

1 Source tracking and global distribution of the mobilized tigecycline resistant gene *tet*(X)
2 Rong-min Zhang^{1,2,3†}, Jian Sun^{1,2,3†}, Ruan-yang Sun^{1,2,3}, Min-ge Wang^{1,2,3}, Chao-yue Cui^{1,2,3},
3 Liang-xing Fang^{1,2,3}, Mei-na Liao^{1,2,3}, Xiao-qing Lu^{1,2,3}, Yong-xin Liu⁴, Xiao-Ping Liao^{1,2,3*},
4 Ya-Hong Liu^{1,2,3*}

5

6 ¹National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria,
7 South China Agricultural University, Guangzhou 510642, China.

8 ²Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China
9 Agricultural University, Guangzhou 510642, China.

10 ³Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, P. R. China

11 ⁴State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology,
12 Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.

13

14 National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria,
15 South China Agricultural University, Guangzhou 510642, China.

16 [†]These two authors contributed equally to this work.

17

18 *Address correspondence to Xiaoping-Liao and Yahong-Liu, E-mail: xpliao@scau.edu.cn and
19 lyh@scau.edu.cn

20 Corresponding author at: College of Veterinary Medicine, South China Agricultural University,
21 Guangzhou, Guangdong province, PR China.

22

23

24

25 **Abstract**

26 The emergence of *tet(X)* genes has compromised the clinical use of the last-line antibiotic
27 tigecycline. We identified 322 (1.21%) *tet(X)* positive samples from 12,829 human microbiome
28 samples distributed in four continents (Asia, Europe, North America and South America) using
29 retrospective data from worldwide. These *tet(X)* genes were dominated by *tet(X2)*-like orthologs
30 but we also identified 12 samples carrying novel *tet(X)* genes, designed *tet(X15)* and *tet(X16)*,
31 that were resistant to tigecycline. The metagenomic analysis revealed these *tet(X)* genes
32 distributed in anaerobes dominated by *Bacteroidaceae* (78.89%) of human-gut origin. The
33 transmission of these *tet(X2)*-like orthologs between *Bacteroidaceae* and *Riemerella anatipestifer*
34 was primarily promoted by the mobile elements *ISBf11* and *IS4351*. *tet(X2)*-like orthologs was
35 also developed during transmission by mutation to high-level tigecycline resistant determinants
36 *tet(X15)* and *tet(X16)*. Further tracing these *tet(X)* in single bacterial isolate from public
37 repository indicated that *tet(X)* genes were present as early as 1960s in *R. anatipestifer* that was
38 the primary *tet(X)* carrier at early stage (before 2000). The *tet(X2)* and non-*tet(X2)* orthologs were
39 primarily distributed in humans and food animals respectively, and non-*tet(X2)* were dominated
40 by *tet(X3)* and *tet(X4)*. Genomic comparison indicated these *tet(X)* genes were likely to be
41 generated during *tet(X)* transmission between *Flavobacteriaceae* and *E. coli/Acinetobacter* spp.,
42 and *ISCR2* played a key role in the transmission. These results suggest *R. anatipestifer* was the
43 potential ancestral source of *tet(X)* gene. Additionally, *Bacteroidaceae* of human-gut origin was an
44 important hidden reservoir and mutational incubator for the mobile *tet(X)* genes that enabled
45 spread to facultative anaerobes and aerobes.

46 Keywords: Tigecycline resistance, *Tet(X)*, Source tracking, Human microbiome, *Riemerella*

47 *anatipesi*, *Bacteroidaceae*

48 **Introduction**

49 The first generation of tetracycline antibiotics consisted of tetracycline, chlortetracycline and
50 oxytetracycline and were put into clinical practice in 1952 (1) while the second generation
51 derivatives doxycycline and minocycline were put into use in 1976 (2). These antibiotics have
52 been incorporated into animal feed to improve growth and feed efficiency (3). However, bacterial
53 resistance to the tetracyclines was observed from the very beginning of their usage. To date, more
54 than 65 specific resistant determinants and 9 MDR efflux pump genes of the root
55 nodulation-division (RND) superfamily have been confirmed including AdeABC, AcrAB-TolC
56 and MexAB-OprM (2). These determinants confer resistance to first and second generation
57 tetracyclines and are widely distributed among 130 Gram-negative and Gram-positive bacteria (2).

58 A third-generation tetracycline (tigecycline) was approved in the United States in 2005 and
59 its use in the EU and China was authorized in 2006 and 2010, respectively (4, 5). Tigecycline has
60 a robust treatment range and includes bacteria resistant to first and second generation tetracyclines
61 (6), and is a 'last resort' antibiotic used to treat severe infections caused by carbapenem- and
62 colistin-resistant pathogens (5). Thus, this antibiotic was classified as a critically important
63 antimicrobial by the World Health Organization and its usage is restricted (7). However as early as
64 1884, the transferable gene *tet*(X) displaying tigecycline insusceptibility was discovered on an R
65 plasmid from a *B. fragilis* isolate of human origin. This was the earliest occurrence of an antibiotic
66 resistance gene (ARG) that directly inactivated tetracyclines (8). The *tet*(X) gene was only
67 functional under aerobic growth conditions because it is a flavin dependent monooxygenase that
68 requires FAD, NADPH, Mg²⁺ and O₂ to inactive almost all of the tetracycline class (9). In 2001

69 the existence of *tet*(X1) and *tet*(X2) were confirmed on a transposon from *Bacteroides*
70 *thetaiotaomicron* of human origin and shared 61.7 and 99.5 % amino acid identity with *tet*(X),
71 respectively. To date, *tet*(X)/*tet*(X2) genes have already spread to 16 countries/regions covering
72 five continents (Asia, Europe, North America, South America and Africa) (2). A small comfort
73 was that these ARGs displayed low level tigecycline resistance (MIC \leq 2ug.ml⁻¹) (2).

74 The emergence of plasmid-mediated high-level tigecycline resistance encoded by the *tet*(X3)
75 and *tet*(X4) genes in 2019 posed a severe threat to public health (7, 10). Additionally, 10 more
76 *tet*(X) orthologs have been identified and include *tet*(X5) - *tet*(X14)) (11-14). These orthologs
77 were primarily found in food animals especially swine, including *tet*(X3), *tet*(X4), *tet*(X6) and
78 *tet*(X14) firstly detected in *Acinetobacter baumanii*, *Escherichia coli*, *Myroides phaeus* and
79 *Empedobacter stercoris*, respectively. The *tet*(3.2) and *tet*(X5) gene were identified from an
80 *Empedobacter brevis* isolate of shrimp origin and a *Acinetobacter baumannii* isolate of human origin,
81 respectively. All the *tet*(X7) - *tet*(X13) orthologs were identified directly from gut-derived
82 metagenomic libraries, but their host bacteria were unknown. Epidemiological studies (2, 15, 16)
83 indicated the dissemination of these *tet*(X) orthologs were dominated by *tet*(X3) and *tet*(X4) that were
84 primarily detected from *Acinetobacter* spp. and *E. coli*, respectively. Furthermore, *tet*(X3)/*tet*(X4)
85 samples from humans, animals and meat for consumption revealed a prevalence of 0.3 - 66.7 % and the
86 highest level of 66.7 % was detected from pig caecum samples from abattoirs (7). Compared with the
87 *tet*(X3)/*tet*(X4) in animal isolates (6.9%, 73/1060) (7), lower prevalence from human (0.32%, 4/1250)
88 were observed in a retrospective screening of *tet*(X)-carrying clinical isolates (5).

89 The *tet*(X) genes have been primarily identified using traditional cultural methods and this
90 imposed limitations on their identification including the loss of uncultured bacteria, low-throughput

91 and long processing times. Although the *tet*(X7) - *tet*(X13) orthologs were found directly from
92 gut-associated samples using metagenomic sequencing, the bacterial hosts, relative abundance and
93 propagative characteristics were absent (14). Nonetheless, public repositories are a promising
94 high-throughput resource for exploring antibiotic resistomes. For instance, a retrospective
95 epidemiological study based on the available public bacterial gene datasets revealed that the food chain
96 was a potential dissemination pathway for *mcr-1* (17). Additionally, a metagenomic screening study
97 based on public metagenome datasets revealed a high detection rate of *tet*(X3) (25.4 %) in poultry
98 samples (18). However, there are few studies that utilize data mining for *tet*(X) in public databases (18,
99 19). In addition, public data repositories including GenBank are a valuable resource for the exploration
100 of novel bacterial species. For instance, a recent study utilized 9,428 metagenomes to reconstruct
101 154,723 microbial genome bins that generated 4,390 species level genome bins (SGB) including
102 77 % of which were not present in public repositories (20). Identification of *tet*(X) genes from
103 these SGBs and tracing their distribution in assembly isolates from public repository may provide
104 a new perspective for source tracking of the global spread of *tet*(X).

105 In the current study, we utilized these data mining techniques and discovered that *tet*(X) had
106 emerged as early as 1960 and the *Riemerella anatipesfifer* was its potential ancestral source.
107 Additionally, *Bacteroidaceae* of human gut origin were a hidden reservoir and mutational
108 incubator for mobile *tet*(X) genes that enabled spread to facultative anaerobes and aerobes.

109 **Methods**

110 **Collection of microbial genomic sequences from human microbiome in retrospective data**

111 A total of 26,728 metagenomic samples of human-microbiome origin deposited in public
112 repositories were downloaded and reconstructed microbial genomic bins (MGBs) to explore new

113 bacterial species in previous studies (20-22). We removed the duplicative samples from these
114 metagenomic samples according their accession number and found a total of 12,829 non-duplicate
115 metagenomic samples from 31 countries. These samples were reconstructed into 202,265 MGBs
116 in previous studies (20-22) (Table S1 and S2) and the online released data were screened for the
117 presence of all known *tet*(X) orthologs using BLAST using an 80 % identity and 70 % hit length
118 cut-off in current study. The prevalence of *tet*(X) in 31 countries were plotted using R version
119 3.5.3. Phylogenetic analysis for amino acid sequences of all *Tet*(X) gene products was constructed
120 using neighbor joining with the default parameters in Mega X Version 10.0.5 (23) and alignments
121 were constructed using ESPript 3 (24).

