene expression profiling: Murine splenic compared with hepatic responses determined by using complementary DNA microarrays. *Crit. Care Med.* 30, 2711–2721. <https://doi.org/10.1097/00003246-200212000-00016>

Conner, J.M., Franks, K.M., Titterness, A.K., Russell, K., Merrill, D.A., Christie, B.R., Sejnowski, T.J., Tuszyński, M.H., 2009. NGF is essential for hippocampal plasticity and learning. *J. Neurosci.* 29, 10883–10889. <https://doi.org/10.1523/JNEUROSCI.2594-09.2009>

Connor, S.A., Hoeffer, C.A., Klann, E., Nguyen, P. V., 2011. Fragile X mental retardation protein regulates heterosynaptic plasticity in the hippocampus. *Learn. Mem.* 18, 207–220. <https://doi.org/10.1101/lm.2043811>

Cryan, J.F., Dinan, T.G., 2015. Gut microbiota: Microbiota and neuroimmune signalling - Metchnikoff to microglia. *Nat. Rev. Gastroenterol. Hepatol.* 12, 494–496.
<https://doi.org/10.1038/nrgastro.2015.127>

Curran, B.P., O'Connor, J.J., 2003. The inhibition of long-term potentiation in the rat dentate gyrus by pro-inflammatory cytokines is attenuated in the presence of nicotine. *Neurosci. Lett.* 344, 103–106. [https://doi.org/10.1016/S0304-3940\(03\)00440-3](https://doi.org/10.1016/S0304-3940(03)00440-3)

Darch, H.T., Collins, M.K., O'Riordan, K.J., Cryan, J.F., 2021. Microbial memories: Sex-dependent impact of the gut microbiome on hippocampal plasticity. *Eur. J. Neurosci.* <https://doi.org/10.1111/ejn.15119>

Desbonnet, L., Clarke, G., Traplin, A., O'Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., Dinan, T.G., Cryan, J.F., 2015. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. *Brain. Behav. Immun.* 48, 165–173.

<https://doi.org/10.1016/j.bbi.2015.04.004>

Dröge, W., Schipper, H.M., 2007. Oxidative stress and aberrant signaling in aging and cognitive decline. *Aging Cell* 6, 361–370. <https://doi.org/10.1111/j.1474-9726.2007.00294.x>

Dugan, L.L., Ali, S.S., Shekhtman, G., Roberts, A.J., Lucero, J., Quick, K.L., Behrens, M.M., 2009. IL-6 Mediated Degeneration of Forebrain GABAergic Interneurons and Cognitive Impairment in Aged Mice through Activation of Neuronal NADPH Oxidase. *PLoS One* 4, e5518. <https://doi.org/10.1371/journal.pone.0005518>

Düsedau, H.P., Kleveman, J., Figueiredo, C.A., Biswas, A., Steffen, J., Kliche, S., Haak, S., Zagrebelsky, M., Korte, M., Dunay, I.R., 2019. p75 NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. *Glia* 67, 193–211. <https://doi.org/10.1002/glia.23553>

Etter, G., van der Veldt, S., Manseau, F., Zarrinkoub, I., Trillaud-Doppia, E., Williams, S., 2019. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer's disease mouse model. *Nat. Commun.* 10, 5322. <https://doi.org/10.1038/s41467-019-13260-9>

Fanselow, M.S., Dong, H.W., 2010. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? *Neuron* 65, 7–19. <https://doi.org/10.1016/j.neuron.2009.11.031>

Fell, J., Axmacher, N., 2011. The role of phase synchronization in memory processes. *Nat. Rev. Neurosci.* 12, 105–118. <https://doi.org/10.1038/nrn2979>

Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O., 1998. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. *Nature* 394, 186–189. <https://doi.org/10.1038/28179>

French, T., Düsedau, H.P., Steffen, J., Biswas, A., Ahmed, N., Hartmann, S., Schüler, T., Schott, B.H., Dunay, I.R., 2019. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN- γ -dependent manner. *J. Neuroinflammation* 16, 1–18. <https://doi.org/10.1186/s12974-019-1539-8>

Fröhlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., Zinser, E., Bordag, N., Magnes, C., Fröhlich, E., Kashofer, K., Gorkiewicz, G., Holzer, P., 2016a. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. *Brain. Behav. Immun.* 56, 140–155. <https://doi.org/10.1016/j.bbi.2016.02.020>

Fröhlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., Zinser, E., Bordag, N., Magnes, C., Fröhlich, E., Kashofer, K., Gorkiewicz, G., Holzer, P., 2016b.

Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. *Brain. Behav. Immun.* 56, 140–155.
<https://doi.org/10.1016/j.bbi.2016.02.020>

Galic, M.A., Riazi, K., Pittman, Q.J., 2012. Cytokines and brain excitability. *Front. Neuroendocrinol.* 33, 116–125. <https://doi.org/10.1016/j.yfrne.2011.12.002>

Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., Li, N., 2017. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. *J. Transl. Med.* 15, 1–9. <https://doi.org/10.1186/s12967-016-1105-4>

Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., Zugaro, M.B., 2009. Selective suppression of hippocampal ripples impairs spatial memory. *Nat. Neurosci.* 12, 1222–1223. <https://doi.org/10.1038/nn.2384>

Girardeau, G., Inema, I., Buzsáki, G., 2017. Reactivations of emotional memory in the hippocampus–amygdala system during sleep. *Nat. Neurosci.* 20, 1634–1642. <https://doi.org/10.1038/nn.4637>

Girardeau, G., Zugaro, M., 2011. Hippocampal ripples and memory consolidation. *Curr. Opin. Neurobiol.* 21, 452–459. <https://doi.org/10.1016/j.conb.2011.02.005>

Hammond, M.D., Taylor, R.A., Mullen, M.T., Ai, Y., Aguilera, H.L., Mack, M., Kasner, S.E., McCullough, L.D., Sansing, L.H., 2014. CCR2+Ly6Chi inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. *J. Neurosci.* 34, 3901–3909. <https://doi.org/10.1523/JNEUROSCI.4070-13.2014>

Hasam-Henderson, L.A., Gotti, G.C., Mishto, M., Klisch, C., Gerevich, Z., Geiger, J.R.P., Kovács, R., 2018. NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity. *Sci. Rep.* 8, 9545. <https://doi.org/10.1038/s41598-018-27830-2>

Headley, D.B., Paré, D., 2013. In sync: gamma oscillations and emotional memory. *Front. Behav. Neurosci.* 7, 170. <https://doi.org/10.3389/fnbeh.2013.00170>

Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., Pettersson, S., 2011. Normal gut microbiota modulates brain development and behavior. *Proc. Natl. Acad. Sci. U. S. A.* 108, 3047–3052. <https://doi.org/10.1073/pnas.1010529108>

Hollnagel, J.O., ul Haq, R., Behrens, C.J., Maslarova, A., Mody, I., Heinemann, U., 2015. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro. *Neuroscience* 284, 459–469.

<https://doi.org/10.1016/j.neuroscience.2014.10.016>

Hoshino, K., Hasegawa, K., Kamiya, H., Morimoto, Y., 2017. Synapse-specific effects of IL-1 β on long-term potentiation in the mouse hippocampus. *Biomed. Res.* 38, 183–188. <https://doi.org/10.2220/biomedres.38.183>

Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., Adaikkan, C., Canter, R.G., Rueda, R., Brown, E.N., Boyden, E.S., Tsai, L.H., 2016. Gamma frequency entrainment attenuates amyloid load and modifies microglia. *Nature* 540, 230–235. <https://doi.org/10.1038/nature20587>

Irwin, M.R., Miller, A.H., 2007. Depressive disorders and immunity: 20 years of progress and discovery. *Brain. Behav. Immun.* 21, 374–383. <https://doi.org/10.1016/j.bbi.2007.01.010>

Josefsdottir, K.S., Baldridge, M.T., Kadmon, C.S., King, K.Y., 2017. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. *Blood* 129, 729–739. <https://doi.org/10.1182/blood-2016-03-708594>

Kann, O., Huchzermeyer, C., Kovács, R., Wirtz, S., Schuelke, M., 2011. Gamma oscillations in the hippocampus require high complex i gene expression and strong functional performance of mitochondria. *Brain* 134, 345–358. <https://doi.org/10.1093/brain/awq333>