122 **Functional identification of *Tet*(X)s**

123 Tigecycline resistance for these gene products was assessed by synthesis of full-length
124 nucleotide sequences of all detected *tet*(X) genes. *EcoRI* and a *SalI* sites were then added 5' and 3'
125 respectively (Tsingke Biological Technology, Beijing, China). The synthesized *tet*(X) genes were
126 cloned into plasmid vector pBAD24 and transformed into competent *E. coli* JM109 as described
127 in our previous study (25). The transconjugants *E. coli* JM109+pBAD24-*tet*(X4) and *E. coli*
128 JM109+pBAD24, were used as positive and negative controls, respectively, as previously
129 described (25). The minimum inhibitory concentration (MIC) for tetracycline, doxycycline,
130 minocycline, tigecycline, eravacycline and omadacycline were determined by the broth
131 microdilution method in accordance with Clinical and Laboratory Standards Institute (CLSI)
132 guidelines. Tetracycline, doxycycline and minocycline breakpoints were interpreted according to
133 the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines
134 (http://www.eucast.org/clinical_breakpoints). The United States FDA criteria was employed to

135 interpret tigecycline breakpoints for *E. coli* and MIC ≥ 4 mg L⁻¹ was considered non-susceptible
136 while eravacycline and omadacycline were uninterpreted with no breakpoint. *E. coli* ATCC 25922
137 was used as the quality control strain.

138 **Taxonomic assignment and phylogenetic analysis of *tet(X)*s-carrying MGBs**

139 We obtained 322 *tet(X)*-carrying MGBs from three previous studies (20-22). This group
140 included taxonomic assignments for 196 that had been previously annotated (20) while the
141 remaining 126 were annotated using metaWRAP-Annotate-bins module using the MetaWRAP
142 pipeline and default parameters (26). Briefly, the assembly contigs from each *tet(X)*-carrying
143 MGB was taxonomically profiled using Kraken2 (27) and then this entire metagenomic bin could
144 conservatively and accurately estimate the taxonomic profiles (26).

145 The phylogenetic structure for the *tet(X)*-carrying MGBs were performed using an automatic
146 PhyloPhlAn (3.0) pipeline (20, 28), through which the phylogeny in Figure 1b was built using 400
147 universal PhyloPhlAn markers with parameter: “--diversity high --accurate --min_num_markers
148 80.” This pipeline integrates diamond (version 0.9.32) , mafft (version 7.464) (29), trimal (version
149 1.4.rev15) (30) and RAxML (version 8.2.12) (31), and the parameters of these software were set
150 as described previously (20). The phylogenetic tress in Figure 1b were plotted using GraPhlan
151 (version 1.1.3) (32).

152 **Phylogenetic analyses of the *tet(X)* carrying isolates and evolutionary timescale for the**
153 ***tet(X)*s from isolates**

154 To further trace the spread of all *tet(X)*s in culturable bacteria isolates, a total of 774,435
155 bacteria assembled whole genome sequences (WGS) were downloaded from the NCBI database as
156 of November 7th, 2020. *tet(X)*-like OFRs were determined using BLATX against all the *tet(X)*s

157 variants mentioned in current study with a minimum similarity of 70% and 100% coverage. The
158 collection date, origin, countries and the bacterial host of the *tet(X)*-positive isolates were
159 retrieved according to their Biosample Number. The phylogenetic structure for the *tet(X)*-carrying
160 isolates were also performed using PhyloPhlAn (3.0) pipeline mentioned above.

161 To determine the evolutionary history of *tet(X)*s, the earliest emergence of *tet(X)* variants
162 (with collection date) with a 388 amino acid (aa) length were applied to generate a chronogram
163 using Bayesian evolutionary analysis version 1.10 (33). For all model combinations, three
164 independent chains of 100 million generations each were run to ensure convergence with sampling
165 every 1,000 iterations. Tracer v1.7.1 was used to assess convergence using all parameter effective
166 sampling sizes of > 200 (34). LogCombiner v2.6.1 was used to combine tree files and a maximum
167 clade credibility tree was created using TreeAnnotator v2.6.0 (34). Tree annotation was visualized
168 using iTOL (35) and FigTree version 1.4.2.

169 **Annotation and comparison of the genomic region flanking the *tet(X)* gene**

170 The *tet(X)*-carrying contig were extracted from the MGBs of metagenomic analysis and
171 isolates from public repository. CD-HIT was employed to group *tet(X)*-carrying full length contigs
172 using a cutoff with a minimum similarity of 97 % over 97 % of the query coverage (36). These
173 *tet(X)*-carrying contigs were annotated using Prokka (37) and in conjunction with standalone
174 BLAST analyses against the ResFinder (38) and ISfinder (39) databases to cross-validate ARGs
175 and mobile genetic elements, respectively.

176 **Results**

177 **Identification of Tet(X) orthologs**

178 We accessed a total of 202,265 MGBs constructed from 12,829 metagenomic samples of

179 human-microbiome origin and found 322 (1.21 %) of them encoded 388 aa proteins with 96.13 -
180 100% similarity with Tet(X) orthologs reported in a previous study (11) (Table S2). In particular,
181 96.27 % (310/322) of them shared 98.71 - 100 % identity with Tet(X2) (Acc. No. AJ311171) and
182 phylogenetically could be grouped into 15 *tet*(X2)-like clades (Figure S1 and S2, Table S3). The
183 remaining 3.73 % (12/322) shared < 98.20 % identical with the known Tet(X). Since there was not
184 a criterion for assignment of Tet(X) orthologs in previous studies (11, 14), we temporarily
185 designated these *tet*(X2)-like orthologs as *tet*(X2.2) to *tet*(X2.16). These orthologs represented a
186 large proportion of samples (n=12,829) from 19 countries and were therefore likely represented a
187 relatively comprehensive assessment of *tet*(X2)-like orthologs. We therefore tentatively used the
188 lowest cutoff of 98.20 % between *tet*(X2)-like orthologs (*tet*(X2.15) vs *tet*(X2.16)) for assignment
189 of novel *tet*(X) orthologs. Based on this, we found two new *tet*(X) orthologs and their subtypes
190 shared less than 98.20% amino acid identity with their closest neighbors and most resembled *tet*(X)
191 orthologs in the phylogeny designed *tet*(X15), *tet*(X15.2), *tet*(X15.3), *tet*(X16), *tet*(X16.2) and
192 *tet*(X16.3) (Figure S1, Table S3). Most of these *tet*(X) orthologs found from metagenomic analysis
193 were not present in the NCBI database with the exceptions of *tet*(X2) (Acc. No. AJ311171),
194 *tet*(X2.4) (Acc. No. JQ990987) and *tet*(X16.2) (Acc. No. KU547718.1) (Table S3).

195 **Resistance phenotypes of *tet*(X) orthologs**

196 Both the *tet*(X15) and *tet*(X16) groups found from metagenomic analysis of human-gut origin
197 (Figure 1c) in the *E. coli* JM109 were resistant to tigecycline (MICs 8 to 16 ml/liter), and
198 exhibited high MIC to the fourth-generation antibiotics omadacycline (MICs 16 to 32 ml/liter) and
199 eravacycline (MICs 2 to 4 ml/liter) (Table S4). In addition, all the non-*tet*(X2) exhibited resistance
200 to tetracycline (MICs 128 to 256 ml/liter), doxycycline (MICs 32 to 64 ml/liter) and minocycline

201 (MICs 16 to 32 ml/liter) (Table S4). All the *tet*(X2) like orthologs were susceptible to tigecycline
202 (MICs 0.25 to 1 ml/liter) but resistant to tetracycline (MICs 8 to 256/liter). Almost all of them
203 were resistant to doxycycline (MICs 8 to 64 ml/liter) and minocycline (MICs 2 to 32 ml/liter),
204 excluding *tet*(X2.10) that intermediate to doxycycline (1 ml/liter) and minocycline (MICs 0.5
205 ml/liter). Most of these *tet*(X2) like orthologs exhibited MIC of omadacycline from 0.5 to 4
206 ml/liter, and eravacycline from 0.0125 to 1 ml/liter (Table S4). Three *tet*(X2) like orthologs
207 *tet*(X2), *tet*(X2.4) and *tet*(X2.15) showed relatively higher MICs to omadacycline (8 to 16 ml/liter)
208 and eravacycline (1 to 4 ml/liter).

209 **Global distribution and taxonomic assignment of *tet*(X) carrying MGBs**

210 The 322 *tet*(X)s carrying MGBs were detected in 19 countries including Europe (n=12), Asia
211 (n=4) and America (n=3) but were absent in Oceanica and Africa (Figure 1a, Table S5). The
212 prevalence of *tet*(X) in European countries (0 - 9.40 %) was more complex than Asian (0 - 3.17 %)
213 and American countries (0 - 2.44 %) although the positive rates for *tet*(X) in these three continents
214 were not significantly (P>0.05) different (Figure S3). The prevalence of *tet*(X) was highest in
215 Spain (9.40 %), followed by Germany (5.14 %), France (3.82 %), Denmark (3.34 %) and China
216 (3.17 %) and the remaining countries were < 3 % (Figure 1a and Table S5).

217 The bacterial taxonomy assignment indicated that all the 322 *tet*(X)-carrying MGB could be
218 assigned to five phyla and was dominated by *Bacteroidetes* (78.89 %, 254/322) followed by
219 *Firmicutes* (16.78 %, 47/322), *Proteobacteria* (1.24 %, 4/322), *Candidatus Melainabacteria*
220 (1.24%, 4/322) and *Fusobacteria* (0.62%, 2/322) (Figure 1b). Furthermore, 96.68% (301/322)
221 were classified to the family level and most of them were also belonging to *Bacteroidaceae*
222 (70.10%, 211/301) (Figure 1b and Table S6). Furthermore, 72.30% (154/211) of these *tet*(X)

223 carrying *Bacteroidaceae* MGBs could be further divided into 14 *Bacteroides* species that were
224 dominated by *Bacteroides vulgatus* (37.67 %, 58/154), *Bacteroides uniformis* (20.78 %, 32/154),
225 *Bacteroides dorei* (14.94 %, 23/154), *Bacteroides ovatus* (5.84 %, 9/154), *Bacteroides fragilis*
226 (3.90 %, 6/154) and *Bacteroides caccae* (3.25 %, 5/154) (Table S7).

227 The *tet*(X2)-like positive MGBs were distributed across these 19 *tet*(X) positive countries.
228 *tet*(X2.4) (55.02 %, 170/309), *tet*(X2) (26.86 %, 83/309), *tet*(X2.5) (9.32 %, 30/309) and *tet*(X2.2)
229 (4.53 %, 14/309) totaled 96.11 % (297/309) and prevailed over other *tet*(X2)-like orthologs (\leq
230 0.6 %, 2/309) (Figure S4). Only 81.08% (240/296) of these four predominant *tet*(X) carrying
231 MGBs could be assigned at genus level and most of them were also identified in *Bacteroides*
232 (71.67%, 172/240), followed by *Prevotella* (6.67%, 16/240) and *Alistipes* (5%, 12/240) (Table S8).
233 Additionally, the non-*tet*(X2) orthologs included 75 % (9/12) that were distributed in China and
234 USA. Of which, *tet*(X15.2) was the most prevalent ortholog (Figure 1c). The remaining three
235 non-*tet*(X2) carrying MGBs were distributed in Europe and the single *tet*(X16.2) ortholog was
236 carried by an *Enterococcaceae* from Italy. Almost all *tet*(X)-carrying MGBs were collected from
237 human stools excluding only one *tet*(X2.4)-carrying MGB identified as an *Enterococcus* spp. from
238 an oral cavity sample (Table S8).

239 The 322 *tet*(X) carrying MGBs included 196 from the 4,390 MGBs and their average
240 abundance in human microbiomes has been calculated in previous study (Table S8) (20). The
241 average abundance of these 196 *tet*(X)-positive MGBs was 5.97 ± 3.89 and significantly higher
242 than that of the total 4,390 MGBs (1.76 ± 3.74) (20).

243 **Culturable isolates from public repository insight into the distribution and evolutionary**
244 **timescale of Tet(X)s**

245 To further trace the distribution of these *tet*(X)s in culturable isolates, we examined 774,435
246 WGS of bacterial isolates present in GenBank and only 0.12 % (896/774,435) carried an ORF
247 with > 70 % amino acid identity with the known *tet*(X) genes including the novel ones found in
248 the current study (Table S9). The PhyloPhlAn analysis indicated that the facultative anaerobe
249 clade was phylogenetically distinct between anaerobes and aerobes (Figure 2a). These *tet*(X)
250 genes were found in 17 bacterial families that were dominated by aerobes including
251 *Moraxellaceae* (279/896, 31.17 %), *Enterobacteriaceae* (208/896, 23.24 %) and *Weeksellaceae*
252 (16.20 %, 145/896). The *Bacteroidaceae* (20.67 %, 185/896) were also an important anaerobic
253 carrier for *tet*(X2) like orthologs (Figure 2a and Table S9). Three *tet*(X) orthologs were most
254 prevalent and included *tet*(X2)-like (35.71 %, 320/896), *tet*(X3) (27.34 %, 245/896) and *tet*(X4)
255 (21.99 %, 199/896) (Table S9). Interestingly, different bacterial families from variant hosts were
256 preference for carrying specific *tet*(X) ortholog (Figure 2a). Almost all the *Bacteroidaceae*
257 (98.91 %, 182/184) and most *Weeksellaceae* (63.45 %, 92/145) isolates carried *tet*(X2)-like
258 orthologs and were primarily from human samples (38.64 %, 114/295). Additionally, all *tet*(X3)
259 were detected from *Acinetobacter* spp. and almost all *tet*(X4) (88.89 %, 176/197) were carried by
260 *E. coli* and these were primarily from food animals (66.59 %, 295/443) including pigs, chickens,
261 ducks, cattle and geese.

262 The *tet*(X2)-like orthologs were detected prior to 8.41 ± 6.17 years ago and earlier than
263 *tet*(X3) (4.00 ± 1.12) and *tet*(X4) (2.38 ± 1.34). To be noted, the collection dates of three *R.*
264 *anatipestifer* isolates from UK duck samples were prior to 1980. One isolate (BioSample:
265 SAMN09912225) was collected in 1966 and was positive for *tet*(X12) and a *tet*(X2)-like gene that
266 only differed in a single amino acid from *tet*(X2) was designed *tet*(X2.17). The two other isolates

267 were collected in 1976. One (BioSample: SAMN09912224) carried a *tet*(X2.17) gene and another
268 (BioSample: SAMN09912221) carried a *tet*(X) gene shared 98.20% similarity with *tet*(X16),
269 designed *tet*(X16.4).

270 Date for lineage divergence of the earliest occurred *tet*(X) orthologs were produced by
271 Bayesian phylogenetic inference (Figure 2b). The analysis indicated a mean rate of 0.28 SNP per
272 year for these *tet*(X) during 1966-2018. The most-recent common ancestor (MRCA) of all *tet*(X)
273 from this study was approximately from 1939 to 1965, and the tracer analysis revealed the
274 presence of *tet*(X) most likely occurred in AD 1953 (95% highest posterior distributor (HPD) AD).
275 Two main lineages that originated from *tet*(X2.17) and *tet*(X12), respectively, were observed in
276 this phylogeny and both *tet*(X) orthologs were collected from the *Riemerella anatipesfifer* of duck
277 origin from the UK in 1966 year.

278 **Annotation and comparison of the *tet*(X) genomic environment**

279 A total of 1218 *tet*(X)-carrying contigs ranging from 1,190 to 931,600 bp were retrieved from
280 the metagenome and bacterial-isolate data. These contigs were grouped into 455 clusters that
281 carried a range of 1 - 48 contigs (Table S10). In each cluster, longer contig shared more than 97%
282 coverage and more than 97% similarity with shorter contig. The high coverage and similarity of
283 these contigs indicated that these *tet*(X) could spread among each cluster (Table 10). This
284 indicated *tet*(X) orthologs could spread among a great diversity of host including human, animal
285 and environment (Figure 3). Both humans and pigs were the primary *tet*(X) hosts. *tet*(X2)-like
286 *tet*(X3), *tet*(X4), *tet*(X7) and *tet*(X16.3) have been found in humans as well as *tet*(X2)-like, *tet*(X3),
287 *tet*(X4) and *tet*(X6) in pigs. However, only *tet*(X2)-like and *tet*(X3) orthologs could transfer
288 between these two hosts (Figure 3a). Interestingly, *tet*(X2)-like orthologs could hitch a great

289 diversity of vehicles to spread between humans and pigs and these included *Bacteroides* spp., *R.*
290 *anatipesfier* and *Chryseobacterium* spp.. The remaining *tet*(X) genes were spread only *via* special
291 species between different hosts. For instance, the *tet*(X3) gene could only be transited by
292 *Acinetobacter* spp. and spread between pigs and other hosts including pigeons, cattle, geese, ducks
293 and humans (Figure 3a). Additionally, the *tet*(X4) in the genomic array *rdmC-tet*(X4)- Δ *ISCR2*
294 could spread among wild birds, humans, pigs, chickens and the environment (Figure 3b).

295 Genomic annotation and comparisons indicated that other ARGs frequently flanked the *tet*(X)
296 gene and these included *ermF*, *aadK*, *tet*(Q) and *bla*_{OXA347} that conferred resistance to erythrocin,
297 streptomycin, tetracycline and ampicillin, respectively (Figure 4a and 4b). Of which, the *erm*(F)
298 gene was the most frequently flanking the *tet*(X) gene (n=152) and their genomic environment
299 were clustered into two types according to their relative position: *ermF* located upstream (15.79 %,
300 24/152) and downstream (80.92 %, 123/152) of *tet*(X) gene (Figure 4a and 4b). The upstream
301 *ermF* always formed a conserved structure *tnpF-ermF-tet*(X1)-*tet*(X2)/*tet*(X2.2)-*aadK* (n=24)
302 (Figure 4a). This structure was also present in a conjugative transposon CTnDOT of *Bacteroides*
303 origin (40), but the *aadK* (930 bp) was replaced by another aminoglycoside ARG *aadS* (903 bp) in
304 CTnDOT and these two ARGs shared a 96.77 % identity at the nucleotide level. Interestingly, the
305 *tet*(X) orthologs and their genomic contexts were more diverse when *ermF* was located
306 immediately downstream of *tet*(X). These *tet*(X) genes included 12 orthologs that were dominated
307 by *tet*(X2.4) and *tet*(X2.5) (Figure 4b, S1 text A1). In addition, these *tet*(X) genes were able to
308 spread among anaerobes, aerobes and facultative anaerobes (text S1).