Kjelstrup, K.G., Tuvnæs, F.A., Steffenach, H.-A., Murison, R., Moser, E.I., Moser, M.-B., 2002. Reduced fear expression after lesions of the ventral hippocampus. *Proc. Natl. Acad. Sci.* 99, 10825–10830. <https://doi.org/10.1073/pnas.152112399>

Knoop, K.A., McDonald, K.G., Kulkarni, D.H., Newberry, R.D., 2016. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. *Gut* 65, 1100–1109. <https://doi.org/10.1136/gutjnl-2014-309059>

Lang, D., Schott, B.H., van Ham, M., Morton, L., Kulikovskaja, L., Herrera-Molina, R., Pielot, R., Klawonn, F., Montag, D., Jänsch, L., Gundelfinger, E.D., Smalla, K.H., Dunay, I.R., 2018. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. *J. Neuroinflammation* 15, 1–19. <https://doi.org/10.1186/s12974-018-1242-1>

Leal, G., Bramham, C.R., Duarte, C.B., 2017. BDNF and Hippocampal Synaptic Plasticity, in: Vitamins and Hormones. Elsevier Inc., pp. 153–195. <https://doi.org/10.1016/bs.vh.2016.10.004>

Li, D., Liu, X., Liu, T., Liu, H., Tong, L., Jia, S., Wang, Y.F., 2020. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. *Glia* 68, 878–897. <https://doi.org/10.1002/glia.23734>

Lyons, A., Lynch, A.M., Downer, E.J., Hanley, R., O'Sullivan, J.B., Smith, A., Lynch, M.A.,

2009. Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attenuates microglial activation in vivo and in vitro. *J. Neurochem.* 110, 1547–1556. <https://doi.org/10.1111/j.1471-4159.2009.06253.x>

Maggio, N., Segal, M., 2011. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress. *Biol. Psychiatry* 69, 748–753. <https://doi.org/10.1016/j.biopsych.2010.11.026>

Maier, N., Nimmrich, V., Draguhn, A., 2003. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. *J. Physiol.* 550, 873–887. <https://doi.org/10.1113/jphysiol.2003.044602>

Mander, P., Brown, G.C., 2005. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: A dual-key mechanism of inflammatory neurodegeneration. *J. Neuroinflammation* 2, 1–15. <https://doi.org/10.1186/1742-2094-2-20>

Maren, S., Phan, K.L., Liberzon, I., 2013. The contextual brain: implications for fear conditioning, extinction and psychopathology. *Nat. Rev. Neurosci.* 14, 417–428. <https://doi.org/10.1038/nrn3492>

Martorell, A.J., Paulson, A.L., Suk, H.J., Abdurrob, F., Drummond, G.T., Guan, W., Young, J.Z., Kim, D.N.W., Kritskiy, O., Barker, S.J., Mangena, V., Prince, S.M., Brown, E.N., Chung, K., Boyden, E.S., Singer, A.C., Tsai, L.H., 2019. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. *Cell* 177, 256-271.e22. <https://doi.org/10.1016/j.cell.2019.02.014>

Mayer, E.A., 2011. Gut feelings: The emerging biology of gut-“brain communication. *Nat. Rev. Neurosci.* 12, 453–466. <https://doi.org/10.1038/nrn3071>

McCoy, M.K., Tansey, M.G., 2008. TNF signaling inhibition in the CNS: Implications for normal brain function and neurodegenerative disease. *J. Neuroinflammation* 5, 1–13. <https://doi.org/10.1186/1742-2094-5-45>

Michell-Robinson, M.A., Touil, H., Healy, L.M., Owen, D.R., Durafourt, B.A., Bar-Or, A., Antel, J.P., Moore, C.S., 2015. Roles of microglia in brain development, tissue maintenance and repair. *Brain* 138, 1138–1159. <https://doi.org/10.1093/brain/awv066>