309 **Discussion and conclusion**

310 **Source tracking of the *tet*(X) orthologs**

311 One of the most significant findings in current study was that *tet(X)* emerged as early as
312 1960s in *R. anatipesfifer* of duck origin, which was earlier than that had been previously reported
313 in 1980s (8) but we found *tet(X)* was present. A previous epidemiological study indicated the
314 MRCA of these *tet(X)*s orthologs likely occurred 9900 years ago (7887 BC) (15). However, we
315 also estimated the MRCA of these *tet(X)* genes but determined it occurred only 68 years ago
316 (1953 AD) that was only one year following the introduction of tetracycline in clinics. This was
317 consistent with the streptomycin, erythrocin and florfenicol, in which their resistance also emerged
318 over the ensuing years following their introduction in clinic [4]. In this analysis, we screened for
319 the presence of *tet(X)* orthologs from public repositories on a large scale (774,435 isolates) and
320 the earliest emergence of 28 *tet(X)* variants was selected to perform MRCA estimations (Figure
321 2b). The time of the earliest occurrences of *tet(X)* were an important factor for the chronogram
322 phylogeny construction using the Bayesian evolutionary analysis. Thus, these data should be
323 validated to confirm these results.

324 The *Flavobacteriaceae* have been recognized as a potential ancestral source of the
325 tigecycline resistance gene *tet(X)* (5). We found that both the two earliest (1966) occurring *tet(X)*
326 orthologs (*tet(X2.17)* and *tet(X12)*) harbored by *R. anatipesfifer* that is also a bacterial species
327 member belonging to *Flavobacteriaceae* family. Meanwhile, before 2000 only a total of seven
328 isolates were confirmed as *tet(X)* gene carrier and five of them were also identified as *R.*
329 *anatipesfifer* (Table S9). Among the 896 *tet(X)*-carrying isolates from public repository, 71
330 *tet(X)*-carrying were *Flavobacteriaceae* including *R. anatipesfifer* that accounted for a large
331 number (64.79%, 46/71) versus all other *Flavobacteriaceae* members (Figure 2a). Additionally, *R.*
332 *anatipesfifer* harbored a great diversity of *tet(X)* variants and only 23.94 % (17/71) carried the

333 known *tet*(X)s including *tet*(X12), *tet*(X14), *tet*(X2.17) and *tet*(X16.4) (Figure 2a). The remaining
334 carried other *tet*(X) orthologs that shared 94.9 - 99.7 % similarity with their most closely related
335 *tet*(X) ortholog (Table S9). A recent study indicated the poultry pathogen *R. anatipesfifer* appears
336 to be a reservoir for Tet(X) tigecycline resistance (41). These indicated that *R. anatipesfifer* was
337 most likely the ancestral source of the tigecycline resistance gene *tet*(X).

338 A great diversity for *tet*(X) and their flanking genomic contexts was observed when the *ermF*
339 gene was present downstream of *tet*(X) (Figure 4b and text S1). A comparison of the *tet*(X)
340 genomic contexts from MGBs and culturable isolates yielded 11 genomic backbones that were
341 associated with the formation of non-*tet*(X2) orthologs found in the current study (Figure 4b). The
342 non-*tet*(X2) orthologs were likely to be generated from *tet*(X2)-like orthologs during their
343 transmission between anaerobes or between anaerobes and facultative anaerobes (Figure 4b and
344 text S1). *ISBf11* and *IS4351* played important roles in their transmission between anaerobes that
345 was dominated by *Bacteroides* spp. where a mobile cyclic structure was speculated based on
346 genomic Types I - IV (Figure 4b and text S1), and the *tet*(X15)-like and *tet*(X16)-like genes were
347 likely to be generated during the transmission of this mobile structure. In addition, a
348 self-transmissible cyclic structure lacking IS elements was also hypothesized based on the
349 genomic Types V - XI. This structure likely transferred between *Bacteroides* spp. and *R.*
350 *anatipesfifer* and *tet*(X16.4) was most likely generated during the transmission. In addition,
351 genomic comparisons indicated that these *tet*(X) genes were also able to spread between
352 *Flavobacteriaceae* and *E. coli* as well as between *Flavobacteriaceae* and *Acinetobacter* sp.
353 (Figure 4c and text S1). We have demonstrated that *R. anatipesfifer*, a *Flavobacteriaceae* family
354 member, was a potential ancestral source of *tet*(X) and the new *tet*(X) orthologs were likely to be

355 produced during their transmission. The high similarity of the nucleotide sequences flanking
356 *tet*(X3) and *tet*(X4) (Figure 4c and text S1) suggested that these two genes were also derived from
357 *Flavobacteriaceae* and *ISCR2* played a key role in this process (Figure 4c and text S1).

358 **Global distribution of *tet*(X) orthologs**

359 The human microbiome plays an important role in public health. Here, we first determine the
360 *tet*(X) prevalence in the human microbiome using a large-scale survey of 12,829 samples (20-22).
361 A total of 16 *tet*(X2)-like and two new non-*tet*(X2) orthologs have been identified directly in the
362 human stool samples. Since there was not standard for assignment of the new found *tet*(X)
363 orthologs, and it was necessary to distinguish the different *tet*(X) orthologs in current study. Thus,
364 we temporarily set up a criterion for the assignment of *tet*(X) orthologs. This maybe not
365 comprehensive as the assignment for mobile colistin resistance (*mcr*) genes (42) which have
366 established a platform in NCBI (pd-help@ncbi.nlm.nih.gov) to confirm and allocate the allele
367 numbers for new *mcr* gene. An allele numbers assignment for *tet*(X)s should be established
368 urgently.

369 We found a prevalence for *tet*(X) at 1.21 % (322/26,548) that was higher than for *E. coli* and
370 *K. pneumoniae* from hospital isolates (0.32%, 4/1520) (5) indicating that traditional culture
371 methods have underestimated the prevalence of *tet*(X). Our results were similar to an
372 epidemiological study that detected the *bla*_{NDM} and *mcr-1* genes directly from samples that was
373 higher than for the *E. coli* isolates (43).

374 The *tet*(X2)-like genes carrier in human microbiomes were dominated by the *Bacteroidaceae*
375 in contrast to previous epidemiological studies where *tet*(X3) and *tet*(X4) were primarily carried
376 by *A. baumannii* and *E. coli*, respectively (2, 15). The *Bacteroides* are predominant anaerobes

377 estimated to account for 25 - 30% of human gut microflora (44) while the *Enterobacteriaceae*
378 normally constitutes only 0.1 - 1 % (45). We also found that the average abundance of
379 *tet*(X)-carrying MGBs (5.97 ± 3.89) annotated as *Bacteroidaceae* prevailed over species-level
380 genome bins (1.76 ± 3.74) in the human microbiome. This was likely the reason for the absence of
381 *tet*(X3) and *tet*(X4) in our human microbiome analyses. Although *tet*(X) genes are inactive in
382 anaerobes, the high abundance of *tet*(X2)-carrying MGBs and a variety of non-*tet*(X2)-like
383 orthologs found in the current study indicated that the *Bacteroidaceae* were an important reservoir
384 and mutational incubator for the mobile *tet*(X) orthologs in the human microbiome (Figure 5).
385 Furthermore, the *Bacteroidaceae* could generate new non-*tet*(X2) orthologs with tigecycline
386 inactivation functions, and the comparison of the *tet*(X) genomic environment suggested that these
387 non-*tet*(X2) enabled transfer to facultative anaerobes and aerobes (Figure 5).

388 We have demonstrated *R. anatipesfifer* as potential ancestral source of *tet*(X) genes, and the
389 earliest emergence of high-level tigecycline resistance genes *tet*(X3) and *tet*(X4) were likely to be
390 1971 and 1982, respectively, both of which were earlier than the clinical introduction of
391 tigecycline in 2005. This was further evidence that the use of even older antibiotic tetracycline
392 may contribute to the resistance to newer antibiotics (4). The *tet*(X) distributions from culturable
393 isolates indicated that *tet*(X2)-like and non-*tet*(X2) orthologs were prevalent in anaerobes and
394 aerobes respectively (Figure 5). Since Tet(X) is active only in an aerobic environment, the
395 non-*tet*(X2)-like orthologs with tigecycline inactivate function tended to be captured by aerobes
396 under tetracycline selective pressure (Figure 5). This was likely to be the reason that non *tet*(X2)
397 orthologs primarily distributed in aerobes but the high prevalence of *tet*(X2)-like orthologs in
398 *Bacteroidaceae* from human microbiome need to be further explored.

399 Taxonomic assignments for *tet*(X)-carrying MGBs were estimated using bioinformatic
400 methods that may not be as precise as cultural methods but such an approach has proved feasible
401 (20, 46). Another limitation of this approach was challenging to combine the chromosome with
402 their respective plasmid sequences (47). Therefore, these *tet*(X)-carrying contexts from MGBs in
403 the current study were likely to be chromosome-borne. This differed with *tet*(X3)/*tet*(X4) that are
404 present in a variety of plasmids and ISCR2 was an essential element for their mobilization (2, 15).
405 Transmission between *Bacteroidaceae* of these *tet*(X)s orthologs was primarily mediated by the
406 CTnDOT-like conjugative transposon and *ermF*-related IS elements including ISBf11 and IS4351.
407 CTnDOT has been reported to harbor *ermF*, *tet*(X1) and *tet*(X2) in *Bacteroides* (40) and
408 conjugative transposons can also insert into co-resident plasmids in addition to the chromosome
409 (48). Therefore, conjugative transposons have been found in numerous genera including
410 *Enterococcus*, *Streptococcus*., *Lactococcus*, *Butyrivibrio*, *Clostridium*, *Salmonella*, *Pseudomonas*,
411 *Mezorhizobium* and *Vibrio* (40). The erythromycin resistance *ermF* gene is frequently reported in
412 *R. anatipestifer* and *Bacteroides* spp. isolates (49, 50). The IS Bf11 and IS4351 flanking *tet*(X) in
413 the Type III genomic contexts have also been previously identified (51) and reveals that this
414 mobile structure has spread to China, the USA, France, Denmark, Sweden and Belgium. In
415 addition, the ISCR2 element belonging to the IS91 family has been described in the first report of
416 *tet*(X3) and *tet*(X4), both downstream and upstream of *tet*(X3). This IS element could form a
417 mobile amplicon and this was demonstrated using inverse PCR experiments (7) and in an
418 *Acinetobacter towneri* isolate flanking region of *tet*(X6) (52). We also identified this IS element
419 located upstream of *tet*(X6) and indicated that this IS element can play an important role in
420 transmission of non-*tet*(X2) orthologs with tigecycline inactivation functions in the

421 *Flavobacteriaceae*, *E. coli* and *Acinetobacter*.

422 In conclusion, we conducted an analysis integrated human gut metagenome and global
423 bacterial isolates to trace the origin and distribution of *tet(X)* gene. The *tet(X)* gene emerged as
424 early as 1960 and the *R. anatipestifer* was an ancestral source of *tet(X)*. The *tet(X3)*-carrying
425 *Acinetobacter* spp. and *tet(X4)*-carrying *E. coli* were prevalent in food animals and these two
426 *tet(X)*s were likely formed during the transmission of *tet(X)*s between *Flavobacteriaceae* and *E.*
427 *coli/Acinetobacter*. The ISCR2 element played a key role in the transmission. The *tet(X2)*-like
428 orthologs enriched in the anaerobes that was dominated by *Bacteroidaceae* of human-gut origin
429 and could transfer between these anaerobes. The mobile elements CTnDOT, ISBf11 and IS4351
430 played important roles in the transmission. The low-level tigecycline resistance *tet(X2)*-like gene
431 could mutate to high-level tigecycline resistant determinants that could spread to facultative
432 anaerobes and aerobes. *Bacteroidaceae* present in the human gut were an important reservoir and
433 mutational incubator for *tet(X)* genes.

434

435 Acknowledgments

436 This work was supported by the National Natural Science Foundation of China (31730097), the
437 Program for Changjiang Scholars and Innovative Research Team in University of Ministry of
438 Education of China IRT_17R39, the Local Innovative and Research Teams Project of Guangdong
439 Pearl River Talents Program (2019BT02N054), and the 111 Project (D20008).

440 The authors are grateful to the previous studies that provide a large-scale of microbial genomic
441 bins for the construction of the metagenomic analysis in current study.

442

443

444 **Reference**

- 445 1. Nelson ML, Levy SB. 2011. The history of the tetracyclines. *Ann N Y Acad Sci* 1241:17-32.
- 446 2. Fang LX, Chen C, Cui CY, Li XP, Zhang Y, Liao XP, Sun J, Liu YH. 2020. Emerging
447 High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile
448 Tet(X). *Bioessays* 42(8):e2000014.
- 449 3. Sarmah AK, Meyer MT, Boxall AB. 2006. A global perspective on the use, sales, exposure
450 pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment.
451 *Chemosphere* 65:725-59.
- 452 4. Aminov RI. 2013. Evolution in action: dissemination of *tet*(X) into pathogenic microbiota.
453 *Front Microbiol* 4:192.
- 454 5. Zhang R, Dong N, Shen Z, Zeng Y, Lu J, Liu C, Zhou H, Hu Y, Sun Q, Cheng Q, Shu L, Cai J,
455 Chan EW, Chen G, Chen S. 2020. Epidemiological and phylogenetic analysis reveals
456 *Flavobacteriaceae* as potential ancestral source of tigecycline resistance gene *tet*(X). *Nat*
457 *Commun* 11:4648.
- 458 6. Bertrand X, Dowzicky MJ. 2012. Antimicrobial susceptibility among gram-negative isolates
459 collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin
460 America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline
461 Evaluation and Surveillance Trial. *Clin Ther* 34:124-37.
- 462 7. He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, Ke Y, Ji Q, Wei R, Liu Z, Shen Y, Wang G,
463 Sun L, Lei L, Lv Z, Li Y, Pang M, Wang L, Sun Q, Fu Y, Song H, Hao Y, Shen Z, Wang S,
464 Chen G, Wu C, Shen J, Wang Y. 2019. Emergence of plasmid-mediated high-level tigecycline
465 resistance genes in animals and humans. *Nat Microbiol* 4(9):1450-1456.
- 466 8. Guiney DG, Jr., Hasegawa P, Davis CE. 1984. Expression in *Escherichia coli* of cryptic
467 tetracycline resistance genes from *bacteroides* R plasmids. *Plasmid* 11:248-52.
- 468 9. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. 2004. TetX is a
469 flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. *J Biol*
470 *Chem* 279:52346-52352.
- 471 10. Sun J, Yang RS, Zhang Q, Feng Y, Fang LX, Xia J, Li L, Lv XY, Duan JH, Liao XP, Liu YH.
472 2016. Co-transfer of *bla*_{NDM-5} and *mcr-1* by an IncX3-X4 hybrid plasmid in *Escherichia coli*.
473 *Nat Microbiol* 1:16176.
- 474 11. Cheng Y, Chen Y, Liu Y, Guo Y, Zhou Y, Xiao T, Zhang S, Xu H, Chen Y, Shan T, Xiao Y,
475 Zhou K. 2020. Identification of novel tetracycline resistance gene *tet*(X14) and its
476 co-occurrence with *tet*(X2) in a tigecycline-resistant and colistin-resistant *Empedobacter*
477 *stercoris*. *Emerg Microbes Infect* 9(1):1843-1852.
- 478 12. Wang L, Liu D, Lv Y, Cui L, Li Y, Li T, Song H, Hao Y, Shen J, Wang Y, Walsh TR. 2019.
479 Novel plasmid-mediated *tet*(X5) gene conferring resistance to tigecycline, eravacycline and
480 omadacycline in clinical *Acinetobacter baumannii*. *Antimicrob Agents Chemother*
481 64(1):e01326-19.
- 482 13. Liu D, Zhai W, Song H, Fu Y, Schwarz S, He T, Bai L, Wang Y, Walsh TR, Shen J. 2020.
483 Identification of the novel tigecycline resistance gene *tet*(X6) and its variants in *Myroides*,
484 *Acinetobacter* and *Proteus* of food animal origin. *J Antimicrob Chemother* 75(6):1428-1431.

485 14. Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, Symister CT, Wallace M,
486 Burnham CD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G. 2020.
487 Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic
488 bacteria cause broad-spectrum tetracycline resistance. *Commun Biol* 3:241.

489 15. Chen C, Cui C-Y, Yu J-J, He Q, Wu X-T, He Y-Z, Cui Z-H, Li C, Jia Q-L, Shen X-G, Sun R-Y,
490 Wang X-R, Wang M-G, Tang T, Zhang Y, Liao X-P, Kreiswirth BN, Zhou S-D, Huang B, Du
491 H, Sun J, Chen L, Liu Y-H. 2020. Genetic diversity and characteristics of high-level
492 tigecycline resistance *Tet(X)* in *Acinetobacter* species. *Genome Medicine* 12:111.

493 16. Li R, Lu X, Peng K, Liu Z, Li Y, Liu Y, Xiao X, Wang Z. 2020. Deciphering the Structural
494 Diversity and Classification of the Mobile Tigecycline Resistance Gene *tet(X)*-Bearing
495 Plasmidome among *Bacteria*. *mSystems* 5(2):e00134-20.

496 17. Hu Y, Liu F, Lin IY, Gao GF, Zhu B. 2016. Dissemination of the *mcr-1* colistin resistance gene.
497 *Lancet Infect Dis* 16:146-7.

498 18. Wang Y, Liu F, Zhu B, Gao GF. 2020. Metagenomic data screening reveals the distribution of
499 mobilized resistance genes *tet(X)*, *mcr* and carbapenemase in animals and humans. *J Infect*
500 80:121-142.

501 19. Zeng J, Pan Y, Yang J, Hou M, Zeng Z, Xiong WJEi. 2019. Metagenomic insights into the
502 distribution of antibiotic resistome between the gut-associated environments and the pristine
503 environments. *Environ Int* 126:346-354.

504 20. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A,
505 Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC, Golden CD, Quince C,
506 Huttenhower C, Segata N. 2019. Extensive Unexplored Human Microbiome Diversity
507 Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and
508 Lifestyle. *Cell* 176:649-662.e20.

509 21. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. 2019. New insights from
510 uncultivated genomes of the global human gut microbiome. *Nature* 568:505-510.

511 22. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire
512 TT, Zhu A, Shao Y, Pike LJ, Louie T, Browne HP, Mitchell AL, Neville BA, Finn RD, Lawley
513 TD. 2019. A human gut bacterial genome and culture collection for improved metagenomic
514 analyses. *Nat Biotechnol* 37:186-192.

515 23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary
516 Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35:1547-1549.

517 24. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new
518 ENDscript server. *Nucleic Acids Res* 42:W320-4.

519 25. Sun J, Chen C, Cui CY, Zhang Y, Liu X, Cui ZH, Ma XY, Feng Y, Fang LX, Lian XL, Zhang
520 RM, Tang YZ, Zhang KX, Liu HM, Zhuang ZH, Zhou SD, Lv JN, Du H, Huang B, Yu FY,
521 Mathema B, Kreiswirth BN, Liao XP, Chen L, Liu YH. 2019. Plasmid-encoded *tet(X)* genes
522 that confer high-level tigecycline resistance in *Escherichia coli*. *Nat Microbiol* 4:1457-1464.

523 26. Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP-a flexible pipeline for
524 genome-resolved metagenomic data analysis. *Microbiome* 6:158.

525 27. Wood DE, Salzberg SLJGb. 2014. Kraken: ultrafast metagenomic sequence classification
526 using exact alignments. *Genome Biol* 15:R46.

527 28. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M,
528 Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S,

529 Huttenhower C, Segata N. 2020. Precise phylogenetic analysis of microbial isolates and
 530 genomes from metagenomes using PhyloPhlAn 3.0. *Nat Commun* 11:2500.