Möhle, L., Israel, N., Paarmann, K., Krohn, M., Pietkiewicz, S., Müller, A., Lavrik, I.N., Buguliskis, J.S., Schott, B.H., Schlüter, D., Gundelfinger, E.D., Montag, D., Seifert, U., Pahnke, J., Dunay, I.R., 2016a. Chronic *Toxoplasma gondii* infection enhances β -amyloid phagocytosis and clearance by recruited monocytes. *Acta Neuropathol. Commun.* 4, 25. <https://doi.org/10.1186/s40478-016-0293-8>

Möhle, L., Mattei, D., Heimesaat, M.M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I.R., Wolf, S.A., 2016b. Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. *Cell Rep.* 15, 1945–1956.
<https://doi.org/10.1016/j.celrep.2016.04.074>

Montgomery, S.M., Buzsaki, G., 2007. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. *Proc. Natl. Acad. Sci.* 104, 14495–14500. <https://doi.org/10.1073/pnas.0701826104>

Mostafa, S., Miller, B.J., 2014. Antibiotic-associated psychosis during treatment of urinary tract infections: A systematic review. *J. Clin. Psychopharmacol.* 34, 483–490.
<https://doi.org/10.1097/JCP.0000000000000150>

Nash, K.R., Moran, P., Finneran, D.J., Hudson, C., Robinson, J., Morgan, D., Bickford, P.C., 2015. Fractalkine over expression suppresses α -synuclein-mediated neurodegeneration. *Mol. Ther.* 23, 17–23. <https://doi.org/10.1038/mt.2014.175>

Neufeld, K.M., Kang, N., Bienenstock, J., Foster, J.A., 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. *Neurogastroenterol. Motil.* 23, 255–265. <https://doi.org/10.1111/j.1365-2982.2010.01620.x>

Ogawa, Y., Miyoshi, C., Obana, N., Yajima, K., Hotta-Hirashima, N., Ikkyu, A., Kanno, S., Soga, T., Fukuda, S., Yanagisawa, M., 2020. Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. *Sci. Rep.* 10, 1–11. <https://doi.org/10.1038/s41598-020-76562-9>

Okuno, T., Nakatsuji, Y., Kumanogoh, A., Moriya, M., Ichinose, H., Sumi, H., Fujimura, H., Kikutani, H., Sakoda, S., 2005. Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD40: Relevance to Parkinson's disease. *J. Neurosci. Res.* 81, 874–882. <https://doi.org/10.1002/jnr.20599>

Papageorgiou, I.E., Lewen, A., Galow, L. V., Cesetti, T., Scheffel, J., Regen, T., Hanisch, U.K., Kann, O., 2016. TLR4-activated microglia require IFN- γ to induce severe neuronal dysfunction and death in situ. *Proc. Natl. Acad. Sci. U. S. A.* 113, 212–217.
<https://doi.org/10.1073/pnas.1513853113>

Perry, S.W., Dewhurst, S., Bellizzi, M.J., Gelbard, H.A., 2002. Tumor Necrosis Factor-Alpha in Normal and Diseased Brain: Conflicting Effects Via Intraneuronal Receptor Crosstalk? *J. Neurovirol.* 8, 611–624. <https://doi.org/10.1080/13550280290101021>

Polepalli, J.S., Wu, H., Goswami, D., Halpern, C.H., Südhof, T.C., Malenka, R.C., 2017. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the

hippocampal network. *Nat. Neurosci.* 20, 219–229. <https://doi.org/10.1038/nn.4471>

Probert, L., 2015. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. *Neuroscience* 302, 2–22.
<https://doi.org/10.1016/j.neuroscience.2015.06.038>

Ramalingam, M., Kim, S.-J., 2012. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. *J. Neural Transm.* 119, 891–910.
<https://doi.org/10.1007/s00702-011-0758-7>

Rogers, J.T., Morganti, J.M., Bachstetter, A.D., Hudson, C.E., Peters, M.M., Grimmig, B.A., Weeber, E.J., Bickford, P.C., Gemma, C., 2011. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. *J. Neurosci.* 31, 16241–16250. <https://doi.org/10.1523/JNEUROSCI.3667-11.2011>

Rowan, M.J., Klyubin, I., Cullen, W.K., Anwyl, R., 2003. Synaptic plasticity in animal models of early Alzheimer's disease. *Philos. Trans. R. Soc. B Biol. Sci.* 358, 821–828.
<https://doi.org/10.1098/rstb.2002.1240>