531 29. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
 532 improvements in performance and usability. *Mol Biol Evol* 30:772-80.

533 30. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
 534 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972-3.

535 31. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 536 large phylogenies. *Bioinformatics* 30:1312-3.

537 32. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. 2015. Compact graphical
 538 representation of phylogenetic data and metadata with GraPhlAn. *PeerJ* 3:e1029.

539 33. Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees.
 540 *BMC Evol Biol* 7:214.

541 34. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior Summarization in
 542 Bayesian Phylogenetics Using Tracer 1.7. *Syst Biol* 67:901-904.

543 35. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
 544 developments. *Nucleic Acids Res* 47:W256-w259.

545 36. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the
 546 next-generation sequencing data. *Bioinformatics* 28:3150-2.

547 37. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068-9.

548 38. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL,
 549 Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK,
 550 Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum
 551 MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L,
 552 Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder 4.0 for
 553 predictions of phenotypes from genotypes. *J Antimicrob Chemother* 75(12):3491-3500.

554 39. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference
 555 centre for bacterial insertion sequences. *Nucleic Acids Res* 34:D32-6.

556 40. Whittle G, Hund BD, Shoemaker NB, Salyers AA. 2001. Characterization of the
 557 13-KilobaseermF Region of the *Bacteroides* Conjugative Transposon CTnDOT. *Appl Environ
 558 Microbiol* 67:3488-3495.

559 41. Umar Z, Chen Q, Tang B, Xu Y, Wang J, Zhang H, Ji K, Jia X, Feng Y. 2021. The poultry
 560 pathogen *Riheimerella anatipestifer* appears as a reservoir for Tet(X) tigecycline resistance.
 561 *Environ Microbiol* doi:10.1111/1462-2920.15632.

562 42. Partridge SR, Di Pilato V, Doi Y, Feldgarden M, Haft DH, Klimke W, Kumar-Singh S, Liu JH,
 563 Malhotra-Kumar S, Prasad A, Rossolini GM, Schwarz S, Shen J, Walsh T, Wang Y, Xavier BB.
 564 2018. Proposal for assignment of allele numbers for mobile colistin resistance (*mcr*) genes. *J
 565 Antimicrob Chemother* 73:2625-2630.

566 43. Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, Tyrrell JM, Zheng Y, Wang S, Shen Z, Liu Z,
 567 Liu J, Lei L, Li M, Zhang Q, Wu C, Zhang Q, Wu Y, Walsh TR, Shen J. 2017. Comprehensive
 568 resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production.
 569 *Nat Microbiol* 2:16260.

570 44. Moore WE, Cato EP, Holdeman LV. 1978. Some current concepts in intestinal bacteriology.
 571 *Am J Clin Nutr* 31:S33-42.

572 45. Consortium HMP. 2012. Structure, function and diversity of the healthy human microbiome.

573 Nature 486:207-14.

574 46. Zhang R-M, Liu X, Wang S-L, Fang L-X, Sun J, Liu Y-H, Liao X-P. 2020. Distribution
575 patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater
576 treatment systems and soil fertilized with pig manure. Sci Total Environ 758:143654.

577 47. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler
578 J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD,
579 Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F,
580 Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R,
581 Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D,
582 Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T,
583 Lin HH, Liao YC, et al. 2017. Critical Assessment of Metagenome Interpretation-a benchmark
584 of metagenomics software. Nat Methods 14:1063-1071.

585 48. Salyers AA, Shoemaker NB, Li LY. 1995. In the driver's seat: the *Bacteroides* conjugative
586 transposons and the elements they mobilize. J Bacteriol 177:5727-31.

587 49. Xing L, Yu H, Qi J, Jiang P, Sun B, Cui J, Ou C, Chang W, Hu Q. 2015. *ErmF* and *ereD* are
588 responsible for erythromycin resistance in *Riheimerella anatipesfier*. PLoS One 10:e0131078.

589 50. Johnsen BO, Handal N, Meisal R, Bjørnholt JV, Gaustad P, Leegaard TM. 2017. *erm* gene
590 distribution among *Norwegian Bacteroides* isolates and evaluation of phenotypic tests to
591 detect inducible clindamycin resistance in *Bacteroides* species. Anaerobe 47:226-232.

592 51. Pan Y, Awan F, Zhenbao M, Zhang X, Zeng J, Zeng Z, Xiong W. 2020. Preliminary view of
593 the global distribution and spread of the *tet(X)* family of tigecycline resistance genes. J
594 Antimicrob Chemother 75(10):2797-2803.

595 52. Cheng Y, Chen Y, Liu Y, Song J, Chen Y, Shan T, Xiao Y, Zhou K. 2021. Detection of a new
596 *tet(X6)*-encoding plasmid in *Acinetobacter townieri*. J Glob Antimicrob Resist 25:132-136.

597

598 Figure legends

599 Figure 1. Global distribution of *tet(X)*s from human microbiome. A. World map showed the
600 positive rates of *tet(X)* gene in 19 countries and the colored countries represented the positive
601 rates of *tet(X)* according to the hot map (>0% - 9.40%) at the bottom. The gray countries indicated
602 they were negative for *tet(X)* gene. The size of the pie charts represented the numbers of
603 *tet(X)*-positive MGBs and the colors in the pie charts indicated the composition of *tet(X)* variants.
604 B. PhyloPhlAn analysis of the *tet(X)* carrying MGBs. The taxonomic assignments of the
605 *tet(X)*-carrying MGBs were depicted with colored circles in the phylogenetic tree. The *tet(X)*
606 variants carried by the MGBs, as well as oxygen demand, gram stain, age category and the

607 countries of the *tet*(X)-carrying MGBs were showed in the five colored rings surrounding the
608 phylogenetic tree. C. Distribution of the 12 MGBs carried non-*tet*(X2) genes with tigecycline
609 inactivate function.

610

611 Figure 2. Culturable isolates insight into *tet*(X) distribution patterns. A. PhyloPhlAn analysis of
612 the *tet*(X)-carrying isolates from the public repository. The species of the *tet*(X)-carrying isolates
613 were depicted with colored circles in the phylogenetic tree. The information of the *tet*(X) carrying
614 isolates including *tet*(X) variants, oxygen demand, host, collection date and country were showed
615 in the six colored rings surrounding the phylogenetic tree. B. Dates of lineage divergence of the
616 earliest *tet*(X) orthologs as determined using Bayesian phylogenetic inference. The *tet*(X) variants,
617 countries, host and species of these isolates were shown at the right region.

618

619 Figure 3. Possible transmission routes of the *tet*(X) genes. The colored circles surrounding the
620 hosts represented the *tet*(X) carrying bacterial families. The dotted lines represented the possible
621 transmission routes of the *tet*(X) genes between different hosts.

622 Figure 4. Comparison of *tet*(X) genomic environment. A. The genomic comparison of *erm*(F) gene
623 located upstream of *tet*(X2)-like genes. The proportions of the *tet*(X2) and *tet*(X2.2) located
624 downstream *tet*(X1) were showed in the pie chart. B. The genomic comparison of *tet*(X) genes
625 located downstream *erm*(F). The proportions of the *tet*(X) variants located downstream of *erm*(F)
626 were showed in the pie chart. The possible mechanisms of non-*tet*(X2) formations were showed in
627 the two circles plotted with dotted line. C. Genomic comparison of the regions flanking *tet*(X3)
628 and *tet*(X4) among *Flavobacteriaceae*, *Acinetobacter* and *E. coli*. Arrows indicate the directions

629 of transcription of the genes, and different genes are shown in different colors. Regions of $\geq 99.0\%$
630 nucleotide sequence identity are shaded light grey. Regions of 77% - 91% nucleotide sequence
631 identity are shaded dark grey. The Δ symbol indicates a truncated gene. IS, insertion sequence. See
632 Table S11 for genomic Type I - XVII definitions.

633 Figure 5. Potential origin and main transmission routes of the *tet(X)* genes.

634

635 Supplementary files

636 Text S1. Description of the comparison of *tet(X)* genomic-environment in Figure 4 and S5.

637 Figure S1. Phylogenetic analysis of the Tet(X) at amino acid level.

638 Figure S2. Comparative analysis of the Tet(X2)-like orthologs at the amino acid level.

639 Figure S3. Significance analysis of *tet(X2)* distributions in Europe, Asia and America.

640 Figure S4. Distribution of *tet(X2)*-like orthologs among different bacterial genus, countries and
641 age groups from microbial genomic bins of human-gut origin.

642 Figure S5. Comparative analysis of the *tet(X2)* genomic context among *E. coli*, *R. anatipestifer*,
643 *Phocaeicola vulgatus* and *Odoribacter laneus*. Arrows indicate the directions of transcription of
644 the genes, and different genes are shown in different colors. Regions of $\geq 99.0\%$ nucleotide
645 sequence identity are shaded light grey. The Δ symbol indicates a truncated gene. IS, insertion
646 sequence. See Table S11 for genomic Type XVIII – XXII definitions.

647 Table S1. A total of 12,829 non-duplicate metagenomic samples that derived from previous studies
648 (see PMID of Publication).

649 Table S2. A total of 202,265 MGBs that was constructed from the 12,829 non-duplicate
650 metagenomic samples.

651 Table S3. The *tet*(X2)-like and non *tet*(X2) orthologs designed in current study.

652 Table S4. Minimum inhibitory concentration of the *tet*(X)s from metagenomic analysis. TET:
653 tetracycline; DOX: doxycycline; MIN: minocycline; TIG: tigecycline; ERA: eravacycline; OMA:
654 omadacycline.

655 Table S5. Positive rates of *tet*(X) gene in 31 countries.

656 Table S6. Positive rates of *tet*(X) carrying MGBs annotated at family level.

657 Table S7. Positive rates of *tet*(X) carrying MGBs annotated at species level.

658 Table S8. Detail information of the 322 *tet*(X) carrying MGBs.

659 Table S9. Detail information of the 896 *tet*(X) carrying bacterial isolates.

660 Table S10. Clusters of the 1218 *tet*(X) positive contigs from the MGBs and bacterial isolates.

661 Table S11. Detail information of the *tet*(X) genomic context types I to XXII.

Figure 1

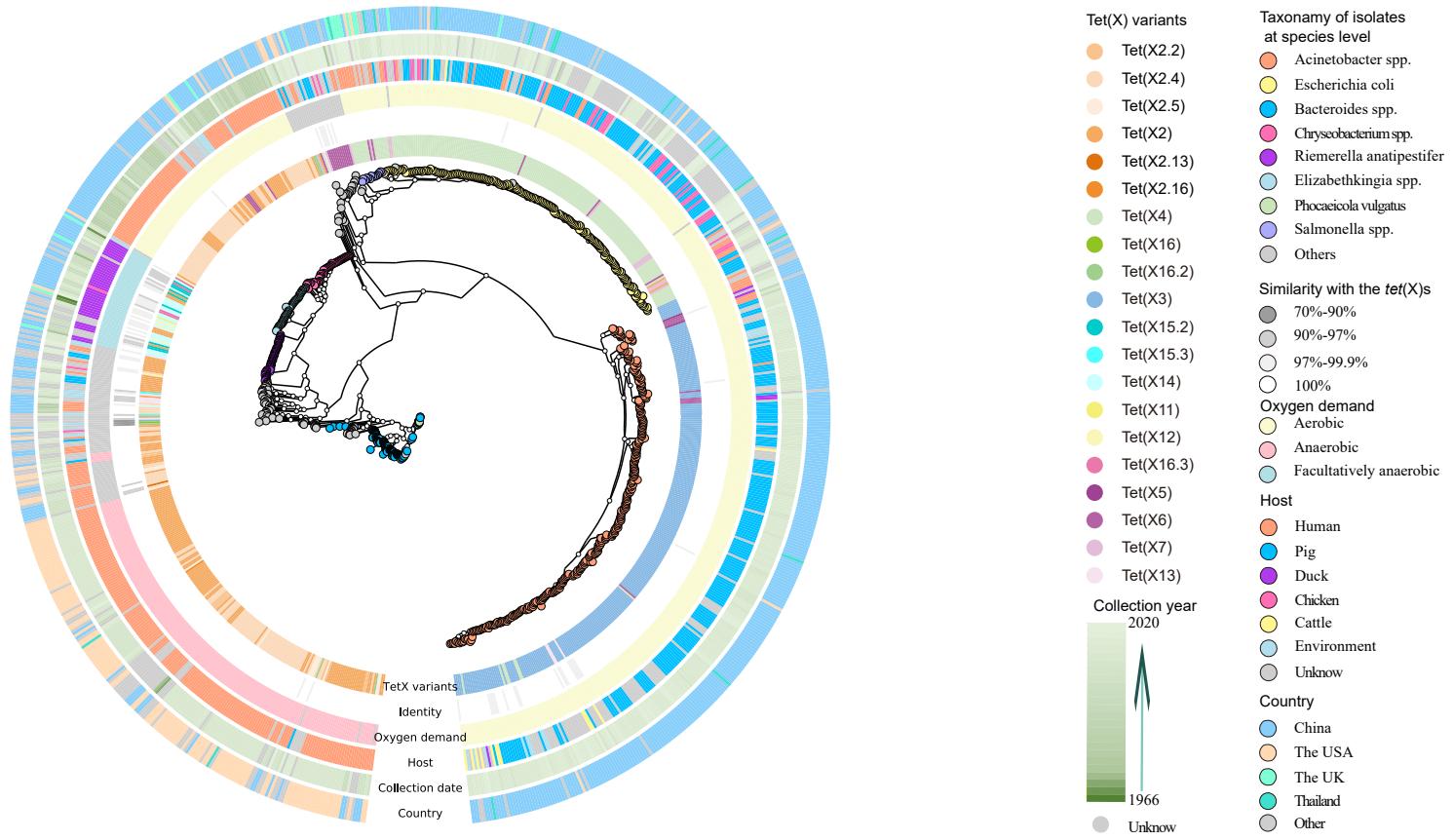



Figure 2

(a)

(b)

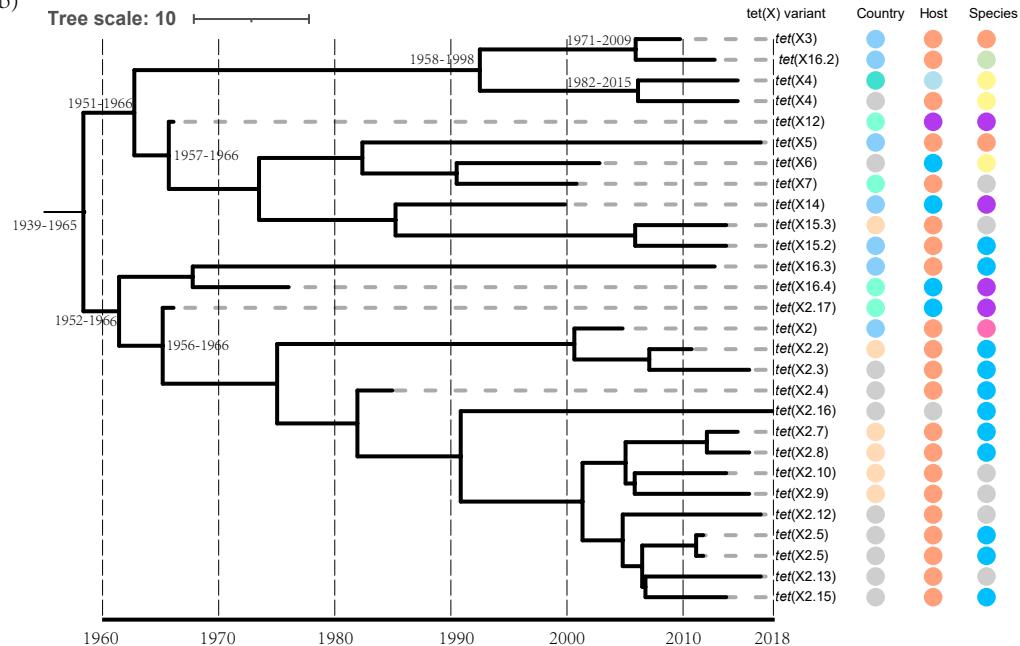
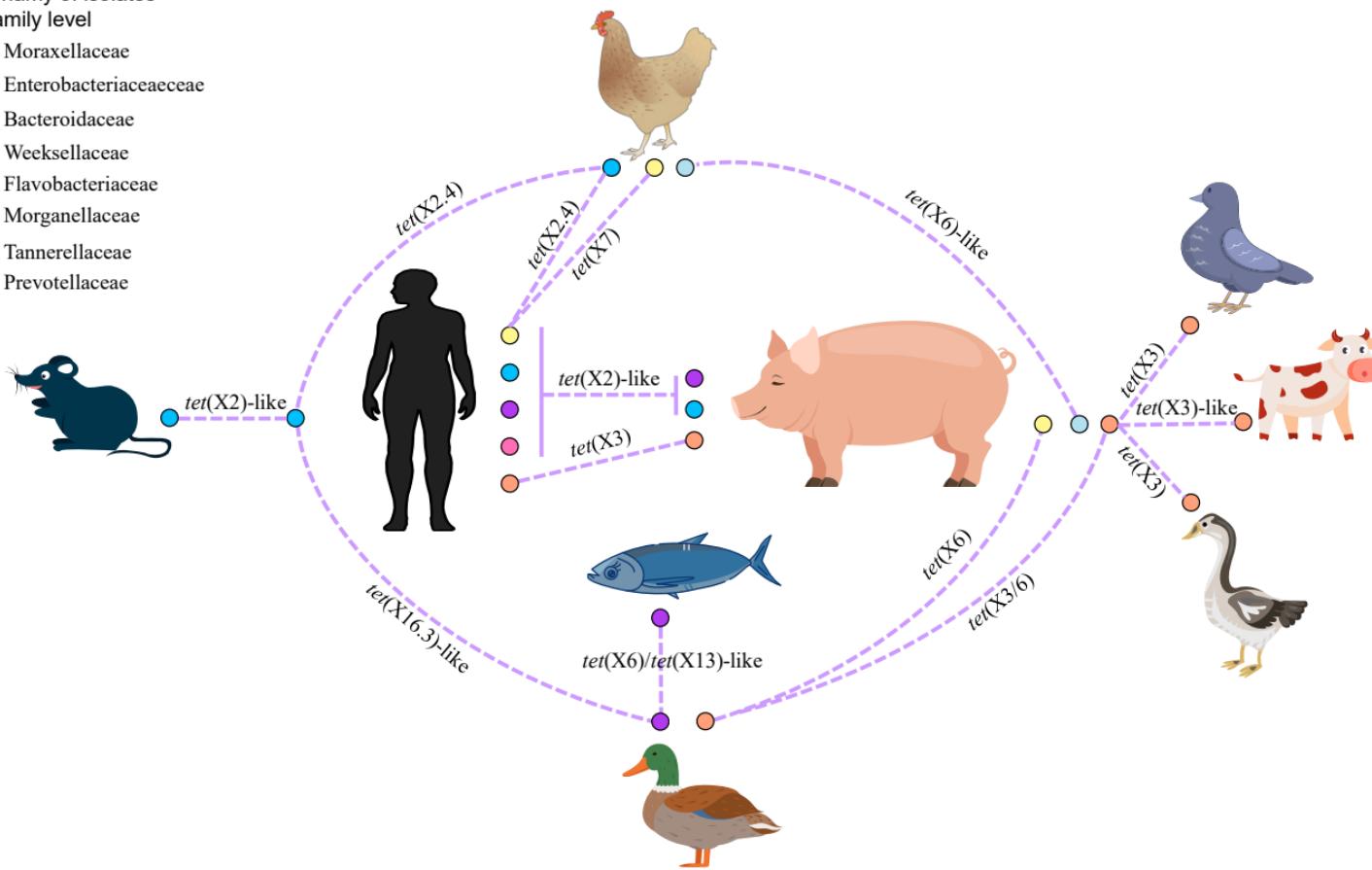