Sarkar, A., Harty, S., Lehto, S.M., Moeller, A.H., Dinan, T.G., Dunbar, R.I.M., Cryan, J.F., Burnet, P.W.J., 2018. The Microbiome in Psychology and Cognitive Neuroscience. *Trends Cogn. Sci.* 22, 611–636. <https://doi.org/10.1016/j.tics.2018.04.006>

Sarkar, S.R., Mazumder, P.M., Banerjee, S., 2020. Probiotics protect against gut dysbiosis associated decline in learning and memory. *J. Neuroimmunol.* 348, 577390.
<https://doi.org/10.1016/j.jneuroim.2020.577390>

Schwartz, M., Kipnis, J., Rivest, S., Prat, A., 2013. How do immune cells support and shape the brain in health, disease, and aging? *J. Neurosci.* 33, 17587–17596.
<https://doi.org/10.1523/JNEUROSCI.3241-13.2013>

Sesti, F., Liu, S., Cai, S.-Q., 2010. Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? *Trends Cell Biol.* 20, 45–51.
<https://doi.org/10.1016/j.tcb.2009.09.008>

Shechter, R., Schwartz, M., 2013. Harnessing monocyte-derived macrophages to control central nervous system pathologies: No longer if' but how'. *J. Pathol.* 229, 332–346.
<https://doi.org/10.1002/path.4106>

Shi, C., Pamer, E.G., 2011. Monocyte recruitment during infection and inflammation. *Nat. Rev. Immunol.* 11, 762–774. <https://doi.org/10.1038/nri3070>

Sica, A., Mantovani, A., 2012. Macrophage plasticity and polarization: in vivo veritas. *J. Clin. Invest.* 122, 787–795. <https://doi.org/10.1172/JCI59643>

Stellwagen, D., Malenka, R.C., 2006. Synaptic scaling mediated by glial TNF- α . *Nature* 440, 1054–1059. <https://doi.org/10.1038/nature04671>

Straub, R.H., Linde, H.J., Männel, D.N., Schölmerich, J., Falk, W., 2000. A bacteria-induced switch of sympathetic effector mechanisms augments local inhibition of TNF-alpha and IL-6 secretion in the spleen. *FASEB J.* 14, 1380–1388. <https://doi.org/10.1096/fj.14.10.1380>

Suda, K.J., Hicks, L.A., Roberts, R.M., Hunkler, R.J., Taylor, T.H., 2014. Trends and Seasonal Variation in Outpatient Antibiotic Prescription Rates in the United States, 2006 to 2010. *Antimicrob. Agents Chemother.* 58, 2763–2766. <https://doi.org/10.1128/AAC.02239-13>

Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., Xiu, J., Xu, Q., 2021. Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. *Brain. Behav. Immun.* 92, 102–114. <https://doi.org/10.1016/j.bbi.2020.11.032>

Ta, T.T., Dikmen, H.O., Schilling, S., Chausse, B., Lewen, A., Hollnagel, J.O., Kann, O., 2019. Priming of microglia with IFN- γ slows neuronal gamma oscillations in situ. *Proc. Natl. Acad. Sci. U. S. A.* 116, 4637–4642. <https://doi.org/10.1073/pnas.1813562116>

Trimper, J.B., Stefanescu, R.A., Manns, J.R., 2014. Recognition memory and theta-gamma interactions in the hippocampus. *Hippocampus* 24, 341–353. <https://doi.org/10.1002/hipo.22228>

Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., Venance, L., Freund, T.F., Buzsáki, G., 2014. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. *Proc. Natl. Acad. Sci. U. S. A.* 111, 13535–40. <https://doi.org/10.1073/pnas.1411233111>

Wolf, Y., Yona, S., Kim, K.W., Jung, S., 2013. Microglia, seen from the CX3CR1 angle. *Front. Cell. Neurosci.* 7, 1–9. <https://doi.org/10.3389/fncel.2013.00026>

Zhan, Y., Paolicelli, R.C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., Vyssotski, A.L., Bifone, A., Gozzi, A., Ragazzino, D., Gross, C.T., 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. *Nat. Neurosci.* 17, 400–406. <https://doi.org/10.1038/nn.3641>