Figure 3

Taxonomy of isolates
at family level

- Moraxellaceae
- Enterobacteriaceae
- Bacteroidaceae
- Weeksellaceae
- Flavobacteriaceae
- Morganellaceae
- Tannerellaceae
- Prevotellaceae

(a)

(b)

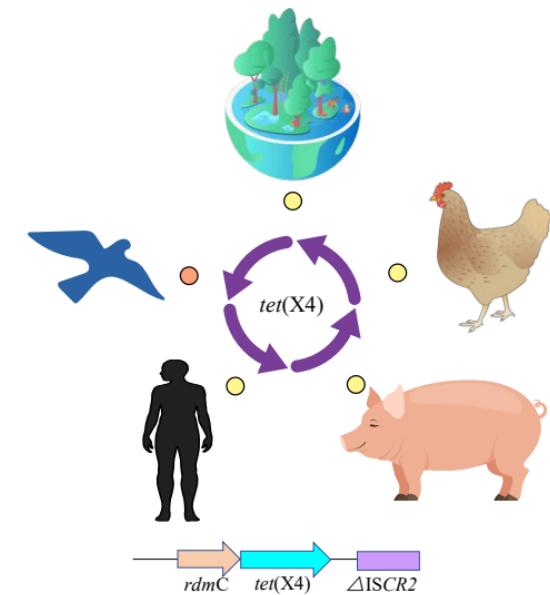


Figure 4

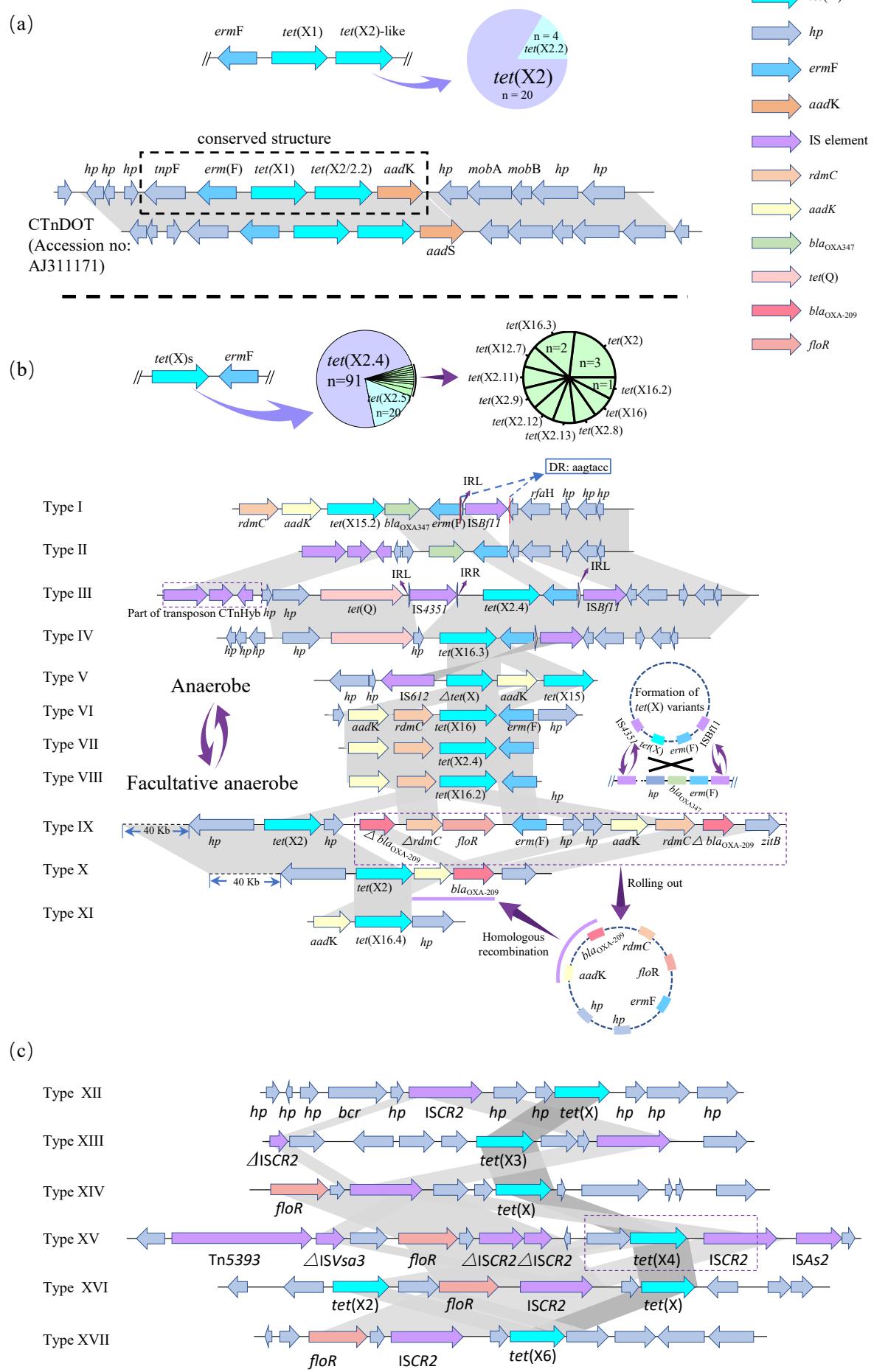
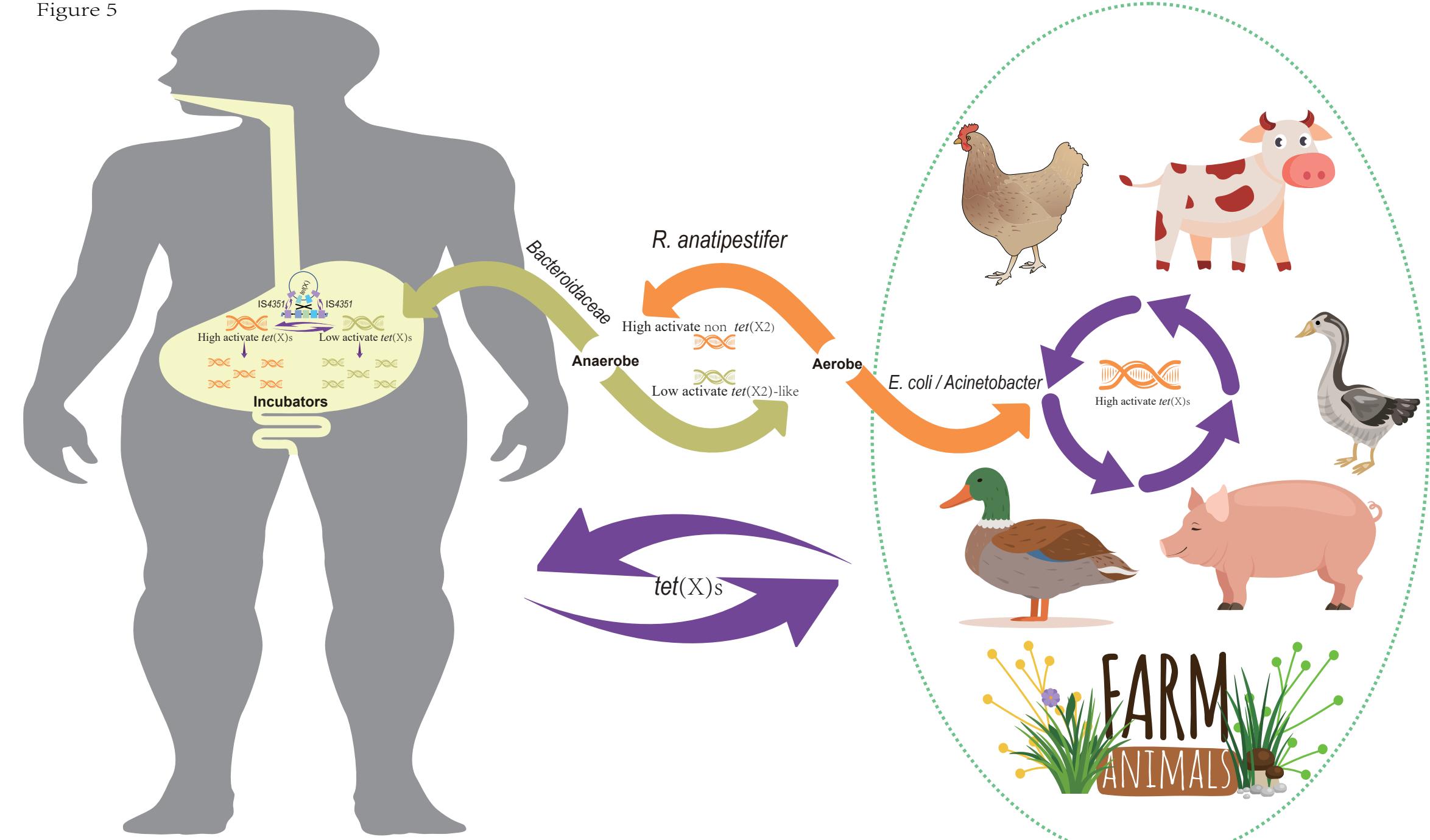



Figure 5

